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Abstract

Polymer-filler interactions significantly influenaaorphology, functionality and various
desirable properties of mixed matrix membranes (MIMn this study, chain mobility
and crystallization of Poly(L-lactic acid) (PLLA) MM films prepared by solvent casting
PLLA with 1, 5, 10 and 20% wt./wt. of MIL-53(Al) nt&l organic framework (MOF) were
evaluated. The fabricated MMMs were characterizesings Differential Scanning
Calorimetry (DSC), Fourier Transform Infrared Spestopy (FTIR), Thermogravimetric
Analysis (TGA), and Scanning Electron Microscop¥k8. DSC studies indicated that
the addition of MOF particles in the PLLA matrixdiees the polymeric chain mobility,
which affects the crystallization process. The petcrystallinity of neat PLLA was found
to decrease from 4% in neat PLLA to completely ghous structures in PLLA-10% and
PLLA-20% MMMSs, as observed in the second heatingecyFTIR data supports these
observations. TGA results showed that PLLA-MOF §lare thermally less stable than
neat PLLA suggesting that MOF particles act as @olyenerization catalyst for PLLA.
Partial agglomeration of MOF patrticles was obserivethe samples using SEM studies.
This study indicates strong PLLA-MIL-53(Al) MOF mmactions. In addition, this study
also provides insight into the effect of MOF pdesc on the segmental mobility and

morphology of PLLA-MIL-53 (Al) composite films.
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1. Introduction

Fillers, functional materials, additives or modifidhave been widely used to improve the
functionality of polymeric matrices, including stgth, stiffness, hardness, durability,
permeability and controlled selective exchange ageg for various applications [1-3].
Interfacial interactions between the matrix antéffiplay an influential role in polymer-
filler dynamics. Surface area, concentration andigda size of the filler influence the
polymeric chain structure, segmental mobility angtallinity [4-5]. The interfacial region
and its surroundings behave differently from thék polymeric matrix. Good polymer-
filler interactions can create topological resttsinwhich may hinder the mobility of
polymeric chains. On the other hand, poor intediiciteractions lead to interfacial voids

or defects [1, 3, 5-8].

Poly(lactic acid) (PLA) is a bio-based, bio-degialdaand compostable polymer
that has consolidated its market presence duehatecommercial advancement, growing
production capacity and economic viability [9-1BLA is a clear, rigid thermoplastic with
mechanical strength comparable to poly(ethyleneptahalate) (PET) and polystyrene
(PS). However, various inherent limitations such its brittle nature, poor barrier

performance and slow crystallization kinetics liftstwide scale commercial use [1].

Metal-organic frameworks (MOFs) belongs to a clafsmicroporous, high surface
area crystalline materials synthesized by coordiganetal ions with organic struts [11].
Their varied synthesis techniques and potentialiegipn in areas such as catalysis, gas
storage, gas separation, selectivity, chemicalisgnsncapsulation and drug delivery have

been comprehensively reported by researchers inadtetwo decades [11-14]. These
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reticulate symmetrical crystals can be designed sfecific structural properties to meet

desired objectives among other organic, inorganitteybrid porous structures [15-17].

MIL-53 (Al) is a highly flexible, thermally and stcturally stable, hydrolysis
resistant commercially available microporous MOFalhs formed by coordination of
trivalent aluminum with benzene dicarboxylate griitis known for its high surface area,
high CQ adsorption and selectivity [18, 19]. Ferayal. [20] reported that MIL-53 (Al)
has high sorption and selectivity for €@as over other gases such asa@d CH. In
addition, MIL-53 (Al) is known for its distinct baghing attribute due to the reversible pore

expansion and contraction behavior under varyimgesd pressure [21].

