
2016•2017
FACULTEIT INDUSTRIËLE INGENIEURSWETENSCHAPPEN
master in de industriële wetenschappen: elektronica-ICT

Masterproef
How to distribute most efficiently a computation intensive calculation on an
Android device to external compute units with an Android API

Promotor :
dr. Kris AERTS

Promotor :
Mr. KUI WANG
prof. JARI NURMI

Lander Beckers , Henning Lakiere
Scriptie ingediend tot het behalen van de graad van master in de industriële
wetenschappen: elektronica-ICT

Gezamenlijke opleiding Universiteit Hasselt en KU Leuven

 2016•2017
Faculteit Industriële
ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterproef
How to distribute most efficiently a computation
intensive calculation on an Android device to external
compute units with an Android API

Promotor :
dr. Kris AERTS

Promotor :
Mr. KUI WANG
prof. JARI NURMI

Lander Beckers , Henning Lakiere
Scriptie ingediend tot het behalen van de graad van master in de industriële
wetenschappen: elektronica-ICT

i

PREFACE

This thesis is written in order to complete our master education in electronics and ICT engi-

neering at UHasselt Belgium. The development and writing of this thesis has been done in the

Tampere University of Technology, Finland. K. Aerts was the supervisor of our home university,

Prof. J. Nurmi and PhD student K. Wang supervised us during the exchange period.

After several meetings with our supervisors we had a solid idea of what the thesis should be

about and what the research question should be. We had some major problems with multiple

software versions, but thanks to dedicated research and trial and error we were able to fix all

of these issues.

We would like to thank our supervisors to contribute in our work and keep us motivated along

the whole experience.

Thanks, to all our family members who visited us here in Finland to provide us with some

comfort after surviving the cold winter and to all new friends we met here. Without the other

exchange students, this experience would not have been this great.

Lander Beckers

Henning Lakiere

Tampere, (6th of June 2017)

ii

iii

ABSTRACT

BECKERS LANDER, LAKIERE HENNING: Efficient distribution of a computation intensive
calculation on an Android device to external compute units with an Android API
Master of Science thesis, 82 pages
6th of June 2017
Major: Embedded Systems
Keywords: Parallel computing, SoC, CPU, FPGA, Android, Bluetooth WebSocket, OpenCL, C++,
Java

Dutch abstract

Is processor intensieve berekeningen overbrengen naar externe rekeneenheden een nieuwe trend?

Deze master thesis onderzoekt of het sneller is om een matrixvermenigvuldiging door te sturen

naar en uit te rekenen op een externe rekeneenheid in plaats van direct op de smartphone.

Matrices worden via Bluetooth of WebSocket tussen de smartphone en System-On-Chip (SoC)

uitgewisseld. De gebruikte rekeneenheid is TerASIC’s SoC, uitgerust met een Intel Altera

Cyclone V Field Programmable Gate Array (FPGA) en Dual-core ARM A9 processor. Indien

de matrices groter zijn dan 1660x1660, dan zal de SoC sneller de matrix vermenigvuldiging

kunnen berekenen dan de Android smartphone.

De matrixvermenigvuldiging wordt geaccelereerd in een OpenCL kernel op de FPGA, gestuurd

door een in C++ geschreven programma op de processor.

Experimenten toonden aan dat de overdrachtssnelheid van Bluetooth 500 keer trager is dan

WebSocket, verdere experimenten zullen dus beter geen Bluetooth implementeren. Matrices

groter dan 2338x2338 zijn sneller doorgestuurd, vermenigvuldigt en teruggestuurd op de SoC,

dan op de Android smartphone zelf. Verder onderzoek zou andere OpenCL kernels kunnen

ontwikkelen die andere berekeningen uitvoeren op niet-vierkante matrices.

iv

v

English abstract

Is transferring computation intensive calculations to external compute-units the next trend?

This master’s thesis researches if it is worth the effort to transfer a matrix multiplication from an

Android phone to a System-on-Chip (SoC), using Bluetooth or WebSocket as communication

protocols. The SoC solution used in this work is an Intel Altera Cyclone V based board

from TerASIC, equipped with a Field Programmable Gate Array (FPGA) including a Dual-

core ARM A9 processor. Because the matrix size has a strong correlation to the number of

calculations in a matrix multiplication, the calculation time on a CPU and FPGA will differ

when the matrices grow in size. Comparing the multiplication times on Android and SoC,

matrices with a matrix size above 1660x1660 are calculated faster on the SoC.

The matrix multiplication is accelerated using an OpenCL kernel on the FPGA, guided by a

host program on the processor programmed in C++.

Experiments have shown that Bluetooth has a 500 times lower transfer rate than WebSocket,

resulting in choosing only WebSocket for further investigations. Due to the transfer times,

the minimum matrix size to win time by extending the multiplication to a SoC is 2338x2338.

Although the implemented matrix multiplication does only support square matrices, future

research could develop multiple kernels of different algorithms that support a variation in width

and height.

