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Abstract
Advances inmolecular analyses based on high-throughput technologies can contribute to amore accurate classification of
non–small cell lung cancer (NSCLC), as well as a better prediction of both the disease course and the efficacy of targeted
therapies. Here we set out to analyze whether global gene expression profiling performed in a group of early-stage NSCLC
patients can contribute to classifying tumor subtypes and predicting the disease prognosis. Gene expression profiling was
performed with the use of the microarray technology in a training set of 108 NSCLC samples. Subsequently, the recorded
findings were validated further in an independent cohort of 44 samples. We demonstrated that the specific gene patterns
differed significantly between lung adenocarcinoma (AC) and squamous cell lung carcinoma (SCC) samples. Furthermore,
we developed and validated a novel 53-gene signature distinguishing SCC from AC with 93% accuracy. Evaluation of the
classifier performance in the validation set showed that our predictor classified the AC patients with 100% sensitivity and
88% specificity. We revealed that gene expression patterns observed in the early stages of NSCLCmay help elucidate the
histological distinctions of tumors through identification of different gene-mediated biological processes involved in the
pathogenesis of histologically distinct tumors. However, we showed here that the gene expression profiles did not provide
additional value in predicting the progression status of the early-stageNSCLC.Nevertheless, the gene expression signature
analysisenabledus toperforma reliablesubclassificationofNSCLCtumors, and it can thereforebecomeauseful diagnostic
tool for a more accurate selection of patients for targeted therapies.
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Table 1. Patient Characteristics for the Training Set (n = 108) and the Validation Set (n = 44)

Characteristic Set 1, n = 108 Set 2, n = 44 All, n = 152 P Values *

Age (years) Mean ± SD 62.27 ± 8.36 64.78 ± 8.32 62.99 ± 8.39 .095
Median 62.92 64.30 63.51
Range 39.83-78.08 46.3-78.8 39.83-78.8

Gender Female 22 (20%) 10 (23%) 32 (21%) .747
Male 86 (80%) 34 (77%) 120 (79%)

Histology SCC 56 (52%) 25 (57%) 81 (53%) .813
AC 42 (39%) 16 (36%) 58 (38%)
LCC 10 (9%) 3 (7%) 13 (9%)

Tumor stage IA 21 (19%) 8 (18%) 29 (19%) .806
IB 30 (28%) 11 (25%) 41 (27%)
IIA 24 (22%) 8 (18%) 32 (21%)
IIB 33 (31%) 17 (39%) 50 (33%)

Progression at 3 years Yes 45 (42%) 14 (32%) 59 (39%) .258
No 63 (58%) 30 (68%) 93 (61%)

SD, standard deviation. Progression at 3 years: yes: recurrence and/or cancer-related death at 3 years;
no: free from recurrence and/or cancer-related death at 3 years.

* P values were calculated with Pearson's chi-squared test of independence; independent-samples t test for age.
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Introduction
Lung cancer is one of the most common causes of cancer-related
deaths worldwide. Non–small cell lung cancer (NSCLC) accounts for
85% of all lung cancers and represents a heterogeneous group of
malignancies comprised mainly of adenocarcinomas (ACs) and
squamous cell carcinomas (SCCs) [1]. Recently, numerous novel
targeted therapies have been established as treatment options for
patients with nonresectable or metastatic NSCLC [2]. However,
despite the significant therapeutic progress, novel targeted anticancer
drugs used in distinct NSCLC subtypes presented different levels of
efficacy. Notably, targeted lung cancer therapies directed against
specific cellular alterations were found to be most successful in
patients with nonsquamous tumors [3]. Diagnosis of lung cancer
based on the histopathological analysis remains the gold standard.
However, this method is seriously flawed due to several important
limitations [4–6]. Therefore, recent advances in personalized targeted
lung cancer therapies not only require an accurate histological
classification of NSCLC but need to be extended by a more precise
characterization of numerous molecular alterations [7–9]. Precise
histopathological and molecular characterization of NSCLC plays a
crucial role in the recruitment of patients for novel molecular targeted
therapies [10].
Despite the fact that the majority of patients are diagnosed with

locally advanced or metastatic disease, thus being eligible for only few
therapeutic options [11], still about 15% of patients are candidates for
surgical treatment. On the other hand, up to 30% of stage I patients
develop recurrences within 5 years after surgical treatment [12].
Although the role of adjuvant chemotherapy in stage I remains
controversial, some molecularly categorized high-risk patients may
benefit from it. Therefore, it seems clear that there is a need to
identify reliable predictors of relapse in order to improve the clinical
management of early-stage NSCLC.
In recent years, there was a growing body of evidence that

