

Societal TEA of phytoremediation

A Belgian case study

CMK CENTRE FOR ENVIRONMENTAL SCIENCES

Summer course "New trends in restoration of degraded soils" 13th July 2017

Tom Emile Kuppens Research Group Environmental Economics

Overview

- 1. Problem statement
- 2. (Societal) techno-economic analysis
- 3. Thermochemical conversion of willow
- 4. Discounted cash flow model
- 5. Risk analysis
- 6. Risk reduction strategies
- 7. Conclusion and discussion

Problem statement

CMK CENTRE FOR ENVIRONMENTAL SCIENCES

Societal TEA phytoremediation - T. Kuppens

Greetings from Lommel!

UHASSELT 13/07/2017

>>

Problem statement

- Thermal refinement of zinc (19-20th century)
- Volatilisation of Cd
- Most soils: agriculture

- Cd uptake by humans, animals and plants
- exceedance of land remediation standards
- crop confiscation

Mol

Balen

Hamont-Achel

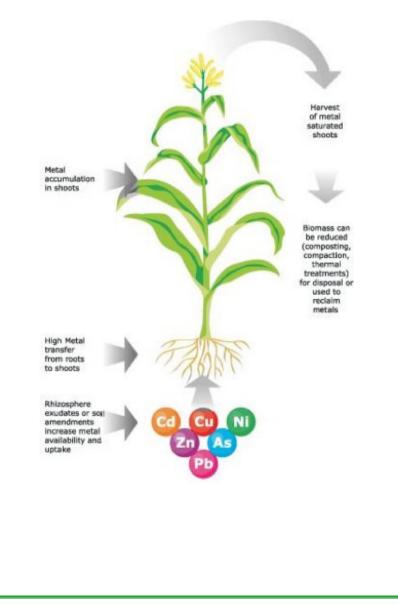
Neerpelt

Cd concentration (mg/kg)

0,01 - 1,2 1.2 - 2

2 - 228

Overpelt


Lommel

Hechtel-Eksel

Problem statement

Phytoextraction:

- form of phytoremediation using plants that translocate metals to the aboveground parts
- + cost-effective
- + sustainable
- very long time period
- income effect

ÇMK CENTRE FOR

ENVIRONMENTAL SCIENCES

Problem statement Simplified (private) cost-benefit framework (B) Pres. Value (A) Pres. Value Income / ha / year "Discounting" "Discounting" Regained income in new cleaned up situation Lost income = 'Benefit' = 'Cost' Income ? during Reclamation years Vassilev, Schwitzguébel, Thewys, Van der Lelie and Vangronsveld (2004) CMK CENTRE FOR ENVRONMENTAL SCIENCES UHASSELT 13/07/2017

Problem statement

How to reduce the time period?

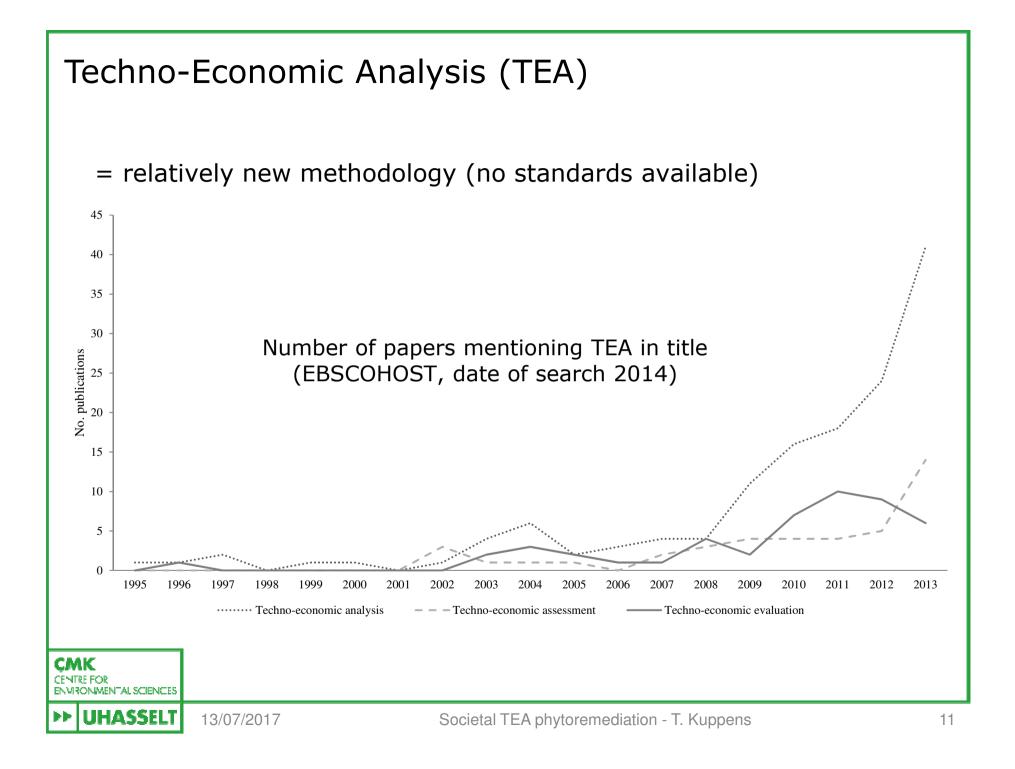
Crop choice: willow cultivated in short rotation remediates faster than poplar, maize, rapeseed and sunflower

How to reduce the income effect? Conversion of willow into valuable products (energy, chemicals, materials)

 \rightarrow investor's point of view

Research objectives

- 1. Development of a methodological framework for techno-economic assessments (TEA), including the assessment of economic risk
- Apply TEA to thermochemical conversion technologies (fast pyrolysis, gasification, combustion) for the conversion of phytoextracting crops
- 3. Develop a meta-model and formulate risk reduction strategies in order to enhance the techno-economic performance of the best available conversion technology



Societal TEA

CMK CENTRE FOR ENVIRONMENTAL SCIENCES

Societal TEA phytoremediation - T. Kuppens

Techno-Economic Analysis (TEA)

DEFINITION

"Evaluation of the **technical performance** and the **economic feasibility** of a new (*clean*) technology that aims to *improve* the **social or environmental impact** of a technology currently in practice"