vi

vii

Authors’ Contributions

Chapter Section Author

Poster Lander

Abstract Lander

Preface Henning

1 Introduction Lander

2 Theoretical background 2.1 Matrix multiplication Lander

2.2 Parallel computing Henning

2.3 Smartphone Henning

2.4 Communication Henning

2.5 SoC Lander

3 Implementation 3.1 Communication protocol Henning

3.2 SoC Lander

3.3 Android Apps Henning

4 Results 4.1 OpenCL performance Lander

4.2 Phone performance Henning

4.3 Bluetooth vs WebSocket Henning

4.4 Conclusion of the results Lander

5 Conclusion Lander

viii

ix

CONTENTS

Preface . i

1. Introduction . 1

2. Theoretical background . 3

2.1 Matrix multiplication . 3

2.2 Parallel computing . 4

2.2.1 What is parallel computing . 4

2.2.2 Classification of parallel computing . 6

2.2.3 OpenCL . 7

2.3 Smartphone . 8

2.3.1 Android OS . 9

2.3.2 Android Studio . 9

2.4 Communication . 9

2.4.1 Bluetooth . 10

2.4.2 WebSocket . 14

2.5 SoC . 18

2.5.1 Hard Processing System . 19

2.5.2 FPGA . 28

2.5.3 Bridges . 34

2.5.4 Quartus . 36

3. Implementation . 41

3.1 Communication protocol . 41

3.1.1 Bluetooth communication protocol . 42

3.1.2 WebSocket communication protocol . 44

3.2 SoC . 45

3.2.1 Websocket . 46

3.2.2 Bluetooth on the HPS . 48

3.2.3 Bluetooth on the FPGA . 52

x

3.2.4 OpenCL host . 56

3.2.5 OpenCL kernel . 57

3.3 Android apps . 60

3.3.1 Matrix multiplication . 60

3.3.2 Bluetooth application . 62

3.3.3 WebSocket application . 65

4. Results . 69

4.1 OpenCL performance . 69

4.1.1 Global memory sum storage . 70

4.1.2 Local memory sum storage . 71

4.1.3 Global to local memory copy . 71

4.1.4 Global memory sum storage on the MacBook Pro 72

4.1.5 Comparison between matrix multiplications on different architectures in
Java and OpenCL . 73

4.2 Phone performance . 74

4.2.1 Matrix multiplication . 74

4.2.2 Bluetooth app . 74

4.2.3 WebSocket app . 75

4.3 Bluetooth vs WebSocket communication speed 76

4.3.1 WebSocket transmission . 77

4.3.2 Bluetooth transmission . 77

4.3.3 Bluetooth vs. WebSocket . 78

4.3.4 WebSocket and SoC vs. Android smartphone 79

4.4 Conclusion of the results . 80

5. Conclusion . 81

Bibliography . 83

xi

LIST OF FIGURES

2.1 Workflow serial computing . 5

2.2 Workflow parallel computing . 5

2.3 Four possible classifications according to Flynn’s Taxonomy 6

2.4 Architecture classes from Flynn’s taxonomy . 7

2.5 Piconets and Scatternets . 11

2.6 Bluetooth protocol stack . 12

2.7 WebSocket handshaking . 15

2.8 Standard WebSocket dataframe format . 16

2.9 Layout of the DE1SoC development board of TerASIC 19

2.10 Cyclone V Hard Processing System layout . 20

2.11 Compilation process from High level programming language to an executable file

[17] . 22

2.12 OpenCL real life applications kernel cycle . 28

2.13 FPGA design flow . 29

2.14 HDL races figure . 31

2.15 OpenCL kernel representative school layout . 34

2.16 OpenCL kernel layout: The circles represent work items with a dot in the middle

as private memory . 34

2.17 Qsys internal connections . 37

2.18 Qsys configuration of bridges . 37

2.19 FPGA design flow . 38

2.20 SignalTap II Logic Analyzer layout . 39

xii

3.1 Correct message transfer . 42

3.2 Incorrect message transfer . 43

3.3 Delayed message . 43

3.4 Switch matrix message . 43

3.5 Sending matrix A and B . 45

3.6 Sending result matrix . 45

3.7 Block diagram of the implemented system on the SoC with both the HPS and

FPGA modules . 47

3.8 Graphical programming layout of the system in Qsys 55

3.9 Matrix multiplication app . 61

3.10 Bluetooth menu . 61

4.1 Comparison between OpenCL kernel and Android matrix multiplication calcu-

lation times. The vertical axis is in logarithmic scaled. 70

4.2 Comparison between matrix multiplications on different architectures, with and

without the matrix transportation time . 73

4.3 Result screen matrix multiplication . 75

4.4 CPU and RAM usage . 75

4.5 Results for Android matrix multiplication . 75

4.6 CPU and RAM usage Bluetooth . 76

4.7 Bluetooth app log . 76

4.8 WebSocket app log . 76

4.9 RAM, network and CPU usage WebSocket . 77

4.10 WebSocket transmission time for phone to SoC and vice versa 78

4.11 Bluetooth transmission time . 78

xiii

4.12 Bluetooth transfer time vs. WebSocket transfer time 79

xiv

xv

LIST OF TABLES

3.1 OpenCL kernel: matrix multiplication implementation flow table with matrix-

Size equal to two . 59

4.1 Resource usage in global memory implementation 71

4.2 Resource usage in local memory implementation 71

4.3 Resource usage global to local memory copy implementation for 128 x 128 matrices 72

4.4 Resource usage global to local memory copy implementation for 64 x 64 matrices 72

xvi

xvii

LIST OF ABBREVIATIONS

ASIC Application-Specific Integrated Circuit

CAD Computer Aided Design

CPU Central Processing Unit

DDR Double Data Rate

FPGA Field Programmable Gate Array

GPIO General Purpose Input Output

GPU Graphical Processing Unit

GUI Graphical User Interface

HDL Hardware Description Language

HPS Hardware Processing System

IP Intellectual Property

IC Integrated Circuit

OS Operating System

PCB Printed Circuit Board

SDRAM Synchronous Dynamic Random Access Memory

SoC System on Chip

SOF SRAM Object File

UART Universal Asynchronous Receiver Transmitter

Verilog Is a HDL like VHDL, but with a different syntax

VHDL VHSIC Hardware Description Language

VLSI Very Large Scale Integration

xviii

1

1. INTRODUCTION

Since Baron J.J.B discovered silicon in 1823, 125 years passed by before the first transistor was

created. Transistors are the main components in all electronic circuits. It took another 25 years

to publish the first microprocessor, named Intel 4004. The 4-bit Intel 4004 was able to perform

60.000 operations per second and was built with 2300 transistors. Five years earlier, in 1965,

Gordon E. Moore made a statement in a paper [10], called ”Moore’s law”. Moore’s law is now

a computing term, specifying that the number of transistors available on an integrated circuit

doubles every two years. 50 years after he published his paper, his law is still standing. Every

year since, processors kept increasing their clock frequency, internal memory and register width.

The register width of the Intel 4004 was 4 bits. 4 bits increased to 8, 16, 32 and nowadays

commercial available 64-bit architectures.

Ten years after the first commercial processor, Intel 4004 [14], was released, the first Field

Programmable Gate Arrays (FPGAs) were created [35]. They where difficult to program,

expensive and had a small amount of configurable logic blocks. Most designers avoided them and

used processors and/or ASICs. ASICs are Application-Specific Integrated Circuits, designed

for a specific purpose. When the application required parallel data processing, ASICs were

used. Disadvantage of ASICs are the high initial production costs and difficult development.

Although these days FPGAs have more logic blocks than ASICs and are partially reconfigurable

after final configuration, ASICs are still used in high mass productions.

A next step in the evolution could be a combination of both Central Processing Unit (CPU)

and FPGA. CPUs are amazingly stable, cheap and it is easy to develop programs for execution.

FPGAs on the other hand are relative more expensive, more difficult to configure and consume

more energy than comparable CPUs. Although right now you might think that CPUs are better

than FPGAs, FPGAs have one advantage above all CPUs: they can massively process data in

parallel. There exists something in-between, called a Graphical Processing Unit (GPU). GPUs

differ from FPGAs with their fixed internal configuration and are able to compute the same

instruction on multiple data. More about this can be found in 2.2: Parallel computing.

The following questions must be answered in this thesis, in order to answer our research ques-

tion: ”How to most efficiently distribute a computation intensive calculation on an Android

device to external compute units with an Android API?”. During this thesis a matrix mul-

2

tiplication from an Android phone is transferred to a System-on-Chip (SoC). The used SoC

in this thesis is TerASICs DE1SoC, equipped with an Intel Altera Cyclone V FPGA and a

Dual-core ARM A9 processor. The main purpose of extending this calculation to a SoC, is

achieving a faster matrix multiplication result. The most interesting question will be: can a

matrix multiplication, extended to a SoC, calculate a faster result than a multiplication on the

Android device and/or at which matrix size is it profitable? Other interesting questions are,

which communication protocol will be the most reliable and fastest to exchange matrices with

the SoC. We will implement two communication protocols, Bluetooth and WebSocket.

This thesis comprises three chapters: Theoretical background, Implementation and Results.

Firstly, we will describe which knowledge and resources are used to develop the programs for

the SoC and the Android application. Secondly, the complete implementation is explained in

depth. Beginning with the character error detection algorithm, this algorithm is mandatory

to ensure zero package loss during Bluetooth communication. There are two other parts in

this chapter: SoC and Android. Section SoC implements both Hard Processor System (HPS)

and FPGA systems. The HPS is used as a host to start everything: receiving, calculating

in OpenCL and receiving with both Bluetooth and WebSocket as communication protocols.

