2015+2016 "
FACULTEIT INDUSTRIELE INGENIEURSWETENSCHAPPEN

master in de industriéle wetenschappen: elektronica-ICT

Masterproef
A Testable True Random Number Generator for Linux Security Applications

Promotor :
Prof. dr. ir. Nele MENTENS

Promotor :
Dhr. BOHAN YANG

Gezamenlijke opleiding Universiteit Hasselt en KU Leuven

Daniel Wietrzychowski

Scriptie ingediend tot het behalen van de graad van master in de industriéle
wetenschappen: elektronica-ICT

»»hasselt »»hasselt

2015+2016 _
Faculteit Industriéle

Ingenieurswetenschappen
master in de industriéle wetenschappen: elektronica-ICT

Masterproef

A Testable True Random Number Generator for Linux
Security Applications

Promotor :
Prof. dr. ir. Nele MENTENS

Promotor :
Dhr. BOHAN YANG

Daniel WietrzychowskKi

Scriptie ingediend tot het behalen van de graad van master in de industriéle
wetenschappen: elektronica-ICT

»pNasselt

Preface

This master’s thesis is the condensed form of a year of effort. [learned a great deal about an
interesting subject and achieved to create a working prototype.

[would like to thank my internal promotor dr. prof. Nele Mentens, my external promotor Bohan
Yang and his colleague Vladimir Rozic for their help and guidance during the period of my thesis.

Furthermore, I would like to thank my closest friends and family members for a great deal of
support and patience.

[hope this thesis may prove to be useful to you.

Daniel Wietrzychowski

Diepenbeek, August 22, 2016.

Table of Contents

=) 22T PN 1
0210 L0 o) (=P 5
TADIE Of FIGUIES ..ottt tes s b s bbb RS s bbb e bbbt s 7
GlOSSATY .ueueuseueereesseteessee s ess s e esse e s bbb R R R E AR RS R R EA R R e R R R 9
0 F] i U PPN 11
ADbStract in Nederlands ... 13
0 S 051 4076 L0 ot (o) o N 15
1.1 ProbIem DeSCIIPLION ..ceierieeeerieecereesesseiseesesssesssesssissssesssesssssss s sssessse e sss e ss bbb sas s ssssssanes 15
1.2 OB IVES ettt ettt se s s s et s bR AR R AR R b s 15
1.3 Materials and MEthOdS ... sssees s ssessssss s sesssss s sssesssesssssssssssssssssesans 16
P2 5 1 22D o o () P 17
2.1 Hardware Development Kit....eesssssnssss s sses 17
2.2 Unix-Based Receiving HardWare......cooeerneeeesseeseesnsessesssessssesssessessssssssessssssssssssesssssssesssseens 18
2.3 A SIMPLlIIEA OVEIVIEW ..ooeeirreeeeer e ssesssess s sesss s ses s sssesssesssesssss e sssesssesssesssseens 18
3 Generating Random Data ... sssessssesssssssssssssssessssssssssssesssesssessssssssssssessans 19
3.1 NOISE SOUICE..c ittt b RS e s 20
3.1.1 Ring OSCIllator DESIGN ...cuucuieeeeeeereereiseesseiecs s sssssses s s s ssss s sassssssssssasans 21
3.1.2 Fibonacci Ring Oscillator with static polynomial ... 23
3.1.3 Fibonacci Ring Oscillator with dynamic polynomial........oenernenneeneeneceneeesneens 24
3.1.4 Galois Ring Oscillator with static polynomial.........eneeeeeeeeeseesseeeseeens 26
3.15 Galois Ring Oscillator with dynamic polynomial.......ceneeneenennereeseeesseeseens 27
3.1.6 Combined Ring Oscillator with Fibonacci and Galois architecture and dynamic
1010117 0T0) 40 ¥ - F00 T TSP 29
3.2 SAIMIPING ettt et s bR R R R AR R R R e 30
3.2.1 JD 8 44 01 i (0] o PSPPSR 30
3.2.2 A 11 0 i (o) oD 31
3.2.3 Y 0L =T 4] 1) o PP 31
4 POSE PIOCESSING ..ottt bbb s s R R 33
s D (0] 23 =) PO 33
4.2 PaliLY FIIEOT ettt ettt s s bbb s bbb s s s 34
421 Parity Filter Applied to the Default Ring OScillatorccenmeeseenecneernserseeseeeseeeeeens 34
4272 Parity Filter Applied to the FIRO ... sessseesssssesssesssesssssssseens 35
423 Parity Filter Applied to the GARO ... sssesssssssseens 36
4.2.4 Parity Filter Applied to the FIGARO ... ssssssessesans 37
5 Communication using the XilinX MiCTOBIaZe ..o ssessssssesssssssseees 39

5.1 From Generator t0 MICTOBIAZE. ...ttt sss s ss s bbb s s s s s sssssnens 40

5.2 1Y/ 6163 ()53 VAT 30 Wo Lalckoycy o) ol 010) ol TN 40

5.3 From MicroBlaze t0 COMPULEToereereesreeeeeseesesseesesssessessesssssssssssssesssssssssssssssssssssssesssssssssssssssasees 41

6 Interfacing to /AeV/TANAOM ...t es e s esseb bbb s bbb bbb 43
6.1 Feeding into an entropy sink using the Random Number Generator Daemon.................. 43
6.2 Achieved randomness according to a statistical teStS. ...c.rernmerneeneerseernsersessessseeeseeesseens 43
6.2.1 RESUILS Of FIPS 140-2.....iieinririrssisisssasssses 43
6.2.2 Results of NIST Statistical TSt SUILEcreereerreerreerrererssess s seeesseesseesseessessesssesssesssssssseens 44

7 010 1 Uod 1] (o) o PP 47
BIDIIOZIAPNY -.euctrieuieeeeetrecere sttt ts s es bbb s R R AR AR R 49
F AN 0] 013 16 1 G 2 VPSP 51
F4N0) 013 16 1 G 70PN 53
ADPPENAIX Cnoreeereretrersiss s s st s s RS AR s 55
F N 0] 0 1<) 416 10l PP 57
F N 0] 0 1<) 416 10 TP 59
APPENAIX F oottt s s e AR s 61
ADPDPENAIX Gurerrererereersssiss s ssssss s s s s s e AR s 63
APPENAIX H oottt s s s e AR s 65

Table of Tables

Table 3.1 Properties of the 2500 byte data set generated by the default Ring Oscillator 22
Table 3.2 Properties of the 2500 byte data set generated by the FIRO with the static polynomial
OXAZL8.coueeeeereeereceesesseesseessessseesssesssesssees s s RS E RS R R RS ER SRR R AR AR R R 24
Table 3.3 Properties of the 2500 byte data set generated by the FIRO with a dynamic polynomial
.. 26
Table 3.4 Properties of the 2500 byte data set generated by the GARO with static polynomial
OXABFEEoieeeereceeeesssess s st ssse s ss s s s ssEE RS R R R SRR R AR R AR R R 27
Table 3.5 Properties of the 2500 byte data set generated by the GARO with a dynamic
01011726 T0) 443 | TP 28
Table 3.6 Properties of the 2500 byte data set generated by the dynamic FIGAROcccovuerreenn. 30
Table 5.1 Comparative speed test /deV/random.... s ———————————. 41
Table 6.1 Results of a FIPS 140-2 test conducted on 10 000 SAMPIESoucvrvcereernerreenmernsessesssessssnsesssennns 43
Table 6.2 NIST Statistical Test Suite, TESt PrOCEAUIE ..t sssessss s ssesssssssssnns 44

Table 6.3 NIST Statistical Test Suite AUtOMAtiON SCTIPL cueureeeeeeerreerereesrees s seesseessseens 45

Table of Figures

Figure 2.1 Top view of an AVNet Spartan-6 LX9 MicroBoard [6]cccoueemeneesnmeenmeessesseesseesssessessnens 17
Figure 2.2 General teSt SEUP OVEIVIEWovcuiemreereeereerseeseessesssessssssssssssssssssss s sssesssesssssssssssssssssssssssasssssens 18
Figure 3.1 Visual Representation of /dev/random after gathering random 2500 bytes.......cc.c...... 20
Figure 3.2 Example of a 3 inverter based Ring Oscillator with an Enable option ... 21
Figure 3.3 Graphical representation of 2500 bytes collected by the default Ring Oscillator

Lo ETYo i LoTTa B 0o AN 0] 07c) o Lo b1 - PP 22

Figure 3.4 Ring Oscillator with Fibonacci architecture and on-the-fly changeable polynomial....23
Figure 3.5 Graphical representation of 2500 bytes collected by the FIRO using the static

POLYNOMIAL OXA2 T8 ... ssssss s s s s s e 24
Figure 3.6 Partial block diagram of a FIRO with dynamic polynomial.........ccceneneeneeenneenseenens 25
Figure 3.7 Graphical representation of 2500 bytes collected by the FIRO using a LFSR to generate
A dYNAMIC POIYNIOIMIAL ..ottt s et s s s bR 25
Figure 3.8 Ring Oscillator with Galois architecture and on-the-fly changeable polynomial.......... 26
Figure 3.9 Graphical representation of 2500 bytes collected by the GARO using the static
POLYNOMIAL OXABFE ..ot sees s ssse s s sssesssees s s s s as s e s s sessssnnns 27
Figure 3.10 Partial block diagram of a GARO with dynamic polynomial.......coueneenmeeneerneernseenseenens 27
Figure 3.11 Graphical representation of 2500 bytes collected by the GARO using a LFSR to
generate a dynamic POLYNOMIAL. ... sess s ssss s sess e ss s e s s s sssesssesssesssseens 28
Figure 3.12 Partial block diagram of a dynamic FIGARO SELUPccueeeerermemmeemseesseeenseemseeseesseessesssessees 29
Figure 3.13 Graphical representation of 2500 bytes collected by the dynamic FIGARO.......c.c........ 29
Figure 3.14 Block diagram of a serial to parallel shift regiSter ... 31
Figure 4.1 Block diagram 0f @ XOR-fIILETcoerereerrereneeeneesseessseeseesseesseessesssesssesssesssesssssssssssssessessssssssessees 33
Figure 4.2 Serial Parity FIILET ..o secsseessssssessseesssssssssssesssesssssssssssssssesssessssessssssssssssssssesmsessees 34
Figure 4.3 Results of the Default Ring Oscillator after 1 step of Post Processingcoouenreenreenees 34
Figure 4.4 Results of the Static FIRO with 1 step of POSt Processingccouenenmeenseesneesseesnsesseennens 35
Figure 4.5 Results of the Dynamic FIRO with 1 step of Post Processing........oomeeeneeseerneernnernseenens 35
Figure 4.6 Results of the Static GARO with 1 step of Post Processingcouenenmeenseeseesseesnserseennens 36
Figure 4.7 Results of the Dynamic GARO with 1 step of Post Processing.......ccoueeenseeseerseernserseenees 36
Figure 4.8 Results of the Dynamic FIGARO with 1 step of Post Processing.......coeneeneeensersseenees 37
Figure 5.1 Xilinx XPS Block Diagram as provided from the LwIP turorial for the LX9[14] 39
Figure 5.2 Implemented Noise Generator BIOCK Dia@ramcoeeeereeeeeensereesseesseeesessseesseessessssesssessees 40
Figure 5.3 Generator to MicroBlaze Block Diagramccoeeenmeemeesneesecsnnensensseesssessessseesssesseessesssessees 40

Figure 7.1 The Visual representation 65535 bytes generated from the implemented design. The
reported Shannon entropy was 7.998 Dit Per DYLe...... e sseesseesseesseesssssssssesssesssssssseens 47

Glossary

D flip-flop - A type of flip-flop which stores the input on the rising edge of the clock signal.

