
2016•2017
FACULTEIT INDUSTRIËLE INGENIEURSWETENSCHAPPEN
master in de industriële wetenschappen: elektronica-ICT

Masterproef
Secure and flexible sleep tracking device communications for integration in
Smart Home networks

Promotor :
Prof. dr. ir. Ronald THOELEN

Promotor :
B Eng WINSLOW MIMNAGH

Copromotor :
dr. Kris AERTS

Copromotor :
ir. COEN LAUWERIJSSEN

Robbe Bloemen
Scriptie ingediend tot het behalen van de graad van master in de industriële
wetenschappen: elektronica-ICT

Gezamenlijke opleiding Universiteit Hasselt en KU Leuven

 2016•2017
Faculteit Industriële
ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterproef
Secure and flexible sleep tracking device communications
for integration in Smart Home networks

Promotor : Copromotor :
Prof. dr. ir. Ronald THOELEN dr. Kris AERTS

Promotor : Copromotor :
B Eng WINSLOW MIMNAGH ir. COEN LAUWERIJSSEN

Robbe Bloemen
Scriptie ingediend tot het behalen van de graad van master in de industriële
wetenschappen: elektronica-ICT

Preface	
	
The	last	step	before	graduating	as	a	master	in	Electronics	and	ICT	Engineering	technology,	is	
writing	a	master’s	thesis.	By	doing	my	master's	thesis	at	Zenseri,	I	have	not	only	learned	a	lot	at	
the	technical	level,	but	I	have	also	gained	my	first	experiences	in	the	workplace.	This	would	not	
have	been	possible	without	the	help	and	support	of	others	during	the	master's	thesis.	I	like	to	
thank	my	supervisors,	family	and	friends.	
	
In	particular,	I	want	to	thank	my	external	supervisor	and	CEO	of	Zenseri,	Winslow	Mimnagh,	for	
his	excellent	guidance	during	the	project.	He	gave	me	the	chance	to	be	part	of	his	company	and	
to	participate	in	this	interesting	project.	His	door	was	always	open	for	an	enlightening	
conversation	or	a	push	in	the	right	direction.	
	
For	technical	assistance,	I	could	always	rely	on	the	support	of	both	my	internal	supervisors	from	
the	faculty	as	the	employees	of	Zenseri	and	2M	Engineering.	Prof.	Dr.	ir.	Ronald	Thoelen	and	
Prof.	Dr.	Kris	Aerts	were	assigned	as	internal	supervisors.	I	am	thankful	for	the	useful	feedback	I	
received	from	them.	I	especially	thank	Henk	Schär	and	Michel	Sperling	for	their	assistance	
during	the	project.	
	
Last	but	not	least,	I	would	like	to	thank	all	other	employees	and	other	students	at	2M	
Engineering	for	the	enjoyable	time	that	I	have	had	throughout	the	year.			

Robbe	Bloemen	

Table	of	Contents	
Preface	..	i	

List	of	tables	...	v	

List	of	figures	...	vii	

List	of	abbreviations	..	ix	

Abstract	..	xi	

Abstract	in	het	Nederlands	...	xiii	

1	 Introduction	...	15	
1.1	 Project	description	...	15	
1.2	 Problem	statement	..	17	

1.2.1	 Objectives	...	18	
1.2.2	 Approach	..	18	

1.3	 Outline	...	18	

2	 System	description	...	21	
2.1.1	 External	fiber	optics	..	22	
2.1.2	 BEDsense	board	..	23	

3	 Smart	Home	Integration	...	25	
3.1	 Wi-Fi	provisioning	..	25	

3.1.1	 Wi-Fi	Protected	Setup	...	25	
3.1.2	 Access-Point	mode	...	26	
3.1.3	 ESP-touch	..	27	
3.1.4	 Out-of-band	provisioning	...	27	
3.1.5	 Comparison	and	decision	...	28	
3.1.6	 Implementation	..	29	

3.2	 Service	Discovery	...	30	
3.2.1	 Discovery	..	30	
3.2.2	 Description	...	32	
3.2.3	 Implementation	..	33	

3.3	 Communication	protocol	..	35	
3.4	 Over	the	air	firmware	updates	...	37	

3.4.1	 Push	or	pull	updates	...	37	
3.4.2	 ESP	firmware	updates	...	39	
3.4.3	 Optical	engine	updates	...	39	
3.4.4	 Implementation	..	40	

3.5	 Mobile	application	...	42	
3.5.1	 Development	strategy	..	42	
3.5.2	 Provisioning	a	BEDsense	...	44	
3.5.3	 Control	BEDsense(s)	...	46	

4	 Sleep	analysis	...	49	
4.1	 Transform	raw	data	..	50	

iv	
	

4.1.1	 Failover	system	...	51	
4.2	 System	design	for	phase	1	..	52	

4.2.1	 Upload	events	...	54	
4.2.2	 Storage	on	central	database	...	54	
4.2.3	 Visualization	...	55	

5	 Security	..	59	
5.1	 Authentication	...	59	
5.2	 Encryption	..	59	
5.3	 Database	..	59	
5.4	 Firmware	updates	..	60	

6	 Conclusion	...	61	
6.1	 Results	...	61	
6.2	 Discussion	..	61	
6.3	 Conclusion	...	62	

Bibliography	...	63	

List	of	tables	

Table	1:	Comparison	of	the	leading	Wi-Fi	provisioning	methods	...	28	

Table	2:	Description	of	the	FOTA	server	API	calls	...	41	

Table	3:	Pros	and	cons	of	native	and	hybrid	mobile	application	development	44	

List	of	figures	

Figure	1.1:	Sketch	of	a	BEDsense	prototype	...	15	

Figure	1.2:	Wordwide	Smart	Home	market	data	highlights	[1]	...	16	

Figure	2.1:	Overview	of	system	..	21	

Figure	2.2:	Top	view	of	the	BEDsense	PCB	...	21	

Figure	2.3:	Light	propagation	through	a	step-index	multimode	fiber	[2:	p.	11]	22	

Figure	2.4:	Unloaded	and	loaded	configuration	of	the	fiber	optics	..	22	

Figure	2.5:	Block	diagram	of	the	BEDsense	board	...	23	

Figure	3.1:	Label	with	WPS	PIN	on	the	back	of	a	D-Link	router	[5:	p.4]	..	26	

Figure	3.2:	Typical	ESP-TOUCH	application	[6:	p.1]	...	27	

Figure	3.3:	BEDsense's	website:	start	page	(left)	and	network	settings	(right)	29	

Figure	3.4:	Discovery	architecture	[9:	p.	13]	..	31	

Figure	3.5:		SSDP	description	architecture	[9:	p.	37]	..	32	

Figure	3.6:	Hierarchy	of	the	BEDsense	as	a	UPnP	root	device	...	33	

Figure	3.7:	A	discovered	BEDsense	in	the	list	of	network	devices	in	Windows	File	Explorer	35	

Figure	3.8:	BEDsense	firmware	overview	...	37	

Figure	3.9:	FOTA	push	mode	flowchart	..	38	

Figure	3.10:	FOTA	pull	mode	flowchart	...	38	

Figure	3.11:	ESP8266	FOTA	flash	memory	layout	...	39	

Figure	3.12:	Overview	of	FOTA	system	used	during	development.	...	40	

Figure	3.13:	FOTA	message	flow	...	41	

Figure	3.14:	Strategies	for	mobile	development	[12:	p.	33]	..	42	

Figure	3.15:	Worldwide	smartphone	OS	market	share	...	43	

Figure	3.16:	List	of	available	BEDsenses	..	45	

Figure	3.17:	List	of	networks	..	45	

Figure	3.18:	Enter	the	password	...	46	

Figure	4.1:	Visualization	of	raw	data	from	the	fiber-optics	using	Matlab	...	50	

Figure	4.2:	Eventlog	retrieval	design	using	the	desktop	test	tool	...	52	

viii	
	

Figure	4.3:	First	phase	sleep	analysis	system	overview.	...	53	

Figure	4.4:	Entity-relationship	diagram	of	phase	1	database	...	54	

Figure	4.5:	Visualization	of	sleep	data	from	one	night	...	56	

List	of	abbreviations	
	
AFE	 Analog	Front	End	
AP	 Access	Point	
API	 Application	Programming	Interface	
DHCP	 Dynamic	Host	Configuration	Protocol	
DDoS	 Distributed	Denial	of	Service	
DNS	 Domain	Name	System	
DSP	 Digital	Signal	Processing	
HTTP	 HyperText	Transfer	Protocol	
IoT	 Internet	of	Things	
IP	 Internet	Protocol	
JSON	 JavaScript	Object	Notation	
OS	 Operating	System	
OTA	 Over-The-Air	
PBC	 Push-Button-Connect	
PIN	 Personal	Identification	Number	
PMMA	PolyMethyl	Methacrylate	
REST	 REpresentational	State	Transfer	
SSDP	 Simple	Service	Discovery	Protocol	
SSID	 Service	Set	IDentifier	
UDP	 User	Datagram	Protocol	
UI	 User	Interface	
UPnP	 Universal	Plug	and	Play	
URL	 Uniform	Resource	Locator	
UUID	 Universally	Unique	IDentifier	
WPS	 Wi-Fi	Protected	Setup	
XML	 Extensible	Markup	Language	
	
	

Abstract	
	
"BEDsense"	is	a	sleep	sensor	system	under	development	at	Zenseri	BV.	It	is	designed	to	
integrate	into	Smart	Homes	and	control	lighting,	heating	and	alarms	when	home	residents	are	
in	bed.	Data	from	the	BEDsense	will	also	be	used	for	sleep	analysis	providing	sleep	profiles,	
quantitative	metrics	and	recommendations	to	improve	sleep	quality	of	users.	The	objective	of	
this	master's	thesis	is	to	develop	and	in	part	implement	a	universal	plug	and	play	strategy	in	
terms	of	connecting	to	the	home	Wi-Fi	network,	discovery	and	data	communications.	A	second	
objective	is	to	study	a	system	solution	whereby	BEDsense	data	can	be	collected	and	used	for	
sleep	analysis.	These	objectives	take	into	account	the	limitations	of	memory,	computing	power	
and	data	communication	bandwidth/availability.	
			
This	thesis	focuses	on	defining	the	communication	specifications,	implementation	of	a	
prototype	system,	development	of	a	user	interface	via	a	Windows	and	Android	app	and	finally	
definition	of	a	sleep	analysis	system.	
	
The	result	of	this	thesis	is	an	agreement	on	the	communication	protocols,	provisioning	means	
(WPS-	and	AP-mode),	SSDP	protocol	definitions	making	the	BEDsense	visible	within	the	
network,	a	user	interface	app	and	test	tool	for	provisioning,	configuration	and	diagnostic	
services	in	order	to	test	performance.	Subsequently,	a	system	is	created	where	raw	sensor	data	
is	transformed	into	a	format	that	is	suitable	for	storage	and	transmission.	These	results	form	a	
first	step	for	Smart	Home	integration	and	sleep	analysis.		
	
	
	
	
	
	
	

Abstract	in	het	Nederlands	
	
"BEDsense"	is	een	slaapsensor	onder	ontwikkeling	bij	Zenseri	BV.	De	sensor	is	ontworpen	voor	
integratie	in	Smart	Homes	om	het	licht,	verwarming	en	alarmen	te	controleren	wanneer	de	
bewoners	in	bed	liggen.	Daarnaast	zal	de	BEDsense	data	ook	dienen	voor	slaapanalyse	waar	
het	gebruikersprofielen	en	aanbevelingen	voorziet	om	de	slaapkwaliteit	te	verbeteren.	Het	
doel	van	deze	masterproef	is	het	ontwerp	en	de	implementatie	van	een	universele	strategie	
met	betrekking	tot	het	opzetten	van	Wi-Fi	verbinding,	het	ontdekt	worden	en	
datacommunicatie.	Daarnaast	wordt	een	systeem	onderzocht	waar	BEDsense	data	gebruikt	
kan	worden	voor	slaapanalyse,	rekening	houdend	met	de	beperkingen	qua	geheugen,	
rekenkracht	en	datatransmissie.			
	
De	initiële	focus	lag	op	het	bepalen	van	de	communicatiespecificaties.	Vervolgens	werd	een	
prototype	ontwikkeld.	Aanvullend	werd	er	een	gebruikersinterface	voorzien	a.d.h.v.	een	
Windows-	en	een	Android	app.	Tot	slot	werd	een	systeem	voor	de	slaapanalyse	bedacht.	
	
Om	de	Wi-Fi-verbinding	op	te	zetten	is	er	gekozen	om	WPS-	en	AP-mode	te	implementeren.	
Verder	worden	delen	van	het	SSDP-protocol	gebruikt	om	zichzelf	zichtbaar	te	maken	binnen	
het	netwerk.	De	ontwikkelde	test	tool	en	app	maken	het	mogelijk	om	de	prestaties	van	het	
prototype	te	testen	en	te	zorgen	voor	de	gebruikersinterface.	Aansluitend	is	er	een	systeem	
gecreëerd	dat	ruwe	sensor	data	omzet	in	een	formaat	dat	bruikbaar	is	voor	opslag	en	
transmissie.	Deze	resultaten	vormen	een	eerste	stap	voor	de	Smart	Home-integratie	en	de	
slaapanalyse.	
	
	

1 Introduction	
1.1 Project	description	
Zenseri	B.V.	is	a	Dutch	startup	company	set	up	in	May	2016	to	develop	and	manufacture	an	
innovative	sleep	sensor	system,	called	BEDsense.	Figure	1.1	shows	the	design	of	the	BEDsense.	
BEDsense	is	the	world’s	first	noncontact	sleep	sensor	that	works	underneath	most	mattresses.	It	
combines	a	bed	sensor,	smartphone	app	and	web-based	app	to	help	you	track	and	better	
understand	your	sleeping	patterns,	and	then	creates	personalized	feedback	and	suggestions	to	
help	improve	your	sleep.	

	

Figure	1.1:	Sketch	of	a	BEDsense	prototype	

The	BEDsense	has	been	developed	to	respond	to	a	specific	demand	of	Managed	Smart	Home	
providers	who	want	to	apply	BEDsense	into	their	platform	in	order	to	control	lighting,	heating,	
and	alarms	when	residents	go	to	bed.	The	benefits	are:		

• ease	of	use:	most	home	owners	do	not	want	to	be	bothered	turning	the	burglar	alarm	
on/off,	locking	doors,	reducing	the	temperature	or	turning	on/off	lights	while	they	are	in	
the	house	at	night.	If	the	Smart	Home	can	detect	if	persons	are	in	bed	and/or	asleep,	the	
system	itself	can	make	these	choices;	

• cost	effective	systems	allow	energy	efficiencies.	When	residents	go	to	bed	lights	can	be	
turned	off,	heating	system	can	be	set	to	night	sleep	mode	and	smart/connected	
appliances	can	be	set	on	stand-by.	When	residents	wake-up	in	the	morning,	alarms	are	
switched	off,	heating	and	cooling	systems	are	adjusted,	as	are	the	lights;	

• unobtrusive	placement:	most	home	owners	do	not	like	sensors	in	bedrooms	which	can	
give	discomfort	(while	sleeping),	limit	privacy	or	require	repositioning	(while	changing	
bed	cloths)	the	BEDsense	solves	these	problems	with	sleek	mechanical	design,	uses	no	
camera’s	and	once	installed	does	not	need	to	be	moved;	

• low	cost:	Smart	home	providers	have	an	existing	base	of	customers	who	pay	a	monthly	
subscription	between	40	–	60	USD.	For	this	they	get	equipment,	installation	and	24/7	
monitoring.	Smart	home	providers	must	offer	the	BEDsense	to	customers	for	this	same	
subscription	price,	therefore	they	have	asked	for	a	price	of	20	USD	landed.		