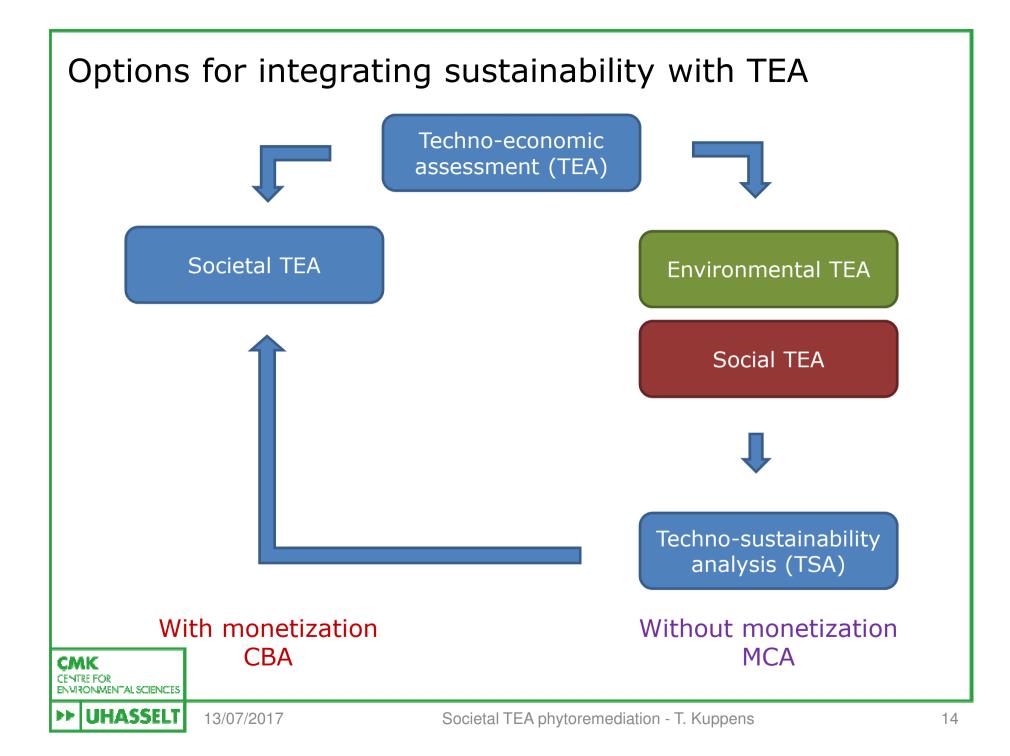
ÇMK CENTRE FOR ENVRONMENTAL SCIENCES

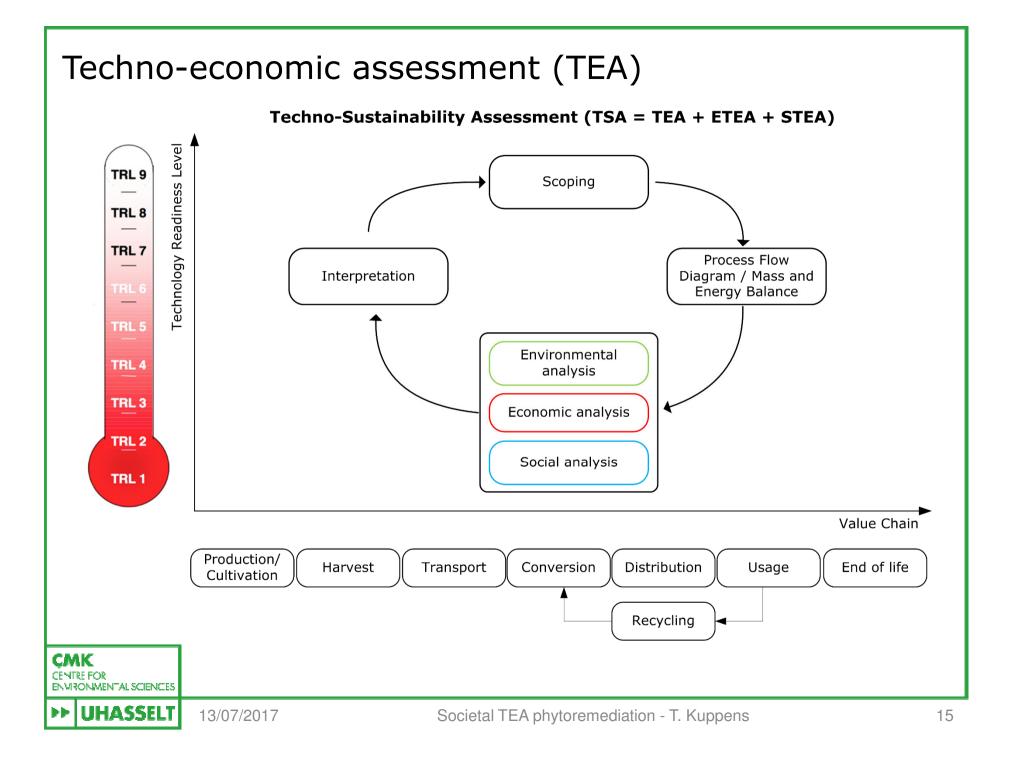
UHASSEL'

