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Abstract

For accurate analysis of bone formation and resorption during fracture healing, correct reg-

istration of follow-up onto baseline image is required. A per-fragment approach could

improve alignment compared to standard registration based on the whole fractured region.

In this exploratory study, we tested the effect of fragment size and displacement on a per-

fragment registration, and compared the results of this per-fragment registration to the

results of the standard registration in two stable fractures and one unstable fracture.

To test the effect of fragment size and displacement, high-resolution peripheral quantita-

tive computed tomography (HR-pQCT) scans of three unfractured radii were divided into

subvolumes. Different displacements in x-, y, or z-direction or rotations around each axis

were applied, and each subvolume was registered onto the initial volume to realign it. Next,

registration of follow-up onto baseline scan was performed in two stable and one unstable

fracture. After coarsely aligning the follow-up onto the baseline scan, a more accurate regis-

tration was performed of the whole fracture, i.e. the standard registration, and of each frac-

ture fragment separately, i.e. per-fragment registration. Alignment was checked using

overlay images showing baseline, follow-up and overlap between these scans, and by com-

paring correlation coefficients between the standard and per-fragment registration.

Generally, subvolumes as small as 300 mm3 that were displaced up to 0.82 mm in x- or

y-, or up to 1.64 mm in z-direction could be realigned correctly. For the fragments of all frac-

tures, correlation coefficients were higher after per-fragment registration compared to stan-

dard registration. Most improvement was found in the unstable fracture and one fragment of

the unstable fracture did not align correctly.

This exploratory study showed that image registration of individual subvolumes, such as

fracture fragments, is feasible in both stable and unstable fractures, and leads to better
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alignment of these fragments compared to an approach that is based on registration using

the whole fractured region. This result is promising for additional analysis of bone formation

and resorption in HR-pQCT studies on fracture healing.

Introduction

In medical image analysis, image registration is a commonly used method where two (or more)

images are aligned by optimizing a similarity measure, which is often based on voxel intensity

cross-correlation [1] or mutual information. [2, 3] In this way, it is possible to gain valuable infor-

mation that is conveyed in more than one image, e.g. images from different time points, different

modalities or distinct viewpoints. [4] Usually, one image is called the ‘fixed’ or reference image,

which is the image on which the second image, called the ‘moving’ image, is registered.

Image registration procedures have been developed for almost every tissue and organ. For

bone, image registration has been used for various purposes, including improving the repro-

ducibility of high-resolution computed tomography (CT) derived bone parameters [5], strain

mapping of loaded bone [6], and for the analysis of sites of bone formation and resorption at

the tibia [7] and finger joints.[8] For fractured bone, Lynch et al. applied image registration to

longitudinal CT images of healing distal radius fractures to assess changes in CT image inten-

sity within the fracture gap during the healing process[9], and Tassani et al. used image regis-

tration to automatically detect the fracture zone in microCT images of trabecular bone. [10] In

the aforementioned studies, mostly a rigid image registration procedure was used because

bone is a rigid tissue. [5, 7–10] Zwahlen et al., however, used a deformable (non-rigid) image

registration approach because of local deformation of individual trabeculae. [6]

Compared to clinical CT used by Lynch et al. [9], high resolution peripheral quantitative

CT (HR-pQCT) has a higher spatial resolution which allows for a more detailed assessment of

the bone changes at the fracture site. We recently used HR-pQCT to study the healing process

of distal radius fractures treated by closed reduction and cast immobilization, and found sig-

nificant changes in volumetric bone mineral density (vBMD), micro-architecture and bio-

mechanical parameters during the healing process. [11, 12] In addition, superposition of these

sequential HR-pQCT images using a rigid 3D image registration in a way similar to Christen

et al. did in normal bone, would allow the study of changes of bone formation and resorption,

which are intense metabolic processes during fracture healing and may be affected by certain

anti-osteoporosis drugs. [13] Applied to preliminary data from a pilot study by Bours et al.,