	

	

	

16	
	

In	order	to	make	this	project	
successful,	Zenseri	needs	to	be	looking	
at	the	right	marketplace	that	can	truly	
benefit	from	the	BEDsense	and	is	large	
enough	to	sustain	the	business	goals.	
Zenseri	has	therefore	chosen	to	launch	
BEDsense	initially	in	the	North	
American	market	where,	according	to	
Statista	[1],	Smart	Home	household	
penetration	is	at	13.6	%	(as	opposed	to	
Europe	which	is	only	2.2%)	in	2017	
and	is	expected	to	hit	57.5	%	in	2021.	
In	2016	there	were	125	million	
households	in	the	USA	so	we	can	
estimate	the	number	of	Smart	Homes	
is	17	million	and	the	total	number	of	
beds	is	44	million.	The	first	market	
sector	will	be	the	managed	Smart	
Home	market,	which	is	about	40%	of	the	total	Smart	Home	market,	meaning	that	Zenseri’s	first	
target	market	size	is	over	17	million	units.	Zenseri	is	currently	in	negotiations	with	a	large	US	
customer	in	the	managed	Smart	Home	market	and	has	over	1.2	million	customers	with	some	3	
million	beds.		

The	managed	Smart	Home	provider	combines	security	and	home	automation	solutions	with	
24/7	monitoring.	Security	and	trust	are	important	conditions	for	proper	functioning	of	a	society.	
Unfortunately,	the	feeling	of	security	has	decreased	in	recent	years.	Managed	Smart	Home	
providers,	that	combine	security	and	home	automation,	respond	to	this	need	for	security.	
Nowadays	the	Smart	Home	system	has	a	good	overview	of	what	the	residents	of	the	house	are	
doing	throughout	the	day.	Though	at	night,	it	knows	very	little	about	the	residents,	which	causes	
a	big	missing	link	in	their	platform.	

Managed	Smart	Home	providers	in	the	USA	see	the	BEDsense	as	a	solution	to	their	‘’missing	
link’’	problem	that	is	how	can	a	Smart	Home	provide	feedback	and	benefits	through	the	night	
when	residents	are	asleep.	The	addition	of	the	BEDsense	makes	it	possible	to	drive	other	
connected	devices	when	the	residents	go	to	bed	and	fall	asleep.	Think	of	activating	the	alarm,	
lock	doors,	and	turn	off	lights,	lower	the	temperature.	Moreover,	if	the	system	can	detect	when	
the	residents	wake	up	and	get	out	of	bed,	it	can	deactivate	the	alarms,	turn	on	the	lights	and	
temperature	again,	etc.		

The	next	important	goal	of	Zenseri	is	to	use	the	BEDsense	data	for	sleep	analysis.	There	is	an	
increasing	interest	in	sleep	analysis.	A	good	night's	rest	is	one	of	the	most	important	parameters	
for	the	wellbeing	of	people,	even	for	healthy	people.	In	the	context	of	a	healthy	lifestyle,	a	
growing	number	of	people	want	to	know	the	quality	of	their	sleeping	and	have	the	desire	to	have	
feedback,	advice	and	recommendations	on	how	to	improve	their	sleep.	Mothers	want	to	
understand	if	their	children	are	getting	enough	sleep	and	a	restful	night,	if	not	they	want	to	
know	what	they	can	do	to	create	a	healthy	sleep	environment.	Within	this	trend,	people	
increasingly	integrate	technology	into	their	lives,	with	the	purpose	of	collecting	information	
about	themselves	in	order	to	learn	from	it.		

	

Figure	1.2:	Wordwide	Smart	Home	market	data	highlights	[1]	

	 	 17	

The	BEDsense	project	aims	to	create	a	low-cost	but	reliable	solution	that	makes	it	possible	to	
generate	and	collect	sleep	information	in	an	efficient	way.	It	will	then	no	longer	function	only	as	
a	sensor	to	expand	the	Smart	Home	system,	but	it	will	also	be	used	to	monitor	the	sleep	quality	
of	an	individual.	BEDsense	data	will	be	obtained	from	the	Smart	Home	networks	and	collected	
on	an	external	server	where	algorithms	will	analyze	the	user	profile	against	big	data.	This	
results	in	sleep	quality	metrics	and	recommendations	that	will	be	sent	back	to	the	user	in	order	
to	improve	their	sleep	performance.		

For	both	the	above	applications	the	BEDsense	must	be	equipped	with	communication	means	
and	a	user	interface	(UI)	to	enable	seamless	integration	in	a	Smart	Home	network.		A	mobile	app	
will	provide	the	user	interface	for	this	integration.	Users	can	configure	and	control	the	
BEDsenses	using	the	app.	The	resulting	system	will	allow	Zenseri	to	make	a	'Smart-Bedroom'.	
This	means	that	it	must	be	able	to	monitor	bed	occupancy	and	sleep	quality,	upload	data	
automatically	to	a	server	and	use	this	information	of	the	bedroom	environment	to	optimize	the	
users	sleep	experience.	

1.2 Problem	statement	
The	project	description	above	discussed	the	BEDsense	project	from	the	point	of	view	of	two	
applications:	

1. at	bedtime,	connected	devices	in	my	home	respond	when	I	get	in	bed	and/or	fall	asleep	
(e.g.,	arm	security	system,	lock	doors,	turn	off	lights,	adjust	thermostat,	etc.)	and	when	I	
wake	up	or	get	out	of	bed	(e.g.,	disarm	security	system,	turn	on	lights,	adjust	thermostat,	
etc.),	

2. my	BEDsense	provides	information	about	me	and	my	families	sleep	quality,	which	helps	
to	improve	our	sleep	experience	and	allows	us	to	live	healthier	and	happier	lives.	

For	each	application	we	can	define	separate	problem	statements.	The	first	problem	deals	with	
the	integration	of	the	BEDsense	into	any	Smart	Home	environment.	Ideally	it	is	universally	plug	
and	play	(UPnP)	and	seamlessly	communicating	with	the	Smart	Home	system,	however	the	
device	lacks	a	physical	interface	and	has	very	limited	resources	in	memory,	computing	power	
and	communication	bandwidth	hence	the	problem	statement	is:	

BEDsense	has	to	be	equipped	with	communication	means	for	provisioning,	networking	and	
configuration	that	would	allow	near	UPnP,	optimum	device	performance	for	integration	into	Smart	
Home	environments.	

The	second	problem	arises	when	the	BEDsense	is	used	for	sleep	analysis.		The	raw	data	derived	
from	the	sensor	is	not	suitable	for	efficient	storage	and	transmission.	Hence,	the	data	must	be	
transformed	to	a	format	that	is,	unlike	the	raw	data,	compatible	with	the	Smart	Home	controller	
and	useful	for	further	analysis.		

Define	a	strategy	for	the	data	formats	needed	to	communicate,	store	and	analyze	data	from	the	
BEDsense	for	local	network	use	within	the	Smart	Home	and	outside	local	networks	to	allow	sleep	
analytics	for	deriving	sleep	quality.		 	

18	
	

1.2.1 Objectives	
The	first	goal	of	this	master's	thesis	is	to	investigate	and	compare	different	possibilities	available	
on	the	market	to	integrate	a	Wi-Fi	based	sensor	into	Smart	Home	networks.	Based	on	the	results	
of	this	investigation	a	strategy	to	enable	secure,	flexible	and	robust	integration	of	the	BEDsense	
must	be	designed	and	in	part	implemented	while	taking	the	limited	resources	of	the	device	into	
account.	More	specifically,	a	prototype	will	be	developed	that	meets	the	following	requirements:	

• able	to	connect	to	set	up	Wi-Fi	connection	with	the	Smart	Home	network;	
• automatic	discovery	of	the	device	and	it's	embedded	service(s);	
• future	proof,	it	must	be	possible	to	add	functionality	through	Firmware	Over-The-Air	

updates	(FOTA);	
• configurable	and	controllable	through	a	complementary	mobile	application.	

A	second	goal	is	to	create	a	strategy	whereby	BEDsense	data	is	transformed	into	sleep	profiles	
and	recommendations	to	improve	their	sleep.	This	involves	the	design	of	a	system	on	how	data	
is	transmitted	and	stored	in	order	to	do	analysis	and	eventually	return	recommendations	to	the	
user.		

1.2.2 Approach	
The	project	is	divided	into	two	major	parts.	The	development	of	a	prototype	for	Smart	Home	
integration	is	worked	out	in	the	first	part.	Based	on	this	prototype,	a	strategy	for	the	sleep	
analysis	application	is	described	in	the	second	part	of	this	master's	thesis.		

Firstly,	a	research	of	all	different	methods	for	secure	and	reliable	connectivity	is	completed.	
Based	on	the	results	of	this	research,	the	development	and	implementation	of	the	chosen	
methods	has	started.	Different	types	of	customers	may	want	to	use	different	methods.	Multiple	
methods	must	therefore	be	implemented	into	the	system	prototype	to	reach	as	much	customers	
as	possible.		

When	the	specification	and	implementation	of	the	prototype	is	finished,	the	development	of	the	
UI	can	start.	The	development	of	the	UI	tools	facilitates	testing	and	further	development.	

Subsequently,	to	reach	the	second	goal,	a	strategy	is	designed	and	in	part	implemented	to	show	
the	potential	opportunities	in	the	field	of	sleep	analysis.	

1.3 Outline	
Chapter	2:	System	description	 	
This	first	chapter,	gives	an	overview	of	the	BEDsense	device.	It	contains	a	description	of	the	
three	main	parts	of	the	BEDsense,	namely:	the	external	fiber	optics,	the	microcontroller	and	the	
Wi-Fi	module.			

Chapter	3:	Smart	Home	Integration	 	
This	chapter	covers	the	specifications	of	the	systems	communication	means	needed	for	
integration	into	Smart	Home	environments.	Every	aspect	of	the	connectivity	will	be	addressed	in	
detail	in	the	next	subchapters.	A	comparison	of	different	methods	or	approaches	is	made.	At	the	
end	of	each	comparison,	the	decision	of	each	aspect	will	be	explained.	Subsequently,	the	
implementation	of	the	chosen	methodology	is	illustrated.	Following	parts	are	reviewed:	Wi-Fi	
provisioning	methods,	Service	discovery,	FOTA	and	the	mobile	app.	This	section	finally	results	in	
a	complete	description	of	the	BEDsense	prototype.		

	 	 19	

Chapter	4:	Sleep	analysis	 	
The	second	application	of	the	BEDsense	-	the	sleep	analysis	-	is	divided	in	three	phases.	This	
chapter	gives	an	overview	of	the	three	phases	and	contains	a	strategy	to	enable	the	first	phase.	
This	strategy	is	partially	implemented	to	demonstrate	the	opportunities	in	this	phase.		

Chapter	5:	Security	 	
This	chapter	focuses	on	the	security	challenges	of	IoT-like	devices.		Firstly,	the	IoT	security	
concerns	and	challenges	are	explained.	Afterwards,	it	contains	an	overview	of	the	security	
measures	already	implemented	and	the	ones	still	to	be	taken	in	the	future.	

Chapter	6:	Conclusion	 	
This	last	chapter	summarizes	what	has	been	achieved	during	this	master's	thesis.	Additionally,	
this	chapter	discusses	the	results.	Also	the	limitations	and	future	work	are	reviewed	in	a	critical	
way.		

	

	

	 	 21	

2 System	description	
The	BEDsense	electronics	consist	of	two	major	modules,	the	MSP	module	(hereinafter	called	the	
optical	engine)	which	runs	the	detection	algorithms	and	the	ESP-WROOM-02	Wi-Fi	SOC	module	
which	provides	the	connectivity.	The	Digital	Signal	Processing	(DSP),	the	detection	algorithms,	
and	the	external	fiber	optics	are	in	development	at	2M	Engineering.	The	BEDsense	will	
communicate	primarly	with	the	Smart	Home	control	system	and	a	mobile	application	for	
provisioning,	configuration	and	potential	usage	of	the	sensor	data.	Figure	1.1	shows	the	
overview	of	the	BEDsense	system.	The	changes	needed	for	the	control	panel	will	be	made	by	the	
Smart	Home	providers.	The	development	of	the	mobile	application	is	part	of	this	project.	

	

	

Figure	2.1:	Overview	of	system	

The	BEDsense	PCB	is	still	under	development,	the	version	(4.08)	used	in	this	project	is	shown	in	
Figure	2.2.		

	

	

Figure	2.2:	Top	view	of	the	BEDsense	PCB	

The	highlighted	components	are	the	following:	

1. push	button,	
2. ESP	Wi-Fi	Module,	

22	
	

3. LEDs,	
4. MSP	microcontroller,	
5. optical	fiber	connectors,	
6. power	connector.	

The	next	subchapters	cover	the	different	parts	in	more	detail.	

2.1.1 External	fiber	optics	
A	plastic	optical	fiber	is	composed	of	a	thin	plastic	rod	made	from	Polymethyl	Methacrylate	
(PMMA),	which	is	surrounded	by	a	plastic	protective	cladding	that	has	a	different	refractive	
index.	The	plastic	rod	contains	two	parts:	the	inner	portion	of	the	rod	and	the	surrounding	
cladding.	Light	rays	enter	the	fiber	at	different	angles	and	do	not	follow	the	same	paths.	Light	
rays	entering	the	center	of	the	fiber	core	at	very	low	angle	will	take	a	shorter	path	through	the	
center	of	the	fiber.	Light	rays	entering	the	core	at	a	high	angle	of	incidence	or	near	the	outer	
edge	of	the	fiber	core	will	take	longer	paths.	Each	path	resulting	from	difference	of	incidence	will	
give	rise	to	a	mode	[2].	Figure	2.3	shows	the	light	propagation	through	the	fiber.	

	

Figure	2.3:	Light	propagation	through	a	step-index	multimode	fiber	[2:	p.	11]	

Step-index	multimode	fiber	guides	light	through	total	reflection	on	the	boundary	between	the	
core	and	cladding.	The	refractive	index	is	uniform	in	the	core.	Due	to	modal	dispersion,	step-
index	multimode	fibers	are	suitable	for	sensing	applications.		

Microbending	loss	involves	the	accumulated	effect	of	periodic	displacements	in	an	otherwise	
straight	fiber.	As	the	name	may	suggest,	such	displacements	occur	in	the	transverse	direction	of	
the	fiber.	Figure	2.4	illustrates	the	microbending	effects	due	to	pressure.	The	undesirable	effects	
of	microbending	in	communication	systems	are	of	particular	interest	for	sensing	perturbations	
close	to	the	environment	of	the	fiber.	The	periodic	deformation	of	the	fiber	provides	a	
mechanism	by	which	power	from	guided	modes	of	the	fiber	is	coupled	to	adjacent	modes	or	
radiation	modes,	leading	to	power	loss	[2].	

	

Figure	2.4:	Unloaded	and	loaded	configuration	of	the	fiber	optics	

	 	 23	

	

As	described	above	the	microbending	effects	can	be	used	for	the	development	of	an	intensity	
modulated	pressure	sensor.	Lagakos	et	al.	proposed	a	generic	model	based	on	microbending	for	
the	measurement	of	several	environmental	perturbations	[3].		

This	mechanism	seems	to	be	an	excellent	low	cost	sensor	solution	for	the	contactless	detection	
of	vital	signs.	The	combination	of	this	sensor	and	the	right	algorithms	results	in	a	promising,	
low-cost	system	for	sleep	monitoring.	The	analog	output	signals	of	the	fiber	will	be	converted	to	
a	digital	signal	and	be	processed	in	the	BEDsense.		