Ease of processibility and cost effectiveness ef plolymers along with high
selectivity of MOF particles motivates fabricatiaf polymer-MOF mixed matrix
membranes (MMMs). The polymer-MOF interfacial iretion, polymeric chain mobility,
crystallization kinetics and percentage crystaliraf a polymer significantly influences
its performance and functionality. Traditionallgterfacial studies have attracted attention
in order to achieve higher stress transfer for sapemechanical performance.
Additionally, poor interfacial adhesion, or the geace of defects, affects various
important properties including gas diffusion andhpeability. In the case of polymer-MOF
composites, five types of interfacial morphologiesre been reported depending on the
interfacial interactions are: a). two phase defiest, b). poor interactions leading to voids
c). dilated d). increased density e). plugged maoligdy which can significantly impact
their transmission, permeability and perm-selettiy22]. Such selectively permeable

polymer-membranes system can be tailored to gagpaesition in the headspace of a
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product-package system to optimize the shelf lifeavious consumer products including

respiring product such as fresh produce, cheese etc

Chain mobility is of great significance during ttimal stages of polymer
processing. In addition, segmental chain mobiliéy énfluence the physical aging of
polymeric materials, which can alter functional pedies particularly in glassy polymers
including permeability and selectivity [23-24]. Ko(L-lactic acid) (PLLA), a low
entanglement density polymer, has demonstratetheurdecrease in the entanglement
density with physical aging due to segmental mbbibf the chains [23]. Such
microstructural changes can adversely affect varitunctional properties including
mechanical performance, gas transportation andpgeaency. Previous studies have linked
reduced segmental mobility of polymer-nanocompssit@ith strong interfacial
interactions [1, 24-25]. Segmental mobility of Plchains is of profound interest as it
influences crystallinity, as well as its mechanidsdrrier and other functional properties
[7-8, 26].The purpose of this study was to evaltiageeffect of MIL-53 (Al) MOF particles
on the segmental mobility and crystallization olveat cast PLLA films. The effect of
varying MOFs fraction on the PLLA matrix was anagzby using an array of

characterization techniques.

2. M ethodology

2.1 Materials
Poly(L-lactic acid) (PLLA) resin grade 4043 D, (98%actide) pellets were supplied by
NatureWorks LLC (Blair, NE, USA). The weight aveeagolecular weightMw) was 111

kDa, with a number average molecular weig¥t)(of 84 kDa and a polydispersity index
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(Mw/Mp) of 1.3. MIL-53 (Al) MOF produced by BASF® was agged from Sigma-Aldrich
(St. Louis, MO, USA) under the trade name of Bas®i A100 MOF (GHsAIOs), with a
surface area between 1,100 and 1,56§'nand particle size distribution of 31.5&n.

Chloroform [anhydrous99%] was purchased from Sigma-Aldrich, St. Loui©) MUSA.

2.2 Methods

PLLA pellets were dried at 80 °C for 4 h using efitho Fisher Scientific VWR Oven
(Fisher Scientific, Waltham, MA, USA) with a negegipressure of 2.93 kPa and packed
in an air tight glass bottle. Three grams of dfftd A pellets were gradually poured into
75 mL of chloroform at 23 °C while mixing the soart with a magnetic stir plate (Fisher
Scientific, Waltham, MA, USA) at 300 RPM for appnarately 90 min until all PLLA
pellets were dissolved. Basolite™ A100 MOFRsKIGAIOs) particles were crushed by
applying light, concentric pressure using a Greeanlilé Mortar & Pestle. PLLA, PLLA-
1% MOF, PLLA-5% MOF, PLLA-10% MOF and PLLA-20% MOWkere processed by
solvent casting. The desired MOF content was weigieng a Mettler Toledo Scale,
Model ME54E (Columbus, OH, USA) and poured in thgesdlved PLLA-chloroform
solution while mixing the solution with the magrestir plate rotating at 300 RPM for 10
s. Ultrasonication was performed on the PLLA-MOHRecbform solution using a Q500
ultrasonicator purchased from QSonica, LLC (Newtp@h, USA). An on-off cycle was
programmed to ultrasonicate for 3 min, with an gole time of 3 s at a frequency of 20
kHz and an alternating off cycle of 0 Hz for 2 $ieTultrasonicated solution was poured
into teflon coated molds and covered with two layef holed Al foil to control the
chloroform evaporation rate. After completely evagtimg the chloroform, the solid
samples were placed in the vacuum oven at 23 *Garadjative pressure of 22 mmHg to

6



125 extract the residual chloroform from the samplesnfiles were stored in vacuum bags at
126 room temperature until the beginning of the diffgéréests. The resulting films had an
127 average thickness of 178 + pf (7.00 £ 1.0 mil).

