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Abstract 

Accurate identification and quantification of human plasma metabolites can be 

challenging in crowded regions of the NMR spectrum with severe signal overlap. 

Therefore, this study describes metabolite spiking experiments on the basis of which the 

NMR spectrum can be rationally segmented into well-defined integration regions, and 

this for spectrometers having magnetic field strengths corresponding to 1H resonance 

frequencies of 400 MHz and 900 MHz. Subsequently, the integration data of a case-control 

dataset of 69 lung cancer patients and 74 controls were used to train a multivariate 

statistical classification model for both field strengths. In this way, the 

advantages/disadvantages of high versus medium magnetic field strength were evaluated. 

The discriminative power obtained from the data collected at the two magnetic field 

strengths is rather similar, i.e. a sensitivity and specificity of respectively 90% and 97% 

for the 400 MHz data versus 88% and 96% for the 900 MHz data. This shows that a 

medium-field NMR spectrometer (400-600 MHz) is already sufficient to perform clinical 

metabolomics. However, the improved spectral resolution (reduced signal overlap) and 

signal-to-noise ratio of 900 MHz spectra yield more integration regions that represent a 

single metabolite. This will simplify the unraveling and understanding of the related, 

disease disturbed, biochemical pathways.  

Key words: nuclear magnetic resonance spectroscopy, 1H, magnetic field strength, metabolic 

phenotype, plasma, lung cancer 

Abbreviations: AUC: area under the curve; MS: mass spectrometry; OPLS-DA: orthogonal 

partial least squares discriminant analysis; ppm: parts per million; S/N: signal-to-noise ratio; 

VAR: variable; VIP: variable importance for the projection. 
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Introduction  

Metabolomics is a powerful discipline in which small molecule metabolites are determined in 

biological samples such as plasma or urine 1-3. The two major high-throughput analytical 

platforms used for metabolite analysis are mass spectrometry (MS) and 1H-NMR spectroscopy 

4. Subsequently, the large amount of resulting data is analyzed by multivariate pattern 

recognition methods in an effort to reduce the complexity of the data and to extract diagnostic 

information regarding disease and to identify disturbed biochemical pathways 5-7. As compared 

to mass spectrometry (with or without a liquid chromatography step in advance), NMR 

spectroscopy offers excellent stability and integration accuracy (linear response between 

metabolite concentration and signal intensity/integration value), allowing not only to identify 

but also to quantify the metabolites in biological samples. Moreover, since there is no need for 

sample extractions, the reproducibility is very high 4,8. 

The application of 1H-NMR-based metabolomics in the search for cancer biomarkers has 

increased enormously over the past decade 9-15. Most of these studies used 400-600 MHz NMR 

spectrometers to study the disturbed metabolism of cancer cells 9,11,13-15. However, recently, 

high-field NMR spectrometers with 1H resonance frequencies up to 800 MHz have been 

employed 10,12. Although NMR spectra obtained at these high field strengths have an improved 

spectral resolution and signal-to-noise ratio (S/N), the cost and housing facilities also raise 

strongly 16.  

Recently, Louis et al. have performed metabolite spiking experiments on a 400 MHz 

spectrometer in order to rationally segment the human plasma 1H-NMR spectrum into variable-

sized integration regions 17. Using these integral settings, the spectra of a large cohort of 233 

lung cancer patients and 226 controls were analyzed and the resulting data used to train a 

statistical orthogonal partial least squares discriminant analysis (OPLS-DA) model (classifier). 

The resulting model was able to discriminate between the groups with a sensitivity of 78% and 



4 
 

a specificity of 92%. The validity of the model was demonstrated in an independent cohort of 

98 lung cancer patients and 89 controls with a sensitivity of 71% and a specificity of 81%. 

Moreover, knowledge of aberrant metabolite concentrations can help to unravel the metabolic 

changes correlated with disease and responsible for the group distinction 18. However, complete 

signal assignment is almost impossible on a 400 MHz spectrometer, especially in crowded 

regions with severe signal overlap 19,20.  

In the present study, NMR spectra of the plasma of the same group of 69 lung cancer patients 

and 74 controls were acquired on a 400 MHz as well as a 900 MHz spectrometer. The signal 

assignment and setting of 105 well-defined integration regions in the high-field 900 MHz 

spectra is based on metabolite spiking. The signal assignment and setting of 74 well-defined 

integration regions in the medium-field 400 MHz spectra is based on metabolite spiking and 

the signal assignment of the 900 MHz spectra. The data results of both spectrometers were used 

to train a classifier in differentiating between the groups and to identify the metabolic alterations 

which are causing the group discrimination.  
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Materials and Methods  

Subjects 

Lung cancer patients (n=69) were included in the Limburg Positron Emission Tomography 

Center (Hasselt, Belgium) from March 2011 to January 2012. The diagnosis of lung cancer was 

confirmed by a pathological biopsy or a clinician specialized in interpreting radiological and 

clinical lung cancer data. Clinical staging of the tumors was performed according to the 7th 

edition of the tumor, node, metastasis classification of malignant tumors 21 and independently 

checked by two of the authors (EL and KV). Controls (n=74) were patients with non-cancer 

diseases who were included at Ziekenhuis Oost-Limburg (Genk, Belgium) between December 

2011 and April 2012. 

Exclusion criteria were: 1) not fasted for at least 6 h; 2) fasting blood glucose concentration ≥ 

200 mg/dl; 3) medication intake on the morning of blood sampling and 4) treatment or history 

of cancer in the past 5 years. The study was conducted in accordance with the ethical rules of 

the Helsinki Declaration and Good Clinical Practice and was approved by the ethical 

committees of Ziekenhuis Oost-Limburg and Hasselt University (Hasselt, Belgium). All study 

participants provided written informed consent.  

Blood sampling and processing 

Fasting venous blood samples were collected in 10 ml lithium-heparin tubes and stored at 4°C 

within 5 to 10 min. Within 8 h after blood collection, samples were centrifuged at 1600 g for 

15 min and plasma aliquots of 500 µl were transferred into sterile cryovials and stored at -80°C 

until NMR analysis within six months.  