During the calculations or when Bluetooth is used, the FPGA needs to be programmed and

accessed from HPS. All calculations are performed by OpenCL on the FPGA side of our SoC.

Android is our ”customer”, if a matrix calculation needs to be processed, then the Android

application can connect to the SoC and transfer the matrix multiplication. Thirdly, we will

discuss the results in chapter ”results”. We consider two questions useful to solve this thesis’s

problem. How does the OpenCL calculation perform compared to a single threaded CPU? The

basic step is to verify if OpenCL is able to accelerate the matrix multiplication, otherwise our

research question is already unfeasible. Afterwards, the communication to share the matrices

has to be quick enough to ensure a faster result matrix on the Android. When the total matrix

transmission times added with the OpenCL calculation time is larger than the single treaded

matrix multiplication on Android, then already a final conclusion is achieved. The last chapter

”Conclusion” will respond to all questions asked in this paragraph.

3

2. THEORETICAL BACKGROUND

All used knowledge and resources are explained in depth in this chapter. The basic matrix

multiplication algorithm is explained in section 2.1 and a basic analysis is made to count the

number of calculations depending on the matrix size. In the next section 2.2 describes and clas-

sifies parallel computing. In 2.3 is discussed how an Android application is compiled, developed

and executed. Next, sections 2.4.1 and 2.4.2 explain respectively the basics of Bluetooth and

WebSocket communication. Every component of the matrix multiplication accelerator ”SoC”

can be found in section 2.5, those components are the HPS, the FPGA and the bridges between

the two combined with the development software used.

2.1 Matrix multiplication

Before explaining why we have chosen a matrix multiplication as a computation intensive

algorithm, we will show how matrices A and B are multiplied in equation 2.1 [34].

[
1 2

3 4

]
×

[
5 6

7 8

]
=

[
1× 5 + 2× 7 1× 6 + 2× 8

13× 5 + 4× 7 3× 6 + 4× 8

]
=

[
19 22

93 50

]
(2.1)

This is the most common method to multiply two matrices and it works in every situation.

When a calculation is complex, people tend to divide the problem into a number of multiple

smaller/easier problems. Using matrices to describe functions is one of those easier ways to

deal with real life problems. That is the reason why most common tools in engineering use

matrices. The numbers in a matrix represent the data from measurements or approximations

given by mathematical equations. In many time-sensitive applications a faster method to solve

matrix calculations could give faster approximations for real life problems [11]. We needed to

choose a specific matrix calculation to implement and have set the shape of the matrices as

square. The reason why we have chosen a matrix multiplication is concluded from equation 2.2.

This equation clearly shows that the number of calculations grows faster than the matrixSize

to the power of 3. By parallelizing, all calculations are placed in parallel, resulting in a bigger

throughput.

4

numberOfCalculations = (2× size− 1)× size2 (2.2)

M =

[
A B

.. ..

]
(2.3)

N =

[
F ..

G ..

]
(2.4)

R1 =

[
A× F + B ×G ..

.. ..

]
(2.5)

This is how we derive equation 2.2. First, the number of calculations when calculating the first

element of the result matrix R1 are counted. When processing the matrix multiplication M x

N a count of three calculations, i.e. one addition and two multiplications, is achieved. After

processing the same calculation for a matrix with size five, the result matrix R2 in equation

2.6 will be calculated. Result matrix R2 contains 4 additions and 5 multiplications for each

element, resulting in 20 (4 x 5) calculations. The number of calculations for one element in the

result matrix is always equal to ”number of additions” added with ”number of multiplications”

and the number of elements in a result matrix are equal to matrixSize x matrixSize. When

those are combined in a formula, this results in equation 2.2.

R2 =

A× F + B ×G + C ×H + D × I + E × J

..

..

..

..

(2.6)

2.2 Parallel computing

Parellel computing has made an uprising in the last couple of decades. Due to some technology

constraints developers moved to multicore processors. This is not the only way of parallel

computing, but more will be explained in the next sections.

2.2.1 What is parallel computing

The problem when facing large calculations is that they require a lot of computing power and

thus time. Performing these calculations can be done with two types of computation, serial

5

and parallel computing. Serial computing means, you have one compute unit (e.g. a single-core

CPU) available that performs all instructions on a certain set of data. This set of data will be

broken into multiple smaller subparts that will be solved by a certain instruction. The single

compute unit performs the instruction on every subpart in order to solve the whole part as

shown in figure 2.1 [8].

Figure 2.1 Workflow serial computing

Parallel computing, on the other hand, is the simultaneous use of multiple compute units, or

a compute resource, to solve a computational problem. This compute resource can be a CPU

with multiple cores, a combination of a CPU with different compute accelorators such as a GPU

or even a whole network of computers and servers. We break the main problem into smaller

subproblems as we did with serial computing. Now, since there are multiple compute units, we

can distribute the subproblems among all these compute units. Every unit can now perform

an instruction on their given subproblem simultaneously as shown in figure 2.2. With multiple

Figure 2.2 Workflow parallel computing

compute units executing one task, we will shorten the completion time and even have a potential

cost saving. It also allows us to solve larger/complex problems since a single computer could

suffer from limited memory. And last, we are able to access non-local resources in a network

that would not be accessible from a local computer.

It is easy to conclude that the concept of parallel computing was to have a more efficient way

to handle large sets of data such as huge databases, images or simulations that involve large

6

datasets. It is also easier to deal with complex data for example algorithms [8].

2.2.2 Classification of parallel computing

Parallel computing systems can be separated into different classes. According to Flynn’s tax-

onomy, we can roughly place any of these systems in one of the four classes. This classification

was first studied by Michael Flynn in 1972 [3]. The classifications are determined by two fac-

tors: instruction stream and data stream which both have two possible states being single or

multiple. Figure 2.3 represents a the four possible classes from the Flynn’s taxonomy [8].

Figure 2.3 Four possible classifications according to Flynn’s Taxonomy

• SISD

The SISD class will have a single core processor executing a single data stream to operate

on data stored in a single memory (figure 2.4a). This means that a parallel compute

system cannot be classified as an SISD system, but Flynn’s taxonomy was not made for

just classifying parallel compute systems. Any traditional single-core processor falls into

this category but it is usually old computers or older compute units that can be classified

as SISD.

• SIMD

Data is distributed amongst multiple processors who all execute the same instruction

on this data (figure 2.4b). Since we have access to multiple compute units, parallel

computing can be categorized in this class. Furthermore, this is the class where we can

categorize our subject of the thesis in since we have a large set of data divided over

multiple data streams (MD) and only one instruction stream (SI) since all processing

units will perform the same instruction on the data. The SIMD class contains the most

modern computers, particularly those with a graphics processor unit (GPU).

7

• MISD

Each processing unit operates on the data independently via separate instruction streams

while a single data stream is fed into multiple processing units (figure 2.4c). This class

knows very few applications. An example of an application is the use of multiple cryp-

tography algorithms attempting to crack a single coded message.