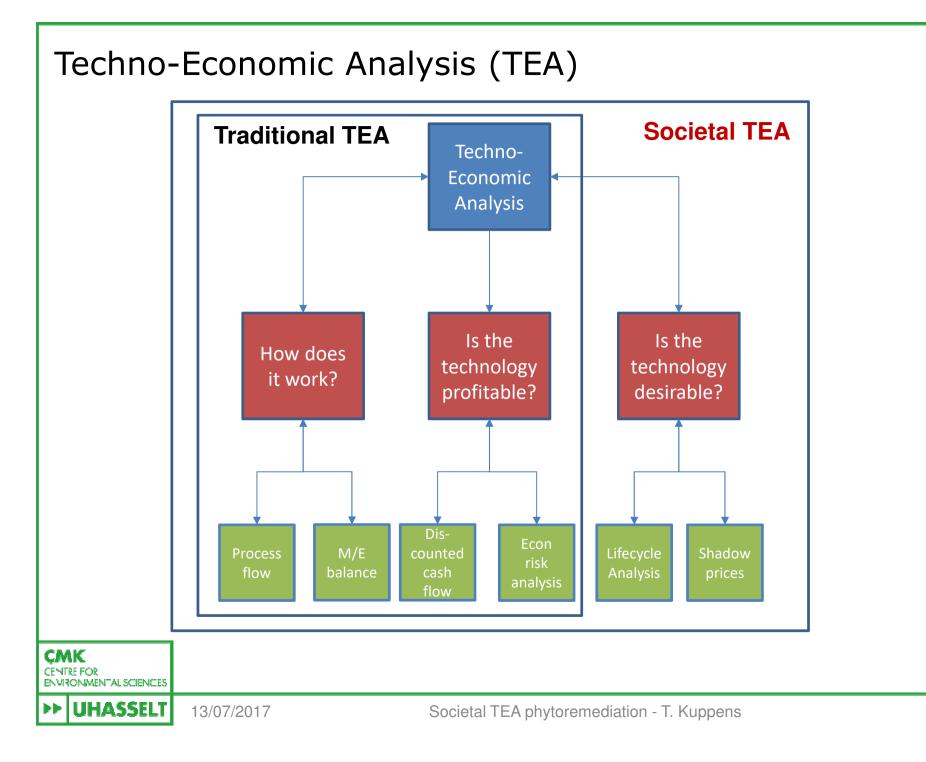
13/07/2017

Techno-Economic Analysis (TEA) - Goals

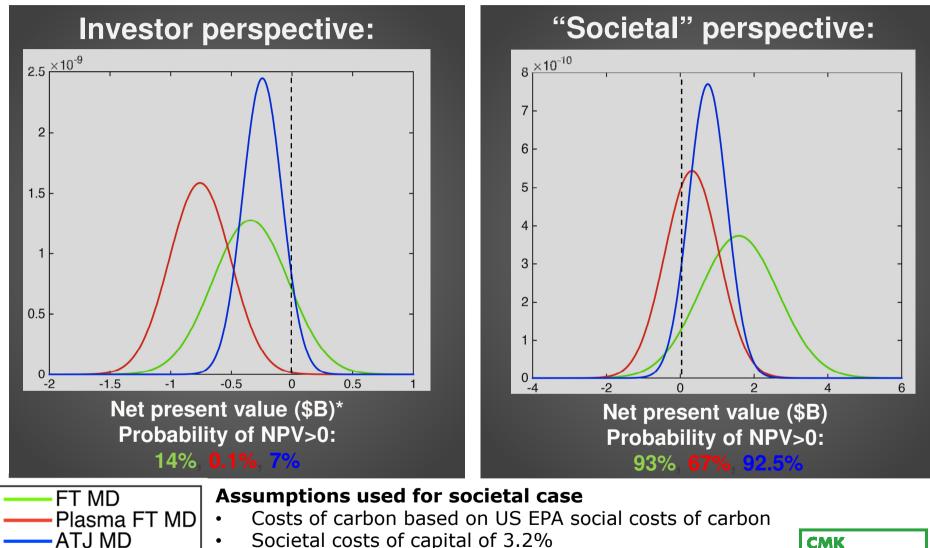
Quantify technology performance and financial viability for a **given technology case** (including quantification of the main performance and viability drivers)


Quantify **required technology performance** in order to meet economic target (including quantification of the main performance drivers)


Determine and **prioritize R&D** for the main drivers that will **improve** the **commercial viability** of the technology


ÇMK

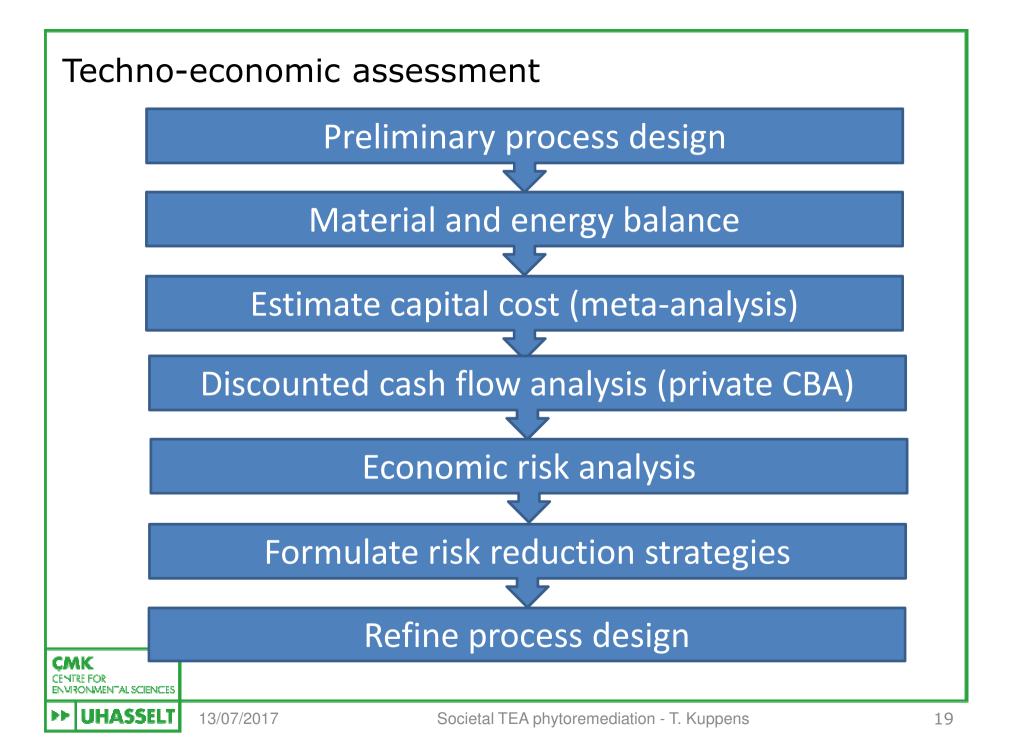
VIRONMENTAL SCIENCES


13/07/2017

Techno-Economic Analysis (TEA)

- Societal costs of capital of 3.2% ٠
 - Taxes and subsidies excluded as they constitute transfers

Pitfalls in TEA



Wrong	Right	
Monodisciplinarity	Multidisciplinarity	
Ex post economic analysis	Integrated techno-economic analysis	
Static TEA	Dynamic TEA	
Uncertainties not considered	Inclusion of uncertainties	
Local sensitivity analysis	Global sensitivity analysis	
R&D driven by 'gut feeling'	R&D driven by 'risk assessment'	