NMR sample preparation 

Plasma aliquots were centrifuged after thawing at 13000 g for 4 min at 4°C, followed by diluting 

200 µl of the plasma with 600 µl deuterium oxide (D2O, 99.9%) containing 0.3 µg/µl 
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trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP, 98%) as a chemical shift reference. All 

samples were placed on ice until 1H-NMR analysis.  

NMR measurements 

1H-NMR measurements were performed at 21.2°C on a 400 MHz spectrometer (9.4 Tesla; 54 

mm bore-size; Varian Inova; Agilent Technologies Inc.; VnmrJ 3.2 RevisionA) and on a 900 

MHz spectrometer (21.1 Tesla; 54 mm bore-size; Bruker Avance; Bruker Biospin). The 400 

MHz spectrometer is equipped with an Agilent OneNMR 5mm probe, whereas the 900 MHz 

spectrometer has a triple resonance cryoprobe. Slightly T2-weighted spectra were acquired 

using the Carr-Purcell-Meiboom-Gill pulse sequence (total spin-echo time of 32 ms), preceded 

by presaturation for water suppression. Other parameters were: a spectral width of 6000 

Hz/14423 Hz (400 MHz/900 MHz), a 90° pulse length of 6.35/9.15 μs (400 MHz/900 MHz), 

an acquisition time of 1.2 s, a preparation delay of 3.5 s, and 96/64 scans (7min 44sec/5min 

9sec on 400 MHz/900 MHz). Each free induction decay was zero-filled to 65 K points and 

multiplied by a 0.7 Hz exponential line-broadening function prior to Fourier transformation.  

Metabolite spiking of reference plasma to assign the signals in the 400 MHz and 900 MHz 

NMR spectra 

Fasting venous blood was collected from a healthy 44-year-old female. The plasma was 

obtained and processed as described above, and further referred to as reference plasma. For 

spiking, two stock solutions were prepared for each known metabolite by dissolving 0.01 mg 

or 1 mg in 100 µl of reference plasma. In a next step, 10 µl stock solution was added to a 

solution of 200 µl reference plasma and 600 µl D2O containing TSP and subsequently analyzed 

on the 400 MHz and 900 MHz spectrometer as described above. When shifting of peaks was 

observed upon addition of the spiked metabolite, the concentration of the spike was decreased 

in order to assure correct signal assignments. This procedure was repeated for 37 different 

metabolites, i.e. alanine, arginine, asparagine, aspartate, cysteine, glutamine, glutamate, 
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glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, 

threonine, tryptophan, tyrosine, valine, glucose, myo-inositol, acetate, acetoacetate, α-

ketoglutarate, β-hydroxybutyrate, citrate, lactate, pyruvate, succinate, creatine, creatinine, 

aceton, betaine, choline, glycerol and methanol. Table S1 presents the 1H-NMR chemical shift 

values and J-coupling patterns of the spiked metabolites.  

Spectral processing of 400 MHz and 900 MHz spectra 

Based on the chemical shifts of the spiked metabolites, the 900 MHz 1H-NMR spectra of lung 

cancer patients and controls were segmented into 105 variable-sized integration regions, 

excluding the water region (4.7-5.1 ppm) and TSP (-0.3-0.3 ppm). To check whether no 

positional changes of signals occur in the spectra between different plasma samples, two regions 

that contain well-resolved, non-overlapping signals (between 7.1-7.3 ppm and 3.45-3.9 ppm) 

were checked with respect to the location of the signals. The integration values were then 

normalized relatively to the total integrated area (except the area under the water and TSP 

signals), resulting in 105 normalized integration values, being the variables for multivariate 

statistics. By combining the information obtained from similar spiking experiments performed 

on a 400 MHz and 900 MHz spectrometer, the 400 MHz 1H-NMR spectra of lung cancer 

patients and controls were segmented into 74 variable-sized integration regions, excluding the 

water region (4.7-5.0 ppm) and TSP (-0.1-0.3 ppm). Also for the 400 MHz 1H-NMR spectra, 

two regions that contain well-resolved, non-overlapping signals (between 4.6-4.8 ppm and 3.7-

3.85 ppm) were checked with respect to the location of the signals. The integration values were 

then normalized relatively to the total integrated area (except the area under the water and TSP 

signals), resulting in 74 normalized integration values, being the variables for multivariate 

statistics.   
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Statistical analysis 

Multivariate statistics was performed using SIMCA-P+ (Version 14, Umetrics, Umea, 

Sweden). After mean-centering and Pareto scaling of the NMR data, supervised OPLS-DA was 

used to train a classification model in discriminating between lung cancer patients and controls 

22. The robustness of the classification models trained by means of the 400 and 900 MHz 

integration data, respectively, was further evaluated using Receiver Operating Characteristic 

Curve Explorer & Tester 23. The most discriminating variables of the models and their 

corresponding variable importance for the projection (VIP) values were identified via an S-plot 

24. 
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Results and Discussion 

Figure 1 shows a zoom-in of 1H-NMR spectra of a representative plasma sample acquired on 

a 400 MHz and a 900 MHz spectrometer. An improved spectral resolution as well as S/N can 

be observed for the 900 MHz spectrum as compared to the 400 MHz spectrum. To assign the 

resonance signals in both spectra, spiking experiments were performed with known metabolites. 

Louis et al. already reported the spiking of reference plasma with 37 different metabolites in 

relevant concentrations in order to assign the signals and to rationally divide the 400 MHz 

spectra into variable-sized, well-defined integration regions 17. In this study, reference plasma 

was spiked with the same metabolites and analyzed on a 900 MHz spectrometer. The resulting 

information allows to rationally divide the 900 MHz spectra into 105 variable-sized, well-

defined integration regions (Table 1, left half). Taking i) the chemical shifts of the spiked 

metabolite signals in the 400 MHz spectra and ii) the additional information obtained from the 

spiking experiments on the 900 MHz spectrometer into account, the 400 MHz spectra were 

divided into 74 variable-sized, well-defined integration regions (Table 1, right half).  

