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ABSTRACT 

Buildings from around 1960 that were built out of reinforced concrete portals were often 

constructed without proper knowledge of the influence from lateral loads. The lack of this knowledge 

caused several buildings to fail in a disastrous brittle shear manner. Nonetheless, reinforced concrete 

structures and their sensitivity to moments and shear forces have not been studied well. Moreover, 

reliable numerical software’s to study shear-critical structures are rare. Therefore, the purpose of 

this master’s thesis is to predict the behaviour of a real life reinforced concrete structure using a 

scaled model and to calibrate a finite element model to obtain this prediction. 

The starting point for this master’s thesis was a thesis which was carried out at the University 

of Toronto, in which they tested a full size reinforced concrete frame under seismic loading. The 

same single-span, two-storey, reinforced concrete frame was constructed on scale one to three. An 

experimental and numerical analysis was carried out when the reinforced concrete frame was 

subjected to lateral loading, to investigate the critical shear behaviour of the portal frame. This 

numerical analysis was done with the software TNO DIANA.  

The experimental- and numerical analyses showed that a difference in behaviour and failure 

mode arose between the prototype and the scaled model when a scale factor of three was applied. 

This change in behaviour between the prototype and the scaled model is removed by a modified 

model. The finite element model proved that this modification is accurate and that the behaviour of 

the prototype can be predicted by a scaled model and by the calibrated finite element model. 

  

	  



	  



ABSTRACT - NEDERLANDS   

Gebouwen van rond de jaren 1960 die opgebouwd zijn aan de hand van gewapende betonnen 

draagstructuren, zijn vaak geconstrueerd zonder de juiste kennis te hebben over de invloed van 

laterale belastingen. Hierdoor kunnen gebouwen door brosse afschuifkrachten op catastrofale wijze 

bezwijken. De oorzaak hiervan is dat er in het verleden weinig onderzoek is gevoerd naar deze 

moment- en afschuifkracht gevoelige gebouwen. Ook betrouwbare numerieke software om dit te 

onderzoeken was zeldzaam. Het doel van deze master thesis is daarom om het gedrag van een 

gewapende beton structuur te voorspellen aan de hand van een schaalmodel. Om dit gedrag te 

voorspellen wordt er binnen deze master thesis ook een eindige elementen model ontwikkelt. 

In dit thesisonderzoek is een betonnen portaal uit een referentie artikel geschaald met factor 

drie. Op dit betonnen portaal is vervolgens een laterale belasting aangebracht waarna op 

experimentele- en numerieke wijze het kritisch afschuifgedrag van het portaal onderzocht is. De 

numerieke analyse is bekomen aan de hand van de software TNO DIANA.  

De experimentele- en numerieke resultaten tonen aan dat er een verschil in gedrag en 

bezwijkmechanisme ontstaat tussen het prototype en het schaalmodel wanneer een schaalfactor van 

drie wordt toegepast. Dit verschil is weggewerkt aan de hand van een aangepast model. Het eindige 

elementen model bewijst dat deze aanpassing accuraat is. Het gedrag van het prototype kan dus 

voorspelt worden aan de hand van een schaalmodel en een gekalibreerd eindige elementen model. 
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0.  INTRODUCTION         

This master’s thesis describes a study on predicting the behaviour of a real life reinforced 

concrete frame (prototype) using a scaled structure (model). The scaled model has a scale of 1:3 

related to the prototype. The scaling of the dimensions, the materials characteristics, the boundary 

conditions, and the loadings of the prototype are based on the similitude theory.  

The main advantages of scaled experiments are the simple manner of manipulation of the 

structure, the low fabrication costs and the small size of the equipment. The main disadvantages of 

this method are the time for fabrication of the models and the challenges in simulating the entire 

behaviour of the prototype. To make the testing on scaled models possible, some carefully chosen 

adjustments are necessary. These adjustments will lead to small differences between the expected 

and the obtained results. The current study uses an experimental quantitative design. 

Two aspects are inextricably linked with this research topic: reinforced concrete frames and 

the similitude theory. Before an experimental – and numerical investigation can be carried out, it is 

necessary to give a precise definition of these subjects. To this end, five cases are studied, which 

demonstrate the behaviour of a separated reinforced concrete element. Next, the behaviour of the 

connection between several elements is discussed. This investigation is carried out in chapter one 

Literature review. 

The second chapter of this master’s thesis elaborates on the experimental design. This is done 

by a representation of the dimensions of the test specimens. In the next section, the properties of 

the used materials are explained, followed by an overview of the construction of the mould and the 

reinforcement cages supplemented with a description of the casting process. Lastly, the used test 

setup is discussed together with the used measure instrumentation.  

Chapter three focusses on the processing of the results, gathered from the experimental 

program that is mentioned in the previous chapter. These results are transformed into graphs per 

specimen and clarified by pictures that were taken during the experimental tests.  

The fourth chapter discusses the finite element modelling by a description of the support 

conditions, the material model that is used for the mathematical FE modelling of the concrete – and 

reinforcement elements and the loading conditions. Next, the incremental-iterative solution 

procedure is explained in the section Analysis procedure. The model is built using the finite element 

software TNO DIANA. Following, the results of this numerical research are discussed in chapter five. 

Here, the focus is on the crack-widths in the z-direction, the displacement of the frame and its 

elements in the x-direction, the total compression stresses in the concrete, and the total stresses in 

the reinforcement in the x- and z-direction. 

Chapter six makes a comparison between the experimental program and the numerical 

program and chapter seven makes a comparison between the results of the reference article and the 

results obtained from the current study.  

The conclusions out of these two previous comparison chapters are formulated in chapter 

eight. Also, a general conclusion related to the research topic is mentioned in this chapter. Moreover, 

these conclusions were used for the formulation of research topics that could be investigated in future 

work, which are discussed in chapter nine. Finally, the derived sources are formulated in the last 

chapter of this master’s thesis.
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1.  LITERATURE REVIEW        

1.1  Reinforced concrete frames 

1.1.1  Background 

A reinforced concrete frame is a constructive combination of elements (columns and beams) 

which is frequently used in building constructions. Reinforced concrete is an artificial, stone like 

material that contains steel bars and is used for various structural purposes. It is made by mixing 

cement and various aggregates with water, for example, sand, pebbles, gravel, or shale.  

Concrete and its usage became more popular after inauguration of Portland cement in the 

19th century. Because unreinforced concrete only governs a good behaviour in compression, steel 

bars were introduced in the tensile zone of the concrete, which led to the development of a composite 

material named reinforced concrete. This material has excellent characteristics in compression and 

tension by the cooperation between the concrete and the steel bars. Therefore, the material is used 

in several types of civil engineering constructions such as high-rise buildings, dams, bridges, etc.  

Reinforced concrete is widely used because to the broad availability of the cement ingredients 

and the steel bars. Also, the production of concrete is much cheaper than that of steel. A reinforced 

concrete frame consists out of vertical elements which are called columns, and horizontal elements, 

are called beams. These elements are connected to each other by fixed joints. To increase the frame 

strength, the elements are usually cast together during the construction work. Two types of frames 

can be distinguished, the braced- and the unbraced frames. Braced frames can resist higher lateral 

loads than unbraced frames. This because the bracing system prevents that the structure sways 

away due to a horizontal load. 

Reinforced concrete frames are frequently used in high-rise buildings because it has more 

safety advantages than other materials. More precisely, reinforced concrete has more resistance 

against high temperature depending on the thickness of the concrete cover, with more thickness 

meaning longer heat resistance. Also, concrete has a good explosion resistance, and it can resist a 

wind force up to 300 kilometres per hour, given that the structure is designed properly of course [1].   

  



 20 

1.1.2  Frame analysis 

Frame analyses are carried out to study the behaviour of these frames when they are 

subjected with vertical –and horizontal forces. In practice, reinforced concrete constructions are 

designed on linear elastic assumptions. Analyses that use these assumptions are commonly plausible 

if the building is designed according the Eurocode. This means that serviceability conditions and 

strength are met, joints are detailed in the correct way, the length of the rebar’s are developed 

efficiently and the failure modes are ductile. Designs according to Eurocode are commonly 

conservative.  

The proper knowledge of the structural performance is not necessary, as these buildings are 

designed to withstand the external and internal loads in a safe way. However, when inspected 

structures are considered to be inadequate according to general standards, a more adequate analysis 

is demanded to revalue the capacity of these structures for safety. In this case, second-order effects 

such as geometric nonlinearities and material properties become more directive. These effects can 

affect the ultimate capacity and the failure modes. For this reason, a detailed structural calculation 

is necessary to account for these second-order effects. This analysis has two advantages; first, the 

rehabilitation strategy can be evaluated and secondly the crack pattern can be predicted. This can 

warn engineers for potential failure.  

The last 25 years, a lot of effort is done to improve and implement nonlinear numerical 

analysis procedures for reinforced concrete frames. Transparent and realistic models out of tests are 

implemented in design formulations and analysis procedures. These formulations and procedures are 

in a next stage applied to the design and evaluation of real life structures. TNO DIANA (Displacement 

Analyser) is a comprehensive multi-purpose Finite Elements software, focused on calculations of a 

wide spectrum of civil engineering and geotechnical applications and is used in this thesis. The 

rational of TNO DIANA is based on the Modified Compression Field Theory (MCFT) [2].  

 

 

Fig. 1.1: Reinforced concrete frame building [3] 
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1.1.3  Modified Compression Field Theory (MCFT) 

The Modified Compression Field Theory was originally proposed by Vecchio & Collins in 1986. 

The essential relations behind the MCFT were obtained out of experimental tests of thirty reinforced 

concrete panels which were subjected to a combination of axial loads and shear or pure shear. Out 

of these test results, compatibility, stress and strain-strain and equilibrium relationships were defined 

in average stresses and strains. The equilibrium conditions secure balance of the external applied 

forces to the internal forces in the elements; compatibility imposes agreement between deformation 

experienced by the concrete to an identical deformation of the reinforcement; and fundamental 

relationships relate average stresses to average strains for the cracked concrete but also for the 

cracked reinforcement. 

The Modified Compression Field Theory treats the cracked reinforced concrete elements as 

an orthotropic material wherein the cracks can rotate and re-orient. This MCFT also accounts on 

softening compression behaviour. This refers to the reduced concrete compressive strength in the 

presence of large transversal tensile strains. Also, tension stiffening is included and this counts for 

the tensile stresses in the concrete which occurs between the cracks. The local failure mechanisms 

are considered with yielding or fracture from the reinforcement at the position of the cracks. Also, 

sliding shear failure along the crack openings is considered [4]. 

 

1.1.4  Case studies  

To increase the research in this academic writing, this part will focus on previous 

experimental work of cyclic –or monotone loaded reinforced concrete frames. The testing of 

reinforced concrete frames has already been studied for years at several universities around the 

world.  

In this section, the shear-critical beam column connection is examined. Finally, the study of 

reinforced concrete frames at the University of Toronto will be investigated in more depth because 

one of the pioneers in this topic, namely Frank J. Vecchio was a professor at this University. Also, 

the reinforced concrete frame on which the experiment in this thesis is based on, was part of a thesis 

written at the University in Toronto [2]. 

 

A Shear-critical beam column connection 

In the past, many beam column connections had been examined and tested to understand 

the behaviour of reinforced concrete portals. To understand this behaviour, it suffices to build and to 

examine only the joint between these two elements. Thus, it is not necessary to build a whole frame. 

The disadvantage of this method is that only results of the local behaviour of the joint can be used, 

and not the global frame behaviour. With this in mind, two studies will be discussed in detail below. 

The first study is executed by Celebi and Penzien (1973), who investigated the behaviour of 

reinforced components by building a connection that existed out of a part of an interior beam and a 

column. In the second study, Ghobarah, Aziz and Biddah (1996) built a connection between a weak 

beam and a strong column, to examine the flexural shear in the connection. This connection was 

subjected to a cyclic loading.  
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A.1 A connection by Celebi and Penzien (1973) 

Celebi and Penzien tested twelve connections subjected to a cyclic loading. The variable 

parameters they used for the beam were width to depth ratio, the spacing between the stirrups, the 

dimensions of the cross-section, the longitudinal reinforcement ratio, and the dynamic versus static 

loading percentage. To understand the shear degradation due to a static load, they focused on just 

one specimen. Below are the properties, the way of testing the specimen and the results for beam 

twelve mentioned.  

Beam twelve has a length of 183 millimetres and a cross-section of 230 millimetres on 380 

millimetres (width x depth). A column is located in the middle of the beam, causing the ratio between 

shear span and width to have a value of 2,30. The beam is equipped with longitudinal reinforcement 

(1%) but also with reinforcement against shear (0,75%). The yield strength of the steel has a value 

of 345 MPa and the compressive strength of the concrete was almost 32 MPa. The configuration of 

the specimen is given in Figure 1.3.  

For measuring the loads and displacements they used actuator load cells, LVDTs and DCDTs 

which where mounted on an external frame. With the LVDTs the diagonal displacement is measured 

and with the DCDTs (direct current displacement transducers) the strains in the rebar’s are 

measured. The column stud is subjected with a vertical reverse cyclic load in a quasi-static way. The 

loading cycles are illustrated in Figure 1.4. Because of the cyclic load, the connection degraded in 

resistance which is shown in load deflection curve in Figure 1.4. The squeeze in the graph occurs 

because of the low ratio between the shear span and width and also due to the high value of the 

shear stresses. The deformations due to shear have an effect on the global total deformation of the 

joint and the structure [5]. 

 

 

 
Fig. 1.2: Structure dimensions and reinforcement placement (Celebi and Penzien – 1973) [5] 
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Fig. 1.3: Loading Sequence of beam twelve (Celebi and Penzien – 1973) [5] 

 

 
Fig. 1.4: Cyclic Response of beam twelve (Celebi and Penzien – 1973) [5] 

 
A.2 A connection by Ghobarah, Aziz and Biddah (1996) 

Ghobarah, Aziz and Biddah investigated a beam column connection for seismic design, which 

was based on a technique where curved steel jacks are used. Those curved steel jacks were applied 

in the zones were the failure in the connections occur. After placing the jacks in those weak zones 

the openings between the reinforcement and the concrete are filled with a shrink resistant grout. In 

this case, four specimens were tested. Below are the properties, the way of testing the specimen 

and the results for joint four mentioned. 

The joint between the constructive elements is built on a scale of one to three. The yield 

strength of the transversal rebar’s has a value of 448 MPa and the 2,8 millimetres thick curved steel 

jacket has a strength of 363 MPa. The compressive strength of the concrete was 23 MPa. The 

configuration of the specimen is given in Figure 1.5. Figure 1.6 shows the layout of the reinforcement.  

The first load cycle was a compression load which was applied on the top of the column with 

a value of 505 kN. This force was kept constant during the entire test. At the end of the beam they 

applied a vertical reverse cycle with a size of 15% of the strength of the specimen (60 kN), followed 

by two load cycles until failure of the concrete occurs (120 kN), and two cycles until failure of the 

reinforcement (340 kN). In the next stage, the displacement increases to two times the yield 

displacement. This continued until the total strength capacity of the specimen was lower than 25% 

of the eventual strength. The strains at the surface and the displacement of the structure were 
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measured by strain meters and displacement converters. In Figure 1.7 is the load displacement curve 

given. The first crack occurs at the joint between the beam and the column. This is followed by 

yielding of the reinforcement in the length direction of the beam (320 kN). During this phenomenon, 

the first cracks in the beam appears. The highest resistance what was reached was 430 kN when the 

displacement was equal to four times the displacement at yielding of the rebar’s. The failure was 

analysed as a failure due to shear at the plastic hinge region in the beam [6]. 

 

 
Fig. 1.5: Dimensions and loading locations of beam column joint (Ghobarah, Aziz and Biddah) [6] 

 

 
Fig. 1.6: Reinforcement placement (Ghobarah, Aziz and Biddah) [6] 

 

 
Fig. 1.7: Reverse cyclic load vs. displacement (Ghobarah, Aziz and Biddah) [6] 
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B Reinforced concrete frames at the University of Toronto  

B.1 The Vecchio and Balopoulou frame (1990) 

The study on the behaviour of reinforced concrete frames at the University of Toronto has 

been conducted in the last twenty years. The two most famous frames in this work field are the ones 

tested by Vecchio and Balopoulou in 1990 and by Vecchio and Emara in 1992. Based on these 

projects, Kien Vinh Duong wrote his thesis at the University of Toronto in 2006. His frame, the Duong 

frame established the base for the experiment in this thesis [2]. 

Vecchio and Balopoulou (1990) tested the parameters that cooperate to the nonlinear 

behaviour of RC frames. In this case, the frames where subjected to short-term loadings. These tests 

have been executed on a real life scaled reinforced concrete frame. Also, a research on the current 

formulations which predict analytically the reinforced concrete response was carried out.  

The frame tested by Vecchio and Balopoulou (1990) was scaled one to one and constructed 

out of two columns and two horizontal beams to simulate a two-storey high reinforced concrete 

building. The test specimen had a width of 3500 millimetres between the axes of the two columns, 

and the height of one storey was captured at 2000 millimetres. The total height of the specimen 

including de height of the foundation and the height of the beams, was 4600 millimetres. The 

dimensions of the frame and the placement of the reinforcement is depicted in Figure 1.8. The 

connections between columns and beams are fixed joints and the columns are clamped on the 

foundation. The reinforcement anchorage of the whole structure was accomplished by welding the 

ends of each rebar on a steel plate. This steel plate serves as a bearing for all the rebar’s, to keep 

the whole reinforcement of the structure in place. The concrete they used to build the frame was a 

concrete with a compressive strength of 29 MPa. The specimen was lab cured for three weeks and 

the tests on the frame were executed after a period of almost six months.  

