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Foreword 

Data traffic in multi-camera video- and vision systems is a growing concern since the number of 
pixels grows with every new camera model. The bandwidth and storage space needed to 
process images from multi-camera systems need to be high-tech or the data must be altered to 
allow more efficient processing. This is where data compression enters the picture. Numerous 
compression methods have been developed and perfected for commercial use. These methods 
are often based on the human perception of image quality. Data that is not essential for these 
images will be deemed unnecessary and ignored.  

Video and vision systems require all information captured by their cameras to calculate the best 
image. Lossless image compression methods offer a solution but these methods often yield 
lower compression ratios. The best ratio is hence chosen according to the required specification 
selected by the developer. Lossless compression methods often require intensive calculations 
which results in a slow process that is difficult to implement on hardware platforms.  

Most commercial compression methods perform their compression on RGB data. The RGB 
recalculation ignores noise and simply calculates it into the final image to denoise it later. Noise 
will take up extra storage space and bandwidth and must be removed prior to further 
compression. 

During the creation of this work I learned many things about noise, compression and the 
difficulty to implement it on hardware.  

Finally, I like to thank my professors without whom this work would not have been possible and 
my friends without whom this work would have been finished 3 months ago.  

“Normal people don't understand this concept; they believe that if it ain't broke, don't fix it. 
Engineers believe that if it ain't broke, it doesn't have enough features yet.” - Scott Adams 
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Abstract 

 

De CoSenS onderzoeksgroep aan de UHasselt focust zich op het toepasbaar maken 
van multicamerasystemen. Deze systemen genereren enorme hoeveelheden videodata. 
De belasting om gegevens samen te voegen valt op één verwerkingssysteem. De 
algemene oplossing voor dit probleem is een datacompressie. Om de coherentie tussen 
de beelden van verschillende cameras te kunnen bepalen is het wenselijk dat de 
compressiemethodes verliesvrij zijn. Eerst onderzoekt en vergelijkt deze masterproef 
verschillende methoden om videobeelden te comprimeren. Nadien volgt de 
implementatie van de meest toepasbare methode. De gebruikte methode moet een 
compressieratio van minstens 60% behalen en de beelden moeten aan een snelheid 
van minstens 40 Mb/s verwerkt kunnen worden. 

Het onderzoek focust zich op verliesvrije methoden voor ruwe (RAW) en Rood-Groen-
Blauw (RGB) beelden. De filtering van ruis uit de beeldinformatie wordt onderzocht.  
Criteria voor compressiemethoden zijn: snelheid, nauwkeurigheid, verlies en 
compressieefficientie. De implementatie gebeurt op het Altera DE2-70 bord met 
softwareversies Quartus II 8.1 en NIOS II in verilog. De resultaten worden geanalyseerd 
met Matlab R2016b. TRDB D5M is de gebruikte camera. 

De geïmplementeerde methode maakt gebruik van Rice encoding met datapreparatie in 
de vorm van het GAP algoritme. Na calibratie om de ruis in te perken vindt er een 
compressie plaats op RAW data. Deze methode levert een compressieratio op van 55% 
aan een snelheid van 44 Mb/s. De methode is nog niet geoptimaliseerd en zou voor 
beelden in een normaalverlichte ruimte een ratio van onder de 50% kunnen behalen. 

The CoSenS research group at UHasselt focusses on the implementation of multi-
camera systems. These systems generate a large amount of video data. One central 
processing system calculates all data and becomes heavily loaded. The solution is data 
compression. To maintain good cohesion visual clues among images the method must 
be lossless. First, this master thesis evaluates and compares various compression 
methods on RAW and RGB data. This is followed up by the implementation of the most 
suitable method. The compression method used must reach a compression ratio of 60% 
and a processing speed of more than 40 Mb/s. 

The research revolves around compression methods for RAW and RGB data. The 
filtering of noise is also considered. Criteria for compression methods are: speed, 
accuracy, loss and compression ratio. The implementation is realized on the Altera DE2-
70 board with software Quartus II 8.1 and NIOS II using Verilog. The results are 
analyzed in Matlab R2016b. The camera TRDB D5M captures the video information. 

The implemented method utilizes Rice encoding after data preparation using the GAP 
algorithm. After calibration to reduce noise, the data is compressed in RAW state. The 
method achieves a compression ratio of 45% at the speed of 44 Mb/s. In the future, this 
method can be optimized which can result in a compression ratio of above 50% in a 
normally lit room



 
  

  



 
  

1 Introduction 
 

Multi-camera video and vision systems generate an enormous data traffic caused by the 
growth of the number of pixels with each new camera model. The bandwidth and 
storage space must grow alongside the number of pixels to prevent problems while 
processing images. A common solution to reduce the need for large storage capacity of 
a system is data compression. There exist numerous video compression methods 
utilized in commercial applications. These methods however often only take the human 
eye into account when processing the compressed data. Data irrelevant to picture detail 
visible to humans is then often ignored and discarded.  

Multi-camera video and vision systems have need for all information captured for the 
calculation of the total image. Lossless compression methods are a solution to this 
problem but result in a lower compression ratio. The compression method needs to be 
chosen according to the specifications needed by the applications. The implementation 
of these lossless compression methods on hardware is often problematic and straining 
the system. 

The most commonly used compression methods compress RGB values. The 
recalculation of RAW to RGB ignores noise from the camera and calculates this faulty 
data further into the pattern. This results in larger data values requiring storage. The 
compression method must filter out the noise prior to compression to increase the 
compression ratio and to improve the coherence between images from different 
cameras. The need for coherence between images is a requirement to make the 
calculation of the larger image easier.  

The goal of this thesis is to develop a compression method easily implementable on 
hardware. The work builds on research done by previous students and myself. The 
compression will take place when the data is in its RAW state prior to RGB conversion. 
A benefit of RAW data compression is the ability to remove noise before generalization 
into the digital image. Correlation between pixels will not be influenced by the removal of 
noise. 

The following work describes the method used to find solutions to problems stated 
previously. First, the theoretical aspects of the compression will be discussed in order of 
relevance in the compression chain. With each problem stated the chosen design for 
implementation will be summed up and explained in detail. Third, the implementation 
process will be presented and tests described. Finally results will be posted. The 
requirements for the compression method is a compression ratio of 60% at a speed of at 
least 40 Mb/s and completely lossless.  