aberrations in the profiles of gene expression played a crucial role in
carcinogenesis and progression of many human tumor types,
including lung cancer [13]. On the other hand, tumor-specific
molecular signatures can contribute to a more effective early detection
of asymptomatic lung cancer and a better prediction of the disease
course [14].
There are an increasing number of studies demonstrating that

particular histotypes of NSCLC display distinct molecular character-
istics [15]. Patterns of differential gene expression in lung AC and
SCC may indicate the occurrence of different gene-related signaling
pathways underlying the pathogenesis of these histologies. This
feature has become a basis for numerous studies analyzing the use of
specific genes as putative molecular markers defining both cancer type
and origin [16,17]. Indeed, we have recently demonstrated that
certain molecular determinants are closely associated with some
selected features of histological and genetic characteristics of lung
cancer [18].
To date, the use of several combinations of gene expression profiles

has not proved its clinical usefulness in prognostication of lung cancer
[19]. However, advances in high-throughput next-generation
sequencing and the microarray technology stimulate the research in
molecular prognostic area and could become a more useful tool for
the development of more accurate predictive markers of relapse
following surgery [20,21].
Therefore, the objective of the current study was to perform global

gene expression profiling in a large and well-characterized group of
patients with completely resected early-stage lung tumors in order to
classify the NSCLC subtypes and predict the prognosis of the disease.

Materials and Methods

Patients and Materials
The study was approved by the Bioethical Committee of the

Medical University of Bialystok. Informed consent was obtained from
each patient. One hundred and fifty-two cases of surgically resected
NSCLC were used for the purpose of the study. Inclusion criteria
included: original diagnosis of lung AC, SCC, or large cell lung
carcinoma (LCC) based on histologic evidence; completely resected
tumor (free resection margins); stage I or stage II; a minimum of
3-year follow-up including monitoring for events of cancer recurrence
and lung cancer–related death; availability of representative
fresh-frozen tumor specimens (the material containing at least 50%
of tumor cells for the RNA extraction); and no neoadjuvant
chemotherapy. In the first phase of the research, we performed
gene expression profiling of 108 NSCLC tumor samples (42 with
AC, 56 with SCC, and 10 with LCC), generating a “training” data set
(set 1). To confirm the microarray results, gene expression levels were
evaluated on a subset of 44 samples (16 with AC, 25 with SCC, and 3
with LCC) as an independent “validation” data set (set 2). Patient
subsets were recruited following a temporal order (108 patients were
selected between the years 2003 and 2009 for the training set, and 44
patients were selected between 2009 and 2010 for the validation set).
All the procedures connected with patient selection for the study, as
well as the study design, were conducted according to the standard
operating procedures, which were closely maintained throughout the
time of the experiment. To evaluate differences in the gene expression
profiles between different tumor subtypes, we focused on lung AC
and SCC due to the relatively low numbers of LCC patients,
especially in the validation set. With respect to clinical characteristics
(age, gender, tumor histology, disease stage, and progression status),
both groups were comparable (Table 1).

Histologic Diagnosis
For all the samples used in the study, histologic diagnosis was based

on medical records from the archival pathology files of the University
Clinical Hospital in Bialystok and additionally validated: hematoxylin
and eosin–stained slides of all of the cases were independently
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reevaluated by two experienced pathology experts (J.R. and L.C.).
Histologic diagnosis was rendered according to the most recent WHO
classification of tumors of the lung [22] and the IASLC/ATS/ERS
International Multidisciplinary Lung Adenocarcinoma Classification
[23]. In case of any disagreement with the original diagnosis, the slides
were evaluated immunohistochemically (IHC) for the expression of
thyroid transcription factor-1 (TTF-1) (immunohistochemical profile
in ACs) and tumor protein p63 (p63) (squamous immunophenotype).
Additionally, all tumor slices were reviewed to evaluate the amount of
neoplastic cells for the RNA extraction.

RNA Extraction and Quality Control
Total RNA was isolated from fresh-frozen tumor samples using

mirVana miRNA Isolation Kit (Ambion, Austin, TX) following the
manufacturer's protocol. RNA quantity and quality were assessed
using a UV/VIS spectrophotometer NanoDrop 2000c (Thermo
Scientific, Wilmington, DE). The level of integrity required for the
microarray analysis (RNA Integrity Number above 7) was determined
for the extracted total RNA using Agilent RNA 6000 Nano Kit on
apparatus Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA).