When running the tests, the experimenters applied a vertical stabilizing point load of 350 kN 

at the centre of the upper beam. The whole structure was monitored to understand the behaviour of 

the frame and the behaviour of the reinforcement. To measure the total displacement of the frame, 

they applied twelve linear variable displacement transducers (LVDTs). Vecchio and Balopoulou also 

added a speckled pattern on the frame to measure the deformations of the surfaces with a camera. 

In total, they executed thirty-six load stages.  

When studying the test results, they mentioned that the second-order effects have a big 

influence on the general behaviour of the frame. The effects that were responsible for this influence 

were nonlinearities in the geometry, nonlinearities in the material, stiffening effects in tension, 

deformations due to shear, membrane action and shrinkage of the concrete. Finally, the structure 

failed due to a combination of crushing of the concrete at the middle of the bottom beam and yielding 

of the steel in the tensile zone. Another phenomenon that was observed was that hinges arose at 

the joints between column and beam at this bottom beam. These hinges developed just before the 

critical load of failing was reached. At the point of failing, the frame was subjected with a force of 

517 kN. Figure 1.9 shows the load-displacement curve of this test. 

This test was executed in the year 1990, in which the testing of fully scaled reinforced 

concrete models was rare. Back then, they only could apply vertical forces on the structure. 

Therefore, this project is considered a pilot project in its field of work. Thus, to completely understand 

the behaviour of a reinforced concrete structure, more complex load combinations were necessary 

[7]. 
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Fig. 1.8: Frame dimensions and reinforcement placement (Vecchio and Balopoulou - 1990) [7] 

 

 
Fig. 1.9: Vertical Load vs. Vertical Displacement at the Midspan of the First Storey Beam  

(Vecchio and Balopoulou - 1990) [7] 

 
B.2 The Vecchio and Emara frame (1992) 

A second important study that has been carried out at the University of Toronto is the frame 

tested by Vecchio and Emara (1992). This test is a follow-up of the test proceeded by Vechhio and 

Balopoulou (1990). Vechhio and Emara aimed to investigate the influence of shear on the behaviour 

of a concrete structure. Figure 1.10 shows the details of the test setup. The difference between the 

frame from Vecchio and Emara (1992) and the frame from Vechhio and Balopoulou (1990) is that 

they made another layout for the reinforcement, see Figure 1.11. All the other parameters, like the 

material properties and measurement tools, were identical between the studies.  

In this test setup, the experimenters used two vertical stabilizing forces instead of one. These 

forces were applied on the top of each column. The value of these forces was 700 kN. These vertical 

forces were combined with a horizontal increasing load which was placed at the left corner of the 

second-storey beam. This lateral load was applied by a 1000 kN displacement-controlled actuator.  

At the point of failing the frame was subjected to a lateral force of 329 kN. The frame failed 

at this point because there was a transition from a clamp to a hinge. These hinges arose at the left 

–and right side of each beam and at the base of each column. In Figure 1.12 the lateral load-
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displacement of this test setup is shown. Due to this force, some shear cracks arose in the 

constructive elements. These shear cracks amounted 20% of the total deflection in the lateral way. 

The size of this influence depends on several parameters, such as the size of the loads and the 

geometry of the frame. The shear strains that arises due to the deflection decreases the lateral 

stiffness and the rigidity of the columns and beams. Besides this, the axial and rotational strains 

increase. When the displacement of a frame is affected by the previously mentioned second-order 

effects, the failure mechanism can be influenced by deflection increase.  

Between 1990 and 1992 a lot of progress was made in testing and examining reinforced 

concrete frames. This resulted in more insight into the response of reinforced concrete frames and 

about the shear deflection in those frames. The frame tested by Vecchio and Emara failed due to 

flexure. To understand completely the effect due to shear and flexural behaviour of reinforced 

concrete frames, specific shear tests need to be carried out on this type of frames [8]. 

 

 
Fig. 1.10: Detail of the test setup  
(Vecchio and Emara - 1992) [8] 

 

 
   Beam section      Column section 

Fig. 1.11: Cross-sections of the constructive elements  
(Vecchio and Emara - 1992) [8] 
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Fig. 1.12: Second-Storey Lateral Force vs. Lateral Storey Deflection 

(Vecchio and Emara - 1992) [8] 

 
B.3 The Duong frame (2006) 

The Duong frame forms the base for the experiment in this thesis. The Duong frame is 

developed by Kien Vinh Duong at the University of Toronto as part of a thesis to obtain the degree 

of Masters of Applied Science. The specimen is formed by a single-span, two-storey, shear-critical 

reinforced concrete frame with a clamped foundation. The specimen is developed and tested in the 

laboratories of the University of Toronto. Below the properties, the way of testing the specimen and 

the results are explained.  

The frame which was used was also the scaled version of a real-life building frame. The scale 

factor in this project was two to three. The frame has a height of 4,6 meters and a width of 2,3 

meters. The beams have a cross-section of 300 millimetres by 400 millimetres just like the columns. 

This to ensure that the columns can be fixed properly to the foundation. The base of the specimen 

is 4,1 meters in length, 800 millimetres wide and 400 millimetres thick. In the next stage, this 

foundation is fixed by a post-tensioning to the floor. The beams span a length of 1,5 meters and the 

height of a storey is captured at 1,7 metres. Due to these measurements, a span to depth ratio of 

3,8 is obtained. This high value for the ratio caused shear failure in the beams. The concrete cover 

for the beams and columns is defined on 30 millimetres and 20 millimetres. The concrete cover for 

the foundation is 40 millimetres.  

In this test setup, they used two vertical stabilizing forces. These forces were applied on the 

top of each column. These vertical forces were combined with a horizontal increasing load which was 

placed at the left corner of the second-storey beam. Due to this lateral force, there arise high bending 

stresses at the bottom of the columns. To prevent those stresses in those zones, an extra 

reinforcement layer is added. The table below gives an overview of the used parameters in the frame. 

Figures 1.13, 1.14 and 1.15 show the dimensions of the structure and the dimensions and placement 

of the reinforcement for each cross-section of each member [2]. 
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Table 1.1: Cross-section details of constructive frame elements [2] 

Member b (mm) h (mm) Bottom 
steel Top steel Stirrup 𝛒𝐱	(%) 𝛒𝐲	(%) 

Beam 300 400 4∅20 4∅20 ∅9,5	at	300 1,143 0,158 

Column 300 400 4∅20 4∅20 ∅10	at	130 1,111 1,018 

Column top 300 400 8∅20 4∅20 ∅10	at	130 1,111 or 
2,39 1,018 

Column 
base 300 400 8∅20 8∅20 ∅10	at	130 2,39 1,018 

Foundation 800 400 8∅20 8∅20 ∅10	at	175 0,857 0,429 

 

 

 

 

 
Fig. 1.13: Frame dimensions in millimetres (Duong - 2006) [2] 
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Fig. 1.14: Frame reinforcement placement (Duong - 2006) [2] 
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Fig. 1.15: Cross-section constructive members (Duong - 2006) [2] 
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The concrete strength, which was specified to build the specimen, should have had a 

compressive strength of 20 MPa after 28 days. In reality, this concrete had a compressive strength 

of 30 MPa after 28 days. This extra strength of 10 MPa is a safety margin prescribed by the cement 

manufacturers. The slump of the concrete was 75 millimetres and the largest dimensions of the 

granulates were 10 millimetres. The compressive strength on the test cylinders are shown in Table 

1.2. The cylinders were subjected to lab cured conditions, or moist cured conditions, and the moist 

cured cylinders were only tested at 28 days [2]. 

 
Table 1.2: Compressive strength tests [2] 

Casting days f’c (MPa) 
lab cured 

f’c (MPa) 
moist cured 

f’r (MPa) 
lab cured 

f’r (MPa) 
moist cured 

8 21,3    

28 34,4 35,1 3,33 5,69 

9 months (test) 42,9    

 

The properties of the different sizes of reinforcing bars are listed in Table 1.3. The results for 

the tensile strength of the used reinforcement diameters 9,5; 10 and 20 are listed in Table 1.4. All 

these values mentioned above and below are used to build the numerical model. This numerical 

method is further illustrated in the following chapters [2]. 

 
Table 1.3: Reinforcement details [2] 

Bar size Nominal diameter 
(mm) 

Area cross-section 
(mm2) Location in specimen 

∅𝟗, 𝟓 9,5 71 Transversal 
(Column + base) 

∅𝟏𝟎 10 100 Longitudinal 

∅𝟐𝟎 20 300 Transversal (beam) 

 
Table 1.4: Reinforcement properties [2] 

Bar size Sample 𝜺𝒚	(𝒙𝟏𝟎=𝟑) 𝜺𝒔𝒉	(𝒙𝟏𝟎=𝟑) fy (MPa) fu (MPa) E  
(MPa) 

Esh 
(MPa) 

∅𝟗, 𝟓 Mean 2,41 28,3 506 615 210000 1025 

∅𝟏𝟎 Mean 2,38 22,8 455 583 192400 1195 

∅𝟐𝟎 Mean 2,25 17,1 447 603 198400 1372 
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To obtain data from these tests, Duong used three types of measurement tools. The first 

type is the strain gauges. Those gauges are monitoring the steel deformation during tests. The 

deformation of the whole portal is measured by a total of thirty-six strain gauges. This way of testing 

is mentioned in Figure 1.16.  

The second type is the Zurich gauge. These gauges are small metal studs that were attached 

to the concrete surface of the portal to measure the strains in this concrete surface. Surface strains 

were registered after each load step by measuring the relative movement between the points. As 

well in the horizontal and vertical way as well diagonal. This test setup is given by Figure 1.17.   

The last type is the LVDTs (Linear variable differential transducers). These were placed on 

several places on the frame to measure lateral and vertical deflections, as well as any possible base 

slip and out-of-plane movement. Those deflections and movements were measured by a total of 

seventeen LVDTs. This test setup is given by Figure 1.18 [2]. 

 

 

 

 
Fig. 1.16: Layout of the steel strain gauges (Duong - 2006) [2] 
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Fig. 1.17: Layout of Zurich gauges (Duong - 2006) [2] 

 

 
Fig. 1.18: Layout of the LVDTs (Duong - 2006) [2] 
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As mentioned before, two vertical stabilizing forces were used. These forces were applied on 

the top of each column. The value of these forces was 420 kN and were sustained during the entire 

test. Those vertical forces were combined with a horizontal increasing load, which was placed at the 

left corner of the second-storey beam. This force was implement in displacement-controlled situation. 

At the load steps in the beginning, the horizontal force was a constant force, however, at the loads 

steps later in the procedure, these were decreased to 80% as a safety margin. The load steps for 

the forward half-cycle are summarized in the table below. Figure 1.19 shows the load displacement 

curve for the second storey beam [2]. 

 

 
Table 1.5: Load steps [2] 

Load step Load (kN) Lateral displacement (mm) 

FORWARD HALF-CYCLE 

0 0 0 

1 25 1,13 

2 50 2,23 

3 75 2,65 

4 99 4,13 

5 125 5,46 

6 150 8,56 

7 175 10,07 

8 197 11,70 

9 221 13,80 

10 250 19,98 

11 275 23,78 

12 295 25,50 

13 320 30,00 

14 325 32,30 

15 327 44,70 
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Fig. 1.19: Load displacement second storey beam (Duong - 2006) [2] 
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1.2  The similitude theory (scaling laws) 

1.2.1  Background 

Every new design is subjected to several investigations like theoretical analyses and 

experimental investigations before it is produced. For complicated systems, mathematical models 

are usually formulated to understand the model properly. This is necessary to evaluate the models’ 

reliability and – performance. Most of these physical experiments are associated with destruction of 

the test specimens, whereby a lot of specimens are needed.  

For civil constructions like bridges, dams and tall buildings, but also for large systems, like 

airplanes and space crafts, testing of the prototype (scale 1:1) is impossible. Even when it is possible 

to test a prototype it will not be executed due to the high costs, the long testing time and the difficult 

manageable conditions. For this reason, it is valuable to executed the tests on a similar scaled model. 

This is much more workable. The only possible way to gather experimental data of the performance 

of the system and the interaction between the internal elements is to design a similar scaled model 

with the same behaviour as the prototype. The reliability of the prototype’s behaviour is dependent 

on the relationship between the interrelated parameters and variables of the scaled model and the 

prototype. 

In similar systems, it is necessary that the proper system parameters are identical and these 

systems are directed by a set of characteristic equations. So, an equitation or variable is valid for all 

the systems with the same similarity conditions. Each model variable is related to the corresponding 

prototype variable. This ratio is called scale-factor and has a crucial role in predicting the link between 

the model and the prototype. 

Models have already been used for years as a tool. Rayleigh was the first to discuss the 

specific use of models in a scientific way, based on geometrical analysis.  The usability of the 

similitude theory was first discussed by Goodier and Thompson in 1944. They searched for a 

systematic method for establishing similarity based on geometric analysis.  

Establishing this similarity can divided into two procedures. In the first procedure, the 

similarity conditions can be established out of the field equations or out the dimensional analysis. In 

the second procedure, all the parameters and variables that influence the behaviour of the system 

should be known. So, similarity is a link between a prototype and a model and can be used to 

extrapolate the gathered data of a much cheaper scaled model to predict the behaviour of the 

prototype [9]. 

As mentioned before, Rayleigh was in 1915 the first researcher in history that discussed the 

dimensional analysis or similitude from small scaled models. Based on Fourier’s work he found the 

main principals of the dimensional analysis. In a later period, this theory of Rayleigh is several times 

studied and completed by other researchers like Bickhoff, Bridgman, Buckingham, Langhaar and 

Riabouchinsky. [9] 

The usability of the similitude theory was first discussed by Goodier and Thompson in 1944 

and in 1955 by Goodier. In this period of history (1950 – 1970) a lot of interesting literature is written 

about this subject by researchers as Murphy (1950), Langhaar (1951), Sedov (1959), Kline (1965) 

and Skoglund (1967). Most of those authors described the concept of similarity as a geometrical 

analysis. Only Kline (1965) involved the characteristic equations into geometrical analysis [10]. 

Many studies on static –and dynamic behaviour of structural systems like reinforced concrete 

structures have been executed. For instance, Krawinkler (1978) described for instance the dynamic 
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earthquake resistance of reinforced concrete models. The growth of testing on scaled models is arose 

since reinforced composite components need to elaborate experimental interpretations.  

In contemporary times, due to large dimensions and difficult structural design solutions, 

testing on small scaled models in association with the similitude theory has become a rare solution 

to gather experimental data. The studies which were mentioned above used the complete similarity 

between the prototype and the model in their theories. The objectives in their investigations were:    

- to search two methods of similarity; 

- to obtain similar conditions to create and build an accurate distorted model; 

- to evaluate analytically the obtained similar conditions and to adapt the experimental 

data of the prototype to the predictions of the scaled model [11]. 

    

 
Fig. 1.20: Similar shapes due to geometrical similitude [12] 

 
1.2.2  Theory of similitude 

This chapter describes the concepts and foundations of the similitude theory. The concept 

will be explained and two important methods to use this similarity conditions are described.  

The similitude theory develops important and necessary conditions between two 

phenomena’s in the field of similarity. This similarity between systems provides researchers with the 

ability to predict the behaviour of one system by the results of an already investigated second 

system. Similitude between those systems means a similarity in behaviour in some particular forms. 

In other words, if one knows how a system reacts to an input, it is possible to predict the response 

of a similar system.  

The essential similitude theory for obtaining dimensional similarity for plane geometrical 

figures is developed by Euclid. This means that when the dimensions of a figure are contracted or 

enlarged with a ratio (=scale –or similarity factor), a new figure is developed and this one is similar 

to the original one.  

The behaviour of a system is determined by several parameters, for instance dynamic –and 

energy characteristics, geometry and material behaviour. Each system can be designed in a 

mathematical way by parameters and variables. In this case, it should be noted that the prototype 

and the model are two different systems, whereby the parameters and variables are also different. 

The set-up of the similitude theory is to transform the mathematical model of the scaled model into 

the mathematical model of the prototype. This is done through bi-unique mapping or vice versa. This 
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means that if the vector Xm the unique vector is of the model and Xp the unique vector is of the 

prototype the next transformation matrix ∆ can be find between the two systems so that: 

 

𝑋𝑚 = 	∆=E	𝑋𝑝   or   𝑋𝑝 = ∆	𝑋𝑚 (1.1) 

 

Vector X contains all the parameters and variables of the system. Transforming the matrix ∆ 

in the diagonal way is the simplest way of transformation. The diagonal of the matrix ∆ represents 

the scale factors of the vector X.  

 

∆	=
𝜆HE 0 0
0 𝜆HI 0
0 0 𝜆HJ

 (1.2) 

 

In this matrix is the scale factor 𝑋K given by 𝜆HK	 = 	
LMN
LMO

. The similitude theory can be used in 

a lot of different ways to investigate a particular system. Most of the times the geometrical similarity 

is combined with the characteristic equations to obtain the similarity between two systems [13]. 

 

A  Dimensional analysis 

The main objective of dimensional analysis is to lower the number of parameters and 

variables by developing groups of parameters and variables (π − terms). As a result, all those terms 

become self-reliant and dimensionless.  

Rayleigh developed the main principles of this dimensional analysis, derived from the work 

from Fourier, where after those principles were proved by Riabouchinsky. Out of those theorems, 

Buckingham did a reformulation of them. After that there followed a discussion of the theorems by 

Brand, Brickhoff, Bridgman, Langhaar and Van Driest and they were called the Buckingham’s π	 −

	Theorems. 