this method indeed showed interesting results in a simple, stable fracture (Fig 1). [14] How-

ever, although all distal radius fractures in our study were treated as stable fractures, some frac-

tures might be less stable than expected and fracture fragments might move relative to each

other in between two HR-pQCT scans. This may lead to erroneous results when the HR-

pQCT images are superimposed by the rigid 3D registration procedure in order to visualizing

bone formation and resorption, because moved fragments may wrongly be qualified as formed

or resorbed bone. Although deformable image registration might be able to correct for such

relative movement between fragments, the individual fragments are still mainly composed of

rigid bone tissue and, hence, a rigid image registration procedure seems more appropriate.

To limit the amount of wrongly qualified formed or resorbed bone in HR-pQCT images of

healing distal radius fractures, we propose to, after a pre-registration, select individual frag-

ments in the moving image and register them separately into the fixed image using rigid 3D

image registration. This approach, however, raises several questions that need to be addressed.

First of all, the separate fragments are smaller than the scanned bone region itself. It is cur-

rently unclear to what extend the registration is affected by using only a subvolume of the

3D image registration of HR-pQCT images of healing distal radius fractures
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moving image as input, instead of using the whole bone region. Second, changes related to the

fracture healing process will occur which are larger than changes due to aging or medication

and thus the similarity between the fragments can be low, even if correctly registered. To

address these issues, we conducted a small exploratory study in which we first tested the pro-

posed method using a subset of HR-pQCT images of a reproducibility study. Then, we applied

our method to stable fractures that were minimally displaced and to a fracture where second-

ary displacement had occurred.

Materials and methods

Subjects and image data sets

Two datasets were used in this study. The first dataset consisted of HR-pQCT scans of 15

healthy individuals with ages ranging from 21 to 47 years and was presented earlier in the

reproducibility study of Boutroy et al. [15] This dataset was also previously used by Christen

et al. to study the reproducibility of bone apposition and resorption quantification in healthy

subjects. [7] In the present study, three HR-pQCT scans of a single timepoint of three different

subjects were randomly selected from this dataset to test the effect of size versus displacement

on the fracture registration algorithm. Informed consent was obtained from all participants

and the reproducibility study was approved by an independent Ethics Committee (Comité

Consultatif de Protection des Personnes dans la Recherche Biomédicale de Lyon).

The second dataset consisted of six HR-pQCT scans that were made during the first 12

weeks of fracture healing in three post-menopausal women with a distal radius fracture who

were treated by closed reduction and cast immobilization. Image acquisition has been de-

scribed previously[11], but briefly, an 18 mm-long region covering the fracture was scanned

by HR-pQCT at 1–2, 3–4, 6–8 and 12 weeks postfracture using standard in vivo settings (tube

voltage 60 kVp, tube current 900 μA, integration time 100 ms, 6 μSv effective dose). Using an

isotropic voxelsize of 82 μm, each HR-pQCT measurement thus resulted in transverse 220

Fig 1. Sites of bone formation and resorption during healing of a stable distal radius fracture. 3D HR-pQCT images of a stable, simple distal radius

fracture at 9 days (baseline) and at follow-up 26, 44 and 87 days post-fracture showing regions of bone formation (green), resorption (red) and no change

(blue). Images were obtained by superposition of the follow-up images over the baseline image. Cortical fracture locations (indicated by arrows) are

bridged at 87 days post-fracture.

https://doi.org/10.1371/journal.pone.0179413.g001

3D image registration of HR-pQCT images of healing distal radius fractures
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slices. After testing the fracture registration algorithm, it was applied onto three fractures that

were selected from this dataset to test if a registration based on fragments improved the regis-

tration in these fragments. Since movement is most likely to occur during the early phases of

fracture healing, when the fragments are not stabilized yet, baseline images at 1–2 weeks post-

fracture and follow-up images at 3–4 weeks post-fracture were used. Furthermore, HR-pQCT

images of the fractures were selected on having no or minimal motion artifacts.[16] Informed

consent was obtained from all participants and the fracture healing study was approved by the

local Medical Ethics Committee (NTR3821).

