
2016•2017
FACULTEIT INDUSTRIËLE INGENIEURSWETENSCHAPPEN
master in de industriële wetenschappen: elektronica-ICT

Masterproef
Applying machine learning algorithms on multi-sensor applications

Promotor :
Prof. dr. ir. Bart VANRUMSTE

Promotor :
prof. dr. ir. RONALD THOELEN

Copromotor :
De heer Marijn LEMMENS

Tom Kelher
Scriptie ingediend tot het behalen van de graad van master in de industriële
wetenschappen: elektronica-ICT

Gezamenlijke opleiding Universiteit Hasselt en KU Leuven

 2016•2017
Faculteit Industriële
ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterproef
Applying machine learning algorithms on multi-sensor
applications

Promotor : Copromotor :
Prof. dr. ir. Bart VANRUMSTE De heer Marijn LEMMENS

Promotor :
prof. dr. ir. RONALD THOELEN

Tom Kelher
Scriptie ingediend tot het behalen van de graad van master in de industriële
wetenschappen: elektronica-ICT

Acknowledgements

I’d like to thank everyone who helped me with my thesis during the year.
I’m especially grateful to Drs. ing. Marijn lemmens, for guiding me through my thesis and
offering me all the needed support, which includes correcting my thesis, poster and
abstract.

A very special gratitude goes to my promotor Prof. dr. ir. Ronald Thoelen and Mr. Thijs
Vandenryt, for attending several meetings and giving me feedback on my projects.

I would also like to thank my promotor Prof. dr. ir. Bart Vanrumste for participating in
brainstorm meetings with me, and giving some useful ideas.

Furthermore, I’d like to thank everyone who helped me from the IMO-research team,
including but not limited to, Mr. Gilles Oudebrouckx and Mr. Frederik Vreys.

Next, I’d like to thank all the students who helped me and accompanied me during my
thesis.

And finally, last but by no means least, would I like to thank my family for making my
studies possible and offering me emotional support.

Table of contents

Acknowledgements ..

Table of contents ...

List of figures ...

Abstract ...

1 Introduction ..

1.1 What is machine learning ...

1.2 Machine learning task chart ...

1.3 Implementing the ideas .. 12

1.4 In this project .. 12

2 Tomography ... 13

2.1 What is electrical impedance tomography.. 13

2.2 Tomography in Matlab .. 14

2.2.1 Influence of the injection pattern ... 15

2.2.2 Influence of the measurement pattern .. 17

2.2.3 Influence of the electrode model .. 18

2.3 Simulated wound detection with EIDORS ... 21

3 Pre-processing of the data.. 23

3.1 Data selection ... 23

3.2 Data pre-processing ... 23

3.3 Data Transformation ... 24

4 Regression algorithms ... 25

4.1 Linear regression .. 25

4.2 Logarithmic regression ... 26

4.3 Regression on a pump application ... 27

4.3.1 Overview of the application ... 27

4.3.2 Regression models of the concentration ... 28

4.3.3 Regression models of the required time ... 32

4.3.4 Conclusion ... 36

4.4 Regression on yeast cells ... 37

4.4.1 Preprocessing the data ... 37

4.4.2 Implementing regression .. 38

4.4.3 Implementing the SVM-classifier ... 38

5 Grouping algorithms ... 39

5.1 K means algorithm .. 39

5.2 Wound segmentation based on colour with the K-means algorithm 40

5.2.1 Deciding the optimal colour space .. 40

5.2.2 Applying the K-means algorithm ... 41

5.2.3 Comparing the results .. 41

6 Classification algorithms ... 43

6.1 Decision Tree algorithm ... 43

6.2 Support Vector Model algorithm (SVM)... 44

6.3 K Nearest Neighbours algorithm (k-NN) ... 45

6.4 Applying classification on images to recognize wounds ... 46

7 Machine learning kernels ... 47

7.1 Linear kernel ... 47

7.2 Radial basis function kernel (RBF) .. 48

7.3 Polynomial kernel ... 49

7.4 Important parameters... 50

7.5 Conclusion.. 50

8 Artificial neural networks .. 51

8.1 Neural networks and the human body ... 51

8.2 Single layer neural networks .. 52

8.2.1 Training a single layer network .. 52

8.3 Multi-layer neural networks ... 53

8.3.1 Training a multi-layer network with backpropagation....................................... 54

8.4 Activation functions ... 58

8.4.1 Step activation function ... 58

8.4.2 Linear activation function ... 58

8.4.3 Sigmoid activation function ... 59

8.4.4 tanh activation function ... 59

8.4.5 ReLU activation function ... 60

8.5 Neural networks in TensorFlow ... 61

8.5.1 Pre-processing the wounds .. 61

8.5.2 The multi-layer neural network for wound classifications 62

8.5.3 Results of the multi-layer neural network ... 62

9 Conclusion .. 63

Bibliography ... 65

List of figures

Figure 1: Machine learning flow chart, from problem to result ... 11

Figure 2 practical example of an EIT electrode model and the inverse results 13

Figure 3 data structures in EIDORS: forward and inverse model ... 14

Figure 4: Injection pattern used in the practical setup .. 15

Figure 5: (GRAPHIC) Wound used for making comparisons ... 15

Figure 6: Comparison of injection patterns based on the inverse tomography results 16

Figure 7: injection and the corresponding stimulation pattern ... 17

Figure 8: Comparison of measurement patterns based on the inverse tomography
results.. 17

Figure 9: Electrode nodes and their corresponding position ... 18

Figure 10: (GRAPHIC) Image of a wound and its forward model with electrodes around
the surface of the wound ... 19

Figure 11: Comparison of electrode models based on the inverse tomography results .. 20

Figure 12: Injection pattern for the forward model ... 21

Figure 13: forward- and inverse data of an image with and without wound 21

Figure 14: Subtraction of the inverse data with and without wound, normal and with an
amplification of 25 ... 22

Figure 15: (GRAPHIC) Image with and without wound .. 22

Figure 16: Linear regression, ordinary least squares method ... 25

Figure 17: Logarithmic regression, sigmoid curve ... 26

Figure 18: Pump application, measurement setup ... 27

Figure 19: Pump application, impedance magnitude measurements in function of the
time .. 27

Figure 20: power regression to model the concentration in function of the impedance . 28

Figure 21: logarithmic regression to model the concentration in function of the
impedance ... 29

Figure 22: Comparison between the power- and the logarithmic regression 29

Figure 23: Both the power- and the logarithmic regression on continuous impedance
data... 30

Figure 24: SVR-regression to model the concentration in function of the impedance 31

Figure 25: SVR-regression on continuous impedance data, determining concentration 31

Figure 26: exponential regression to model the time left in function of the impedance . 32

Figure 27: logarithmic regression to model the time left in function of the impedance .. 33

Figure 28: Comparison between the exponential- and the logarithmic regression 33

Figure 29: Both the exponential- and the logarithmic regression on continuous
impedance data ... 34

Figure 30: SVR-regression to model the time left in function of the impedance 35

Figure 31: SVR-regression on continuous impedance data, determining the time that is
left ... 35

Figure 32: Regression on yeast cells, setup .. 37

Figure 33: Unique resistance values of yeast cells, in function of time 37

Figure 34: All regressions on different yeast quantities ... 38

Figure 35: K means algorithm, example .. 39

Figure 36: K-means Image segmentation based on colour .. 40

file:///D:/School/Master%20EA-ICT/Masterproef/Taken/Kelher_MP1617_EA-ICT_Theoretisch-onderzoek.docx%23_Toc484473304

Figure 37: Comparing the results of the RGB- and the LAB-segmentation after the K-
means algorithm ... 41

Figure 38: Decision Tree algorithm, example ... 43

Figure 39: Support Vector Model algorithm, example ... 44

Figure 40: Support Vector Model algorithm, practical example. ... 44

Figure 41: SVM, influence of parameter C... 45

Figure 42: K Nearest Neighbours algorithm, example ... 45

Figure 43: Image classification for wound detection ... 46

Figure 44: The linear kernel ... 47

Figure 45: linear vs. RBF-kernel ... 48

Figure 46: Calculating the RBF-classifier .. 48

Figure 47: Comparison of all the kernels .. 49

Figure 48: Kernels, influence gamma parameter ... 50

Figure 49: kernels, influence of the degree parameter .. 50

Figure 50: Diagram of a human neuron ... 51

Figure 51: Diagram of a perceptron configuration.. 52

Figure 52: Diagram of a multi-layer network .. 53

Figure 53: Simplified multi-layer neural network with 1 hidden layer 54

Figure 54: Visualisation of the step activation function .. 58

Figure 55: Visualisation of the linear activation function... 58

Figure 56: Visualisation of the sigmoid activation function .. 59

Figure 57: Visualisation of the tanh activation function ... 59

Figure 58: Visualisation of the ReLU activation function ... 60

Figure 59: Pre-processing task chart .. 61

Figure 60: Implemented artificial multi-layer neural network .. 62

Figure 61: The decreasing of the loss value in function of the Epoche 62

Abstract

IMO-IMOMEC (standing for: Institute for Materials Research - Institute for Materials Research in

MicroElectronics) at Hasselt researches the possibility to implement electronics in the medical

sector. These electronics are accompanied by logic and machine learning. The goal of this thesis

is to do a feasibility study on the implementation of machine learning in medical applications,

with the necessary steps to achieve this.

This thesis studies the machine learning algorithms by using prediction- and classification

algorithms. The prediction projects include a study on the growth of yeast cells and the

transition between two different liquids in a pipeline, both are accomplished with the help of

impedance measuring techniques. The classification project implements tomography on wounds

and classifies these results afterwards based on their intensity.

The prediction projects are both realised with a double exponential-, logarithmic- and power
law regression. The matlab library EIDORS made tomography possible with help of image
processing, many electrode models have been tested to determine the most efficient set-up. The
classification exists out of a neural network with three hidden layers that classifies the
tomographic images of the wounds.