Due to the improved resolution of a 900 MHz spectrum, an overlapping integration region in a 

400 MHz spectrum can sometimes be divided into multiple integration regions that represent a 

single metabolite. An example is VAR34 in the 400 MHz spectrum, which can be divided into 

6 integration regions (VAR50-55) in the 900 MHz spectrum, revealing that the relative plasma 

concentration of glucose (VAR54) is increased whereas the level of sphingomyelin and 

phosphatidylcholine (VAR55) is decreased for lung cancer patients. Remark that 

sphingomyelin and phosphatidylcholine can be discriminated from the other lipids on the basis 

of the strong singlet signal of the nine protons of the three methyl groups of the choline head 

group.  

On the basis of the spiking experiments on the 900 MHz spectrometer, it can be concluded that 

the plasma levels of arginine, betaine, choline, cysteine, tryptophan and myo-inositol are below 
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the detection limit, even with the improved S/N of a 900 MHz spectrum. This explains why 

they are not shown in Table 1. The increased spectral resolution and S/N of the 900 MHz 

spectra further enable to define a larger number of integration regions that represent a single 

metabolite, thereby contributing to the identification of the discriminating metabolites and to 

the understanding of the underlying disturbed biochemical pathways of disease. More 

specifically, 58% of the variables in the 900 MHz spectrum (61 out of the 105) represent a 

single metabolite as opposed to 49% in the 400 MHz spectrum (36 out of 74).  

Application to a lung cancer case-control dataset 

In order to investigate the discriminative power of plasma metabolic phenotype data obtained 

at different magnetic field strengths, the plasma of a case-control dataset of 69 lung cancer 

patients and 74 controls was analyzed on a 400 MHz and a 900 MHz spectrometer. Subject 

characteristics are presented in Table 2. Supervised OPLS-DA analysis was conducted to train 

robust classification models in discriminating between lung cancer patients and controls. Using 

the 74 variables (integration values) obtained from the 400 MHz spectra, the trained model with 

1 predictive component and 4 orthogonal components allows to classify 90% (62 out of 69) of 

the lung cancer patients and 97% (72 out of 74) of the controls correctly with an area under the 

curve (AUC) of 0.93 (Figure 2a-b, Table 3). For the 900 MHz dataset with 105 variables, the 

trained model with 1 predictive component and 6 orthogonal components enables to 

differentiate with a sensitivity of 88%, a specificity of 96% and an AUC of 0.90 (Figure 2c-d, 

Table 3). Independent permutation tests confirm that there is no overfitting for both 

classification models (Figure S1a-b).  

Taking a closer look at the model characteristics (Table 3), it can be concluded that the trained 

400 MHz and 900 MHz models both explain 86% of the intra-group variation (R2X(cum)). In 

addition, the 900 MHz model explains 68% of the inter-group variation (R2Y(cum)) compared 

to 66% for the 400 MHz model. Also, the predictive ability (Q2(cum)) of both models, as 
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determined by sevenfold cross-validation, is quasi similar, i.e. 48% for the 900 MHz model 

versus 51% for the 400 MHz model. The-inter-variation for the models using multiple 

orthogonal components is shown in Table 3. 

 Taken all above in consideration, it can be concluded that the discriminative power and 

predictive ability of both models are comparable. Bertram et al. examined the impact of varying 

magnetic field strength, i.e. 250, 400, 500 and 800 MHz, on the urinary metabolic phenotype 

of 24 boys before and after a dietary intervention 16. Although the study is rather limited in the 

number of subjects, indications were present that the power to discriminate between pre- and 

post-intervention samples improved upon increasing the magnetic field strength from 250 to 

500 MHz, but that no further improvement was found for a further increase to 800 MHz. Our 

study on a larger cohort of 143 subjects confirms this finding.  

In a next step, the variables discriminating most between lung cancer patients and controls (i.e. 

variables with a VIP value exceeding 0.5) were identified in an attempt to support in unraveling 

the disturbed biochemical pathways in lung cancer. It resulted in 35 and 42 variables from the 

400 MHz and 900 MHz data, respectively. These variables (indicated with an asterisk in Table 

1) are situated at the outer ends of the respective S-plots as demonstrated in Figure 3a-b. 

Evaluating these variables with respect to the controls, it is found that: i) in common for the 

400 MHz and 900 MHz data, the plasma concentrations of glutamine, glucose, glycerol, 

isoleucine, leucine, N-acetylated glycoproteins, proline, threonine and valine are increased, 

whereas the concentrations of alanine, asparagine, citrate, lactate, non-cholinated lipids, 

phosphatidylcholine and sphingomyelin are decreased and, ii) according to the 900 MHz 

information, the plasma concentration of aspartate (VAR72, VIP: 0.77), β-hydroxybutyrate 

(VAR98, VIP: 0.91) and lysine (VAR94, VIP: 0.76) are increased. Since citrate and aspartate 

are overlapping in the 400 MHz spectrum (VAR47) and the concentration of citrate is decreased 

according to the 900 MHz (VAR74) and 400 MHz (VAR49) data, the increase of aspartate is 
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probably masked by the decrease of citrate in the 400 MHz spectra. Furthermore, knowing from 

the 900 MHz data that lysine (VAR94) and β-hydroxybutyrate (VAR98) are increased, 

information that cannot be retrieved from the 400 MHz data (VAR64, VAR68), it can be 

deduced that the increase of VAR42 in the 400 MHz spectrum and of VAR64 in the 900 MHz 

spectrum most probably arises from an increase of lysine rather than of α-ketoglutarate. 

Although somewhat beyond the goal of using this case-control dataset, the decreased levels of 

phospholipids confirm an enhanced membrane synthesis in lung cancer cells, while the other 

discriminating metabolites are pointing to a response on the Warburg effect, which is ongoing 

in the cancer cells 18. 