Description of the fracture registration algorithm

For a correct analysis of sites of bone formation and resorption as calculated from two conse-

cutive HR-pQCT scans, a proper registration of the two scans is required. The rigid 3D regis-

tration procedure (Image Processing Language version 5.16/regis 1.09b, Scanco Medical AG,

Brütissellen, Switzerland) used in the present study can be divided into two parts:

1. A pre-registration to coarsely align the follow-up image onto the baseline image using solid

volumes of the periosteal contours of these images

2. Fine registration per fragment to precisely register each fragment from the follow-up image

onto the baseline image using the gray-scale images within the contours of the fragments

Pre-registration. Because the orientation of the fractured radius may differ between two

HR-pQCT scans, a pre-registration was required to coarsely align the follow-up image onto

the baseline image. This pre-registration was based on solid volumes within the periosteal con-

tours in the two images. The periosteal contours were derived using the standard semi-auto-

matic contouring method according to the manufacturer’s instructions. [15] Since rotations of

the radius around the x- and y-axis are restricted due to fixation of the forearm during scan-

ning procedure, the pre-registration started by rotating the mask of the follow-up image, that

has been downscaled 10 times, in steps of 22.5 degrees around the z-axis to save time. The

angle at which the best overlap was found was then used as the starting position for a registra-

tion at 4 times downscaling in which the follow-up masks was iteratively translated along and

rotated around each axis until the best overlap was found.

Fine registration per fragment. After this course alignment, a fine 3D rigid registration

of the individual fragments in the follow-up image onto the baseline image was performed.

The rotations and translations found in the pre-registration were used as starting position for

each fragment in the fine registration. Since each fragment is supposed to be already more or

less in place, this fine registration was performed using two consecutive registrations at differ-

ent resolutions: the first registration at one-fourth of the image resolution, i.e. images were

downscaled four times, which was then followed by the final registration at the original image

resolution. In the fine registration, both the total follow-up and baseline images were used as

input images, but only information within the volume of interest (VOI) in each image was

counted in calculation of best overlap. The VOI in the moving image was the contoured frag-

ment, and the VOI in the fixed image the region within the periosteal contour.

Standard registration. The standard registration used the same procedure at the same

settings, i.e. a pre-registration to coarsely align the follow-up image to the baseline image fol-

lowed by a fine registration. In the fine registration step, the VOI of the moving image consisted

of the whole bone region within the periosteal contour, instead of a fragment.

All registrations were performed on a HP Integrity rx2660 system equipped with four cores

running at 1.42 GHz and 32 GB RAM.

3D image registration of HR-pQCT images of healing distal radius fractures
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Effect of fragment size, offset and step-size

To test how well small fragments of different size can be registered, the 3D volume of each

radius scan was divided into 2, 4 and 8 subvolumes (Fig 2). Each subvolume was then shifted

from its original position by 10 or 20 voxels (0.82 and 1.64 mm, respectively) in the x-, y-, or z-

direction, or rotated around the x-, y-, or z-axis by 0.1 or 0.2 rad (5.7 and 11.5 degrees, respec-

tively). Next, each shifted/rotated subvolume was registered onto the initial, total scan to see if

it could be registered correctly. With the registration a simplex search algorithm was used that

performs translation/rotation trial steps of a typical size. For periodic structures, such as bone,

it was expected that the translation step size should be close to the size of the trabecular separa-

tion, to avoid ending at a local minimum. To test the effect of the typical step-size in each itera-

tion, the same procedure described above was repeated for step-sizes of 1 and 2 times the

mean trabecular separation per scan. To quantify the agreement at each iteration, a correlation

coefficient (CC) was calculated according to Eq 1: [17]

cc ¼

Xnv

i¼1
viwi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnv

i¼1
vivi
Xnv

i¼1
wiwi

q ðEq 1Þ

Fig 2. Subvolumes and corresponding correlation coefficients. Average correlation coefficients for registration of volumes with different sizes, using

different step-sizes after different applied translations in x-, y- and z-direction and after different applied rotations around the x-, y- and z-axis.