• MIMD

This time every processing unit is able to execute a different instruction stream on a

different data stream (figure 2.4d). This means that any instruction can be applied

on any data package for every compute unit. Most supercomputers, networked parallel

computer clusters and ”grids” can be classified as a MIMD compute system. Also, many

MIMD architectures include SIMD execution sub-components.

(a) SISD (b) SIMD

(c) MISD (d) MIMD

Figure 2.4 Architecture classes from Flynn’s taxonomy

2.2.3 OpenCL

Companies worldwide constantly strive to improve computational performance. They start

using GPUs, FPGAs and other compute accelerators that behave as a coprocessor to process

8

parallel workload. In order for these heterogeneous architectures to function properly, we

need software that supports heterogeneous computing on hardware platforms from different

vendors. To make this possible, developers use toolkits such as Threading Building Blocks

(TBB), OpenMP, Compute Unified Device Architecture (CUDA), and others [29]. However,

some of the existing toolkits were limited to either only being able to use a single microprocessor

family or they did not support heterogeneous computing. OpenCL on the other hand provides

a set of easy-to-use abstractions and a wide variety of APIs. OpenCL was developed by the

Khronos group as a parallel computing API for Apple’s OS X release of Snow Leopard back

in 2009. This Khronos group is a mixture of people from different hardware vendors like ATI

technologies, Intel, Nvidia to name a few [2].

One of the main reasons companies start using OpenCL is that in the past they would use

GPUs, when they should be using FPGAs while others had the problem the other way around.

The problem they had is that converting CUDA, which is the parallel computing platform from

Nvidia (GPUs), to VHDL is difficult and annoying to do. More reasons on why OpenCL should

be used to program FPGAs are listed below [22].

• Simplicity and ease of development

Because most software developers are more familiar with C than low-level HDL language,

OpenCL is easy to understand for the vast majority of developers worldwide.

• Code profiling

OpenCL allows you to determine where exactly the performance-sensitive pieces in your

code are. This way it is easy to assign these pieces of code to be executed by hardware

accelerators as kernels.

• Performance & Efficiency

Every developer wants to have his software build in the most efficient way to benefit from

maximum performance. Due to the FPGA’s parallelistic architecture, you only need to

generate the logic the device needs to run the software to deliver high performance.

• Code reuse

Since there are multiple devices that are supported by OpenCL, you can reuse your already

written code on almost any of the other devices without having to change a thing.

2.3 Smartphone

Nowadays, almost everyone has a smartphone. These portable computers allow us to commu-

nicate with anyone across the world from almost any place. They can be used as entertainment

devices to play music or video games and over the last couple of years even services like stock

markets or banking systems have been integrating with smartphones. Furthermore, you can

9

make pictures with them, view all sorts of media, and the list goes on. Since the increasing pop-

ularity there have been many companies developing smartphones. The most common brands

are Samsung and Apple accounting for over 37% of the market shares in 2017 of all smartphone

brands [24].

2.3.1 Android OS

Like most communication devices, smartphones need an operating system (OS). While Apple’s

IPhones use their own OS called iOS, Samsung and many other smartphone manufacturers

use the Android OS that was developed by Google. With a whopping 81,7% worth of market

shares at the end of 2016, Android is definitely one of the market leaders when it comes to

smartphone operating systems [15].

One of the main features of smartphones are applications or apps in short. Google’s Play

Store has over a million apps available for almost any Android device. Unlike Apple’s App

Store, basically anyone can upload their own apps on Google’s Play Store. To upload apps

as a developer for everyone to download and use you pay a one-time fee of 25$ to Google.

Making apps on the other hand is free. Most apps are written in Java and there are multiple

integrated development environments (IDE) available for the Android platform. The official

IDE for Android is Android Studio which is described in the next section. Other IDEs available

are AIDE (HTML, C, C++), Xamarin (C#) and many others.

2.3.2 Android Studio

Android Studio is the official IDE where you can develop apps for phones with an Android OS.

Its main programming language is Java but since Android Studio version 2.2 it is possible to

write and use C and C++ code by compiling it into a native library. With the Java Native

Interface (JNI) you can call the C/C++ functions in your native library. Furthermore, Android

Studio splits up front and back end of the application giving the developer a nice clean overview

of the whole project. The front end can be edited through coding or with a visual interface

where you can pick and place your required objects in a layout. The front end design is an

xml-file that is attached to an activity. This activity is part of the back end where you write

your code in order to interact with the front end of the application.

2.4 Communication

Communication in computer science is an act of exchanging information between two or multiple

devices. It requires at least one sender, a receiver, a medium and a set of rules called a protocol.

The next sections will briefly discuss some properties of the two mediums that were used for

this thesis: Bluetooth and WebSocket.

10

2.4.1 Bluetooth

Bluetooth is a form of wireless communication that was developed in 1994 by Ericsson Mobile

in Sweden. It is a radio frequency (RF) technology using the 2.4GHz industrial, scientific and

medical (ISM) band, the same band where you can find ZigBee and WiFi aswell. It can be

used to transmit data or voice communication over short distances. Bluetooth radios can be

found in nearly every new smartphone and laptop device. It is easy to use, to setup and it has

a lot of applications, for example hands-free devices, home heating systems, entertaining de-

vices and so on. Bluetooth is designed to be low cost, for about 5-10$ per unit. The down side

of this is the short connection range and the limited transmission speed of around 780 kb/s [26].

Bluetooth benefits

The introduction of Bluetooth allowed for many new applications in several areas. Even today

it is still widely used, mostly for multimedia devices, keyboards, mices, printers. The following

list explains some benefits for three general areas:

Data and voice acces points. Bluetooth allows a wireless connection between devices

through which they can communicate. With Bluetooth, the devices are able to transmit voice

and data packages in real-time.

Cable replacement. Some wired connections between devices require special cables or adapters.

Bluetooth eliminates this hassle since any device can connect to another with the right commu-

nication protocol. The range of this connection is approximately 10m and doesn’t require the

devices to be in line of sight. With an optional amplifier the range can be extended to 100m.

Ad hoc networking. Devices with a Bluetooth radio can establish instant connections with

each other as soon they come into range.

Master, slave and piconet

For a Bluetooth connection to exist, there has to be at least one master and one slave device.

They use what is called the master/slave model. A master device can be connected to up to

seven slave devices while a slave can only connect to one master device. A network of one

master and one to seven slaves is called a piconet. The master device will coordinate all the

11

communication throughout the piconet. All slave devices are allowed to exchange data with

the master device when granted premission, but cannot communicate with other slaves in the

piconet. The connection between each device is encoded and protected to prevent other devices

from eavesdropping and to prevent interference between other devices. Furthermore, in order

for these devices to connect with each other, they require the same communication protocol.

A device in one piconet can also exist as part of another piconet and can function as either

a slave or a master in each piconet. This form of overlapping is called a scatternet [28]. An

example of two piconets forming a scatternet is shown in figure 2.5.