Metabolomics and the NMR magnetic field strength  

Taking all into account, it can be concluded that on the one hand medium-field NMR 

spectrometers can be satisfactory for clinical metabolomics studies in which group 

discrimination is the only aim. For the presented case-control dataset of 69 lung cancer patients 

and 74 controls, no significant improvement is observed if a higher field magnet is used (Table 

3). High-field NMR spectra on the other hand have i) an increased spectral resolution as 

compared to 400 MHz spectra which results in a larger number of metabolites that can be 

detected via a unique, non-overlapping signal, an advantage if the analysis of the underlying 

disturbed biochemical pathways is an additional aim and ii) a higher S/N allowing a shorter 

total measuring time (and so higher throughput) as well as to detect smaller signals which might 

be important for other cancers or other diseases. An improved sensitivity might also become a 

consideration when the quantity of sample becomes limited (e.g. pediatric blood). However, 

one has to take into account that the NMR spectrometer costs also raise with the magnetic field 

strength, e.g. whereas the cost of a 400 MHz spectrometer is in the order of 300.000€ (500.000€ 

with a cryoprobe), this of a 900 MHz spectrometer is in the order of 2.750.000€ (3.000.000€ 

with a cryoprobe). 
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Figure Legends 

Figure 1. Zoom-in between 0.80-1.10 ppm of the 1H-NMR spectrum (line-broadening of 0.7 

Hz) of human plasma acquired at 900 (top) and 400 MHz (bottom). The frequency (Hz) labeled 

signals represent the doublets of the two methyl groups of the amino acid valine. Remark that 

the J-coupling (7.2 Hz) is independent of the field strength when expressed in Hz (see marked 

resonance frequencies), but not when expressed in ppm. Abbreviations: ppm: parts per million  

Figure 2. (a) OPLS-DA score plot derived from the 400 MHz data, (b) receiver operating 

characteristic curve derived from the 400 MHz data, (c) OPLS-DA score plot derived from the 

900 MHz data, (d) receiver operating characteristic curve derived from the 900 MHz data. 

Abbreviations: AUC: area under the curve, C: controls, LC: lung cancer patients, OPLS-DA: 

orthogonal partial least squares discriminant analysis 

Figure 3. (a) S-plot of the OPLS-DA model derived from the 400 MHz data showing the 

variables contributing most to group discrimination. Variables situated at the right end are 

increased in the plasma of lung cancer patients, while those situated at the left end are increased 

for the controls, (b) S-plot of the OPLS-DA model derived from the 900 MHz data. Variables 

used to explain the disturbed biochemical pathways in lung cancer (VIP > 0.5) are marked (●). 

Abbreviations: Var: variable, VIP: variable importance for the projection 
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Tables 

Table 1. Overview of the 105 variable-sized integration regions defined in the 900 MHz NMR 

spectra and their contributing metabolites (left half) versus the 74 variable-sized integration 

regions and their contributing metabolites in the 400 MHz NMR spectra (right half).  

900 MHz 400 MHz 

VAR VIP 
Contributing 

metabolites 
Start End VAR VIP 

Contributing 

metabolites 

Start End 

1  NI 8,4914 8,4796      

2  Formate 8,3702 8,3602      

3  NI 8,2601 8,2500      

4  NI 8,2300 8,2050      

5  NI 7,8561 7,8104 1  NI 7,9500 7,8104 

6  His 7,7812 7,7544 2  His 7,7890 7,7480 

7  Phe 7,4677 7,4380 
3  Phe, NI 

 

7,4840 

 

7,3620 
8  Phe, NI 7,4162 7,3755 

9  Phe 7,3675 7,3484 4  Phe 7,3620 7,33 

10  NI 7,3484 7,3227 5  NI 7,33 7,2820 

11  Tyr 7,2327 7,2046 6  Tyr 7,2550 7,2000 

12  NI 7,1894 7,1591      

13  His 7,0792 7,0597 7  His 7,1070 7,0597 

14  NI 7,0201 6,9652      

15  Tyr 6,9355 6,9056 8  Tyr 6,9430 6,9050 

16  NI 6,7460 6,7004 9  NI 6,7460 6,7004 

17*d 1.67 
Lipids: 

-CH=CH- in FAC
#
 

5,4422 5,2833 10*d 1.51 
Lipids: 

 -CH=CH- in FAC
#
 

 

5,4422 

 

5,2752 

18*i 0.91 Glucose 5,2751 5,2542 11*i 0.62 Glucose 5,2752 5,2516 

19  

C2H in glycerol 

backbone of PL and 

TG
#
 

5,2542 5,2301 

12  

C2H in glycerol 

backbone of PL and 

TG
#
 

 

 

5,2516 

 

 

5,2030 

20  

C2H in glycerol 

backbone of PL and 

TG
#
 

5,2186 5,2038 

21  NI 5,1525 5,1187      

22*i 0.92 Glucose 4,7088 4,6421 13*i 0.87 Glucose 4,7088 4,6421 

23 
 

 

C1H and C3H in 

glycerol backbone of 

TG
#
 

4,3579 4,2902 14  

C1H and C3H in 

glycerol backbone of 

TG
#
 

 

4,4100 

 

4,2902 

24 
 

 

O-CH2-CH2-

N+(CH3)3 of PC and 

SM
#
, Thr 

4,2852 4,2536 15  

O-CH2-CH2-

N+(CH3)3
 of PC and 

SM
#
, Thr 

 

4,2902 

 

4,2332 

25  β-hydroxybutyrate 4,2000 4,1607 16  β-hydroxybutyrate 4,2000 4,1607 

26*d 1.44 

C1H and C3H in 

glycerol backbone of 

PL and TG
#
, lactate 

4,1570 4,1276 17*d 1.09 

C1H and C3H in 

glycerol backbone of 

PL and TG
#
, lactate 

 

4,1607 

 

4,1260 

27*d 0.54 NI 4,1276 4,0904 18*d 0.94 NI 4,1260 4,0904 

28  Creatinine 4,0904 4,0780 19     
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Creatinine 

 

4,0904 4,0700 

29 

 

 

 

 

C3H2 in glycerol  

backbone of PL
#
, 

Asn, His, Phe, Ser 

4,0400 3,9913 20*i 0.57 

C3H2 in glycerol 

backbone of PL
#
, 

Asn, His, Phe, Ser 

 