Fibonacci Architecture - A many-to-one feedback architecture where all enabled taps are mixed
into 1 feedback bit.

Field Programmable Gate Array [FPGA] - A FPGA is an IC which can be customized after
manufacturing, several Configurable Logic Blocks are provided which could be wired into a
custom electronic circuit.

Galois Architecture — A one-to-many feedback architecture where 1 bit is mixed into all enabled
taps.

Hardware Description Language [HDL] - A computer language to describe the structure and
behavior of electronic circuits.

Initialization Vector [IV] - Starting value of a cyclic process.

Linear Feedback Shift Register [LFSR] - A shift register in which some of its outputs are used
with logic elements to produce the next input.

Module - A module is part of a Verilog program as a means to group logic which serves a
discrete purpose.

Ring Oscillator [RO] - A device composed of an odd number of NOT-gates in a feedback
configuration.

Ring Oscillator with Fibonacci architecture [FIRO] - A ring oscillator design based on a linear
feedback shift register with a many-to-one or Fibonacci architecture.

Ring Oscillator with Galois architecture [GARO] - A ring oscillator design based on a linear
feedback shift register with a one-to-many or Galois architecture.

T flip-flop - A type of flip-flop which toggles the output on the rising edge of the clock signal
while the input is high.

Abstract

Security application extensively utilize randomly generated numbers. Generating these strictly
unpredictable numbers is a challenge. My Master's thesis is about delivering a stable stream of
entropy to security applications.

A system on chip design which generates random numbers will need 3 distinct modules: A
module as entropy source, a module for post processing and a module for communication with
another device. The entropy generated originates from a randomly oscillating signal which is
sampled. The sampled data will be whitened, to reduce any hardware bias. Finally, the generated
data will be tested for randomness and be prepared for transmission to a receiving device.

The proposed design will be made with an "AVNet S6LX9 MicroBoard" development board. A
ring oscillator based design will generate the entropy for the system. Any hardware bias will be
reduced from the generated data stream. Finally, a MicroBlaze softcore processor will evaluate
the generated data and proceed to transfer the stream if the evaluation is successful.

Abstract in Nederlands

Beveilligingstoepassingen maken extensief gebruik van willekeurige nummers, het genereren
van deze strikt onvoorspelbare nummers is een uitdaging. Het doel van deze masterproef is het
leveren van een stabiele onvoorspelbare entropiebron aan beveiligingstoepassingen.

Het ontwerp voor een system-on-chip willekeurige nummergenerator vereist 3 modules: Een
entropiebron, naverwerking en connectiviteit. De entropiebron bemonstert een willekeurig
oscilerend signaal, data uit de entropiebron wordt geanalyseerd in een testmodule. De
naverwerking van de data zorgt voor een statistische uniforme uitvoer. Tenslotte zorgt een
module voor connectiviteit tussen het hardwareplatform en de beveiligingstoepassing.

Het voorgestelde ontwerp wordt uitgevoerd op het "AVNet S6LX9 Microboard"
developmentboard. De entropie wordt gegenereerd via een op ring-oscilator gebasseerd
ontwerp. De data wordt gefilterd om enige hardware voorkeur te reduceren. Tenslotte wordt de
gegenereerde data in een MicroBlaze softcore geévalueerd om, indien de evaluatie positief is, te
worden verzonden naar een ontvangend apparaat.

1 Introduction

Security applications utilize strong random numbers to generate session keys, certificates and
random challenges in various authentication protocols. These numbers should be generated
with a true random number generator which produces uniformly distributed values. To ensure
the quality of the true random number generator, a real-time evaluation of randomness is
required. If the evaluation succeeds, the random information is kept, otherwise the output of the
random number generator is blocked. [1]

Research will be conducted for the KU Leuven at (Computer Security and Industrial
Cryptography) COSIC[2] situated in Leuven and (Embedded Systems & Security) ES&S[3]
situated in Diepenbeek.

1.1 Problem Description

In Unix-like operating systems, a special file /dev/random is provided to generate strong
random numbers. It collects entropy from device drivers and from user behavior which is stored
in an entropy pool. However, in certain environments like in network servers, lack of user
interaction might prove a poor source of entropy, resulting in the depletion of the entropy-pool
when random numbers are needed. This might set a limitation to security applications. [1]

According to an article of Acunetix [4], whom conducted a survey of the top million utilized sites
in 2010, more than 40% of websites could be confirmed to use a Unix-like system.

Security applications running on the machines within the affected scope, i.e. Unix-like systems,
could stall due to a depleted entropy-pool which is used for /dev/random/. A dedicated
hardware true random number generator with built in tests, could significantly increase
reliability of security applications, while ensuring equally strong random numbers as with Unix’s
/dev/random.

1.2 Obijectives

The main objective of the thesis is to develop and construct a true random number generator
with on-board real-time evaluation, to improve the random entropy source of Linux.

To complete the main objective, several HDL cores will need to be created.

First, a HDL block for the generation of entropy will need to be designed and tested, the output
of this block is random data.

Next, a HDL block needs to be created to remove the hardware bias of the entropy source.

Finally, a softcore processor needs to be assigned, this will evaluate generated whitened
information and when successful, transfer the data to a Linux-based system.

15

These HDL-cores need to be ported to an embedded system with the aim for a small form factor,
low energy consumption and high throughput. Power will be drawn from an active USB port,
which could also be used for the data transmission.

1.3 Materials and Methods

To realize a testable true random number generator, an extensive literature study is conducted
to gain in depth information about random number generation. The literature study will help to
delimit the hardware design and implemented algorithms. Furthermore, it will help to gain
insight in implementing custom drivers for the Unix-kernel.

As an embedded system a FPGA development board will be used to test and design specialized
HDL cores. The following hardware blocks will need to be created:

e Asan entropy source, the jitter of a ring oscillator among a few other possibilities will be
evaluated to generate random noise.

e Hardware generated entropy is biased, a whitening algorithm must be implemented to
achieve a statistical ideal source of noise.

e The evaluation of the generated entropy will be evaluated with an algorithm described in
the publication of the National Institute of Standards and Technology[5]. The aim is for a
hardware-friendly On-the-fly method of entropy measurement/estimation.

e Finally, the generated data must be transmitted to the receiving Unix-kernel.

When the hardware tests are implemented and tested on an FPGA development board, the
hardware will be ported and redesigned to an embedded system.

16

2 Hardware Platform

The hardware platform used is the “AVNet Spartan-6 LX9 MicroBoard” hardware development
kit.

Several advantages were present to choose this particular platform, they include:
a low cost platform,
a small footprint,
a decent on board Spartan 6 FPGA,
a serial interface and
an Ethernet interface.

Foa) lElse
[% U@JS >

D7) C24.R1006

Figure 2.1 Top view of an AVNet Spartan-6 LX9 MicroBoard [6]

The Spartan-6 FPGA development board (Figure 2.1) can be programmed using the USB-A
connector which is connected to a JTAG-controller. The micro USB-B port is connected to a
CP2102 chip, a serial to USB converter. To utilize the UART-to-USB port, the necessary driver (a
driver for the CP2102 chipset) need to be installed. The Ethernet interface is a convenient way
to transport a stream of data to another device, although it is not as easy as serial
communication, it can allow a transfer speed [7] of up to 25Mbit/s, surpassing the serial
connection speed (115200 baud) with a great margin.

2.1 Hardware Development Kit

The Spartan-6 FPGA is preprogrammed using the Xilinx hardware development kit, hardware
modules were developed using the “ISE Design Suite v14.7” while adding existing modules, such
as the “Micro Blaze softcore processor” and the “Ethernet Lite Media Access Controller”, was
done using “Xilinx Platform Studio v14.7”. To implement software written in C/C++, the “Xilinx
Software Development Kit v14.7” was used.

17

2.2 Unix-Based Receiving Hardware

To demonstrate the developed hardware, a small Unix-based computer was used, this will act as
the receiving server of the entropy. The chosen computer system was, for demonstration
purposes, a Raspberry Pi version 3, due to relative ease of use and its small size.

The used operating system for the Raspberry Pi, Raspbian “Jessie” with a compiled Unix kernel
version 4.4 [8], was compatible with the CP2102 serial-to-USB chip without making kernel
modifications.

2.3 ASimplified Overview

To summarize the test setup, a computer with a Debian-based operating system was used to
improve its entropy source. To generate entropy for the computer, custom hardware was
developed using the AVNet development board. A diagram of the setup is shown in Figure 2.2.
Within the development board, a random data stream is generated. The generated data will be
post processed to remove hardware bias of numbers. Finally, a MicroBlaze softcore processor
will be used to evaluate the random data and transfer the data to another system.

debian
DATA /dev/random

—> —> =
Random Post =
Number . =| MicroBlaze
Processing -
Generator -
Random Data Random Data E ;

Figure 2.2 General test setup overview

18

3 Generating Random Data

Random data could be generated using 2 main methods: one relies on a secret and often
complicated algorithm which generates numbers; another relies on sampling an apparently
random phenomenon such as white noise. The former is referred to as a pseudorandom number
generator and the latter is referred to as a true random number generator.

Pseudorandom Numbers

An algorithm can generate statistical random numbers, though these numbers may appear
strong random numbers, given the correct algorithm, all numbers in the sequence can be
determined. This is often referred to as pseudorandom. A pseudorandom number generator
is easily implemented using a linear feedback shift register [LFSR], this will generate a
sequence based on the architecture of the device, the polynomial given for the feedback and
the initial seed. Given all different settings for the LFSR, the complete sequence of numbers
could be calculated. If one were to guess all settings of an LFSR (i.e. after viewing a sequence
of generated numbers), all future numbers could be accurately predicted. [9]

These pseudorandom numbers can be engineered to produce a perfectly uniform
distribution and appear to be perfectly random, though when the algorithm is known, the
sequence of numbers contain no entropy.

Multiple approaches exist to design a pseudorandom number generator, but this is beyond
the scope of this Master’s thesis.

True Random Numbers

True random numbers are based on sampling random phenomena, the strength of these
numbers rely on the unpredictability of the sampled source. One could generate a sequence
of bits which are truly random by performing a sequence of coin tosses with a fair coin, the
state of the next coin toss cannot be accurately determined, due to the random nature of a
coin toss.

While a coin toss may seem perfectly random, it is impractical to implement on a chip. The
methods explored in this Master’s thesis are based upon ring oscillators, these are loops of
an odd number of logical inverter which are chained together. These ring Oscillators will
generate an oscillating signal of with an unknown frequency based on a variety of
environmental factors. Ring oscillators are also known to exhibit a fair amount of jitter.
While this is not an ideal source of noise, the random factors present allow entropy to be
extracted.