IMO-IMOMEC (staande voor: Institute for Materials Research - Institute for Materials Research

in MicroElectronics) te Hasselt doet onderzoek naar het implementeren van elektronica in de

medische sector. Deze elektronica wordt vergezeld door logica en machine learning. Het doel
van deze masterproef is om een haalbaarheidsstudies te doen naar de implementatie van

machine learning in medische toepassingen aan de hand van de nodige tussenstappen.

Deze masterproef bestudeert machine learning algoritmen door gebruik te maken van

voorspellings- en classificatie algoritmen. De voorspellingsprojecten bestaan uit het bestuderen

van de groei van gistcellen en de overgang van vloeistoffen in leidingen, beide zijn verwezenlijkt

door middel van impedantiemetingen. Het classificatie project past tomografie op wonden toe

en zal deze vervolgens classificeren op basis van hun intensiteit.

De voorspellingsprojecten zijn beiden verwezenlijkt met dubbel exponentiële-, logaritmische- en

machtsregressie. De tomografie wordt verwezenlijkt met EIDORS in Matlab en beeldverwerking,

verschillende electrode modellen zijn uitgetest om de meest efficiënte te bepalen. Tenslotte is er

de classificatie met een neuraal netwerk van drie hidden layers die de wonden classificeert.

1 Introduction

Machine learning, or any form of artificial intelligence has a great future, and it is
therefore no surprise that there are many possible ways to solve a certain problem. One
way might be better than the other. In this introduction, you’ll learn the basics about
machine learning, how to start the process from problem to solution and how you can
implement those ideas.

1.1 What is machine learning

Machine leaning gives computers the ability to learn without being exactly programmed.
It has evolved from pattern recognition and is a form of artificial intelligence.
It’s about creating or implementing algorithms that make predictions on data [1]. These
predictions will be different for each project. Which algorithms and further information
will be given in other chapters.

1.2 Machine learning task chart

The following image will give a summary of every machine learning project. It is a chart
that can be followed by beginners to make sure that nothing on the way will be
forgotten.

Figure 1: Machine learning flow chart, from problem to result [2]

In the chart, you can see that you first should define your problem. It’s very important
that you know the details of the problem and the data you’ll get to help you form an
optimal solution.

12

Secondly you need to have a look at the data. How does it spread out, is it easily
classifiable by the eye? Many questions pop up, and the answers to these questions will
help you determine which machine learning algorithms are suitable as solution and
what kind of data they’ll need.
The next step is pre-processing your data. This means that you’ll have to sample and
clean up redundant data, to enhance the speed of your algorithm. A very important
aspect in this step is that you form the data so that it becomes suitable for your problem
and algorithm. This aspect is often referred to as feature extraction or feature selection.
Feature extraction is a method where you preform calculations with the given data to
form one or more suitable features for your algorithm. Feature selection on the other
hand is about selecting parts of the data to consider it as a separate feature. Which
extraction method you’ll have to implement depends strongly on the given data and on
the project, itself [3].
The fifth step will be the testing of algorithms on your data. When you find a few suitable
algorithms, you’ll want to test them for their accuracy. The one that turns out to give the
best results, will be your best choice.
After this has been done, further improving is advised. This improvement can be
achieved by implementing more algorithms in your projects, but there are also other
means to achieve a better accuracy. This improving of accuracy is called bagging in
machine learning terms [4]. Bagging itself is an ensemble technique that takes the
prediction of multiple algorithms and forms this into a more accurate prediction.
Finally, there will be a presentation of the acquired results. Why did you modify the
data, why did you pick the algorithms, what is the accuracy and can this be further
improved, these are a few of the questions that should be answered to ensure your
client that you came up with an optimal solution.

1.3 Implementing the ideas

To implement the pre-processing and algorithms, one must code. The most popular
methods are Matlab, which has a classification learner since version 2015a [5], python
and R. All these options are based on scripting where python and R are the open source
solutions and therefore free of charge. It’s possible to combine both python and R with
each other is an environment called Microsoft Azure where the basic license is also free
of charge [6].

1.4 In this project

The goal of this project is, as explained in the abstract, to do a feasibility study on
machine learning applied in medical applications. There are three main projects here.
The first one is the regression on the impedance of liquids in pipelines. The second is a
regression paired with a classification on yeast data. Finally, there is a classification of
wounds based on their tomography data. The least project is divided into many
subchapters, one that researches tomography, one that explains wound segmentation
and finally there is a classification made with a neural network.

13

2 Tomography

Although there are many forms of tomography, this thesis will only focus on electrical
impedance tomography and its implementation in Matlab.

2.1 What is electrical impedance tomography

Electrical impedance tomography (EIT) is a technique that uses electrical current with a
frequency to examine an object. It’s achieved by placing an object in an electrode model,
some of these electrodes will inject current while the others measure the resulting
electrical potential field. It’s called impedance tomography because this method is often
used to measure the dielectric constant for different frequencies, to inspect the
differences between the data. When you invert the data, you’ll receive the conductivity
or resistivity of the object inside the electrode model. This method is not yet popular in
the medical field but can be very promising [7]. A useful example would include an
electrode circle placed around an arm, the technique could identify the bones and tissue
and could be used to detect certain inconvenient defects of the natural human body.
Another example is placing an electrode model around a wound to follow up its healing
process, the electrode model will then be implemented in a bandage or other medical
equipment that is used to protect the wound.

The following image displays such an electrode model. There’s an object placed inside
the model and the data is measured and collected. On the right side, we see the inverted
data, or the conductivity/resistivity map. The red spot indicates the object.

Figure 2 practical example of an EIT electrode model and the inverse results [8]

14

2.2 Tomography in Matlab

This thesis experiments with EIT in EIDORS, short for Electrical Impedance Tomography
and Diffuse Optical Tomography Reconstruction Software. It’s a free library filled with
software algorithms for forward and inverse modelling for EIT and diffusion based
optical tomography [9].
The settings and algorithms experimented with mainly include the injection pattern, the
measurement pattern and the electrode placement, to see which influence they have on
the data. These experiments are purely theoretic and simulated and differ from reality.

EIDORS works with two important structures, called the forward and inverse model.
The inverse model contains the data calculated by the forward model, or obtained by
measurements, in the field ‘elem_data’. It also contains the forward model to see the
structure of the electrode model and the patterns used as injection and measurement.
With both fields, the inverse data or conductivity/resistivity, can be calculated and
displayed.
The forward model contains the structure of the measurement setup. The electrode
model is defined by the node field under the electrode parameter, while the stimulation
contains the stimulation- and measurement patterns. These three fields, or parameters
have a big influence on the data, this will be shown in the following subchapters.

Figure 3 data structures in EIDORS: forward and inverse model

15

2.2.1 Influence of the injection pattern

The stimulation or injection pattern determines in which order the electrodes will send
their current. The size of this field is always N x 1 in Matlab, and N contains the number
of electrodes used in the model. In Figure 3, you can see that the stimulation parameter
of the forward model exists out of 8 fields. The number of fields equals the number of
electrodes used in this model. This means that we used 8 different injection patters, with
each of them having a corresponding measurement pattern.

In the practical injection pattern, each electrode will be stimulated at a time. The image
below shows such a stimulation pattern for 8 electrodes.

Figure 4: Injection pattern used in the practical setup

The next injection patterns are purely theoretic and the data will be simulated. If your
data isn’t simulated, then you should respect the patterns made in the practical exercise.
All the examples in this subchapter and the others, are based on the same wound. This is
done to make a more relevant comparison. Following image will visualise this wound.

Figure 5: (GRAPHIC) Wound used for making comparisons [10]

16

The image below represents two injection patterns. In the first injection pattern, the
current flows between the first and last electrode, maximizing the area covered by the
current, then we move on to the second electrode and the one before the last one. This
will continue until 40 injections have been completed. The second one has a more
structured pattern, it lets current flow between two neighbouring electrodes. First
between electrode one and two, afterwards between two and three, and so on. This is
also the default injection pattern in EIDORS. The best results are achieved by the first
injection pattern, this is most likely due to the bigger area covered by the current, since
more electrodes can measure a voltage now. The measurement patterns are the default
patterns in EIDORS, every electrode gets measured except the electrodes who causes the
current to flow.

Figure 6: Comparison of injection patterns based on the inverse tomography results

17

2.2.2 Influence of the measurement pattern

The measurement pattern determines in which order the electrodes will be read. There
is a measurement matrix for each injection, this matrix has a M x N size, and N contains
the number of electrodes, while M is the amount of measurements for each injection.
In the practical measurement pattern, each electrode Is measured at a time, except the
electrodes that received the injection current.

Figure 7: injection and the corresponding stimulation pattern

The next measurements patterns are purely theoretic on simulated data. If your data
isn’t simulated, then you should respect the patterns made in the practical exercise.

On the next image, you can see three measurement patterns, the first one is the same as
in Figure 7, it measures every electrode but not between the electrodes that inject the
current flow. The second one only reads in the neighbouring electrodes, coloured in blue
[11]. The last one is the default measurement pattern of EIDORS and is almost the same
pattern as the first one. The difference is that it will not measure between an injection
electrode and an inactive electrode. This means that the first and last row from Figure
6Figure 7 will be removed. It’s very clear that the default measurement pattern in
EIDORS achieves the best results.

Figure 8: Comparison of measurement patterns based on the inverse tomography results

18

Figure 9: Electrode nodes and their corresponding position

2.2.3 Influence of the electrode model

The electrode model determines in which position the electrodes are placed. Very
common, and pre-coded in EIDORS, are circular and rectangular models, you can find
them in various papers by just searching for “EIT”. Figure 2 gives an example of such a
circular model. When you want to create other 2D models, for example a model that
could fit around the surface of a wound, you’ll have to code and change the values of the
node field from the electrode parameter mentioned in the explanation of Figure 3. In
practical applications, a circular model has been used. In the theoretic approach, a
rectangular one has been used, and further modified.