4,0400 

 

3,9900 

30*i 0.73 Asn, His, Ser, Tyr 3,9903 3,9644 
21*i 1.40 

Creatine, Asn, His, 

Ser, Tyr 

3,9900 3,9586 

31  Creatine 3,9644 3,9586 

32  Tyr 3,9586 3,9527 

22*i 3.09 Glucose, Tyr 

 

 

3,9586 

 

 

3,8306 
33*i 2.08 Glucose 3,9527 3,9120 

34*i 1.15 Glucose 3,9120 3,8957 

35*i 1.86 Glucose 3,8881 3,8306 

36*i 0.56 
Glucose, Ala, Gln, 

Glu, Ser 
3,8286 3,8097 23*i 0.74 

Glucose, Ala, Gln, 

Glu, Ser 

3,8286 3,7956 

37*i 1.26 Glucose, Ala, Gln 3,8097 3,7794 24  Glucose, Ala, Gln 3,7956 3,7794 

38*i 1.92 Glucose 3,7776 3,7275 25*i 2.01 Glucose 3,7794 3,7141 

39*i 2.32 Glycerol 3,7204 3,6453 26*i 1.69 Glycerol 3,7141 3,6376 

40*i 0.66 Val 3,6453 3,6212 27*i 0.72 Val 3,6376 3,6212 

41*i 1.15 Thr 3,6163 3,5861 28*i 0.88 Thr 3,6212 3,5861 

42  Glycerol 3,5861 3,5771 29*i 1.05 Glucose, glycerol 3,5861 3,5649 

43*i 1.04 Glucose 3,5771 3,5481 30*i 0.75 Glucose 3,5649 3,5360 

44*i 1.80 Glucose 3,5355 3,4798 

31*i 1.82 Glucose, Pro 

 

3,5360 

 

3,3980 
45*i 0.54 Pro 3,4772 3,4576 

46*i 1.46 Glucose 3,4576 3,4093 

47  Methanol 3,3964 3,3924 
32  Methanol, NI 

 

3,3980 

 

3,3746 
48  NI 3,3924 3,3746 

49  Pro 3,3746 3,3465 33  Pro 3,3746 3,3256 

50  Phe 3,3256 3,3132 

34*d 2.09 

O-CH2-CH2-

N+(CH3)3 of PC and 

SM
#
, glucose, Phe, 

NI 

 

 

 

 

3,3256 

 

 

 

 

3,1972 

51  Phe, NI 3,3132 3,3030 

52  NI 3,3030 3,2956 

53  NI 3,2956 3,2909 

54*i 1.12 Glucose 3,2909 3,2616 

55*d 2.28 

O-CH2-CH2-

N+(CH3)3 of PC and 

SM
#
 

3,2616 3,2085 

56  Tyr, NI 3,1972 3,1895 35  Tyr, NI 3,1972 3,1895 

57  NI 3,1881 3,1821 
36  NI 

 

3,1881 

 

3,1724 
58  NI 3,1821 3,1724 

59  NI 3,1707 3,1571 37  NI 3,1707 3,1540 

60  His, Phe 3,1541 3,1378 38  His, Phe 3,1540 3,1090 

61  Tyr 3,0921 3,0769 39*d 0.70 Tyr 3,1090 3,0769 

62  Creatinine 3,0769 3,0699 40  Creatinine 3,0769 3,0699 

63  Creatine 3,0699 3,0635 41  Creatine 3,0699 3,0635 

64*i 0.58 α-ketoglutrate, Lys 3,0635 3,0047 42*i 0.76 α-ketoglutarate, Lys 3,0635 2,9950 

65 
 

 

Lipids: =CH-CH2-

CH= in FAC
#
 

3,0047 2,9655 
43*d 1.13 

Lipids: =CH-CH2-

CH= in FAC
#
, Asn 

 

2,9950 

 

2,8885 

66*d 0.58 Asn 2,9597 2,9201 

67 
 

 

Lipids: =CH-CH2-

CH= in FAC
#, Asn, 

Asp 

2,8874 2,8465 44*d 0.77 

Lipids: =CH-CH2-

CH= in FAC
#
, Asn, 

Asp 

 

2,8885 

 

2,8465 
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68*d 0.56 
Lipids: =CH-CH2-

CH= in FAC
#
 

2,8465 2,7623 45*d 1.21 
Lipids: =CH-CH2-

CH= in FAC
#
 

 

2,8465 

 

2,7571 

69  Citrate 2,7571 2,7493 
46  Citrate, NI 

2,7571 2,7368 

70  NI 2,7472 2,7390 

71  Citrate 2,7368 2,7251 
47  Citrate, Asp 

2,7368 2,6768 

72*i 0.77 Asp 2,7237 2,6768 

73  Met 2,6768 2,6597 48  Met 2,6768 2,6597 

74*d  Citrate 2,5865 2,5426 49*d 0.64 Citrate 2,5920 2,5340 

75*i 0.68 Gln 2,5183 2,4428 50*i 0.53 Gln 2,5183 2,4428 

76  β-hydroxybutyrate 2,4428 2,4280 51  β-hydroxybutyrate 2,4428 2,4148 

77  Pyruvate 2,4060 2,3978 52  Pyruvate 2,4060 2,3978 

78  Glu 2,3978 2,3648 53  Glu 2,3978 2,3640 

79  β-hydroxybutyrate 2,3540 2,3194 54  β-hydroxybutyrate 2,3628 2,3180 

80  Acetoacetate 2,3134 2,3067 55  Acetoacetate 2,3134 2,3067 

81*d 0.63 

Lipids: -CH2-C=O or 

-CH2-CH=CH- in 

FAC
#
 

2,3067 2,2630 

56*d 
 

0.93 

Lipids: -CH2-C=O or 

-CH2-CH=CH- in 

FAC
#
, aceton 

 

 

2,3067 

 

 

2,2300 

82 
 

 
Aceton 2,2630 2,2563 

83  NI 2,1975 2,1814 

57*i 0.72 Gln, Met, NI 

 