2.1.2 BEDsense	board	
The	BEDsense	board	contains	the	intelligence	of	the	sensor	system.	It	is	connected	to	the	optical	
fiber	and	controls	the	light	that	is	sent	through	the	fiber.	The	light	travels	through	the	fiber	and	
returns	to	the	BEDsense	board	where	an	optical	receiver	measures	the	amount	of	light.	The	
output	of	the	optical	receiver	is	an	analog	signal.		The	analog	input	signal	has	to	undergo	a	lot	of	
steps	before	it	can	detect	sleep.	The	Block	diagram	below	gives	an	overview	of	how	the	signal	is	
processed	on	the	BEDsense	board.		

	

Figure	2.5:	Block	diagram	of	the	BEDsense	board	

The	analog	output	from	the	optical	receiver	requires	amplification	and	conditioning	to	provide	
the	best	possible	signal	to	the	ADC.	The	Analog	Front	End	(AFE)	does	this.	The	optical	engine	
controls	the	AFE.	The	output	of	the	AFE	is	converted	to	a	digital	signal	and	is	sent	to	the	
embedded	signal	processing	functions	on	the	optical	engine.	The	algorithms	are	able	to	convert	
the	digital	signals	into	a	bed-occupancy	status.	

The	output	is	sent	through	an	SPI	interface	to	the	Wi-Fi	module.	The	Wi-Fi	module	is	an	ESP-
WROOM-02	low-power	32-bit	MCU	Wi-Fi	module,	based	on	the	ESP8266	chip.	The	bed-
occupancy	status	will	be	made	accessible	through	the	Wi-Fi	communication.		

	

ESP8266

MSP430i2021

SD24	ADC

SPI	Slave	
Interface

BootloaderApplication

AES	Decryption

Memory	
Programming

CommunicationCommunication

Sampling

Signal	Processing

Decision	Logic

CSn
SCLK
MOSI
MISO
INT

PWM LED	Control
Analog	Front	End

RST

TX_BUSY

	 	 25	

	

3 Smart	Home	Integration	
3.1 Wi-Fi	provisioning	
Wi-Fi	provisioning	is	the	process	of	connecting	a	new	Wi-Fi	device	to	a	Wi-Fi	network.	It	
involves	loading	the	device	with	the	Service	Set	IDentifier	(SSID)	and	its	security	credentials.	Wi-
Fi	was	created	to	allow	nomadic	devices	such	as	laptops,	smartphones	and	tablets,	to	wirelessly	
connect	to	the	Internet.	These	personal	computing	devices	naturally	include	a	touch	screen	or	a	
display	and	keyboard	to	provide	the	UI.	The	usual	procedure	for	provisioning	a	smartphone,	for	
instance	on	a	Wi-Fi	network,	is	done	via	the	phone’s	Wi-Fi	setting	page.	The	phone	scans	for	Wi-
Fi	networks	and	presents	a	list	of	available	networks	to	the	user.	After	choosing	the	network,	the	
user	is	prompted	for	a	password.	If	the	password	is	typed	correctly,	the	provisioning	is	
successful,	and	often	indicated	by	a	Wi-Fi	symbol	in	a	status	bar	[4].	

The	challenge	for	a	BEDsense	device	is	that	it	does	not	have	a	display	or	keyboard	(although	
there	is	a	very	minimal	interface	scheme	via	a	button	and	three	LED’s).	The	near	‘’headless	
device’’	needs	an	alternate	method	to	obtain	the	network	name	and	password	from	the	user.	
Various	alternate	methods	are	available	and	no	provisioning	method	is	perfect	because	they	all	
come	with	their	merits	and	challenges.		

The	predominant	Wi-Fi	provisioning	methods	for	headless	devices	in	the	market	are	compared	
to	each	other.	The	following	aspects	are	important	in	this	comparison:	ease	of	use,	security,	
robustness	and	flexibility.		

The	next	few	paragraphs	provide	a	detailed	overview	of	the	most	used	provisioning	methods	in	
the	market.	Later	the	key	considerations	are	discussed	for	choosing	the	right	provisioning	
methods	for	the	BEDsense.	

3.1.1 Wi-Fi	Protected	Setup		
Wi-Fi	Protected	Setup	(WPS)	was	introduced	by	the	Wi-Fi	Alliance	in	2006	as	an	easy	and	secure	
method	to	provision	devices	without	knowing	the	network	name	and	without	having	to	type	
long	passwords.	The	standard	defines	two	mandatory	methods	for	WPS-enabled	Acces	Points	
(APs):	Personal	Identification	Number	(PIN)	method	and	Push-Button-Connect	(PBC)	method.	In	
both	PIN	and	PBC	methods,	the	AP	and	the	provisioned	device	exchange	a	series	of	messages	to	
establish	a	temporary	connection	that	is	used	to	deliver	the	credentials	from	the	AP	to	the	
device.	

In	the	PIN	method,	an	8-digit	PIN	is	printed	on	a	sticker	on	either	the	Access	Point	or	the	
provisioned	device	(Figure	3.1).	The	user	needs	to	read	the	PIN	from	one	device	and	type	it	
using	a	keypad	on	the	other	device.	Since	APs	do	not	have	keypads,	the	PIN	is	usually	printed	on	
the	AP,	and	typed	by	the	user	at	the	provisioned	device.	The	obvious	drawback	is	that	it	doesn’t	
work	for	headless	devices	–	it	requires	at	least	a	numerical	keypad	to	type	the	PIN.	

26	
	

	

Figure	3.1:	Label	with	WPS	PIN	on	the	back	of	a	D-Link	router	[5:	p.4]	

In	the	PBC	method,	the	user	pushes	a	button	on	both	the	AP	and	the	unprovisioned	device.	Once	
the	button	on	the	AP	is	pushed,	WPS-enabled	devices	can	openly	join	the	network	within	two	
minutes.	The	drawback	of	this	method,	beyond	the	lack	of	security	during	the	two-minute	
period,	is	that	the	user	must	have	physical	access	to	both	the	AP	and	the	unprovisioned	device.	

A	major	problem	in	WPS	was	unveiled	in	2011	[5].	A	design	flaw	was	found	in	the	PIN	method	
that	allows	brute-force	attack	to	expose	the	network	password	in	less	than	four	hours.	Since	the	
PIN	method	is	mandatory	to	achieve	WPS	certification,	all	new	APs	released	to	the	market	
starting	2007	supported	this	method	by	default.		

Right	after	the	security	breach	was	discovered,	most	AP	vendors	came	out	with	
recommendations	to	disable	WPS,	and	although	most	of	them	released	product	upgrades	that	
prevented	hacking,	WPS	received	a	bad	reputation	in	the	industry	and	is	still	avoided	in	some	
countries.	

To	conclude,	WPS	only	needs	one	push	on	a	button,	but	a	design	flaw	allows	brute-force	attack	
to	expose	the	network	password.	The	extra	point	in	ease	of	use	takes	down	the	security	score.	

3.1.2 Access-Point	mode	
Another	common	provisioning	method	for	headless	devices	is	the	Access	Point	(AP)	Mode.	
Before	trying	to	connect	to	the	home	network,	the	unprovisioned	device	wakes	up	initially	as	an	
AP,	allowing	a	PC	or	smartphone	to	connect	to	it	directly.	The	device	also	includes	an	embedded	
web	server.	After	a	smartphone	or	pc	is	connected	the	device’s	AP,	the	user	opens	a	web	
browser	and	browses	into	the	device’s	website	via	a	predefined	local	URL	or	IP	address.	On	this	
website,	the	user	can	enter	the	home	network's	SSID	and	password.	The	device	stores	the	SSID	
and	password	in	nonvolatile	memory	and	then	switches	from	AP	mode	to	station	mode.	It	will	
try	to	connect	to	the	network	with	the	stored	credentials.		

The	primary	benefit	of	AP	mode	provisioning	is	that	it	uses	standard	capabilities	that	exist	in	
any	smartphone,	tablet	and	PC.	Another	benefit	is	that	the	vendors	can	add	additional	
parameters	to	the	embedded	website	to	configure	other	device	functions	at	the	same	time	when	
the	device	is	provisioned	on	the	Wi-Fi	network.	

A	disadvantage	of	the	AP	mode	is	that	the	phone	gets	disconnected	from	the	home	network	
when	connecting	to	the	configuration	AP	network	of	the	unprovisioned	device.	Another	
drawback,	when	using	a	PC	that	both	has	ethernet	and	Wi-Fi	internet	connection,	the	PC	may	
prioritize	the	ethernet	connection	and	may	not	connect	to	the	device’s	AP	through	Wi-Fi.	

	 	 27	

Furthermore,	recently	released	smartphones	often	check	whether	the	Wi-Fi	network	is	actually	
connected	to	the	Internet.	If	not	(like	it	would	when	the	phone	is	connected	to	the	AP	of	the	
unprovisioned	device),	the	smartphone	disconnects	from	the	Wi-Fi	network	and	then	forces	a	
cellular	data	connection.	

3.1.3 ESP-touch	
Espressif’s	ESP-TOUCH	protocol	implements	SmartConfig	technology	to	help	users	connect	
ESP8266EX-embedded	devices	to	a	Wi-Fi	network	through	simple	configuration	on	a	
smartphone	[6].	Figure	3.2	shows	how	the	Wi-Fi	credentials	of	the	AP	are	sent	to	the	embedded	
device	through	the	ESP-TOUCH	app	running	on	a	smartphone.	

	

Figure	3.2:	Typical	ESP-TOUCH	application	[6:	p.1]	

Since	the	BEDsense	(which	is	an	ESP8266	embedded	device)	is	not	connected	to	the	network	at	
the	beginning,	the	ESP-TOUCH	application	cannot	send	the	information	to	the	device	directly.	
With	the	ESP-TOUCH	communication	protocol,	a	Wi-Fi	enabled	device	such	as	a	smartphone	
sends	User	Datagram	Protocol	(UDP)	packets	to	the	Wi-Fi	Access	Point	(AP),	and	encodes	the	
SSID	and	password	into	the	Length	field	of	a	sequence	of	UDP	packets	where	the	ESP8266	device	
can	reach	and	decode	the	information.	

The	two	key	benefits	of	ESP-TOUCH	are	ease	of	use	and	the	potential	to	integrate	seamlessly	into	
the	phone	app	of	the	product.	Another	unique	capability	of	the	SmartConfig	technology	is	the	
ability	to	provision	multiple	devices	simultaneously.	If	multiple	Wi-Fi	devices	are	in	SmartConfig	
mode	at	the	same	time,	one	smartphone	can	provision	all	of	them	at	the	same	time.	

Its	main	drawback	is	the	fact	that	the	phone	needs	to	be	connected	to	a	network	using	a	
frequency	band	and	data	rate	that	is	supported	by	the	unprovisioned	device.	For	example,	if	the	
unprovisioned	device	supports	only	the	2.4GHz	band,	and	the	phone	is	using	the	5GHz	band	to	
communicate	with	a	dual-band	network,	then	SmartConfig	will	not	work,	simply	because	the	
unprovisioned	device	is	not	listening	on	the	5GHz	band.	Some	new	routers	and	phones	are	using	
proprietary	data	rates	to	increase	throughput,	which	makes	ESP-TOUCH	not	always	possible.	

3.1.4 Out-of-band	provisioning	
The	provisioning	methods	mentioned	so	far	use	the	Wi-Fi	radio	to	deliver	the	network	
credentials	to	the	unprovisioned	device.	Thus,	they	don’t	require	additional	network	interfaces	
to	perform	provisioning.		

28	
	

However,	it	is	also	possible	to	use	a	non-Wi-Fi	medium	to	deliver	the	network	credentials	to	the	
un-provisioned	device,	the	so-called	out-of-band	provisioning	methods.	They	can	be	wireless,	for	
example	using	near	field	communication	or	Bluetooth;	or	wired,	using	a	USB	interface	for	
instance.		

Adding	an	out-of-band	provisioning	method	improves	robustness	and	flexibility,	but	increases	
the	total	cost	of	the	device.	

3.1.5 Comparison	and	decision	
So	far,	different	Wi-Fi	provisioning	methods	are	reviewed	and	discussed	with	their	advantages	
and	weaknesses.	Table	1	shows	the	main	pros	and	cons	of	the	leading	Wi-Fi	provisioning	
methods.	

Table	1:	Comparison	of	the	leading	Wi-Fi	provisioning	methods	

	
WPS	 AP-mode	 ESP-TOUCH	 Out-of-band	

Advantages	 ●	two	modes:	
PIN	and	PBC																													
●	only	needs	two	
pushes	on	a	
button		

●	uses	standard	
capabilities																												
●	can	be	nicely	
integrated	into	the	
control	
framework	

●	seamless	
integration	into	
the	mobile	app																											
●	capable	of	
provisioning	
multiple	devices	
at	the	same	time	

●	many	different	
kinds	possible																												
●	both	wireless	and	
wired	possible	

Disadvantages	 •	security	flaws	
in	PIN	mode	->	
bad	reputation	
•	device	must	be	
reachable	in	PBC	
mode	

●	phone/pc	gets	
disconnected	from	
home	network																	
●	phone/pc	may	
prioritize	other	
network		

●	phone	needs	to	
be	connected	to	
the	network	using	
the	same	
frequency	band																														
●	may	not	work	
on	some	
routers/phones	

●	increases	the	total	
cost																																		
●	is	not	widely	used	

	

Based	on	the	forgoing	comparison,	a	design	consideration	was	made.	It	has	been	decided	to	
implement	both	WPS	and	AP-mode	as	provisioning	methods	for	the	BEDsense.			

Especially	ease	of	use	is	a	critical	aspect	because	provisioning	is	the	first	thing	users	do	when	
they	open	the	product’s	box.	The	provisioning	procedure	can	shape	the	entire	opinion	about	the	
product.	In	considering	ease	of	use,	WPS	PBC	is	preferred	because	it	requires	no	networking	
knowledge	or	tools	and	takes	the	least	number	of	steps	(only	press	two	buttons).		

WPS	does	require	physical	access	to	both	the	Wi-Fi	router	and	the	BEDsense	to	push	the	WPS	
button,	which	is	not	always	obvious.	Also,	many	of	the	APs	have	disabled	WPS	because	of	the	
security	breach	in	the	PIN	method	that	was	discussed	earlier.	Since	the	necessity	of	physical	
access	and	the	limitation	that	not	all	APs	support	WPS,	it	might	not	always	be	possible	to	
provision	the	BEDsense	using	WPS.	Therefore,	a	second	method	is	chosen	in	order	to	have	a	
fallback	method.		

Because	AP	mode	is	probably	the	most	ubiquitous	Wi-Fi	provisioning	method	and	works	in	most	
cases,	it	is	added	as	an	alternative	option.	The	standard	capabilities	that	are	used	in	AP	modes	
make	it	possible	to	integrate	this	mode	into	a	mobile	application.	This	can	be	considered	as	a	

	 	 29	

third	provisioning	method,	but	essentially	the	mobile	application	uses	the	AP-mode.	By	doing	
this,	a	uniform	user	experience	is	provided	in	the	mobile	application.		

3.1.6 Implementation	
AP-mode	

When	a	new	BEDsense	device	comes	out	of	the	box,	it	will	start	up	as	an	AP.	The	red	LED	on	the	
BEDsense	is	continuously	on.	The	default	SSID	is	“ZENSERI-BEDS-XXXX”	where	X	represents	a	
digit.	The	password	will	be	made	available	for	the	user	inside	the	box.		