Those π	 − 	Theorems allowing a reduction of n variables into a set of n - r dimensionless π	 −

	terms. The parameter r represents the grade of the matrix.  

 

𝜙 𝑥E, 𝑥I, 𝑥[, … , 𝑥J = 0   or   𝜙 𝜋E, 𝜋I, 𝜋[, … , 𝜋J=^ = 0 (1.3) 

 

In this equation is Φ the functional relation but it is not necessary that this function is a 

known function for the system. It only gives the downsized form of the related variables. Each system 

can be described by several combinations of amounts like for instance time (t), force (F), length (L), 

mass (M) but also second-rated amounts like area (A), stress (σ) and velocity (v).  

First, the characteristic quantities need to be selected. After that the system variables can 

be described. It should be mentioned that it is very important that all the obvious parameters, like 

for example gravity (g), etcetera, are included in the equations, because otherwise the analysis gives 

an unrealistic and wrong output.  
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Through time several dimensional analysis methods have been developed, such as the 

Rayleigh method, the Buckingham method, the Basic Stepwise method, the Echlon Matrix method, 

and the Proportionalities method.  

To illustrate, consider an easy supported beam with a spring support in the middle whose 

buckling load need to be find. The configuration is given in Figure 1.21. The main variables are given 

in Table 1.6 [14]. 

 

  

Fig. 1.21: Easy supported beam [14] 

 
Table 1.6: Main variables for the configuration out Figure 21 

Variable Dimension 

Deflection (w) L 

Span (L) L 

Modulus of elasticity (E) F L -2 

Moment of inertia (I) L4 

Spring stiffness (k) F L -1 

Axial load (P) F 

 

𝜙 𝑤, 𝐿, 𝐸, 𝐼, 𝑘, 𝑃 = 0 (1.4) 

 

The dimensional matrix and related π	 − 	terms are given by: 

 

                       𝐿 		𝐸					𝑤 𝐼								𝑘 𝑃           			𝐿 𝐸				𝑤 𝐼					𝑘 𝑃 
𝐿
𝐹

1 −2
0 1 				1 4

0 0				
−1 0
1 1 		=> 		 𝐿𝐸

1 0
0 1				

1 4
0 0				

1 2
1 1  (1.5) 

 

𝜋E = 	
𝑤
𝐿
,					𝜋I = 	

𝐼
𝐿i
,				𝜋[ = 	

𝑘
𝐿𝐸
,				𝜋i = 	

𝑃
𝐸𝐿I
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 A not specific set of π	– 	terms is calculated by applying a dimensional analysis method. This 

is not a specific set because other combinations of the variables are also possible. Some variables 

are much easier to control then other variables whereby it is designated to use the easiest variables 

in the analysis. π	– 	Terms to the power or a product of two π	– 	terms is also possible and the results 

of these are also non-dimensional. The final result of the π	– 	terms is equal to  

 

𝜙 𝜋E, 𝜋I, 𝜋[, 𝜋i = 0 (1.6) 

 

It is also possible to write an independent variable in function of the other variables: 

 

𝜋E = 𝜙 𝜋I, 𝜋[, 𝜋i  (1.7) 

 

	 The purpose of	π	– 	terms	is that because of the similarity between two systems, the equations 

of those systems are also similar or the same. This means that	𝜙E = 𝜙I	even when the specific 

equations of the systems are not known exactly. This equality between the two π	– 	terms  of the 

two systems are called the similarity conditions or scaling laws between them and also for other 

specific phenomenon’s.  
 

𝜋Ek = 𝜙k 𝜋Ik, 𝜋[k, 𝜋ik 											, 𝜋El = 𝜙l 𝜋Il, 𝜋[l, 𝜋il 	 (1.8) 

If							𝜋Kl = 𝜋Kk						for						𝑖 = 2, 3, 4					then	 

𝜙k 𝜋Ik, 𝜋[k, 𝜋ik = 𝜙l 𝜋Il, 𝜋[l, 𝜋il   

𝜋El = 𝜋Ek 
 

 

 The above described π	– 	terms define relationships between dynamic -, geometric -, 

kinematic – and material variables of the two systems [15]. 

 

B  Direct use of the applicable equations 

 A system with convenient boundary conditions determines the systems behaviour by its 

variables and parameters. The defining variables are in this case a function of the undefined 

variables. If under transformation	∆	and	∆=E,	the convenient equations from the prototype and the 

scaled version of it are similar, there is a similarity between the two systems. This is also 

demonstrated by equation (1.1). This conversion gives us the scaling laws between all the variables 

but also between the input and the output of the two systems.  

 Consider again the easy supported beam with a spring support in the middle (Figure 1.21). 

The reaction of this spring support is equal to 𝑘𝛿, where 𝛿	 is the deflection at the centre of the 

beam. Because of the symmetrical system, the reaction force at	0	 ≤ 𝑥	 ≤ 	 𝐿 2	is equal to	𝑘𝛿 2.	The 

corresponding equation becomes:		
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𝐸𝐼s,HH + 𝑃𝜔 = 	
𝑘𝛿𝜔
2
		

	
𝜔 0 = 0 

𝜔H 𝐿 2 = 0 

𝜔 𝐿 2 = 𝛿 

 
(1.9) 

 

For the prototype and the scaled models this becomes: 
 

𝐸k𝐼v
𝑑I𝜔k
𝑑𝑥kI

+ 	𝑃k𝜔k = 	
𝑘k𝛿k𝜔k

2
	

𝐸l𝐼l
𝑑I𝜔l
𝑑𝑥lI

+	𝑃l𝜔l = 	
𝑘l𝛿l𝜔l

2
	

	
 

(1.10) 

 

 The scale factor between the prototype and the model can be defined by 𝜆K. Because of this, 

the variables of the systems become 𝑥Kk = 𝜆HK	.		𝑥Kl. The similarity between the prototype and the 

model are defined by replacement of  𝜆HK	.		𝑥Kl into the differential equation of the prototype. This 

differential equation equals the differential equation of the model (equation 1.10).  

 
𝜆y𝜆z𝜆{
𝜆HI

𝐸l𝐼l
𝑑I𝜔l
𝑑𝑥lI

+ (𝜆v𝜆{)	𝑃l𝜔l = 𝜆|𝜆}𝜆{ 	
𝑘l𝛿l𝜔l

2
	

	

	
 

(1.11) 

 

 Equation (1.10) is equal to equation (1.11) if: 

 
𝜆y𝜆z𝜆{
𝜆HI

= (𝜆v𝜆{) = 𝜆|𝜆}𝜆{ 		

	

	
 

(1.12) 

 

Using one of these terms to divide equation (1.12) gives (first term):  
   

1 =
𝜆v𝜆HI

𝜆y𝜆z
=
𝜆|𝜆}𝜆	HI

𝜆y𝜆z
	

	

	
 

(1.13) 

 or: 
 

1 =
𝜆v𝜆HI

𝜆y𝜆z
												𝑜𝑟											𝜆k = 	 𝜆H=I𝜆y𝜆z	

	

	
 

(1.14) 

 and: 

 

1 =
𝜆|𝜆}𝜆	HI

𝜆y𝜆z
										𝑜𝑟										𝜆|𝜆}𝜆	HI = 	 𝜆y𝜆z	

	

	
 

(1.15) 

 
 and for the boundary conditions: 
 

𝜆s
𝜆}

= 1										𝑜𝑟									𝜆s = 	 𝜆} 	

	

	
 

(1.16) 

 
The equations 1.14, 1.15 and 1.16 are showing the conditions between the prototype and 

the model for complete similarity. There are seven unknown λ′s related to three relationships. This 

means that four λ′s can be chosen, and the other three unknown variables can be determined with 

the equations 1.14, 1.15 and 1.16 [15]. 
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1.2.3  Partial similarity and deformed model 

 Two systems are similar when the similarity conditions between them are fulfilled or when 

the before mentioned π	– 	terms from the prototype and the model are the same. Complete similarity, 

however, is often not achieved. When a model has some small differences, it is called a distorted or 

deformed model.  

 In the case of complete similarity, the π	– 	terms are πKl = 	πKk with i = 1, … , N and for not 

complete fulfilled similarity the π	– 	terms are πKl = 	πKk with i = 1, … , k with k	 < N. These small 

similarity differences cause a difference in model behaviour between the prototype and the model. 

It is necessary to understand these small differences to modify the output data of the tests from the 

model and to be more precise in predicting the behaviour of the prototype.  

   

A  Dimensional analysis 

	 Dimensional analysis means that the similarity between π	– 	terms of the prototype and 

π	– 	terms of the model are related to the variables’ scale factor. For instance, when there are m-r 

π − terms, there will be m-r functions, with the result that there will be m scale factors. When two 

systems are completely similar, the dimensional matrix r determines the number of scale factors 

which can be chosen. Table 1.7 gives an overview of the interpretation between complete –and not 

complete similarity.  

 
Table 1.7: Complete similarity versus not complete similarity 

Complete Similarity Not complete similarity 

πEl = 	πEk πEl = 	πEk 

πIl = 	πIk πIl = 	πIk 

… … 

π|l = 	πEk π|l = 	π|k 

π|�El = 	π|�Ek π|�El ≠ 	π|�Ek 

… … 

πJl = 	πJk πJl ≠ 	πJk 

 

In case of a deformed model, the scale factors related to their π	– 	terms can change due to 

a difference in equality. Consequently, a difference in π	– 	terms can occur, resulting in more unknown 

scale factors then that there are similarity equations. Thus, extra variables are necessary. These 

should be searched by the general equations of a systems like there are equations related to the 

boundary conditions, the behaviour of the material, the compatibility, etcetera. To obtain those extra 

variables by extra equations, additional tests should be carried out to gather more data to solve the 

systems [16].  
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B  Direct use of the applicable equations 

 When general equations of the system are used to obtain conditions of similarity, the 

relationship between those variables are constrained by these general equations. For instance, a 

system has m variables and due to the similarity conditions of the general equations there are defined 

n relationships according to m unknown scale factors related to those variables.  

 When the two systems share a complete similarity, m – n scale factors can be chosen. The 

remaining scale factors can be found by n conditions of similarity. When, for example, one condition 

cannot be fulfilled, ‘not complete similarity’ is achieved. Each variable has his own influence on the 

systems’ behaviour, whereby also the final result of the similarity conditions gives a different result 

or influence. When the influence of each variable is known, it is allowed and possible to neglect the 

variables with the lowest influence, without a failing of the system [17]. 

To give an example, suppose a large rectangular plate that is easy supported at the edges 

and subjected with a uniform load q. The cross-section of the configuration consists out of an isotropic 

material and the general differential equation is given by equation (1.17). The configuration is given 

in Figure 1.22 [18]. 

 

 
Fig. 1.22: Easy supported rectangular plate 

 

𝑑i𝜔
𝑑𝑥i

+ 2	
𝑑i𝜔

𝑑𝑥I𝑑𝑦I
+ 	
𝑑i𝜔
𝑑𝑦i

= 	
𝑞
𝐷
	

	

	
 

(1.17) 

 

 and B.C at 𝑥 = 0, 𝑎: 
	

𝜔 = 0	

	

	
 

(1.18) 

𝑀H = −𝐷	
𝑑I𝜔
𝑑𝑥I

= 0	

	

	
 

(1.19) 

	  

and at 𝑦 = 0, 𝑏: 
 

𝜔 = 0	

	

	
 

(1.20) 

𝑀� = −𝐷	
𝑑I𝜔
𝑑𝑦I

= 0	

	

	
 

(1.21) 
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and similitude gives: 

 
𝜆{
𝜆Hi
	= 	

𝜆{
𝜆HI	𝜆�I

	= 	
𝜆{
𝜆�i
	= 	

𝜆�
𝜆�

	

	

	
 

(1.22) 

  

To find the scaling laws out of equation (1.22) there are three possibilities. Firstly, it is 

possible to divide equation (1.22) by the yield of the first term: 

 

𝜆H	 = 𝜆�								, 𝜆{ = 		
𝜆�	𝜆Hi

𝜆�
	

	

	
 

(1.23) 

 

Or to divide equation (1.22) by the yield of the second term: 

 

𝜆H	 = 𝜆�								, 𝜆{ = 		
𝜆�	𝜆HI	𝜆�I

𝜆�
	

	

	
 

(1.24) 

 

And finally, by dividing equation (1.22) by the yield of the third term: 

 

𝜆H	 = 𝜆�								, 𝜆{ = 		
𝜆�	𝜆�i

𝜆�
	

	

	
 

(1.25) 

 

From these three equations ((1.23), (1.24), (1.25)) the most sufficient equation needs to be 

chosen. This is the equation that predicts the behaviour of the prototype the most precise by 

comparing the theoretical deflection of the model with the theoretical deflection of the prototype. 

The three equations give the same results in case of a complete similarity between the two systems. 

To avoid an unrealistic size for the cross-section of the configuration, different scale factors for each 

direction (x, y, z) need to be chosen [18]. 

If  λ� = 𝐶.	λH and C	 > 0, the equations (1.23), (1.24) and (1.25) become: 

 

𝜆{ = 		
𝜆�	𝜆Hi

𝜆�
= 𝐶 	

𝜆�	𝜆Hi

𝜆�
									 , 𝐶 = 1	

	

	
 

(1.26) 

 

𝜆{ = 		
𝜆�	𝜆HI	𝜆�I

𝜆�
= 𝐶 	

𝜆�	𝜆Hi

𝜆�
									 , 𝐶 = 𝐶I	

	

	
 

(1.27) 

 

	𝜆{ = 		
𝜆�	𝜆�i

𝜆�
= 𝐶 	

𝜆�	𝜆Hi

𝜆�
									 , 𝐶 = 𝐶i	

	

	
 

(1.28) 

 

Out of these three equations ((1.26), (1.27), (1.28)) the most sufficient equation needs to 

be chosen. This is the equation who predicts the behaviour of the prototype the most proper by 

comparing the theoretical deflection of the model with the theoretical deflection of the prototype. 

Thus, for the prototype there are three possibilities:  
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- Inverse rectangular �
�
	< 1 

- Square   �
�
	= 1 

- Rectangular  �
�
	> 1 

 

Based on the scale factors were the characteristics of the model calculated. The theoretical 

deflection of the prototype and the model are also determined with the scale factors and is given by 

Timoshenko: 

 

𝜔 = 	
16	𝑞�
𝜋�	𝐷

	
sin𝑚𝜋𝑥𝑎 	 . sin 𝑛𝜋𝑦𝑏 	

𝑚𝑛 𝑚
𝑎

I
+	 𝑛𝑏

I I

�

J�E

�

l�E

	

	

	
 

(1.29) 

 

By using equations (1.26), (1.27), (1.28) the model data is transformed to predict the 

prototype behaviour. Next, a comparison between the predicted deflection and the theoretical 

deflection of the prototype is made. Out of this comparison follows a discrepancy result follows, which 

gives the ratio between predicted –and theoretical deflection of the prototype.  

 

%𝐷𝑖𝑠𝑐𝑟. = 	
𝜔��. − 	𝜔k^.	

𝜔��.
	 . 100	

	

	
 

(1.30) 

 

These discrepancy results are calculated for different C-values because thereby also belong 

different model ratio’s. Each distortion of the y-direction is investigated for each corresponding model 

ratio. The experimental output of the model is obtained from a theoretical deflection of the model by 

introducing 10% discrepancy. Besides, for each configuration it is assumed that  λ�	 = 	 λ  = 	 λ¡	 = 	1 

[18].  
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Case 1: the prototype is an inverse rectangular plate with a model ratio of  �
� l

< 1. 

Equation (1.26) gives a good prediction of the behaviour when C goes to 0,01 (Figure 1.23). On the 

other hand, Equations (1.27) and (1.28) are not giving a good prediction of the behaviour because 

the discrepancy increase very fast (Figure 24). 

Case 2: the prototype is a square plate. Equation (1.26) and (1.27) are giving a good 

prediction of the behaviour when the value of C is near one (Figure 1.25). When the value of C goes 

to ten the prediction is very inaccurate and none of the equations is usable (Figure 1.26).  

Case 3: the prototype is a rectangular plate with a model ratio of  �
� k

> 1. Equation (1.28) 

gives an excellent prediction when the value of C goes to ten (Figure 1.27). This means that each 

rectangular plate can be changed by another plate with other dimensions if the model ratio is equal 

to �
� k

≥ 1. Equation (1.26) and (1.27) are giving inferior results in this situation and are not usable 

(Figure 1.28) [18]. 

 

 

 
Fig. 1.23: Inverse rectangular plate: good prediction by equation (1.26) C à 0,01 [17] 

 

 
Fig. 1.24: Inverse rectangular plate: bad prediction by equation (1.27) and (1.28) [18] 
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Fig. 1.25: Square plate: good prediction by equation (1.26) and (1.27) C à 1 [18] 

 

 
Fig. 1.26: Square plate: bad prediction by equation (1.28) C à 0,01 [18] 

 

 
Fig. 1.27: Rectangular plate: good prediction by equation (1.28) C à 10 [18] 

 

 
Fig. 1.28: Rectangular plate: bad prediction by equation (1.26) and (1.27) C à 0,01 [18] 



 49 

	  



 50 

	  



 51 

2.  EXPERIMENTAL PROGRAM       

2.1  Introduction 

This chapter is a detailed summarization of the experiment combined with the information 

about the characteristics of the frame, the material properties and the way of construction of the 

model. Also, the way of testing the model and the used measurement instrumentation are described.  