128 2.3 Differential Scanning Calorimetry (DSC)

129 DSC analysis of neat PLLA and PLLA-MIL 53 (Al) MMMIms was performed using a
130 DSC Q1000 (TA instruments, DE, USA). Samples sizéveen 5 and 10 mg were
131 obtained from the films and non-hermetically seatedn aluminum pan and placed with
132 the reference pan in the DSC cell and run in tgiks. Heat/cool/heat cycles from 0 °C to
133 180 °C at a rate of 10 °C mih were performed under a constant nitrogen flow @f 5
134 mL/min. To disregard the thermal history duringqassing or storage, the second heating
135 cycle was used to determine the glass transitimpégature Tg), cold crystallization onset
136 (To), melting temperaturelf,) and to calculate the enthalpy of cold crystati@ma (AHc)
137 and fusion AHm). The percent crystallinitXc (%) was estimated using the following
138 equation:

139 X, (%) = 2n~Ae 109

AH (1-X)
140 where4Hn is enthalpy of fusionyHcis the enthalpy of cold crystallizationfH, is
141 enthalpy of fusion of pure crystalline PLAH y = 93.1 J/g [27]) andrepresents the mass
142 fraction of the MOF in the films. Universal Analgsisoftware version 2000 (TA

143 Instruments, DE, USA) was used to analyze the &mples were run in triplicates.

144 24 Fourier Transform Infrared Spectroscopy (FTIR)
145  Fourier Transform Infrared Spectroscopy (FTIR) ofLN&3 (Al) MOF, cast PLLA and

146 PLLA-MIL-53 (Al) MMM films was performed using antienuated total reflectance
7
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(ATR) module attached to FTIR model IRaffiny-1S i{8adzu, CA, USA). The spectra
were acquired in absorption mode at room tempezatuthe range of 4000-400 chat 2
cm! resolution using 40 accumulated scans. The baokgrepectra used for reduction
were collected at room temperature and samples exam@ined in triplicates.

2.5 Thermogravimetric Analysis (TGA)

Thermogravimetric analyses of MIL-53 AI-MOF, neatliA and PLLA-MOF films were
investigated using a TGA Q50 (TA instruments, DESA) under sample nitrogen flow of
60 mL min* and balance purge flow of 40 mL minSamples between 5 and 10 mg were
obtained from the films and were placed in an ahwmi pan before being heated at a rate
of 10 °C mintfrom room temperature to 600 °C. Universal Analgsifware version 2000
(TA Instruments) was used to analyze the data amgpkes were run in triplicates.

2.6 Scanning Electron Microscopy (SEM)

Morphological analysis was performed using a P&ilQuanta 200 Environmental
Scanning Electron Microscope (FEI, Hillsboro, ORGA]J in low vacuum mode (100 Pa)
with the use of a tungsten filament. SEM microgephthe MOF powder, surfaces of
solvent cast PLLA and PLLA-MIL-53 (Al) MMM films we obtained at an accelerating
voltage of 12.5 kV.

2.6 Oxygen Gas Permeability Coefficient

The oxygen transmission rates of the PLLA and PL208% MOF were measured as per

ASTM D3985-05 using an Oxtrn2/21 (MOCON Inc., Minneapolis, MN, USA) at 23

and 0% RH using 100% oxygen gas as permeant afd 98 2% H as the carrier gas at
a flow rate of 20 sccm of the test gas and 10 dbowrate of carrier gas. The data was

collected every 30 min. until stable saturatedesteds achieved. The transmission rate of

8
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4-6 mil thick films was measured using aluminum ksagith 3.14 crharea. The average
value of the last ten stable points was used toutate the permeability values. The data
were analyzed for at least three samples.

2.7 Data Analysis

Data analysis was carried out using SAS 9.4 So&{®8AS Institute Inc., Cary, NC, USA).
Analysis of Variance (ANOVA) was evaluated usingk&y's HSD (Honestly Significant

Differences) at 95% confidence interval< 0.05).