The	user	can	use	a	computer,	tablet	or	smartphone	to	connect	to	the	BEDsense	AP.	The	
BEDsense	includes	an	embedded	web	server.	The	user	opens	a	web	browser	and	browses	into	
the	device’s	website	through	the	local	IP-address	(192.168.0.1).	The	website	contains	a	list	of	
information	about	the	BEDsense	(Figure	3.3	left).	Under	this	list	is	a	link	to	go	to	the	network	
configuration	page.	All	network	parameters	are	listed	on	this	page.	The	user	can	change	some	of	
those	parameters.	The	interesting	parameters	to	change	are	the	station	password,	station	SSID	
and	operating	mode.	

	

When	the	correct	SSID	and	password	are	entered	and	the	operating	mode	is	changed	to	‘station	
mode’,	the	user	pushes	the	Submit	button.	The	BEDsense	will	reboot	with	the	new	parameters.	If	
the	parameters	were	filled	in	correctly,	the	provisioning	is	finished.	

The	AP-method	can	also	be	integrated	in	a	mobile	application;	this	is	explained	in	more	depth	in	
section	3.5	where	the	development	of	the	app	is	discussed.	

WPS-mode	

No	matter	in	what	operating	mode	the	BEDsense	is	(station	mode	or	AP-mode),	the	user	can	
start	the	WPS	provisioning	with	a	short	press	on	the	button.	The	device	will	start	seeking	to	join	
a	network.	A	blinking	blue	LED	shows	this.	The	user	has	to	push	the	WPS	button	on	the	wireless	
access	point.	When	both	the	AP	and	the	BEDsense	recognize	each	other,	the	secure	setup	is	
initiated.	The	user	is	no	longer	involved	in	setting	a	password.		

When	two	minutes	are	passed	without	having	found	an	AP,	the	BEDsense	ends	the	search.	

Figure	3.3:	BEDsense's	website:	start	page	(left)	and	network	settings	(right)	

30	
	

	

3.2 Service	Discovery	
The	device	has	a	service	to	offer	(the	BEDsense	data).	An	application	will	collect	this	data	from	
the	device.	The	application	and	the	device	have	to	discover	eachother	through	some	mechanism.	
Devices	need	to	make	themselves	visible	for	others,	but	not	too	visible	since	this	can	cause	
serious	security	problems.	As	a	result,	the	BEDsense	needs	to	be	seen	and	secure.	

Smart	Home	networks	often	use	the	UPnP	standards	for	communication	between	network	
devices.	Smart	Home	systems	already	have	an	extensive	number	of	integrated	devices	like	IP-
cameras,	wireless	sensors,	Amazon	Echo	[7]	or	Nest	Thermostat	[8].	A	major	requirement	of	the	
Smart	Home	market	is	that	the	devices	must	be	universally	Plug	and	Play	in	being	discovered.	
Universal	Plug	and	Play	(UPnP)	described	by	the	UPnP	Forum	as	follows	[9:	p.	1]:	

UPnP™	technology	defines	an	architecture	for	pervasive	peer-to-peer	network	
connectivity	of	intelligent	appliances,	wireless	devices,	and	PCs	of	all	form	factors.	It	is	
designed	to	bring	easy-to-use,	flexible,	standards-based	connectivity	to	ad-hoc	or	
unmanaged	networks	whether	in	the	home,	in	a	small	business,	public	spaces,	or	
attached	to	the	Internet.	UPnP	technology	provides	a	distributed,	open	networking	
architecture	that	leverages	TCP/IP	and	Web	technologies	to	enable	seamless	proximity	
networking	in	addition	to	control	and	data	transfer	among	networked	devices.	

The	BEDsense	device	will	be	developed	according	to	the	UPnP	device	architecture	[9].	By	
following	this	architecture,	the	user	will	be	able	to	access	the	BEDsense	services	with	minimum	
manual	configuration.	The	next	paragraphs	focus	on	different	aspects	of	UPnP	networking	and	
how	it	is	applied	to	the	BEDsense.		

Because	of	memory	limitations,	it	is	impossible	to	implement	the	full	UPnP	architecture.	Only	a	
part	of	the	protocols	can	be	implemented.	Therefore	the	SSDP	protocol	is	adjusted	in	order	to	
get	sort	of	a	lightweight	version.	The	two	main	parts	that	are	implemented	deal	with	the	
discovery	and	the	description	of	the	BEDsense.	Both	of	them	are	explained	below.	

3.2.1 Discovery	
One	part	of	the	UPnP	networking	is	the	discovery	of	services.	When	a	UPnP	device	appears	in	the	
network,	it	advertises	its	presence	to	control	points	via	the	Simple	Service	Discovery	Protocol	
(SSDP).	Basic	information	about	the	device	and	its	services	is	thus	made	known	throughout	the	
network.	Similarly,	when	a	control	point	is	added	to	the	network,	SSDP	allows	the	control	point	
to	search	for	devices	of	interest	on	the	network	[10].	Hence	two	types	of	SSDP	messages	will	be	
sent.	On	the	one	hand	search	messages,	when	an	SSDP	client	is	looking	for	SSDP	services.	On	the	
other	hand,	advertisement	messages,	when	an	SSDP	service	announces	its	presence.	These	two	
types	of	discovery	messages	are	the	fundamental	exchange.	They	contain	few,	essential	specifics	
about	the	device	or	its	services,	e.g.	its	type,	Universal	Unique	IDentifier	(UUID),	a	Uniform	
Resource	Locator	(URL)	to	more	detailed	information.	Figure	3.4	shows	this	discovery	
architecture	in	a	schematic	way.	

	 	 31	

	

Figure	3.4:	Discovery	architecture	[9:	p.	13]	

Advertisement	messages	

When	a	device	is	newly	added	to	the	network,	it	must	multicast	several	discovery	messages	to	a	
standard	address	and	port	(239.255.255.250:1900),	advertising	itself	and	its	services.	Control	
points	listen	to	this	port	to	detect	new	capabilities	on	the	network.	When	we	apply	this	
architecture,	the	BEDsense	device	acts	like	a	root	device.	Each	BEDsense	device	embeds	a	
service	from	which	the	BEDsense	status	can	be	queried.	The	control	points	are	the	devices	that	
are	able	to	use	the	BEDsense.	These	can	be	different	types	of	devices	such	as	a	smartphone	or	a	
control	panel	attached	to	a	wall	in	a	Smart	Home.	

There	are	three	types	of	advertisement	messages:	

1. SSDP:	alive,	when	a	device	is	newly	added	to	a	network;	
2. SSDP:	update,	sent	for	periodic	updates;	
3. SSDP:	byebye,	when	a	device	is	removed	from	a	network.	

The	BEDsense	must	use	these	three	types	of	messages	as	the	UPnP	architecture	prescribes.	

Search	messages	

The	SSDP	message	formats	must	be	implemented	as	defined	in	the	UPnP	device	architecture	[9:	
pp.	12-36].	The	pattern	of	a	multicast	M-SEARCH	looks	like	this:	

M-SEARCH * HTTP/1.1

32	
	

HOST: 239.255.255.250:1900
MAN: "ssdp:discover"
MX: seconds to delay response
ST: search target
USER-AGENT:	OS/version	UPnP/1.1	product/version	

Where	the	values	in	italics	are	placeholders	for	actual	values.	A	response	to	the	M-SEARCH	
request	has	the	following	pattern:		

HTTP/1.1 200 OK
CACHE-CONTROL: max-age = seconds until advertisement expires
DATE: when response was generated
EXT:
LOCATION: URL for UPnP description for root device
SERVER: OS/version UPnP/1.1 product/version
ST: search target
composite identifier for the advertisement
USN: BOOTID.UPNP.ORG: number increased each time device sends an initial

announce or an update message
CONFIGID.UPNP.ORG: number used for caching description information

SEARCHPORT.UPNP.ORG:	number	identifies	port	on	which	device	responds	to	unicast	M-SEARCH	

The	discovery	enables	the	next	step	in	UPnP	networking,	i.e.	description.	

3.2.2 Description	
After	a	control	point	has	discovered	BEDsense	devices,	it	still	knows	very	little	about	the	device.	
The	next	step	is	to	retrieve	the	device’s	description	from	the	URL	provided	by	the	SSDP	
discovery	message.		

The	description	is	partitioned	into	two	logical	parts:	a	device	description	and	a	service	
description.	A	device	description	describes	the	physical	and	logical	containers	including	vendor-
specific	information.	Each	service	description	includes	a	list	of	actions,	to	which	the	service	
responds,	and	parameters	for	each	command.	The	description	process	is	visualized	in	Figure	3.5.	

	

Figure	3.5:		SSDP	description	architecture	[9:	p.	37]		

In	a	Smart	Home	environment,	there	can	be	many	control	points	such	as	a	controller	attached	to	
a	wall,	a	tablet	or	a	smartphone.	The	BEDsense	will	act	as	a	root	device	and	offers	one	service,	a	
sensor	status	service.	Control	points	can	query	this	service.	The	responses	contain	the	status	of	
the	sensor.		

	 	 33	

The	device	and	service	descriptions	are	written	in	XML	syntax	based	on	the	standard	UPnP	
device	template	[9:	pp.	43-55].	The	service	description	includes	a	list	of	commands	to	which	the	
service	responds	and	a	list	of	variables	that	model	the	state	of	the	service.		

3.2.3 Implementation	
After	provisioning,	the	BEDsense	device	joins	the	Wi-Fi	network	of	the	Smart	Home.	After	
obtaining	the	IP	address,	it	will	advertise	itself	according	to	the	UPnP	standards.	It	starts	
broadcasting	several	SSDP	advertisement	messages.	Other	devices	on	the	network	supporting	
UPnP	listen	to	these	broadcast	messages	to	discover	BEDsense	devices	and	their	associated	
URLs	in	the	network.		

The	logical	hierarchy	for	the	BEDsense	device	and	its	embedded	services	is	shown	in	Figure	3.6.	
Basically,	each	BEDsense	device	consists	of	a	root	device	with	a	unique	128-bit	UUID	and	a	
corresponding	URL	to	obtain	all	the	device	information.	Furthermore,	each	BEDsense	root	
device	embeds	a	service	from	which	sensor	status	can	be	queried.			

	

Figure	3.6:	Hierarchy	of	the	BEDsense	as	a	UPnP	root	device	

Discovery	

As	specified	in	section	3.2.1	the	BEDsense	needs	to	send	three	different	types	of	advertisement	
messages	as	prescribed	in	the	UPnP	device	architecture.	The	first	type	is	the	‘SSDP:	alive’	
message.	The	BEDsense	multicasts	several	discovery	messages	when	it	is	newly	added	to	a	
network.	Such	a	message	has	the	following	format:	

NOTIFY * HTTP/1.1
Host: 239.255.255.250:1900
CACHE-CONTROL: max-age=1800
LOCATION: http://192.168.1.2:80/description.xml
NT: upnp:rootdevice
NTS: ssdp:alive
SERVER: lwIP/1.40 UPnP/1.0 BEDSense/1.0
USN: uuid:11111111-1111-1111-1111-111111111111::upnp:rootdevice
BOOTID.UPNP.ORG: 44
NEXTBOOTID.UPNP.ORG: 45

34	
	

CONFIGID.UPNP.ORG: 1
API.2mel.nl: 2MBEDSenseV1

The	BEDsense	will	update	its	presence	periodically	using	‘SSDP:update’	messages.	An	example	is	
given	below:	

NOTIFY * HTTP/1.1
Host: 239.255.255.250:1900
CACHE-CONTROL: max-age=1800
LOCATION: http://192.168.1.2:80/description.xml
NT: uuid:11111111-1111-1111-1111-111111111111
NTS: ssdp:update
SERVER: lwIP/1.40 UPnP/1.0 BEDSense/1.0
USN: uuid:11111111-1111-1111-1111-111111111111
BOOTID.UPNP.ORG: 44
NEXTBOOTID.UPNP.ORG: 45
CONFIGID.UPNP.ORG: 1
API.2mel.nl: 2MBEDSenseV1

Before	leaving	a	network,	the	BEDsense	sends	an	‘SSDP:byebye’	message.	If	the	device	is	
removed	abruptly,	it	might	not	be	able	to	multicast	the	message.	For	this	reason,	discovery	
messages	include	an	expiration	value.	The	‘SSDP:byebye’	message	looks	as	follows:	

NOTIFY * HTTP/1.1
Host: 239.255.255.250:1900
NT: upnp:rootdevice
NTS: ssdp:byebye
USN: uuid:11111111-1111-1111-1111-111111111111
BOOTID.UPNP.ORG: 44
CONFIGID.UPNP.ORG: 1

Description	

When	discovery	is	completed,	the	control	point	still	knows	little	about	the	BEDsense	device.	
Therefore,	the	next	step	is	the	device	description.	The	discovery	messages	contain	the	location	of	
a	more	detailed	description.	The	UPnP	device	architecture	prescribes	the	format	of	this	
description.	The	description	is	in	XML	syntax	and	contains	several	pieces	of	vendor-specific	
information,	a	URL	for	presentation	of	the	device,	etc.	An	example	of	a	BEDsense	device	
description	is	given	below:	

	 	 35	

	

By	following	the	prescribed	syntax,	other	UPnP	devices	will	discover	the	BEDsense	
automatically	and	can	read	the	description.	A	Windows	PC,	for	example,	will	show	the	BEDsense	
in	the	list	of	network	devices	as	shown	in	Figure	3.7.	

	

Figure	3.7:	A	discovered	BEDsense	in	the	list	of	network	devices	in	Windows	File	Explorer	

3.3 Communication	protocol	
Once	a	BEDsense	device	is	registered	in	a	Wi-Fi	network	(Provisioning),	has	obtained	an	IP	
address	and	has	been	discovered	(Service	Discovery),	it	is	possible	for	other	network	devices	to	
communicate	with	it.		

A	BEDsense	device	has	a	Wi-Fi	interface	and	responds	to	commands	via	a	REST	API.	Data	is	sent	
in	JSON	format	using	either	HTTP	GET	or	POST	methods.	Basic	functionality	is	accessible	with	
this	mechanism	for	example		

1. Query	the	BEDsense	status	

Sensor	status	is	queried	by	requesting	(GET)	data	from	the	URL	
http://<BEDsenseIP>/status/sensor.	The	JSON	reply	from	the	device	looks	like	this:	

<root xmlns="urn:2mel.nl:device:2MBEDSense-1-0">
 <specVersion>
 <major>2</major>
 <minor>0</minor>
 </specVersion>
 <URLBase>http://10.3.221.107:80</URLBase>
 <device>
 <deviceType>urn:2mel.nl:device:2MBEDSense:device:1</deviceType>
 <presentationURL>http://10.3.221.107:80</presentationURL>
 <friendlyName>Bed Occupancy Sensor</friendlyName>
 <manufacturer>Zenseri</manufacturer>
 <manufacturerURL>https://www.2mel.nl/</manufacturerURL>
 <modelDescription>Bed Occupancy Sensor</modelDescription>
 <modelName>BEDSense</modelName>
 <modelNumber>0.1</modelNumber>
 <modelURL>https://www.2mel.nl/products/</modelURL>
 <serialNumber>6502</serialNumber>
 <UDN>uuid:22222222-2222-2222-2222-222222222222</UDN>
 </device>
</root>
	

36	
	

	

The	important	part	is	the	occupancy	status.	It	can	have	the	following	states:	

• UNDEFINED:	the	system	is	unable	to	detect	a	definite	state;	
• EMPTY:	no	human	is	detected	on	the	bed;	
• AWAKE:	a	human	is	detected	and	is	awake;	
• ASLEEP:	a	human	is	detected	and	is	asleep.	