The creation of this work has been done in various stages. First the literary study has 
been done, researching and comparing various existing compression methods and 
algorithms. Second, the most adequate method and data preparation algorithm for the 
desired implementation has been selected. Third, the implementation of separate 
solutions to the problems previously stated and testing has been performed. Finally, the 

grand result is studied. The implementation is realized on the Altera DE2-70 board with 
software Quartus II 8.1 and NIOS II using Verilog. The results are analyzed in Matlab 
R2016b. The camera TRDB D5M captures the data.  
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The master’s thesis is in the context of the Engineering Technology faculty at the 
campus of Diepenbeek. The faculty is the result of a joint collaboration between the KU 
Leuven and the UHasselt. This master’s thesis is part of the main subject of Electronics-
ICT.  

CoSenS (Computational Sensor Systems) is a research group at the UHasselt 
researching innovating architectures for computational multi-camera video and vision 
systems. The research group develops new hardware and software application for high 
resolution, high frame rate multi-camera distributed calculation compatible video and 
vision systems. These systems are implemented utilizing modern digital image sensors. 
The fields of application vary between omnidirectional video, 3D reconstruction, 
interpolation and the use of virtual cameras. There exist numerous practical applications 
namely real-time traffic control, assembly line control, medical applications, …  
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2 Design 
 

2.1 Introduction 
 

Digital cameras present in multi-camera systems utilize the Bayer pattern to collect color 
video information. This pattern consists of n red, n blue and 2n green pixels aligned in 
squares as illustrated in figure 1. Each pixel only registers the value of its respective 
color. The intensity is measured by the photo diodes in the image sensor array and 
stored. In other words, the measured intensity is the amount of incident photons in the 
specific photo diode. The color filters above photo diodes select the wavelengths of the 
light in the resp. photo diodes. The data registered by the Bayer pattern is named RAW 
data. The measured intensities are then recalculated into RGB images most commonly 
used in applications. Most existing and commercialized compression methods are based 
on the RGB pattern. The process of interpolating the RAW data into RGB data is named 
demosaicking [1]–[5]. 

The noise caused by crosstalk and camera electronics are simply ignored and further 
injected into the calculations of the RGB image during the demosaicking process. The 
noise is either removed afterwards or deemed irrelevant for the application. The process 
is visually illustrated in figure 2. In the context of multi-camera systems, the noise must 
be removed prior to the RGB calculation to maintain cohesion between images. 
Recalculation of the images from each camera into a virtual image requires exact values 
[1], [6]–[10]. 

 

A standard lossless compression method based on predictors is built in a several work-
order steps. First, the prediction performed by the predictor. Based on surrounding 
pixels, the value of an upcoming pixel is predicted. Generally, the prediction will reach a 
value close to this of the upcoming pixel and is subtracted from the real value. A good 
predictor will cause a distribution of values around zero. Second, a form of entropy 
encoding is implemented on the transformed dataset. Entropy encoding methods work 
best with dataset having a high percentage of reoccurring values.  

The compression methods studied in previous works [11], [12]are all based on the same 
principle. First a compression method is chosen. The compression method functions 
best on a specific type of data. Second an algorithm is selected to recalculate the image 
information into the specific data of the compression method. I.e. The work of W. Zhang 
[11]. Zhang chose to study the data reduction method most suitable for Huffman entropy 
encoding. This technique functions best with a high rate of recurring values. She 

Figure 1: Bayer pattern 
[11] Figure 2: Traditional schematic [1] 
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compares the DPCM, Paeth and Gap algorithms to prepare data. The compression has 
been fulfilled on both RAW and RGB images. 

Huffman encoding, developed by D. Huffman [13], is a compression algorithm which 
optimally stores recurring values in a more efficient way. The algorithm requires the 
calculation of the probability that a value will be present in the data. Based on the 
highest probability the data is then restored in less or more bits depending on the 
amount of occurring values. The encoded values are mapped for later reconstruction. 

The DPCM, Paeth and Gap recalculation methods are all based on the same principle. 
The value of the upcoming pixel is predicted based on the previous surrounding pixels. 
The prediction is then subtracted from the actual value and the error is later encoded by 
the entry coding compression algorithm. A good prediction method will cause a large 
recurrence of the value ‘0’. A visual representation of this system can be seen in figure 
3. The effective result of the DPCM, Paeth and Gap methods is the shift of the prediction 
error into a Laplacian distribution [14]. 

A Laplacian distribution resembles the Gaussian distribution with a sharp peak in the 
center of the curve. A representation can be seen in figure 4. In this case, the peak 
represents the large amount of zeroes present. This gives us a unique opportunity to 
utilize a different lossless data compression algorithm namely Golomb-rice encoding. 
The Golomb-rice encoding method can reach the efficiency of the Huffman entropy 
encoding algorithm, which is optimal, when the dataset is specifically prepared for 
optimal Golomb-rice encoding. This form of encoding is more effective when the amount 
of low values increases. The more effective the predictor the better the compression 
ratio will be [11], [14]–[16]. 

This is where the problem with noise comes in. Noise will cause larger, faulty values 
which can ruin a prediction since not all pixels will have an increased value. A form of 
filtering must be implemented prior to the compression to counter this phenomenon. 

To summarize: the following problems in order of occurrence must be solved. First the 
noise must be reduced. Second: the data must be prepared to make the compression 
algorithm the most efficient. Third: the actual compression must be performed. The 
result must be a compression adequately efficient, fast, lossless and implementable on 
hardware. A visual representation of the implementation is given in figure 5. 

 

 

Figure 3: Schematic of predictor [11] Figure 4: Laplacian curve [11] Figure 5: Implementation schematic 
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2.2 Noise reduction 
 

2.2.1 Definition of noise 
 

To design a way to get rid of noise originating from digital image sensor a definition of 
noise must first be set up. In [1], [17] a widely accepted, simplified formula relating the 
desired value and the actual value is described. 

 

y describes the output value measured by the camera, x is the noiseless value and v 
represents the noise. The formula is applicable to each color channel. 