Data extracted from a source of noise is often biased and unlike a fair coin, it behaves more
like weighted dice. Post processing of the generated data, can reduce the hardware bias and
therefore increase the entropy of the data.

19

3.1 Noise source

Random data originates from a noise source, the noise is periodically sampled which produces a
stream of bits. Multiple approaches exist to create a noise source. The methods tested upon are
described below. These methods use oscillating loops of logic without clock circuitry and may be
destructively optimized away by the FPGA software. Within the Xilinx Constraints Guide[10],
the KEEP_HIERARCHY constraint exists to preserve the hierarchy of the applied modules.

To test each of the noise sources, a data width of 20000 bits was used, this is the amount of data
required to perform a test described within the FIPS140-2 [11]. The preliminary tests conducted
with a python script visually represented the generated data as a plot of the value in function of
the sample number and as a distribution of said data. The python script Analyze_data.py is
provided in Appendix A.

Intended use of Analyze_data.py given a Unix based system with python and matplotlib installed:

#> cat /location/of/device | ./Analyse_data.py [data width in bytes]

The calculated value plot should contain no recognizable patterns and the data distribution
should be close to a uniform distribution. The script also calculated a few indicators to quickly
identify random data of acceptable quality. The indicators used and their expected values if the
data was random are:

- Average value: ~127

- Median value: ~127

- Percentage of binary Ones: ~50%

- Distribution Minimum and Maximum: ~0,39%
- Shannon Entropy: ~8 bit

E.g. Visual characteristics of /dev/random given in Figure 3.1

Command: #> cat /dev/random | ./Analyse_data.py 2500

Stream Value Plot of 2500 bytes Data Distribution
250,”, T T T T L L e B e T T T T T T T T T T

0.007 -

200, 0.006

. 0.005
150 =+

0.004

Value
Occurrence

100 0.003
0.002
S0
0.001

Pest i the el S e e T e T 0.000
0 500 1000 1500 2000 250 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Sample Number Value

Figure 3.1 Visual Representation of /dev/random after gathering random 2500 bytes

20

3.1.1 Ring Oscillator Design

Gathering random data from a ring oscillator (Figure 3.2) can be achieved by sampling a fast ring
oscillator by a slow ring oscillator. To get different speeds of operation, more delay elements (i.e.
a set of 2 consecutive inverters) can be daisy-chained together. The model describing the
hardware shown in Figure 3.2 is done in the file RO_PARAM.v which is provided in Appendix B.

Required signals:

- EN: Enable signal
- OUT: Serial output data

Optional Parameter:

- DELAY: Amount of consecutive delay-blocks, defaults to 1

Nalayv
pelay

> > ouT
N - >

Figure 3.2 Example of a 3 inverter based Ring Oscillator with an Enable option

The output of the source of noise can be sampled with a clock signal, this will result in a serial
data stream of oscillating values. Figure 3.3 shows 2500 bytes sampled from a ring oscillator
with 1 Delay without post processing, these values were obtained by sampling the source using a
D flip-flop and a clock signal of 100MHz. The graphical representation of the data was generated
by piping the data from the ring oscillator through python script, the used script Analyze_Data.py
is provided in Appendix A. The python script provided will visually represent the data and it will
output statistics about the collected data such as:

- The average numerical value observed;

- The median of the observed values;

- The percentage of binary ones within the dataset;

- The extrema observed in the histogram representation;
- The Shannon entropy observed per byte, max 8bit.

21

The results of a default ring oscillator design as shown in Figure 3.2 are poor, the predominant
values generated are 0x00 and OxFF. In comparison to the data generated from /dev/random
shown in Figure 3.1, unlike noise, a few values seem to be favored other values are never
generated. The distribution is not uniform unlike is expected of the distribution of true random
values.

Stream Value Plot of 2500 bytes Data Distribution
250 — n r— r— - 0.7 T T T T T
+ + + 4+ + + + o+
+ 4 + +
0.6
200 + 4
++ + + + + + + +
0.5
Bop | goa
g o
r_j“ " + + v+ + E
- g 0.3
100 | S0
0.2
+ o+ o+ +
50 | g
0.1
+ + + + 4
+ 4 + + + + +
0 s ot + g P e 0.0 L
0 500 1000 1500 2000 2500 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Sample Number Value

Figure 3.3 Graphical representation of 2500 bytes collected by the default Ring Oscillator described in Appendix A

The statistics shown in Table 3.1 are poor in comparison to the expected values from a random
source. The ring oscillator has a bias toward generating ones. The Shannon entropy per
generated byte is 1.247 bit out a maximum of 8 bit. Therefore, each byte generated contains only
a little more entropy as could be achieved by flipping a coin.

Data analyzed: 2500 bytes
Average 169,15

Median 255
Ones 66,31%
Distribution Min 0%

Distribution Max 64,56%

Shannon Entropy | 1,247 bit
Table 3.1 Properties of the 2500 byte data set generated by the default Ring Oscillator

22

3.1.2 Fibonacci Ring Oscillator with static polynomial

A Fibonacci ring oscillator shares properties with a ring oscillator and with a LFSR with
Fibonacci Architecture. The Verilog code to generate the FIRO shown in Figure 3.4 is included in

Appendix C. Polynomials are programmed using short notation, e.g. x¢ + x° + x*3 + x* + 1
will be the same as 0xD008.

Required signals:

- EN: Enable signal
- Poly: Polynomial, width of bus determined by parameter TAPS
- OUT: Serial output Data

Optional parameter:
- TAPS: Amount of available feedback taps, defaults to 16

Y Y T
\uj poly[1] poly[2] \/ poly[n-1]

4 4

L > > >

- -
— T

>

Figure 3.4 Ring Oscillator with Fibonacci architecture and on-the-fly changeable polynomial

A Fibonacci Ring Oscillator was tested using 16 possible taps and a static polynomial of 0x4218,
this source was sampled using a D-flop and a clock signal of 100MHz. Enhancing a ring oscillator
with a Fibonacci architecture causes the circuit to behave like a Pseudo random number
generator and a True random number generator combined. While true random behavior is
caused by transition delays in components, pseudo randomness is added by using a feedback
polynomial.

23

The results of gathered data shown in Figure 3.5 are better than generated with the default ring
oscillator although the observed results are still poor. The generator favors certain sets of
numbers, while other values are never observed. The distribution is not uniform without post
processing.

012 I:I)ata DISI’ErIbl:ltIOITI

T Sas mmus s mirsms 83 S ies s m e sememcs s s smsed 010 I
200F cor et e S e e e e e e |
0.08
150+ [
UJ
2 e . - e e e .| E£o06
> 3
100 S
0.04
50 |
0.02
0 L L 0.00 n L L I I
0 500 1000 1500 2000 2501 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Sample Number Value

Figure 3.5 Graphical representation of 2500 bytes collected by the FIRO using the static polynomial 0x4218

The statistics in Table 3.2 show a strong deviation from the expected values. The generator
could be observed to have a bias toward generating ones. The Shannon entropy calculated is
rather poor with an entropy of 4.173 bits.

Data analyzed: 2500 bytes
Average 178.55

Median 207
Ones 68.91%
Distribution Min 0%

Distribution Max 10.92%

Shannon Entropy | 4.173 bit
Table 3.2 Properties of the 2500 byte data set generated by the FIRO with the static polynomial 0x4218

3.1.3 Fibonacci Ring Oscillator with dynamic polynomial

While a static polynomial could be used with the Fibonacci ring oscillator, the design permits
changing the polynomial on the fly. This was tested using a linear feedback shift register of
similar size to the Fibonacci Ring Oscillator, set up to produce a maximum length sequence. The
LFSR was tied to change each clock cycle, which caused the polynomial to change every 10ns
with a clock frequency of 100MHz. The used FIRO and LFSR had a size of 16 possible taps, and
the LSFR chosen produced a maximum sequence length, which resulted in 65535 polynomials to
be cycled through.

24

Figure 3.6 shows how the LFSR is connected to the FIRO, The complete design of the LFSR with
Galois architecture is available in Appendix D

. The LFSR described in LFSR_Galois.v works synchronous with the clock signal, it will progress
each clock cycle the module is enabled according to the set polynomial. When the LFSR is reset,
the IV will be the data present in the LFSR memory, the IV cannot be all zeroes.

Required signals for the LFSR:

- CLK: Clock signal

- EN: Enable signal, when low, shifting of data is disabled
- RST: Resets output to IV

- IV Initialization Vector, nonzero starting value

- POLY: Polynomial in short notation

- OUT: Output but

Optional parameter for the LFSR:
- TAPS: Amount of possible feedback taps, should be equal to the TAPS of FIRO

v

POLY > " POLY >

CLK en [[_OUT RO H ouT
EN > EN >

RST

Figure 3.6 Partial block diagram of a FIRO with dynamic polynomial

Figure 3.7 shows the visual representation of 2500 bytes after applying a dynamic polynomial to
the FIRO. The used LFSR has a Galois architecture and was set to use the polynomial 0xB401.
Although the results shown are not great, certain values are still more prominent than others,
some values are not generated within the span of 2500 bytes. The distribution appears to be
more centered despite it not being uniformly distributed.

Stream Value Plot of 2500 bytes Data Distribution
250 F ! — : ! = . -

200 E R I e I S e

Value
Occurrence

50 premeor.] - . o s o]

L L L L 0.00 n . L
0 500 1000 1500 2000 2501 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Sample Number Value

Figure 3.7 Graphical representation of 2500 bytes collected by the FIRO using a LFSR to generate a dynamic polynomial

25

The statistics from Table 3.3 confirm the centered distribution with the average and median
value being closer to 128. There is no obvious binary bias with the amount of ones being about
50% of the generated data. The Shannon Entropy still is rather low with 4.267 bit per collected

byte.

Data analyzed: 2500 bytes

Average

Median

Ones
Distribution Min
Distribution Max
Shannon Entropy

130.30
140
50.82%
0%
15.52%
4.267 bit

Table 3.3 Properties of the 2500 byte data set generated by the FIRO with a dynamic polynomial

3.1.4 Galois Ring Oscillator with static polynomial

The Galois Ring Oscillator shares properties with a ring oscillator and with a LFSR with Galois
architecture. The verilog code, GARO.v, describing the GARO design shown in Figure 3.8 is
included as Appendix E. The tested noise source of type GARO, had a static polynomial of 0x4BFE
and was sampled at 100MHz using a D flip-flop.

Required signals:

EN:
Poly:
OUT:

Optional parameter:

26

TAPS:

Enable signal
Polynomial, width of bus determined by parameter TAPS
Serial output signal

Amount of available feedback taps, defaults to 16

ouT

U

— |

e

— |

}le[n—ll

Ll

N

— |

-

N

N
/

ﬁclv[n—zl /v
N

>>flv[1]

[>

V\
L/
EN

Figure 3.8 Ring Oscillator with Galois architecture and on-the-fly changeable polynomial

The gathered visual data of 2500 values as seen in Figure 3.9 are rather poor. The most
prominent observed values are 0x00 and 0xFF. The value plot shows several values being
favored. The observed distribution of the sample is not uniform.