Microarray Analysis
All samples were analyzed on two-color Agilent Human Gene

Expression v2 4x44K Microarray (Agilent Technologies, Santa Clara,
CA). Tumor samples were hybridized against a lung cancer common
reference pool that consisted of a pool of RNA derived from 108 of
the NSCLC samples. Total RNA in the amount of 1000 ng from
tumor sample and common reference sample was labeled with a
Cyanine 3-pCp and a Cyanine 5-pCp fluorophores, respectively.
Labeling reactions were performed using Agilent's Quick Amp
Labeling Kit, two-color with the use of synthetic spike controls –
RNA Spike-In Kit, two color, following the manufacturer's protocol
(Agilent Technologies, Santa Clara, CA). Hybridization of the labeled
RNA in the presence of spike controls was performed in SureHyb
chambers (Agilent Technologies, Santa Clara, CA) for 17 hours at
65°C. We used the Spike-In solutions to help distinguish significant
biological data from processing issues. Slides were washed using the
Gene Expression Wash Buffer Kit (Agilent Technologies, Santa
Clara, CA) following the manufacturer's instructions and scanned at
5-μm resolution using an Agilent G2505C DNA Microarray
Scanner. The scanned slides were quantified using Feature Extraction
10.7.3 software (Agilent Technologies, Santa Clara, CA). Addition-
ally, all the arrays were assessed using the QC Report generated by
Agilent's software.

Statistics
All preprocessing steps were executed with the R-package “limma.”

The background was corrected by fitting a convolution of normal and
exponential distributions to the foreground intensities. Subsequently,
two normalization steps were conducted: LOESS, a nonparametric
regression method, was used for within-arrays normalization, and a
quantile normalization was used for between-arrays normalization.
We preprocessed the training data set (108 samples) and the
independent validation data set (44 samples).

We used the R-package “limma” to assess the statistical significance
of the differences in gene expression levels. Genes with adjusted
P values due to multiple testing lower than .05 were taken as
differentially expressed using the adjustment procedure of
Benjamini-Hochberg [24]. Prediction analysis of microarray ranking
(PAMR) and Gene Ontology (GO) analyses were done with R/
Bioconductor packages “pamr” and “GOstats,” respectively. PAMR
signature was selected with the shrunken parameter set to 3.5. For the
overrepresentation analyses, Bonferroni correction was applied, and
sets with the P value lower than .05 were called significant. For the
survival analysis, a progression-free period of 3-year cutoff was
arbitrarily chosen to discriminate between good and poor prognosis
patients. The analysis of differential gene expression between
recurrence-free and recurrence patients was adjusted for gender,
histological subtype, and stage. For each gene, a linear model with the
recurrence status after 3 years, gender, histological type, and stage as
covariates was fitted. After fitting the models, the differences in gene
expression were tested using the Student's t test.

Results

Patient Characteristics
A total of 152 patients were enrolled into the study. Clinical

characteristics of the NSCLC patients whose samples were used in the
training and validation sets are summarized in Table 1. No
statistically significant differences were found in the main patient
characteristics of these two sets. The training set included tumor
tissues from 108 patients who underwent surgical resection between
2003 and 2009 in the University Clinical Hospital in Bialystok.
Forty-four NSCLC cases resected between the years 2009 and 2010
were recruited for an independent validation group.

Gene Expression Profiling to Distinguish Lung AC from
SCC Subtypes

A comprehensive evaluation of gene expression levels was focused
on lung AC and SCC tissues using gene expression microarray
analysis. LCC was not included in this part of the study as the number
of samples was too low to obtain representative results.

Initially, we compared gene expression profiles in AC and SCC
between the training group (set 1, n = 98) and the validation group
(set 2, n = 41) in order to verify whether a consistent estimate of
differential expression could be obtained in both sets. A strong
association of gene expression profiles was observed between the
training and validation sets (Supplementary Figure 1), showing that
the analyzed groups of samples were suitable for both training and
validation purposes.