https://doi.org/10.1371/journal.pone.0179413.g002

3D image registration of HR-pQCT images of healing distal radius fractures
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where vi is the value of voxel i in image 1, i.e. the fixed image; wi the value of a corresponding

voxel in image 2, i.e. the moving image, after translation/rotation using tri-linear interpolation;

and nv the number of voxels in the evaluated region. Since the image information per subvo-

lume is exactly the same as in the initial image, a correlation coefficient of 1.000 indicates a

perfect registration.

Implementation onto healing fractures

When the performance of the registration per part of different sizes, maximum allowed offset

and the optimal step-size were known, the method was applied onto several fracture cases:

‘simple’ fractures with two fragments that are relatively stable over time, and ‘complex’ frac-

tures with three or more fragments that have moved relative to each other over time. To be

able to study the expected beneficial effect of per-fragment registration, each scan of each frac-

ture case was also registered using the standard registration approach which uses the whole

bone region in the follow-up image in the registration. To test the inter-operator reproducibil-

ity of the per-fragment registration, each fragment was contoured independently by two expe-

rienced operators.

Per fragment the result of the registration was determined qualitatively by checking overlay

images. These overlay images were created by combining segmented 3D volumes of the frac-

ture at baseline and the registered follow-up image, with voxels in the baseline volume set to

value 1 (red) and in the follow-up volume set to value 2 (green). Thus, after combining these

volumes, overlapping regions in the overlay image have value 3 (purple). [18] The segmented

3D volumes were created from the gray-scale images by applying a Gaussian filter (sigma =

0.7, width = 1.0 voxel) to remove noise followed by thresholding (threshold 120 mgHA/cm3).

Furthermore, correlation coefficients [17] within each fragment region were compared be-

tween the registrations based on the standard approach and the per-fragment approach to see

whether the registration was improved.

Statistics

A Wilcoxon signed-rank test was used to compare the correlation coefficients per fragment

obtained using the standard registration and per-fragment registration approach.

The inter-operator reproducibility was expressed using the intraclass correlation coefficient

(ICC, two-way random effect model) between the correlation coefficients per fragment

obtained from the per-fragment registration method using the contours made by the two

operators.

All statistical analyses were performed using IBM SPSS Statistics for Windows, version 20.0

(IBM Corp. Armonk, NY, USA).

Results

Effect of fragment size, offset and step-size

The average correlation coefficients for registration of the subvolumes of different sizes,

using different step-sizes after different applied translations in x-, y- and z-direction and after

different applied rotations around the x-, y- and z-axis are presented in Fig 2. The average

volumes ± standard deviation (SD) of the one-halve, one-quarter and one-eight parts were

1200 ± 130 mm3, 596 ± 108 mm3, and 298 ± 74 mm3, respectively. The trabecular separation

measured in the total volumes was 0.561 mm, 0.626 mm, and 0.673 mm.

Regarding the applied translations, a correct registration was possible after a translation of

the one-halve parts of 0.82 and 1.64 mm in each direction, regardless of step-size. For one-

3D image registration of HR-pQCT images of healing distal radius fractures

PLOS ONE | https://doi.org/10.1371/journal.pone.0179413 July 25, 2017 6 / 12

https://doi.org/10.1371/journal.pone.0179413


quarter and one-eight parts, in general a correct registration was found after translations of

0.82 and 1.64 mm in the z-direction, but not in the x- and y-direction: then the registration

failed at translation of 1.64 mm.

Regarding the applied rotations, a correct registration was found for rotations of the one-

halve and one-quarter parts around the x- and y-axis by 0.10 and 0.20 radians, regardless of

step-size, whereas registration failed after rotations around the z-axis. For one-eight parts, reg-

istration was correct for rotations of 0.1 and 0.2 radians around the x-axis and 0.1 radians

around the y-axis, but failed for rotations of 0.2 radians around the y-axis and 0.1 and 0.2 radi-

ans around the z-axis, regardless of step-size.