3. Resultsand discussion

3.1 Differential Scanning Calorimetry

DSC thermograms of PLLA and PLLA-MIL-53(Al) MMMs arepresented in Figure 1.
The onset of cold crystallization in PLLA and PLL18& MOF was observed at 105.1 and
108.6°C, respectively. A shift in the onset of cold cajstation temperature of the PLLA-
1% MOF composition can be attributed to the goddractions between the polymeric
chains and the MOF crystals and high surface afesl@F hindering the segmental
mobility of the polymeric chains [1, 3, 28]. Sucbpblogical constraint can affect
crystallization kinetics and viscoelastic propestef the materials. Gagliradt al. [28]
studied the interfacial interaction of poly(dimegipxane) with 20 and 40% silica
nanoparticles and poly(vinyl acetate) with 40% csilinanoparticles. They observed
decreased segmental mobility, which was linkech®gpecific surface area (SSA) of the
nanopatrticles, altered chain structure and chamgddvior near the interfacial region
compared to the bulk polymeric regid@8]. The extent of chain restriction also
sequentially increased with increase in silica mpantcle SSA and loading in the

polymeric matrix. In another study, Fragiadadtial. [29] reported higher relaxation time
9
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in the interfacial region for uniformly distributetatural rubber nano-silica particle based
composite systems. In this work, the absence of cgistallization at higher MOF weight
fraction can be ascribed to the fact that morepelyc volume fraction was restricted due

to the presence of these particles.

<Figure 1>

Detailed analysis of the DSC thermograms of PLLA &s composites is provided
in Table 1. The increase in tAg with increase in the MOF loading further indicates
reduced segmental mobility. We obtained highly ghous neat solvent cast PLLA
samples with 3.2% crystallinity. The crystallinfiyrther decreased from 3.1 to 0.5% with
1 and 5% MOF loading in these composites. PLLA-1M@F and PLLA-20% MOF were
completely amorphous. At these higher MOF loaditiys cold crystallization peaks were
absent in the second heating cycle due to redutaa enobility which could be ascribed
to strong polymer-filler interactions. The decrehpercentage crystallinity with increase
in the MOF content can be correlated to the deedeasobility of the polymeric chains
[3]. Although, change in the percentage crystdllimppear to be relatively smaller
primarily due to amorphous nature of the polymeére Enthalpy of cold crystallization
represented in Table 1 provides a better picturghafn mobility. The enthalpy of chain
mobility of PLLA decreased from 8.7 J:¢o 2.7 J.d¢ with the addition of the 1% MIL-53

(Al) MOF. We did not observed any cold crystallinatpeaks at higher MOF loadings.

< Table1>
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3.2 Thermogravimetric Analysis (TGA)

Figure 2a and 2b show TGA thermograms and deriegirofiles for MOF, neat PLLA
and PLLA-MOF films. The first significant weightde peak observed between 130-140
°C can be ascribed to the small weight loss (2-8%)yolatile compounds such as
chloroform used for solvent casting or water moleswentrapped in the plastic. Data
obtained from TGA thermograms is presented in T&l®egradation peaks were not
observed in MOF below 500 due to its high thermal stability [30]. The onséthermal
degradation of PLLA, PLLA-1% MOF, PLLA-5% MOF, PLI-A0% MOF and PLLA-
20% MOF was observed at 341.6, 330.9, 321.6, 348d5315.2°C, respectively. The
sharp weight loss observed between 300-376 °Ceasdribed to the thermal degradation
of the polymeric chains. Degradation peaks as oéthaifrom derivative profile were
observed at 376.6, 359.3, 354.1, 351.2 and 3% for PLLA, PLLA-1% MOF, PLLA-
5% MOF, PLLA-10% MOF and PLLA-20% MOF, respectivelywas also observed that
PLLA-MOF composites weight loss peaked around 258 %whereas PLLA degradation
peaked to 2.35 %.°E The decrease in the onset of thermal degradatimperature,
decrease in the degradation peak temperature amelase in the weight loss rate as
observed in the first derivative profile (Figure) 2dith the addition of MOF samples can
be associated with the MOF patrticles acting as ylepgrization catalysts, which reduced
the thermal degradation activation energy [31-3Bjansition metal based complex
compounds including MOF particles have been widelgognised for their catalytic
activity due to their partial filled d-orbitals onsaturated metal sites [34]. Feairal. [32]
studied thermal degradation of PLLA in the presesfaather 5 wt% calcium oxide (CaO)