Next, we evaluated differences in gene expression levels between
the two histological types of NSCLC. We demonstrated that gene
expression profiles in lung AC and SCC differed significantly from
each other in both the training and validation sets (Figure 1, A and B).
The heat maps showed specific gene subclusters that were differentially
expressed between the AC and SCC tumors and could therefore prove
useful in themolecular classification ofNSCLC subtypes.We identified
4752 genes whose expression levels differed significantly between
the AC and SCC samples analyzed in the training set (adjusted
P value b .05). More specifically, 2496 genes were upregulated in SCC
and 2256 genes were upregulated in AC (Supplementary Materials,
Appendix 1). In the analysis of the independent validation data set, a
statistically significant difference (adjusted P value b .05) was found in
the expression of 3504 genes (1780 genes were overexpressed in SCC,
and 1724 were overexpressed in AC) (Supplementary Materials,
Appendix 2). Moreover, we observed that the fold changes in
the expression of 2549 genes were statistically significant (adjusted
P value b .05) in both data sets (Figure 1C). The relative expression
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Figure 1.Hierarchical clustering of fold changes expression for the genes that displayed the statistical significance (adjusted P value b .05)
for differential expression between AC and SCC samples in the training set (A), in the validation set (B), and in both sets (C). Columns
correspond to individual genes, and rows represent AC or SCC tumors in appropriate group of the analyzed samples. For comparison of
the gene expression between two data sets of samples, each heat map shows fold changes expression in both the training and validation
sets. (A) The top and bottom rows represent expression data for genes significantly altered in AC samples compared with SCC samples
(adjusted P value b .05) in the training set. Twomiddle rows correspond to expression levels of the same genes in the validation set. Despite
the lack of statistically significant differencesbetweenACandSCC in this set of samples,most of the genes haveconsistent signwith respect
to training set. (B) The top and bottom rowsdisplayed the differential expression pattern in SCC andACsamples (adjustedP value b .05) in the
validation set. Two middle rows also reveal that the great majority of the genes in the training set have the same direction of change in
expression compared with validation set. (C) Heat map of the statistically significant (adjusted P value b .05) results for differential gene
expression profiles in AC and SCC samples in both sets. The scale represents the intensity of fold changes expression (log2 scale).
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levels of 1334 genes were upregulated in SCC, whereas 1215 genes were
upregulated inAC (SupplementaryMaterials, Appendix 3).However, it
was quite surprising to note that the gene expression changes between
AC and SCC that were found to be statistically significant only in the
training data set were numerically not identical with the fold changes
found in the validation set despite the fact that, in the vast majority,
these gene expression changes had a consistent pattern (Figure 1A). This
consistency was also observed in the validation data set. The majority of
genes that were significantly differentially expressed between the AC
and SCC samples in the validation set had the same direction of the
expression change in the training set (Figure 1B). The names of the
genes that were differentially expressed between the two histological
NSCLC samples in the training, validation, and both sets are listed in
Supplementary Materials, Appendices 1-3.

Histotypic Gene Signature to Distinguish SCC from AC
In order to identify a set of gene expression markers to best

discriminate between the AC and SCC subtypes, we used the
prediction analysis of microarray (PAM) method described in the
study of Tibshirani and colleagues based on the nearest shrunken
centroid classification algorithm [25]. The gene expression classifier
was developed with a selected shrinkage threshold by training
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performed on the two classes in the training set. More specifically, the
optimal number of genes in the predictor was chosen based on a visual
analysis of the training errors and cross-validation results (Figure 2).
On this basis, we set the optimal shrinkage threshold to 3.5 for the
classification of SCC and AC tumors, minimizing misclassification
errors in both the training and cross-validation confusion matrices.
When 98 samples from the training set were included in the PAM
analysis, we identified 53 gene signatures that accurately distinguished
lung SCC from AC (Figure 3). Interestingly, some of the proteins
encoded by the genes contained in our signature are already used as
immunohistochemical markers in clinical diagnostic procedures and
include DSG3 (desmoglein 3), NKX2-1 (TITF1), and high–
molecular weight keratins (KRTs) such as KRT7, KRT17, KRT5,
and KRT6 (keratin 6A, keratin 6B, keratin 6C). The list of genes
constituting the histotypic signature and their corresponding values of
PAM class scores in the training set are shown in Supplementary
Materials, Appendix 4.

In the subsequent prediction analysis, our classifier was validated in
the independent patient cohort (41 tumor samples) using the PAM
algorithm with optimized parameters and a threshold established
during the training set analysis. The PAM classification analysis
showed that lung SCC and AC samples can be correctly classified into
their respective groups (Figure 4). The predictor demonstrated a
nearly perfect classification with only three SCC tumor samples
assigned to the opposed group (93% accuracy). Our classifier was able
to flawlessly classify all the AC samples (100% correct prediction for
the AC set of samples).