 

2.2  Test Specimens 

The Duong frame (described in part B.3) forms the base for the experiment in this thesis. 

This frame was also a scaled version of a real-life building frame. The scale factor was two to three. 

The frame has a height of 4,6 meters and a width of 2,3 meters. The beams have a cross-section of 

300 millimetres by 400 millimetres just like the columns. The base of the specimen is 4,1 meters in 

length, 800 millimetres wide and 400 millimetres thick. The beams span a length of 1,5 meters and 

the height of a storey is captured at 1,7 metres. The concrete cover for the beams and columns is 

defined on thirty millimetres and twenty millimetres. The concrete cover for the foundation is 40 

millimetres. The main reinforcement bars have a diameter of twenty millimetres. For the stirrups of 

the beams is a diameter 9,5 millimetres used and for the columns and foundation a diameter of ten 

millimetres. 

The scale factor which is applied in this research thesis is a factor three. This means that all 

the dimensions of the Duong frame are divided by three. So, the height of the frame has become 

1,53 metres and the width 0,77 metres. The cross-section of the beams has become 100 millimetres 

by 133 millimetres just like the columns. The base of the specimen is 1,37 meters in length, 267 

millimetres wide and 133 millimetres thick. The beams span a length of 0,5 meters and the height 

of a storey is captured at 0,57 metres. The concrete cover for the beams and columns is defined on 

ten millimetres and seven millimetres. The concrete cover for the foundation is thirteen millimetres. 

The main reinforcement bars have a diameter of six millimetres. For the stirrups of the beams, the 

columns and the foundation, a uniform diameter of three millimetres is used.  

At the upper right corner of the frame a lateral increasing load will be applied. Because of 

this load high bending stresses near the bottom of the columns will arise, but also at the inner side 

of the top of the columns. For this reason, an extra layer of reinforcement bars is applied, with a 

diameter of ten millimetres at these points to avoid instant failure of the frame when the lateral force 

increases. These extra bars increase the flexural capacity of the whole frame. The reinforcement 

bars diameter ten millimetres are also equipped with hooks and extra lengths to provide an 

anchorage.          

The table below gives an overview of the used parameters in the developed frame. Figures 

2.1, 2.2, 2.3, 2.4 and 2.5 show the dimensions of the structure and the dimensions and placement 

of the reinforcement for each cross-section of each member. To obtain well-grounded and realistic 

values for the several parameters, two of these specimens are built to conduct the tests.    
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Table 2.1: Cross-section details of constructive frame elements 

Member b (mm) h (mm) Bottom steel Top steel Stirrup 

Beam 100 133 4∅6 4∅6 ∅3	at	100 

Column 100 133 4∅6 4∅6 ∅3	at	45 

Column top 100 133 8∅6 4∅6 ∅3	at	45 

Column 
base 100 133 8∅6 8∅6 ∅3	at	45 

Foundation 267 133 8∅6 8∅6 ∅3	at	60 

	

	

	

	
Fig. 2.1: Frame dimensions in millimetres 
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Fig. 2.2: Frame reinforcement placement 
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Section A-A:      Section B-B: 
As-built Beam section    As-built Column section 

 
Fig. 2.3: As-built Beam and Column cross-section 

 

Section C-C:      Section D-D: 
As-built Column section (top)             As-built Column section (base) 

 
Fig. 2.4: As-built Column cross-section 

 

Section E-E:        
As-built Foundation section     

 
Fig. 2.5: As-built foundation cross-section 
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2.3  Material properties 

2.3.1  Concrete 

A  Testing 

To obtain the correct concrete behaviour, several different concrete mixtures are made. From 

each recipe were made nine cubes from 150 millimetres on 150 millimetres. Three of them are lab 

cured and six of them are moist cured. This is done to see the difference in compressive strength 

between the two specimen types with different boundary conditions. The recipes that are tested on 

compressive strength are C8/10 CEM II 32,5 (Graph 2.1), C12/15 CEM II 32,5 (Graph 2.2), C28/35 

CEM II 32,5 (Graph 2.3) and a C35/45 CEM III 42,5 (Graph 2.4). The different recipes were all tested 

after eight days (8) and after 28 days (28). The horizontal red line in each graph represents the 

compression force that was applied on the concrete in the test on the Duong Frame. The value for 

the compression force is given by Equation 2.1. The compressive strength of the concrete on the 

date of testing is given in Table 1.2 (part B.3). 

 

𝜎 = 	 ¤
¥
   (2.1) 

𝐹 = 	𝜎	. 𝐴    

𝐹 = 	0,0429	 |§
ll¨ 	 . (150	𝑚𝑚	. 150	𝑚𝑚)  	

 
 
 
 
 
 
 
 
 

𝐹 = 	0,0429	 |§
ll¨ 	 . (22500	𝑚𝑚I)  	  

	  

𝐹 = 	965,25	𝑘𝑁  	  

 

 

 
Graph 2.1: Compressive strength C8/10 CEM II 32,5 
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Graph 2.2: Compressive strength C12/15 CEM II 32,5 

 

 
Graph 2.3: Compressive strength C28/35 CEM II 32,5 

 

 
Graph 2.4: Compressive strength C35/45 CEM III 42,5 
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B  Used concrete 

Due to a delay in delivery of the steel for the reinforcement, there is chosen to use a stronger 

cement class so that the desired strength of the concrete is achieved much faster. Otherwise there 

would arise a time problem to perform the tests on the frames. The finally applied recipe is a C25/30 

CEM I 52,5 because this concrete class lies between C12/15 and C28/35, and will approach the value 

of 965,25 kN the best (Graph 2.5). The characteristics and calculations of this concrete are given in 

Table 2.2. The delivered granulates had a humidity of 2%. The specific amount of raw materials for 

one frame are given in Table 2.3. One specimen has a volume of 0,1 m3. 

 
Table 2.2: Characteristics concrete C25/30 CEM I 52,5 

C25/30 CEM I 52,5 (1m3) 

W/C Factor 𝑊/𝐶 = 0,60 + 20% = 0,72 

 𝑊/𝐶	 = 0,55 

 

Slump S2 (75mm) 𝑊 = 185𝐿 + 20% 

 𝑊 = 240𝐿 

(Humidity of 2%) 𝑊 = 240	𝐿 − (1605	𝐾𝐺	. 2%) 

 𝑊 = 210	𝐿 

 

Cement dosage  𝐶 = 	 ®
®/¯

 

 𝐶 = 	
240	L
0,55

 

 𝐶 = 437	KG 

 

Aggregates (0-8mm) 𝐴𝑔 = 	ρ	. (1000 −
𝐶
3
−	
𝑊
1
− 20) 

 𝐴𝑔 = 	2,7	. (1000 −
437
3

−	
240
1

− 20) 

 𝐴𝑔 = 	1605	𝐾𝐺 

(Humidity of 2%) 𝐴𝑔 = 	1605	𝐾𝐺	. 1,02% 

 𝐴𝑔 = 1635	𝐾𝐺 

 

Summary (1m3) 𝑾 = 𝟐𝟏𝟎	𝑳 

 
 𝑪 = 𝟒𝟑𝟕	𝐊𝐆 

 𝑨𝒈 = 𝟏𝟔𝟑𝟓	𝑲𝑮 
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Table 2.3: The specific amount of raw materials for one specimen 

C25/30 CEM I 52,5 (1m3) C25/30 CEM I 52,5 (0,1m3) 

𝑾 = 𝟐𝟏𝟎	𝑳 𝑾 = 𝟐𝟏	𝑳 

𝑪 = 𝟒𝟑𝟕	𝐊𝐆 𝑪 = 𝟒𝟑, 𝟕	𝐊𝐆 

𝑨𝒈 = 𝟏𝟔𝟑𝟓	𝑲𝑮 𝑨𝒈 = 𝟏𝟔𝟑, 𝟓	𝑲𝑮 

 

 
Graph 2.5: Compressive strength C25/30 CEM I 52,5 

 

𝜎 = 	 ¤ÁÂÃ
¥

   (2.2) 

  

𝜎IÄ = 	
1129,225	. 10[	𝑁
150	𝑚𝑚	. 150	𝑚𝑚

																									 		𝜎IÅ = 	
1270,638	. 10[	𝑁
150	𝑚𝑚	. 150	𝑚𝑚

	
 
 
 
 
 
 
 
 
 

	  

𝜎IÄ = 	50,19	𝑀𝑃𝑎																																										𝜎IÅ	 = 	56,47	𝑀𝑃𝑎	  

	  

𝜎�ÆÇ^�ÈÇ = 	53,33	𝑀𝑃𝑎	  

 
This value of the compressive strength is a little bit higher than the compressive strength 

out of the reference article (42,9 MPa). This difference in compressive strength of the concrete will 

be modified in the numerical analysis, to enable the comparison between experimental- and 

numerical analysis.   
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2.3.2  Steel reinforcement 

In this scaled down model are use two different diameters instead of three that are used in 

the reference model. This is due to the scale process. The properties of the different sizes of 

reinforcing bars are listed in Table 2.4. The results for the tensile strength of the used reinforcement 

diameters three millimetres (400 MPa) and six millimetres (500 MPa) are mentioned in Graph 2.6 

and Graph 2.7. These tensile tests were conducted in the Laboratory of the University of Hasselt with 

a testing machine of 125 kN. 

 
Table 2.4: Reinforcement details 

Bar size Nominal diameter 
(mm) 

Area cross-section 
(mm2) Location in specimen 

∅𝟑 3 7 Transversal 

∅𝟔 6 28 Longitudinal 

 

 
Graph 2.6: Stress response transversal reinforcement diameter three millimetres 

 

 
Graph 2.7: Stress – Strain response longitudinal reinforcement diameter six millimetres 



 60 

2.4  Construction 

The complete construction of the specimens can be divided into four parts; the construction of 

the mould, the construction of the reinforcement, the placement of the reinforcement in the mould 

and the concrete casting. In a traditional construction of a portal frame on site, the frame is built in 

an upstanding position. In this case, there is chosen to build the frame in a horizontal position so 

that the casting of the specimens becomes much easier. This is depicted in Figure 2.6.  

 

 
Fig. 2.6: Casting position of assembled frame [19] 

 

2.4.1  Construction of the mould 

The mould is constructed out of concrete plywood panels with a thickness of eighteen 

millimetres which have been cut by a specialized company. De panels per element (foundation, beam 

or column) are assembled with screws with a spacing of 50 millimetres, to give the mould enough 

strength against the pressure of the concrete. The elements are attached to each other by steel 

hooks and screws. In the upper panel of the foundation have been drilled four holes (two on each 

side) with a diameter of twenty millimetres, in order to insert aluminium tubes that will be cast in 

place. Through these tubes can enter threaded bars (anchorages) with a diameter of sixteen 

millimetres so that the frame can be connected to the test setup. Because of this, sliding of the 

specimen will be prevented when the forces are applied.    
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2.4.2  Construction of the reinforcement 

The construction of the reinforcement cages started with the cutting and bending of the six 

millimetres’ bars at the specific distances. The bars were cut at the company Jans Creacar in Hoeselt 

(Figure 2.7) and were bended by a self-made setup (Figure 2.8). The three millimetres’ bars were 

manual cut with a grinding wheel and bended in the same manner then the six millimetres’ bars. 

After that, the bended bars (Figure 2.9) were assembled in the following way. First, the foundation 

cage was assembled wherein the longitudinal bars of the columns were connected (Figure 2.10). 

Secondly, the first beam was put together and moved into place (Figure 2.11), where after the 

stirrups around the upper parts of the columns were placed. Last, the upper beam was assembled 

and moved into place. Each connection between the stirrups and the longitudinal bars are tied with 

a 1,2 millimetres’ steel wire. Finally, the extended bars from the entire reinforcement cage (Figure 

2.12) were cut with the grinding wheel.  

 

         
   Fig. 2 7: Cutting machine [19]              Fig. 2.8: Bending setup [19]       Fig. 2.9: Bended reinforcement [19] 

 

         
  Fig. 2.10: Foundation cage [19]        Fig. 2.11: Placement 1st beam [19]        Fig. 2.12: Complete cage [19] 
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2.4.3  Placement of the reinforcement 

Once the moulds and the reinforcement cages were assembled, the cages could be placed 

inside the moulds. First, the moulds were cleaned properly and after that they were oiled with 

formwork releasing oil. Secondly, spacers of ten millimetres were placed at the bottom off the moulds 

to obtain a sufficient concrete cover on the reinforcement. Thirdly, the cages were put into the moulds 

and bent into position with a hammer. Last, the aluminium tubes for the anchorages were tied into 

the cages of the foundations (Figure 2.13).  

 

 
Fig. 2.13: Full mould and full reinforcement assembly [19] 

 

2.4.4  Concrete casting 

The fourth and final phase of the construction consisted of casting the specimens. First, the 

foundation is being poured and after that the columns and the beams. The concrete is consolidated 

with a vibrating needle to compact the concrete and to release air bubbles out of the mixture. The 

top surfaces of the specimens are levelled with trowels and the surfaces that are exposed to the 

environment were kept wet for two days. Also, seven cubes of 150 millimetres on 150 millimetres 

are made, to measure when the concrete has the same compressive strength as the concrete out of 

the reference article, so that the specimens can be tested at the same compressive strength.   
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Fig. 2.14: Casted specimen [19] 

 

2.5  Test setup 

To perform the test, the frame had to be demoulded, placed into the test position (into the 

test bench) and, the test instrumentation had to be assembled and placed on the specimen’s surface. 

Ten days after the specimen was casted, it was lifted by an overhead crane to demould it and, to put 

it into the test position afterwards. Once the specimen was placed into the test bench, the specimen 

was connected to the bench by threaded bars diameter sixteen millimetres and bearing nuts. The 

test setup is depicted in Figure 2.15 and Figure 2.16. The test bench consists of two beams and to 

columns, which are HEA 300 profiles. These serve as stability for the test equipment as well as for 

stability of the specimen. The columns also provided a support point to mount the LPT’s. The test 

setup also contained a horizontal and vertical loading system. A hydraulic cylinder with a range of 

200/400 kN was placed between the upper steel plate and the test bench on top of the columns. A 

load cell was placed between the steel plates to measure the applied force of the cylinder. A load of 

45 kN was applied by the cylinder and was kept constant during the entire test by tightening the 

nuts after the pre-tensioning of the threaded bars. The lateral loading was applied by a 400 kN 

hydraulic cylinder in the centre of the second storey beam. This cylinder was connected to the right 

HEA 300 column of the test bench.     
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Table 2.5: Specifications and members of test setup 

1 Steel plate (50 millimetres) 

2 Vertical hydraulic cylinder – 200/400 kN  

3 Steel plate (fifteen millimetres) 

4 Vertical load cell – 360 kN (2x) 

5 Horizontal hydraulic cylinder – 100 kN 

6 Horizontal load cell – 125 kN 

7 Steel distribution plate (ten millimetres) 

8 Test specimen mounted in the test bench 

9 Tensioning bars (dia. sixteen millimetres + nuts - 8x) 

10 Test bench (HEA 300) 

11 Steel distribution plate (30 millimetres) 

12 Anchorage of specimen (threaded bars dia. sixteen millimetres + nuts) 

13 Wooden leveling/spacing plate (eighteen millimetres) 

14 Linear Potentiometer one – Linear Position Transducer (LPT) 

15 Linear Potentiometer two – Linear Position Transducer (LPT) 

16 Test specimen – portal frame 

17 Inclinometer one – top beam 

18 Linear Potentiometer three – Linear Position Transducer (LPT) 

19 Inclinometer two – bottom beam  

 

 
Fig. 2.15: Scheme - front view of test bench with mounted test specimen - members’ description 
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Fig. 2.16: Scheme - left view + front view of test specimen with measurement equipment 

	

 
Fig. 2.17: 3D scheme of test bench with mounted test specimen and measurement equipment 
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        Front elevation during pre-tensioning                                      Front elevation after pre-tensioning  

Fig. 2.18: Overall view of test setup [19] 

	

	
Fig. 2.19: Vertical – and lateral loading system [19]	  
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2.6  Instrumentation 

The data acquirement system is a computer controlled system that gathers electronic test data 

out of the following measurement devices: inclinometers and LPT’s. The various gauges are described 

below. 

 

2.6.1  Inclinometer 

An inclinometer or clinometer (Figure 2.20) is an instrument that measures angles, elevations 

or depressions of objects that are respecting the gravity. Inclinometers measure inclines and declines 

by two different measure units: degrees and percentages. These gauges are recording the angular 

displacement of the beams due to the lateral increasing load. Before the loads were applied, two of 

these targets were attached on the specimen. One is attached at the lower beam and the other one 

is attached at the upper beam using a thin layer of glue. The gauges were placed in the centre of 

these beams because the rotation will be the largest in those points. However, the calibration of 

these measuring devices did not succeed. Because of this, no results have been acquired about the 

distortion of the beams. 

 

 
Fig. 2.20: Used inclinometer [19] 

 

2.6.2  Linear Position Transducer (LPT) 

A Linear Position Transducer (LPT) (Figure 2.21) is a type of electrical transformer used for 

measuring linear displacement. They were placed at three locations on the specimen which is 

depicted in Figure 2.16 and Figure 2.17. These gauges measure the lateral deflections of the 

specimen due to the lateral increasing load. They were placed at the level of the first storey beam 

and, the second storey beam and perpendicular on the second storey beam. The LPT’s were placed 

at the centreline of these parts on the left side of the specimen and, attached to the left HEA 300 

column of the test bench. There were no LPT’s placed at the right side of the specimen because there 

will only be applied a forward static load (pushing) and no reversed static load (pulling). 