Stream Value Plot of 2500 bytes Data Distribution
250 T T L e L T a3 0.40F !) " " ! ! ! j
0.35
200 |
- 0.30
150 F o 02
g
(]
3 - g
S8 5 0.20
o]
loor 0.15
s e WE E W EEE Trormom oo . e . . - 010
50 | 8
0.05
P A P S e e A PSSy S R S I S RTINS O.UOIII |) I) , I))) i I I [‘
0 500 1000 1500 2000 2501 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Sample Number Value

Figure 3.9 Graphical representation of 2500 bytes collected by the GARO using the static polynomial 0x4BFE

The gathered statistical values as shown in Table 3.4, display lacking entropy present in the
sample. The generated data is slightly biased towards generating ones.

Data analyzed: 2500 bytes
Average 131.84

Median 192
Ones 52.34%
Distribution Min 0%

Distribution Max 37.36%

Shannon Entropy | 2.667 bit
Table 3.4 Properties of the 2500 byte data set generated by the GARO with static polynomial 0x4BFE

3.1.5 Galois Ring Oscillator with dynamic polynomial

The design of the Galois ring oscillator allows an on-the-fly changeable polynomial. This is
achieved using the setup as shown in Figure 3.10, which combines a LFSR with Galois
architecture with the GARO. The polynomial used for the LFSR was 0xB401. The Verilog code
LFSR_Galois.v, describing the LFSR, van be found in Appendix D.

v
POLY > " POLY >
CLK er [L_ouT GARO | oOuT
EN > EN >
RST

Figure 3.10 Partial block diagram of a GARO with dynamic polynomial

27

The results of the GARO are shown in Figure 3.11. More noise can be observed as with the GARO
with static polynomial. The generator still favors some values, while other values are not
observed in the sample. The distribution of the dataset is also not uniform.

Stream Value Plot of 2500 bytes Data Distribution
250 F " ™ T L. T e e o T T T T T T T T T T
- B] 0.08 |

0.07 |
0.06 |-

0.05

Value

0.04

Occurrence

0.03

0.02

0.011

L L L L 000 L "l L L L s L L L L
0 500 1000 1500 2000 2501 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Sample Number Value

Figure 3.11 Graphical representation of 2500 bytes collected by the GARO using a LFSR to generate a dynamic polynomial

Given the statistics returned by the python script, shown in Table 3.5, a considerable increase of
entropy can be observed in comparison to the GARO with static polynomial. The Shannon
entropy is still low and a bias toward generating binary ones can be seen.

Data analyzed: 2500 bytes
Average 142.45

Median 150

Ones 54.99%
Distribution Min 0%
Distribution Max 7.72%

Shannon Entropy | 4.805 bit
Table 3.5 Properties of the 2500 byte data set generated by the GARO with a dynamic polynomial

28

3.1.6 Combined Ring Oscillator with Fibonacci and Galois architecture and dynamic
polynomial

Combining the previously described dynamic FIRO and dynamic GARO with a XOR-operation,
led to a dynamic FIGARO setup. The FIGARO set up with a static polynomial has been
documented[12]. The design requires 2 independent polynomials to set up the pattern followed
by the LFSR’s, an independent IV which differs from 0 is also needed. The polynomial generating
the pattern for the FIRO was set up to be 0xE946 and the polynomial generating the pattern for
the GARO was set up to be 0xE976. The output of the dynamic FIGARO was sampled using a D
flip-flop at 100MHz.

v

POLY >+

CLK

| EN >

RST

Galois
LFSR

ouT

v

POLY >+

CLK

| EN >

RST

Galois
LFSR

ouT

FIRO ouT

ouT

ARy

GARO

Figure 3.12 Partial block diagram of a dynamic FIGARO setup

The results of gathering entropy from the FIGARO noise source can be seen in Figure 3.13. The
value plot resembles noise although some values appear to be less prominently visible. The
distribution is not completely uniform. Nevertheless, all values seem to be represented within a
2500 byte sample.

Data Distribution

250F . T

Value

Stream Value Plot of 2500 bytes

s

o
o
=
o

Occurrence

0.005

0.000

1000

2000 250

1500
Sample Number

0.015 -

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Value

Figure 3.13 Graphical representation of 2500 bytes collected by the dynamic FIGARO

29

The statistical properties reported by the python script, as seen in Table 3.6, show a good
amount of entropy present in the sample. The average and median values are comparable with
the expected values of a random source. There is a balanced amount of binary ones against
binary zero. There still is a deviation from the expected peeks of the calculated distribution.

Data analyzed: 2500 bytes
Average 127.10

Median 127

Ones 49.67%
Distribution Min 0.04%
Distribution Max 1.68%

Shannon Entropy | 7.711 bit
Table 3.6 Properties of the 2500 byte data set generated by the dynamic FIGARO

3.2 Sampling

The first step after generating noise, is to sample it with a stable and known clock signal.
Sampling causes each clock cycle to generate 1 bit of data. Previous examples have a known
clock of 100MHz and will therefore generate 100Mbps per parallel method of sampling.

3.2.1 D flip-flop

Sampling of the noise like signal is done with a D flip-flop, this device will store the binary value
present at the input-pin D when the clock signal transitions from low to high (i.e. active on the
rising edge of the clock signal). Since noise is sampled on the rising edge of a clock signal, each
rising edge generates 1 random bit. A clock signal of 100MHz will sample 100Mbit per second.
The provided verilog-code describes the simplest of the aforementioned D flip-flop.

Required signals:

- Clock: Data is sampled at the rising edge of the clock signal.
- D Data input
- Q Output
module dflop(Clock, D, Q);
input Clock;
input D ;
output reg 0 = 0;
always @ (posedge clock)
begin
Q = D;
end
endmodule

30

3.2.2 Tflip-flop

AT flip-flop also uses a 1-bit memory like a D flip-flop. The T flip-flop does not store the bit
provided at the T input, it will toggle the output when the clock signal has a rising edge and the T
input is high. The provided verilog code describes the T flip-flop.

Required signals:

- Clock: Data is sampled at the rising edge of the clock signal.
- T The output is toggled if a high signal is sampled
- Q Output
module tflop(Clock, T, Q);
input Clock;
input T ;
output reg 0 = 0;
always @ (posedge clock)
begin
Q = T?'0:Q;
end
endmodule

3.2.3 Shift Register

Shift Registers shift serial data into a memory. They consist out of daisy-chained D flip-flops
which shift data on each rising edge of the provided clock signal. A shift register is used in the
design to convert a serial stream of data, from the noise source, to parallel data. Figure 3.14
shows the block diagram of converting serial to parallel data.

OUT [7:0]

. §— — p— —p— — —
QDSETQ DSETQ DSETQ DSETQ DSETQ DSETQ DSETQ DSETQ

o | ool Lol Lol [Csl]

Figure 3.14 Block diagram of a serial to parallel shift register

ol
o
o
ol

s}
s}
S
S)

The block diagram given in Figure 3.14 could be simplified using a model description in verilog
HDL such as described below.

module shift register(Clock, D, OUT);
input Clock ;
input IN ;
output reg [7/:0] OUT
always @ (posedge Clock)
begin
OoUT = {IN,OUT[7:11};
end
endmodule

31

32

4 Post Processing

When the generated noise is sampled, some amount of bias may be present. The first samples of
the different noise sources all show an amount of bias, some generators behaved with a binary
bias, other generators favored certain values.

Post processing is a method to apply an algorithm to mix and compress the generated data, this
will generally lead to an increase of entropy.

4.1 XOR Filter

A XOR filter will concatenate multiple inputs using exclusive-or logic elements. Each input is
linked to a stream of random bits which may be biased. Each XOR-operation will increase the
entropy of the output. A XOR-filter which can mix n amount of serial data streams is shown in
Figure 4.1.

R1 R2 R3 Rn

RO Pw Pw Pw P -——- Pw » OUT

Figure 4.1 Block diagram of a XOR-filter

The block diagram shown in Figure 4.1 can be described with few lines of verilog HDL such as
shown below.

Required signals:

- IN: Input bus, width determined by parameter N
- OUT: Serial output

Optional parameter:

- N Amount of streams to merge

module XOR filter (IN, OUT);
parameter N=;

input [N-1:0] IN ;

output ouT;

assign OUT = ~IN;
endmodule

Use of Verilog module:

XOR_FiTter #(N) XF({RO,R1, ... , RN},0UT);

33

4.2 Parity Filter

The parity filter as shown in Figure 4.2 mixes the previous bit with the input an operation which
reduces bias. The verilog code, PostProcessing.v, which describes the parity filter can be found in
Appendix F

Appendix F also elaborates on parallelizing the parity filter and improving it with a blocking
filter.

ouT

|,>

Figure 4.2 Serial Parity Filter

Qf

CLK

Several designs of parity filters were tested, multiple stages of filtering achieved different
results. To test the necessary amount of filtering, a python script was created to simulate
different stages of filtering on a saved data stream. The script used, PP_Parity.py can be found in
Appendix G

4.2.1 Parity Filter Applied to the Default Ring Oscillator

The Default Ring Oscillator had poor performance as shown in the previously mentioned Figure
3.3. When the parity filter was run on the same data, the results shown in Figure 4.3.

The observed results are still not random, but an improvement is visible comparing to the
unfiltered data. Although the filter dropped every other value, there seems to be an increase in
correlation of the generated data. The observed statistical values were also improved. The
Shannon entropy increased from 1.247 bits to 6.622 bits.

Stream Value Plot of 2500 bytes Data Distribution
250 T - — : : -
ST - = 1 oozt
) - —- -
St . _— -
200 - ~ L. -
- T . - 0.020 -
Bor < - 3 0.015
R . - ? a- .,
: = =
El = < E
g s - 2
. - . -— - 6
100 T - - 0.010
-— -
50« mm i -~ . 1 0.005
0 - Pt : 0.000
0 500 1000 1500 2000 250 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Sample Number Value

Figure 4.3 Results of the Default Ring Oscillator after 1 step of Post Processing

34

4.2.2 Parity Filter Applied to the FIRO

The parity filter was also applied to the Static FIRO, the results are shown in Figure 4.4. The
value plot seems pattern free and the distribution of the gathered sample seems close to
uniform. The statistical values reported by the script are close to the expected values of a true
random sample. The bias towards binary ones is filtered away, the Shannon entropy has risen to
7.91 bit. A real statistical test is needed to determine randomness.

Stream Value Plot of 2500 bytes Data Distribution

250,

@

0.008 |

0.006
150 .

Value

Occurrence

0.004
100

sol 0.002

X R = . SRR 0.000
0 500 1000 1500 2000 250 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Sample Number Value

Figure 4.4 Results of the Static FIRO with 1 step of Post Processing

The filter was also applied to the Dynamic FIRO, the observations are shown in Figure 4.5.
Similar observations can be made as with the Static FIRO. The reported statistics are also
improved to the point they're indistinguishable from the expected values of a random source.
The Shannon entropy increased to 7.92 bit.