	

2. Query	or	change	the	network	settings	

To	query	the	network	settings	of	a	BEDsense	a	HTTP	GET	request	to	"http://<BEDsense	
IPaddress>/configuration/network"	will	be	answered	with	a	JSON	packet	like:	

	

It	is	also	possible	to	send	an	HTTP	POST	with	the	above	JSON	data	to	change	the	network	
settings.	The	answer	from	the	device	will	again	be	a	JSON	packet	with	all	possible	labels	and	a	
value	indicating	if	the	new	parameter	was	accepted	or	not.		

	

{	
		"occupancy	status":	"EMPTY",	
		"occupancy-status	timestamp":	"1194",	
		"motion	status":	"LARGE	MOTION",	
		"motion-status	timestamp":	"1192",	
		"pressure	value":	"8421753",	
		"temperature	value":	"22",	
		"pressure	status":	"NO	ERROR",	
		"temperature	status":	"NO	ERROR",	
		"sensor-operating	mode":	""	
}	

{	

		"operating	mode":	"station",	
		"station	ssid":	"<SSID>",	
		"station	password":	"<PASSWORD>",	
		"access-point	ssid":	"ZENSERI-BEDS-2222",	
		"access-point	password":	"<PASSWORD>",	
		"ip	method":	"DHCP",	
		"static	ip":	"192.168.0.9",	
		"subnet	mask":	"255.255.255.0",	
		"gateway	ip":	"192.168.0.1",	
		"server	port":	"80",	
		"sensor	name":	"BED2",	
		"data-transfer	method":	"pull",	
		"push	interval":	"50",	
		"push-server	url":	"122.5.6.7/test",	
		"update-server	url":	""	
}	

	 	 37	

3. Reset	the	device	

In	order	to	reset	the	device	a	HTTP	POST	request	can	be	done	to	http://<IPaddress>/action	with	
JSON	data	of:	

	

After	changing	the	network	parameters,	a	reboot	must	be	performed.	

3.4 Over	the	air	firmware	updates	
Firmware	Over-the-Air	(FOTA)	technology	makes	it	possible	to	deliver	updated	firmware	to	
mobile	or	embedded	devices.	In	order	to	make	the	BEDsense	robust	and	durable	for	the	future,	
it	is	required	to	do	updates	from	time	to	time.	Also,	there	will	always	be	inevitable	issues	with	
the	BEDsense	firmware	such	as:	software	defects,	missing	features,	design	issues	and	security	
issues.		Being	able	to	resolve	these	issues	with	a	firmware	update	can	save	a	lot	of	time	and	
money.	It	is	therefore	an	opportunity	to	enhance	product	functionality,	operational	features	and	
to	provide	fixes	for	particular	problems.	This	makes	FOTA	highly	desirable	for	the	BEDsense.	

Since	the	updates	will	be	performed	over	the	air,	the	Wi-Fi	module	has	to	provide	the	
mechanisms	for	doing	this.	The	mechanisms	should	allow	updates	for	his	own	firmware	as	well	
as	updates	for	the	optical	engine	as	shown	in	Figure	3.8.			

	

Figure	3.8:	BEDsense	firmware	overview	

The	ESP	module	will	receive	the	binary	files	for	both	modules.	It	will	check	the	version	of	the	
firmware	first.	When	the	existing	firmware	has	a	lower	version	than	the	new	firmware,	it	will	
start	writing	the	new	firmware	images.	The	ESP	module	has	to	write	the	MSP	firmware	through	
the	SPI	interface	

3.4.1 Push	or	pull	updates	
One	can	identify	two	different	firmware	update	modes	–	externally	pushed	firmware	and	
another	one	that	is	initiated	by	the	remote	device.	Figure	3.9	and	Figure	3.10	show	a	flow	
diagram	of	the	procedures	in	both	modes.	

	

{	
“action”	:	“reboot”	
}	

38	
	

	

Figure	3.9:	FOTA	push	mode	flowchart	

	

Figure	3.10:	FOTA	pull	mode	flowchart	

	 	 39	

Externally	pushed	firmware	update	would	be	when	the	device	receives	the	firmware	file	over	a	
HTTP	POST	request,	whereas	in	the	pulled	firmware	update	mode,	the	device	checks	the	server	
for	firmware	updates.		

In	our	case	the	BEDsense	will	be	integrated	into	the	Smart	Home	environment	where	it	is	
connected	to	the	local	network.	The	firmware	updates	will	be	sent	to	the	customer	and	the	
actual	update	will	be	completed	using	their	system.	The	mode	of	upgrading	will	therefore	be	
chosen	in	consultation	with	the	Smart	Home	provider.	In	the	development	stage	the	updates	will	
be	done	using	the	pull	mode,	so	the	FOTA	will	be	initiated	manually.		

3.4.2 ESP	firmware	updates	
The	ESP	Wi-Fi	module	is	well	positioned	to	allow	FOTA.	Espressif	provides	a	guide	on	how	to	do	
FOTA	updates	on	their	Wi-Fi	modules	[11].	It	is	possible	to	update	the	firmware	of	the	ESP	
module	when	the	module	is	not	connected	to	a	PC.	The	available	2MB	on	the	SPI	flash	memory	is	
partitioned	into	two,	what	can	be	seen	in	Figure	3.11.		

	

	

Figure	3.11:	ESP8266	FOTA	flash	memory	layout	

The	basic	idea	for	the	FOTA	update	procedure	used	in	the	ESP	module	is	very	simple:	use	only	
half	the	flash	space	with	the	firmware	such	that	two	partitions	can	be	created.	When	the	
firmware	is	running	out	of	one	partition,	the	other	partition	can	be	loaded	with	a	new	version.	A	
restart	can	make	the	ESP8266	run	out	of	the	new	partition.	At	that	point,	the	partition	that	is	not	
used	can	be	updated,	and	so	forth.	The	user	code	runs	on	one	or	the	other	partition.	This	has	the	
advantage	that	when	something	goes	wrong	during	FOTA,	the	previous	firmware	can	be	
recovered.	The	system	can	never	be	in	a	state	where	it	is	stuck	or	partially	programmed.	A	
drawback	of	this	solution	is	that	it	limits	the	available	memory	space	for	the	user	code.		

3.4.3 Optical	engine	updates	
The	optical	engine	has	to	be	put	in	bootloader	mode	in	order	to	upgrade	the	firmware.	If	the	
MSP	is	in	bootloader	mode,	an	upgrade	register	will	be	made	available.	This	register	represents	
the	starting	address	for	the	upgrade	image.	All	15360	bytes	(15Kb)	of	a	new	firmware	image	are	
written	within	a	single	SPI	transaction,	utilizing	the	auto	address	increment	function.		

After	writing	the	last	byte	of	the	image,	the	BTL_STATUS	register	can	be	checked	to	read	to	
verify	a	correct	update	procedure.	When	everything	is	ok,	the	value	of	this	register	reads	0xAB.	
When	there	is	a	wrong	checksum	the	result	will	be	0xAA.	

40	
	

3.4.4 Implementation		
When	the	BEDsense	is	officially	released	and	used	in	Smart	Home	environments,	the	binaries	are	
sent	to	the	Smart	Home	providers	when	an	update	has	to	be	performed.	They	will	provide	an	
interface	that	gives	the	user	the	possibility	to	initiate	the	FOTA	update.	The	BEDsense	is	still	in	
development,	but	it	is	also	useful	in	the	development	phase	to	do	FOTA	updates.	This	allows	us	
to	add	functionality	to	the	prototype	if	needed.	Hence,	the	tools	that	are	needed	to	do	FOTA	are	
developed	and	can	be	sent	to	future	customers	along	with	the	prototype.		

The	Windows	desktop	provides	the	tools	to	set	up	the	FOTA	procedure.	Figure	3.12	illustrates	
the	overview	of	the	FOTA	system	used	during	the	development	of	the	BEDsense.	

	

Figure	3.12:	Overview	of	FOTA	system	used	during	development.	

The	mechanisms	are	partially	included	in	the	desktop	tool.	The	desktop	application	will	provide	
the	UI	to	set	the	parameters	for	the	FOTA	such	as	selecting	the	binary	file,	setting	the	FOTA	
server	address,	etc.	A	Windows	service	will	be	used	for	the	FOTA	server.	This	service	is	installed	
together	with	the	installation	of	the	desktop	tool.		

Figure	3.13	shows	the	message	flow	of	the	FOTA	procedure.	It	gives	a	good	overview	of	how	the	
FOTA	works.	There	are	clearly	three	main	parts:	the	BEDsense	device	that	has	to	be	updated,	the	
desktop	tool	provides	the	UI	and	the	Windows	service	that	acts	like	the	FOTA	update	server.	

	 	 41	

	

	

Figure	3.13:	FOTA	message	flow	

Desktop	tool	

In	the	specification	is	chosen	for	the	pull-method	to	start	the	FOTA	procedure.	The	initiation,	
therefore,	must	be	done	manually.	A	user	who	wants	to	initiate	the	FOTA	update	will	only	use	
the	desktop	tool	as	interface.	The	desktop	tool	will	communicate	with	the	FOTA	server	and	the	
BEDsense.	As	shown	in	the	message	diagram	in	Figure	3.13,	there	are	three	calls	from	the	
desktop	tool.	The	first	one	is	a	call	to	the	FOTA	server	to	tell	the	service	where	the	firmware	
binary	files	are	located	and	which	block	size	will	be	used.	The	next	step	is	to	tell	the	BEDsense	
device	the	service	URL.	Finally,	it	gives	the	BEDsense	the	command	to	initiate	the	FOTA	update.	

FOTA	server	

The	Windows	service	acts	like	a	FOTA	server.	It	houses	the	update	files	and	exposes	the	API	to	
access	them.	The	URL	is	the	following:	http://<IPaddress>:8888/Zenseri/BedSense.	The	API	
calls	are	listed	in	Table	2.		

Table	2:	Description	of	the	FOTA	server	API	calls	

Set	binary	filename	
URL	 /binfile?filename1=<fullpath1>&filename2=<fullpath2>&blocksize=<size>	
Method	 POST	
URL	parameters	 filename1=[path	to	binary	for	partition	1]	

filename2=[path	to	binary	for	partition	2]	
blocksize=[integer]	

Description	 Sets	the	binary	files	for	partition	1	and	2	and	the	block	size	to	be	used	
Get	binary	filename	

URL	 /getbinfilename	
Method	 GET	
URL	parameters	 		
Description	 Returns	the	name	of	the	files	set	and	the	block	size	set.		

It	also	returns	the	size	of	the	files	in	number	of	bytes	

42	
	

Get	binary	block	
URL	 /binblock?blocknum=<bid>&partition=<pid	
Method	 GET	
URL	parameters	 blocknum=[integer]	

partition=[integer]	(1	or	2)	
Description	 Returns	the	block	of	data	for	the	specified	block	number	and	partition	

Download	firmware	
URL	 /action	
Method	 POST	
Data	
parameters	 "action":"firmware-download"	
Description	 Initiates	the	firmware	download.	
	

3.5 Mobile	application	
Because	the	BEDsense	is	a	headless	device,	there	must	be	alternative	ways	to	make	the	
BEDsense	easy	to	use.	One	alternative	way	is	to	use	a	mobile	application	for	Android	
smartphones,	called	“BEDsense	App”,	to	handle	the	communication	between	the	user	and	the	
BEDsense	device.	There	are	several	actions	that	the	user	can	do:	configuring	a	new	BEDsense,	
changing	the	settings	of	an	existing	BEDsense,	monitoring	the	status	of	his	BEDsenses,	etc.		

3.5.1 Development	strategy	
First,	a	decision	has	to	be	made	which	operating	system	(OS)	and	development	tools	will	be	used	
for	the	development	of	the	BEDsense	App.	Nowadays	there	are	three	types	of	strategies	used	in	
the	development	of	applications	for	mobile	devices	[12].		

	

Figure	3.14:	Strategies	for	mobile	development	[12:	p.	33]	

Based	on	different	sources	[12,	13,	14],	the	three	strategies	can	be	compared	to	each	other	as	
follows:	native	applications	are	developed	using	languages	supported	by	the	mobile	OS	
technology	stack.	Web	applications	are	in	fact	applications	built	on	the	web	using	the	mobile	
device	just	as	a	front	end.	Hybrid	mobile	applications	try	to	mix	the	best	of	both	worlds;	they	use	
the	power	of	server-side	computing	but	don’t	treat	the	device	only	as	a	front	end.	They	typically	
consist	of	a	web	portion	that	contains	the	elements	that	are	shown	to	the	user	and	a	bridging	
mechanism	that	provides	access	to	advanced	features	of	the	native	platform.	

	 	 43	

It	is	soon	decided	not	to	use	the	strategy	of	the	web	applications,	due	to	the	many	restrictions	
such	as:	no	native	API,	no	offline	mode	and	no	possibility	to	leverage	the	processing	to	the	
mobile	device	[12].	Therefore,	only	the	native	and	the	hybrid	strategy	are	compared	in	more	
detail.		

Native	mobile	application	development	

Native	apps	are	built	using	only	the	tools	and	technologies	(including	programming	languages)	
suggested	by	the	mobile	application	stack	vendors,	such	as	Google	(Android)	[15]	and	Apple	
(iOS)	[16].	Thus,	it	requires	high	level	of	specialized	knowledge	to	develop	a	native	application.	
Native	apps	are	compiled	into	machine	code,	which	gives	the	best	performance	you	can	get	from	
the	mobile	phone.	Best	performance	includes	fluid	animations,	full	access	to	the	phone's	
hardware,	multi	touch	support	and	the	latest	APIs	[17].		

The	International	Data	Corporation	(IDC)	indicated	the	share	of	the	smartphone	market	based	
on	the	number	of	devices	sold	[18].	The	evolution	of	the	market	share	is	shown	in	Figure	3.15:	
Worldwide	smartphone	OS	market	share.	

	

	

Figure	3.15:	Worldwide	smartphone	OS	market	share	

The	worldwide	smartphone	OS	market	share	has	two	major	players.	Android	dominates	the	
smartphone	market	with	86,8%,	followed	by	iOS	with	12,5%	market	share.	The	others	continue	
to	decline	in	market	share,	and	will	eventually	almost	disappear.	

Hybrid	mobile	application	development	

Hybrid	app	development	uses	Web	technologies	such	as	HTML5,	JavaScript	and	CSS	that	run	
inside	the	"Native	Shell"	of	the	mobile	platform.	Thanks	to	the	increasing	sophistication	of	multi-
platform	frameworks	such	as	Apache	Cordova/Phonegap	[19],	Appcelerator	[20]	or	Xamarin	
[21],	performance	and	user	experience	have	improved	greatly.	According	to	Cygnet	[22],	all	
these	frameworks	solve	the	purpose	of	developing	apps	for	multiple	platforms.	As	a	developer,	

44	
	

you	should	choose	the	one	that	meets	the	requirements	and	purpose	of	your	solution;	one	might	
be	better	than	the	other	depending	on	the	requirements.	

Hybrid	apps	still	depend	on	the	native	browser,	which	means	that	they	are	not	as	fast	as	native	
apps.	On	the	other	hand,	development	and	maintenance	is	faster	and	therefore	cheaper.	The	
developer	writes	the	code	once	and	deploys	it	to	different	operational	systems.	

Comparison	and	decision	

Having	seen	the	differences	between	the	native	and	hybrid	development	strategies,	a	decision	
has	to	be	made	for	the	development	of	the	BEDsense	app.	Both	strategies	come	with	their	
strengths	and	weaknesses.		Table	3	shows	the	main	pros	and	cons	of	the	two	strategies.	