 

 
Fig. 2.21: Used Linear Position Transducer [19] 
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2.7  Loading 

In these experiments only a forward static load (push-over) is applied because a reversed 

cyclic load is only necessary in a seismic experiment. The specimens were loaded forward until 

damage due to shear arose. These testing phases had a duration of circa one hour per specimen to 

reach the point of failure.  

The testing of the specimens started with applying the constant vertical load of 45 kN on the 

top of each column. The calculation of this load is derived out of the reference article and recalculated 

for the scaled model. This calculation is mentioned by Formula 2.3. This load was applied in           

force-controlled modus and was preserved during the entire test period. The lateral load was also 

applied in force-controlled modus. This lateral load was applied at the centre of the second storey 

beam by a hydraulic cylinder that creates a force on a steel distribution plate as described in part 

2.5 Test setup. 

The load increased constant during the forward static loading, with a reading precision of the 

load cell of 50 Newton. At 10, 20, 25 and 30 kN the lateral force was kept constant for a few minutes 

so that there was the possibility to mark the occurring cracks. 

The data out of these tests is collected accurate because the results were used in the results- 

and discussion chapters of this master’s thesis.  

 

𝑓ÊË 𝑠𝑐𝑎𝑙𝑒𝑑 = 	𝛼ÊÊ	.
𝑓𝑐𝑘 𝑠𝑐𝑎𝑙𝑒𝑑

𝛾𝑚
   (2.3) 

𝑓ÊË 𝑠𝑐𝑎𝑙𝑒𝑑 = 	0,85	. 53,33	𝑀𝑃𝑎1,0 = 42,66	𝑀𝑃𝑎   

	  
 
 
 
 
 
 
 
 

𝑁Ë 𝑠𝑐𝑎𝑙𝑒𝑑 = 	𝑁ÐE + 	𝑁ÐI + 	𝑁Ê = 𝐴ÐE + 𝐴ÐI 	. 𝜎ÐË + 𝐴Ê	. 𝑓ÊË 𝑠𝑐𝑎𝑙𝑒𝑑 		  

𝑁Ë 𝑠𝑐𝑎𝑙𝑒𝑑 = 8	.
𝜋	. 6I

4
+ 8	.

𝜋	. 6I

4
	 . 500	𝑀𝑃𝑎 + 133,33	. 100 − 2	. 8	.

𝜋	. 6I

4
	 . 42,66	𝑀𝑃𝑎 	  

𝑁Ë 𝑠𝑐𝑎𝑙𝑒𝑑 = 	775,746	𝑘𝑁	  

	  

𝑁Ë 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 = 	𝑁ÐE + 	𝑁ÐI + 	𝑁Ê = 𝐴ÐE + 𝐴ÐI 	. 𝜎ÐË + 𝐴Ê	. 𝑓ÊË 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 	  

𝑁Ë 𝑝𝑟𝑜𝑡𝑜𝑦𝑝𝑒 = 8	.
𝜋	. 20I

4
+ 8	.

𝜋	. 20I

4
	 . 447	𝑀𝑃𝑎 + 400	. 300 − 2	. 8	.

𝜋	. 20I

4
	 . 42,9	𝑀𝑃𝑎 	  

𝑁Ë 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 = 	7179,205	𝑘𝑁	  

	  

𝑁Ë𝑎𝑝𝑝𝑙𝑖𝑒𝑑	(𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒)
𝑁Ë(𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒)

= 	
420	𝑘𝑁

7179,205	𝑘𝑁
= 0,0585 = 5,85%	  

	  

𝑁Ë𝑎𝑝𝑝𝑙𝑖𝑒𝑑	(𝑠𝑐𝑎𝑙𝑒𝑑)
𝑁Ë(𝑠𝑐𝑎𝑙𝑒𝑑)

= 	
𝑁Ë𝑎𝑝𝑝𝑙𝑖𝑒𝑑	(𝑠𝑐𝑎𝑙𝑒𝑑)

775,746	𝑘𝑁
= 5,85%	  

𝑁Ë	𝑎𝑝𝑝𝑙𝑖𝑒𝑑	 𝑠𝑐𝑎𝑙𝑒𝑑 = 	𝑁Ë 𝑠𝑐𝑎𝑙𝑒𝑑 	.% = 	775,746	𝑘𝑁	. 5,85% = 45,38	𝑘𝑁	  

𝑁Ë	𝑎𝑝𝑝𝑙𝑖𝑒𝑑	 𝑠𝑐𝑎𝑙𝑒𝑑 ≈ 45	𝑘𝑁	  
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3.  EXPERIMENTAL RESULTS       

3.1  Introduction 

This chapter is a detailed summary of the experimental results and test considerations. First, 

there is given a global explanation about the test conventions, followed by an overview of the loading 

stages and the gathered test results. Information has been processed about the crack pattern, crack 

widths in the z-direction, the shear failing locations and the displacement in the x-direction. Out of 

these results a force-displacement curve is plotted. The most important phenomena at the end of 

each load step are given by a representative photo. Graphs that are related to the specific results 

are shown at the end of the chapter. The discussion of these results is given in part 3.4 Discussion 

of results. 

 

3.2  Test conventions 

A description of the complete test setup is given by Figure 3.1. Note that some elements that 

are used during these tests are not mentioned in the figure for clarity. The specimen is connected to 

the ground beam of the test bench. The three hydraulic cylinders are connected to the right column 

and between the upper steel plates and the test bench on the top of each column. These cylinders 

were used to apply the forces on the frame as described in part 2.5 Test setup. 

 

 
Fig. 3.1: Front view of test bench with mounted test specimen 
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In this part, there is talked about the net horizontal force. This is the total horizontal force 

minus the horizontal part of the force that is developed by the vertical cylinder. This is necessary 

because when the frame starts to deform, the forces applied in the columns do not remain vertical. 

At this point of the test there is developed a horizontal- and vertical part in the compression force. 

For this reason, the horizontal part of the vertical force had to be subtracted from the total horizontal 

load to know the exact applied horizontal load. These additional horizontal forces derived from the 

compression force were calculated at each load step using trigonometry between the height of the 

column and the lateral displacement of the second storey beam. Although these additional forces 

were very small they were considered in the calculations.     

To make an observation of the cracks and to make a difference between the cracks, five colours 

are used to indicate the different types. Cracks can arise due to the testing of the specimen and due 

to the shrinkage of the concrete. A black coloured marker was used for cracks that are caused from 

the shrinkage of the concrete. An orange coloured marker was used to indicate the cracks derived 

after a lateral loading of 10 kN, a green coloured marker after 20 kN, a blue coloured marker by 

opening of the first significant cracks and a red coloured marker to mention the failing cracks.   

 

3.3  Results 

3.3.1  Initial condition 

Before the loads were applied on the frame, the portal was completely checked for cracks 

caused from the shrinkage of the concrete or by the tensioning of the frame to the test bench by the 

threaded bars and bearing nuts. The portal contained a very small amount of shrinkage cracks and 

no tensioning cracks. The shrinkage cracks were less than 0,1 millimetres wide and were therefore 

not a problem. The foundation had a small curvature caused the mould opened a little bit by the 

pressure of the concrete during the casting. These gaps were filled by wood panels before the portal 

frame was tensioned on the test bench. In the final stage of the tests, the foundation suffered 

because of a bending moment in the foundation due to the lateral loading.    

 

 
Fig. 3.2: Initial condition of the test specimen with the marked shrinkage cracks [19] 
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3.3.2  Detailed test results 

One loading phase is applied on the test specimens in the forward direction until the specimens 

failed due to shear. The load stages of the forward static loading are summarized in Table 3.1 for 

the first specimen and in Table 3.3 for the second specimen. Table 3.2 summarizes the applied load 

corresponding to the lateral drift mentioned in percentages for specimen one. The same 

summarization for specimen two is mentioned in Table 3.4. The lateral drift is calculated as: 

 

𝐿𝑎𝑡𝑒𝑟𝑎𝑙	𝐷𝑟𝑖𝑓𝑡	% = 		 ∆	𝐿𝑃𝑇2𝐻 	 . 100   (3.1) 

  

∆	𝐿𝑃𝑇I = 𝐿𝑎𝑡𝑒𝑟𝑎𝑙	𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡	𝑎𝑡	𝑡ℎ𝑒	𝑐𝑒𝑛𝑡𝑟𝑒	𝑜𝑓	𝑠𝑒𝑐𝑜𝑛𝑑	𝑠𝑡𝑜𝑟𝑒𝑦	𝑏𝑒𝑎𝑚	(𝑚𝑚)	  
 
 
 
 
 
 
 
 

𝐻 = 𝐶𝑜𝑙𝑢𝑚𝑛	ℎ𝑒𝑖𝑔ℎ𝑡	𝑓𝑟𝑜𝑚	𝑡𝑜𝑝	𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛	𝑡𝑜	𝑐𝑒𝑛𝑡𝑟𝑒	𝑜𝑓	𝑠𝑒𝑐𝑜𝑛𝑑	𝑠𝑡𝑜𝑟𝑒𝑦	𝑏𝑒𝑎𝑚	(1320𝑚𝑚)	  

 
Table 3.1: Load stages of forward static load - specimen one 

Load interval Load (kN) Comment 

0 0 - 

1 10 Continuation shrinkage 
cracks 

2 20 Corner cracks  

3 25 Crack opening bottom beam 

4 30 Fail of bottom beam +  
Crack opening top beam 

5 31,35 
Fail of specimen  

Crack 14,80 mm (top beam) 
∆	𝐿𝑃𝑇I	29,02 mm 

 
 

Table 3.2: Lateral load + lateral drift - specimen one 

Load interval Load (kN) ∆	𝑳𝑷𝑻𝟐	(𝒎𝒎) Lateral Drift (%) 

0 0 0,05 0,0037 

1 10 4,23 0,32 

2 20 9,10 0,69 

3 25 12,49 0,95 

4 30 19,85 1,50 

5 31,35 29,02 2,20 
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Table 3.3: Load stages of forward static load - specimen two 

Load interval Load (kN) Comment 

0 0 - 

1 10 Continuation shrinkage 
cracks 

2 20 Corner cracks  

3 24 Crack opening bottom beam 

4 25 Fail of bottom beam +  
Crack opening top beam 

5 27,55 
Fail of specimen  

Crack 14,67 mm (top beam) 
∆	𝐿𝑃𝑇I	26,70 mm 

 
 

Table 3.4: Lateral load + lateral drift - specimen two 

Load interval Load (kN) ∆	𝑳𝑷𝑻𝟐	(𝒎𝒎) Lateral Drift (%) 

0 0 0,23 0,017 

1 10 4,25 0,32 

2 20 9,34 0,71 

3 24 12,94 0,98 

4 25 16,44 1,25 

5 27,55 26,70 2,02 

 

 

Table 3.5 (specimen one) and Table 3.6 (specimen two) gives a detailed summary of the 

observations at each load interval out of Table 3.1 to Table 3.4. Reference is made to Figure 3.3 to 

Figure 3.7 (specimen one) and to Figure 3.10 to Figure 3.13 (specimen two). All the LPT’s were 

calibrated and set to zero before the compression loads on the columns were applied. Also, all the 

shrinkage cracks were marked in black before the lateral load was applied.  

The maximum forward static load during de first test was 31,35 kN with a related lateral 

displacement of the second storey beam of 29,02 millimetres. After failing of the specimen, the 

lateral force increased again until a maximum displacement of 69,17 millimetres was reached. The 

specimen failed due to shear. Cracks in the lower beam were first observed around 25 kN and failing 

of the lower beam occurred around 30 kN. Immediately hereafter shear cracks developed in the 

second storey beam and the whole specimen collapsed at 31,35 kN. The shear crack in the first 

storey beam was 7,68 millimetres wide and in the second storey beam 14,80 millimetres. 
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Table 3.5: Summary of observations during push-over of test specimen one 

Specimen One 
Comment 

Load 
interval 

Load 
(kN) 

0 0 Application of the compression loads on the columns. 

1 10 

Existing shrinkage cracks were continued about twenty millimetres in length 
and new cracks were observed at the height of the stirrups in the lower and 

upper beam and in the left column. This can be explained due to a lack of the 
concrete cover. The average length of those new cracks was around 30 

millimetres. These cracks were less than 0,1 millimetres wide. 

2 20 

Refer to Figure 3.3. A new crack arose at the at the beam-column interface at 
the upper right corner with a length of 100 millimetres. Another crack arose 
at the right side of the lower beam and had a length of approximately 120 

millimetres and made an angle of 60 degrees with the horizontal. A few more 
cracks were noticed at the beam-column interface at the lower left corner of 
the first storey beam with a length of 25 millimetres. All these cracks were 

around 0,1 millimetres wide. 

3 25 

Refer to Figure 3.4. First beam shear crack occurred at the first storey beam 
and extended nearly through the entire depth of the beam. This crack was 
1,5 millimetres wide and made an angle of 45 degrees with the horizontal. 

Also, the first column flexural cracks appeared at the base at the right side of 
both columns. Cracks were evenly distributed and developed from the base 
up to 1000 mm in the column height, and were spaced at approximately 60 

millimetres (stirrups were spaced at 45 millimetres). These cracks were 
around 0,1 millimetres wide. 

4 30 

Refer to Figure 3.5. Collapse of the first storey beam occurred. Then beam 
shear cracks developed at the second-storey beam. These cracks were 1 

millimetres wide and made an angle of 45 degrees with the horizontal. Also, a 
change in structural stiffness was noticed. The beam shear cracks widened, 
while the flexural cracks in the beams, interfaces, and columns remained 

stable. Then flexural yielding of the longitudinal reinforcement bars and the 
stirrups occurred. Because of this, the shear cracks in the beams widened. 

5 31,35 

Refer to figure 3.6. The specimen failed due to a collapse of the second 
storey beam after a collapse of the first storey beam. Also, additional flexural 

cracks were observed at the right side of each column and between the 
columns at the foundation. At the left side of each column there is also a 

crushing of the concrete noticed. The opening of these flexural cracks is not 
increased. 
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Fig. 3.3: Specimen one at load interval 2 [19] 

 

	
 

	
Fig. 3.4: Specimen one at load interval 3 [19] 
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Fig. 3.5: Specimen one at load interval 4 [19] 
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Fig. 3.6: Specimen one at load interval 5 [19] 
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Fig. 3.7: Specimen one after loading and removing measure equipment [19] 
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In Figure 3.8 is the crack pattern for the first test specimen depicted. This drawing shows all 

the cracks including the shrinkage cracks. In Figure 3.9 is only the crack pattern due to the forward 

static load shown, so here the shrinkage cracks are not mentioned. The next legend serves as a 

clarification of the two figures: 

- Black = shrinkage cracks; 

- orange = cracks mentioned after 10 kN of lateral load; 

- green = cracks mentioned after 20 kN of lateral load; 

- bleu = opening of the first significant cracks; 

- red = shear cracks that causes structure failure of the test specimen. 

  

 

 

	
Fig. 3.8: Crack pattern specimen one including shrinkage cracks 
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Fig. 3.9: Crack pattern specimen one without shrinkage cracks 

 
The maximum forward static load during de second test reached 27,55 kN with a related lateral 

displacement of the second storey beam of 26,70 millimetres. After failing of the specimen, the 

lateral force increased again (like in the first test) until a maximum displacement of 52,40 millimetres 

was reached. Also, this specimen failed due to shear. Cracks in the lower beam were first observed 

around 24 kN and failing of the lower beam occurred around 25 kN. Immediately hereafter shear 

cracks developed in the second storey beam and the whole specimen collapsed at 27,55 kN. The 

shear crack in the first storey beam was 7,99 millimetres wide and in the second storey beam 14,67 

millimetres.  

The maximum forward static load in the second test was lower than in the first test because 

in the second test the stirrups of the second storey beam yielded shortly after 25 kN. Because of 

this, the stirrups broke and the beam lost its overall strength. This broken stirrup is depicted in Figure 

3.16.   	    	 
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Table 3.6: Summary of observations during push-over of test specimen two 

Specimen Two 
Comment 

Load 
interval 

Load 
(kN) 

0 0 Application of the compression loads on the columns.  

1 10 

Existing shrinkage cracks did not continue like in the first test specimen. A 
small number of new cracks occurred in the right column at the height of the 

stirrups. This can be explained due to a lack of the concrete cover. The 
average length of those new cracks was around 35 millimetres. One larger 

crack arose at the beam-column interface at the lower right corner of the first 
storey beam with a length of 85 millimetres. These cracks were less than 0,1 

millimetres wide. 

2 20 

Refer to Figure 3.10. A new crack arose at the left side of the lower beam and 
had a length of approximately 125 millimetres and made again an angle of 45 

degrees with the horizontal. Another smaller crack continued out of the 
previous crack at the at the beam-column interface at the upper right corner 

with a length of 30 millimetres. 
Also, a crack was noticed at the beam-column interface at the upper left 

corner of the second storey beam with a length of approximately 100 
millimetres. All these cracks widened around 0,1 millimetres. 

3 24 

First beam shear crack occurred at the first storey beam and extended 
through the entire depth of the beam like happened in the first test. This 
crack was 1,0 millimetres wide and made an angle of 45 degrees with the 

horizontal and developed out of the crack which was mentioned in load 
interval two. Also, the first column flexural cracks appeared at the base at the 

right side of both columns. Cracks were evenly distributed and developed 
from the base up to 700 mm in the column height, and were spaced at 

approximately 50 millimetres (stirrups were spaced at 45 millimetres). These 
cracks were around 0,1 millimetres wide. 