Stream Value Plot of 2500 bytes

Data Distribution
B0F T - LT L —_— ‘

0.008

0.006 -

Value
Occurrence

0.004 |

0.002

e Dty e bt 0 LR A U MY U 0.000
0 500 1000 1500 2000 250 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Sample Number Value

Figure 4.5 Results of the Dynamic FIRO with 1 step of Post Processing

35

4.2.3 Parity Filter Applied to the GARO

After applying 1 step of parity filtering, an improvement is visible to the Static GARO. Visual
inspection of Figure 4.6 shows some recognizable patterns and the distribution of the sample
does not appear uniformly distributed. The Shannon entropy has increased to 7.796 bit.

250

Value

Data Distribution

sof.: °

Stream Value Plot of 2500 bytes

500 1000

1500 2000 250

Sample Number

Occurrence

0.010 +

0.008

o
o
o
=N

0.004

0.002

0.000

0

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Value

Figure 4.6 Results of the Static GARO with 1 step of Post Processing

The parity filter applied to the Dynamic GARO achieved the results shown in Figure 4.7.
Compared to the results of the Static GARO, an improvement is seen. The values calculated
within the python script show no obvious deviation from the expected values of a true random
set. The Shannon entropy has increased to 7.928 bit.

200} =

150 |

Value

100 |

50|

36

Data Distribution

Stream Value Plot of 2500 bytes

S R

1000 1500 2000 250

Sample Number

Occurrence

0.008 |-

0.007 |-

0.006

0.005

0.004
0.003 |
0.002 |
0.001

0.000

0

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Value

Figure 4.7 Results of the Dynamic GARO with 1 step of Post Processing

4.2.4 Parity Filter Applied to the FIGARO

The results shown in Figure 4.8 are of a single step of parity filter post processing after the
Dynamic FIGARO. The calculated distribution is close to being uniform, no recognizable patterns
can be seen in the noise plot and the reported statistical values are close to the expected values.
The Shannon entropy of the sample is 7.928 bit per byte.

A statistical test suite was used to evaluate the generated data, such as FIPS140-2 and the NIST
Statistical Test Suite.

Stream Value Plot of 2500 bytes Data Distribution

B0 i G 0]
0.007
200} : 4
3 0.006
B . 0.005
150 ; I
: c
[
a2 £ 0.004
> X]
g
100} ©

0.003

0.002

0.001

PR I O a1

A e et AU c;

CY s, . IR AT . <5|“ s e o) 0000
0 1000 1500 2000 250 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Sample Number Value

Figure 4.8 Results of the Dynamic FIGARO with 1 step of Post Processing

37

38

5 Communication using the Xilinx MicroBlaze

The Xilinx Platform Studio can work with the provided board support package, which is
provided from AVNET store page[13]. Using XPS and the tutorial on LwIP for the Spartan-6 LX9
Microboard[14] a core capable of Ethernet communication could be generated.

The generated core includes:

- Xilinx MicroBlaze

- 64MB DDR RAM

- Ethernet MAC

- USBUART

- GPIO DIP Switches

- GPIO LEDs

- GPIO RNG Connection
- AXI4Lite switch fabric

The LwlIP tutorial provides a Reference Design Block Diagram|[14] (Figure 5.1) which shows a
system is similar to the generated system.

JTAG Reset CLK
Header Switch @66 MHz
L
L
ILMB BRAM DLMB
Controller (8K) Controller Reset Clock
Control Control
MicroBlaze | Microprocessor 4%0 l
Processor Core ~ 7| Debug Module MHz 66 MHz
Iy I’y A
AXi4 AXI4LITE
A
| AXI Interconnect | I AXI Interconnect I
[y I 3 [y r ' 3 r 3 I 3
Memory Ethernet Interrupt . GPIO GPIO
Controller MAC Cntrir ULEES b Input Output
T IA
FPGA
32Mx 16 10/100 v DIP LEDs
LPDDR Ethernet ; x4 x4
PHY Bridge

Figure 5.1 Xilinx XPS Block Diagram as provided from the LwiP turorial for the LX9[14]

The generated design has a relatively large footprint. It uses 30% of the Slice Registers, 77% of
the Slice LUTs and occupies all available Slices.

39

5.1 From Generator to MicroBlaze

The implemented noise generator are 4 Dynamic FIGARO as shown in Figure 5.2. These are
sampled using 2x4 serial to parallel shift registers, 4 of which operate on the rising edge of the
clock signal, the remaining operate on the falling edge of the clock signal. A constant output is
achieved by multiplexing the output of the 8 shift registers, causing each register to be
sequentially sent as an output.

A
Poly |Galois LFSR ——Dynamic Polynomial—— FIRO
4
AN
7
v
Poly | Galois LFSR ——Dynamic Polynomial—— GARO

Figure 5.2 Implemented Noise Generator Block Diagram

The generator delivers parallel bits every clock cycle, the generator operates at 100MHz, the
theoretical data rate is 800Mbps. This high bitrate is slightly biased and 1 step of post processing
using a parity filter is added. Adding one step of post processing reduces the theoretical bitrate
to 400Mbps. A general overview of the setup is displayed in Figure 5.3

—HHHHHHHHH-
> > - -
Random Post = =
Number . MicroBlaze |=
Processing
Generator
Random Data Random Data

Figure 5.3 Generator to MicroBlaze Block Diagram

5.2 MicroBlaze Processor Core

The Xilinx MicroBlaze is programmed in C. Data from the FIGARO core can be loaded using
pointers.

Since a GPIO module was used to load the data, a simple rule is implemented to read the next
byte: The next byte should be different from the previous byte. The C-code of RNG.c is provided
in Appendix H

The Monobit test is implemented as described in FIPS-140-2[11]. This test will count the amount
of binary ones in a sequence of 20 000 bit. The test is successful if 9725 < N <10275. The
Monobit test is based on the binomial distribution, where the rejection region is chosen to be
0.1% and the chance of N binary ones out of 20 000 bits is calculated, when the probability is
lower than 0.1% the set of 20 000 bits is rejected.

40

5.3 From MicroBlaze to Computer

Transferring data is done using USB UART at 115200 baud. As displayed in Table 5.1, the Speed
of /dev/random is rather low with the fastest time recorded at 1.8 byte per second. The lowers

speed recorded with the serial connection was 11490 bytes per second.

Transfer Speed

[s]

/dev/random
2500 bytes

[byte/s]

/dev/ttyS00
100000 bytes

[s]

[byte/s]

1409,08
1521,63
1542,28
1609,56

1659,9
1756,31
1897,16
1898,97
1909,54
1913,96

1942,1
1961,06
2001,23
2095,27
2122,05

2136,3

1,774207
1,642975
1,620977

1,55322
1,506115
1,423439
1,317759
1,316503
1,309216
1,306192
1,287266
1,274821
1,249232
1,193164
1,178106
1,170248

8,67285
8,67286
8,67389
8,67394
8,67457

8,6746
8,67467
8,67516
8,68027
8,68046
8,68183

8,6824
8,68541
8,68597
8,70289
8,70398

11530,24
11530,22
11528,85
11528,79
11527,95
11527,91
11527,82
11527,16
11520,38
11520,13
11518,31
11517,55
11513,56
11512,82
11490,44

11489

Table 5.1 Comparative speed test /dev/random

41

42

6 Interfacing to /dev/random

Generated data can be used to enhance the Unix entropy pool. A few statistical tests were
conducted to ensure the good quality of the generated data. The statistical tests conducted were
conform FIPS140-2 and the statistical tests from the “NIST Statistical Test Suite”

6.1 Feedinginto an entropy sink using the Random Number Generator
Daemon

Entropy generated from hardware can be inserted into the Unix entropy pool using rngd[15], a
part of rng-tools. The daemon is set up to evaluate the incoming data using FIPS140-2 test and if
the tests are successful, add the entropy to the entropy pool.

To enhance the entropy pool the following command is used:

#> rngd -rng-device=/dev/RandomNumberGenerator

Options of the rngd can be changed by adjusting the settings file located at
/etc/default/rng-tools on a Debian based system. Optionally the service rng-tools can be set
up to run each time on boot, ensuring more available entropy for the system.

6.2 Achieved randomness according to a statistical tests.

A file was generated containing enough data to conduct 10 000 FIPS 140-2 tests, this resulted in
a 25Mb file. This was repeated for several setups as random number generator. These files
contained 1 step of post processing using a parity filter and the option of discarding data was
disabled.

6.2.1 Results of FIPS 140-2

A wide range of noise sources was tested using the Avnet LX9 MicroBoard. Each generator
generated 25Mb of data to be analyzed before and after post processing. The FIPS140-2 test is
included in the rng-tools package and could be easily used to automate many tests. Conducting a
test can be done with an easy command:

#> cat file_containing_random_data | rngtest
After running the rngtest command, a report is generated to show the number of failed tests. The

report generated from the implemented hardware random number generator is displayed
in Table 6.1

rngtest: bits received from input: 200008000
rngtest: FIPS 140-2 successes: 9993

rngtest: FIPS 140-2 failures: 7

rngtest: FIPS 140-2(2001-10-10) Monobit: 1

rngtest: FIPS 140-2(2001-10-10) Poker: O

rngtest: FIPS 140-2(2001-10-10) Runs: 5

rngtest: FIPS 140-2(2001-10-10) Long run: 1
)

rngtest: FIPS 140-2(2001-10-10) Continuous run: O
Table 6.1 Results of a FIPS 140-2 test conducted on 10 000 samples

43

6.2.2 Results of NIST Statistical Test Suite

The National Institute of Standards and Technology has made a Statistical Test Suite available to
evaluate the output of a random number generator. After the file sts-2.1.2.zip[16] was
downloaded, unpacked and compiled, the tests can be executed using the program ./assess.

While the test suite is equipped with an interface to customize each battery of tests, it requires
user interaction which can’t be included in the parameters.

To test the hypothetical file FILENAME with a size of FILESIZE following command is issued:
#> ./assess FILESIZE

This will result in an interface where several questions need to be answered. The filled form to
test FILENAME is given as Table 6.2.

GENERATOR SELECTTION

[0] Input File [1] Linear Congruential

[2] Quadratic Congruential I [3] Quadratic Congruential II
[4] Cubic Congruential [5] XOR

[6] Modular Exponentiation [7] Blum-Blum-Shub

[8] Micali-Schnorr [9] G Using SHA-1

Enter Choice: 0

User Prescribed Input File: FILENAME
STATTISTTICATL TESTS

Frequency Block Frequency
Cumulative Sums Runs
Longest Run of Ones Rank

Universal Statistical
Random Excursions
Serial

Approximate Entropy
Random Excursions Variant
Linear Complexity

[02]
[04]
[06]
Discrete Fourier Transform [08] Nonperiodic Template Matchings
[10]
[12]
[14]

]
]
]
]
] Overlapping Template Matchings
]
]
]

INSTRUCTIONS
Enter 0 if you DO NOT want to apply all of the
statistical tests to each sequence and 1 if you DO.