It has already been explained how you can modify the electrode position of a rectangular
model, but what isn’t explained yet, is how you do it to match your desires. The
electrode position depends on a single value and not on a X- and Y value as one might
think. The image below will visualize this.
On the right, you can see something that would insinuate a X- and Y- value, but on the
left, you see a single value for each node. Electrode 6 and 5 are positioned at position 11
and 31, this is the horizontal direction. If you consider the vertical line standing at -1 to
be position 1, then you can count and see that the electrode on location -0.5 is
positioned at location 11, count further and you’ll see that electrode 5 is located at
position 31. Electrode 4 is positioned on the second line, and has location number 42.
Instead of indicating the position in two dimensions, the locations continue to increase
and when it has reached the end of the grid, it moves a line up. To following formula
helps to determine an electrode model out of a 2D plot:

𝑛𝑜𝑑𝑒(𝑖, 1) = 𝑦(𝑖) ∗ 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒 + (𝑥(𝑖) + 1)
For example: Electrode 4 would be at location (0,1) -> 1 x 41 + (0 + 1) = 42.

Electrode 6 Electrode 5

Electrode 4

19

Now that everything about electrode positioning has been explained, let us move on to a
more realistic, yet purely theoretic, example: an electrode model around the surface of a
wound. First the wound gets extracted out of an image (more about this in 5.2 Wound
segmentation based on colour with the K-means algorithm, and the following chapters),
afterwards the program will calculate the boundaries of this wound and place electrodes
around it. Finally, the positions of the electrodes will be calculated, by using the formula
as described before. The results are the following.

Figure 10: (GRAPHIC) Image of a wound and its forward model with electrodes around the surface of the wound

Simulating such a model isn’t hard, but realising this in real would be inefficient. Every
wound has a different size, which means that the electrode model will change for every
wound, it would be better to create a more general model.

20

The next image will show the influence of an electrode model on the conductivity or
resistivity plot. First a default rectangular model will be simulated. Next is a model that
fits around the surface of a wound and finally you can see a wound located in an
electrode grid. The simulated conductivity is based on the intensity, or grayscale values,
of the wound. The reconstructed images, or conductivity/resistivity data, are clearly
different from each other. At a first glance, one should notice that the first two
reconstructed images present the best results. The second image beats the first one
because of the separation between the two yellow wounds, this creates a perfect
representation of the wound and could be used, theoretically, to monitor the wound.

Figure 11: Comparison of electrode models based on the inverse tomography results

21

2.3 Simulated wound detection with EIDORS

The goal in this chapter is to use one of the previous obtained models on an image with
and without a wound, to compare the inverted data with each other. The following
injection pattern have been chosen in combination with the default EIDORS
measurement pattern.

Figure 12: Injection pattern for the forward model

Next image will show the homogenous and heterogenous image of the forward model, as
well as the inverted data. The image of the actual wound has been displayed in Figure 5.

Figure 13: forward- and inverse data of an image with and without wound

22

The inverse data doesn’t seem to make any sense at all, since the wound is not visible.
However, when we subtract both images from each other, the results become more
promising.

Figure 14: Subtraction of the inverse data with and without wound, normal and with an amplification of 25

The left image is the normal subtraction, here you can already see the wound in blue,
when the values of the image get amplified with 25, the blue of the wound becomes
more intense and some noise seems to appear. This noise is most likely caused by bad
editing skills. The image without a wound, is an attempt to remove the wound from the
original image, this removing was done in an amateurish way by myself and therefore
causes noise. The following image is graphic, but will explain the problem visually.

Figure 15: (GRAPHIC) Image with and without wound

23

3 Pre-processing of the data

Pre-processing data will always be an import step in machine learning. The data you
receive can become out of range, or missing due to measuring faults which makes it
confusing and disorganised [12], this is why you need to pre-process the data, for
everything to make sense. This pre-processing can be done in many ways (3.1, 3.2, 3.3),
and heavily depend on the project you’re working on and what your final goal is. This
chapter will briefly explain what pre-processing is, to make you realise how important it
is.

3.1 Data selection

In this step, you need to wonder what data is necessary to realise your goal. To put this
into an example, if you observe human beings and want to create artificial intelligence to
automatically detect signs of cancer, or other diseases, it is safe to assume that the
colour of that person’s eyes has nothing to do with the disease. Therefore, you can
eliminate, or simply not include this data. Relevant data could for example be the size of
rashes on the skin, and the colour of those rashes. Sometimes this step can be skipped,
for example when you’re already equipped with the right data from the start. Once
you’ve gathered all the relevant databases, you’re ready to move to step two [13].

3.2 Data pre-processing

In this step, you take a closer look at the data and manipulate it. A first step is to
reformat the data, for example from a .txt file to a .np file, to later work with the data in
python. Afterwards you need to correct the available data, does it contain missing
values, or perhaps impossible data, then this must be corrected. This step is called data
cleaning. Finally, you need to implement feature extraction and – selection. Feature
extraction means that you are still missing relevant data, and that you’ll need to
calculate this data with the help of other features. While feature selection means that
some features in the database are irrelevant and need to be removed. Once the data has
been processed, you can move on to the last step.

24

3.3 Data Transformation

The relevant databases have already been selected, and the right features are extracted
but sometimes this isn’t enough. Some variables can be unnecessary complex and need
to be decomposed. To give an example, when you want to predict on which day of the
month it rains the most, only the days are relevant, not the whole date. Another problem
with data is that it can be incompatible with the machine learning algorithm you want to
use. Machine learning algorithms require numeric data [14], while your data might be
text. A way to solve this is to convert the data to a number, for example: “cat, dog, lion”
becomes “1,2,3”. This might be confusing for some because it insinuates a ranking, in
this case you can use “One-hot encode”, this maps a unique code generated by 1’s and 0’s
to your labels so it becomes “001,010,100” [15]. The very last step in this chapter will be
vectorising every feature. This needs to be done so the algorithms know which data
belongs to which label.

Once the data has been optimized, it’s ready to be used. This data will go through
algorithms which on their turn classify the data, group them or calculate other
parameters. The most popular algorithms that are available and relevant to this project,
and a more advanced topic, will be discussed in this chapter.

25

4 Regression algorithms

Regression algorithms are algorithms that predict a value of a parameter based on
another measured parameter. There are many forms of regression, but this chapter will
not discuss them all since they are all based on the same principle.

This regression model must be trained if you want to further use it in machine learning.
A model should be calculated out of the given data points. This model will try to
approach the given data points as close as possible. The more given data points, the
better the accuracy of this model will be. Once the model has been trained, it’ll be used
to predict the required parameter by applying the model on the data. The most used
regression algorithms are linear and logarithmic regression.

4.1 Linear regression

The linear regression method is based on the equation of a straight line: 𝑦 = 𝑚 ∗ 𝑥 + 𝑏.
This formula calculates y while x is the given variable parameter and the others are
constants. Although there are more forms of linear regression, this thesis will only
visualise the ordinary least squares regression. This method measures the distance
between the regression line and each data point, squares it and tries to minimize it,
following image is an example of a solution obtained by this method [16].

Figure 16: Linear regression, ordinary least squares method [17]

26

4.2 Logarithmic regression

Logistic regression is a form of binary classification, it calculates the probability that a
certain data point belongs to either 1 or 0. When it reaches over a certain threshold, it’ll
be a 1 [18]. This kind of regression is done with a sigmoid curve, which has the following
formula and curve. The X-axis is the input, while the Y-axis is the output.

𝑦 =
1

1 + 𝑒−𝑥

Figure 17: Logarithmic regression, sigmoid curve

27

4.3 Regression on a pump application

This subchapter will explain the setup of the application, how the measurement data
was gathered and how the regression is implemented, with a small comparison between
regression algorithms.

4.3.1 Overview of the application

The task was to do impedance measurements on the change of liquids in pipelines. First
the pipelines were filled with orange juice, and afterwards water ran through. The
impedance was monitored the whole time, and later visualised. The next image
visualises the measurement setup. The impedance measurement is a two-point
measurement, as visualised on the image, and is done with an impedance meter from the
IMO. The pump is a Williamson pump from the 100 series [19].

Figure 18: Pump application, measurement setup

The measurements were afterwards loaded into excel to visualise and control the data,
but also to get a better idea how to implement regression. The following graph will show
the impedance magnitude in function of the time that has past, or also considered as the
number of measurements.

Figure 19: Pump application, impedance magnitude measurements in function of the time

0

50000

100000

150000

200000

250000

300000

1
1

8
0

3
5

9
5

3
8

7
1

7
8

9
6

1
0

7
5

1
2

5
4

1
4

3
3

1
6

1
2

1
7

9
1

1
9

7
0

2
1

4
9

2
3

2
8

2
5

0
7

2
6

8
6

2
8

6
5

3
0

4
4

3
2

2
3

3
4

0
2

3
5

8
1

3
7

6
0

3
9

3
9

4
1

1
8

4
2

9
7

4
4

7
6

4
6

5
5

4
8

3
4

5
0

1
3

5
1

9
2

5
3

7
1

5
5

5
0

5
7

2
9

5
9

0
8

6
0

8
7

6
2

6
6

Im
p

ed
an

ce

Time

Impedance measurements, magnitude

28

4.3.2 Regression models of the concentration

The first regression that has been implemented, is the regression where the
concentration of the liquid is modelled in function of its impedance. 100% concentration
means that there’s only orange juice flowing, 0% is pure water. The next image shows a
power regression implemented by Matlab. This form of regression follows the following
formula.