Researchers in [1] concluded that noise can be divided in two parts namely fixed and 
random noise. A representation is given in the following formula 

 

ηD describes total noise, ηP describes the fixed pattern noise and ηR describes the 
random noise. In other words, images created by digital cameras contain fixed noise 
present in every pixel and noise present at random places in the image. The random 
component of the noise causes an error in the prediction while the fixed component 
should be evened out by the predictor. Removing the random noise should be a priority 
before compression can start. The fixed noise will however cause an error between the 
images from different cameras since it is not a constant value over different image 
sensors. To simplify the creation of the virtual image, the fixed noise must also be 
removed. These formulas describe the model on which the noise removal will be 
designed. 

 

2.2.2 Dark pixel calibration 
 

As previously stated, digital cameras utilize a pixel array in Bayer pattern to capture 
image data. The sensor measures the intensity of light passing through each pixel. The 
intensity is the digital representation of the color grade of each respective pixel. The 
digital camera has a m x n pixel array which can be measured by the image sensor. 
However, not all m x n pixels are used to capture active image data. The pixel array is 
divided into three types of pixels: 

1. Active image pixels that are responsible for capturing the actual image; 
2. Dark image pixels that are shielded by a light blocking metal layer on the 

photodiodes and that do not directly receive photons from the incident light; 
3. Active boundary pixels that capture any fallout to correctly capture the border of the 

active image. 

In theory, the dark pixels will always measure an intensity of zero since no light is able to 
reach this part of the Bayer pattern. When the whole Bayer array is read out, the photon 
diodes in these dark pixels only generate electron-hole pares due to thermal noise. The 
higher the temperature the higher the signal resulting from thermal noise. In practice, the 

ηD = ηP + ηR

y = x + v
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dark pixels register a value slightly different from zero. Since no light can reach this part 
of the sensor it can be concluded that the measured value is the sum of fixed and 
random noise.  

The intensity measured behind the dark pixels is the total noise in the image. Research 
in [1], [8], [18] stated that noise over color channels is universal. The presence of 
multiple rows and columns of dark pixels can be used to create an average total noise 
value. By subtracting the value of the intensity of the dark pixels from the measured 
value noise can, in theory, be effectively be removed completely.  

2.2.3 Mathematical based solutions 
 

2.2.3.1 Gray value noise filter 
 

Noise filters for gray value need to be well designed since it is impossible to implement 
color correction after the removal of visible noise. If RAW data can be converted to a 
single dimension, the filter will be usable on the video data [17], [4].  

Raw Data, in fact, only has one intensity value per pixel. The recalculation into an RGB 
image uses these values several times to achieve the same resolution.  Loading the 
data directly into a gray value filter however will cause a loss of cohesion in the image 
resulting in an inadequate filtering. The data must be rearranged to maintain correlation. 
In common applications, the color channels are separated from the CFA image and 
denoised separately [8], [18]. Figure 6 gives a visual representation of the process. On 
these restructured images, various gray value noise filters can be applied, allowing the 
selection of the best filter. The previously described implementation can result in little 
loss in correlation. However, applying this method will result in a small loss of pixel value 
[18]. Researchers in [17] report a computationally low-cost result of 33% compared to 
classic RGB filtering methods while maintaining the image quality of traditional RGB 
noise filters. An interesting result of their research is the similarity of random noise in 
each color channel. 

The benefits of applying gray value noise filters are an easy implementation and a gain 
in computational speed. Negative aspects are a loss of accuracy. The nature of the data 
output by the camera causes this method to be unsuitable. The camera prints the image 
line by line, most gray value noise filters require surrounding pixels from all sides to 
perform the filtering. Adjusting the filters to this input method is not an option either since 
this will result in an even greater loss of cohesion in the image. 
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2.2.3.2 Noise reduction based on block compare 
 

In image processing a common way to reduce random noise is the median filter. The 
filter examines a block of pixels surrounding the pixel. Methods have been developed 
based on this principle. Various works have studied this type of method posting effective 
results [8], [18]. The noise reduction methods based on block compare can be 
implemented on the FPGA providing the dimensions of the matrix remains limited. If not 
for inspiration for a denoising method, these works can still be useful to conclude 
denoising results.  

Principle component analysis (PCA) is a statistical procedure utilizing an orthogonal 
transformation. PCA converts a dataset which contains correlation into a set of linear 
uncorrelated variables named principal components. The method calculates the 
eigenvectors of a covariance matrix describing the axes which generally represent the 
variance in the data set [18]. Basically, PCA decorrelates a dataset making it 
representable in a reduced number of dimensions. The nature of random noise will 
cause an even distribution of intensity along the axes generated by PCA. The required 
data will however be concentrated alongside the most significant subsets. By removing 
the smaller subsets and a reverse transformation, a noise reduction can be achieved [8].   

In [18] an algorithm is developed to use PCA to calculate the covariance matrix of 
training blocks and compares them with the matrices of surrounding blocks to remove 
noise. The result is a reduction in the color differences created by noise, thereby 
increasing the Peak signal noise ratio (PSNR).  

[8] describes a method to create blocks in a 3-D structure. The researchers first group 
similar blocks with the same color configuration into one 3-D array. Afterwards a 3-D 
transform and shrinkage is applied. After the inverse transformation blocks are returned 
to their respective places. The last step is the calculation of output images by weighed 
averaging of the overlapping estimates. 

2.2.3.3 Linear minimum mean square-error estimation (LMMSE) 
 

Minimum mean square-error estimation is a lossy estimator used in signal processing 
designed to minimize the mean square error (MSE). MSE is a numeric representation of 
image quality. The use of LMSSE on imagery is to estimate the primary difference 
signals (PDS) to take advantage of spectral correlation in the image. Spectral correlation 

Figure 6: Gray filter on RGB images schematic [17] 
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between color channels is used in the demosaicking of the image and can be used for 
denoising sensor noise when the parameters are known prior. PDS is calculated with 
the following formula: 

 
Xg, r = G1 −  R 

Xg, b = G2 −  B 

Xg,r and Xg,b represent the PDS, RG1G2B represent the color channels of the Bayer 
filter.  