CENTRE FOR ENVIRONMENTAL SCIENCES

► UHASSELT

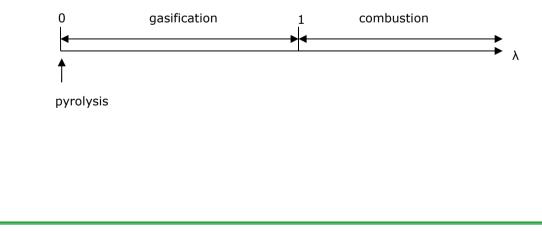
Adding value to short rotation willow

CMK CENTRE FOR ENVIRONMENTAL SCIENCES

Willow = lignin, cellulosis, hemicellulosis

cannot be decomposed by microorganisms \rightarrow thermochemical conversion

- Thermochemical conversion
 - \rightarrow uses heat (and catalysts) to transform plants into energy, fuels or chemicals
- Main technologies:
 - combustion
 - gasification


СМК CENTRE ECOR

ENVIRONMENTAL SCIENCES

UHASSEL

(fast) pyrolysis

13/07/2017

Combustion

- most widely applied conversion method
- CO₂, H₂O, heat \rightarrow steam \rightarrow electricity
- high T \rightarrow costly gas treatment (?)
- low electric efficiency: 18 30 %

Gasification

- partial oxidation
- high T \rightarrow costly gas treatment (?)
- production of combustible gas energy carrier
- followed by gas engine $< 4 \text{ MW}_{e}$
- followed by gas turbine combined cycle > 6 MW_{e}
- high electric efficiency: up to 50 %

ENVIRONMENTAL SCIENCES

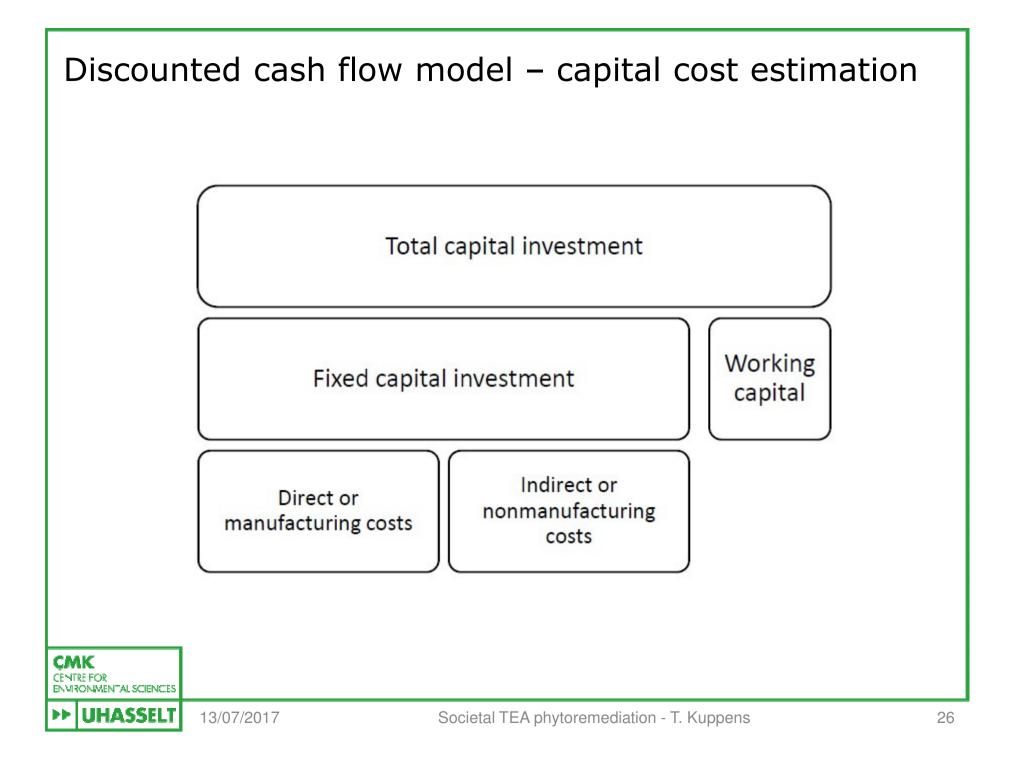
UHASSEL

Fast pyrolysis

- rapid heating of the biomass
- low residence time for biomass and vapours
- rapid cooling of the pyrolysis vapours
 → pyrolysis oil and non-condensable gases
- production of oil (60-70 m%), gas and char
- relatively low process temperature: 450 °C
 - \rightarrow metals remain in char
 - \rightarrow disposal cost
 - \rightarrow not suitable for internal energy
- oil can be burnt in boilers and engines

Variable	Combustion	Gasification	Pyrolysis		
Quantity of feedstock that requires valorisation					
Willow yield	8 t _{dm} ha ⁻¹ yr ⁻¹				
Available farmland	2 400 ha				
Annual feedstock	19 200 t _{dm} yr ⁻¹				
Technical assumptions					
Electric efficiency	21 %	34 %	24 %		
P _{ne} (MW _e)	2,6 MW _e	4,5 MW_e	5,3 MW _e		
Operating hours	8 000 h	8 000 h	reactor 7 000 h		
			engine 5 000 h		
Electricity	20,7 GWh _e yr ⁻¹	35,5 GWh _e yr ⁻¹	25,5 GWh _e yr⁻¹		
produced					

Gasification performs better energetically, but what about economics?



Discounted cash flow model

CMK CENTRE FOR ENVIRONMENTAL SCIENCES

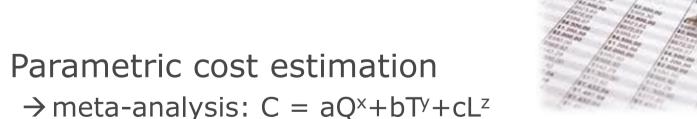
Societal TEA phytoremediation - T. Kuppens

Discounted cash flow model – capital cost estimation

- Class 5 Order of magnitude [-20-50%;+30+100%] very limited information, previous cost data
- Class 4 Study estimate [-10-30%;+20+30%] knowledge of the major equipment needed
- Class 3 Preliminary estimate [-10-20%;+10+30%] prepared for budget authorisation (most process data are defined and preliminary engineering)
- Class 2 Definitive estimate [-5-15%; +5+20%] almost complete data but before completion of engineering drawing and specifications
- Class 1 Detailed estimate [-3-10%;+3+15%] drawings and specifications complete