 

2,2000 

 

 

2,1270 
84  Gln 2,1777 2,1670 

85  Met 2,1670 2,1619 

86*i 0.85 Gln 2,1619 2,1311 

87*d 1.76 
Lipids: -CH2-

CH=CH- in FAC
#
 

2,1289 2,0993 

58*i 2.58 

Lipids: -CH2-

CH=CH- in FAC
#
, 

CH3 of 

NAG
$
 

 

 

2,1270 

 

 

1,9680 

88*i 2.74 

Lipids: -CH2-

CH=CH- in FAC, 

CH3 of 

NAG
$
 

2,0993 1,9889 

89  Acetate 1,9547 1,9421 59  Acetate 1,9550 1,9421 

90  Lys 1,9421 1,9028 60  Lys 1,9421 1,8800 

91*i 1.05 Leu 1,8006 1,6758 61*i 0.85 Leu 1,8034 1,6758 

92 
 

 

Lipids: -CH2-CH2-

C=O or -CH2-CH2-

CH=CH- in FAC
#
 

1,6530 1,5770 62*d 1.08 

Lipids: -CH2-CH2-

C=O or -CH2-CH2-

CH=CH- in FAC
#
 

 

 

1,6700 

 

 

1,5500 

93*d 0.52 Ala 1,5226 1,4919 63*d 0.56 Ala 1,5300 1,4900 

94*i 0.76 Lys 1,4587 1,4201 64  Lys 1,4656 1,4200 

95*d 1.53 Lactate 1,4169 1,3675 65*d 1.66 Lactate 1,4169 1,3620 

96*d 2.77 Lactate 1,3675 1,3516 66*d 1.75 Lactate, Thr 1,3620 1,3450 

97*d 4.58 

Lipids: 

-CH3-(CH2)n- in 

FAC
#
 

1,3516 1,2366 67*d 2.99 

Lipids: 

CH3-(CH2)n- in  

FAC
#
 

 

1,3450 

 

1,2360 

98*i 0.91 β-hydroxybutyrate 1,2366 1,2240 68  β-hydroxybutyrate 1,2360 1,2180 

99 1.80 NI 1,2240 1,1766 69  NI 1,2180 1,1578 

100  Val 1,0860 1,0592 70  Val 1,0900 1,0592 

101  Ile 1,0513 1,0340 71  Ile 1,0569 1,0334 

102*i 0.65 Val 1,0310 1,0106 72  Val 1,0334 1,0092 

103*i 0.60 Leu 1,0083 0,9766 
73*i 1.04 Ile, Leu 

 

1,0092 

 

0,9663 
104*i 0.66 Ile 0,9766 0,9663 
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105*d 2.33 

Lipids: 

CH3-(CH2)n- in 

FAC
#
 

0,9663 0,7961 74*d 1.78 

Lipids: 

CH3-(CH2)n- in 

FAC
#
 

 

0,9663 

 

0,7961 

#The assignment of lipid signals is based on literature (25-27). $The assignment of signals of N-

acetylated glycoproteins is based on literature (28).  Amino acids are presented by their 3-letter code. *d: 

Variables having a VIP value above 0.5 and which are decreased in the plasma of lung cancer patients, 

*i: Variables having a VIP value above 0.5 and which are increased in the plasma of lung cancer patients. 

Abbreviations: FAC: fatty acid chain, NAG: N-acetylated glycoproteins, NI: non-identified, PC: 

phosphatidylcholine, PL: phospholipids, ppm: parts per million, SM: sphingomyelin, TG: triglycerides, 

VAR: variable: VIP: variable importance for the projection 
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Table 2. Characteristics of the subjects included in the study. Data are presented as mean ± 

standard deviation and range, unless otherwise indicated.  

 LC C 

Number of subjects, n 69 74 

Gender, n (%)   

 Male 46 (66.7) 44 (59.5) 

 Female 23 (33.3) 30 (40.5) 

Age, yrs 

(range) 

68 ± 10 

(36 – 88) 

64 ± 13 

(23 – 84) 

BMI, kg/m2 

(range) 

25.3 ± 4.6 

(17.5 – 38.5) 

26.3 ± 4.6 

(16.5 – 39.0) 

Smoking habits   

 Smoker, n (%) 40 (58.0) 19 (25.7) 

 Ex-smoker, n (%) 26 (37.7) 28 (37.8) 

 Non-smoker, n (%) 3 (4.3) 27 (36.5) 

 Pack years 

 (range) 

34 ± 21 

(0-125) 

18 ± 28 

(0-175) 

Laterality   

 Left, n (%) 23 (33.3)  

 Right, n (%) 39 (56.5)  

 Bilateral, n (%) 5 (7.2)  

 Unknown, n (%) 2 (2.9)  

Amount of tumors, n 74  

Histological subtype   

 NSCLC-Adenocarcinoma, n (%) 27 (36.5)  

 NSCLC-Spinocellular carcinoma, n (%) 18 (24.3)  

 NSCLC-Adenosquamous carcinoma, n (%) 3 (4.1)  

 NSCLC-Carcinoid, n (%) 1 (1.3)  

 NSCLC-NOS, n (%) 3 (4.1)  

 SCLC, n (%) 12 (16.2)  

 Unknown 10 (13.5)  

Clinical stage according to 7th TNM edition    

 IA, n (%)  18 (24.3)  

 IB, n (%) 5 (6.7)  

 IIA, n (%) 4 (5.4)  

 IIB, n (%) 2 (2.7)  

 IIIA, n (%) 15 (20.3)  

 IIIB, n (%) 11 (14.9)  

 IV, n (%) 19 (25.7)  

Abbreviations: BMI: body mass index, C: controls, LC: lung cancer patients, NOS: not otherwise 

specified, NSCLC: non-small cell lung cancer, SCLC: small cell lung cancer, TNM: tumor, node, 

metastasis 
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Table 3. Characteristics of the trained OPLS-DA classification models resulting from the 400 

MHz and 900 MHz data.  