Application to fractures

In Fig 3, 2D HR-pQCT slices with the contoured fragments are shown, as well as 3D models of

each fracture with the fragments visualized in different colors. In each fracture, one large vol-

ume could be defined, with volumes ranging from 2527 mm3 to 4923 mm3 covering 36% to

87%, respectively, of the total volume. Additionally, two or three smaller fragments could be

contoured per fracture and their volumes ranged from 67 mm3 to 809 mm3.

Overlay images and corresponding correlation coefficients resulting from the registration

using the whole bone region in the follow-up scan, and from the registration per fragment are

shown in Fig 4. The overlay images suggest that registration based on the whole bone region

resulted in an (almost) correct registration in the two stable fractures but not for the unstable

fracture. Corresponding correlation coefficients were 0.970, 0.963 and 0.909, respectively.

Compared to the standard registration using the whole bone region, the per-fragment registra-

tion resulted in significantly higher correlation coefficients (p = 0.005), indicating better align-

ment for these fragments. The largest improvement in correlation coefficient was observed in

fragment 1 of the unstable fracture. Fragment 3 of the unstable fracture showed improved cor-

relation coefficient, while the overlay image clearly showed a misalignment of this fragment

after per-fragment registration.

The inter-operator reproducibility of the per-fragment registration method was excellent

(ICC = 0.994, p< 0.001).

Computational time per fracture for the per-fragment registration method was 7 minutes

and 25 seconds on average, whereas the duration of the standard registration method was 4

minutes and 24 seconds per fracture.

Discussion

In this exploratory study, we showed for the first time that image registration of separate (fracture)

fragments is feasible in both stable and unstable fractures, and leads to better alignment of these

fragments compared to an approach that is based on registration using the whole bone region.

Not unexpected, correct realignment occurred more for larger parts than for smaller parts.

In smaller parts, realigned was observed after an offset in the z-directions and applied rotations

in the z-plane. Interestingly, this movement is likely similar to what happens in case of second-

ary displacement: the distal part of the fracture collapses over the proximal part in the longitu-

dinal direction, with no or relatively little rotation in the transversal plane.

Based on our results, a step-size similar to the trabecular separation can be advised. This

finding is not surprising, since most parts consist mainly of trabeculae. With step-sizes smaller

than the trabecular separation, the registration might find a local minimum, hence leading

to a non-optimal registration. By using a step-size of at least the trabecular separation, the

chance of finding a local minimum is probably less likely, but more thorough tests should be

performed to find the optimal setting for the step-size. If individual measurement of trabecular

3D image registration of HR-pQCT images of healing distal radius fractures
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separation is not feasible in a practical setting, using a step-size is advised of approximately 0.7

mm, which is the trabecular separation at the distal radius of osteoporotic and osteopenic

post-menopausal women. [15]

In the fractured cases, alignment of the fragments was improved in all cases when the frag-

ments were registered separately in comparison to when the whole bone region was used in the

registration. The challenge is to determine for which fractures the per-fragment registration is

required in order to obtain reliable results on bone apposition and resorption. It is expected

Fig 3. Three fracture cases. 2D HR-pQCT slices with contours (left) and 3D model (right) of the fragments in two stable fractures (top and

middle) and a fracture with secondary displacement (bottom) that were registered in this study. The volume [mm3] per fragment as well as

of the complete fracture is shown between brackets.

https://doi.org/10.1371/journal.pone.0179413.g003

3D image registration of HR-pQCT images of healing distal radius fractures
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Fig 4. Overlay images of three fracture cases. Overlay image after standard registration of the whole bone region in the

follow-up image (3–4 weeks post-fracture) onto baseline (1–2 weeks post-fracture) with corresponding correlation

coefficients (top). Overlapping regions (purple) are shown as well as regions belonging to baseline (red) and follow-up