Discounted cash flow model – capital cost estimation

- Ask offers from potential suppliers
 - if they don't want to cooperate
 → tell them which value you have in mind
 → they will react!
 - if they are not available (not marketed yet)
 - \rightarrow perform a meta-analysis
 - → use simulation software (Aspen)



IHASSEL

Discounted cash flow model – capital cost estimation

- Detailed item estimates

 → requires list of specific equipment, materials, ...
 → difficult in early stages of process or product development
- Percentage of delivered equipment cost
 → Lang factors
- Capacity factored estimates
 → Six tenth rule

(with Q = quantity, T = technology, L = location)

HASSE

Capital cost estimation – Lang factors

Percentage of delivered equipment cost

see also Peter, Timmerhaus, West (2004) Plant Design and Economics for Chemical Engineers, McGrawHill

	Process type		
Item	Fluids	Fluids- solids	Solid
1. Major equipment, total purchase			
cost	PCE	PCE	PCE
f_1 Equipment erection	0.4	0.45	0.50
f 2 Piping	0.70	0.45	0.20
f 3 Instrumentation	0.20	0.15	0.10
f 4 Electrical	0.10	0.10	0.10
f 5 Buildings, process	0.15	0.10	0.05
*f 6 Utilities	0.50	0.45	0.25
* f 7 Storages	0.15	0.20	0.25
*f 8 Site development	0.05	0.05	0.05
*f 9 Ancillary buildings	0.15	0.20	0.30
 Total physical plant cost (PPC) PPC = PCE (1 + f₁ + · · · + f₉) 	-		
$=$ PCE \times	3.40	3.15	2.80
f_{10} Design and Engineering	0.30	0.25	0.20
f 11 Contractor's fee	0.05	0.05	0.05
f 12 Contingency	0.10	0.10	0.10
Fixed capital = PPC $(1 + f_{10} + f_{11} + f_{12})$	A CONTRACT	45.9555	1220.20
$= PPC \times$	1.45	1.40	1.35

Table 6.1. Typical factors for estimation of project fixed capital cost

*Omitted for minor extensions or additions to existing sites.

• Equipment costs: see Dutch Association of Cost Engineers

CENTRE FOR ENVIRONMENTAL SCIENCES

UHASSEL

13/07/2017

Capital cost estimation - Capacity

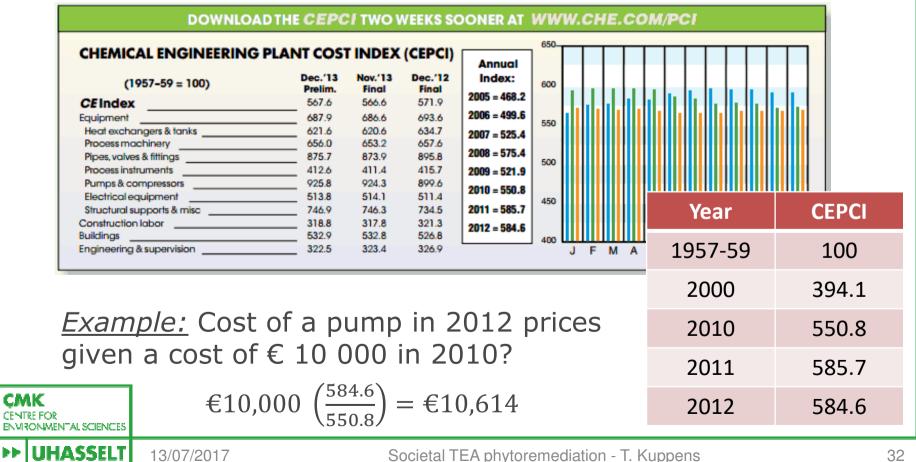
Six tenth rule

$$C_B = C_A \left(\frac{S_B}{S_A}\right)^N$$

Where $C_B = approximate cost of equipment with size S_B$ $C_A = approximate cost of equipment with size S_A$ N component: can vary between 0.3 and 0.8 (often**0.6**)

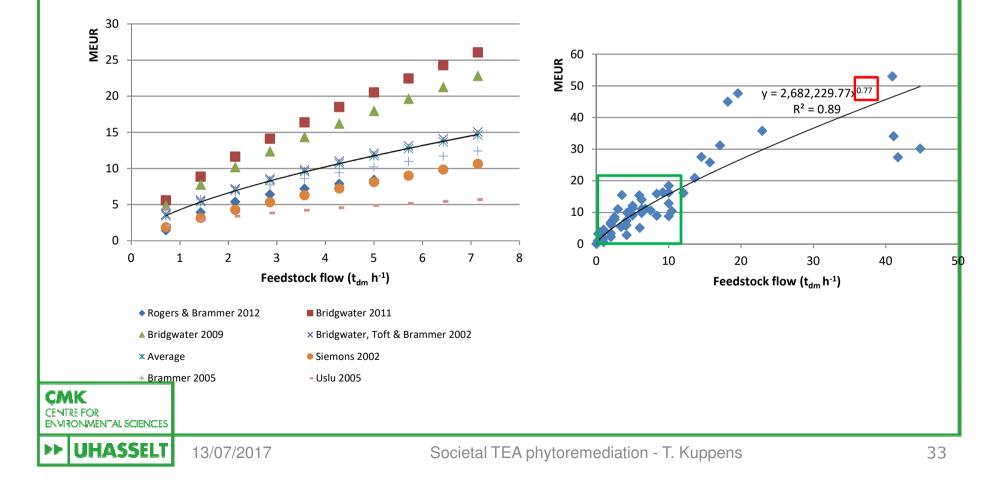
Example: Cost of a plant half the size of a plant costing € 92 000?