Figure 2.5 Piconets and Scatternets

The piconet/scatternet allows the devices to share the same physical area, allowing the net-

work to make efficient use of the bandwidth. A Bluetooth system can use up to 79 different

frequencies using a frequency hopping (from 2.402 to 2.480 GHz) [25] scheme with a carrier

spacing of 1MHz. This allows a bandwidth of 80MHz. Without frequency hopping scheme,

every single channel would have a bandwidth of 1MHz at their disposal. With frequency hop-

ping, the sequence will define a logical channel. This allows to have an available bandwidth

of 1MHz at any given time, with a maximum of eight devices sharing the bandwidth. This 80

MHz bandwidth can be shared by several different logical channels. Though, this can cause

signal collisions when devices in different piconets, on different logical channels have the same

hop frequency at a given time. Signal collisions degrade the performance, so we can state that

the more piconets we have, the more collisions occur, the lower our total performance will be

[28].

Protocol architecture

The Bluetooth protocol architecture consists of four basic layers: core protocols, cable replace-

ment, telephony control protocols and adopted protocols. Figure 2.6 shows the architecture of

the Bluetooth protocol stack.

12

Figure 2.6 Bluetooth protocol stack

Core protocols. The core protocol is a five-layer stack. Every layer in the stack has its own

responsibilities that are mentioned below.

• The radio layer is the wireless connection that specifies certain details about the air

interface, including frequency, the use of frequency hopping, modulation scheme and

transmit power.

• The baseband layer is responsible for the packet transmission to the radio layer. As

mentioned before this data can contain data or voice packages. For the data packages,

asynchronous connectionless (ACL) links are used while voice packages are transmitted

with synchronous connection-oriented (SCO) links. The baseband layer maintains both

ACL and SCO links. It is important for data packages to be transmitted correctly to

maintain data integrity, while it is not a problem in case some voice packages get lost. That

is why SCO packages are never retransmitted. If you would retransmit voice packages,

every next package would suffer from a time delay restraining us from having real-time

communication.

• The Link manager protocol (LMP) uses the links setup by the baseband and manages

the connection between Bluetooth devices. Furthermore, it is responsible for monitoring

service quality, security aspects such as device authentication, encryption plus the control

and negotiation of baseband packet sizes.

• The Host controller interface (HCI) is the layer between the hardware and the software.

The L2CAP layer and the layers above it are implemented in the software while all other

layers under the HCI (LMP, baseband, radio) are part of the hardware. The HCI driver

acts as a physical bus that connects the hardware with software. It is possible to access

13

the L2CAP layer directly by the application making it easier for application programmers.

This makes the HCI, in some cases, an unnecessary component.

• The Logical link control and adaptation protocol (L2CAP) receives application data and

transforms this to the Bluetooth format. Furthermore, Quality of Service (QoS) param-

eters are exchanged at this layer [25].

• According to [25], the Service discovery protocol (SDP) is not a part of the Core protocols.

Though, it contains all the information, services and charasteristics in order to establish

a connection between two or more Bluetooth devices. The LMP uses the SDP’s first to

find out what services are available from the acces point. Then information from the SDP

is obtained by the LMP to create a L2CAP channel.

Cable replacement. The RFCOMM seen in figure 2.6 is the cable replacement protocol.

It is a virtual serial port that is designed to replace cable technology. Serial ports are common

types of communication interfaces used with computing and communication devices [28]. So

with RFCOMM we eliminate the need for serial ports for communication between two devices,

assuming both are equiped with a Bluetooth radio. EIA-232, once known as RS-232, is a widely

used serial port interface standard. The RFCOMM will provide binary data transport and has

to emulate EIA-232 control signal to the baseband layer.

Telephony control protocols. Telephony control specifications (binary) or TCS BIN, is a

bit-oriented protocol that is necessary to define the call control services in order to establish

speech or data calls between the Bluetooth devices.

Adopted protocols. Adopted protocols are protocols developed by other organizations.

They are ”adopted” into the overall Bluetooth architecture. They are usually standard proto-

cols well known in applications other than Bluetooth. Bluetooth’s strategy is to only invent

necessary protocols and use existing standard protocols whenever possible. The following stan-

dards are the adopted protocols:

• The PPP, or point-to-point protocol is as a internet standard protocol for transporting

IP datagrams over point-to-point links.

• TCP/UDP/IP, are the foundation protocols of the TCP/IP protocol suite.

• The object exchange protocol, or OBEX, is a session level protocol made by the Infrared

Data Association (IrDA). It is used for exchaning objects. OBEX comes with quite similar

14

funcionalities as HTTP, but in a simpler way. There is also a model included in OBEX

that is used for the representation of objects and operations.

• Bluetooth also adopts the wireless application environment WAE and the wireless appli-

cation protocol WAP into its architecture.

2.4.2 WebSocket

WebSocket are used for fast, real-time communication between a server and a client. The HTTP

model, which is also a communication protocol between a server and a client, allowed the client

only to request data from the server, while the server was only able to fulfill these requests.

WebSocket on the other hand, allow bidirectional communication between the server and the

client. This means both client and server can request data and also respond to these requests.

The main point of webSocket is to have true concurrency and to focus on the optimization of

performance when it comes to communication and exchanging data. The WebSocket protocol

that will be discussed is also known as the RFC6455 model [21].

WebSocket communication

Handshake. To communicate over WebSocket, the server and the client first have to connect

with each other. The establishment of a WebSocket connection is done by a WebSocket hand-

shake. Handshaking is the exchange of information between two devices and the agreement

about which protocol will be used to exchange data after the connection is established. A well

known example of this is the TCP three-way-handshake. The client sends a synchronization

message (SYN) to the server as a request to synchronize with the server. If the server receives

this message and allows the client to synchronize with it, it will send a similar SYN message

and an acknowledgement message (ACK) to let the client know that it has received the re-

quest. When the client receives the SYN-ACK message, it will send an ACK message back to

the server to acknowledge that it has received the server’s message. The TCP connection is

established whenever the server receives the ACK message from the client.

The WebSocket handshake is quite similar. The client sends a handshake request to the server,

and the server will respond with a similar handshake request as seen in figure 2.7. The desktop,

smartphone and tablet in figure 2.7 represent the clients that are connected to the server. The

handshake request from the client-side is shown in program 2.1, while the response from the

server is shown in program 2.2.

Program 2.1, the handshake request from the client, is a pretty standard HTTP request. It

is built with multiple headers, some of which are mandatory for the request to be valid. If

one of the headers is not understood, the server will reply with ”400 Bad Request” and it will

15

Figure 2.7 WebSocket handshaking

1 | GET / chat HTTP/1 .1
2 | Host : example . com:8000
3 | Upgrade : websocket
4 | Connection : Upgrade
5 | Sec−WebSocket−Key : dGhlIHNhbXBsZSBub25jZQ==
6 | Sec−WebSocket−Vers ion : 13

Program 2.1 Client’s request for WebSocket handshake

close the socket afterwards. In some cases, it will also give a reason why the handshake failed,

although browsers do not display these messages. If there is a problem with version numbers,

the server adds a ”Sec-WebSocket-Version” header in the HTTP response that contains the

version it understands [23]. When the server receives a request handshake from a client with all

1 | HTTP/1 .1 101 Switching Protoco l s
2 | Upgrade : websocket
3 | Connection : Upgrade
4 | Sec−WebSocket−Accept : s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
5 |

Program 2.2 Server’s response for WebSocket handshake

the necessary headers, it will reply with a HTTP response as shown in program 2.2. The ”Sec-

WebSocket-Accept” header is derived from the ”Sec-WebSocket-Key” header from the client’s

handshake request. To get it, we combine the ”Sec-WebSocket-Key” header and ”258EAFA5-

E914-47DA-95CA-C5AB0DC85B11” together. The second string is ”a magic string”. A magic

string is predefined by the developer. It is made in a way where you would not expect it to

be received from an input. When the ”Sec-WebSocket-Key” header and the magic string are

16

combined, the SHA-1 hash is taken from the result, and the base64 encoding of the hash is

returned [23]. The SHA-1 is a cryptographic hash function, while base64 is a binary-to-text

encoding scheme.