	

Table	3:	Pros	and	cons	of	native	and	hybrid	mobile	application	development	

Native	 Hybrid	

Advantages	 ●	best	performance																							
●	latest	APIs	

●	platform	
independent	
development																											
●	cost-effective	

Disadvantages	 ●	increased	
development	time	
and	costs	
●	content	
restrictions	and	
guidelines	based	on	
the	ecosystem	

●	limited	device-
specific	feature-
related	APIs																		
●	not	suited	for	
very	high	
performance	
requirement		

	

Based	on	this	comparison	and	the	fact	that	the	smartphone	market	practically	consists	of	two	
major	platforms,	i.e.	Android	and	iOS,	it	has	been	decided	to	develop	the	BEDsense	app	natively.	
More	precisely,	an	Android	app	will	provide	the	user	interface	in	this	early	development	phase	
of	the	BEDsense.	The	app	reaches	86%	of	the	smartphone	market.	However,	this	might	be	an	
overestimation	of	the	Smart	Home	market.	Probably	iPhone	has	a	higher	market	share	in	that	
submarket.	Therefore,	In	the	future	a	native	iOS	app	will	be	developed	to	reach	the	remaining	
smartphone	users.	

3.5.2 Provisioning	a	BEDsense	
When	determining	the	specifications	of	the	connectivity	(section	3.1),	it	was	chosen	to	integrate	
AP-mode	into	the	mobile	application.	Installers	can	choose	to	use	WPS	or	the	mobile	app	to	
connect	unprovisioned	BEDsenses	to	the	home	network.	This	section	describes	how	the	
provisioning	is	integrated	into	the	BEDsense	App.			

An	unprovisioned	BEDsense	boots	in	AP-mode.	The	smartphone	must	first	be	connected	to	the	
BEDsense	network.	Secondly,	the	user	must	in	some	way	be	able	to	fill	in	the	home	network	
credentials	and	send	it	to	the	BEDsense.	Finally,	the	BEDsense	app	should	give	the	instruction	to	
change	his	operating	mode	to	station	mode.	These	three	steps	are	similarly	integrated	into	the	
app.	

	 	 45	

1. Connect	to	the	BEDsense	AP	

This	part	has	the	purpose	of	finding	an	unprovisioned	
BEDsense	and	setup	a	connection	between	the	smartphone	and	
the	BEDsense.	

Not	only	in	this	first	step,	but	also	in	the	next	steps,	the	
smartphone's	Wi-Fi	resources	need	to	be	addressed.	So	the	
first	thing	the	app	will	do	is	check	whether	Wi-Fi	is	enabled.	If	
not,	it	will	make	it	enabled	right	away.		

The	app	will	then	automatically	search	for	unprovisioned	
BEDsenses	in	his	neighborhood.	It	is	possible	to	filter	the	
BEDsenses	out	of	all	the	Wi-Fi	APs	due	to	the	hardcoded	SSID	
of	an	unprovisioned	BEDsense.	The	SSID	is	determined	in	the	
factory	settings	and	has	following	format:	“ZENSERI-BEDS-
XXXX”	(where	X	represents	a	digit).		All	available	Wi-Fi	APs	
containing	“ZENSERI-BEDS”	in	their	SSID	will	be	listed	on	the	
screen,	as	seen	in	Figure	3.16.	The	user	can	continue	to	the	
next	step	by	pushing	on	the	SSID.	

2. Select	the	home	network	
	

The	second	step	is	to	select	the	home	Wi-Fi	network.	The	app	
will	automatically	search	for	Wi-Fi	networks	and	list	them	on	
the	screen	(Figure	3.17).	The	user	only	has	to	indicate	the	one	
that	will	be	used	to	connect	the	BEDsense	to.	The	major	
advantage	of	this	manner	is	that	the	user	doesn’t	have	to	type	
the	SSID	manually.	When	the	desired	network	is	not	in	the	list,	
the	user	can	search	again.	If	the	home	network	was	found,	this	
step	only	takes	one	push	on	the	SSID	to	complete.		
	
After	this	step,	the	app	will	make	a	connection	to	the	BEDsense	
automatically	and	save	the	home	network	SSID	so	that	it	can	
be	used	for	the	next	step.		
	 	

Figure	3.16:	List	of	
available	BEDsenses	

Figure	3.17:	List	of	
networks	

46	
	

	
3. Enter	the	password	of	the	home	network	

The	only	thing	that	has	to	be	done	to	finish	the	
provisioning	is	to	enter	the	password	of	the	home	network	
and	give	the	instruction	to	reboot.	The	user	is	simply	
prompted	to	type	the	password	in	a	text	field	and	push	the	
button	that	says:	“Connect	BEDsense	to	<SSID	of	home	
network>”	(Figure	3.18).		

After	pushing	the	button,	the	app	will	send	the	credentials	
of	the	home	network	to	the	BEDsense	in	the	background.	
Finally,	it	will	send	the	instruction	to	restart	in	station	
mode.	

	

	

	

	

3.5.3 Control	BEDsense(s)	
After	a	BEDsense	is	provisioned	successfully	it	is	connected	to	a	local	network.	Everyone	that	is	
connected	to	the	same	network	can	discover	the	presence	of	the	BEDsense	and	communicate	
with	each	other.	It	is	to	say,	if	both	devices	communicate	according	to	the	rules	of	the	SSDP	
protocol.	The	BEDsense	has	the	SSDP	Implemented,	so	the	BEDsense	app	must	have	this	
implementation	as	well.		

The	first	step	to	use	a	BEDsense	is	to	make	sure	that	the	mobile	phone	is	connected	to	the	same	
Wi-Fi	network	as	the	BEDsense(s).	This	is	prompted	by	the	user	via	a	dialog	box.	If	this	is	not	the	
case,	the	app	sends	the	user	to	the	Wi-Fi	settings	where	he	can	make	connection	to	the	correct	
network.		

While	the	phone	is	connected	to	the	correct	network,	it	can	start	the	discovery	of	BEDsenses	
according	to	the	SSDP	rules.	It	multicasts	an	SSDP	M-SEARCH	request.		

Figure	3.18:	Enter	the	
password	

	 	 47	

	

	

BEDsenses	that	receive	this	message	respond	to	this	message	with	an	SSDP	response	as	
discussed	in	section	3.2.	The	response	includes	a	link	to	the	description	of	the	BEDsense	in	
question.		From	this	point,	the	BEDsenses	are	known	for	the	app	and	it	knows	how	to	use	them.		

By	using	the	HTTP	GET	and	POST	request	as	discussed	in	section	3.3,	it	can	query	the	BEDsense	
status	and	change	the	network	settings.	

	

	

InetAddress group = InetAddress.getByName("239.255.255.250");
int port = 1900;
String query =
 "M-SEARCH * HTTP/1.1\r\n" +
 "Host: 239.255.255.250:1900\r\n"+
 "MAN: \"ssdp:discover\"\r\n"+
 "MX: 1\r\n"+
 "ST: urn:2mel-nl:device:2MBEDSense:1\r\n"+
 "\r\n";

socket = new DatagramSocket(port);
socket.setReuseAddress(true);
socket.setSoTimeout(2000);

DatagramPacket dgram = new DatagramPacket(query.getBytes(), query.length(),
 group, port);
socket.send(dgram);
	

	 	 49	

4 Sleep	analysis	
As	mentioned	in	the	project	description,	Zenseri	does	not	want	to	limit	the	application	of	the	
BEDsense	to	the	managed	Smart	Home	market.	Zenseri	will	sell	BEDsenses	directly	to	
consumers	in	the	future.	The	ultimate	goal	is	to	develop	a	system	to	do	sleep	diagnostics	by	
combining	all	data	from	a	large	number	of	BEDsenses.	This	is	not	a	short-term	objective,	Zenseri	
wants	to	take	small	steps	to	eventually	reach	the	goal.		

There	will	be	three	different	phases	in	the	evolution	of	the	BEDsense	with	an	increasing	amount	
of	complexity.	In	the	first	phase,	only	bed	occupancy	is	measured.	Secondly,	also	the	movements	
of	a	human	body	will	be	measured.	From	this	stage,	doing	sleep	analysis	is	possible.	The	third	
and	last	phase	will	collect	all	data	from	many	BEDsense	devices	and	use	it	together	to	do	holistic	
sleep	diagnostics.	More	info	needs	to	be	derived	and	combined.	In	this	stage,	we	are	in	the	era	of	
big	data.	Note	that	the	goal	is	not	to	develop	sleep	diagnostics	for	medical	purposes,	but	it	will	be	
used	to	give	people	advise	for	a	better	sleep	lifestyle.		

Phase	1:	bed	occupancy	

The	BEDsense	will	only	be	able	to	measure	bed	occupancy.	This	means	that	it	can	recognize	
when	the	bed	is	occupied	and	that	it	can	distinguish	whether	it	is	a	dead	object	or	a	living	human	
being.	Note	that	the	BEDsense	for	the	Smart	Home	customer	is	in	this	phase.	It	has	three	
different	values	for	bed	occupancy:	empty,	present	awake	and	present	asleep.	It	is	impossible	to	
measure	real	sleep	quality	in	this	stage.	Only	the	duration	of	sleep	can	be	derived	with	this	
information.	Although	this	is	an	important	factor	in	a	person’s	night	quality,	the	BEDsense	will	
not	be	used	for	sleep	analysis.		

Phase	2:	body	movements	

Besides	bed	occupancy	algorithms,	new	complex	algorithms	will	be	added	to	the	BEDsense	to	
come	up	with	more	information.	This	information	will	include	the	precise	motion	of	the	body	
parts.	Different	values	of	motion	will	be	possible:	small	motion,	medium	motion	and	large	
motion.	Small	motion	refers	to	breathing,	medium	motion	is	derived	from	movements	of	limbs,	
and	large	motion	is	caused	by	tossing	and	turning	of	the	whole	body.		

Body	movements	are	an	important	behavioral	aspect	of	sleep	because	they	can	be	associated	to	
sleep	states	[23].	Both	frequency	and	duration	of	body	movements	are	important	characteristics	
for	sleep	analysis	[24].	During	the	last	decades,	actigraphy	(activity-based	monitoring)	has	
become	an	important	measuring	tool	in	sleep	research.	

Different	sensors	are	available	on	the	market	today	that	claim	to	be	able	to	measure	sleep	
quality.	Typically,	the	actigraphy	is	obtained	from	a	wrist	device.	However,	the	wrist	device	may	
affect	the	sleep	quality	due	to	the	discomfort.	Moreover,	the	measured	movements	are	
movements	of	the	wrists	only	and	don’t	always	give	enough	information	of	body	movements.	It	
is	therefore	very	challenging	to	measure	movements	of	specific	body	parts.	

An	alternative	way	to	measure	body	movements	is	to	use	a	camera.	The	sleeping	subjects	are	not	
attached	to	any	equipment.	Near	infrared	cameras	can	detect	movements	of	the	body	very	
accurately,	without	making	contact	to	the	body.	The	disadvantages	of	this	approach	are	the	high	
cost	of	the	camera	and	the	privacy	issues.	People	will	feel	watched	when	entering	their	bedroom.		

50	
	

BEDsense	uses	a	totally	new	way	of	measuring	body	movements.	It	has	the	advantages	of	being	
non-contact	based	and	being	able	to	measure	body	movement	in	a	very	sensitive	way.	On	top	of	
that,	it	is	practically	invisible	for	the	user	because	it	is	placed	underneath	the	mattress.		

Phase	3:	big	data	

When	phase	2	is	evaluated,	the	next	step	is	to	combine	all	data	and	set	up	sleep	profiles.	Sleep	
profiles	are	created	by	combining	the	sleep	quality	measurements	with	extra	personal	
information	derived	from	the	user	via	a	mobile	application.	The	data	is	analyzed	and	compared	
with	the	data	from	other	users.	Zenseri	investigates	possible	improvements	and	shares	them	
with	the	user	via	an	application	or	website.	By	doing	this,	Zenseri	teaches	people	how	they	can	
improve	their	sleep	lifestyle.	

Despite	the	fact	that	this	last	phase	will	not	be	developed	in	the	near	future,	it	is	useful	to	keep	
the	future	plans	in	mind	during	the	development	of	the	first	prototypes.	This	will	reduce	
development	time	and	costs	in	the	future.	

4.1 Transform	raw	data	
The	fiber-optics	pressure	sensor	produces	an	analog	signal.	This	signal	is	processed	in	the	
analog	domain	through	the	analog	front	end,	converted	to	digital	and	further	processed	in	the	
digital	domain.	A	24-bit	ADC	takes	samples	at	60Hz.	

It	may	be	clear	that	these	samples	are	not	suitable	for	storage	or	transmission.	The	BEDsense	
would	run	out	of	memory	in	a	few	hours	and	it	would	take	a	lot	of	power-consuming	data	
transfer	if	it	was	transmitted.		

	

Figure	4.1:	Visualization	of	raw	data	from	the	fiber-optics	using	Matlab	

The	optical	engine	therefore	has	some	embedded	algorithms	to	do	real-time	signal	processing.	
The	sensor	system	provides	one	main	signal:	the	real-time	status	of	the	bed	occupancy.	The	
occupancy	status	can	reflect	four	possible	states:	

• UNDEFINED,	
• EMPTY,	
• AWAKE,	
• ASLEEP.	

The	real-time	status	of	the	bed	occupancy	can	directly	be	applied	in	the	Smart	Home	network	to	
control	heating,	alarms,	lighting	or	other	devices.		This	is	not	the	case	for	the	second	application,	
the	sleep	analysis.	In	order	to	enable	reliable	sleep	analysis	for	phase	1,	the	occupancy	status	

	 	 51	

should	be	collected	for	long	periods	of	time.	Even	more	signals	are	needed	to	reach	the	second	
phase.	This	requires	a	good	strategy	for	the	storage	and	transmission	of	this	data.		

A	first	strategy	to	limit	the	amount	of	data	is	to	track	only	changes	in	occupancy	status.	It	is	very	
likely	that	during	the	day,	when	people	usually	are	not	in	bed,	no	changes	occur	in	the	occupancy	
status.	It	will	be	"EMPTY"	for	hours.	But	also	at	night	it	is	much	more	efficient	when	only	the	
changes	are	tracked	and	saved.	It	can	be	assumed	that	in	between	two	changes	the	status	is	
equal	to	the	first	status.		This	results	in	an	"event-based"	strategy,	where	an	event	reflects	a	
change	in	occupancy	status.		

One	important	requirement	is	that	an	event	should	not	be	lost.	This	would	lead	to	a	
misinterpretation	of	the	data,	which	would	mislead	the	sleep	analysis.	For	this	reason	a	failover	
buffering	system	is	developed.	

4.1.1 Failover	system	
The	BEDsense	relies	on	the	wireless	network	to	send	the	measured	data	to	the	server.	No	matter	
how	stable	the	Wi-Fi	network	is,	the	Wi-fi	connection	might	drop	unexpectedly.		When	the	
BEDsense	has	no	Wi-Fi	connection,	the	measurements	cannot	be	sent.	Short	interruptions	are	
not	yet	a	big	problem,	especially	not	in	the	first	phase.	As	long	as	there	is	no	event	during	the	
interruption,	no	data	will	be	lost	and	the	interruption	will	remain	unseen	for	the	user.	On	the	
other	hand,	even	short	times	of	no	connection	can	cause	problems	in	the	next	two	phases	of	
measuring	sleep	quality.	When	the	duration	of	interrupted	connection	increases,	the	amount	of	
data	loss	increases	proportionally.	This	will	result	in	unreliable	data	and	a	bad	user	experience.		