In [10] it is assumed that noise is channel dependent, additive and Gaussian distributed 
with zero mean. The formulas calculate the difference between the green channel in a 
row and the red or blue channel. The reconstruction of an image can be done providing 
the green channel can be reconstructed perfectly. For this purpose, LMSSE is used. The 
denoising is done using a wavelet algorithm and solely performed on the green channel. 
The linear model of the PDS is worked out in [10] and given by the formule: 

X = X +  ε +  v  

X represents the interpolated PDS of a color channel, X  represents the PDS of a color 
channel, ε  represents the directional interpolation error, v  represents the additive 
Gaussian white noise. Refer to [10] for the explanation and deduction of the formula.  

Based on this linear model, LMSSE is performed. An estimate of the green channel is 
calculated. The formula used for the calculation is: 

x = μ +
σ
σ

(y −  μ ) 

Where μ  is the autocorrelation function prescribed in [10], σ  = Var(x) and σ = Var(y). 
The formula calculates the directional estimates of the PDS whom are afterwards fused 
using a wavelet transform.  

The implementation of LMSSE and use of wavelet transform is an interesting subject 
and warrants further research. LMSSE can be programmed on the FPGA and wavelet 
transforms in 2 dimensions have been performed by researchers in [19], [20]. Several 
works have been performed on the optimization of denoising using wavelets and 
LMSSE [22], [23].  

2.3 Lossless compression method 
 

2.3.1 Introduction 
 

In signal processing, compression is the encoding of data into fewer bits than the 
original information. There exist two types of compression namely lossy and lossless 
compression. Lossy compression is used in applications where the exact reconstruction 
of data is unnecessary. The reduction of bits is achieved by removing irrelevant or less 
essential information which is not immediately observable by human viewers. Lossless 
compression reduces the number of bits by locating and removing statistical 
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redundancies. No information is lost in lossless compression. Where lossy compression 
methods are applicable to many sort of data series, lossless methods are designed for a 
specific form of information [1], [3], [11], [17], [7], [25], [9], [26].  

There exist three main commercial uses for lossless data compression: 

1. General data compression e.g. winRAR, 7zip, 
2. Audio compression e.g. ALAC, WMA Lossless, 
3. Graphic compression e.g. JPEG-LS, PNG. 

This work solely studies the graphic compression methods. The following part describes 
Run-length encoding (namely Golomb and Golomb-Rice encoding) and Huffman 
encoding [13], [27], [28].  

2.3.2 Run-length encoding 
 

2.3.2.1 Introduction 
 

Run-length encoding (RLE) is a lossless data compression method where data is stored 
in a value and a count. These methods have the highest efficiency when the same data 
value reoccurs often in the dataset.  Golomb encoding and Golomb-Rice encoding are 
based on the same principle but vary in the criteria of the parameters used. A simple 
overview of the working method is described and the unique qualities of each method is 
given below [27], [28].  

1. Assign an integer value to parameter m, 
2. The value to be encoded, iDATA, is divided by m, 

a. quotient q = int(iDATA/m), 
3. remainder r = int(iDATA%m), 
4. Encoding (when unary encoding writes 0’s), 

a. The integer value of q in written in unary coding: q bits of zero are written, 
b. A splitting bit 1 is written out, 
c. the remainder is written out in regular binary and stored in k bits ( k =

log (m)). 

2.3.2.2 Golomb encoding 
 

Golomb encoding utilizes the encoding algorithm described above. The criteria for the 
value of m is that it must be a real integer. The number of bits used to store the 
remainder is dependent on the value of the remainder [27].  

When r < 2 − m ∶ the remainder is stored in k − 1 bits 

When r ≥ 2 − m ∶ the remainder + 2 − m  is stored in k bits 

The variation in the remainder storing method makes reconstruction more difficult. There 
exists a special type of Golomb encoding named Rice or Golomb-Rice encoding. 

2.3.2.3 Golomb-Rice encoding 
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Golomb-Rice encoding has the same working principle as Golomb encoding with one 
difference. A criterion for the value m must be met. the value of the integer m must be a 
multiple of 2. When this criterion is met the variation in the storing method of the 
remainder is removed [28].  

When r < 2 − m ∶ the remainder is stored in k − 1 bits 

Note that when m = 1, the whole data sequence is stored in unary coding. The choice of 
m is crucial for a decent compression ratio and must be adjusted to the histogram of the 
information to be encoded. Golomb-Rice encoding is more suitable for our application 
since it is easy to implement and decode without difficult calculations.  

2.3.3 Huffman encoding  
 

Huffman encoding is a compression method designed for the optimal and lossless 
storage of a series of symbols [13]. Applications for the algorithm are generally in the 
fields of data communication and the compression of digital imagery. The principle of 
Huffman encoding is simple; 

1. A list of the probability of occurrence of symbols in the dataset is calculated and 
sorted from high probability of occurrence to low; 

2. A Huffman tree is build;  
a. The two symbols with the lowest occurrence frequency are linked together, the 

frequency of the link is the sum of the symbols’ probability; 
b. The links is reentered into the sorted list; 
c. Step one and two are repeated until one symbol remains; 

3. Starting from this last symbol, the tree is encoded giving the highest frequency a 0 
and the lowest a 1. 

To decode the Huffman bitstream the tree must be sent to the processing system in 
advance. This method will be more effective when there are few differing symbols or a 
large rate of reoccurrence [13]. A visual representation of the creation of a Huffman tree 
is given in figure 7. 

 
Figure 7: Huffman table [38] 
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2.4 Data preparation for Golomb-Rice encoding  
 

2.4.1 Introduction 
 

As previously stated, lossless compression methods are designed for a specific type of 
dataset. Intensity values from a digital camera can vary for example between 0 and 255 
with each being equally likely to occur. The data needs to be rewritten to get a smaller 
number of symbols with a larger chance of occurrence. In the following part, several 
predictive-corrective coding filters will be described. The filters use the surrounding 
pixels to calculate a prediction for the upcoming pixel. This prediction is then subtracted 
from the actual measured value of the pixel and the error is what remains. A good 
predictor will result in a high compression ratio when using Golomb-Rice encoding since 
most of encoded values will be zero or close to zero 

2.4.2 Differential pulse-code modulation (DPCM)  
 

The DPCM algorithm functions as a predictor for the upcoming pixel value [14]. For raw 
images, the predictor uses the values of the same color channel to make a prediction. If 
the upcoming pixel in the Bayer pattern has the coordinates (x,y), the prediction is 
calculated:  

= +   

With   = ( ( 2, − 2)  = northwestern pixel 

  = ( ( , − 2) = ℎ    

  = ( ( − 2, ) =   

The prediction is then subtracted from the actual value and the error is used for further 
calculations. The error will have a value close to zero when there exists gradual change 
in color in the image. When the color change is sudden, the predictor will struggle. 
Sudden change is often the case in natural imagery. A visual representation of the used 
pixels is given in figure 9.  