(green). To check whether the per-fragment registration improved the results compared to the standard registration, overlay

images and corresponding correlation coefficients are presented for the same subregions obtained after standard and per-

fragment registration. Arrows indicate locations of clear improvement after per-fragment registration. Correlation

coefficients, which are reported below each fragment, are higher after per-fragment registration than after standard

registration (Wilcoxon signed-rank test, p = 0.005).

https://doi.org/10.1371/journal.pone.0179413.g004

3D image registration of HR-pQCT images of healing distal radius fractures
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that the stable fractures were sufficiently aligned using the standard registration approach to

determine the amount of bone formation and resorption since correlation coefficient were

already high and no major increases in correlation coefficients were observed after per-frag-

ment registration. In the unstable fracture, however, a major improvement in alignment was

observed for fragment 1. This indicates that unstable fractures can benefit most from the per-

fragment registration as presented in this study.

On the other hand, per-fragment registration of fragment 3 in the unstable fracture did not

result in a satisfactory alignment. An explanation can be found in the size of the fragment with

respect to the displacement. Being the smallest fragment in the unstable fracture with a volume of

629 mm3, it had to overcome a distance of approximately 1 mm (13 voxels) in the x-direction and

2 mm (24 voxels) in the y-direction. Since the one-halve volumes with a volume of approximately

600 mm3 failed to realign correctly after displacements in the x- or- y-direction of> 0.82 mm (10

voxels), this might indicate that the fragment was too small in relation to the displacement.

Although not quantitatively measured, feasible contouring of fracture fragments depends

in our experience heavily on the presence and amount of low mineralized callus, the number

of fragments, and the degree to which the fragments are interconnected. Therefore, fragments

in HR-pQCT scans that were made early post-fracture, i.e. at 1–2 weeks post-fracture, are less

difficult to contour than in the HR-pQCT scans made at 3–4 or even 6–8 weeks post-fracture.

At 6–8 weeks post-fracture, a clear distinction between the fragments may be severely hindered

by the amount of low mineralized callus that has formed at the fracture line. However, this

might not be a problem: at the time this low mineralized tissue has formed, the fragments are

not likely to move relative to each other as they have already been stabilized by the presence of

callus. We therefore expect that only fragments in the scans that are made during the first 4

weeks post-fracture, need contouring.

Double-stack (220 slices / 18 mm) HR-pQCT measurements were made to ensure that

most of the fracture region was included. However, even despite including only measurements

with no or very limited motion artifacts, a minor shift between the stacks is almost impossible

to avoid. Also in our study, this was the case as can be seen by the edges that are visible in the

3D models in Fig 3. To improve alignment of fragments that are more than 110 slices (9 mm)

long, it is advised to align the two stacks per measurement before registering volumes from the

follow-up scan onto the baseline scan. Another option is to limit the registration to one stack,

but this has the disadvantage that fragments may become very small and are thus more likely

to end up misaligned.

Limitations

A few limitations need to be addressed. Although exploratory, we have shown that separate

registration of each fragment may improve the total registration in fractures. Future work

should therefore focus on an automatic procedure for finding the fracture line and/or contour-

ing different fragments. Second, we did not apply our approach to experimental data where

fragment displacement could be controlled. While focusing on in vivo patient data, such an

experiment would have been beyond the scope of the present study. Furthermore, we only

tested one registration approach whereas other image registration algorithms might lead to

better results. Last, we only used HR-pQCT scans of good quality. It is therefore unknown to

what extent the registration is affected by the presence of motion artifacts.

Conclusion

This exploratory study showed that image registration of individual (fracture) fragments is fea-

sible in both stable and unstable fractures, and leads to better alignment of these fragments
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compared to an approach that is based on registration using the whole fractured region. This

result is promising for additional analysis of bone resorption and formation based on longitu-

dinal HR-pQCT images of healing fractures, for example in studies on the metabolic effects of

anti-osteoporosis medication.
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