WebSocket URIs. WebSocket defines two URI schemes. You can either use ws or the wss

scheme. The ws (WebSocket) is a regular connection similar to http. While wss (web socket

secure) is a secured connection similar to https. The schemes are built as follows:

ws-URI = ”ws:” ”//” host [”:” port] path [”?” query]

wss-URI = ”wss:” ”//” host [”:” port] path [”?” query]

The most important components of the ws or wss are the host and its port. The host is

determined by the server’s IP address, while the port defines which port the server uses for

the communication. If there is no specified port, the standard port used for ws is 80, and the

standard port used for wss is 443.

Data Frames. The main advantage of WebSockets is bidirectional communication. So at

any point in time, either the client or the server can send a message. Every data frame that is

sent from the client to the server, or vice versa, follows the same format as seen in figure 2.8.

Figure 2.8 Standard WebSocket dataframe format

• FIN: 1 bit

Depending on the value of this bit, it either tells the receiving end whether or not this is

the final fragment of the message. If the bit equals ”0”, it is not the last fragment and

the receiver will continue listening for more fragments. If the bit equals ”1”, it means it is

the last fragment of the message and the server will consider the message being delivered.

17

• RSV1, RSV2, RSV3: 1 bit each

All of these bits are reserved for WebSocket extensions. They should be ”0” unless the

client and server negotiated on whether or not a specific extension requires the use of any

of the three bits. If any of these three bits is not zero while the client did not negotiate on

any of these bits being non-zero, the receiving end will ”fail” the WebSocket connection.

• Opcode: 4 bits

These 4 bits will define how the receiving end should interprete the data. If the receiving

end does not understand the opcode it will, as in the previous case, ”fail” the WebSocket

connection. The information about the different opcodes is found at [18].

x0: continuation frame; this frame contains data that should be appended to the

previous frame

x2: binary frame; this frame (and any following) contains binary data

x3 - x7: non-control reserved frames; these are reserved for possible WebSocket

extensions

x8: close frame; this frame should end the connection

x9: ping frame

xA: pong frame

xB - xF: control reserved frames

• Mask bit: 1 bit

This bit tells wether or not the frame uses a mask. If this bit is set to ”1”, a masking key

is included in the message. This masking key is used to unmask the data in the payload.

Every frame that is sent from the client to the server must have this bit set to ”1”.

• Payload length: 7 bits, 7+16 bits, 7+64bits

The seven bits determine the length of the payload. If these seven bits equal 126, or

”1111110”, the actual length is determined by bits 16 to 31 (so 16 extra bits). These

are the following 2 bytes. If the seven bits equal 127, or ”1111111”, the actual length is

determined by bits 16 to 79 (so 64 extra bits). These are the following 8 bytes.

• Masking key: 4 bytes

As mentioned previously, this field only exists if the mask bit is set to one. All the

messages who have this field set to one, are masked by a 32-bit value. If the mask bit is

set to zero, there will be no masking key in the first place.

• Payload data: x+y bytes

The payload data is the combination of the extension data and the application data.

These two are listed below.

18

• Extension data: x bytes

The extension data is non-existent unless it was negotiated on the opening handshake

between the server and the client. As mentioned earlier, the RSV1-3 bits are responsible

for these extensions. Any extension that has been negotiated by the client and server

must have a specified length of the ”Extension data”. It can also tell the receiving end on

how to calculate this length. As said previously, the extension is part of the total payload

data.

• Application data: y bytes

The application data contains the actual data that has be to transmitted. It takes up the

remaining space in the frame after any extension data. The application data is, like the

extension data, part of the payload data.

2.5 SoC

SoC is the abbreviation of System-on-Chip. In our case that is a processor, FPGA and pe-

ripherals together on a single substrate inside of one chip. Industry calls this process VLSI,

Very Large Scale Integration. The main advantages of using VLSI in a SoC are the low power

consumption, its tiny size and the fast well shielded connections between the on-chip compo-

nents [12]. On the other hand, using VLSI makes the chip design, production and service very

complicated. Due to the high components density, a lot of heat is concentrated at the same

location. The only way to cool down the chip is by increasing package size. To minimise the

package size SoCs only drive low power GPIOs. If there is a need for high power controls, a

series of buffers must extend the GPIO, General Purpose Input Output, signals.

The SoC used in this thesis, Cyclone V 5CSEMA5FF31C6N [6] in figure 2.9, is made by Altera

and integrated in the DE1SoC development board by TerASIC [30]. The DE1SoC consist

of a HPS- and a FPGA-part with both their own peripherals. HPS is the abbreviation of

Hard Processing System and FPGA for Field Programmable Gate Array. Figure 2.9 shows

most of those components and the system they are connected to. Orange peripherals are

connected with the HPS, while green components are peripherals of the FPGA and everything

in blue is commonly used. Inside the Cyclone V IC, three bridges are provided to distribute

signals between FPGA and HPS. Because all the GPIO’s are connected to the FPGA, all

GPIO data are always transferred through the bridges, when they are needed by the HPS. The

FPGA-part can be configured by a HDL, Hardware Description Language [13]. In contrary to

regular programming languages, HDL describes digital hardware. Instead of programming a

single thread and running each command at a time a FPGA implements parallel applications,

resulting in a high throughput. HDL describes a full data path of registers, adders, multiplexers,

etc. between multiple PLLs (Phase-Locked Loop), FSM (Finite State Machine) controllers and

other modules.

19

Figure 2.9 Layout of the DE1SoC development board of TerASIC

In the following sections we will discuss why a HPS, FPGA and bridges between the two are

necessary.

2.5.1 Hard Processing System

Embedding one or more processors inside electronic systems gives the advantages of faster

development time and in-the-field reprogrammability. The SoC we use includes a HPS with

two ARM Cortex A9 cores, as can be seen in figure 2.10. Each processor uses its own L1 cache

memory capable of storing 64 KB, of which 32KB is reserved for instructions and 32KB for

data. L1 cache is relatively small, but provides a high speed read and write memory to the

processor [22]. Dual-core applications need a shared cache memory when they exchange data

between two processors. Shared cache memory is called L2 cache and is larger, but slower than

L1 cache. DDR SDRAM is provided in the HPS, so the OS can boot. Developers can use the

”Shared multiport DDR SDRAM controller” to read and write SDRAM data from the FPGA.