𝑦 = 𝑎 ∗ 𝑥𝑏 + 𝑐

Figure 20: power regression to model the concentration in function of the impedance

The left graph is the trainings data, the model in its most optimal state. The right
represents a scatter plot of some test data, together with the predictions of the model.
It’s clear that the concentration, both in training and test phase does not reach 0% when
only water flows through the pipeline. The minimum concentration of the test data will
be around 4%, while the maximum concentration is around 106%. The R-square value is
0.9895, the R-square value is a coefficient that is based on the variance between the data
and the regression graph. The maximum value is 1, which indicated a perfect fit, and 0 is
the lowest [20]. The results aren’t bad, although it might be considered problematic that
the regression doesn’t go down till 0% concentration, like it should.

29

The next implemented regression is also realised in Matlab. This regression makes use
of a custom logarithmic equation of the form:

𝑦 = 𝑎 ∗ log10(𝑏 ∗ 𝑥) + 𝑐
 The b coefficient is always positive, while the a must be negative to obtain the desired
fit from a logarithmic equation. The next image will show this regression.

Figure 21: logarithmic regression to model the concentration in function of the impedance

The left image is the training data, which means that the model is in its optimal state.
The right represents the same a scatter plot as before, together with the predictions of
the model. The fit appears to be the same as made before, but this can’t be entirely true.
The minimum concentration on the test data is around 3%, while the maximum is
around 105%. Although this might indicate a better fit, the values in between also need
to match. The R-square value is 0.9892, which is slightly worse than the power
regression. Next graph shows both regressions in comparison to each other.

Figure 22: Comparison between the power- and the logarithmic regression

30

The previous regression results were based on one complete measurement between
100%- and 0% concentration. The next image will show the results of both regressions
on continuous data. The liquids are constantly changed. You can see that the curve
changes moderately when the liquid changes from orange juice to water, but the
opposite results in a steep graph. This is because orange juice is heavier than water,
which means that it doesn’t mix with water, but instead pushes it through the pipelines.
The change from orange juice to water is more moderately because the water has
trouble pushing the orange juice through the pipeline, causing it to mix. The impedance
of orange juice is around the 32kΩ, while the impedance of water is around 250kΩ. The
graph also shows that the previous statements about the regressions are true, the
concentration doesn’t reach 0% in both cases, and goes higher than 100%.

Figure 23: Both the power- and the logarithmic regression on continuous impedance data

The regression implementations in Matlab are good, based on the graphs and the R-
square values. There is however still room left for improvement. The next regression
model will try to model the same data, but in this case, no formula will be used. Instead,
a support vector regression will be implemented, with a RBF-kernel and the parameters
will be decided by doing a grid search to compare different gamma and C values with
each other. To learn more about the kernels and their parameters, please consult
yourself with chapter 7 Machine learning kernels.

31

The following image shows the SVR-regression. A first glance indicates that the fit does
not fully reach 100%, however, it does seem to reach 0% concentration. The R-square
value is 0.9877, which indicated that the fit is comparable to the power model.

Figure 24: SVR-regression to model the concentration in function of the impedance

The next graph will show the achieved regression on the same continues data used
before. The orange line indicates 100% concentration, while the green line stands for
0% concentration. It’s clearly visible that the regression fit reaches 100%, and only
surpasses this limit once. The 0% concentration is never surpassed and reached in every
cycle. This indicates that this regression model is the most optimal for this application.

Figure 25: SVR-regression on continuous impedance data, determining concentration

32

4.3.3 Regression models of the required time

The next regression that has been implemented, is the regression where we model the
time till only water remains in function of its impedance. The next image shows an
exponential regression implemented by Matlab. This form of regression follows the
following formula.

𝑦 = 𝑎 ∗ 𝑒𝑏∗𝑥 + 𝑐 ∗ 𝑒𝑑∗𝑥

Figure 26: exponential regression to model the time left in function of the impedance

The left graph is the trainings data, the model in its most optimal state. The right
represents a scatter plot of some test data, together with the predictions of the model.
The fit towards the data is bad, although it reaches 0 seconds on the training graph, it
doesn’t on the test graph. The highest indications of time aren’t reached, not in the
training- nor test graph. The R-square value is 0.9597, these results aren’t horrifically
bad, although they need to be improved a lot to have an accurate representation.

33

The next implemented regression makes use of a custom logarithmic equation, as seen
in the previous chapter, and has the following form:

𝑦 = 𝑎 ∗ log10(𝑏 ∗ 𝑥) + 𝑐
 The b coefficient is always positive, while the a must be negative to obtain the desired
fit from a logarithmic equation. The next image will show this regression.

Figure 27: logarithmic regression to model the time left in function of the impedance

The left image is the training data, which means that the model is in its optimal state.
The right represents the same a scatter plot as before, together with the predictions of
the model. The fit looks similar, since it’s also a bad representation of the data. The R-
square value is 0.9577, which is slightly worse than the exponential regression. Next
graph shows both regressions in comparison to each other.

Figure 28: Comparison between the exponential- and the logarithmic regression

34

The previous regression results were based on one complete measurement. The next
image will show the results of both regressions on continuous data. The liquids are, just
like before, constantly changed. The impedance of orange juice is around the 32kΩ,
while the impedance of water is around 250kΩ. The exponential regression graph also
show us the gap in time between the minimum predicted value and 0 seconds. The
logarithmic regression however does reach 0, which indicates it as a more suitable
model for our application.

Figure 29: Both the exponential- and the logarithmic regression on continuous impedance data

The regression implementations in Matlab are not that good, based on the graphs and
the R-square values. The next regression model will try to model the same data, but in
this case, no formula will be used. Instead, a support vector regression will be
implemented, with a RBF-kernel and the parameters will be decided by doing a grid
search to compare different gamma and C values with each other. To learn more about
the kernels and their parameters, please consult yourself with chapter 7 Machine
learning kernels.

35

The following image shows the SVR-regression. The R-square value is 0.9970, which
indicated that the fit is nearly perfect, and the best of all models.

Figure 30: SVR-regression to model the time left in function of the impedance

The next graph will show the achieved regression on the same continues data used
before. This indicates that this regression model isn’t as optimal as first thought. The
yellow line indicates the minimum of the data, which is 0.66, this should be 0.

Figure 31: SVR-regression on continuous impedance data, determining the time that is left

36

4.3.4 Conclusion

There are many ways to implement regression, and not all of them are mentioned in the
previous chapters. It’s proven that regression can be achieved by models that are
normally used for classification purposes, and these results can surpass those of normal
equation models. The regression models could be deployed in a real-time application,
since the results match reality. To determine the concentration, it’s most optimal to use
the SVR-regression, while the time left can best be represented with the logarithmic
approach.

These experiments have shown that sometimes the regression fits perfectly around the
training data, giving a near perfect R-square score, but still fails when tested on other
test data.

37

4.4 Regression on yeast cells

The data used in this chapter, is the resistance data of the growth of yeast cells in a
glucose concentration of 2%, for 10g, 15g and 75g of yeast. Three regression formulas
were picked and fitted on the data, the ‘goodness of fit’-data from these regressions,
determined the quantity of yeast we’re dealing with. This calculation, was a
classification realised with a Support Vector Machine (see chapter 6.2) equipped with a
RBF kernel (see chapter 7.2). Following image will visualise the setup.

Figure 32: Regression on yeast cells, setup

4.4.1 Preprocessing the data

The original data were 517004x2 tables, this table described the timing and the
resistance. Using all these data points as features to classify, is obscure and inefficient.
The first step was to check the tables for unique values, so that repetitive values get
removed. The results are the following:

Figure 33: Unique resistance values of yeast cells, in function of time

38

4.4.2 Implementing regression

Classifying the previously visualised data could be as easy as determining how well a
linear regression fits to the data. Instead we fitted an optimal regression for each
separate curve. The best fit for the resistance plot of 75g yeast was a simple linear
regression. While the curve for the 15g yeast was a polynomial regression of the 3rd
grade. At last, the curve for 10g yeast was best fitted with a double exponential
regression. The formulas are the following.
3rd degree polynomial regression: 𝑦 = 𝑎 ∗ 𝑥3 + 𝑏 ∗ 𝑥2 + 𝑐 ∗ 𝑥 + 𝑑
Double exponential regression: 𝑦 = 𝑎 ∗ 𝑒𝑏𝑥 + 𝑐 ∗ 𝑒𝑑𝑥

The results for each of these regressions are as follows.

Figure 34: All regressions on different yeast quantities

4.4.3 Implementing the SVM-classifier

Each data has an optimal curve, as shown above. So, if the linear regression of the 75g
yeast, would try to fit around the data of the 10g yeast, the results of these fit would be
less accurate. The features are made of this principle. The data from the 10g yeast, gets
fed to the linear-, polynomial- and double exponential regression, the goodness of these
fits are saved in an array and used as features. The optimal classifier to separate the
yeast quantities from each other is determined by the classification learner of Matlab,
and was a support vector machine with RBF kernel, it reached 100% on the training
data, but has not been tested due to a lack of data.

39

5 Grouping algorithms

5.1 K means algorithm

This algorithm is used to add structure to your data and to group them in K number of
groups. The following image will show the algorithm in its full glory for K = 2.

Figure 35: K means algorithm, example [21]

We start off with an ungrouped amount of data. The algorithm will place two random
centroids (K = 2) and group every data point by its distance relative to the centroid. If a
data point is closer to the red centroid, the data will be labelled as red.
In the next step the algorithm will determine the centre of gravity of the groups and
place the centroid in that location.

The data gets regrouped again per the smallest distance relative to the centroids. This
procedure will be repeated until the centroids are in the right position and won’t move
when recalculated. Now we have reached K optimal groups, and like said before K = 2 in
this example [22].

40

5.2 Wound segmentation based on colour with the K-means algorithm

Image segmentation based on colour can be done is different ways. The first method that
has been tested was thresholding. Matlab has a nice app for that called: Colour
Thresholder. The problem is that the threshold changes with each image, and sometimes
even the optimal colour space. It’s bad coding to apply a change for every image, there
must be a dynamic method that will work automatically on all images, and that method
is K-means segmentation. This example explains how to realise wound segmentation on
a normal image. The following chart will visualize the principle of this K-means based
application.