Performance evaluation of the predictive model using the
classification results from the independent validation set showed
that the 53-gene signature classified the AC patients with a sensitivity
of 100% (16/16) and a specificity of 88% (22/25). Further
examination of the classifier performance (Table 2) indicated that
the 53-gene histotypic classifier was the most accurate with regard to
the prediction of AC patients, with a negative predictive value (NPV)
of 100% for AC. Classifier identification based on gene expression
enabled us to obtain a reliable classification of NSCLC subtypes, and
it can therefore constitute a useful diagnostic strategy for patient
selection in targeted therapy.
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Figure 2. The gene expression classifier construction using PAM
algorithm with adopted shrinkage threshold by training performed
on the two classes (AC and SCC histologies) in the training group.
The optimal number of genes in the signature was selected based
on the minimum number of misclassification errors using cross-
validation procedure. The red color represents AC samples, and
green color corresponds to SCC tumors.
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Figure 4. Classification of SCC/AC subtypes based on the 53-gene
signature using PAM algorithm in the validation set. The red color
represents AC samples, and the green color displays SCC tumors.



Table 2. Classification and Performance Evaluation of Predictive Model Using PAMMethod in the
Validation Cohort

Classification, Numbers Classifier Performance %

Histology PAM_AC PAM_SCC Sensitivity Specificity PPV NPV Accuracy

AC, n = 16 16 0
100 88 84.2 100 92.68

SCC, n = 25 3 22

PPV, positive predictive value.
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GO Enrichment Analysis
In order to determine the differences between the two histological

types of NSCLC at the level of biological processes, we performed a
functional enrichment analysis using GO terms. We set out to search
for significantly enriched GO terms in the differentially expressed
genes (DEGs) from the two lung cancer subtypes in both the training
and validation sets. The functional enrichment analysis indicated that
the DEGs in the lung SCC group were significantly enriched in a
number of biological processes. We identified at least several
overrepresented terms in both the training and validation sets that
are potentially involved in the pathogenesis of lung SCC such as
nucleoplasm, mitotic cell cycle, poly(A) RNA binding, DNA repair,
protein sumoylation, and epidermis development (Supplementary
Materials, Appendix 5). On other hand, the GO enrichment analysis
showed that many of the genes overexpressed in AC may be involved
in critical biological processes affected by cancer, including
extracellular exosome, plasma membrane, lysosome, and positive
regulation of angiogenesis. Other highly ranked categories (adjusted
P value b .05) included genes active in the immune response,
regulation of the immune response, and the inflammatory response
(Supplementary Materials, Appendix 6).

Next, we performed a functional enrichment analysis within the
set of 53 histotypic genes constituting our signature in order to
understand the crucial biological differences underlying the tumor-
igenesis of lung AC and SCC. The GO analysis of the 53 identified
genes revealed that the histological profile was strongly enriched for
genes associated with epidermis development, keratin filament,
intermediate filament, structural constituent of cytoskeleton, and
extracellular exosome. Significantly (adjusted P value b .05)
overrepresented GO terms were identified only in the lung SCC
group, most likely due to the relatively high number of genes
overexpressed within the signature in SCC. A complete list of the GO
categories associated with genes is reported in the Table 3 (detailed
information can be found at Supplementary Materials, Appendix 7).
Table 3. Functional GO Enrichment Analysis for Set of 53 Genes Included in the Histotypic
Signature

Biological Process Genes Involved Adj. P Values

Epidermis development HsT19447, COL7A1, KRT5, KRT14,
KRT17, PTHLH, GRHL3

b.0001

Keratin filament KRT5, KRT6A, KRT6B, KRT14, PPKNEFD b.0001
Intermediate filament KRT5, KRT6A, KRT14, KRT17, PPKNEFD b.0001
Structural constituent

of cytoskeleton
KRT5, KRT6B, KRT14, KRT17 b.0001

Extracellular exosome ATP1B3, CSTA, DSG3, YWHAS, GPC1,
KRT5, KRT6A, KRT6B, KRT14, KRT17,
SERPINB5, SERPINB13, SLC2A1,
TMPRSS11D, PPKNEFD

b.0001

Significantly overrepresented GO terms in SCC are linked to genes.
Prognostic Significance of Gene Expression in NSCLC Patients
With regard to the potential role of the genes as prognostic factors

in NSCLC, we examined the impact of gene expression levels in
primary tumors on the progression status in NSCLC patients
following surgical treatment. A comparison of patients with and
without recurrence and/or cancer-related death within 3 years (at the
5% false discovery rate level) revealed no statistically significant genes
in either the training or validation set, regardless of taking into
account or neglecting the clinical factors.