 LV 

(P+O) 

R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

Sens 

(%) 

Spec 

(%) 

AUC 

LC vs. C (400 MHz) 2 

(1+1) 

0.70 0.50 0.44 75 95 - 

 3 

(1+2) 

0.80 0.56 0.49 77 95 - 

 4  

(1+3) 

0.84 0.61 0.50 84 96 - 

 5 

(1+4) 

0.86 0.66 0.51 90 97 0.93 

        

LC vs. C (900 MHz) 2  

(1+1) 

0.65 0.40 0.31 72 86 - 

 3  

(1+2) 

0.74 0.45 0.34 77 89 - 

 4  

(1+3) 

0.78 0.52 0.36 81 93 - 

 5  

(1+4) 

0.81 0.58 0.38 86 95 - 

 6  

(1+5) 

0.85 0.62 0.40 88 96 - 

 7 

(1+6) 

0.86 0.68 0.48 88 96 0.90 

Abbreviations: AUC: area under the curve, C: controls, LC: lung cancer patients, LV: latent variable, 

MHz: megahertz, O: number of orthogonal components, OPLS-DA: orthogonal partial least squares 

discriminant analysis, P: number of predictive components, R2X(cum): total explained variation in X, 

R2Y(cum): total explained variation in Y, Sens: sensitivity: Spec: specificity, Q2(cum): predicted 

variation 
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Supplementary Material 

 
Table S1. 1H-NMR chemical shifts (δ in ppm) of low molecular weight plasma metabolites and 

their J-coupling constants (in Hz). 

Metabolite Proton δ (ppm)  Multiplicity J (Hz) Connectivity 

Amino acids      

Alanine (Ala) αCH 3.790 q 7.2 α-β 

(CHEBI:57972) βCH3
 1.509 d 7.2 β-α 

Arginine (Arg) αCH 

 

3.690 t 6.1 α-β; α-β’ 

(CHEBI:32682) βCH2
 1.700 m - - 

 γCH2
 1.902 m - - 

 δCH2
 3.266 t 6.9 δ-γ 

Asparagine (Asn) αCH 3.999 dd 7.8; 4.3 α-β; α-β' 

(CHEBI:58048) βCH2
 2.845 dd 16.7; 4.3 β-β'; β-α 

  2.962 dd 16.7; 7.8 β'-β; β'-α 

Aspartate (Asp) αCH 3.930 dd 8.9; 3.7 α-β; α-β' 

(CHEBI:29991) βCH2
 2.702 dd 17.5; 3.7 β-β'; β-α 

  2.850 dd 17.5; 8.9 β'-β; β'-α 

Cysteine (Cys) αCH 3.973 dd 5.7; 4.3 α-β; α-β' 

(CHEBI:35235) βCH2
 3.052 dd 14.7; 4.3 β-β'; β-α 

  3.112 dd 14.7; 5.7 β'-β; β'-α 

Glutamine (Gln) αCH 3.786 t 6.2 α-β; α-β’ 

(CHEBI:58359) βCH2
 2.160 m - - 

 γCH2
 2.480 m - - 
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Table S1 continued.  

Metabolite Proton δ (ppm) Multiplicity J (Hz) Connectivity 

Glutamate (Glu) αCH 3.788 dd 7.1; 4.9 α-β; α-β' 

(CHEBI:29985) βCH2
 2.120 m - - 

 γCH2
 2.388 m - - 

Glycine (Gly) 

 

 

αCH2
 3.586 s - - 

(CHEBI:57305) 

 

     

Histidine (His) αCH 4.012 dd 8.0; 4.9 α-β; α-β' 

(CHEBI:57595) βCH2 3.150 dd 15.5; 8.0 β-β'; β-α 

  3.260 dd 15.5; 4.9 β'-β; β’-α 

 γCH 7.780 s - - 

 δCH 7.086 s - - 

Isoleucine (Ile) αCH 3.673 d 4.0 α-β 

(CHEBI:58045) βCH 1.990 m - - 

 γCH3
 1.015 d 7.0 γ-β 

 δCH2
 1.476 m - - 

 εCH3
 0.945 t 7.4 ε-δ 

Leucine (Leu) αCH 3.769 dd 7.0; 1.3 α-β; α-β’ 

(CHEBI:57427) βCH2
 1.742 m - - 

 γCH 1.742 m - - 

 δCH3
 0.987 d 4.7 δ-γ 

  1.003 d 4.7 δ'-γ 
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Table S1 continued.  

Metabolite Proton δ (ppm) Multiplicity J (Hz) Connectivity 

Lysine (Lys) αCH 3.772 t 6.0 α-β; α-β’ 

(CHEBI:32551) βCH2
 1.928 m - - 

 γCH2
 1.502 m - - 

 δCH2
 1.751 p 7.5 γ-δ; δ-ε 

 εCH2
 3.060 t 7.5 ε-δ 

Methionine (Met) αCH 3.875 dd 7.0; 5.4 α-β; α-β' 

(CHEBI:57844) βCH2 2.195 m - - 

 γCH2 2.673 t 7.6 γ-β; γ-β' 

 δCH3 2.167 s - - 

Phenylalanine (Phe) αCH 3.998 dd 7.7; 5.2 α-β; α-β' 

(CHEBI:58095) βCH2
 3.140 dd 14.4; 5.2 β-β'; β-α 

  3.310 dd 14.4; 7.7 β'-β; β’-α 

 γCH 7.353 d 7.2 γ-δ 

 δCH 7.454 t 7.2 δ-γ; δ-ε 

 εCH 7.414 t 7.2 ε-δ 

Proline (Pro) αCH 4.162 dd 8.9; 6.3 α-β; α-β' 

(CHEBI:60039) βCH2 2.382 m - - 

 γCH2 2.060 m - - 

 δCH2 3.365 t 7.0 δ-γ 

  3.441 t 7.0 δ'-γ 
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Table S1 continued.  