€92,000
$$\left(\frac{50}{100}\right)^{0.6} = €60,697$$



13/07/2017

Double sized plant is not twice as expensive → economies of scale


Capital cost estimation - Time

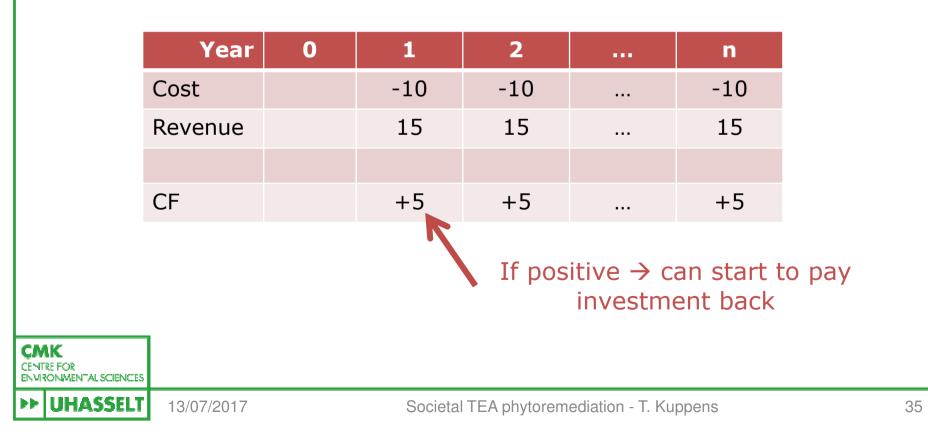
- CEPCI (Chemical Engineering Plant Cost Index)
 - Introduced in 1963 and published in every issue of CE.
 - 1957-1959 = 100
 - Construction costs for *chemical plants*

Discounted cash flow model

- Meta-analysis of the capital investment
- Literature: equations + point estimates
- Great uncertainty of capital cost

Discounted cashflow model

- Economic calculations are directly coupled with technical calculations!
 - \rightarrow Change in technical parameter is translated into economic impact.
- Standard calculations:
 - PBP (and DPBP)
 - NPV
 - IRR


UHASSELT

Discounted cashflow model

• Net cash flow in year t <u>before taxes</u> = $R_t - C_t$

With

- R_t = incoming cashflow in year t
 - C_t = outgoing cashflow in year t
 - n = useful life of the investment

Discounted cashflow model

- Difference between cash and non-cash transactions
 - When you buy an asset (machine) with a useful life of n years:
 - you often fully pay it on the purchase date (i.e. in year 0);
 - but in a profit and loss account you spread its cost over its lifetime (= depreciation).

http://www.investopedia.com/video/play/depreciation/

- Depreciation is a non-cash transaction, which has an influence on the cash transactions of your company by its tax statement
 → depreciation is a deductable cost
 - \rightarrow it lowers the net income or profit and saves paid taxes
 - \rightarrow the amount of taxes you pay is a cash transaction
- Net cash flow in year t after taxes = $CF_t = (1-\tau).(R_t C_t) + \tau.D_t$

СМК

- Does not take into account the time value of money!
 €1 now > €1 later
- Discounting

 → r = discount rate = weighted average cost of capital
 WACC

• WACC =
$$\left(\frac{E}{E+D}\right) \times r_E + \left(\frac{D}{E+D}\right) \times r_D \times (1-\tau)$$

A company wants to finance an investment partly (60%) with a loan at a nominal interest rate of 3% and partly (40%) with equity ("own capital") for which the providers demand a return of at least 15%. (The national tax rate is 33%.)

• WACC =
$$\left(\frac{E}{E+D}\right) \times r_E + \left(\frac{D}{E+D}\right) \times r_D \times (1-\tau)$$

A company wants to finance an investment partly (60%) with a loan at a nominal interest rate of 3% and partly (40%) with equity ("own capital") for which the providers demand a return of at least 15%. (The national tax rate is 33%.)

- WACC = 0,4 × 0,15 + 0,6 × 0,03 × (1 − 0,33) = 0,07386
 → the appropriate discount rate is 7,386%
- What if the investment would be fully financed by the loan?

• WACC =
$$\left(\frac{E}{E+D}\right) \times r_E + \left(\frac{D}{E+D}\right) \times r_D \times (1-\tau)$$

A company wants to finance an investment partly (60%) with a loan at a nominal interest rate of 3% and partly (40%) with equity ("own capital") for which the providers demand a return of at least 15%. (The national tax rate is 33%.)

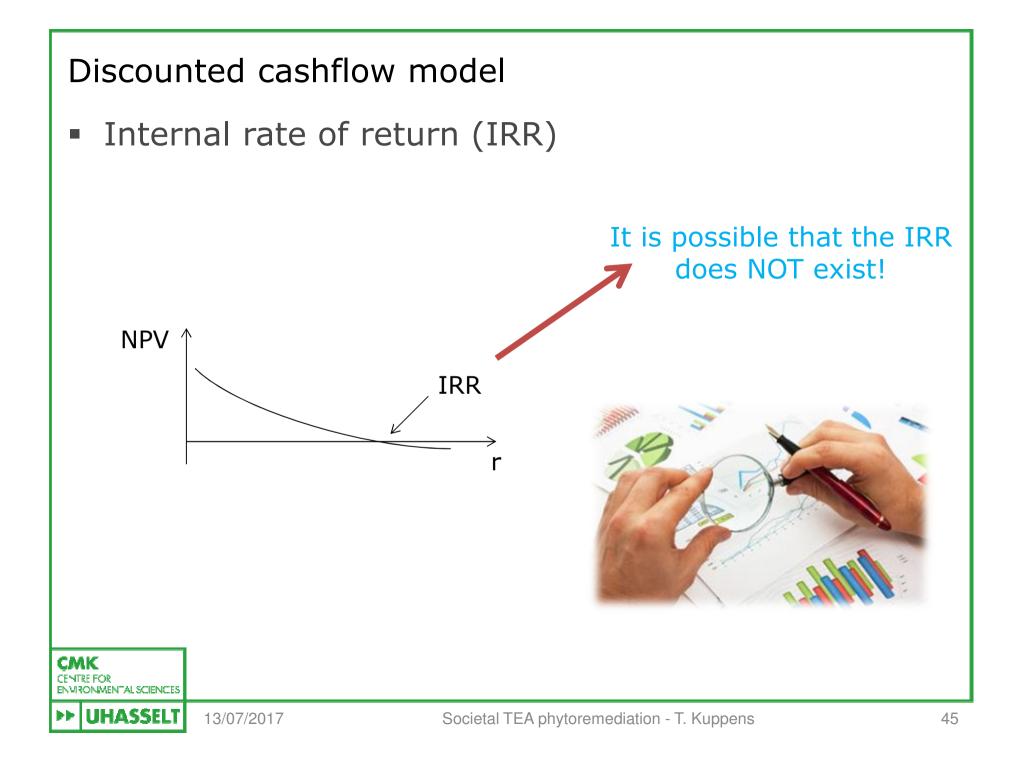
- WACC = 0,4 × 0,15 + 0,6 × 0,03 × (1 − 0,33) = 0,07386
 → the appropriate discount rate is 7,386%
- What if the investment would be fully financed by the loan?
 → the appropriate discount rate is 2,31%

- Net Present value (NPV) = $\sum_{n=1}^{T} \frac{CF_n}{(1+r)^n} I_0$
 - With T = project lifetime
 - $CF_n = cash flow in year n (revenues costs)$
 - $I_0 = investment in year 0$
 - r = discount rate
- When the NPV > 0, the investment project is acceptable.