Discussion
Several recent studies showed that global gene expression profiling
could be exploited for both the histological and prognostic character-
ization of NSCLC [14,26,27]. In the current study, we used the
microarray technology in order to discover gene expression differences
among lung cancer histologies and disease progression status.

In the differential gene expression analysis between the samples
derived from SCC and AC, we identified the specific gene patterns
that clearly differed from each other in both the training and
validation set. On this basis, using the training cohort, we developed
the 53-gene classifier for identifying individual tumor subtypes. The
validation procedure in the independent set of samples showed that
our predictor distinguished SCC from AC with 93% accuracy. The
gene expression–based signature for AC subtyping demonstrated a
nearly perfect classification with 100% sensitivity and 88%
specificity. To the best of our knowledge, this is currently one of
the best predictive models showing such an excellent classification
performance. Importantly, the 53-gene classifier was most accurate
with regard to the prediction of AC histology (NPV: 100%). Our
findings can thus prove to be of clinical importance as the targeted
lung cancer therapies were found most successful in patients with
lung AC.

Even though the diagnosis of lung cancer based on the
histopathological analysis remains the gold standard, this method
has some well-known difficulties and limitations. This is especially
evident in the case of small tumor specimens and/or limited amount
of cytological smears achieved from unresectable tumors [4,6].
Diagnostic difficulties arise from the heterogeneity of the tumors, an
insufficient number of cancer cells, poor NSCLC differentiation, and
seizure of the tissue architecture [28]. Recent studies evaluating the
degree of reproducibility of the histological classification performed in
resected lung tumors have shown to be unreliable since one third of
the cases was classified incorrectly [5]. Unfortunately, immunohis-
tochemical staining (IHC) of lung tumors can improve the accuracy
of classification only to a limited extent. To date, p63 has been
recognized as the best single marker distinguishing AC from SCC
(84% sensitivity and 85% specificity). A similar role can be played by
a panel of four factors: p63, CK5/6, TTF1, and Napsin A [29]. IHC
methods may be limited by the variability of the staining reactions
caused by the heterogeneity of the tumor and some technical
discrepancies, different sensitivities/specificities of individual markers,
and the lack of standardization in the quantitative interpretation of
the staining results [30]. Thus, there is an urgent need for the
discovery of novel biomarkers to discriminate more precisely between
SCC and AC.

Recently, several studies have attempted to identify the molecular
factors which can become useful diagnostic markers allowing a more
detailed stratification of NSCLC subtypes [31–33]. Girard and
colleagues developed a combined 62-gene expression signature,
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including 42 genes for AC/SCC and 20 genes for nonmalignant/lung
cancer discrimination [32]. Validation performed with the use of the
TCGA and other public data sets resulted in high prediction
accuracies (93%-95%). Nevertheless, our signature has a slight
advantage over Girard's classifier. We obtained a 100% correct
prediction for the AC set of samples. The authors also compared their
results with six other signatures, indicating that 10% to 45% of genes
were shared. However, the results of our study are in line with the
data on the histotypic-associated genes that were identified by Girard
and colleagues. Similarly to their findings, we confirmed that 17 genes
including CLDN3, RORC, TESC, KCNK5, NKX2-1, ACSL5,
SFTA2 (overexpressed in AC) and COL7A1, KRT6C, SERPINB5,
VSNL1, DSG3, CLCA-2, KRT17, KRT6B, KRT6A, KRT5 (over-
expressed in SCC) could be used to differentiate the two main
histological types of lung cancer groups. Moreover, the estimated sign
of the fold changes of all the genes identified in our study was
completely consistent with the one observed by Girard and
colleagues. Interestingly, some of the proteins encoded by the genes
included in our and Girard's signature are already used as
immunohistochemical markers in clinical diagnostic assays, such as
DSG3 (desmoglein 3), NKX2-1 (TITF1), KRT7, KRT17, KRT5,
and KRT6.