or 5 wt% magnesium oxide (MgO). Based on the cfiéial thermogravimetric profiles,

11
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they observed that onset of thermal degradatiofL&fA dropped from 270 to 180 and
210°C for PLLA-5% CaO and PLLA-5% MgO systems, respasiyi. Dai et al [35]
fabricated PLA composites with Zn (1l) - pyriding52dicarboxylate MOF. They also
observed decreased thermal stability of PLA atatk tempeartures, which was ascribed
to unzipping depolymerization. On the other hareh tegradation of PLA has been
reported to be a complex phenomenon due to randmsians leading to linear and cyclic
oligomers, which can potentially recombine leadimgomplex byproducts [35, 36].

< Figure2aand 2b, Table 2>

3.3 Fourier Transform infrared spectroscopy (FTIR)

To understand the effect of MOF on the PLLA polymenatrix, PLLA and MOF peaks
were superimposed, and peaks which exist only ibAPinatrix were discriminated for
further analysis. Figure 3a provides the FTIR seof PLLA and PLLA-MIL-53 (Al)
MMMs. The FTIR peaks between 2850 and 3006 biave been assigned to the symmetric
and asymmetric stretch of methyl and methylene ggoiedium intensity asymmetric -
CHg vibration (stretching) and symmetric -@bration (stretching) have been observed
at 2977 and 2952 chVarious factors can significantly impact peak isigy strength of
these bands depending on the structure, chaintectine, and packing [37-40]. In
addition, orientation, crystallinity and chain medion can also affect the intensity of
various vibrational peaks [41]. We observed a $icgmt decrease in the peak intensity of
-CHz (asymmetric and symmetric), carbonyl, and C-O-Guigraibrations with addition of

1 wt. % MOF particles in the PLLA matrix comparexthat of the neat PLLA. This
decrease can be related to decreased crystadimityrindered mobility of the PLLA chains
due to the strong favorable interfacial interactid®m@tween PLLA and MOF particles [1,

12
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42-43]. Yuet al [42] reported decreased FTIR peak intensity fdy@mylidene fluoride)

in 2850 to 3000 crhwavenumber region with the addition of nanoclaye Tiecreased
intensity was ascribed to the strong interactionwvben polymer and clay platelets which
impeded the chain mobility resulting in reducedanéd absorption in this region. The
systematically amplified intensity decrease with ithcrease in the nano-clay content from
0.2 to 10 wt% clay also supports the DSC obsermatio

<Figure 3a>

Figure 3b shows FTIR spectra around 1750' dmand generally correlated with
v(C=0) interchain dipole-dipole interaction. Theséerchain dipole-dipole interactions
depend on the distance between the chains andfarential when the distance between
the C=0 neighboring molecules is less than 2.7 #.[Reduced peak intensity indicates
reduced interactions which is supported by theedese in the crystallinity.

<Figure 3b>

FTIR spectra ranging from wavenumbers 100-806 ene presented in Figure 3c.
Wavenumber 871 cthhas been associated toz Ielix conformation which has been
linked with the alpha crystals in the PLA [37]. Tllecreased intensity around this
wavenumber is also indicative of the reduced chysity due to reduced mobility of PLA

chains.

<Figure 3c>

3.4 Scanning Electron Microscopy (SEM)
Figure 4 a-f show SEM images of MOF particles, PLAAd various compositions of

PLLA-MIL-53 (Al) MMMs. Poor polymer MOF interactig can result in non-selective
13
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interfacial voids. Therefore, a defect free morplggl with strong interfacial interaction
between filler and polymeric matrix is a precorwlitito obtaining superior functional
performance of these membranes. We observed degegbolymer-filler morphology for

PLLA-MIL-53 (Al) MMMs in Figure 4 c to f, which suports our finding of strong

interactions between PLLA and MIL-53 (Al) MOF as@lsupported by DSC and FTIR
studies.