4 25 

Refer to Figure 3.11. Collapse of the first storey beam occurred. Then beam 
shear cracks developed at the second-storey beam. These cracks were 1,5 

millimetres wide and made an angle of 45 degrees with the horizontal. Also, a 
change in structural stiffness was noticed just like in the first test. The beam 
shear cracks widened, while the flexural cracks in the beams, interfaces, and 

columns remained stable. Then flexural yielding of the longitudinal 
reinforcement bars and the stirrups occurred. Because of this, the shear 

cracks in the beams widened. 

5 27,55 

Refer to Figure 3.12. The specimen failed due to a collapse of the second 
storey beam after a collapse of the first storey beam. The second storey 

beam collapsed due to a yielding of the stirrups. Because of this, the stirrups 
broke and the beam lost its overall strength and the total frame collapsed. 

Also, additional flexural cracks were observed at the right side of each column 
and between the columns at the foundation. The opening of these flexural 

cracks is not increased. 
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Fig. 3.10: Specimen two at load interval 2 [19] 
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Fig. 3.11: Specimen two at load interval 4 [19] 
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Fig. 3.12: Specimen two at load interval 5 [19] 
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Fig. 3.13: Specimen two after loading and removing measure equipment [19] 
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In Figure 3.14 is the crack pattern for the second test specimen depicted. This drawing shows 

all the cracks including the shrinkage cracks. In Figure 3.15 is only the crack pattern due to the 

forward static load shown, so here the shrinkage cracks are not mentioned. The next legend serves 

as a clarification of the two figures: 

- Black = shrinkage cracks; 

- orange = cracks mentioned after 10 kN of lateral load; 

- green = cracks mentioned after 20 kN of lateral load; 

- bleu = opening of the first significant cracks; 

- red = shear cracks that causes structure failure of the test specimen. 

 

 

 

 
Fig. 3.14: Crack pattern specimen two including shrinkage cracks 
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Fig. 3.15: Crack pattern specimen two without shrinkage cracks 

 

 
Fig. 3.16: Collapse stirrup second storey beam specimen two [19] 
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3.3.3  Specimens response graphs 

This section presents the graphs of the response of the specimens. Only the source data out 

of the test process and the descriptions of these graphs are mentioned in this section. A 

comprehensive discussion of these graphs is given in part 3.4 Discussion of results. In Graph 3.1 is 

the absolute second storey displacement perpendicular to the lateral force for specimen one and two 

plotted. Graph 3.2 is shown the second storey displacement out of the first test. Similarly, is in Graph 

3.3 the second storey displacement out of the second test depicted. Graph 3.4 illustrates the two 

previous graphs to see the similarities and differences in structural behaviour and failing mode 

between the two specimens.  

From Graph 3.5 to Graph 3.7 is shown the results of LPT three. This one was located in 

extension of the first storey beam. The measuring of this LPT related to the lateral force for the first 

specimen is depicted in Graph 3.5. In Graph 3.6 is the same relation plotted for test specimen two. 

Graph 3.7 shows (like in the first case) the two previous graphs to see the similarities and differences 

in structural behaviour and failing mode between the two specimens related to LPT three. 

At each graph is the value given on which the specimen lost its overall strength. Specimen one 

failed at a lateral load of 31350 N and specimen two failed at a lateral load of 27550 N.   

 

 

 

 

	
Graph 3.1: Absolute second storey displacement perpendicular to the lateral force – specimen one + two 
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Graph 3.2: Second storey displacement related to the lateral force – specimen one  

 

 

 

 

	
Graph 3.3: Second storey displacement related to the lateral force – specimen two 
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Graph 3.5: First storey displacement related to the lateral force – specimen one  

	
 

 

 

	
Graph 3.6: First storey displacement related to the lateral force – specimen two 

	 	



 93 

	
	
 

	
	  	

G
ra

ph
 3

.7
: 

Fi
rs

t 
st

or
ey

 d
is

pl
ac

em
en

t 
re

la
te

d 
to

 t
he

 la
te

ra
l f

or
ce

 –
 s

pe
ci

m
en

 o
ne

 +
tw

o 



 94 

3.4  Discussion of results 

This section discusses the results out of the experiments from the two specimens with a look 

to the behaviour of the specimens during the test and the final failing modes. During those tests, 

there were made analyses on the measuring’s of the LPT’s. The focus will therefore be on the 

following topics: 

- Progression of the failure mechanism through an analysis of the lateral load versus 

second-storey displacement graph; 

- progression of crack pattern by an increase of the lateral force.  

 

3.4.1  Limitations  

Out of these experiments are gathered a big amount of data, so variable points of discussion 

are possible. Due to a time limit, only the topics mentioned in part 3.4 Discussion of results are 

mentioned.  

There were also occurring a few problems during the tests. First, the calibration of the 

inclinometers was not successful. This happened because the cable between the measuring device 

and the computer was too long. Because of this, the resistance of the cable was bigger than the 

resistant of the measuring device whereby, the measurement was influenced. Due to this, the 

inclinometers were not used during the experiment.  

The second problem that occurred during the tests was located at the LPT’s in extension of the 

two beams. Due to the deformation of the frame and that the sliding between the LPT and the 

concrete surface was not possible, the LPT’s started to bend in their position. To prevent influence 

of the measurement results and breakage of the LPT’s, the LPT’s were released from the concrete 

surface and put immediately back on. The results gathered due to the replacement of the LPT’s are 

deleted out of the graphs because they do not have any scientific meaning.  

 

3.4.2  Lateral load versus second-storey displacement 

The damage mode that was observed in the both tests cases was a primarily shear failure. 

(Refer to Figure 3.5 and Figure 3.11). Several key moments took place during the tests that affected 

the structural stiffness of the portal. In general, the moments that had significant changes to the 

structural stiffness involved either notable shear cracking, or yielding of the stirrups in the beams. 

Between those key moments, the stiffness of the frame response was linear as depicted in Graph 

3.8. In this graph is only the second test mentioned because the first test reacted in the same way 

as the first one. Table 3.7 serves as a clarification of this graph.  

During the forward static load the first initial stiffness was relatively constant until the first 

significant cracks arose at the beam-column interfaces and in the beams at 20 kN (pt. two). Between 

20 kN and 27,55 kN the stiffness decreased. Point three at 27,55 kN occurred shortly after the lower 

and upper beams collapses due to shear cracks. Due to the ductility phase of the stirrups the 

displacement increased by a constant force until the portal collapsed (pt. 4). Then, the frame was 

forced to deform further by an increase of the lateral force. In this phase, the structure found a new 

stiffness. This came from the flexural strength of the reinforcement bars at the right side in the 

columns. Also, the friction between the shear planes in the beams provides an increase of the 

stiffness of the structure. Pont seven forms the end of the forward static loading and in point eight 

the unloading phase started. The peak lateral load of 27,55 kN was reached at 26,70 millimetres. In 
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test case one the peak lateral load of 31,35 kN was reached at 29,02 millimetres. It is important to 

point out that in the first test case the frame was forced to deform much further than in the second 

test. This to investigate or there would occur any significant difference in structural behaviour. This 

was not the case. This is depicted in Graph 3.4 and Graph 3.7 were the graphs have a parallel 

behaviour.  

 

 
Graph 3.8: Simplified graph of second storey displacement related to the lateral force – specimen two 

 
Table 3.7: Summary of the key moments during the lateral loading 

Point Load 
(kN) 

Load 
interval ∆	𝑳𝑷𝑻𝟐	(𝒎𝒎) Comment 

1 0 0 0,23 Initial condition 

2 20 2 9,10 

Crack arose at the beam-column interface at the 
upper right corner. Change in structural stiffness 
shortly after shear cracks in the upper and lower 
beam. Flexural cracks started to develop in the 

columns and the foundation. 

3 27,55 5 20,72 Ductility phase of the stirrups in the beams.  

4 27,55 5 26,70 Collapse of the portal frame. 

5 22,85 4 26,80 

Two partially isolated vertical cantilevers arose in 
the structure. Increase of the flexural strength of 
the reinforcement bars in the columns + increase 
of the friction capacity between the shear planes 

in the beams.     

6 26,15 5 48,92 Intermediate reading. 

7 26,15 5 52,40 End of the static loading. 

8 25,15 5 52,40 Start of the unloading phase.  

9 12,45 1 26,05 End of the unloading phase. 

10 0 0 22,85 Final condition of the test specimen and end of 
the experimental test. 
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3.4.3  Crack pattern 

The explained crack pattern (Refer to Figure 3.14 and Figure 3.15) is related to the lateral load 

versus second storey displacement from test specimen two out of section 3.4.2 Lateral load versus 

second storey displacement. The crack pattern out of the first test case is almost identical.  

The first stage in the developing of the crack pattern was a continuation of the shrinkage 

cracks. These new cracks became visible by an applied lateral force of 10 kN. At this load stage, also 

new cracks developed in the front surface of the right column at the height of the stirrups. This can 

be explained by a lack of the applied concrete cover of ten millimetres. At this load stage the cracks 

had an average length of 35 millimetres and were less than 0,1 millimetres wide. One crack was 

larger than the other ones. This was located at the lower right corner of the first storey beam and 

had a length of 85 millimetres.  

In general, when the lateral load and lateral frame deformation increased, the elongation of 

the beams increased. Due to this elongation, there arise shear cracks. Due to this phenomenon, 

there arose a first shear crack at 20 kN at the left side of the lower beam and had a length of 

approximately 125 millimetres. At a lateral load around 24 kN this crack extended through the entire 

depth of the beam and widened 1,0 millimetres. Also, the first flexural cracks are observed at the 

base at the right side of both columns. Cracks were evenly distributed and developed from the base 

up to 700 mm in the column height, and were spaced at approximately 50 millimetres with an 

opening of 0,1 millimetres.  

The next important condition happened at a lateral load of 25 kN, with a collapse of the first 

storey beam. Immediately after the structural failure of the first storey beam, cracks developed at 

the second storey beam with an opening of 1,5 millimetres. Then flexural yielding of the longitudinal 

reinforcement bars and yielding the stirrups occurred. Because of this, the shear cracks in the beams 

widened. At a peak lateral load of 27,55 kN the second storey beam collapsed. This beam collapsed 

due to the yielding of the stirrups. Because of this, the stirrups broke and the beam lost its overall 

strength and the total frame collapsed. Also, additional flexural cracks were observed at the right 

side of each column and between the columns at the foundation. 

A striking determination that can be made is that in both test cases, the first storey beam 

collapses the first. Immediately after this collapse there arose shear cracks in the second storey 

beam. This phenomenon can be explained by a calculation of the shear forces and bending moments 

in the portal frame. This calculation is carried out in SAP2000. In Figure 3.17 are the static schemes 

of these calculations depicted. In Figure 3.17a are shown the applied forces (45kN compression + 

10 kN lateral force), Figure 3.17b is a representation of the acting shear forces and FFigure 3.17c of 

the acting bending moments. By this calculation, it becomes clear why the first storey beams first 

losses his structural strength.  

In the SAP2000 model are the specific material parameters out of the experiments used to 

build the portal frame. On the top of each column is applied a compression force of 45 kN as 

calculated by formula 2.3. A non-increasing lateral load of 10 kN is applied at the upper beam-column 

interface. The calculation proves that the shear force in the lower beam is higher than the shear 

force in the upper beam by those applied forces. For this reason, the lower beam first losses his 

structural strength. After the collapse of the lower beam, there occurs a redistribution of the shear 

forces. These forces are then largely absorbed by the second storey beam until the acting shear force 

becomes bigger than the resistance of the second storey beam. After this exceeding of the resistance 

also this beam will collapse and the frame losses its overall structural strength.  
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a)         b)               c) 

Fig. 3.17: Static schemes of the test specimen – SAP2000 

 

 

 

 

 
Fig. 3.18: Cracked specimen one + cracked specimen two [19] 
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4.  FINITE ELEMENT MODELLING      

4.1  Introduction 

As an augmentation of the experimental analysis, an analytic model of the test specimen is 

developed using the finite element software TNO DIANA. This software is developed in a spin-off 

company from the Computational Mechanics department of TNO Building and Construction Research 

Institute in Delft, The Netherlands. The modelling process is discussed in this chapter. Specifically, 

the techniques that are used related to the support conditions and, concrete- and reinforcement 

elements. Results of this finite element analysis and a discussion of these results are mentioned in 

chapter 5. Finite Element Results. A comparison between the experimental- and numerical results is 

given in chapter 6. Comparison Experimental- vs. Finite Element Results.  

 

4.2  TNO DIANA modelling 

By using TNO DIANA as modelling software, there is the advantage that there is no external 

pre-processor needed to build the finite element mesh. In contrast to other software such as VecTor2 

where the mesh is built in the pre-processor FormWorks, it is possible in this software to build the 

mesh in the software itself. The portal frame was completely modelled using quadratical elements 

that were a representation of the concrete and the reinforcement bars. Refer to the TNO DIANA 

manual for a complete summary of the possible functions of the program. The version that is built 

in this master’s thesis is a model where perfect bond between the concrete and reinforcement is 

assumed. In part 4.3 follows a summary of the characteristics of the model. This part is focusing on 

the used procedures and on the several facets of the finite element mesh. The build mesh is depicted 

in Figure 4.1.  

In structural analysis, a commonly used type of analysis, using numerical techniques, involves 

the assumption of small strains and linear elastic behaviour. However, this is only valid for small 

applied loadings. Therefore, linear analyses are usable in cases where simple direct solution are 

expected or in superposition cases. So, a linear equation can just be solved in a single iteration and 

has a unique solution. However, there are situations where nonlinear effects must be incorporated 

for a realistic assessment of the structural response. These non-linearity’s are categorized into three 

cases.  

The first case is a physical nonlinear analysis wherein the plasticity or the cracking of a 

structural model will be studied. The second case is a geometric nonlinearity, wherein significant 

changes in geometry are observed due to large deformations. The third case is a material 

nonlinearity, which arises when stress-strain behaviour ceases to be linear or, more precisely, when 

material properties change due to the applied loads. So, a nonlinear analysis is also usable for 

situations where there need to be done an analysis of the failure mechanism of a structure or an 

evaluation of the failure mode of an existing structure. So, to solve nonlinear analyses, there are 

required multiple iterations.  

The use of a nonlinear analysis has also several consequences. For example, the superposition 

method can no longer be applied, only one load situation can be handled at a time, the response of 

the structure can be non-proportional to the applied loading because there are several solutions 

possible, et cetera. The difference between a linear and a nonlinear behaviour is schematic depicted 

in Figure 4.2. Out of this summary there can be concluded that in this master’s thesis is chosen to 

obtain a nonlinear analysis. This, because the specimen is loaded until structural failure occurs. [20] 
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Fig. 4.1 Concrete Finite Element Mesh 
    

 

 

                        LINEAR                          NONLINEAR 

 
Fig. 4.2 Difference between a linear and a nonlinear behaviour [20]  
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4.2.1  Support conditions 

In the experimental setup, the frame was connected to the test bench with four threaded bars 

diameter sixteen millimetres to obtain a fixed support. There were two sets of two threaded bars 

located at the outside of the columns. This tensioning force was introduced into the finite element 

model by applying five clamped supports at the left side of the foundation. Next, the foundation was 

supported by an infinite rigid floor whereby no deformation of the floor would occur. These are 

suggested by 105 pinned supports. 

The experiment showed that the foundation not slide during the application of the lateral 

increasing force, which justifies that the pinned supports in the finite element model are correct. The 

foundation stayed intact with a low amount of damage patterns. The support condition of the 

foundation is depicted in Figure 4.3.  

 

	
Fig. 4.3 Support condition of the foundation 

 

4.2.2  Concrete elements 

Plane stress square elements were used to model the reinforced concrete and to model the 

concrete cover. In total 11154 concrete elements were used. The elements were 16,67 millimetres 

on 16,67 millimetres for the columns and the beams and 66,67 millimetres on 66,67 millimetres for 

the foundation. There is made a difference in mesh size between the foundation and the rest of the 

frame because the behaviour of the foundation is not the major research topic in this master’s thesis. 

Also, the foundation is oversized whereby the influence of the applied forces on this structural 

element is very small. By using a larger mesh size for the ‘less important foundation’ the model must 

solve less equations and iterations whereby the overall results of each analysis are faster available.    

The material model that is used for the mathematical FE modelling of the concrete is the EN 

1992-1-2 compressive stress-strain model, depicted in Graph 4.1. The section EN 1992-1-2 of the 

Eurocode is related to the design of structures with a considering of the fire resistance. As creep 

effects are not considered explicitly, the material models in this part of the Eurocode can be applied 

for heating rates between 2 and 50 K/min. The compressive stress-strain relationship given in Figure 

4.1 is defined by the compressive strength fc, θ and the strain εc1, θ. The values for these parameters 

are given in Table 3.1 of part 3.2.2 Concrete of Eurocode 1992-1-2. The parameters specified in this 

table can be used for normal weight concrete with aggregates out of pebbles or lime. [20] 
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Graph 4.1: EN 1992-1-2 compressive stress-strain model [20] 

 

4.2.3  Reinforcement elements 

The used reinforcement is modelled as truss elements. These truss elements are elements 

with a node one each side and a homogeneous cross-section. Each node has three freedom degrees 

(x, y, z). The reinforcement is modelled as ductile longitudinal and transversal (stirrups) 

reinforcement bars in the foundation, columns and beams. The length of each reinforced element in 

the foundation is 66,67 millimetres and 16,67 millimetres for the rest of the frame. In total 9472 

reinforcement elements were used. Figure 4.4 and Figure 4.5 illustrates respectively the applied 

reinforcement layout and the applied reinforcement layout together with the finite element mesh of 

the concrete.  