Hou and colleagues have presented a 75-gene signature for the
classification of NSCLC subtypes, which was subsequently subjected
to validation with the use of an external data set with the prediction
accuracy at the level of 83% [33]. Similar results were obtained by
Wilkerson and colleagues, who demonstrated a predictor comprising
51 unique genes [34]. They reported the prediction accuracy to stand
at the level of 84%, as estimated by the Monte Carlo cross-validation
procedure. It is worth noting that our group has identified and
validated a gene signature associated with the histology of lung cancer,
which allowed a faultless classification (NPV: 100%) of all the AC
tumors. This finding seems to be very important since the efficacy of
targeted lung cancer therapies appears limited to lung ACs harboring
the oncogenic driver mutations [35], which then determine the
further clinical approach. Precision in the classification of lung cancer
subtypes should be considered of great importance especially in the
case of AC tumors.

In the current study, we performed the functional GO enrichment
analysis in order to understand better the critical biological differences
underlying the tumorigenesis of lung AC and SCC. We showed that
the DEGs in the lung SCC group were significantly enriched in a
number of biological processes, such as the by Monte Carlo
cross-validation procedure mitotic cell cycle, poly(A) RNA binding,
DNA repair, protein sumoylation, and epidermis development. These
overrepresented GO terms are potentially involved in the pathogen-
esis of lung SCC. On the other hand, we demonstrated that many of
the genes overexpressed in AC may be involved in altering some of the
crucial molecular processes affected by cancer, including the
modification of extracellular exosome, plasma membrane, and
lysosome and positive regulation of angiogenesis. Interestingly,
other highly ranked categories in AC tumors include genes that are
active in the processes associated with the immune response.
Furthermore, we performed a GO analysis within the genes
constituting our histology signature. We revealed the histological
profile of the lung SCC to be strongly enriched for the genes linked to
epidermis development, keratin filament, intermediate filament,
structural constituent of cytoskeleton, and extracellular exosome. Our
results showed clearly that the patterns of differential expression of
genes in lung AC and SCC may indicate the occurrence of different
gene-related biological processes underlying a different pathogenesis
of these histologies.

Similar analyses aimed at identifying the differentially expressed
genes have been conducted by Lu and colleagues [36]. The authors
found that DEGs in an AC subset were not enriched in any specific
pathways, whereas DEGs in their SCC samples were enriched in three
pathways (Hsa04110, cell cycle; hsa03030, DNA replication; and
hsa03430, mismatch repair). Additionally, these researchers con-
structed a global network of lung cancer with 341 genes and 1569
edges and appointed the top 5 genes, i.e., HSP90AA1, BCL2, CDK2,
KIT, and HDAC2, that differentiate lung AC from SCC.

Daraselia and colleagues [37] used the microarray technology and
described characteristic molecular networks and subtype-related
differences between AC and SCC. They revealed that E2F, CTGF,
and PDGF were significantly involved in lung cancer pathogenesis
independently of the NSCLC subtype. These researchers showed that
the cell cycle–related genes and DNA repair genes were upregulated
mainly in SCC, while all the oncogenes in AC and the majority of
oncogenes in SCC were downregulated.

In a more recent study, Liu and colleagues [38] defined a set of
differentially expressed genes and 16 pathways for AC and SCC. The
most significant genes participated in the following pathways: cell
cycle (GSK3B, ATR, SKP2, CDK1, CDK2, SMC3, PLK1,
CCND3) , DNA repl icat ion ( RFC2 , PRIM2 , MCM4 ,
MCM5), spliceosome (PRPF19, SRSF2, THOC4), p53 signaling
(CDK1, CDK2, GTSE1, ATR), adherent junction (IGF1R,
TGFBR2, CTNND1), and tight junction (CKD4, CASK, MPP5).
It has been noticed that pathways related to the immune response,
metabolism, cell signal transduction, cell division, and proliferation
had a higher prevalence in AC compared to SCC. These results
support our findings regarding the importance of the processes related
to the immune response in AC histology.