Enter Choice: 1
Parameter Adjustments

[1] Block Frequency Test - block length (M) : 128

[2] NonOverlapping Template Test - block length(m): 9

[3] Overlapping Template Test - block length(m): 9

[4] Approximate Entropy Test - block length(m): 10

[5] Serial Test - block length(m): 16

[6] Linear Complexity Test - block length(M): 500
Select Test (0 to continue): 0

How many bitstreams?
Input File Format: 10
[0] ASCII - A sequence of ASCII O0's and 1l's
[1] Binary - Each byte in data file contains 8 bits of data

Select input mode: 1
Statistical Testing In Progress.........

READ ERROR: Insufficient data in file.

Table 6.2 NIST Statistical Test Suite, Test Procedure

44

Fortunately, there is a workaround to automate user interaction. Keyboard combinations can be
automated by piping the keystrokes into the program. The shell-script “NIST_Auto.sh” was
created to automate the NIST Statistical Test Suite which code is displayed to Table 6.3.

The created script will automate user interaction, opening the correct file and backup the
results.

#!/bin/bash

#NIST automated test

function gen auto {

txt="0

s1

1

0

10

1

echo "Stxt"

}

inputfile=

filesize=$ (stat --printf="%s" $inputfile)
gen_auto | ./assess

cd ./experiments/AlgorithmTesting/

tar ¢ . | xz > ../../ .tar.xz
echo "Sinputfile done."

Table 6.3 NIST Statistical Test Suite Automation script

The reports generated for many proposed generator helped to reject several faulty designs of
hardware generators. The report generated for the implemented design is included
in Appendix I

45

46

7 Conclusion

Among many tested proposed designs as random number generators, a combination has been
chosen which passes FIPS140-2 and the NIST Statistical Test Suite.

First, the implemented design utilizes 4 Dynamic FIGARO as a noise source, these FIGARO are
sampled using 8 Shift Registers, half of which sample on the rising edge of the clock signal, the
other 4 sample on the falling edge. Finally, the generator cycles through the contents of the shift
registers to output a byte from a different FIGARO each clock cycle.

Then, the output of the generator is filtered using 8 parallel parity filters which removes any
possible bias the noise source may have, the results of which can be observed in.

After filtering, the data is read into the Xillinx MicroBlaze softcore processor. The c-program
reads and stores the random data in a memory of 2500 bytes.

Finally, a block of generated data is tested against the implemented Monobit test and if the test
passes, the data is forwarded to the connected computer.

The data from the hardware random number generator is subsequently mixed into the Unix
entropy pool to enhance /dev/random. Since entropy is added in a faster manner to the system,
security applications relying on /dev/random can achieve better performance.

Data Distribution

250 BF 0.005 T T T T T T T T T T T

0.004

0.003

Occurrence

0.002

0.001

% SR S R e R S R Lk B 0.000
0 10000 20000 30000 40000 50000 60000 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Sample Number Value

Figure 7.1 The Visual representation 65535 bytes generated from the implemented design. The reported Shannon entropy was 7.998 bit
per byte

Future improvements include implementing more on-board tests, only one test is currently
implemented. Further improvements are to reduce the footprint of the design, since all available
slices are occupied. Finally, the throughput speed could be improved, sending the data over
Ethernet may increase the throughput speed dramatically.

47

48

Bibliography

N. Mentens, “A Testable True Random Number Generator for Linux Security
Applications.” UHasselt, Hasselt, 2014.

KU Leuven, “Computer Security and Industrial Cryptography - COSIC,” 2015. [Online].
Available: https://securewww.esat.kuleuven.be/cosic/. [Accessed: 30-Oct-2015].

A. KHLim, “ARCO - ES&S,” 2015. [Online]. Available: http://acro.be/NL/ess.php?id=102.
[Accessed: 30-Oct-2015].

Acunetix, “Acunetix,” 2010. [Online]. Available:
http://www.acunetix.com/blog/articles/statistics-from-the-top-1000000-websites/.
[Accessed: 30-Oct-2015].

S. Rukhin, A, Soto, J., Nechvatal, J., Smid M., Barker, E., Leigh, S., Levenson, M., Vangel, M.,
Banks, D., Heckert, A., Dray, A., Vo, “Statistical Test Suite for Random and Pseudorando
Number Generators for Cryptographic Applications,” Spec. Publ. 800-22 Natl. Inst. Stand.
Technol., no. April, 2010.

Avnet, “Xilinx ® Spartan ® -6 FPGA LX9 MicroBoard User Guide,” p. 6, 2011.
Avnet, “LwIP Applications Software 201 for the Spartan-6 LX9 MicroBoard,” p. 27, 2011.

RASPBERRY FOUNDATION, “Download Raspbian for Raspberry Pi,” 2016. [Online].
Available: https://www.raspberrypi.org/downloads/raspbian/. [Accessed: 02-Jun-2016].

G. Feng, K. K. Tzeng, and S. Member, “Algorithm for Multisequence Shift-Register Cyclic
Codes,” vol. 37, no. 5, pp. 1274-1287, 1991.

Xilinx_EDK, “Xilinx Constraints Guide,” Constraints, vol. 612, pp. 1-248, 2008.

A. Region and D. Function, “FIPS 140 - 2(Change Notice 1) Random Number Tests —,” vol.
2,n0.1,2003.

J. Goli¢, “True Random Number Generation with Logic Gates Only,” Security, pp. 1-34,
2008.

AVNET, “AES-S6MB-LX9-G.” [Online]. Available:
https://products.avnet.com/shop/en/emea/kits-and-tools/development-kits/aes-s6mb-
1x9-g-3074457345629535808. [Accessed: 12-Jul-2016].

Avnet, “LwIP Applications Software 201 for the Spartan-6 LX9 MicroBoard,” 2013.
M. S. Philipp Rumpf, Jeff Garzik, “rngd(8) - Linux man page.” .

NIST, “NIST Statistical Test Suite.” [Online]. Available:
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/sts-2.1.2.zip.

49

50

Appendix A

Python script intended to analyze the data generated from the multiple designed random
number generators. The script will output a plot of the values in the given interval and the
distribution of values in the same interval. The script also writes a few indicator values which
could be compared to values expected with true random data.

Suggested use:

#> head -c [number of bytes] /location/of/device | ./Analyse_data.py [number of
bytes]

Analyze_data.py

#!/usr/bin/python3

import sys

import matplotlib.pyplot as plt
import numpy as np

import math

def sys args(): # Read parameters of program
if len(sys.argv)>l:
return int(sys.argv[l])
else:
print("Intended use: ", sys.argv[0], " bytes to process ")
exit ()

def percentage(val, limit):
result = (val/float(limit))*100
return int (result)

def amount of ones(data):
if (data < 256):
ctr = 0
for 1 in range(0,8):
ctr += 1 if (data & 1) else O
data >>= 1
return ctr
else: # Error condition
return -1

def shannon entropy(probability list):
sum = 0.0
entr = 0.0
for elem in probability list:
sum += elem
Conditional sum, log(0) generates error
entr += 0 if (elem == 0.0) else (elem * math.log2(elem))
if (sum<0.99999):
print ("ERROR: sum probability list:", sum)
return (-entr)

def write file(filename, datatowrite):
try:
with open(filename, 'w') as f:
f.write(datatowrite)
except IOError as e:
print('open files failed: %s' % e.strerror)

51

def main():
bytes to process = sys_args()
data = sys.stdin.buffer.read() #Read binary data stdin
bytes to read = len(data)
cycles = bytes to_read//bytes to process

divider = int(bytes to_read // 100) # progress monitor
open virtual figure , 8x6 inches
plt.figure (num=None, figsize=(8, 6), dpi=96, facecolor='w', edgecolor='k")
for i in range(0,cycles * bytes to process, bytes to process):
dataset = []
num ones = 0
for j in range(0,bytes to process):
current byte = int(datal[i+]j])
dataset.append(current byte)
num ones += amount of ones(current byte)
if not ((i+j)%divider): #display of percentage
sys.stdout.write("\rAnalysing: %02d%%" % \
percentage (i,cycles * bytes to process))
sys.stdout.flush()
Write plot data
plt.plot(range(0,bytes to process),dataset,'ko', markersize=l)
plt.axis ([0, bytes to process, 0, 255])
plt.xlabel ('Sample Number')
plt.ylabel ('Value')
plt.title('Stream Value Plot of {:d} bytes'.format(bytes to process))
num = i//bytes to process
plt.savefig(str(num) + " ValuePlot.png", bbox inches='tight')
plt.cla()
plt.clf()
Statistics
stat = "Amount of data analysed: {:.0f} bytes\n".format (bytes to process).
stat += "Avg:\t{:.3f}\n".format (np.mean (dataset))
stat += "Med:\t" + str(np.median(dataset)) + "\n"
ones = num ones /(bytes to process*8)
stat += "Percentage ones:\t{:.2%}\n".format (ones)
stat += "\nHistogram statistics:\n"
Distribution
y,_,_ = plt.hist(dataset, range(0,256+1), histtype='bar',
rwidth = 1, color='k', normed=l, align='left')
plt.axis([-0.5, 255.5,0,y.max() + y.max()*0.1])
plt.xticks(list(filter (lambda x:x%$16==0,range(0,256))))
plt.xlabel ('Value')
plt.ylabel('Occurrence')
plt.title('Data Distribution')
plt.savefig(str(num) + " DistributionPlot.png", bbox inches='tight'")
plt.cla()
plt.clf()
stat += "Distribution Min:\t{:.3%}\n".format (y.min())
stat += "Distribution Max:\t{:.3%}\n".format (y.max())
stat += "Per Byte Shannon Entropy:\t{:.3f}
bits\n".format (shannon entropy(y))
write file(str(num) + " Stats.log", stat)
print("\n\nDone')
Run main program
main ()

52

Appendix B

Verilog module to enable Simple Ring Oscillator in the Xilinx Hardware Development Kit

RO_PARAM.v

‘timescale /

/**

* Parameterized Ring Oscillator Module
* Author: Daniel Wietrzychowski

* License: LGPL-2.1

**/

// USE: RO # (DELAY) RingOscillator (EN, out);
module RO (
input EN,
output out);
parameter DELAY=1;

wire [DELAY:0] interconnect;

assign interconnect[0] = out;
genvar 1i;
generate
for(i=1; i1 <= DELAY; i=i+l)
begin
(* S = "TRUE" *)delay WAIT(interconnect[i-1],interconnect[i]);

end

endgenerate

NAND2 EN_inv (
.I0(EN),
.I1(interconnect [DELAY]),
.0 (out)):;
endmodule

module delay(input i, output o); // ouput = inv(inv (input)
wire inv wireO;

INV inv_0(
LI(1),
.0(inv_wire0)) ;

INV inv 1 (
.I(inv_wire0),
.0(0))
endmodule

53

54

Appendix C

Verilog module which produces a FIRO of length parameterized value TAPS.