 

 

 

Figure 8: DPCM and Paeth 
method pixel pattern [11] 
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2.4.3 Paeth method 
 

The Paeth method is based on the DPCM method but adds another layer of prediction 
correction. The initial prediction is calculated according to the formula: 

i = + −   

As was the case with DPCM. Paeth uses the prediction to try and estimate which of the 
surrounding pixels is the best estimate for the prediction. 

= ( − ) 

= ( − ) 

= ( − ) 

With   = ( ( − 2, − 2)  = northwestern pixel 

  = ( ( , − 2) = ℎ    

  = ( ( − 2, ) =   

The actual prediction used for the subtraction is calculated based on Pa, Pb and Pc.  

=  

  ≤   ≤  

  ≤   ≤  

  ≤   ≤  

In other words, the lowest probability will be chosen and the respective value will be 
used as the prediction [11], [29]. A visual representation can be seen on figure 9. 
 

2.4.4 Gradient Adjusted Prediction (GAP)  
 

The GAP algorithm is utilized in context-based adaptive lossless image coding (CALIC) 
[11], [14]. The Gap method uses the surrounding pixels to calculate the change in pixel 
value and then adjusts the prediction accordingly. Gap uses 7 surrounding pixels if the 
to be predicted pixel is (x,y) in the Bayer pattern then the used pixels are: 

= ℎ = ( ( , − 2)) 

= = ( ( − 2, )) 

= ℎ = ( ( − 2, − 2)) 

= ℎ ℎ = ( ( , − 4)) 

= = ( ( − 4, )) 

= ℎ = ( ( + 2, − 2)) 

= ℎ ℎ = ( ( + 2, − 4)) 
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The average prediction and standard deviation generally improve when using more 
pixels. Next in the algorithm is the calculation of the color shift in each color plane. First 
the change in edges is calculated. 

ℎ = ℎ  ℎ = ( ( − ) + ( − ) + ( − )) 

=  ℎ = ( ( − ) + ( − ) + ( − )) 

= − ℎ 

The value of the prediction is based on the error value. Based on the numerical value 
the best suitable prediction calculation is selected: 

 80 → =    80 → =  

 80 32 → =

+
2 +

−
4 +

2
 

 32 8 → =
3 ∗ (

+
2 +

−
4 ) +

4
 

 8 −8 →
+
2

+
−
4

 

− 8 −32 →
3 ∗ (

+
2 +

−
4 ) +

4
 

32 −80 →

+
2 +

−
4 +

2
 

The Gap method considers more values and makes a detailed prediction for the 
upcoming pixel value. This method will make decent predictions for subtraction. The 
remainder will be a data set with values close to zero or zero. The GAP method will be 
used to prepare the data for rice encoding [11], [30], [31]. A visual representation of the 
pixels used is given in figure 8. 

 

  

Figure 9: Gap method pixel pattern 
[11] 
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3 Material and method 
 

3.1 Material and specifications 
 

3.1.1 TRDB-D5M Camera 
 

“The Micron Imaging MT39P031 is a 1/2.5-inch CMOS active-pixel digital image sensor 
with an active imaging pixel array of 2592 Horizontal and 1944 vertical pixels. It 
incorporates sophisticated camera functions on-chip such as windowing, column and 
row skip mod, and snapshot mode. It is programmable through a simple two-wire serial 
interface.” –D5M datasheet, general description p1 [32].  

The sensor is used to capture high resolution images. The pixel sizes are 2.2ɥm x 
2.2ɥm and images can be captured at a speed of up to 60 fps. The image sensor also 
has several useful features utilized in this work. The snapshot function allows the 
capture of single frame. The bulb exposure mode allows the increase of shutter time and 
creates brighter images when capturing.  

The general description gives us the active image area. For this application, all pixels 
are used. The full Bayer filter is built in a RG1G2B pattern. The pixels for rows and 
columns are given in tables 1,2 and visually represented in figure 10.  

The sensor has built in black pixel calibration. A feedback control system adjusts the 
value captured by the black pixels to fall within a specific threshold. In theory, the value 
for these pixels should always be close to 0. In practice, tests were done and it was 
concluded that there are intensities being captured by the black sensor of up to 0.5% of 
the maximum value [32]–[34] which is a decent result. 

 

Table 1: Dark pixel columns [32] 

Table 2: Dark pixel rows [32] 
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3.1.2 The Altera DE2-70  
 

DE2-70 is part of the cyclone II family. The DE2-70 board has many features that allow 
the user to implement a wide range of designed circuits. The board has 32-Mbyte 
SDRAM which is used to capture and save single frames. The GPIO’s are used to 
connect the image sensor.  

Programs for this board are written in Quartus II 8.1 as Verilog files. The decision to use 
this board and software language was simply past experiences and availability. The 
physical setup can be seen in figure 11. 

 

 

Figure 11: Hardware setup 

Figure 10: Visual representation of dark pixels and active image D5M [32] 
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3.1.3 Matlab R2016b 
 

The images captured using the camera and registered by the FPGA were processed 
using Matlab. 

3.2 Implementation 
 

3.2.1 Source code 
 

Altera has a tutorial for the use of the DE2-70 camera. This tutorial captures data, sends 
to VGA and allows you to capture images. The code of this tutorial was used as a base 
and adjusted or rewritten for this application. 

The method to capture images was as following: 

1. At 60 MHz, the registry of the camera is loaded into the FPGA; 
2. The information of the registry is loaded into CCD_Capture to link data of the same 

frame together; 
3. The data of the whole frame is loaded into RAW2RGB which transforms it from RAW 

to RGB; 
4. The value of each color channel is send to the VGA output and the NIOS II 

processor for capturing. 