It	is	impossible	to	prevent	connection	drops	from	occurring,	so	there	has	to	be	a	failover	system.	
In	our	case	failover	is	switching	to	an	alternative	way	of	saving	the	measurement	data	upon	the	
failure	of	the	network	connection.	When	the	network	connection	is	restored,	it	will	send	all	
saved	data	at	once.	This	will	prevent	the	BEDsense	from	losing	data.		

A	protocol	is	designed	to	save	the	events	in	a	practical	way.	Essentially,	the	BEDsense	now	
embeds	a	logfile	for	events.	The	smallest	structure	that	will	be	used	in	the	logfile	is	called	a	tuple	
with	following	format:	

Every	event	will	create	a	tuple	and	will	be	saved	in	flash	memory.	20	blocks	of	the	memory	are	
reserved	for	saving	tuples.	Every	block	contains	64	tuples,	so	a	maximum	of	1280	tuples	can	be	
stored	on	the	device.	This	amount	may	seem	low,	but	in	normal	use	of	the	BEDsense,	the	number	
of	events	per	day	will	be	between	several	dozens	to	hundreds.	Hence,	the	memory	will	be	
sufficient	to	prevent	data	losses	for	short	connection	drops.		

When	all	blocks	are	full,	the	blocks	with	the	oldest	records	will	be	removed	and	will	be	reused	
for	the	new	records.		

The	BEDsense	firmware	exposes	an	API	to	retrieve	the	logs.	The	event	log	can	be	queried	with	
this	URL:		

If	the	event	ID	equals	0,	the	response	will	be	the	most	recent	event.	Any	other	number	will	give	
the	actual	event	corresponding	to	that	event	ID	(if	it	exists).	An	example	of	the	JSON	format	is	
given	below:	

{4-byte	Event,	4-byte	Event	ID,	4-byte	Boot	ID,	4-byte	Tick	stamp}	

52	
	

	

Event	ID	is	a	sequential	number	given	to	each	event,	starting	from	1.	It	is	possible	that	events	are	
not	available	anymore	when	they	are	removed	to	make	space	for	new	events.	A	strategy	to	get	
the	logfile	arranged	from	new	events	to	old,	is	to	request	the	last	one.	The	event	ID	of	the	newest	
record	is	known,	so	you	can	request	the	previous	record	by	decreasing	this	event	ID.	This	can	be	
repeated	until	the	requested	event	ID	doesn’t	exist.		

This	strategy	is	used	in	the	desktop	test	tool	(Figure	4.2).	

	

	

Figure	4.2:	Eventlog	retrieval	design	using	the	desktop	test	tool	

	

4.2 System	design	for	phase	1		
Although	Zenseri	is	not	in	the	sleep	analysis	market	yet,	the	mechanisms	to	make	these	future	
steps	possible	can	already	be	investigated.	The	first	two	phases	in	particular	will	have	a	similar	
basic	structure.	The	first	prototype	already	has	a	lot	of	things	on	board	to	start	with	the	
development	of	phase	1.	

Sleep	analysis	in	phase	1	is	based	on	three	possible	events	generated	by	the	changes	of	
occupancy	status.	Events	contain	time	and	status	information	of	a	BEDsense.	By	combining	all	

{
"event id":0,
"event records":[1,30,5,9]
}

	 	 53	

events	that	are	generated	during	a	night,	some	important	factors	of	sleep	quality	can	already	be	
deduced,	think	about	the	total	duration	of	sleep,	total	duration	in	bed,	number	of	wake	ups,	etc.	

The	ultimate	system	that	allows	sleep	analysis	to	be	done	using	the	BEDsense	events,	is	the	
following:	

	

Figure	4.3:	First	phase	sleep	analysis	system	overview.	

The	BEDsenses	are	connected	to	the	Internet	via	a	Wi-Fi	AP.	Each	BEDsense	stores	events	using	
the	failover	system.	The	eventlog	created	by	the	failover	system	results	in	a	list	of	tuples	stored	
on	the	BEDsense	flash	memory.	Each	BEDsense	can	therefore	be	considered	as	a	data	source,	
which	leads	to	a	distributed	storage	of	data.	The	concept	of	distributed	database	management	is	
proved	as	one	of	the	most	energy-efficient	data	storage	and	query	techniques	for	wireless	sensor	
networks	(WSN)	[25].	The	sensor	network	is	seen	as	a	distributed	database	where	queries	are	
injected	from	a	base	station	[26].	The	BEDsense	is	still	a	wired	sensor,	but	will	eventually	
become	a	wireless	solution.	Hence	it	is	beneficial	that	a	similar	system	is	used	as	in	the	wired	
system.		

It	uploads	events	to	an	external	server.	The	events	are	stored	in	a	database	on	this	server.	Even	
if	this	Internet	connection	drops	down	for	a	while,	the	failover	system	ensures	that	all	events	are	
saved	on	the	device	and	sent	to	the	database	when	the	Internet	connection	is	restored.		

Lastly,	the	BEDsense	owner	can	look	into	his	sleep	history	using	an	intended	application.	The	
application	converts	the	events	to	numbers,	graphs	and	percentages	that	are	easily	
understandable	for	the	user.		

This	architecture	is	a	3-tier	architecture	because	there	is	a	separate	tier	for:	

• the	presentation:	what	the	end	user	gets	to	see;	
• the	logic	and	data	access:	controls	application	functionality	by	performing	detailed	

processing.	It	also	processes	data;	
• data	storage:	data	is	stored	and	retrieved	from	the	database.	

Due	to	the	separation	of	the	functionality,	this	architecture	is	highly	manageable	because	almost	
all	its	components	can	be	changed	independently.	We	are	not	tied	to	these	three	layers.		As	the	
system	grows,	more	layers	can	be	added	if	necessary.	For	instance,	when	different	database	

54	
	

systems	need	to	be	approached	in	different	ways,	it	is	useful	to	add	a	database	abstraction	layer.	
This	layer	ensures	that	you	can	access	the	data	independently	of	the	database	system	[27].		

4.2.1 Upload	events	
Events	are	stored	on	the	BEDsense	device	as	discussed	in	section	4.1.1.	There	are	two	ways	of	
communicating	the	events	to	a	central	server;	either	push-based	or	pull-based.	In	the	push	
mode,	events	are	proactively	forwarded	from	the	BEDsense	to	the	central	server,	whereas	in	
pull-mode	events	are	acquired	on	demand.	The	push	mode	is	suitable	for	applications	that	
require	continuous	monitoring.	Events	are	forwarded	to	the	central	server	periodically	or	when	
an	interesting	event	occurs.	The	pull	mode	is	suitable	for	applications	where	monitoring	is	not	
needed	continuously	[28].		

Continuous	monitoring	of	the	BEDsense	data	is	not	needed	for	the	sleep	analysis	application,	so	
the	pull-mode	suffices.		

4.2.2 Storage	on	central	database	
In	the	first	place,	it	is	important	to	know	what	the	user	wants	to	store	and	how	he	wants	to	use	it	
before	designing	a	strategy	to	implement	the	database.	In	this	case	–	phase	1	of	the	sleep	
analysis	–	the	user	wants	his	sleep	data	for	longer	periods	of	time	to	be	stored.	This	is	needed	
because	of	the	memory	constraints	of	the	BEDsense	device.	He	will	then	want	to	be	able	to	see	
his	sleep	data.	He	might	want	to	see	the	evolution	of	sleep	quality	of	last	week	or	month.	Or	he	
wants	to	know	exactly	how	many	times	he	woke	up	last	night,	or	how	many	hours	he	was	
effectively	sleeping.	Young	parents	might	check	the	sleep	behavior	of	their	baby	or	child.	With	
this	user	application	in	mind,	a	strategy	for	a	database	system	is	designed.	

The	first	choice	that	must	be	made	is	whether	to	use	SQL-	or	NoSQL-database	–	or	relational	and	
non-relational	databases	-	to	store	the	BEDsense	sleep	data.	Relational	databases	are	structured	
whereas	non-relational	databases	are	document-oriented	and	distributed.	Because	of	the	
predefined	structure	of	the	occupancy	events	and	the	relation	of	the	events	to	a	BEDsense	and	
thus	to	a	user,	it	is	obvious	to	use	a	relational	database.		

The	design	of	a	relational	database	is	done	using	an	entity-relationship	diagram	(ERD).	For	this	
first	phase	the	ERD	will	remain	very	simplistic	as	shown	below.		

	

Figure	4.4:	Entity-relationship	diagram	of	phase	1	database	

There	are	three	entities:	user,	BEDsense	and	event.	A	user	can	have	access	to	one	or	more	
BEDsenses.	Each	BEDsense	generates	events.	The	events	correspond	to	the	tuples	from	the	
failover	system	and	contain	the	necessary	information	for	the	sleep	analysis.		

	 	 55	

For	demonstration	purposes,	based	on	the	ERD	in	Figure	4.4,	an	SQL	database	is	implemented.	
The	popular	open-source	database	MySQL	is	used	for	this	implementation.	The	database	will	run	
on	a	local	XAMPP	server	and	managed	with	phpMyAdmin.	The	database	will	have	to	be	
accessible	over	the	Internet	in	the	future,	which	causes	additional	security	measures.	These	will	
be	discussed	in	chapter	5.	

4.2.3 Visualization	
Now	that	it	is	defined	how	the	BEDsense	data	is	transformed	into	events	and	how	the	events	are	
stored	in	a	database,	we	only	have	to	convert	it	into	useful	representations.	To	demonstrate	this,	
the	mobile	application	is	expanded.		

Registration	and	login	

The	first	thing	a	user	must	do	in	order	to	get	access	to	the	sleep	analysis	is	to	register	himself.	
For	this	demonstration	setup,	only	the	e-mail	address	and	password	are	used	for	registration	
and	login.	The	e-mail	address	has	to	be	unique	because	it’s	the	key	of	the	user	table.	After	
registration,	the	user	can	login	using	the	same	e-mail	and	password.	

Sleep	history	

After	being	registered	and	logged	in,	the	user	has	access	to	a	list	of	BEDsenses.	One	BEDsense	is	
typically	linked	to	one	person,	and	therefore	the	BEDsense	can	have	the	same	name	as	the	
person	it	belongs	to.	From	the	list	of	BEDsenses,	using	these	user	defined	names,	one	can	select	
which	device	he	wants	to	retrieve	the	sleep	history.	

There	is	only	one	step	left	to	see	the	actual	sleep	analysis;	select	the	date	from	which	he	wants	to	
retrieve	the	measurements.	This	is	done	using	a	calendar,	which	is	set	by	default	on	the	current	
date.	When	selecting	a	date,	a	request	is	sent	to	the	database	to	get	all	occurred	events	from	
12:00	p.m.	of	the	selected	day,	till	12:00	p.m.	the	next	day.	Using	the	retrieved	events,	the	sleep	
analysis	of	one	night	can	be	done.	How	the	app	requests	the	events	and	transforms	them	into	a	
visual	representation	is	explained	below.	

Requesting	the	events	is	done	asynchronously	in	the	background.	This	asynchronous	task	sends	
an	HTTP	post	request	with	the	two	timestamps	(selected	day	and	next	day)	and	the	BEDsense	
UUID.	If	the	selected	BEDsense	has	events	in	between	the	two	dates,	a	JSON	array	of	the	events	is	
returned.	Every	JSON	object	in	the	array	reflects	a	status	change	of	the	BEDsense.	The	app	
transfers	each	JSON	object	to	an	object	of	the	class	OccupancyEvent.		

When	the	user	wants	to	see	the	sleep	history	of	a	certain	period	of	time,	the	app	queries	the	
events	from	the	database	and	creates	an	arraylist	of	occupancy	events.	This	arraylist	is	used	to	
create	useful	sleep	information.	A	lot	of	interesting	information	can	be	derived	from	these	
events	such	as:	

• time	when	you	went	to	bed;	
• time	when	you	fell	asleep;	
• number	of	times	you	woke	up;	
• number	of	times	you	went	out	of	bed;	
• total	duration	in	bed	or	asleep;	
• ratio	between	the	length	of	time	spent	in	bed	and	the	length	of	time	you	effectively	slept;	
• the	length	of	time	you	were	awake	before	you	got	out	of	bed.	

56	
	

To	derive	the	above	parameters,	the	processing	is	very	similar	for	every	calculation.	The	next	
fragment	of	code	shows	how	the	arraylist	of	events	is	used	to	calculate	the	total	duration	that	
the	person	was	asleep:	

	

The	above	function	returns	the	total	number	of	seconds	where	the	occupancy	status	was	asleep.	
By	selecting	two	consecutive	events	and	checking	the	status,	it	is	possible	to	derive	the	duration	
of	one	status,	i.e.	duration	asleep.	The	result	can	be	used	in	further	calculations	such	as	the	in	
bed/asleep	ratio.		

The	results	of	the	calculations	are	still	just	numbers,	which	are	not	user-friendly.	Users	typically	
expect	a	clear	graph	or	a	simple	score	from	0-100,	completed	with	some	easy	to	understand	
parameters.	To	make	this	possible,	a	chart	view/	graph	library	is	used	[29].	Figure	4.5	illustrates	
an	example	of	how	the	events	can	be	visualized.	

	

Figure	4.5:	Visualization	of	sleep	data	from	one	night	

The	user	can	select	a	specific	date	using	a	calendar	view.	The	app	converts	all	occupancy	events	
into	useful	information.	The	user	can	right	away	see	the	exact	time	that	he	went	to	bed	and	the	
total	duration	he	was	asleep.	A	pie	chart	shows	the	ratio	that	he	effectively	slept	while	he	was	in	
bed.	Another	graph	shows	the	points	of	time	when	the	occupancy	events	occurred.		

private float getDurationAsleep(ArrayList<OccupancyEvent> events){
 float asleep = 0;
 for(int i=0; i < events.size()-1;i++){
 OccupancyEvent event = events.get(i);
 OccupancyEvent next_event = events.get(i+1);
 Log.d("DEBUG" , "Occupancy.Status = " +
 event.getOccupancy_status());
 if(event.getOccupancy_status()==Occupancy_status.ASLEEP){
 float seconds = (float) (next_event.getDateTime().getMillis()
 - event.getDateTime().getMillis())/1000;
 asleep = asleep + seconds;
 }
 }
 return asleep;
}

	 	 57	

It	is	worthwhile	noticing	that	the	visualizations	of	Fout!	Verwijzingsbron	niet	gevonden.	are	
just	examples	of	how	the	events	can	be	transformed	into	user	readable	views.	The	appearance	of	
these	views	can	always	be	changed	according	to	a	desired	theme	or	personal	taste.		

This	conversion	of	events	into	quality	metrics	can	be	repeated	for	multiple	nights	to	come	up	This	conversion	of	events	into	quality	metrics	can	be	repeated	for	multiple	nights	to	come	up	
with	sleep	history	views	for	weeks	or	even	months.	Again,	the	way	of	visualizing	the	results	is	
less	important.	

	 	 59	

	

5 Security	
BEDsense	is	in	the	era	of	Internet	of	Things,	where	digitally	connected	devices	are	changing	our	
lives,	including	our	homes,	offices,	cars,	etc.	IoT	is	growing	at	a	fast	pace	and	researches	around	
the	world	estimate	that	by	2020,	the	number	of	active	wireless	connected	devices	will	exceed	40	
billion	[30].	The	upside	is	that	we	will	be	able	to	do	things	we	never	imagined	before.	But	as	with	
every	good	thing,	there	is	a	downside:	IoT	is	becoming	an	increasingly	attractive	target	for	
cybercriminals.	More	connected	devices	result	in	more	attack	vectors	and	more	possibilities	for	
hackers	to	target	us	[31].		