<Figure 4 a-f>

3.5 Oxygen Permeability

Various industrial or consumer applications suchiresh produce packaging may desire
selective and tailored oxygen gas permeability. tt@dled oxygen gas permeability may
help in extending the shelf life of respiring predu For oxygen mass transfer 20 wt%
MIL-53 (Al) was carefully chosen based on the poegi research works its quadrupole
moment and polarizability [3, 19, 44-45]. Table®ws Q permeability coefficients of
PLLA and PLLA-20% MIL-53 (Al) MOF. Oxygen permeaibyl coefficient increased by
26% with the addition of 20% Mil-53 (Al) MOF. Impved oxygen gas breathability of
these composites can be ascribed to the strongaatitens between organic linkers and

oxygen gas molecules [19].
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4. Conclusions and Future Work

In this study, PLLA, PLLA- 1% MIL-53(Al), PLLA- 59MIL-53(Al), PLLA- 10% MIL-
53(Al) and PLLA- 20% MIL-53(Al) MMM films were fakicated using a solvent casting
process. DSC, FTIR and SEM data supported gootfactal interactions between PLLA
and MIL-53(Al) MOF. Favorable polymer-filler inteztons reduced segmental mobility
of the chain affecting the crystallinity. Complgteimorphous PLLA-MIL-53(Al) MMM
films were obtained at 5 wt.% MOF or above. Thespree of MOF increased the rate of
degradation of PLLA by de-polymerization reactianabserved in TGA studies. These
membranes can easily be fabricated on mass scalsilyy master-batch and using cast
film extrusion provided favorable economics. Thdufa studies can explore the

commercialization of these membrane systems.
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Table 1. Thermal characteristics of neat PLLA and PLLA-MBB-(Al) MMM films derived from the ® heating cycle.

Tq (°C) Cold Crystallization Mélting
Sample
Teo (°C) 4 Hc (J/9) Tm(°C) A Hm (3/9) Xc (%)
PLLA 56.6 £ 0. 5* 105.1+1.2 8.7+19% 1483+04 11722 3.2+0.14
PLLA-1% MOF 59.0+0.%8 108.6 + 4.2 27+26% 149.0+0.208 47128 3.1+0.00
PLLA-5% MOF 57.9+0.% - - 149.4 £+ 0.4 0.5+0.1¢ 0.5+0.18
PLLA-10% B.C i i i ) i
MOE 57.3+ 1.4
PLLA-20%
MOE 60.1+0.6° - - - - -

Note: Values in the same column with same capital squigt letters are not statistically significandijferent ata=0.05. The “-"symbol
denotes no results were obtained due to abserambErystallization and melting peaks.
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Table 2. Thermo-gravimetric analysis of neat PLLA and PLMOF MMM films.

Onset Weight loss peaks Peak_derivative
smple s
(°C) Peak 1 (°C) Peak 2 (°C) (%/°C)
PLLA 341.6+2.6 136.6 + 2.6 376.6 £ 1.4 2.35+0.02

PLLA-1% MOF 330.9+08 136.5+0.9 350.3+0.8 2.50+0.03‘B
PLLA-5% MOF 321.6+18 1357+0.8 354.1+06° 255+0.06
PLLA-10% MOF 319.6+09 1346+t1.4 351.2+0.9 2.52 + 014*B

PLLA-20% MOF 315.2+09 133.3+20 3545+1.5% 251+0.014B

Note: Values in the same column with same capital sguigt letters are not statistically
significantly different ati=0.05. The “-"symbol denotes no results were olet@idue to absence
of cold crystallization and melting peaks.

Table 3. O, permeability coefficient of PLLA and PLLA-20% MIL&B(Al) MOF MMM
films.

02 Permeability Coefficient x 162 (kg.m.ni2.s1.pal)

PLLA 2.27 +0.08

PLLA-20% MOF 2.87+0.3%

Note: Values in the same column with same capital sqoigt letters are not statistically
significantly different att = 0.05.
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