3.2.2 Black pixel calibration 
 

The first adjustment made was the removal of the RAW2RGB code so that RAW image 
value could be read out. This was accomplished by writing the data into a single bit 
stream. The initial data stream is loaded into a converter and the resulting RAW values 
are send to the processor for capture. 

The data images proclaimed by the camera is set to a resolution of 1280x1024 pixels at 
60 MHz. The pixels used for capture in the original program were part of the active 
image area. The first implementation was the adjustment of the I2C configuration of the 
sensor to read out an image of 1280x1024 pixels but containing the upper and right 
black pixel rows and columns.  

The I2C configuration of the sensor was originally set to start at the active image pixels. 
An alteration of the sensor_start_row and sensor_start_column variables allowed for the 
capture of the black pixel values. The images are captured using a NIOS II processor 
which was made by Alterra for this specific sensor. To get satisfactory results, when 
capturing images, all information input into the processor must be structurally equal to 
the original. 

When the adjustments are made the ability to capture the RAW images of the camera 
with a border of black pixels on the upper and right border now exists. The images 
captured will be used to test the code in Matlab. The NIOS II processor does not allow 
the implementation of the compression method and the processor due to lack of RAM.  
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3.2.3 GAP method 
 

The Gap method utilizes the CFA capture data as input data, performs the GAP 
algorithm and sends it through to a histogram module. The histogram should show a 
peak near zero in the middle of the screen to confirm success. The prediction is 
calculated with incoming data, stored for one clock cycle and released as prediction. 
When the values are negative, an adjustment must be made to prevent data loss. See 
figure 13. 

The histogram, as shown below, features the different values resulting from the GAP 
module. A Laplacian distribution with a peak around zero is the result of the histogram. 
The output data of the GAP method together with the control signals are read out into 
the Golomb-Rice encoding module. The clock controlling is 60 MHz to keep up with the 
incoming data. See figure 14. 

Figure 12: Loading in black pixels 
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3.2.4 Golomb-Rice encoding 
 

Now the information is prepared for Golomb-Rice encoding. The data output of the GAP 
module is loaded into the data input of the encoding module. First, the data is loaded 
into a data2unary function which calculates the quotient and the remainder. The quotient 
is simultaneously transformed into unary coding and send back to the encoding module. 
The unary output is a register containing the quotient number of bits 1. The Remainder 
output contains the remainder of the division. See figure 15. 

The unary encoding makes up the first part of the encoded word. Presenting the amount 
of times the divider m can fit into the incoming data. Second, the encoded register is 
shifted left by k bits to allow us to store the remainder and input the division bit. The 
length of the word is the value of the number of bits which will be transmitted to the 
processing system since this value is still stored in a set register. See figure 16. 

 

Figure 13: GAP method preparing variables 

Figure 14: GAP method implementation 

Figure 15: Writing input data as unary 
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Figure 16: GAP algorithm implementation 
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4 Results 
 

The results were calculated using Matlab, pictures below show a grey value image 
captured by the D5M camera. The results of the implemented method can be seen in 
figure 17-21. Figures 17-19 represent respectively the original image, the prediction 
made by the GAP method and the error between them. Images are processed by the 
FPGA according to the clock controlling the camera. The FPS of the camera is the 
limiting factor. Results in the form of images of the compression performed on the FPGA 
can be found below as well as in attachments. The first image shows the histogram of 
the GAP method with the captured value on the background. The second image shows 
the value of the image through color: 

 Red = low values, 0-750 (0-1024 but is dominated by green in higher values), 
 Green = medium values, 751-1250, 
 Blue = high values, 1251-2047 (1025-2047 but is dominated by green in lower 

values). 

The image seems to be largely dominated by red and blue whilst the original image was 
clearly greener. The reason behind this is that low values become lower since they are 
stored in less bits and the remainder is defaulted to zero. The high values become 
higher since the start of each encoded word is many ones mimicking high intensity. This 
can effectively almost eliminate the medium values from the dataset since they will 
either be translated to a higher or lower value. The results from the compression on the 
FPGA can be seen in figure 20-21. Be mindful that this is merely a representation of the 
function since some large encoded words cannot be properly represented through VGA 
cable. 

 
Figure 17: Input RAW image 

Figure 18: Visual representation of 
prediction 

Figure 19: Error = abs(input image - 
prediction) 
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Figure 20:: Image prior to compression, color represents value of pixel. Blue line represents the histogram of data recalculated 
by the GAP algorithm. 

Figure 21:  Image after compression, color represents value of pixel 
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4.1 Compression ratio 
 

The achieved compression ratio is calculated with the following formula: 

 =  
  

  
 

The calculation is based on the number of bits needed to transfer the files as would be 
the case during compression. The encoding method requires the divider to be a multiple 
of 2. The divider, m, alternated between 2,4,8,16 and 32. The input image data is 
divided by m. The value of the intensities of incident light were originally stored in 8 bits. 
The rest storage bits, k, represent the number of bits used to store the remainder of the 
division. 

First, the overall results will be discussed. The results show that the compression 
method is most effective when m = 2 and the remainder k = 1. A slightly worse result is 
achieved when m = 4 and k = 2. The compression ratio decreases steadily when m 
increases. The splitting value, which is 0 or 1, as previously stated is the bit which 
divides the unary coding of the Golomb-Rice encoding method from the remainder of the 
division. As expected the use of different splitting values does not affect the 
compression ratio. The bitstream resulting from the compression shows that there are 
less shifts between 1 and 0 required when the division bit equals 0. Utilizing 1 as 
splitting value would be preferable since this makes the values easier to decode. i.e. 
When zero is encoded with m = 4 and k = 2 would result in a rice-encoded value of 100 
using 1 as divider bit and 000 using 0 as divider bit.  

Second, the results between m = 2, k = 1 and m = 4 and k = 2 will be discussed. A 
decrease in compression ratio is caused by doubling the storage bits of the remainder. 
The decrease is quite significant and shows the fact that the results from the predictor 
are often zero or very close to zero. The results conclude an abundance of storage bits 
when m = 4 on the images taken by the camera.  