The reinforcement bars in this model are designed in such a way that complete yielding is 

possible. There is also assumed a perfect bond between the reinforcement bars and the concrete 

because out of the experimental tests there can be concluded that there was no slippage between 

these two constructive elements.  
 

          
                  Fig. 4.4 Reinforcement layout                        Fig. 4.5 Reinforcement layout + finite element mesh  
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The material model that is used for the mathematical FE modelling of the reinforcement is the 

Von Mises plasticity model with pure kinematic hardening, depicted in Graph 4.2. This material model 

is defined by a bilinear inelastic curve and is used in cases where an elastic material is loaded past 

the yield strength of the material. When this is achieved, a plastic deformation of the material will 

occur. The Von Mises plasticity model uses this bilinear inelastic curve to calculate the stresses in 

the materials (cfr. reinforcement). The elastic part of the stress versus strain curve has a slope equal 

to the elasticity modulus, and the plastic part of this curve has a slope equal to the strain hardening 

modulus.  

It is important to point out that there are two types of hardening material models available. 

The isotropic hardening model which yields uniform through the entire surface of the material and 

the kinematic hardening model which is used is this master’s thesis. This kinematic hardening model 

involves a shifting of the yield surface. The most important zones are the yield strength and the 

strain hardening modulus and are marked in Graph 4.1. The yield strength of a material is the point 

in the stress-strain curve where the material starts to deform into the plastic strain of the material. 

After this yielding point, the new yield stress depends on the way of hardening and the history of 

loading. The strain hardening modulus of the curve is the slope of the stress-strain curve after the 

yielding point.  

 

 
Graph 4.2: Von Mises plasticity model with pure kinematic hardening [20] 
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4.2.4  Loading conditions and procedures 

In the experimental part of this master’s thesis, a stabilizing force of 45 kN as calculated by 

formula 2.3 was applied at the top of each column along steel distribution plates. In the FE model is 

a load of 0,71 kN applied at 63 nodes at the top of each column. This stabilizing load was held 

constant through the entire analysis procedure. The lateral increasing load at the right side of the 

right column at the height of the second storey beam is also applied at 63 nodes. The complete 

loading combination used in the FE model is illustrated in Figure 4.6.  

 

 
Fig. 4.6 Lateral – and horizontal loading  

 

4.2.5  Analysis procedure 

The solution of an analysis of a nonlinear finite element model, is a system of nonlinear 

equations, for which an incremental-iterative solution procedure need to be applied. The incremental-

iterative method that is used in this FE model is the regular Newton-Raphson method whose curve 

is depicted in Graph 4.3.  

 

 
Graph 4.3: Regular Newton-Raphson method [20] 
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In this incremental-iterative method is the tangent stiffness matrix derived at every iteration. 

The general mathematical formula behind the model has the form:   

 

𝐾Ú 𝑈� 	. ∆𝑈 = 𝐹yLÚ(𝑈�) − 𝐹z§Ú(𝑈�)    (4.1) 

 

 In this formula is	 ∆𝑈  the displacement increment, and 𝐾Ú 𝑈�  the tangent stiffness matrix 

in function of 𝑈�  at step t. The result out of this equilibrium is: 

 

𝐹yLÚ(𝑈��∆�) − 𝐹z§Ú 𝑈��∆� = 0   (4.2) 

 

 𝑈��∆� out of formula 4.2 is the total displacement at step 𝑡 + ∆𝑡 and can be defined as:  

 

𝑈��∆� = 𝑈��∆� + 	∆𝑈   (4.3) 

 

Before equation 4.1 can be used, there need to be done first a determination of the load 

incrementation, which is the linearization of the nonlinear problem. Depending on the shape of the 

equilibrium path, there are three types of load incrementations possible: force control, displacement 

control and arc-length control. In this FE model are used the force control (graph 4.4a) and arc-

length control with a snap-through approach (Graph 4.4b + Graph 4.4c). 

In the force control are the loads incrementally applied. A load control analysis is applied to 

models with continuous force increasing or without softening behavior and limits. Consequently, if 

there is a softening behavior or there are limits in the model then, the pure load incremental 

procedure does not lead to a solution. This in the case that the applied load is bigger than load 

capacity of the model. 

In the arc-length method are the incremental displacements constrained. In this method, the 

applied load factors are varying from load steps defined by the user. Because step sizes are not 

applied to the applied load but to the combination of force and displacement. This arc-length method 

is combined with the snap-through procedure. This is a procedure to predict the behaviour of the 

model, wherein the iteration process is searching for solutions that are always laying in front of the 

previous calculated value and never behind the previous calculated value [20]. 

 

 

	
      a)         b)      c)  

Graph 4.4: Used load incrementation procedures – TNO DIANA  [20] 
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5.  FINITE ELEMENT RESULTS      

5.1  Introduction 

The results of the finite element analysis for both prototype and the scaled model are 

mentioned in the different subdivisions of part 5.2 Results. In this part, the emphasis of the results 

is placed on the crack-widths in the z-direction, the total compression stresses in the concrete, the 

displacement of the frame and its element in the x-direction and, the total stresses in the 

reinforcement in the x- and z-direction. A discussion of these results is given in part 5.3 Discussion 

of results. Out of this discussion of the results is the failure mode formulated. 

 

5.2  Results 

5.2.1  Prototype 

A.  Crack-widths (z-direction) 

 

 
Fig. 5.1: Crack pattern in the z-direction – Prototype 
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B.  Displacements (x-direction) 

 

	
Fig. 5.2: Total displacement in the x-direction – Prototype 

 

C.  Total compression stresses concrete S3 

 

 
Fig. 5.3: Total compression stresses in the concrete in the 3th direction – Prototype 
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D.  Total stresses reinforcement (x-direction) 

 

 
Fig. 5.4: Total stresses in the reinforcement in the x-direction – Prototype 

 

E.  Total stresses reinforcement (z-direction) 

 

 
Fig. 5.5: Total stresses in the reinforcement in the z-direction – Prototype 



 110 

 

F.  Load-displacement second storey 
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G.  Failure mode 

 

The frame design was based on a weak beams and strong columns. The failure mode of the 

prototype can be derived out of the crack pattern that is depicted in Figure 5.1. Finally, the frame 

failed due to a combination of bending + shear. Bending occurred in the beams and in the right side 

of each column. These flexural cracks had a maximum opening of 0,56 millimetres (light blue zones 

in Figure 5.1). The flexural cracks in the beams are showed by the long horizontal cracks. These 

cracks show a failure (friction loss) between the concrete and the longitudinal reinforcement bars. 

The shear cracks occurred exclusively in the beams. These shear cracks are showed by the 

diagonal cracks visible in the beam with a maximum opening of 0,56 millimetres. These arose due 

to an activation of the compressed strut in the concrete. These typical cracks are also visible at the 

joint between the columns and the beams. Due to this shear force, the stirrups started to yield. First, 

the stirrups at the lower beam yielded and after that the stirrups of the upper beam.  

 

H.  Discussion of results 

 

Figure 5.2 shows the deformation of the frame. It is obvious that the second storey beam has 

the highest lateral deformation because the lateral force is applied at this level. This maximum 

deformation is 59,83 millimetres, and the lowest deformation is zero millimetres at the level of the 

clamped foundation.  

In Figure 5.3 is the total compression stress in the concrete depicted. In this figure are the 

compressed struts in the beams clearly visible (diagonals). The maximum compression occurs at the 

left side of the left column with a value of 35 N/mm2. Refer to Figure 3.7 for a similar concrete 

crushing. 

Figure 5.4 shows the maximum stresses in the reinforcement in the x-direction. The maximum 

of 473,49 N/mm2 occurs at the upper left side and at the lower right side of the beams. This value 

is higher than the yielding point of the longitudinal bars (447 N/mm2 – refer to Table 1.4) and for 

this reason the reinforcement started to yield in these areas.  

In Figure 5.5 are also the stresses in the reinforcement depicted but for the reinforcement in 

the z-direction. In this figure, it is clearly visible that the highest stresses are located in the stirrups 

of the beams. Due to this, the stirrups started to yield and the beams failed due to shear. Also, in 

the right side of the columns are observed high stresses. These are linked to the bending of the 

columns. The maximum value for the shear stresses out of this figure is 501,97 N/mm2 and is almost 

equal to the yielding point of the stirrups (506 N/mm2 – refer to Table 1.4).  

In Graph 5.1 is the second storey displacement related to the lateral force plotted. The red 

line out of this graph shows the obtained calibration of the own numerical model. This graph shows 

a pretty good approach of the results obtained in the experiments at the University of Toronto. At 

the early stage of the elastic zone, the red curve is almost equal to the blue one. A difference between 

the two curves arise in the ultimate zone. This is because of a continuation of the numerical model 

till the failure point was reached. In the experiments at the University of Toronto they did not go till 

the failing point because they wanted to have the potential to repair the frame, and to test those 

repaired zones.  
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5.2.2  Scaled model 

A.  Crack-widths (z-direction) 

 

 
Fig. 5.6: Crack pattern in the z-direction – Scaled model 
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B.  Displacements (x-direction) 

 

 

Fig. 5.7: Total displacement in the x-direction – Scaled model 

 

C.  Total compression stresses concrete S3 

 

 
Fig. 5.8: Total compression stresses in the concrete in the 3th direction – Scaled model 



 114 

D.  Total stresses reinforcement (x-direction) 

 

 
Fig. 5.9: Total stresses in the reinforcement in the x-direction – Scaled model 

 

E.  Total stresses reinforcement (z-direction) 

 

 
Fig. 5.10: Total stresses in the reinforcement in the z-direction – Scaled model 
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F.  Load-displacement second storey 
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G.  Failure mode 

 

The failure mode of the scaled model can be derived out of the crack pattern that is depicted 

in Figure 5.6. At the final stage, the frame failed due to shear. The shear cracks occurred exclusively 

in the beams. These shear cracks are showed by the diagonal cracks visible in the beam with a 

maximum opening of 3,00 millimetres (red zones). These arose due to an activation of the 

compressed strut in the concrete. Due to this shear force, the stirrups also started to yield. First, the 

stirrups at the lower beam yielded and after that the stirrups of the upper beam. Failing due to 

bending was not the case here.  

So, there arose a difference in behaviour and failure mode between the prototype (bending + 

shear) and the scaled model (pure shear). This is remarkable conclusion and will be further examined 

in chapter 7. Comparison reference article vs. own research results. 

 

H.  Discussion of results 

 

Figure 5.7 shows the deformation of the frame. It is obvious that the second storey beam has 

the highest lateral deformation because the lateral force is applied at this level. This maximum 

deformation is 74,55 millimetres, and the lowest deformation is zero millimetres at the level of the 

clamped foundation. Related to the prototype, this deformation is a little bit higher because in this 

case the failing point is reached.  

In Figure 5.8 is the total compression stress in the concrete depicted. In this figure are the 

compressed struts in the beams not so clearly visible (diagonals) as in Figure 5.3 because there did 

not occur a bending failure in the scaled model. The maximum compression stress is 53 N/mm2.  

Figure 5.9 shows the maximum stresses in the reinforcement in the x-direction. The maximum 

of 418,05 N/mm2 (red zone) occurs at the upper left side and at the lower right side of the beams. 

The negative value of the compression occurs at the upper right side of the second storey beam and 

has a value of -407,06 05 N/mm2 (blue zone). These values are higher than the yielding point of the 

longitudinal bars (refer to Graph 2.7) and for this reason the reinforcement started to yield in these 

areas.  

In Figure 5.10 are also the stresses in the reinforcement depicted but for the reinforcement in 

the z-direction. In this figure, it is clearly visible that the highest stresses are located in the stirrups 

at the left side of the beams. Due to this, the stirrups started to yield and the beams failed due to 

shear (Refer to figure 3.5). Also, in the right side of the columns are observed high stresses. These 

are linked to the bending of the columns. These stresses reaching higher in the column height 

compared with the prototype. This because the beams do not take any bending (pure shear failure). 

The maximum value for the shear stresses out of this figure is 548,67 N/mm2 and is higher than the 

yielding point of the stirrups (refer to Graph 2.6).  

In Graph 5.2 is the second storey displacement related to the lateral force plotted. The red 

line out of this graph shows the obtained calibration of the numerical model for the scaled model. 

The blue line is a plot of the experimental results of specimen one and the green line shows the 

experimental results of specimen two. The FEM approach reacts in the early stages (0 kN – 10 kN) 

a little bit stiffer than the experimental values. Between 10 kN and 20 kN the stiffness is equal to 

the experimental results. After the elastic zone the curve fits in between the two experimental curves 

and after the failure point the curve approaches the average of those two experimental curves.    	



 117 

	
	  



 118 

	  



 119 

6.  COMPARISON EXPERIMENTAL- VS. FINITE ELEMENT RESULTS 

6.1  Introduction 

A comparison between the results of the experimental- versus the numerical method are 

carried out in the different subdivisions of part 6.2 Results. In this part, the emphasis of the 

comparison of the results is placed on the crack-widths in the z-direction, the displacement of the 

frame and its element in the x-direction, the total compression stresses in the concrete and the total 

stresses in the reinforcement in the x- and z-direction. A general conclusion of these comparisons is 

given in chapter 8. Conclusion.  

 

6.2  Results 

6.2.1  Crack-widths (z-direction) 

Generally, the finite element model gave a good prediction of the failure mode and the location 

of the first major cracks (Refer to Figure 3.7, 3.13, 3.18, 5.6 and Graph 5.2). Experimentally, the 

progression of first cracking was as follows: first storey beam shear, right side of columns flexure, 

collapse of first storey beam, second storey beam shear, flexure at the base of both columns and 

collapse of the second storey beam. The finite element model predicted the same behaviour except 

the flexural cracks at the right side of the columns. These were underestimated. But the model 

predicted the same failure mode, namely pure shear failure in the beams. The maximum average of 

the crack opening in the second storey beam was 14,70 millimetres and in the first storey beam 7,80 

millimetres. The finite element model predicted a shear crack of 12 millimetres for the second storey 

beam and 7 millimetres for the first storey beam. So, the predictions about the opening of the cracks 

was also correct.  

 

6.2.2  Displacements (x-direction) 

Refer to Graph 3.4, 3.7 and Figure 5.7. The finite element model predicted that the second 

storey beam would experience the highest lateral displacement. The foundation would not deform 

(because it was a clamped foundation) and the displacement of the first storey beam is laying 

between the displacement values of the second storey beam and the foundation. This prediction 

corresponds to the results gathered out of the experimental tests, so the prediction of the 

displacement of the frame by the finite element model was correct. 

 

6.2.3  Total compression stresses concrete S3 

The finite element response of the compression stresses in the concrete was compatible to the 

experimental results. Refer to Figure 5.8 for the prediction by the analytical model and to Figure 3.7 

for an example of the concrete crushing during the experiment. The finite element model predicted 

the highest compression stresses at the left side of the left column (blue marker elements out of 

Figure 5.8) with a value of 53 N/mm2. The maximum average compression strength of the concrete 

during the two experimental tests was 53,33 N/mm2. So, the analytical model predicted correct the 

place, were the crushing of the concrete would occur.  
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6.2.4  Total stresses reinforcement (x-direction) 

When the stresses in the longitudinal reinforcement bars were checked, the following 

observations were made. Prior to the shear failure, the response of the finite element model seemed 

reasonable with the experiment. Like the experiment, the highest stresses occurred in the bars at 

the upper left side and lower right side of each beam (refer to Figure 5.9 for the prediction and to 

Figure 3.6 and 3.12 for the experimental results). Out of the material test, the yielding point of the 

longitudinal reinforcement was determined at 400 N/mm2. The value of the stresses at the previous 

mentioned places was predicted by the analytical model and was 418,05 N/mm2. This means that 

the reinforcement at those places was beyond the yielding point. This prediction could be linked to 

the experimental observations. 

 

6.2.5  Total stresses reinforcement (z-direction) 

When the analytically predicted transversal reinforcement stresses were compared to the 

actual behaviour of the frame, the following observations were made (refer to Figure 3.5, 3.6, 3.11, 

3.12 and 3.16 for the experimental behaviour and to Figure 5.10 for the analytical prediction). The 

model predicted high stresses at the right side of each column and in the stirrups of the beams 

(orange marked elements). The predicted value of these stresses was 274,19 N/mm2. Out of the 

material tests is the yielding point for both transversal- and longitudinal reinforcement determined. 

The yielding point for the bars with diameter six was, 400 N/mm2 (column reinforcement) and for 

the bars with diameter three, 246 N/mm2 (stirrups). This means that the stirrups in the beams are 

beyond their yielding point and the reinforcement bars in the columns were not beyond their yielding 

point. Therefore, the beams failed due to shear because in these zones was the yielding point of the 

reinforcement reached first.  

 

6.2.6  Load-displacement second storey 

Refer to Graph 5.2. In this graph is the second storey displacement related to the lateral force 

for the experiments plotted together with the prediction of the finite element model. The red line out 

of this graph shows the obtained calibration of the numerical model for the scaled model. The blue 

line is a plot of the experimental results of specimen one and the green line shows the experimental 

results of specimen two. The FEM approach predicts in the early stages (0 kN – 10 kN) a little stiffer 

behaviour than the experimental values. Between 10 kN and 20 kN the prediction of the stiffness is 

equal to the experimental results. After the elastic zone the curve fits in between the two 

experimental curves and after the failure point the curve approaches the average of those two 

experimental curves. The predicted value for the peak load is an average between 31,35 kN 

(specimen one) and 27,55 kN (specimen two). The unloading phase is not predicted by the finite 

element model.  