In our study, we showed that specific genes could be considered
molecular drivers determining the histology of NSCLC. More
specifically, the expression levels of SOX2 were significantly higher in
lung SCC than in lung AC. According to the previous reports, SOX2
can control tumor initiation and cancer stem-cell functions in SCC
[39]. We also found that the overexpression of claudin 3 gene was
correlated with the histological diagnosis of AC. Moldvay and
colleagues [40] revealed positive immunostaining for claudin 3 only
in AC but not SCC cases. The authors suggested that claudin 3 may
therefore constitute a diagnostic marker distinguishing ACs from
SCCs. Another highly ranked gene in our signature wasMIR205HG,
which is the host gene for hsa-miR-205. Indeed, we have recently
demonstrated that miR-205 is closely associated with the features of
squamous histology of lung cancer [18]. Larzabal and colleagues [41]
demonstrated for the first time a new intracellular signaling pathway
involving twomembrane-anchored proteins (ITGα5 and TMPRSS4) that
cooperated in tumor growth promotion,metastasis, andmigration through
miR-205. Surprisingly, we observed that our histology signature also
included the gene encoding the transmembrane protease (TMPRSS11D)
from the same family of transmembrane serine proteases (TTSPs) as
TMPRSS4 in Larzabal's studies. In line with their results, we also showed
that both MIR205HG and TMPRSS11D were highly expressed in SCC
compared to the AC samples. Our findings indicate that some of the top
genes in the signature, such as CLDN3, TMPRSS11D, SERPINB5, and
FGFBP1, could become good candidates for new immunostains in the
pathology-based differential diagnosis of NSCLC subtypes.
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With the hypothesis that the “intrinsic” molecular features of
neoplastic cells may predict tumor progression [42], we set out to
search for the prognostic significance of the gene expression profiles in
NSCLC patients following surgical treatment. A comparison of
patients with and without recurrence and/or cancer-related death
within 3 years (at the 5% false discovery rate level) revealed no
statistically significant genes in either the training or validation set.
Altogether, the majority of previously published papers used the
overall survival or the relapse-free survival as the main end-point
measurements, both being quite insensitive to the prognostic test
development [43]. Therefore, in the current study, we set out to
perform a correlation analysis between the mRNA expression levels
and the progression status of our NSCLC patients.
Although several studies have demonstrated a correlation between

the mRNA expression levels and the disease recurrence, they found
no repeatable gene expression patterns [44–46]. The problems with
consistency could be linked with several limitations of the
experimental design and such technical reasons as the type of
technology used (microarray versus next-generation sequencing
versus real-time polymerase chain reaction), type of tested material
(fresh-frozen versus FFPE tissues), and methods of statistical analysis.
Despite these methodological concerns, such biological parameters as
histological subtypes, differential treatments, and varying disease
stages play crucial roles in regulating differences in the gene expression
levels [47]. Notably, our results indicated that the analysis of gene
expression profiles in the early stages of NSCLC—AC, SCC, and
LCC—does not bear a potential to predict relapse after surgery. On
the other hand, Chang and colleagues [44] showed a significant
association between the mRNA expression levels and survival only in
a group of AC patients. These investigators found a 21-gene signature
in the HMGB1/RAGE signaling pathway and a 31-gene signature in
the clathrin-coated vesicle cycle pathway which were significantly
associated with the prognosis of lung AC patients. Lu and colleagues
[45] identified a reproducible gene expression signature in lung AC.
Not only did the 16-gene signature reproduce the gene signatures
presented in literature, but it also was able to identify a set of
predictive genes for AC. However, the authors demonstrated that the
above-mentioned genes could not serve as prognostic markers in
patients with other NSCLC subtypes.
Roepman and colleagues [46] developed and validated a 72-gene

classifier for early-stage NSCLC with a high and low risk of disease
recurrence. This method was shown to be statistically significant for
both SCC and AC histology. The comparison of their data with seven
other publications demonstrated that the accuracy of all the classifiers
stood at a similar level, ranging from 70% to 80%. Nevertheless,
different gene sets were identified as prognostic, and the profiles of
only 5 out of 327 genes overlapped between the two studies [48].
However, the bottleneck of this approach seems to be the validation
procedure related to the complex classifier models and the initial
revalue of the classifier efficiency.
In summary, we developed and validated here a novel 53-gene

expression-based predictor distinguishing SCC from AC with nearly
perfect accuracy. To the best of our knowledge, this is currently one of
the best predictive models demonstrating such a high classification
performance. Our results indicated that gene expression profiles in
the early stages of NSCLC may help elucidate the histological
distinctions of NSCLC tumors via identification of different
gene-mediated biological processes involved in the pathogenesis of
histologically distinct tumors. Moreover, we demonstrated that the
analysis of gene expression profiles does not bear the capacity to
predict the progression status of the early-stage NSCLC. Altogether,
molecular tests based on the gene expression allow a reliable
subclassification of NSCLC tumors and can thereby constitute a
useful diagnostic tool for more effective patient recruitment for
targeted therapies.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.tranon.2017.01.015.
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