- What should we do with interest payments?
 - They are cash transactions
 - However, we do not incorporate them in the cash flow table
 - This leads to the most straightforward interpretation of the NPV
 - ✓ If NPV = 0, then we are able to repay exactly the interests (but we earn no extras)
 - \checkmark If NPV > 0, then this value is the actual value of the money we will earn above interest payments

- A company invests in new equipment with a purchase value of 1 MEUR. The useful life of the equipment is 5 years. The investments generates a yearly revenue of 0,5 MEUR.
- What is its NPV, given a discount rate of 3%?

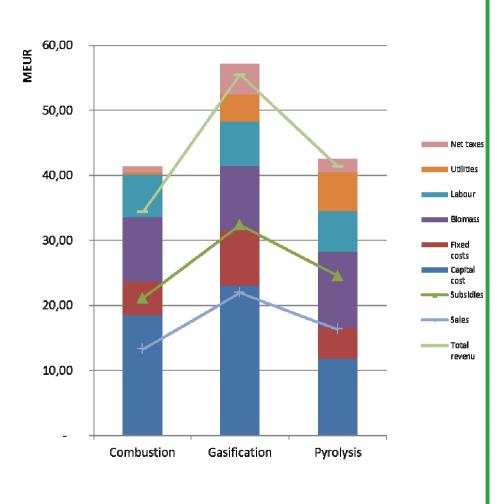
UHASSEL


- A company invests in new equipment with a purchase value of 1 MEUR. The useful life of the equipment is 5 years. The investments generates a yearly revenue of 0,5 MEUR.
- What is its NPV, given a discount rate of 3%?

СМК

- A company invests in new equipment with a purchase value of 1 MEUR. The useful life of the equipment is 5 years. The investments generates a yearly revenue of 0,5 MEUR.
- What is its NPV, given a discount rate of 3%?

• 0 1 2 3 4 5 (years)
-1 +0,5 +0,5 +0,5 +0,5 +0,5 (MEUR)
•
$$NPV = -1 + \frac{0,5}{(1+0,03)^1} + \frac{0,5}{(1+0,03)^2} + \frac{0,5}{(1+0,03)^3} + \frac{0,5}{(1+0,03)^4} + \frac{0,5}{(1+0,03)^5} = 1,3$$



- IRR or NPV?
- Businesses often use IRR, but this might in some cases be misleading!
- IRR gives the "feeling" of representing your return on investment (these two concepts however have a different meaning)
- IRR is dimensionless: consider an IRR of 50% on an investment of 1 EUR vs. 5% on 1 MEUR
 - \rightarrow therefore it is better to consider the NPV

Discounted cash flow model – Applied to Belgian case

- Electricity production only is not profitable (but CHP is)
- Gasification: most costly
- Fast pyrolysis: least loss making
- 60 % of the revenues stem from subsidies

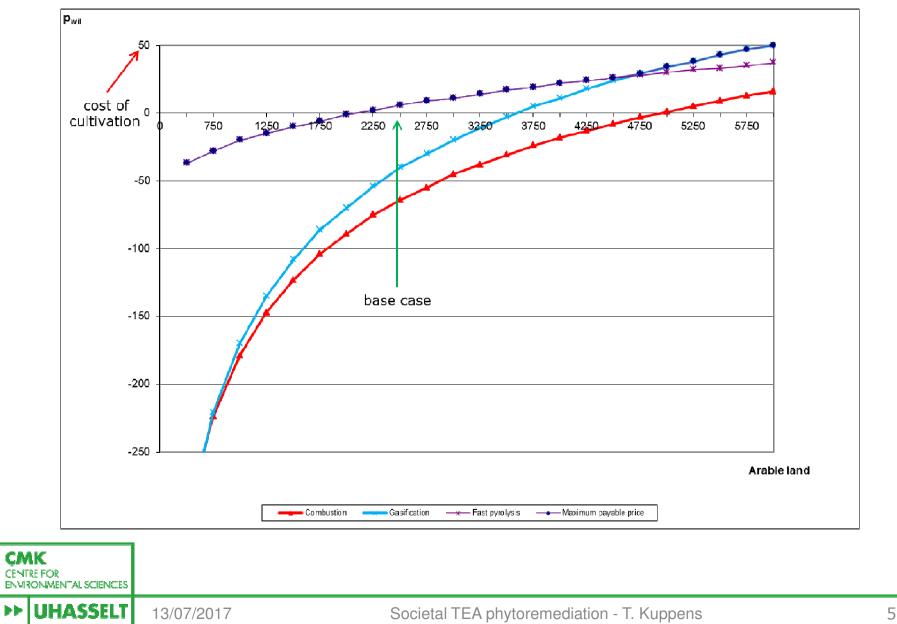
CMK CENTRE FOR ENVIRONMENTAL SCIENCES

Exploration of the willow price taking into account uncertainties

minimum

- = cultivation cost incurred by farmers
- = 50 EUR t_{dm}⁻¹

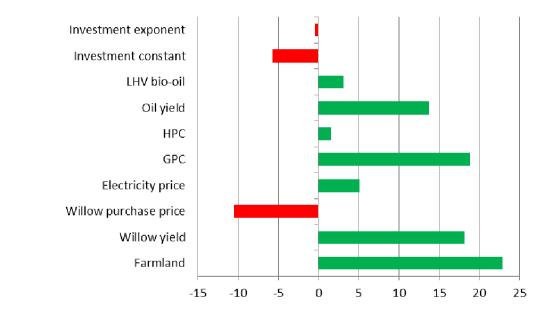
maximum


= price that can be paid by an investor in electricity production using willow as a feedstock, taking into account uncertainties by means of Monte Carlo simulations, i.e. P(NPV>0) ≥ 95 %

CENTRE FOR

ENVIRONIMENTAL SCIENCES

HASSEL


13/07/2017

Maximum price for a fast pyrolysis plant with combined heat and power production

	Scale		Maximum possible willow price (EUR t _{dm} -1)		p _{willow} - c _{willow}
	ha	kt _{dm} yr⁻¹	Electricity	Combined heat	Price/cost
			production only	and power	difference
	500	4	-37	-2	-52
	1500	12	-10	38	-12
	2500	20	6	51	1
	3500	28	17	60	10
	4500	36	26	66	16
	5500	44	33	70	20
CENTRE FOR ENVIRONMENT	AL SCIENCES				
▶ UHA	SSELT 13/0	7/2017	Societal TEA phy	ytoremediation - T. Kupp	ens

Which uncertainties explain the variability of the net present value of cash flows?