There are three more connections, called bridges, in the SoC: ”HPS to FPGA”, ”FPGA to

HPS” and ”FPGA Configuration”. The third bridge gives developers the ability to upload a

raw binary file to configure the FPGA from HPS. During runtime the ”HPS to FPGA” and

”FPGA to HPS” bridges can be called to exchange data. Other HPS peripherals are shown in

20

Figure 2.10 Cyclone V Hard Processing System layout

figure 2.10. We will not discuss them because the OS deals with them in the background.

Our SoC consists of a 32-bit, 800MHz dual-core ARM Cortex A9 MPCore architecture [5].

The data path size and width of the registers are both 32 bits. The term dual-core refers

to two independent processing units with the ARM Cortex A9 MPCore architecture in the

same package, running at a frequency of 800MHz. This architecture is highly recommended for

low-power, cost-effective applications on a 32-bit platform.

In the next paragraphs we will explain why we need an Operating System and programming

languages such as C++ and OpenCL and how we use them. The HPS has a processing unit

and lots of peripherals, software is needed to use all of them in a structured way. This software

is built on an interface that is called an Operating System. Operating systems are built with

programming languages to execute programming languages. Embedded systems are mostly

built of C or C++ source code. Besides C and C++ executables running on the HPS, we used

OpenCL to program the FPGA with a kernel.

Operating system

As defined in ”Research paper on operating system” [9]: ”An OS is a collection of software

that manages computer hardware resources and provides common services for computer pro-

grams. The operating system is an essential component of the system software in a computer.

Application programs usually require an operating system to function”.

The used OS on the DE1SoC board is provided by Altera and is a basic Linux kernel without

21

user interface. Because the kernel does only support command line, the impact of running an

OS on the CPU is minimised. This kernel already has all the packages we need to run OpenCL,

C++ and use the AMBA AXI bridges. More info about OpenCL can be found in paragraph

2.2.3. Altera has chosen the Angstrom Linux distribution for their SoC [7]. Angstrom is a very

basic Linux distribution used in a variety of embedded devices. The popularity of embedded

systems is due to the fact that it uses a binary package feed, allowing to simply install software

distributed as OPKG packages. Those OPKG packages are precompiled on a host system.

Programming language

A programming language is defined as the communicator of instructions to the computer.

Depending on the language used a certain knowledge of the architecture is needed. When pro-

gramming in machine language for example, processor architecture must be well known. Each

architecture has its own instruction set, with one instruction for each operation. All instruc-

tions correspond one on one to a physical command in the machines processor architecture. A

command can be anything like loading data into registers or calculating a result from two data

registers. Machine language is the most basic programming language. Programmers should

have adequate experience with the specific architecture to program simple applications in an

efficient way. Nowadays, with the wide variety of systems and architectures, programs are

written in a higher level programming language. Those languages, such as C, C++, Java or

C#, are easier to develop and distribute over different platforms. Higher level programming

languages are still based on the same machine language for their specific architecture, but a

compiler handles the conversion to machine language instead of the developer. The compiler

generates an executable in different stages by using a preprocessor, compiler, assembler and

linker.

The compilation process of a C++ program can be found in figure 2.11 [20]. A preprocessor

copies the source code file and includes header files into a temporary expanded source code

file. During the copying process all ”#defines” are initialised with their values. Next, the

temporary expanded source code file is translated to assembly language. This code is based on

the desired architecture, resulting in a specific assembly code for each architecture. Assembly

code passing through the assembler generates an object file. While the object file is generated,

physical memory locations will be assigned to all variables and instructions are given by the

assembly code. During the last step the previously generated object file is linked with other

object files corresponding to the earlier included header files. By linking object files, one exe-

cutable file is generated. Executables are started when the ”./program” command is invoked.

Executables can only be started when the user has given execution rights to the specific exe-

cutable file. Users give the execution rights by the ”chmod +x” command, used as ”chmod +x

executableFileName”.

22

program.c

C preprocessor #include header files

Temporary expanded source code file

Compiler

program.s

Assembler

program.o

linker Object files of included libraries

program

Figure 2.11 Compilation process from High level programming language to an executable file [17]

C++ programming: Bell Labs developed C in the early 1970’s with the UNIX OS. For many

years the book ”The C Programming Language” [17], published in 1978, was the standard

reference for the C language. In 1988 a second edition of ”The C Programming Language”

was published, after the use of C language spread beyond UNIX system. This second edition

included a changed, platform-independent, standard. C became a general purpose programming

language close to the machine hardware, using pointers to locate variables on a specific place

in memory.

The reason the above book refers to the C programming language instead of the C++ pro-

23

gramming language, is the fact that pointers were better explained in this book [17] than in

a C++ source. When a pointer points to a specific place in memory and a value is written

into the pointer, the value is stored in that specific memory space. The OpenCL Kernels use

pointers to arrays to transfer big data. Arrays in C are typically given a certain space by the

”malloc()” function, with the address of the first element stored into the pointer.

OpenCL host: A general description of OpenCL can be found in subsection 2.2.3, in this

paragraph we will discuss the OpenCL host program. The OpenCL host needs to invoke ”clEn-

queueTask()” for OpenCL kernel execution, but before the host can run ”clEnqueueTask()”

a kernel environment must be configured, so the organiser of the program performs all the

following 13 tasks [32] to configure, initiate, catch results and finish the OpenCl kernel.

1. Get a list of available platforms: A platform is defined as the brand of devices such as

Intel or AMD. OpenCL detects which platforms are available and stores them in variable

”platform id”, see program 2.3. The first parameter of clGetPlatformIDs defines how

many platforms are wanted, obviously this parameter needs to be greater than zero.

c l p l a t f o r m i d p l a t f o rm id = NULL;

c l u i n t ret num plat forms ;

r e t = clGetPlat formIDs (1 , &p la t fo rm id , &ret num plat forms) ;

Program 2.3 Get a list of available platforms

2. Select device: Devices are the products of a brand, like CPU’s, GPU’s or FPGA’s. They

belong to a specific platform. If multiple devices of different platforms are used, this step

needs to be combined with step one. First, clGetDeviceIDs receives an id representing an

available platform and next, a device type needs to specified. Device types can only be

one of the following:

• CL DEVICE TYPE CPU

• CL DEVICE TYPE GPU

• CL DEVICE TYPE ACCELERATOR

• CL DEVICE TYPE DEFAULT

• CL DEVICE TYPE ALL

The first three device types correspond to using the CPU, GPU and FPGA. The third

parameter of the function, program 2.4, specifies the number of devices the host would

like to use. ”ret num devices” returns the amount of devices available of the specified

device type.

24

c l d e v i c e i d d e v i c e i d = NULL;

c l u i n t re t num dev ice s ;

r e t = clGetDeviceIDs (p la t fo rm id , CL DEVICE TYPE DEFAULT,

1 , &dev i c e i d , &ret num dev ice s) ;

Program 2.4 Select device

3. Create Context: Objects use a context in OpenCL. What the context does and why will

be explained in memory objects. To create the context in program 2.5, clCreateContext

needs to know how many and which devices need a context, respectively in parameters two

and three. All the other parameters represent advanced properties that are not discussed

in this thesis.

c l c o n t e x t context = NULL;

context = clCreateContext (NULL, 1 , &dev i c e i d ,

NULL, NULL, &r e t) ;

Program 2.5 Create Context

4. Create command queue: When a device is active, a medium to communicate with the

device must be created. OpenCL calls this medium a command queue, see program

2.6. The command Queue needs arguments, in this order, to specify: the used context,

which device will be execute in this command queue and some not discussed advanced

parameters.

cl command queue command queue = NULL;

command queue = clCreateCommandQueue (context ,

d ev i c e i d , 0 , &r e t) ;

Program 2.6 Create command queue

5. Create memory objects: Kernels can not access memory outside their device. A solution

is found by copying the data from host to device memory. OpenCL uses a buffer as

medium to copy the data back and forth. In program 2.7 ”clCreateBuffer” needs to know

which context to use and the access rights the kernel has for the allocated device memory.