FIRO.v

/**

* Parameterized Fibonacci Ring Oscillator Module
* Author : Daniel Wietrzychowski

* License: LGPL-2.1
**/
module FIRO (

EN ,
POLYNOME |,
0)

// Ring oscillator with feedback taps, Many-to-one logic

parameter TAPS =

input
input [TAPS-1:0]
output
wire [TAPS-1:0]

assign O =
NAND2 EN_ INV(

16;

EN;
POLYNOME ;
O;

WXOR,
WINV;
WINVI[O];

_I0 (WXOR[0]1),

.I1(EN),

LO(WINV[O

)
genvar i;
generate

n

for (i=1; i<TAPS; i=i+l)

begin

(* s = "TRUE" *)Block Fibonacci BF(
.in xor (WXOR[i]) ,.out xor (WXOR[i-117)
.in inv(WINV[i-1]),.out inv(WINV[i])
.enable tap (POLYNOME[i])

)
end
endgenerate
// Terminate and

loopback

assign WXOR[TAPS-1] = WINV[TAPS-1];

endmodule

module Block Fibonacci (

input in_xor
input in_inv

’

’

input enable tap,
output out xor ’
output out inv) ;

wire flip;

XOR2 X (
.I0(in_xor),
I1(flip),

.0 (out_xor))

AND2 A(

.I0(enable tap),

.I1(in_inv
.0 (flip
INV INVERT (
.I(in inv),
.O(out_inv));
endmodule

’

)
) 4
)

’

’

55

56

Appendix D

Parameterized LFSR module with Galois architecture

LFSR_Galois.v

/**
* Parameterized LFSR with Galois architecture
* Author : Daniel Wietrzychowski
* License: LGPL-2.1
**/
module Galois LFSR(
clock,
enable,
reset,
polynome,
Iv,
out) ;
parameter TAPS = ;
input clock,
enable,
reset;
input [TAPS-1:0] polynome, // bit0 = 0!
Iv;
output [TAPS-1:0] out;
wire [TAPS:0] ic;
genvar i;
generate
for (i=0; i<TAPS; i=i+l)
begin
Block Galois LFSR BG LFSR(
.CLK(enable & clock),
LIV(IVIIiD) ,
.feedback (i[0]) ,
.poly(polynome[i]) ,
.reset (reset) ,
cin(ic[i+1]) ,
.out(ic[i])
)
end
endgenerate
assign ic[TAPS] = ic[0];
assign out = ic[TAPS-1:0];
endmodule
module Block Galois LFSR(
input CLK,
input IV,
input feedback,
input poly,
input reset,
input in,
output out);
wire inv,flip, to xor;
XOR2 X (
.10 (to_xor),
I1(flip),
.O(out)) ;
AND2 A(
.10 (poly),
.I1 (feedback),
.0(flip));
LFSR D FLOP MEM(
.CLK(CLK) ,
.D(in),
.RESET (reset),
LIV(IV),
.Q(to_xor));
endmodule

57

module LFSR D FLOP(CLK, D, RESET, IV,
input CLK,D,RESET,IV;
output reg Q;
always @ (posedge CLK)

begin
if (RESET)
begin
Q = 1IV;
end
else
begin
Q = D;
end
end
endmodule

58

Q);

Appendix E

Verilog module which produces a GARO of length parameterized value TAPS.
GARO.v

/**

* Parameterized Galois Ring Oscillator Module
* Author : Daniel Wietrzychowski

* License: LGPL-2.1

**/
module GARO (
EN ,
POLYNOME ,
0)
// Ring oscillator with feedback taps, One-to-many logic
parameter TAPS = 16;
input EN;
input [TAPS-1:0] POLYNOME ;
output O;
wire [TAPS-1:0] WXOR;
wire feedback;
assign O = feedback;
NAND2 EN_INV(
.I0(WXOR[O]),
.I1(EN),
.0 (feedback)
)7
genvar i;
generate
for(i=1; 1i<TAPS; i=i+l)
begin
(* S = "TRUE" *)Block Galois BG(
.in tap(feedback) ,
.in inv(WXOR[i]) ,
.out_xor (WXOR[i-1]) ,
.enable tap (POLYNOME[i])
)
end
endgenerate
// Terminate and loopback
assign WXOR[TAPS-1] = feedback;
endmodule

module Block Galois(
input in tap,
input in inv,
input enable tap,
output out xor);
wire inv,flip;

XOR2 X (

.I0(inv),
I1(flip),
.0 (out_xor));

AND2 A(

.I0(enable_ tap),
.I1(in_tap),
.0(flip));

INV INVERT (
.I(in_inv),
.0(inv));

endmodule

59

60

Appendix F

Verilog module responsible for post processing the random data

PostProcessing.v
‘timescale 1lns / lps
/* *

* Parallel Post Processing using blocking parity filter for an 8-bit bus
* Author : Daniel Wietrzychowski

* License: LGPL-2.1

**/

module PP parity parallel(
input clock,
input enable, // inverted
input reset,
input [7:0] in,
output [7:0] out,
output block);

wire [7:0] parity;

genvar i;
generate
for (i=0,;1<8;i=i+1)
begin : parity filter
PP parity bit (clock,in[i],parity[i]);

end

endgenerate
BlockingFilter
#(.N(D),

M(1)) BlockFilter(clock,
enable,
reset,
parity,
out,
block) ;

endmodule

module PP parity bit(clock,in,out);
input clock, in;
output reg out;
reg mem = 1'b0;

always @ (posedge clock)
begin
mem = in * mem;
out = mem;
end

endmodule

module BlockingFilter(

clock,
enable,
reset,
in,
out,
block);
parameter N=1;
parameter M=1;
input clock ,
reset ,
enable;
input [7:0] in H
output reg [7:0] out ;
output reg block ;
reg [3:0] counter=4'bH0;

always @ (posedge clock)
begin
if (reset)
begin
out = 8
block =
counter
end
if ('enable)
begin
block
out

counter
end
else
begin

block = 1

end
end

endmodule

62

// drop N /(M+1l) packets

// 1 <N < 15

counter < N ;

block ? // if Block (every N out of M+1 values)
out : // TRUE: don't change value
in // FALSE: pass-through input

(counter < M)* (counter + 1); // loop counter 0->N

Appendix G

Simulation of parity filter on data.

Use of PP_Parity.py assuming a Unix-like operating system:

#> cat inputbata | ./PP_Parity [amount of filters] > outputbata

PP_Parity.py

#!/usr/bin/python3

import sys
class Parallel Parity Filter:
'Use Filter'
def init (self):
self.prev = 0x00
def filter(self, val):
tmp = (int(val) * int(self.prev))
self.prev = tmp
return tmp

if len(sys.argv)>l:

num filters = int(sys.argv[1])

filters = [Parallel Parity Filter() for i in range(num filters)]
else:

print("Intended use: ", sys.argv[0], " #filters'")

exit ()

data = sys.stdin.buffer.read() #Read binary data stdin
bytes to read = len(data)
for i in range(0, bytes to read):
active byte = datal[il]
for j in range(len(filters)):
active byte = filters[j].filter (active byte)
processed byte = (active byte).to bytes(l,byteorder='big')
if not(i % (2*num filters)):
push to stdout
sys.stdout.buffer.write(processed byte)

63

64

Appendix H

The C-code to transfer generated data to a computer.

RNG.c

#include <stdio.h>
#include "platform.h"
#include "xparameters.h"

#define MEMSIZE 2500
#define MONOBIT THRESHOLD 275

void print (char *str);

char count ones(char byte){
char c=0;

c += byte & 1;

c += (byte >> 1) & 1;
c += (byte >> 1) & 1;
c += (byte >> 1) & 1;
c += (byte >> 1) & 1;
c += (byte >> 1) & 1;
c += (byte >> 1) & 1;
c += (byte >> 1) & 1;
return c;

int main () {
init platform();
// Pointers to hardware: DIP, LED, Generator
int * ptr_led = (int *)XPAR _LEDS 4BITS_BASEADDR ;
const int * ptr dip = (const int *)XPAR DIP SWITCHES 4BITS BASEADDR ;
const int * ptr rng = (const int *)XPARiAXIiINTERCONNECT78BITSiBASEADDR,'

int prev data = 0;
int rng data = 0;
int 1i;

char tests;
int monobit sum;
char mem[MEMSIZE];
while (1) {
for(i = 0; i < MEMSIZE; i++){
while(prev_data == rng data){
(*ptr led) = *ptr dip; // (*out) = *in
rng_data = *ptr rng & OxFF; // get data from pins, truncate to 8bits
mem[i]=rng data;
}
prev_data = rng data;
}
char tests = 0;
//monobit test
monobit sum =0;
for(i = 0; i < MEMSIZE; i++){
monobit sum += count ones(mem[i]);
}
char tests |= ((monobit sum < (10
(monobit sum > (10

)+MONOBIT THRESHOLD)) ?
)0-MONOBIT THRESHOLD)) : 0);

if(tests == 1){
for(i = 0; i < MEMSIZE; i++)({
xil printf("sc", mem[i]);
}
}
}
cleanup platform() ;
return 0O;

65

66

Appendix |

Included is the successful report generated by the NIST Statistical Test Suite for Random
number generators. The conducted tests are described in “A Statistical Test Suite for Random
and Pseudorandom Number Generators for Cryptographic Applications”[5]