Figure 36: K-means Image segmentation based on colour

The first step is to determine the right colour space, to have an optimal segmentation.
Instead of listing all the colour spaces and comparing them, the one that has been used
and the mostly used colour space will be compared, before and after the K-means
algorithm. Once the colour spaces have been picked, you can use the k-means algorithm
to segment the image. The final step is to display the results.

5.2.1 Deciding the optimal colour space

The two colour spaces that will be compared are the RBG- and LAB colour space. The
RBG colour space needs little explanation, it exists out of three layers: red, blue and
green. These layers added together can represent 16777216 different colours, since
every plane can go from 0 to 255, which are 256 different values and 256³ is 16777216.
The LAB colour space is different; it exists out of a luminosity layer 'L' and two
chromaticity layers ‘A’ and ‘B’. The A-layer indicates where colour falls along the red-
green axis, while the B-layer indicates where the colour falls along the blue-yellow axis
[23]. It’s said that the LAB-space is the best for finding differences in colours [24].

41

5.2.2 Applying the K-means algorithm

To be able to apply the algorithm for colour segmentation, one must shape the right
matrix. The rows are the values for each variable and the columns are the different
variables. When we work with a RGB-space, the input matrix should be of the size
(number of Columns x number of rows, 3). The columns are the RGB-planes and the
rows are the values corresponding to those planes. The matrix for the LAB-space is
different since only the A- and B- plane determine the colour. The input matrix should
therefore be of size (number of Columns x number of rows, 2). The columns are the AB-
planes and the rows are the values corresponding to those planes. To calculate the
location of the centroids, the squared Euclidean distance is used, this is the default mode
where the position of the centroids gets determined by the means of the points in that
cluster [25]. The last thing to decide is the amount of clusters the K-means algorithm
should return, 3 clusters gave the best results in this example.

5.2.3 Comparing the results

Below image shows the results of the three clusters. It’s very clear that the LAB-
segmentation returns the best results since there’s almost no skin visible. The noise that
is still visible can easily be filtered away.

Figure 37: Comparing the results of the RGB- and the LAB-segmentation after the K-means algorithm

The code used in this application is realised with the help of a tutorial [26].

42

43

6 Classification algorithms

Classification algorithms are used to make conclusions about data. With this algorithm,
we could, for example, determine if someone is running, walking or sleeping based on
the heart rate of that person. The whole idea is to classify certain data points based on
their features.

In the next subchapters, the decision tree, support vector machine and k nearest
neighbours algorithm will be explained.

6.1 Decision Tree algorithm

Following image will be used to explain this algorithm.

Figure 38: Decision Tree algorithm, example [27]

This image is a representation of data points that are classified by a decision tree. The
tree will classify any data point where x1 (or the horizontal value) is smaller than w10 as
a blue dot. When this value is bigger than w10 we will compare x2 with w20 to further
classify the remaining data points.

To train a decision tree we will need a training set of data. This data will be fed into an
algorithm that will return the decision tree. This classification is based on features. In
the image above we can notify two features, x1 and x2. The algorithm will decide the best
possible split and executes this as first. x2 > w20 and x1 > w10 are nodes. Because the
amount of data and features is limited, only two nodes will be sufficient. However, this is
not the case for most machine learning problems. Normally there will be more features
and data points and therefore also more nodes [28].

44

6.2 Support Vector Model algorithm (SVM)

To explain this algorithm, following image will be used:

Figure 39: Support Vector Model algorithm, example [29]

This algorithm will classify a data point based on its position relative to the optimal
hyperplane, given in the image. This optimal hyperplane is not necessary a line, it very
rare is in fact.

The optimal hyperplane is determined by studying data points. The best boundary will
be decided for classification and will be considered as a reference to further classify new
data points [29].
Following image will show a real example of a SVM model and will show that linearity is
not usual.

Figure 40: Support Vector Model algorithm, practical example [30].

When programming a SVM, you’ll notice that there is a very important parameter C, this
parameter determines the accuracy of the algorithms but also the speed. When C is low,
it’ll smooth-out the decision boundary, or classification, and will therefore allow for a
certain inaccuracy. Increasing C will do the opposite; the decision boundary will not be
smooth and every training data point will be correctly classified. Although the latter
seems like a logic choice, once should be cautious of overfitting. The image on the next
page will show this [31].

45

Figure 41: SVM, influence of parameter C

6.3 K Nearest Neighbours algorithm (k-NN)

This algorithm is the easiest one to implement and fastest to execute. However, there’s
always a price to be paid and in this case it’s the accuracy.

To explain this algorithm, following image will be used.

Figure 42: K Nearest Neighbours algorithm, example [32]

In this example, the star is a new data point. The algorithm will decide that the star
belongs to the purple dots, or class B, if we are dealing with a 3 (=k) nearest neighbour
algorithm. This is because the three nearest neighbours are 2x class B and 1x class A.
When k would be 6, the algorithm would decide that the data point belongs to class A or
the yellow dots. This is because the six nearest neighbours are 4x class A and 2x class B.
To train this algorithm, an already classified data structure has to be given [32].

46

6.4 Applying classification on images to recognize wounds

This example is a continuation of the example explained in 5.2 Wound segmentation
based on colour with the K-means algorithm. The K-means algorithm returned 3 images,
to further determine which of these images is a wound, the images should be classified
with the labels ‘wound’ and ‘no_wound’ and return the image of the wound. The next
chart is a completion of the chart in Figure 36 and further explains what this example
will try to achieve.

Figure 43: Image classification for wound detection

The algorithm of choice to do the classification, is a decision tree. No confusion matrix
has been made due to the lack of wound images, the tree has been trained and
immediately implemented in the colour segmentation application. The results were
outstanding. No other algorithms have been tested, however, there has been algorithms
tested before on other data, and the decision tree happened to be the most accurate. The
only pre-processing that has been implemented is calculating the grayscale of the
images and rescaling them to a 128x128-matrix, afterwards the image has been
flattened to a 1x16384-matrix, to be used as features.

47

7 Machine learning kernels

Kernels are used in several machine learning algorithms, but perhaps the most famous
usage, is within support vector machines. The most basic explanation of a kernel is that
it makes calculations on your data so it can be processed, or rightly classified by the
chosen algorithm. The kernel you should choose depends on how the data is spread.

7.1 Linear kernel

A linear kernel separates the data in a linear way, thus with a straight line.

Figure 44: The linear kernel [33]

The kernel function is as follows:
𝑘(𝑥, 𝑦) = 𝑥𝑇 ∗ 𝑦 [34]
The T in the formula indicates a transposition.
In many practical cases, the data won’t be linearly separable, and that’s where this
kernel will fail but the next two prevail.

48

7.2 Radial basis function kernel (RBF)

Many algorithms select this kernel as their default kernel, because it’s a very common
one and will in many cases achieve the best accuracy. Following images will help you
realise what this kernel does when compared to the linear kernel.

Figure 45: linear vs. RBF-kernel

The data in both images are spread in circles, therefore not linear. When you approach
this data with a linear kernel, you’ll get the result on the left. This result is not what we
want because it has a very low accuracy. The RBF-kernel has as goal to classify the data,
in this case as circles. This is achieved with help of the following formula.

𝑘(𝑥, 𝑦) = exp(−𝛾‖𝑥 − 𝑦‖ ²) [34]

This function maps all the non-linear data to a n-dimension where it becomes linearly
separable and then it maps this classifier back to the original space. Following image will
illustrate this behaviour.

Figure 46: Calculating the RBF-classifier [33]

Here you can see that the original data is mapped into a 3D space, where it can place a
linear hyperplane. This calculation is then reversed back to the original space, and a
classifier has been made.

49

7.3 Polynomial kernel

The last kernel that will be discussed is the polynomial kernel, this is another variant of
a not linearly separable classification. It’s not made to classify circular positioned values
but values that can be separated by a polynomial function. This kernel is not as common
as the ones mentioned above. The following image will show all three kernels at once.

Figure 47: Comparison of all the kernels [35]

Here you can clearly see that the kernel is trying to separate the data with a polynomial
function rather than a linear or RBF. This is achieved with the following function. It is
also important to notice that the same approach as in RBF-kernels is used to get the
right classifier. The mapping will not be shown again.

𝑘(𝑥, 𝑦) = (𝛾𝑥𝑇𝑦 + 𝑐0)

𝑑 [34]

On the image, you can also see that in this case all the kernels could deliver a decent
accuracy. The only way to determine the best one, is through testing them out on your
data.

50

7.4 Important parameters

Every kernel has its own formulas, and therefore also its own parameters that the user
must choose. This chapter will explain all the parameters used in this chapter.

𝛾 or gamma, is both used in the RBF and polynomial kernel. This parameter decides how
much influence a single data point can have, or how far data points may variate from
each other for the algorithm to still consider them close related. Following image will
explain the influence of this parameter [36].

Figure 48: Kernels, influence gamma parameter

d or degree, is in this paper only mentioned in the polynomial kernel. It’s a degree of
flexibility, the higher d, the more flexible the decision boundary can become. Following
image will illustrate this [37].

Figure 49: kernels, influence of the degree parameter

7.5 Conclusion

Only three kernels have been discussed, although there are many more. The choice of
kernels is very often a fight between the linear kernel and the RBF-kernel where you
need to compromise between a simple, fast, but very often a less accurate kernel or
between a complex kernel that can take lots of time to train and predict, since it has to
map data to other dimensions, and these dimensions can be, in theory, infinite. Another
option is to calculate your own kernel, but this will not be further explained in this
chapter, since there is no theoretical approach to this, it solely depends on your data.

51

8 Artificial neural networks

Our brain is truly remarkable, the fact that we can remember many events and
memories for extended periods of time, is mindboggling. It would make life easier if we
could implement this wonder of nature in a machine, so it can do complex logic things,
that our mind can already do. This is exactly what artificial neural networks try to
accomplish. What they are, how they work and how to implement them, will be
described in this chapter.