Finally, it can be concluded that the general prediction of the numerical model on all previous 

facets, a very good approach is of the values gathered out of the experimental tests. This means 

that the finite element model is calibrated correctly, and that it widely can be used to predict the 

behaviour of a reinforcement concrete frame based on a scaled model.  
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7.  COMPARISON REFERENCE ARTICLE - VS. OWN RESEARCH   

         RESULTS 

 

Table	7.1:	Summary	of	the	calculations	of	the	behaviour	between	prototype	and	scaled	model	–	SAP2000 

Prototype 1/1 Scaled model 1/3 

Lateral 
Force 
(kN) 

Shear 
Force 

VEd 
(kN/m) 

Bending 
Moment 

MEd (kNm) 

VEd/ MEd 
(-) 

Lateral 
Force 
(kN) 

Shear 
Force 

VEd 
(kN/m) 

Bending 
Moment 

MEd (kNm) 

VEd / MEd 
(-) 

10 8,89 8,45 1,05 1 0,975 0,306 3,19 

100 88,89 84,58 1,05 10 9,75 3,06 3,19 

200 177,80 169,17 1,05 20 19,50 6,12 3,19 

300 266,70 253,76 1,05 30 29,26 9,18 3,19 

   -----------------------------------------------------> 

   	≈ 	𝑥	3 

 

Out of Table 7.1 there can be concluded that there is a difference in behaviour (𝑉𝐸𝑑 𝑀𝐸𝑑) 

between the prototype and the scaled model. The occurring difference is almost equal to the scale 

factor three. This means that due to a geometrical downscaling of all the dimensions and the 

reinforcement diameters, the failure mode changes. In this case, from bending + shear failure 

(prototype) to a pure shear failure (scaled model). Refer to Figure 5.1 for the failure mode of the 

prototype and to Figure 5.7 for the failure mode of the scaled model.  

Out of this analysis can be concluded that there is no linear downscaling possible between the 

prototype and the scaled model. So, to apply the downscaling correctly, the change in behaviour 

must be considered. Equation 7.1 shows the mathematical equation of this phenomenon: 

 

𝑀ÝË
E E

𝑀yË
E E

𝑉ÝË
E E

𝑉yË
E E

			= 			

𝑀ÝË
E [

𝑀yË
E [

𝑉ÝË
E [

𝑉yË
E [

 (7.1) 

 

Only the green marked parameters out of the previous equation can be modified to obtain the 

same behaviour and failing mode between the prototype and the scaled model. Next, the calculations 

of all the resistant parameters out of equation 7.1 are mentioned. A calculation of the shear force 

resistance for the prototype and the scaled model is given in equation 7.2. The calculations of the 

bending resistance for both models are given in equation 7.3. The design values for both models are 

already given in Table 7.1 and are calculated in SAP2000. 
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𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑜𝑓: (7.2) 

𝑉ÝË,ÐE/E = 	
¥ßà
á
	 . 𝑧	. 𝑓�Ë	. cot 𝜃   

𝑉ÝË,l�HE/E = 	
𝛼𝑐𝑤	.	𝑏𝑤	.		𝑧	.		𝜐1	.		𝑓𝑐𝑑

cot𝜃+	tan𝜃    

 

 

  

𝑅𝑒𝑓𝑒𝑟	𝑡𝑜	𝑓𝑖𝑔𝑢𝑟𝑒	1.14	𝑎𝑛𝑑	1.15 + 	𝑡𝑎𝑏𝑙𝑒	1.2	𝑎𝑛𝑑	1.3	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑢𝑠𝑒𝑑	𝑣𝑎𝑙𝑢𝑒𝑠  

	  

𝑉ÝË,ÐE/E = 	

𝜋. 9,5	𝑚𝑚	I

4 . 2

300	𝑚𝑚
	. 0,9	. 350	𝑚𝑚	. 506	 𝑁 𝑚𝑚I 	. cot 45° = 75,32	𝑘𝑁	

 
 
 
 
 
 
 
 
 

𝑉ÝË,l�HE/E = 	
1	. 300	𝑚𝑚	. 0,9	. 350	𝑚𝑚	. 0,6	. 42,9	 𝑁 𝑚𝑚I

cot 45° + 	 tan 45°
= 1216,22	𝑘𝑁	  

	  

𝑉ÝËE/E = 	𝑉ÝË,ÐE/E = 75,32	𝑘𝑁	  

	  

𝑅𝑒𝑓𝑒𝑟	𝑡𝑜	𝑓𝑖𝑔𝑢𝑟𝑒	2.2		𝑎𝑛𝑑	2.3 + 	𝑡𝑎𝑏𝑙𝑒	2.1	𝑎𝑛𝑑	2.4	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑢𝑠𝑒𝑑	𝑣𝑎𝑙𝑢𝑒𝑠	
 
 
 

	  

𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑜𝑓:	  

𝑉ÝË,ÐE/[ = 	
¥ßà
á
	 . 𝑧	. 𝑓�Ë	. cot 𝜃   

𝑉ÝË,l�HE/[ = 	
𝛼𝑐𝑤	.	𝑏𝑤	.		𝑧	.		𝜐1	.	𝑓𝑐𝑑

cot𝜃+	tan𝜃    

 

 

  

𝑉ÝË,ÐE/E = 	

𝜋. 3	𝑚𝑚	I
4 . 2

100	𝑚𝑚
	. 0,9	. 116	𝑚𝑚	. 246	 𝑁 𝑚𝑚I 	. cot 45° = 3,63	𝑘𝑁	

 
 
 
 
 
 
 
 
 

𝑉ÝË,l�HE/E = 	
1	. 100	𝑚𝑚	. 0,9	. 116	𝑚𝑚	. 0,6	. 53,33	 𝑁 𝑚𝑚I

cot 45° + 	 tan 45°
= 167,03	𝑘𝑁	

 

	  

𝑉ÝËE/[ = 	𝑉ÝË,ÐE/[ = 3,63	𝑘𝑁	  
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𝑀ÝË
E/E = 	𝐴Ðé	. 𝑓�Ë	. 𝑧 (7.3) 

  

𝑅𝑒𝑓𝑒𝑟	𝑡𝑜	𝑓𝑖𝑔𝑢𝑟𝑒	1.14	𝑎𝑛𝑑	1.15 + 	𝑡𝑎𝑏𝑙𝑒	1.2	𝑎𝑛𝑑	1.3	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑢𝑠𝑒𝑑	𝑣𝑎𝑙𝑢𝑒𝑠  

	  

𝑀ÝË
E/E = 	

𝜋. 20	𝑚𝑚	I

4
. 4	𝑏𝑎𝑟𝑠	. 447𝑁 𝑚𝑚I 	. 0,9	. 350	𝑚𝑚 = 176,94	𝑘𝑁𝑚	  

	  

𝑅𝑒𝑓𝑒𝑟	𝑡𝑜	𝑓𝑖𝑔𝑢𝑟𝑒	2.2		𝑎𝑛𝑑	2.3 + 	𝑡𝑎𝑏𝑙𝑒	2.1	𝑎𝑛𝑑	2.4	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑢𝑠𝑒𝑑	𝑣𝑎𝑙𝑢𝑒𝑠	
 
 
 

	  

𝑀ÝË
E/[ = 	

𝜋. 6	𝑚𝑚	I

4
. 4	𝑏𝑎𝑟𝑠	. 400	 𝑁 𝑚𝑚I . 0,9	. 116	𝑚𝑚 = 4,72	𝑘𝑁𝑚	

 

 

 

 

Then, the found values are returned in equation 7.1 to determine the needed 𝑉ÝË
E [ to obtain 

the same failure mode as the prototype: 

 

𝑀ÝË
E E

𝑀yË
E E

𝑉ÝË
E E

𝑉yË
E E

			= 			

𝑀ÝË
E [

𝑀yË
E [

𝑉ÝË
E [

𝑉yË
E [

 (7.1) 

176,94	𝑘𝑁𝑚
253,76	𝑘𝑁𝑚

75,32	𝑘𝑁
266,70	𝑘𝑁

			= 			
4,72	𝑘𝑁𝑚

9,18	𝑘𝑁𝑚

𝑉ÝË
E [	

29,26	𝑘𝑁

 

 
 
 
 
 
 
 
 
 

	  

𝑉ÝË
E [ 			= 			6,09	𝑘𝑁	  
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Next, the new reinforcement diameter for the stirrups is obtained out of the new value of 𝑉ÝË
E [: 

 

𝑉ÝË,ÐE/[ = 	
𝐴Ðs
𝑆 	 . 𝑧	. 𝑓�Ë	. cot 𝜃 

(7.4) 

  

𝐴Ðs = 	
𝑉ÝË,ÐE/[	.		𝑆
𝑧	. 𝑓�Ë	. cot 𝜃

	  

𝐴Ðs = 	
6,09	. 10[	𝑁	.		100	𝑚𝑚

0,9	. 116	𝑚𝑚	. 246𝑁 𝑚𝑚I 	. cot 45°
= 23,73	𝑚𝑚I	  

	  

𝐴Ðs = 	
𝜋	.		𝑑I

4
	  

𝑑Ðs = 	
4	.		𝐴Ðs
𝜋

	  

	  

𝑑Ðs = 	
4	.		23,73	𝑚𝑚I

𝜋
= 5,496	𝑚𝑚	  

 

 

There is also a small difference in bending resistance whereby the diameter of the longitudinal 

bars also changes. This difference can be calculated as: 

 

𝑀ÝË
E E

𝑀yË
E E

	

= 	
𝑀ÝË
E [

𝑀yË
E [ (7.5) 

176,94	𝑘𝑁𝑚
253,76	𝑘𝑁𝑚

	

= 	
𝑀ÝË
E [

9,18	𝑘𝑁𝑚	 
 
 
 
 
 
 
 
 
 

	  

𝑀ÝË
E [

			= 			6,40	𝑘𝑁𝑚	  

	

	

 

𝑀ÝË
E/[ = 	𝐴Ðé	. 𝑓�Ë	. 𝑧	  

	  

𝐴Ðé = 	
𝑀ÝË

E/[

𝑓�Ë	. 𝑧
	  

𝐴Ðé = 	
6,40	. 10�	𝑁𝑚𝑚

400	 𝑁 𝑚𝑚I 	. 0,9	. 116	𝑚𝑚	
	= 153,28	𝑚𝑚I	  
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𝐴Ðé = 2	𝑟𝑜𝑤𝑠	.
𝜋	.		𝑑I

4
  

𝑑Ðé = 	

4	.		𝐴Ðé
𝜋

2	𝑟𝑜𝑤𝑠
	

 

	  

𝑑Ðé = 	

4	.		153,28	𝑚𝑚I

𝜋
2	𝑟𝑜𝑤𝑠

= 6,985	𝑚𝑚	
 

 
 

To summarize these calculations, there can be concluded that it is possible to neutralize the 

change in behaviour by increasing the diameters of the longitudinal - and transversal reinforcement. 

The longitudinal reinforcement should be changed from diameter six millimetres into a diameter of 

6,985 millimetres by a scale factor of three. The transversal reinforcement should be changed from 

diameter three millimetres into a diameter of 5,496 millimetres. So, the diameters that will be applied 

for the building of these models are dimensions that are widely available on the market. For this 

reason, a longitudinal reinforcement with diameter seven millimetres should be used and for the 

transversal reinforcement should be used a diameter of six millimetres when a scale factor of three 

is applied. Table 7.2 serves as a summarization.  

 
 

Table	7.2:	Summary	of	the	modified	diameter	related	to	the	original	diameter 

Original diameter 
(mm) 

Modified diameter 
(mm) 

Area cross-section 
(mm2) Location in specimen 

3 6 28 Transversal 

6 7 38 Longitudinal 

 

The best way to prove that these calculations have a scientific value, is building a new model 

with the modified diameters. But due to a lack of time this was not possible anymore. For this reason, 

these modified diameters are applied in the calibrated numerical model to prove that the calculations 

are correct. In the first modified model are both modified diameters out of Table 7.2 applied. In the 

second modified model is the original diameter for the stirrups used, but is the amount of the applied 

transversal reinforcement doubled to investigate our this also could be a solution. Besides, the 

modified diameter for the longitudinal reinforcement is also applied is this model. 

In Figure 7.1 is the crack pattern of the prototype depicted, in Figure 7.2 the crack pattern of 

the scaled model and in Figure 7.3 the crack pattern of the first modified scaled model. This 

comparison shows very clear that the failing mode of the prototype (bending + shear) (Figure 7.1) 

is totally different than the one of the scaled model (pure shear) (Figure 7.2). In addition, the failing 

mode of the modified scale model (Figure 7.3) is approximately the same than the one of the 

prototype. So, by applying the modified diameters out of Table 7.2, the same failure mode (bending 

+ shear) as the prototype is obtained. This proves that the previous calculations are correct. Graph 

7.1 shows the lateral force vs. second storey displacement of the modified scaled model related to 

the lateral force vs. second storey displacement out of the experimental results and the scaled model.         
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Fig. 7.1: Crack pattern in the z-direction – Prototype      

      

 
Fig. 7.2: Crack pattern in the z-direction – Scaled model          

 

 
Fig. 7.3: Crack pattern in the z-direction – Modified scaled model one          
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In Figure 7.4 is the crack pattern of the second modified scaled model depicted. When this 

figure is compared to Figure 7.1 or Figure 7.3 it is very clear that this crack pattern is totally different. 

In this model, there occurs a failure in the compressed zone of the concrete at the left side of the 

left column. There also occurs a crack at the upper left joint between column and beam. Thus, in this 

modified model there is a shifting from the place of first failure from the first storey beam to the 

second storey beam and a shifting from the crack from the right side to the left side of the beam. 

So, a doubling of the transversal reinforcement is not a good solution, because a total different failure 

mode is obtained compared to the failure mode of the prototype and the failure mode of ‘modified 

scaled model one’. Graph 7.2 shows the lateral force vs. second storey displacement of the two 

modified scaled models related to the lateral force vs. second storey displacement out of the 

experimental results and the scaled model. Here, it is visible that the curve of the second modified 

scaled model (black) is laying in between the curve of the first modified scaled model (magenta) and 

the curve out of the experiment of specimen one (bleu). As general conclusion can be said that 

‘modified scaled model one’ is a good solution to obtain the same failure mode as the prototype. The 

curve related to this model reacts much stiffer than the first calibrated finite element model (red). 

 

 

 

 

	
Fig. 7.4: Crack pattern in the z-direction – Modified scaled model two          
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8.  CONCLUSION 

To conclude, a difference in behaviour (𝑉𝐸𝑑 𝑀𝐸𝑑) and failure mode arose between the prototype 

and the scaled model. The occurring difference is approximately equal to the scale factor of three. 

This means that due to a geometrical downscaling of all the dimensions and the reinforcement 

diameters, the failure mode changed. In this study, the failure mode changed from bending + shear 

failure (prototype) to a pure shear failure (scaled model). From the analysis, it can be concluded that 

there is no linear downscaling possible between the prototype and the scaled model. So, to apply 

the downscaling correctly, the change in behaviour must be taken into consideration. 

This change in behaviour between the prototype and the scaled model is removed by a 

modification of the reinforcement diameters. The diameter of the longitudinal reinforcement is 

changed from diameter six millimetres into a diameter seven millimetres. The diameter of the 

transversal reinforcement is changed from diameter three millimetres into a diameter six millimetres. 

The finite element model proves that this modification is accurate and that due to this modification 

there is no longer a difference in behaviour and failure mode between the prototype and the scaled 

model.  

In sum, downscaling of a reinforced concrete frame is possible, when the failure mode does 

not change. If the failure mode changes, the reliability of the prediction of the behaviour of the 

structure significantly decreases. When the failure mode between the prototype and the scaled model 

remains identical, the prediction of the behaviour of the structure is correct. This prediction can be 

obtained by an experimental test or by using the calibrated finite element model that is elaborated 

is this master’s thesis.  
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9.  FUTURE WORK 

For future experimental work, it could be interesting to carry out the same tests on the same 

frames, but with the modified reinforcement diameters. This would make it possibe to check physical 

of the failure mode changes from pure shear to bending + shear like predicted by the modified 

numerical model. Next, it would be interesting to conduct a cyclic test on specimens with equal 

geometrical parameters but with the modified reinforcement diameters as the ones tested in this 

master’s thesis. This can be done to investigate the behaviour of the portal frame in an area that is 

sensitive for earthquakes. Subsequently, there could also be done a calibration of a numerical model 

whereby the behaviour from other structures in an earthquake sensitive area could be predicted.      

Another approach is to change the shear reinforcement (cfr. stirrups of the beams) of the 

frames into fibres. As a result, the shear capacity of the beams would increase, whereby more force 

could be absorbed in the beams and the frame would resist a lateral increasing load much longer.   

For future numerical work, it would be valuable to determine exactly the bond coefficient 

between the steel reinforcement and the concrete. This is interesting as in the numerical model of 

this master’s thesis, a bond coefficient is used that assumes a perfect bond between the steel 

reinforcement and the concrete. This is a pure theoretical assumption because in a real-life situation 

there will always be a friction loss between the reinforcement and the concrete.  

After a modification of the numerical model with an adjusted bond coefficient it is also 

possible to carry out a parametrical study. The advantage of such methods is that it is possible to 

change the material properties, the dimensions of the model, etcetera. This could easily be done by 

using a software that considers parametrical material properties and model dimensions.  
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