Various	attacks	with	IoT	devices	have	already	been	demonstrated.	For	instance,	IoT	botnets	
were	used	in	multiple	Distributed	Denial	of	Service	(DDoS)	attacks	against	DNS	servers	in	
October	2016	[32].	It	was	a	unique	type	of	attack	because	for	the	first	time	it	was	not	launched	
from	a	PC,	but	using	IoT	devices	such	as	security	cameras	and	some	network	attached	storage.	
The	reason	why	such	an	attack	was	possible	was	because	of	the	complete	lack	of	security	in	
those	devices.	In	fact,	they	are	connected	to	the	Internet	while	having	default	access.	They	come	
out	of	the	factory,	consumers	are	buying	them	and	they	are	exposed	to	the	Internet.	Hackers	
could	take	them	over	and	use	them	to	launch	the	DDoS	attacks.	

It	is	important	to	be	aware	of	these	IoT	security	concerns	during	these	early	development	
phases	to	make	the	BEDsense	future	proof.	Also	for	the	user	and	the	Zenseri	itself,	it	is	important	
that	the	BEDsense	system	is	designed	while	taking	the	security	issues	into	account.	

Building	a	completely	secure	system	is	a	virtual	impossibility	so	the	objective	is	not	developing	
an	unhackable	solution	but	finding	a	good	compromise	between	security	and	performance	with	
the	available	resources.	In	the	end,	we	will	have	a	reasonable	product	with	standard	forms	of	
security	and	know	the	weaknesses	and	understand	where	the	security	problems	are.	The	next	
subsections	take	a	closer	look	at	the	different	safety	aspects.	

5.1 Authentication	
To	prevent	easy	access	to	the	BEDsense	devices,	no	default	passwords	that	are	the	same	across	
all	devices	are	used.	Instead,	the	BEDsense	provides	decent	authentication	using	unique	
passwords	for	each	device	that	rolls	of	the	factory.	The	password	will	be	a	strong	one	and	is	
labeled	on	the	packaging	so	that	the	owner	can	login	but	other	people	cannot.	

5.2 Encryption	
Algorithms	in	the	optical	engine	convert	the	signal	from	the	external	optics	into	sleep	data.	It	is	
extremely	important	that	the	algorithms	remain	secret.	To	make	sure	they	are	protected	during	
firmware	updates,	the	firmware	of	the	optical	engine	-	containing	the	algorithms	–	is	encrypted	
using	AES	(Advanced	Encryption	Standard).	The	bootloader	is	able	to	decrypt	the	firmware	
before	installation.	

5.3 Database	
The	designed	database	for	the	phase	1	sleep	analysis	system	already	includes	some	security	
measures:	

60	
	

• all	SQL	queries	are	protected	from	SQL	injection	using	prepared	statements	and	
parameterized	queries.	When	preparing	the	SQL	statement,	it	is	parsed	and	compiled	by	
the	database	server.	By	specifying	parameters,	the	database	engine	is	told	where	you	
want	to	filter	on.	When	the	execution	is	called,	the	prepared	statement	is	combined	with	
the	specified	parameter	values.	By	sending	the	actual	SQL	separately	from	the	
parameters,	the	risk	of	ending	up	with	something	you	did	not	intend	is	limited;	

• hashed	passwords	are	used	to	prevent	the	stored	passwords	to	be	stolen	[31].	The	hash	
algorithm	is	applied	to	the	user’s	password	before	it	is	stored	on	the	database	making	it	
implausible	for	attackers	to	determine	the	original	password,	while	still	being	able	to	
compare	the	resulting	hash	to	the	original	password.	

Additional	security	means	will	have	to	be	taken	when	the	BEDsense	data	is	stored	by	
transmitting	it	over	the	Internet	to	a	central	server.	Instead	of	using	the	HTTP	protocol	for	
communication,	the	secure	version	HTTPS	has	to	be	used	to	send	user	information.	

5.4 Firmware	updates		
The	fact	that	the	BEDsense	is	upgradable	using	the	FOTA	system	is	a	very	important	security	
aspect	on	its	own.	When	security	issues	are	found,	and	they	will,	the	BEDsense	device	can	be	
upgraded	and	the	security	vulnerabilities	can	be	closed.		

There	is	however	an	important	thing	about	the	FOTA	updates.	When	an	upgrade	is	performed,	
the	device	needs	to	check	whether	it	is	actually	performing	a	legitimate	update.	Hence,	the	
update	needs	to	be	signed	using	a	certificate	and	the	device	needs	to	validate	whether	the	
certificate	has	the	right	signature	on	it.	This	is	not	strictly	necessary	for	updates	during	
development,	but	is	something	that	should	definitely	be	considered	in	commercial	use.	

	

	 	 61	

	

6 Conclusion	
6.1 Results	
Exploring	in	depth	different	aspects	of	integrating	IoT-like	devices	into	Smart	Home	
environments,	made	it	possible	to	determine	what	was	appropriate	for	the	BEDsense	
integration.	In	collaboration	with	other	people,	both	inside	Zenseri	and	2M	Engineering	as	well	
as	outside,	choices	about	the	design	are	made.	It	was	therefore	not	just	making	choices	but	a	
crucial	part	of	this	project	was	communicating	the	choices	with	cooperating	parties.	This	
collaboration	has	led	to	a	BEDsense	prototype.	This	prototype	is	successfully	equipped	with	
necessary	communication	means	needed	for	integration	into	Smart	Home	environments:			

• Wi-Fi	provisioning	means	(WPS-	and	AP-mode),	
• SSDP	protocol	definitions	for	discovery,	
• user	interface	via	Android	application,	
• over	the	air	upgradable.	

Subsequently,	a	system	is	created	where	raw	sensor	data	is	transformed	into	a	format	that	is	
suitable	for	storage	and	transmission.	This	system	enables	the	first	phase	for	doing	sleep	
analysis.	The	implementation	of	the	database	and	communication	with	the	mobile	app	show	the	
possibilities	of	this	first	phase	and	form	the	basis	for	the	next	phases.		

6.2 Discussion	
The	starting	point	of	this	master's	thesis	was	a	promising,	innovative	sleeping	sensor	able	to	
detect	bed	occupancy	from	underneath	mattresses,	but	unable	to	communicate	the	data	so	that	
it	becomes	useful	information.	The	developed	communication	means	enable	integration	in	
Smart	Home	networks,	the	efficient	transmission	of	the	BEDsense	data	and	the	possibility	to	add	
functionality	due	to	the	FOTA	upgrades.		

The	designed	prototype	is	not	a	final	product	that	is	suitable	for	commercial	purposes,	but	it	
demonstrates	that	it	is	possible	to	create	a	low-cost	solution	with	reasonable	performance	
regarding	ease	of	use,	robustness	and	security.	In	the	next	steps	of	the	development,	new	
prototypes	will	need	to	be	developed.	The	IoT	market	is	growing	at	a	stunning	fast	pace	and	
therefore	the	BEDsense	is	forced	to	evolve	as	quickly.	In	the	future,	the	BEDsense	will	become	a	
wireless	sensor	and	will	therefore	use	different	communication	technologies	such	as	Z-Wave	or	
Zigbee	instead	of	Wi-Fi.	This	doesn't	take	away	the	importance	of	this	prototype,	on	the	
contrary,	it	is	a	major	step	forward	and	the	results	will	still	be	useful	for	the	next	development	
phases.	

When	it	comes	to	the	results	for	the	sleep	analysis	strategy	for	the	first	phase,	we	can	determine	
that	the	possibilities	should	not	be	underestimated.	Although	only	the	bed	occupancy	status	with	
three	useful	values	is	measured;	a	lot	of	significant	factors	that	determine	sleep	quality	can	be	
derived.	The	implementation	of	the	database	and	the	visualization	of	sleep	history	in	the	mobile	
application	are	not	suitable	for	commercial	use.	The	local	database	needs	to	become	an	external	
database	so	that	it	is	accessible	from	anywhere	and	anytime.	This	step	involves	many	other	
measures,	especially	in	terms	of	security	and	legislation.	Furthermore,	another	type	of	database	

62	
	

system	is	needed	to	make	Big	Data	analysis	possible.	SQL	databases	do	not	scale	well	to	very	
large	sizes.	These	are	points	that	need	to	be	addressed	in	the	future.	

In	order	to	achieve	the	ultimate	goal	where	the	BEDsense	data	is	transformed	into	sleep	profiles	
and	recommendations	to	improve	sleep,	the	BEDsense	needs	o	transfer	more	data	and	the	data	
management	will	have	to	be	done	in	a	totally	different	way.		

6.3 Conclusion	
The	results	of	this	thesis	facilitate	further	development	of	the	BEDsense	system	and	are	a	major	
step	to	the	ultimate	goal	of	Zenseri,	integration	in	Smart	Home	environments	and	collection	of	
sleep	data	to	improve	the	user's	sleep	lifestyle.	

		

	 	 63	

Bibliography	
	
[1]	 Statista.	 (2017).	 Worldwide	 Smart	 Home	 statistics.	 Available:	

https://www.statista.com/outlook/279/100/smart-home/worldwide	
[2]	 J.	Laferrière,	G.	Lietaert	,	R.	Taws	,	and	S.	Wolszczak	Reference	Guide	to	Fiber	Optic	Testing	

vol.	1:	JDSU,	2007.	
[3]	 R.	 P.	DePaula,	N.	 Lagakos,	 J.	 A.	 Bucaro,	 and	E.	Udd,	 "Optimizing	 Fiber	Optic	Microbend	

Sensor,"	vol.	0718,	pp.	12-20,	1987.	
[4]	 Gil	 Reiter.	 (2014,	 16-10-2016).	 A	 primer	 to	 Wi-Fi	 provisioning	 for	 IoT	 applications.	

Available:	http://www.ti.com/lit/wp/swry011/swry011.pdf	
[5]	 Viehböck	Stefan,	"Brute	forcing	Wi-Fi	Protected	Setup,"	2011.	
[6]	 Espressif,	"ESP-touch	user	guide,"	ed,	2016,	p.	1.	
[7]	 Amazon.	 (2017,	 30	 Apr).	Amazon	 Echo.	 Available:	 https://www.amazon.com/Amazon-

Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E	
[8]	 Nest.	 (2017,	 30	 Apr).	 Programs	 itself.	 Then	 pays	 for	 itself.	 Available:	

https://nest.com/thermostat/meet-nest-thermostat/	
[9]	 "UPnP	Device	Architecture	Version	1.1,"	ed.	ISO/IEC	29341-1-1,	2011.	
[10]	 W.	 Chen,	 S.-Y.	 Kuo,	 and	 H.-C.	 Chao,	 "Service	 integration	 with	 UPnP	 agent	 for	 an	

ubiquitous	home	environment,"	Information	Systems	Frontiers,	vol.	11,	p.	483,	2008.	
[11]	 Espressif	Systems	IOT	Team,	"ESP8266	FOTA	introduction,"	Espressif2016.	
[12]	 P.	R.M.de	Andrade,	A.	B.Albuquerque,	O.	F.	Frota,	R.	V	Silveira,	and	F.	A.	da	Silva,	"Cross	

Platform	 App	 :	 A	 Comparative	 Study,"	 International	 Journal	 of	 Computer	 Science	 and	
Information	Technology,	vol.	7,	pp.	33-40,	2015.	

[13]	 M.	Panhale,	Beginning	Hybrid	Mobile	Application	Development,	1	ed.:	Apress,	2016.	
[14]	 R.	 Smeets	 and	 K.	 Aerts,	 "Trends	 in	 Web	 Based	 Cross	 Platform	 Technologies,"	

International	 Journal	 of	 Computer	 Science	 and	 Mobile	 Computing,	 vol.	 5,	 pp.	 190-199,	
2016.	

[15]	 Android.	 (2017,	 20	 Oct).	 The	 world's	 most	 popular	 mobile	 OS.	 Available:	
https://www.android.com/	

[16]	 Apple.	(2016,	20	Oct).	iOS	10.	Available:	https://www.apple.com/ios/ios-10/	
[17]	 Ziflaj	 Aldo.	 (2014,	 20	 Oct).	 Native	 vs	 Hybrid	 App	 Development.	 Available:	

https://www.sitepoint.com/native-vs-hybrid-app-development/	
[18]	 IDC.	 (2017,	 22	 Apr).	 Smartphone	 OS	 Market	 Share,	 2016	 Q3.	 Available:	

http://www.idc.com/promo/smartphone-market-share/os	
[19]	 Cordova.	 (2016,	 20	 Oct).	 Mobile	 apps	 with	 HTML,	 CSS	 &	 JS.	 Available:	

https://cordova.apache.org	
[20]	 Appcelerator.	 (2016,	 20	 Oct).	 Build	 great	 mobile	 experiences	 faster,	 	 .	 Available:	

http://www.appcelerator.com/	
[21]	 Xamarin.	 (2016,	 20	 Oct).	 Everything	 you	 need	 to	 deliver	 great	 mobile	 apps.	 Available:	

https://www.xamarin.com/	
[22]	 Cygnet,	 "PhoneGap	or	Titanium	or	Xamarin	-	Which	Cross-Platform	Framework	Should	

You	Choose?,"		vol.	2016,	ed,	2015.	
[23]	 A.	Heinrich,	X.	Aubert,	and	G.	de	Haan,	"Body	movement	analysis	during	sleep	based	on	

video	motion	estimation,"	pp.	539-543,	2013.	
[24]	 S.	 Gori,	 G.	 Ficca,	 F.	 Giganti,	 I.	 D.	 Nasso,	 L.	 Murri,	 and	 P.	 Salzarulo,	 "Body	 movements	

during	night	sleep	in	healthy	elderly	subjects	and	their	relationships	with	sleep	stages,"	
Brain	Research	Bulletin,	vol.	63,	pp.	393-397,	6/30/	2004.	

[25]	 O.	Diallo,	 J.	 J.	P.	C.	Rodrigues,	M.	Sene,	and	J.	Lloret,	"Distributed	Database	Management	
Techniques	for	Wireless	Sensor	Networks,"	IEEE	Transactions	on	Parallel	and	Distributed	
Systems,	vol.	26,	pp.	604-620,	2015.	

[26]	 T.	Hara,	V.	I.	Zadorozhny,	and	E.	Buchmann,	Wireless	Sensor	Network	Technologies	for	the	
Information	Explosion	Era,	2010.	

[27]	 Kris	Aerts,	Databaseprogrammatie	met	Java	en	C#,	2014.	

64	
	

[28]	 A.	 Skordylis,	 N.	 Trigoni,	 and	 A.	 Guitton,	 "A	 Study	 of	 Approximate	 Data	 Management	
Techniques	for	Sensor	Networks,"	pp.	1-12,	2006.	

[29]	 Philipp	 Jahoda.	 (2017,	 25-04).	 MPAndroidChart.	 Available:	
https://github.com/PhilJay/MPAndroidChart	

[30]	 C.	Drubin,	"The	Internet	of	Things	will	Drive	Wireless	Connected	Devices	to	40.9	Billion	
in	2020,"	Microwave	Journal,	vol.	57,	p.	51,	Oct	2014	2014.	

[31]	 B.	Dickson,	"Why	IoT	Security	Is	So	Critical,"	TechCrunch,	2015	Oct	24	2015.	
[32]	 M.	 Smith,	 "IoT	 botnets	 used	 in	 unprecedented	 DDoS	 against	 Dyn	 DNS;	 FBI,	 DHS	

investigating,"	Network	World	(Online),	2016	Oct	22	2016.	

	

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Secure and flexible sleep tracking device communications for integration in
Smart Home networks

Richting: master in de industriële wetenschappen: elektronica-ICT
Jaar: 2017

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Bloemen, Robbe

Datum: 6/06/2017