8.1 Neural networks and the human body

Neurons are the unit a brain uses to communicate and process information. A neuron
exists out of a cell body and many branches. The axon is one of these branches, made for
transmission to other neurons while the synapse receives the information of an axon,
and directs it to the neuron. The other branches are called dendrites. Following diagram
represents such a neuron.

Figure 50: Diagram of a human neuron

A neuron has a cell membrane, this membrane is responsible for a voltage difference in-
and outside the cell, this voltage difference is also called the membrane potential. When
the neuron receives a certain input that is high enough, it’ll provide an action potential,
or neural spike to the axon, which will carry on the signal and provide it to a synapse
that is connected to a neuron. These spikes are very important, since the brain uses
them to communicate between neurons [38].

52

8.2 Single layer neural networks

The next diagram will show the configuration of a perceptron. A perceptron is a neuron
connected to n-different neurons. This connection is not direct, a weighted summation
will be done of each neuron value, when this summation is high enough, it’ll fire an
output, this output depends on the activation function. The threshold upon which the
neuron fires is adjustable by changing the bias, also called threshold processor [39].

Figure 51: Diagram of a perceptron configuration [39]

8.2.1 Training a single layer network

Training neural networks can be done by optimising the values of the weights and
biases, so that the output will fire correctly. When the output is correct, no changes to
the bias and weight will be applied. Otherwise the weight and bias will be adjusted per
the following formulas:

𝑏 = 𝑏 + (𝑌𝑐𝑜𝑟 − 𝑌𝑝𝑟𝑒𝑑)
𝑊(𝑖) = 𝑊(𝑖) + 𝛼 ∗ 𝑔′(𝑠𝑢𝑚𝑂𝑓𝐴𝑙𝑙𝐼𝑛𝑝𝑢𝑡𝑠)(𝑌𝑐𝑜𝑟 − 𝑌𝑝𝑟𝑒𝑑) ∗ 𝑋(𝑖)

 b is the bias;
 Ycor is the output that should have appeared on the neuron;
 Ypred is the actual output from the neuron;
 W is the weight vector;
 α is the learning rate;
 g’ is the derivative of the activation function, ignored in case of a step function;
 X is the input fed to the neuron [39].

The training is complete when all the epoch has been completed without error. One
epoch has been finished when all the input vectors have been fed once to the neural
network [38].

53

8.3 Multi-layer neural networks

The training of a single layer network is simple to understand, since the input is directly
connected to the output. Therefore, the output knows what the input value is and can
train with this information. A multi-layer network however is different; it has hidden
layers. Every input node is connected to a hidden layer node, and every hidden layer
node is connected to the output. Following diagram shows this.

Figure 52: Diagram of a multi-layer network [40]

The problem here is that the output knows nothing about the input, it can only see what
the hidden layer sends. This means that we can only reach one error, the error of the
output, which can be used to train the weight vectors between the hidden layer and the
output. To train the weights between the input and the hidden layer, we need to know
the error at the hidden layer, this is done with backpropagation [40].

54

8.3.1 Training a multi-layer network with backpropagation

To explain this technique, let’s consider following neural network, chosen to keep the
calculations clean and simple.

Figure 53: Simplified multi-layer neural network with 1 hidden layer

In this example, we’ll want to define the weights to minimalize the error. This can be
done with stochastic gradient descent, which updates the weights with the following
formula. The W stands for the weights; the E represents the error and η is the learning
rate.

𝑊(𝑖 → 𝑗) = 𝑊(𝑖 → 𝑗) − 𝜂
𝜕𝐸

𝜕𝑊(𝑖 → 𝑗)
 (𝑒𝑞. 1)

In our case the error will be defined with the following formula. Ypred are the predicted
labels, and Yact is the actual label that the predicted label is supposed to be.

𝐸 =
1

2
(𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)2 (𝑒𝑞. 2)

Now that we know the basics, let’s move on to the figure, you can say:
𝑆𝑗 = 𝑊(𝑖𝑛 → 𝑗) ∗ 𝑋𝑖

𝑍𝑗 = 𝜎(𝐼𝑁𝑗) = 𝜎(𝑊(𝑖𝑛 → 𝑗) ∗ 𝑋𝑖)
𝑆𝑜 = 𝑊(𝑗 → 𝑜) ∗ 𝑍𝑗

𝑌𝑝𝑟𝑒𝑑 = 𝐼𝑁𝑜 = 𝑊(𝑗 → 𝑜) ∗ 𝜎(𝑊(𝑖𝑛 → 𝑗) ∗ 𝑋𝑖)

𝐸 =
1

2
(𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)2 =

1

2
(𝑊(𝑗 → 𝑜) ∗ 𝜎(𝑊(𝑖𝑛 → 𝑗) ∗ 𝑋𝑖) − 𝑌𝑎𝑐𝑡)²

Let’s calculate all the derivatives, note that the first calculation is based on a linear
activation formula and the second on a sigmoid. Going on with eq. 2:

𝜕𝐸

𝜕𝑊(𝑗 → 𝑜)
=

𝜕

𝜕𝑊(𝑗 → 𝑜)

1

2
 (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)2

=
𝜕

𝜕𝑊(𝑗 → 𝑜)

1

2
 (𝑊(𝑗 → 𝑜) ∗ 𝑍𝑗 − 𝑌𝑎𝑐𝑡)2

= (𝑊(𝑗 → 𝑜) ∗ 𝑍𝑗 − 𝑌𝑎𝑐𝑡)
𝜕

𝜕𝑊(𝑗 → 𝑜)
(𝑊(𝑗 → 𝑜) ∗ 𝑍𝑗 − 𝑌𝑎𝑐𝑡)

 = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)(𝑍𝑗) (𝑒𝑞. 3)

𝜕𝐸

𝜕𝑊(𝑖𝑛 → 𝑗)
=

𝜕

𝜕𝑊(𝑖𝑛 → 𝑗)

1

2
 (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)2

 = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) (
𝜕

𝜕𝑊(𝑖𝑛 → 𝑗)
 (𝑊(𝑗 → 𝑜) ∗ 𝜎(𝑊(𝑖𝑛 → 𝑗) ∗ 𝑋𝑖) − 𝑌𝑎𝑐𝑡)

 = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) ∗ 𝑊(𝑗 → 𝑜) (
𝜕

𝜕𝑊(𝑖𝑛 → 𝑗)
 𝜎(𝑊(𝑖𝑛 → 𝑗) ∗ 𝑋𝑖)) (𝑒𝑞. 4)

55

First some additional information, so the next step won’t be overwhelming [41]

𝜎(𝑥) =
1

1 + 𝑒−𝑥
→
𝑑𝜎

𝑑𝑥
=
𝜕(1 + 𝑒−𝑥)−1

𝜕𝑥
=

−1

(1 + 𝑒−𝑥)2
∗ (−𝑒−𝑥) =

𝑒−𝑥

(1 + 𝑒−𝑥)2

=
1

1 + 𝑒−𝑥

𝑒−𝑥

1 + 𝑒−𝑥
=

1

1 + 𝑒−𝑥

1 + 𝑒−𝑥 − 1

1 + 𝑒−𝑥
=

1

1 + 𝑒−𝑥
(1 −

1

1 + 𝑒−𝑥
)

= 𝜎(𝑥) ∗ (1 − 𝜎(𝑥)) (𝑒𝑞. 5)

Let’s move on where we left off, and insert eq. 5 into eq. 4:

 = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) ∗ 𝑊(𝑗 → 𝑜) (
𝜕

𝜕𝑊(𝑖𝑛 → 𝑗)
 𝜎(𝑊(𝑖𝑛 → 𝑗) ∗ 𝑋𝑖))

 = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) ∗ 𝑊(𝑗 → 𝑜) (𝜎(𝑆𝑗) ∗ (1 − 𝜎(𝑆𝑗)) ∗
𝜕𝑆𝑗

𝜕𝑊(𝑖𝑛 → 𝑗)
)

 = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) ∗ 𝑊(𝑗 → 𝑜) (𝜎(𝑆𝑗) ∗ (1 − 𝜎(𝑆𝑗)) ∗
𝜕(𝑊(𝑖𝑛 → 𝑗) ∗ 𝑋𝑖)

𝜕𝑊(𝑖𝑛 → 𝑗)
)

 = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) ∗ 𝑊(𝑗 → 𝑜) ∗ 𝜎(𝑆𝑗) ∗ (1 − 𝜎(𝑆𝑗)) ∗ 𝑋𝑖 (𝑒𝑞. 6)

Previously we stated the formula for the recalculation of the weight vector done with
stochastic gradient descent:

𝑊(𝑖 → 𝑗) = 𝑊(𝑖 → 𝑗) − 𝜂
𝜕𝐸

𝜕𝑊(𝑖 → 𝑗)

This means that − 𝜂
𝜕𝐸

𝜕𝑊(𝑖→𝑗)
 equals the variation between the recalculated and the

previous weight therefore we can conclude that eq. 3 appears in eq. 6:

∆𝑊(𝑖𝑛 → 𝑗) = −𝜂 ∗ (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) ∗ 𝑊(𝑗 → 𝑜) ∗ 𝜎(𝑆𝑗) ∗ (1 − 𝜎(𝑆𝑗))(𝑋𝑖)

∆𝑊(𝑗 → 𝑜) = −𝜂 ∗ (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)(𝑍𝑗)

These equations make it possible to update all the weights and gain an optimal neural
network. This was just an easy example, imagine calculating the weights of a network
with 3 hidden layers, were each layer has 100 nodes, that would take forever, unless you
notice the structure. The error propagates backwards through the network. If there
would be another layer between the input and the hidden layer, you would notice that
when you calculate it, the beginning of the weight variation formula would start with
−𝜂 ∗ (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) ∗ 𝑊(𝑗 → 𝑜) ∗ 𝜎(𝑆𝑗) ∗ (1 − 𝜎(𝑆𝑗)) and be multiplied by another

term. There’s a way to simplify this, with layman’s equations 𝛿(𝑗) =
𝜕𝐸

𝜕𝑆𝑗
 or, the error of

the network varies with the input of layer j.