Third, the results between m = 2, k = 1 and m = 8, k = 3 will be discussed. The number 
of values close to zero or zero is very predominant in the dataset. The bits needed to 
store zero in Golomb-Rice encoding for the first case is 2 while the second case is 4. 
The bits saved for higher values in the prediction are nullified by the bit added each time 
the prediction is correct since this will be more predominant in the dataset. 

The value of the divider m should be kept low since a good working predictor will result 
in an overcompensation in storage bits. Most images have unpredictable sudden 
changes in surrounding pixels and can cause a bad prediction. The sacrifice of 1 bit per 
pixel will be justified in such cases. 

Fourth, compression for all three methods is examined for several CFA stock images. 
The results show that the average bits per pixel (BBP) go down when the divider goes 
down. The BBP is calculated with the following formula: 

BBP = Bits per pixel =
Original bits per pixel

Compression ratio
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This fact reveals that the predictor works accordingly but struggles with some types of 
images. The best results seem to be achieved for darker images. The stock images can 
be found at the end of this work in the attachments section. The testchart and webcam 
stock images are generally dark while the lighthouse and testimage stock images show 
a much lighter contrast. The lighthouse images even result in a negative compression 
ratio meaning it will take more bits to compress this image then it would take sending the 
picture through in original form. The tests in the next section try to explain the decrease 
of compression ratio as intensity increases.  

The following tests will be performed with the best method for compression namely  

 m = 2  
 k = 1  

The results show the influence of different external factors on this form of data 
conversion. 

Table 3: Different dividers and their influence on compression ratio  

Golomb-Rice encoding 
Bytes send, 
 splitting value = 1   Compression ratio 

divider = 2, rest storage bits = 1 3051749 2.831 

divider = 4, rest storage bits = 2 3908333 2.211 

divider = 8, rest storage bits = 3 6481187 1.333 

divider = 16, rest storage bits = 4 7688108 1.124 

divider = 32, rest storage bits = 5 8960885 0.964 
Original 8640000  

 

Table 4: Different dividers and their influence on compression ratio with splitting value = 0 

Golomb-Rice encoding 
Bytes send, 
Splitting value = 0  Compression ratio 

divider = 2, rest storage bits = 1 3051749 2.831 

divider = 4, rest storage bits = 2 3908333 2.211 

divider = 8, rest storage bits = 3 6481187 1.333 

divider = 16, rest storage bits = 4 7688108 1.124 

divider = 32, rest storage bits = 5 8960885 0.964 

Original 8640000  
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Table 5: Average compression ratio and Bits per pixel (BPP) for varying CFA images for encoding with different 
dividers and rest storage bits 

Image/CR m = 2, k = 1 m = 4, k = 2 m = 8, k = 3 
m = 16, k = 
4 

m = 32, k = 
5 

Camera 
capture 2.8312 2.2107 1.3331 1.1238 0.9642 

Lighthouse1 0.8558 1.1621 1.3154 1.3126 1.2203 

Lighthouse2 0.8530 1.1591 1.3139 1.3116 1.2202 

Lighthouse3 0.8718 1.1768 1.3250 1.3172 1.2227 

Lighthouse4 0.8733 1.1778 1.3257 1.3172 1.2229 

Testchart1 2.1356 1.9757 1.7456 1.4950 1.2856 

Testchart2 2.1336 1.9761 1.7425 1.4950 1.2856 

Testchart3 2.1358 1.9762 1.7453 1.4951 1.2856 

Testchart4 2.1334 1.9759 1.7436 1.4950 1.2856 

Webcam1 2.3236 2.0468 1.7520 1.4934 1.2853 

Webcam2 2.3251 2.0474 1.7521 1.4935 1.2849 

Webcam3 2.3250 2.0473 1.7521 1.4936 1.2853 

Webcam4 2.3252 2.0474 1.7521 1.4934 1.2853 

Testimage1 1.0739 1.3548 1.4387 1.3663 1.2393 

Testimage2 1.0742 1.3546 1.4386 1.3664 1.2393 

Testimage3 1.0730 1.3542 1.4382 1.3660 1.2393 

Testimage4 1.0739 1.3547 1.4387 1.3664 1.2394 

Average 1.6716 1.6705 1.5501 1.4001 1.4022 

Average bpp 4.7858 4.7891 5.1608 5.7139 5.7054 
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4.2 Influence of exposure 
 

As stated previously, the further tests will be performed with a divider, m, = 2 and the 
number of storage bits, k, = 1. The tests were performed on several images taken at 
different exposure rates. The prediction was a decrease in compression with higher 
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divider =
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Ratio when splitting value = 1 2.831 2.211 1.492 1.124 0.964
Ratio when splitting value = 0 2.831 2.211 1.492 1.124 0.964
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exposure since previous results show darker images to have a better compression ratio. 
Results concluded the exact opposite. The compression ratio increases when the 
exposure increases.  

First, the result of the standard image is explained. The standard was taken in an 
artificially lit room with various varying color objects present. The D5M camera has a 
function to increase exposure time allowing more photons to be captured by the camera 
per frame. The standard image shows a compression ratio of 1.979. The pictures 
relative to this test were taken minutes apart meaning their relation to one another are 
uncompromised.  

Second, the darker the image becomes, the lower the compression ratio. The test 
pictures show more shadows and dark spots at low exposure times. The presence of 
change in intensity will cause the amount of errors in the prediction to increase. Shadow 
can cause the sudden shift in intensity where the shadow starts and ends.  

Third, the bright image seems to have a better compression. The test pictures show an 
increase in intensity around the border. More pixels reach the maximum value of 255 
when the exposure is increased and these pixels border each other. The prediction will 
be more accurate when block of pixels with the same value exist. The longer exposure 
allows more incident light to be captured and will increase compression ratio. The lack of 
these pixels explains why the compression ratio drops at low exposure since pixels will 
rarely reach the same exact value causing error increase.  

The increased intensity of pixels does not affect the compression ratio negatively. An 
explanation for the bad compression ratios of the lighthouse and testimage stock images 
is now clear. The compression ratio is negatively affected by the range of pixel values. 
Light images that only contain high pixel values will have the same good compression 
ratio as dark images that contain only low pixel values. The existence of extremes, 
especially local extremes, will cause great errors in the prediction and lower the 
efficiency of compression dramatically.  