ClL C2 C3 C4 C5 C6 C7 C8 C9 Cl0 P-VALUE PROPORTION STATISTICAL TEST

1 4 1 0 0 0 0 1 1 2 0.122325 10/10 Frequency

1 0 0 0 1 0 1 5 2 0 0.008879 10/10 BlockFrequency

2 0 3 0 1 1 0 0 2 1 0.350485 10/10 CumulativeSums

1 1 4 0 0 0 0 1 2 1 0.122325 10/10 CumulativeSums

0 4 1 1 1 0 2 1 0 0 0.122325 10/10 Runs

1 0 2 0 4 1 1 1 0 0 0.122325 10/10 LongestRun

0 0 0 0 2 5 0 0 2 1 0.004301 10/10 Rank

2 0 0 0 1 1 5 1 0 0 0.008879 10/10 FFT

1 0 0 2 1 2 0 0 4 0 0.066882 10/10 NonOverlappingTemplate
0 1 2 2 0 0 0 1 4 0 0.066882 10/10 NonOverlappingTemplate
1 1 2 0 1 0 1 1 3 0 0.534146 10/10 NonOverlappingTemplate
2 0 0 0 0 1 1 0 4 2 0.066882 10/10 NonOverlappingTemplate
0 0 2 0 0 1 0 2 4 1 0.066882 10/10 NonOverlappingTemplate
2 1 0 0 2 1 0 0 4 0 0.066882 10/10 NonOverlappingTemplate
1 0 1 0 1 1 0 3 3 0 0.213309 10/10 NonOverlappingTemplate
0 0 0 0 1 4 0 1 4 0 0.004301 10/10 NonOverlappingTemplate
0 0 4 0 0 1 0 1 4 0 0.004301 10/10 NonOverlappingTemplate
1 1 0 1 0 0 1 0 6 0 0.000439 9/10 NonOverlappingTemplate
1 1 1 0 1 1 0 0 4 1 0.213309 10/10 NonOverlappingTemplate
2 0 1 0 0 1 1 1 4 0 0.122325 10/10 NonOverlappingTemplate
1 0 0 0 2 0 2 1 3 1 0.350485 10/10 NonOverlappingTemplate
0 2 1 0 3 0 1 0 3 0 0.122325 10/10 NonOverlappingTemplate
1 0 0 2 0 0 1 2 3 1 0.350485 10/10 NonOverlappingTemplate
1 0 0 1 0 0 0 0 4 4 0.004301 10/10 NonOverlappingTemplate
0 2 2 1 1 0 0 0 4 0 0.066882 10/10 NonOverlappingTemplate
0 1 1 0 0 0 3 1 4 0 0.035174 10/10 NonOverlappingTemplate
1 0 0 2 2 0 1 0 4 0 0.066882 10/10 NonOverlappingTemplate
1 0 2 0 0 1 1 0 5 0 0.008879 10/10 NonOverlappingTemplate
1 1 1 0 0 1 1 1 3 1 0.739918 10/10 NonOverlappingTemplate
3 1 0 0 0 0 1 0 5 0 0.002043 10/10 NonOverlappingTemplate
1 2 1 1 0 0 1 1 3 0 0.534146 10/10 NonOverlappingTemplate
1 1 1 1 1 0 0 0 5 0 0.017912 10/10 NonOverlappingTemplate
0 0 0 1 2 1 1 0 5 0 0.008879 10/10 NonOverlappingTemplate
0 1 1 2 0 0 1 0 4 1 0.122325 10/10 NonOverlappingTemplate
1 0 1 0 0 0 0 3 4 1 0.035174 10/10 NonOverlappingTemplate
0 2 0 0 1 2 0 2 3 0 0.213309 10/10 NonOverlappingTemplate
0 1 0 0 0 0 1 0 5 3 0.002043 10/10 NonOverlappingTemplate
1 0 0 2 0 0 1 0 3 3 0.122325 9/10 NonOverlappingTemplate
2 0 1 0 2 0 1 0 4 0 0.066882 10/10 NonOverlappingTemplate
0 0 0 2 2 0 1 0 4 1 0.066882 10/10 NonOverlappingTemplate
0 0 1 2 1 2 0 0 3 1 0.350485 10/10 NonOverlappingTemplate
1 1 1 0 0 2 0 0 4 1 0.122325 10/10 NonOverlappingTemplate
1 0 3 1 1 0 0 1 3 0 0.213309 10/10 NonOverlappingTemplate
2 0 1 1 1 0 0 0 4 1 0.122325 10/10 NonOverlappingTemplate
1 0 0 2 0 2 0 0 4 1 0.066882 10/10 NonOverlappingTemplate
0 1 0 0 2 1 0 1 5 0 0.008879 10/10 NonOverlappingTemplate
2 1 1 0 0 0 2 0 4 0 0.066882 9/10 NonOverlappingTemplate
1 2 0 0 2 0 0 0 5 0 0.004301 10/10 NonOverlappingTemplate
0 0 0 0 0 2 1 1 4 2 0.066882 10/10 NonOverlappingTemplate
1 1 1 0 1 1 1 1 3 0 0.739918 10/10 NonOverlappingTemplate
1 0 1 1 0 0 1 1 3 2 0.534146 10/10 NonOverlappingTemplate
1 2 3 0 0 1 0 0 3 0 0.122325 10/10 NonOverlappingTemplate
0 0 0 1 1 0 2 2 3 1 0.350485 10/10 NonOverlappingTemplate
0 0 0 0 1 2 1 1 4 1 0.122325 10/10 NonOverlappingTemplate
1 0 1 1 2 1 0 0 3 1 0.534146 10/10 NonOverlappingTemplate
1 3 1 1 0 1 0 0 3 0 0.213309 10/10 NonOverlappingTemplate
1 0 0 3 0 0 0 1 3 2 0.122325 9/10 NonOverlappingTemplate
0 1 1 0 0 0 0 2 5 1 0.008879 10/10 NonOverlappingTemplate
0 0 0 1 1 2 2 0 3 1 0.350485 10/10 NonOverlappingTemplate
0 1 2 0 0 2 0 0 4 1 0.066882 10/10 NonOverlappingTemplate
0 2 1 0 3 0 1 0 3 0 0.122325 10/10 NonOverlappingTemplate
1 2 0 0 0 1 0 1 5 0 0.008879 10/10 NonOverlappingTemplate
0 2 2 0 0 1 0 1 4 0 0.066882 10/10 NonOverlappingTemplate

68

OFRPOOFRPRNOOORFRPFPPFPOOOOOOONRPFOORPRPOOOONOODODOOWRHRONRPFEFNREFRPEPREPREPEPEPNMEFNOOORPROOONORPRONRPEFENEFNRERPRPPOOOR,OOORNEE

P ORPROORPRRPPFPRPRPOORFRPROONORFRPRRPEPREPRPOOOONNRPEPENOORPRPFPOOONORPRRPEPRPFRPONRPRPRPORPOOONRPFPRPPWHRFROOORFROOOOOODOOOOOHrHrOODODORFOWOo

OO O WOOOONRPFRPPFPOOFRPRRPRPOORFRPROOONOORFRFOONRPFONOORFRPRPEFOOOOONORPRNNRPWORORFRPRPOOOONEFNORFRPRONOODOONRPFOWRNORFR,OOON

PP OONRPFPROOOONOODOOORRFPRPFPORFRPRNEFEPNOORFRPROORPRRPFORPRRPORPORPPEPPORPPORPPEPORFEPNONONOORPRRPOONRPFPFOOOORFRORFRONOWRNRE,EREOOO

PP OONRFRFRPRWORRPFPRPONMNRPEFPOWWOOOOOWORRORPROOWROWNORPRPFPONRPFOOOOOORPFPRRPOORPROOORPRRPONKFPWREFRONRPRPRPOPMMOOORPRPOOOOW

OFRP P PRFRPONNMNMNWRPREPRPRPONWOOOOONWORORFRPRNREFPPOOOOHFORFFONRPFPORPRNOOORPRRPRPOOOORRPFPORPONEFEPNOODOORR PP OORPRORFRPROONMNWODNO

O OO OO ONORPRPFPFOORRPREPRPOORFF WORRPONOOODOOWROORROOODOOOOOOOHRRHFHFOOOOORrR OO PR ORFRFROONOOREFONOORFR OO ORFR OWwWoOo

PP WOORRPOOORFRPONOONNOORPRRPORPRPOORFPOOORFRPOOMOONRFRP PP PEPORPPONOOORFFRONRPFONRFEFRERPRPEPONOODOONNOODORFR,OONOORORREO-R

AR D WWWWWWEWUOOWWWWWUAWWdUOWOaWWwh>DOWDOODDWWREDDWWAROOWWDEWWAOUOTWWDBSDODDTWWREDdAOB_DMWDDWSDMWBEDBEDdDWOHYDEWWWW

ORrRPr P ORFRPPFPORPRPOOONORFRRRFEPREPRPNRPROPFPOORPRORFR WNREPFPFPOOORFRPPFPOFPNORPRPOOWRORPRRPOOFFNREFPOONRPFPRPRPOOOORPONEFEFNREFREPEPNORPRPORERENDODO

OO OO OO ODOD OO ODOODOODODODODODODODOOOOOOOoOo

.122325
.066882
.122325
.213309
.122325
.000199
.534146
.035174
.017912
.066882
.035174
.122325
.122325
.350485
.122325
.213309
.066882
.017912
.008879
.066882
.066882
.350485
.350485
.017912
.122325
.002043
.066882
.213309
.350485
.213309
.008879
.008879
.213309
.739918
.122325
.350485
.213309
.008879
.066882
.534146
.534146
.122325
.066882
.534146
.122325
.122325
.035174
.000199
.122325
.035174
.008879
.066882
.122325
.066882
.534146
.004301
.213309
.008879
.017912
.534146
.122325
.017912
.122325
.122325
.350485
.213309
.350485
.000199
.008879
.534146
.213309
.122325
.122325
.350485
.534146
.350485
.004301
.035174
.213309
.000439

10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10

9/10
10/10
10/10
10/10
10/10
10/10

9/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10

9/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

0 0 2 2 0 1 1 0 4 0 0.066882
0 1 0 1 1 0 0 0 5 2 0.008879
1 1 1 1 1 0 0 0 4 1 0.213309
1 0 1 0 1 1 0 1 4 1 0.213309
1 0 0 1 1 0 1 1 4 1 0.213309
0 0 1 1 1 0 1 1 3 2 0.534146
1 1 0 1 0 1 0 1 4 1 0.213309
1 0 0 2 0 1 0 1 4 1 0.122325
0 1 1 1 0 0 2 2 3 0 0.350485
0 0 2 1 2 0 0 0 4 1 0.066882
0 1 0 0 2 1 1 0 4 1 0.122325
1 0 1 1 1 1 0 1 4 0 0.213309
0 0 1 1 1 0 2 0 5 0 0.008879
2 5 0 0 0 1 2 0 0 0 0.004301
0 4 1 0 0 0 0 2 3 0 0.017912
1 1 4 0 0 1 0 1 2 0 0.122325
0 2 0 0 3 0 1 4 0 0 0.017912
1 2 1 0 3 0 0 1 2 0 0.350485
1 0 1 0 4 1 1 2 0 0 0.122325
1 0 1 1 3 1 0 1 1 1 0.739918
0 1 2 1 3 1 0 0 2 0 0.350485
0 0 2 1 3 0 2 1 1 0 0.350485
1 3 0 2 3 1 0 0 0 0 0.122325
1 0 0 1 5 1 0 1 0 1 0.017912
1 0 0 1 1 1 0 1 0 5 0.017912
0 0 1 1 0 1 0 2 1 4 0.122325
0 0 0 1 2 0 0 1 1 5 0.008879
0 0 1 0 0 2 2 1 1 3 0.350485
0 0 0 2 0 0 4 1 0 3 0.017912
0 1 0 1 0 3 0 0 1 4 0.035174
1 0 0 2 1 2 0 1 0 3 0.350485
1 2 0 2 0 0 1 1 0 3 0.350485
1 1 0 0 2 2 1 0 0 3 0.350485
1 0 1 1 0 0 0 2 1 4 0.122325
1 1 0 0 1 0 0 0 2 5 0.008879
0 1 1 1 2 0 0 0 2 3 0.350485
1 1 2 0 0 0 0 1 2 3 0.350485
1 1 1 2 1 0 0 1 0 3 0.534146
0 2 1 1 3 0 0 0 0 3 0.122325
0 1 3 0 0 2 0 1 0 3 0.122325
0 2 0 2 0 0 1 1 1 3 0.350485
0 2 0 0 0 0 2 1 1 4 0.066882
0 0 0 4 2 2 1 1 0 0 0.066882
0 0 0 6 0 1 1 0 2 0 0.000199
1 1 2 0 0 0 0 5 0 1 0.008879

10/10
10/10
10/10
10/10

9/10
10/10

9/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
OverlappingTemplate
Universal
ApproximateEntropy
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
Serial

Serial

LinearComplexity

The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 8 for a

sample size = 10 binary sequences.

The minimum pass rate for the random excursion (variant) test
is approximately = 8 for a sample size = 10 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.

69

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
A Testable True Random Number Generator for Linux Security Applications

Richting: master in de industriéle wetenschappen: elektronica-ICT
Jaar: 2016

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Wietrzychowski, Daniel

Datum: 22/08/2016