𝛿(𝑗) =
𝜕𝐸

𝜕𝑆𝑗
=

𝜕

𝜕𝑆𝑗

1

2
(𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)² = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)

𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑆𝑗

If j would be the output node you could say (notice that the output function is linear):

 (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)
𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑆𝑗
= (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) ∗ 𝑓′𝑗(𝑆𝑗)

Because 𝑌𝑝𝑟𝑒𝑑 = 𝐹𝑗(𝑆𝑗)

56

Now let us say that layer j is not an output, but a hidden layer that leads to another layer
then we can implement the chain rule.

𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑆𝑗
=
𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑍𝑗

𝜕𝑍𝑗

𝜕𝑆𝑗
=
𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑍𝑗
 𝑓′𝑗(𝑆𝑗)

This just states that the Ypred is dependent on the output of that layer, but not equal to
since it’s still connected to another node. While Zj is obviously also related to Sj.
Layer j goes to another layer, in our case it’s the output later. It’s however possible to
have multiple output nodes, with 𝑆𝑜 = 𝑍𝑗 ∗ 𝑊(𝑗 → 𝑜) while the So of one output node
doesn’t affect the So of another output node. Therefore, we can use the chain rule again.

𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑍𝑗
=
𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑆𝑜

𝜕𝑆𝑜

𝜕𝑍𝑗

The explanation is the same as previously. When we fill this into
𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑆𝑗
, we get the

following.

𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑆𝑗
= 𝑓′𝑗(𝑆𝑗) ∑

𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑆𝑜

𝜕𝑆𝑜

𝜕𝑍𝑗
𝑛𝑁𝑜𝑑𝑒𝑠

The summation is there because of the multiple nodes.

𝑆𝑜 = 𝑍𝑗 ∗ 𝑊(𝑗 → 𝑜) →
𝜕𝑆𝑜

𝜕𝑍𝑗
= 𝑊(𝑗 → 𝑜)

𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑆𝑗
= 𝑓′𝑗(𝑆𝑗) ∑

𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑆𝑜
𝑊(𝑗 → 𝑜)

𝑛𝑁𝑜𝑑𝑒𝑠

We can fill this in, into a previously obtained equation.

𝛿(𝑗) = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)
𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑆𝑗

𝛿(𝑗) = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) 𝑓′𝑗(𝑆𝑗) ∑
𝜕𝑌𝑝𝑟𝑒𝑑

𝜕𝑆𝑜
𝑊(𝑗 → 𝑜)

𝑛𝑁𝑜𝑑𝑒𝑠

The next step is to push (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) into the summation and replace it with

𝛿(𝑜) ∗ 𝑊(𝑗 → 𝑜)

𝛿(𝑗) = 𝑓′𝑗(𝑆𝑗) ∑ 𝛿(𝑜) ∗ 𝑊(𝑗 → 𝑜)

𝑛𝑁𝑜𝑑𝑒𝑠

In this case, we also backpropagated the error. Now let’s test this equation with our
previous diagram. Do note that all the summations become obsolete since there is only
one node in each layer.
𝛿(𝑜) = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) (𝑒𝑞. 7)

𝛿(𝑗) = 𝛿(𝑜) ∗ 𝑊(𝑗 → 𝑜) ∗ 𝜎(𝑆𝑗)(1 − 𝜎(𝑆𝑗)) (𝑒𝑞. 8)

If you look at the weight calculations from the previous backpropagation calculations,
you can see some similarities.

57

The following equation displays eq. 6, eq. 3, eq. 7 and eq. 8

{

 ∆𝑊(𝑖𝑛 → 𝑗) = −𝜂 ∗ (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡) ∗ 𝑊(𝑗 → 𝑜) ∗ 𝜎(𝑆𝑗) ∗ (1 − 𝜎(𝑆𝑗))(𝑋𝑖)

∆𝑊(𝑗 → 𝑜) = −𝜂 ∗ (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)(𝑍𝑗)

𝛿(𝑜) = (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡)

𝛿(𝑗) = 𝛿(𝑜) ∗ 𝑊(𝑗 → 𝑜) ∗ 𝜎(𝑆𝑗)(1 − 𝜎(𝑆𝑗))

∆𝑊(𝑖𝑛 → 𝑗) = −𝜂 ∗ 𝛿(𝑗) ∗ (𝑋𝑖)
∆𝑊(𝑗 → 𝑜) = −𝜂 ∗ 𝛿(𝑜) ∗ (𝑍𝑗)

This is the simplest and most general form of backpropagation. All the previous
calculations are inspired by a tutorial [42].

58

8.4 Activation functions

There are a lot of activation function, some of which will be explained in the subchapters
below.

8.4.1 Step activation function

Following image will show a step activation function. When the input is smaller than 0,
nothing will happen but when it becomes higher or equal to zero, the neuron fires. This
is a simple true or false activation function. This function is also called the Heaviside
function. The Y-axis is the output and the X-axis is the input [38]. The problem here is
that there is no derivative of this function, which makes it unfit for backpropagation.

Figure 54: Visualisation of the step activation function [43]

8.4.2 Linear activation function

This function is just a basic linear function; the input is mapped to the output. This
activation function is not often used because of its linearity, most data in practical
applications aren’t linear, and therefore require a non-linear activation function. This
activation function is often used on the output layer.

Figure 55: Visualisation of the linear activation function [44]

59

8.4.3 Sigmoid activation function

The sigmoid activation is a non-linear function and is a bit more complex, it maps the
data between 0 and 1 and it increases the firing rate of neurons when the input
increases. The next image will show this function. The Y-axis is the output and the X-axis
is the input [38].

Figure 56: Visualisation of the sigmoid activation function [45]

This activation function was very popular, until they discovered the two main
disadvantages [46].

 The sigmoid function saturates when y is either 0 or 1, this kills the gradient
since it’ll be almost equal to 0, this is a problem when backpropagation returns
the error backwards.

 The output isn’t zero-centred and always positive. This means that the weights
will either all be positive or negative, this phenomenon could create zigzag effects
between the weights updates, which isn’t optimal.

8.4.4 tanh activation function

The tanh activation function is very similar to the sigmoid activation function, the main
difference is, that this function maps the data between 1 and -1, which makes it zero-
centred. The saturation problem is however still there. The next image will show this
function. The Y-axis is the output and the X-axis is the input [46].

Figure 57: Visualisation of the tanh activation function [46]

60

8.4.5 ReLU activation function

The ReLU, short for Rectified Learning Unit, tries to solve the shortcomings of the other
functions. It’s zero-centred, you can derivate it and it doesn’t saturate. Another
advantage is the simplicity of the function; this causes the training of a network to be
more efficient.

Figure 58: Visualisation of the ReLU activation function [46]

However, there’s also one disadvantage, ReLU neurons can die. Sometimes the gradient
is too large, which influences the weights drastically. The drastic change will prevent the
neuron from ever activating again, and causes it to die. This can however be prevented
by decreasing the learning rate, although that will not solve everything [46].

61

8.5 Neural networks in TensorFlow

This chapter will test classification done by a neural network, based on tomography
data. There are three types of wounds labelled: daw, vlue and tib. The meaning of these
labels is irrelevant.

8.5.1 Pre-processing the wounds

The wound gets extracted from the image, placed into a forward model, simulated and
the inverse image gets calculated. The reversed image will afterwards be transformed
into a grayscale image of 128x128. This image is flattened in the final step, and fed to the
neural network. The full process is visualised on the next figure.

Figure 59: Pre-processing task chart

62

8.5.2 The multi-layer neural network for wound classifications

The most popular activation function is a Rectified Linear Unit, this is used on every
layer, except the output layer. The output layer exists out of a linear activation function
that maps the input to the output. There is a total of 3 classes, which always equals the
number of outputs. All the other layers exist out of 1500 neurons, which are all
connected to each other. The input, or the labels, are one-hot-encoded. This means that
the first label is 0 0 1, the second 0 1 0 and the third 1 0 0. This neural network is
inspired by a MNIST-tutorial [47] and visualised below.

Figure 60: Implemented artificial multi-layer neural network

8.5.3 Results of the multi-layer neural network

The network hasn’t been accurately tested due to a low number of images, roughly 10 to
12. The accuracy of the neural network reaches from 85.7% to 52%, with 72% being the
most common accuracy. The following image will show the loss value in function of the
epoches.

Figure 61: The decreasing of the loss value in function of the Epoche

63

9 Conclusion

As explained in the abstract, the main objective was to do a feasibility study on
implementing machine learning algorithms on medical applications, which succeeded.
The study on tomography, wound segmentation and neural networks seems to be useful
in the real-time monitoring of wound recovery. While a similar form of regression on
liquids, could be applied to liquids in infusion pumps. Finally, we have the regression on
yeast cells which could be useful for many health-related applications, and on other cell
studies.

Some of the projects did not go without any problems. The regression on liquids is now
based on the impedance, but the temperature should also be an important factor, since it
can alter the impedance level. The reason why the temperature hasn’t been
implemented in the regression is due to measurement difficulties, the measurements
were done twice and were not reliable.

The measurements on the growth of yeast cells failed, due to a short-circuit in the
measurement system. This was discovered after visualising and analysing all the data,
which caused a lot of lost time.

The tomography data in this thesis, is simulated. This has been done because the
tomography measurements were not accurate at all, due to technical issues, which were
beyond my reach.

64

65

Bibliography

[1] “Glossary of Terms Journal of Machine Learning.” [Online]. Available:
http://ai.stanford.edu/~ronnyk/glossary.html. [Accessed: 05-Jun-2017].