Risk reduction strategies

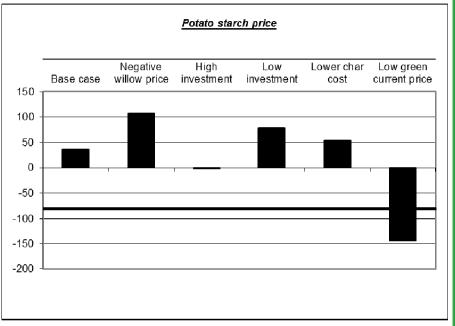
CENTRE FOR ENVIRONMENTAL SCIENCES

Societal TEA phytoremediation - T. Kuppens

- Risk reduction strategies in general:
 - modification of the firm's operations
 - change of the capital structure
 - employment of financial instruments (e.g. insurance)

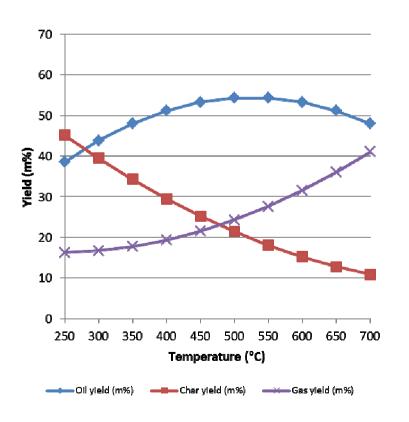
UHASSELT

- Risk reduction strategies in general:
 - modification of the firm's operations
 - change of the capital structure
 - employment of financial instruments (e.g. insurance)
- Reduction of the dependence on:
 - scale
 - the value of the green power certificates
 - oil yield
 - \rightarrow by changing inputs (feedstock)
 - \rightarrow by changing outputs (pyrolysis products)


- Fast co-pyrolysis of willow and biopolymer waste:
 - increase of the scale of operation
 → cost advantage
 - processing waste can result in a gate fee, as biopolymer waste now is composted at a cost of 80 EUR t_{dm}⁻¹
 - decrease of the water content of the oil
 - other synergistic effects (e.g. higher oil yield)
 - change of oil composition
 - \rightarrow cf. presence of high value chemicals

Impact on profitability

1:1 w/w ratio willow/biopolymer	NPV (MEUR)	Diff.
Pure willow	-10,610	
Willow/PLA	2,494	13,104
Willow/PHB (crotonic acid - chemicals)	341,764	352,375
Willow/Biopearls	4,571	15,182
Willow/Eastar	5,549	16,159
Willow/Potato starch	3,633	14,243


Price scenario analysis

- The use of biopolymers enhances the profitability of fast pyrolysis
- Fast co-pyrolysis of willow and biopolymers is an alternative to composting
- The presence of chemicals (cf. crotonic acid) might greatly increase profitability

- Fast pyrolysis results in the production of oil, gas and char
- Process parameters (temperature and residence time) influence the product yields:
 - longer residence time favours char production
 - lower temperature favours char production too

СМК

- Assuming subsequent processing of the pyrolysis products into marketable products:
 - char can be activated for production of active coal (filter medium)
 - oil can be combusted for combined heat and power production
 - \rightarrow conclusion:
 - active coal (AC) production is favoured as long as its selling price is higher than 2 kEUR t⁻¹
 - combined heat and power production is favoured when the AC price is below 1,4 kEUR t⁻¹

ÇMK CENTRE ECOR

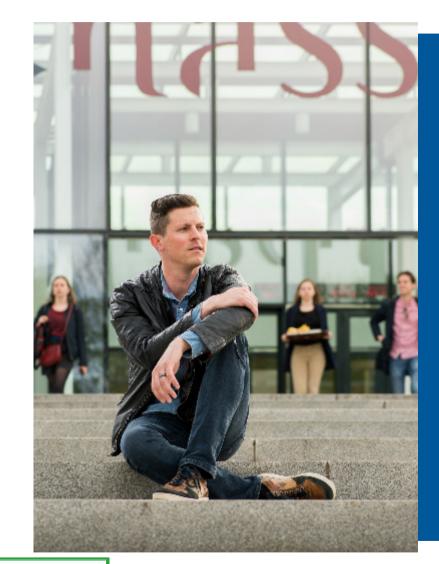
Conclusion and discussion

CMK CENTRE FOR ENVIRONMENTAL SCIENCES

Societal TEA phytoremediation - T. Kuppens

Conclusion

- For small scale biomass conversion: fast pyrolysis > gasification > combustion
- Power production alone is loss making, only combined heat and power production is profitable and able to recover cultivation costs of willow
- The profitability is largely dependent on:
 - the scale of the pyrolysis plant
 - the value of green power certificates
- Economic risk can be reduced by:
 - changing the inputs: e.g. co-pyrolysis with bioplastics
 - changing the outputs: e.g. valorisation of the char



Future research

- Reverse the role of pyrolysis technology
 - Not as an output of phytoremediation
 - But as an input to soils for metal immobilisation
- Valuation of the environmental benefits (and costs)
 - Life cycle analysis of phytoremediating crops
 - Valuation of the outcomes
 - \rightarrow Motivates government interventions

Willing to collaborate?

Prof. dr. Tom Kuppens *Assistant professor* tom.kuppens@uhasselt.be +32 11 26 87 55

Faculty of Business Economics Research Group Environmental Economics

Website: www.cleantecheconomics.be

ÇMK

CENTRE FOR ENVIRONMENTAL SCIENCES

UHASSELT 13/07/2017