Table 6: Influence of exposure on compression ratio for divider = 2 and rest storage bits = 1 

Lighting   bytes send Compression Ratio 

 Original 11796480  
underexposure Compressed 5631791 2.095 

standard Compressed 5548968 2.126 

overexposure Compressed 5365910 2.198 
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4.3 Influence of intensity shifting 
 

The tests were performed on several stock images with different colored objects and 
varying objects in the background. The prediction was an increase in compression with 
an increase in objects since the amount of unpredictable intensity changes increase 
when objects of varying color are located near one another. Results met the prediction. 
The compression ratio goes up when the number of objects decreases.  

First, the test is explained. The stock images contained 4 slightly varying pictures of the 
same objects. Removing or shifting an object each image. The average of the 
compression ratio of each corresponding image is calculated, for m = 2, 4, 8, 16 and 32, 
and used to represent the overall compression ratio of their respective images.  

Second, the relation between the nature of the images and the compression ratio is 
studied.  

The lighthouse image shows an image with large intensity shifting in all part of the 
picture. The compression ratio is inadequate to expectations. The presence of shades 
and random patterns all over the picture makes calculation the upcoming pixel values 
difficult.  

Next, the testchart image. The picture shows a dark largely reoccurring pattern with 
small shifts in intensity found in the picture. The compression ratio meets expectations 
for the image. The low variation in intensity causes errors but the value of the error is 
low since the surrounding pixel intensities are low.  

Following is the discussion of the webcam image. The image shows a poorly lit room 
with varying objects and shapes with overall similar intensities save a few exceptions. 
The compression is adequate to expectations. The large amount of variation and 
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shadow in this picture cause errors but the number of generic color and intensity make 
up for these errors. 

Last, the testimage is examined. The picture shows an enormous amount of varying 
color and intensity throughout the picture in a well-lit room. Compression of this image is 
below average because of the large amount of intensity variation. The image was taken 
in good lighting causing the compression to be better than the lighthouse image. 

Table 7: Nature of pictures influence on the compression ratio for the average compression of the images 

 Compression ratio 

captured 1.6926 

lighthouse 1.1777 

testchart 1.7271 

webcam 1.7806 

testimage 1.2945 
 

 

 

4.4 Discussion 
 

The testing of the implemented method concludes an average compression ratio of 
1.6716 for varying images. for images in RAW format taken by the camera, the ratio 
increases to 2.8312 In other words, a standard pixel value can be stored in 3 to 4 bits 
where originally it was stored in 8. There is an effective gain of 4-5 bits per pixel (BPP). 
When comparing these values with the results of other lossless compression methods it 
can be concluded that commercialized compression methods like JPEG-LS and SLIC 
achieve a better ratio for RGB images.   

When comparing the method to other lossless RAW image compression schemes it is 
shown that some methods reach a better BBP average. The JPEG-LS’ results, having 
lost its RGB values, have dropped significantly. The BPP reached by this work has an 
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average of 4.7858 which is slightly worse. Two tables of results from other works are 
given for different lossless compression methods. Information was taken from [35] for 
RGB images and [36] for CFA images. 

When comparing these to values found in [2], [3], [26], [35], [36], it can be concluded 
that this method is a valid alternative for lossless raw image compression. Better results 
can be achieved with a study into the best prediction algorithm for Golomb-Rice 
encoding or testing different compression algorithms for RAW images i.e. Huffman 
entropy encoding.  

The decompression method reads the bitstream and counts the 1’s until it reaches a 0. 
The 0 represents the end of the unary encoding signaling the start of the remainder. The 
remainder is read in as a value and added after the number of bits unary encoded times 
the divider m. The results of the decompression are loaded into the dePaeth module to 
restore the original value. The implementation on hardware was not optimized for speed 
or optimization.  

For the implementation on FPGA, the suggest value for M and K is respectively 8 and 3 or 16 
and 4. The reasoning is the matlab images contain intensity values from 0-255 while the FPGA 
has a maximum intensity value of 2048. Larger errors are possible and the implementation must 
be adjusted accordingly. 

Table 8: Lossless compression method comparison for RGB images[35] 

RGB BPP 

 Huffman 5.295 

Runlength 7.599 

Huffman + Runlength 5.236 

LZW 6.048 

Arithmatic 4.625 

JPEG-LS 4.190 

SLIC 4.484 
 

Table 9: Lossless compression method comparison for CFA images[36] 

CFA BBP 

JPEG-LS 5.649 

JPEG2K 5.953 

LCMI 4.198 

CMBP 4.025 
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5 Conclusion 
 

Raw image compression can be useful for the implementation of multi-camera systems. 
Preserving the image quality and removing noise is crucial for the creation of the 3d 
image. The amount of applications previously designed on the joint denoising and 
compression of RAW images is limited. Research is focused on improving RGB image 
applications. The works shows that at least the same amount of compression and 
precision can be achieved by lossless RAW image compression.  

Implementation on the FPGA can be achieved effectively when the right design choices 
are made with hardware implementation in mind. The divider m should be chosen 
according to the nature of the images taken. Larger image intensities will benefit from 
having a larger divider while images with little varying shades can be stored more 
efficiently in fewer bits. The work shows that the compression ratio is negatively affected 
by differing intensity extremes in the images. Features like shadows and sudden 
intensity changes should be avoided for this compression method to work effectively.  

The compression method reached an effective compression rate of 1.6716 for natural 
images which translates to a BPP rate of 4.7858 almost matching general lossless 
compression methods for RGB and RAW imagery.  

Future works can study the different compression algorithm and alter the predictors for 
varying applications. More work into the compression and denoising of RAW images can 
be performed. There have been few studies on the concept of RAW image denoising 
and compression since most works focus on one problem be it denoising or 
compression. Few works have previously been completed studying both. The study of 
using wavelet transformations and some joint denoising and demosaicking methods 
might achieve interesting results. 
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Figure 27: lighthouse images 1 to 4 [37] 
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Figure 28: testchart images 1 to 4 [37] 
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Figure 29: testimage images 1 to 4 [37] 
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Figure 30: webcam images 1 to 4 [37] 
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Figure 31: original image large 
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Figure 32: predicted image large 
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Figure 33: error image large 
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