[2] “4-Steps to Get Started in Machine Learning: The Top-Down Strategy for
Beginners to Start and Practice - Machine Learning Mastery.” [Online]. Available:
http://machinelearningmastery.com/4-steps-to-get-started-in-machine-
learning/. [Accessed: 05-Jun-2017].

[3] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and feature
extraction techniques in machine learning,” in 2014 Science and Information
Conference, 2014, pp. 372–378.

[4] “How to Improve Machine Learning Results - Machine Learning Mastery.”
[Online]. Available: http://machinelearningmastery.com/how-to-improve-
machine-learning-results/. [Accessed: 05-Jun-2017].

[5] “Train models to classify data using supervised machine learning - MATLAB -
MathWorks Benelux.” [Online]. Available:
https://nl.mathworks.com/help/stats/classificationlearner-app.html. [Accessed:
05-Jun-2017].

[6] “Machine Learning | Microsoft Azure.” [Online]. Available:
https://azure.microsoft.com/nl-nl/services/machine-learning/. [Accessed: 05-
Jun-2017].

[7] N. R. C. (US) and I. of M. (US) C. on the M. and P. of E. D. B. Imaging, “Electrical
Impedance Tomography,” Chapter 9, Electr. Impedance Tomogr., 1996.

[8] “Electrical Impedance Tomography (EIT) System for Radiation-Free Medical
Imaging Based on LabVIEW - Solutions - National Instruments.” [Online].
Available: http://sine.ni.com/cs/app/doc/p/id/cs-14779#prettyPhoto.
[Accessed: 22-May-2017].

[9] “EIDORS.” [Online]. Available: http://eidors3d.sourceforge.net/index.shtml.
[Accessed: 22-May-2017].

[10] “Pictures of wounds and surgical wound dressings.” [Online]. Available:
http://www.medetec.co.uk/files/medetec-image-databases.html. [Accessed: 05-
Jun-2017].

[11] C. L. Yang, “Electrical impedance tomography: algorithms and applications,” 2014.
[12] “Data pre-processing - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Data_pre-processing. [Accessed: 27-Feb-2017].
[13] J. Brownlee, “How to Prepare Data For Machine Learning - Machine Learning

Mastery,” 2013. [Online]. Available: http://machinelearningmastery.com/how-to-
prepare-data-for-machine-learning/. [Accessed: 27-Feb-2017].

[14] “How to Prepare Data For Machine Learning - Machine Learning Mastery.”
[Online]. Available: http://machinelearningmastery.com/how-to-prepare-data-
for-machine-learning/. [Accessed: 05-Jun-2017].

[15] “What is one hot encoding and when is it used in data science? - Quora.” [Online].
Available: https://www.quora.com/What-is-one-hot-encoding-and-when-is-it-
used-in-data-science. [Accessed: 05-Jun-2017].

[16] “Linear Regression for Machine Learning - Machine Learning Mastery.” [Online].
Available: http://machinelearningmastery.com/linear-regression-for-machine-
learning/. [Accessed: 30-May-2017].

66

[17] “Linear Regression Analysis in SPSS Statistics - Procedure, assumptions and
reporting the output.” [Online]. Available: https://statistics.laerd.com/spss-
tutorials/linear-regression-using-spss-statistics.php. [Accessed: 30-May-2017].

[18] J. Howbert, “Machine Learning Logistic Regression.”
[19] “100 series DC powered Pumps,” Williamson - Specif. sheet, p. 2, 2013.
[20] “Regression Analysis: How Do I Interpret R-squared and Assess the Goodness-of-

Fit?” [Online]. Available: http://blog.minitab.com/blog/adventures-in-statistics-
2/regression-analysis-how-do-i-interpret-r-squared-and-assess-the-goodness-of-
fit. [Accessed: 05-Jun-2017].

[21] “CS221.” [Online]. Available:
http://stanford.edu/~cpiech/cs221/handouts/kmeans.html. [Accessed: 06-Jun-
2017].

[22] “K-means clustering: how it works - YouTube.” [Online]. Available:
https://www.youtube.com/watch?v=_aWzGGNrcic. [Accessed: 06-Jun-2017].

[23] “Color-Based Segmentation Using K-Means Clustering - MATLAB & Simulink
Example - MathWorks Benelux.” [Online]. Available:
https://nl.mathworks.com/help/images/examples/color-based-segmentation-
using-k-means-clustering.html. [Accessed: 25-May-2017].

[24] Gggustafson, “The Known Colors Palette Tool - Final Revision - Hopefully,” 2015.
[Online]. Available: https://www.codeproject.com/Articles/243610/The-Known-
Colors-Palette-Tool-Revised-Again. [Accessed: 25-May-2017].

[25] “k-means clustering - MATLAB kmeans - MathWorks Benelux.” [Online]. Available:
https://nl.mathworks.com/help/stats/kmeans.html. [Accessed: 25-May-2017].

[26] “Color-Based Segmentation Using K-Means Clustering - MATLAB & Simulink
Example - MathWorks Benelux.” [Online]. Available:
https://nl.mathworks.com/help/images/examples/color-based-segmentation-
using-k-means-clustering.html. [Accessed: 05-Jun-2017].

[27] Santini Marina, “Lecture 02: Machine Learning for Language Technology -
Decision Trees…,” 2013. [Online]. Available:
https://www.slideshare.net/marinasantini1/lecture02-machine-
learning?from_action=save. [Accessed: 06-Jun-2017].

[28] P. Flach, “Desicion Trees,” in Machine Learning The Art and Science of Algorithms
that Make Sense of Data, Cambridge University Press, 2012, pp. 133–138.

[29] “Introduction to Support Vector Machines — OpenCV 2.4.13.2 documentation.”
[Online]. Available:
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_
to_svm.html. [Accessed: 06-Jun-2017].

[30] “Support Vector Machine Tutorial (SVM).” [Online]. Available:
https://www.dezyre.com/data-science-in-r-programming-tutorial/support-
vector-machine-tutorial. [Accessed: 06-Jun-2017].

[31] É. D. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, “Support Vector Machines — scikit-learn 0.18.1
documentation.” [Online]. Available: http://scikit-
learn.org/stable/modules/svm.html. [Accessed: 28-Feb-2017].

[32] “Classification using k-Nearest Neighbors in R | en.proft.me.” [Online]. Available:
http://en.proft.me/2017/01/22/classification-using-k-nearest-neighbors-r/.

67

[Accessed: 06-Jun-2017].
[33] Raschka Sebastian, “How to Select Support Vector Machine Kernels,” 2016.

[Online]. Available: http://www.kdnuggets.com/2016/06/select-support-vector-
machine-kernels.html. [Accessed: 27-Feb-2017].

[34] É. D. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, “Pairwise metrics, Affinities and Kernels,” 2010.
[Online]. Available: http://scikit-learn.org/stable/modules/metrics.html.
[Accessed: 27-Feb-2017].

[35] É. D. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, “Plot different SVM classifiers in the iris dataset —
scikit-learn 0.18.1 documentation,” 2010. [Online]. Available: http://scikit-
learn.org/stable/auto_examples/svm/plot_iris.html. [Accessed: 27-Feb-2017].

[36] “RBF SVM parameters — scikit-learn 0.18.1 documentation.” [Online]. Available:
http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html.
[Accessed: 05-Jun-2017].

[37] A. Ben-Hur and J. Weston, “A User’s Guide to Support Vector Machines.”
[38] S. Barber, “AI : Neural Network for beginners (Part 1 of 3),” CodeProject, 2007.

[Online]. Available: https://www.codeproject.com/Articles/16419/AI-Neural-
Network-for-beginners-Part-of.

[39] “For Dummies — The Introduction to Neural Networks we all need ! (Part 1).”
[Online]. Available: https://medium.com/technologymadeeasy/for-dummies-the-
introduction-to-neural-networks-we-all-need-c50f6012d5eb. [Accessed: 27-May-
2017].

[40] “For Dummies — The Introduction to Neural Networks we all need ! (Part 2) –
TechnologyMadeEasy – Medium.” [Online]. Available:
https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-
neural-networks-we-all-need-part-2-1218d5dc043. [Accessed: 27-May-2017].

[41] “calculus - Derivative of sigmoid function.” [Online]. Available:
https://math.stackexchange.com/questions/78575/derivative-of-sigmoid-
function-sigma-x-frac11e-x. [Accessed: 27-May-2017].

[42] “Artificial Neural Networks: Mathematics of Backpropagation (Part 4) — BRIAN
DOLHANSKY.” [Online]. Available:
http://briandolhansky.com/blog/2013/9/27/artificial-neural-networks-
backpropagation-part-4. [Accessed: 27-May-2017].

[43] “What is the unit step Function in Artificial Neural Network? - Quora.” [Online].
Available: https://www.quora.com/What-is-the-unit-step-Function-in-Artificial-
Neural-Network. [Accessed: 27-May-2017].

[44] “The most common activation functions: (a) step function; (b) linear... - Figure 5 of
13.” [Online]. Available:
https://www.researchgate.net/figure/259843708_fig9_The-most-common-
activation-functions-a-step-function-b-linear-function-c-sigmoid. [Accessed: 29-
May-2017].

[45] “Artificial Neural Network.” [Online]. Available:
http://www.saedsayad.com/artificial_neural_network.htm. [Accessed: 27-May-

68

2017].
[46] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online].

Available: http://cs231n.github.io/neural-networks-1/. [Accessed: 29-May-2017].
[47] “Python Programming Tutorials.” [Online]. Available:

https://pythonprogramming.net/cnn-tensorflow-convolutional-nerual-network-
machine-learning-tutorial/?completed=/convolutional-neural-network-cnn-
machine-learning-tutorial/. [Accessed: 29-May-2017].

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Applying machine learning algorithms on multi-sensor applications

Richting: master in de industriële wetenschappen: elektronica-ICT
Jaar: 2017

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Kelher, Tom

Datum: 6/06/2017