Metabolite Proton δ (ppm) Multiplicity J (Hz) Connectivity 

Serine (Ser) αCH 3.845 dd 5.6; 4.0 α-β; α-β' 

(CHEBI:33384) βCH2 3.953 dd 12.2; 5.6 β-β'; β-α 

  4.012 dd 12.2; 4.0 β'-β; β'-α 

Threonine (Thr) αCH 3.596 d 4.9 α-β 

(CHEBI:57926) βCH 4.276 dq 6.6; 4.9 β-α; β-γ 

 γCH3
 1.358 d 6.6 γ-β 

Tryptophan (Trp) αCH 4.086 dd 8.1; 5.2 α-β; α-β' 

(CHEBI:57912) βCH2 3.338 dd 15.3; 8.1 β-β'; β-α 

  3.224 dd 15.3; 5.2 β'-β; β'-α 

 γCH 7.351 s - - 

 δCH 7.770 d 7.8 δ-ε 

 εCH 7.229 t 7.8 ε-δ; ε-ζ 

 ζCH 7.310 t 7.8 ζ-ε; ζ-η 

 ηCH 7.570 d 7.8 η-ζ 

Tyrosine (Tyr) αCH 3.957 dd 7.8; 5.0 α-β; α-β' 

(CHEBI:58315) βCH2
 3.076 dd 14.2; 7.8 β-β'; β-α 

  3.227 dd 14.2; 5.0 β'-β; β'-α 

 γCH 6.924 d 8.4 γ-δ 

 δCH 7.222 d 8.4 δ-γ 

Valine (Val) αCH 3.635 d 4.3 α-β 

(CHEBI:57762) βCH 2.305 m - - 

 γCH3
 1.021 d 7.2 γ-β 

  1.074 d 7.2 γ'-β 
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Table S1 continued.  

Metabolite Proton δ (ppm) Multiplicity J (Hz) Connectivity 

Carbohydrates      

D-glucose      

α-anomer C1H 5.264 d 3.8 - 

(CHEBI:17925) C2H 3.563 dd 9.8; 3.8 - 

 C3H 3.744 t 9.4 - 

 C4H 3.439 t 9.4 - 

 C5H 3.888 m - - 

 C6H 3.858 dd 10; 2.2 - 

 C6’H 3.792 dd 13.1; 6.3 - 

β-anomer C1H 4.678 d 7.8 - 

(CHEBI:15903) C2H 3.272 t 8.3 - 

 C3H 3.518 t 9.2 - 

 C4H 3.428 t 9.4 - 

 C5H 3.492 m - - 

 C6H 3.933 dd 12.2; 2.0 - 

 C6’H 3.752 dd 12.2; 5.7 - 

Glycerol CHC 3.814 m - - 

(CHEBI:17754) CH2: HA 3.591 dd 11.7; 6.6 - 

 CH2: HB 3.682 dd 11.7; 4.4 - 
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Table S1 continued.  

Metabolite Proton δ (ppm) Multiplicity J (Hz) Connectivity 

Myo-inositol C5H 4.090 t 2.9 - 

(CHEBI:17268) C4H+C6H 3.562 dd 9.8; 2.9 - 

 C1H+C3H 3.654 t 9.8 - 

 C2H 3.306 t 9.3 - 

Organic acids      

Acetate 

 

 

CH3
 1.948 s - - 

(CHEBI:30089)      

Acetoacetate CH2
 2.319 s - - 

(CHEBI:13705) CH3
 3.480 s - - 

α-ketoglutarate CH2-CO 3.040 t 6.9 - 

(CHEBI:16810) CH2-COO¯ 2.470 t 6.9 - 

D-β-hydroxybutyrate CHA 2.400 dd 14.5; 7.3 - 

(CHEBI:10983) CHB 2.300 dd 14.5; 7.3 - 

 CH 4.184 m - - 

 CH3 1.231 d 6.3 - 

      

Citrate CHA 2.717 d 15.8 - 

(CHEBI:16947) CHB 2.566 d 15.8 - 
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Table S1 continued.  

Metabolite Proton δ (ppm) Multiplicity J (Hz) Connectivity 

L-lactate CH 4.138 q 6.9 - 

(CHEBI:16651) CH3 1.354 d 6.9 - 

Pyruvate 

 

 

CH3 2.402 s - - 

(CHEBI:15361) 

 

     

Succinate 

 

 

CH2 2.439 s - - 

(CHEBI:30031) 

 

     

Others      

Acetone CH3 2.264 s - - 

(CHEBI:15347)      

Betaine CH3 3.300 s - - 

Choline CH3 3.236 s - - 

(CHEBI:133341) CH2 3.554 m - - 

 CH2OH 4.098 m - - 

Creatine CH3 3.068 s - - 

(CHEBI:57947) CH2 3.962 s - - 

Creatinine CH3 3.075 s - - 

(CHEBI:16737) CH2 4.087 s - - 

Methanol CH3 3.396 s - - 

(CHEBI:17790)      

Chemical shifts are expressed relatively to the singlet resonance of the trimethyl protons of TSP at δ 

0.015 ppm and J-coupling patterns are described as: s, singlet; d, doublet; dd, double doublet; dq, double 

quadriplet; t, triplet; q, quadriplet; p, pentaplet; m, multiplet. Metabolite identifiers from the database of 

Chemical Entities of Biological Interest (ChEBI) are indicated. The atom numbering of the metabolites 
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follows the IUPAC-IUB nomenclature unless otherwise indicated in the structures included in Table 

S1.  
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Figure S1. Permutation tests comparing the goodness of fit of the trained OPLS-DA models 

obtained from the 400 MHz data (A) and the 900 MHz data (B) with that of twenty permuted 

models. For both the 400 MHz and 900 MHz data, the R2 and Q2 values obtained for the 

permuted models (at the left) are lower than these of the original model (at the right), indicating 

that there is no overfitting. Abbreviations: R2: explained variation, Q2: predicted variation as 

determined by 7-fold cross-validation. 

Figure S2. Superposition of zoom-ins (between 0.5 and 4.75 ppm) of five 1H-NMR spectra 

obtained from five NMR samples prepared from the same plasma pool.  
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Graphical Abstract 

 

 

 