The occupied memory size is passed as the third argument.

cl mem memobj = NULL;

memobj = c lCr ea t eBu f f e r (context , CL MEM READ WRITE,

MEM SIZE x s izeof (char) , NULL, &r e t) ;

Program 2.7 Create memory objects

6. Read kernel file: In this step, things need to be split up. When a CPU or GPU is used,

the OpenCL kernel can be read from source file. In contrast to the FPGA, Altera desires

25

to offline compile OpenCL kernels to a raw binary file. This and the next step mention

the constructions for both Apple and Altera platforms.

• Apple: The host program 2.8 reads the OpenCL kernel file and puts the file in a

huge array of characters with an allocated size of MAX SOURCE SIZE. An array

of characters in C is comparable with a string datatype.

FILE ∗ fp ;

char f i leName [] = ” . / h e l l o . c l ” ;

char ∗ s o u r c e s t r ;

s i z e t s o u r c e s i z e ;

/∗ Load ke rne l code ∗/
fp = fopen (fi leName , ” r ”) ;

i f (! fp) {
f p r i n t f (s tde r r , ” Fa i l ed to load ke rne l .\n”) ;

e x i t (1) ;

}
s o u r c e s t r = (char∗) mal loc (MAX SOURCE SIZE) ;

s o u r c e s i z e = f r ead (s o u r c e s t r , 1 , MAX SOURCE SIZE, fp) ;

f c l o s e (fp) ;

Program 2.8 Read kernel file

• Altera: Because the SoC is primitive, Altera prefers to compile the object file off-line

with a specific license. To load the binary file, parameter KERNEL NAME should

contain the path to the binary file in the SoC directory. The last parameter in

program 2.9 defines the device where the kernel is installed.

std : : s t r i n g b i n a r y f i l e = getBoardBinaryFi le (KERNEL NAME,

dev i ce) ;

Program 2.9 Read kernel file

7. Create program object: A kernel program can contain multiple kernel functions. If there

are multiple kernel functions, each kernel should be converted to an object by the codes

below.

• Apple: Once the source code is read from the kernel source file, it must be processed

into an OpenCL kernel program. Function ”clCreateProgramWithSource”, program

2.10, creates a program object file in variable ”program”.

c l program program = NULL;

program = clCreateProgramWithSource (context ,

26

1 , (const char ∗∗)& s o u r c e s t r ,

(const s i z e t ∗)& s o u r c e s i z e , &r e t) ;

Program 2.10 Create program object

• Altera: After the offline compilation, a binary file was created. In the previous step

the binary file was loaded into the host program. Now ”createProgramFromBinary”,

program 2.11, converts the binary to an object file in variable ”program”.

program = createProgramFromBinary (context ,

b i n a r y f i l e . c s t r () , &device , 1) ;

Program 2.11 Create program from binary file

8. Compile kernel: At this point the kernel program needs to be built for a specific device

with ”clBuildProgram”, program 2.12. In the step above, ”clCreateProgramWithBinary”

could be used instead of the ”clCreateProgramWithSource”. That way ”clBuildProgram”

would not be necessary for the Altera program kernel.

r e t = clBuildProgram (program , 1 , &dev i c e i d , NULL,NULL, NULL) ;

Program 2.12 Compile kernel

9. Create kernel object: For each kernel function an object should be created. The second

argument of function ”clCreateKernel”, program 2.13, sets the name of the kernel object.

In this case there is only one kernel, but multiple kernel objects could be generated if

necessary.

c l k e r n e l k e rne l = NULL;

ke rne l = c lCreateKerne l (program , ” h e l l o ” , &r e t) ;

Program 2.13 Create kernel object

10. Set kernel arguments: Setting kernel arguments is the main task of the OpenCL host

program 2.14. The kernel expects a pointer to the memory objects, this pointer should

be declared in the host side. When the pointer is not declared on the host side, the host

can’t manage the memory. The first argument is the kernel object itself, secondly the

number of the argument to be set is specified. Next, the argument size and pointer to

the argument are passed.

r e t = clSetKerne lArg (kerne l , 0 , s izeof (cl mem) ,

(void ∗) &memobj) ;

Program 2.14 Set kernel arguments

27

11. Execute kernel: The kernel will be executed when this function is started. Program

2.15, function ”clEnqueueTask” takes the kernel and launches it into the queue. In this

example we have only one queue, so the fifth argument can be ”NULL”. Otherwise the

fifth argument has to be set as an event object. The event object will wait for the kernel

to finish execution. Once executed it will give a notification to the host by using this

event object.

r e t = clEnqueueTask (command queue , kerne l , 0 ,

NULL, NULL) ;

Program 2.15 Execute kernel

12. Read memory object: Once the kernel is finished, return data must be read from the

kernel. The return data will be available on the device side, where ”clEnqueueRead-

Buffer”, program 2.16, can copy the data back to the host side. This function uses a lot

of arguments, but only some of them are important. The second argument points to the

device side memory, while sixth argument points to the host side memory while the fifth

argument determines the memory size.

char s t r i n g [MEM SIZE] ;

r e t = clEnqueueReadBuffer (command queue , memobj ,

CL TRUE, 0 , MEM SIZE x s izeof (char) , s t r i ng , 0 ,NULL, NULL) ;

Program 2.16 Read memory object

13. Free objects: Like in a regular C program, all objects needs to be freed. During this step

is all of the allocated memory is deallocated, so it can be used by other programs. How

to free all objects is shown in program 2.17.

r e t = c lRe l ea s eKerne l (k e rne l) ;

r e t = clReleaseProgram (program) ;

r e t = clReleaseMemObject (memobj) ;

r e t = clReleaseCommandQueue (command queue) ;

r e t = c lRe leaseContext (context) ;

Program 2.17 Free objects

This was a short introduction. When OpenCL is used in an application, the kernel is executed

repetitively in a contiguous cycle as can be seen in figure 2.12. The cycle always starts with

copying data from host to device, followed by executing the kernel and returning the calculated

data back to the host.

28

Host data to device copy

Kernel executionDevice data to host copy

Figure 2.12 OpenCL real life applications kernel cycle

2.5.2 FPGA

Using a FPGA enables designers to program logic in the field. Altera, the manufacturer of

our SoC, published a book called FPGA for dummies [22]. Everything in this subsection is

referenced to this book.

FPGA design flow

Developing a FPGA implementation includes 5 main stages, as shown in figure 2.13. It all

starts with a system design. Engineers decide which functions have to be implemented. They

also keep the integration with the rest of the system in mind. Secondly all the needed inputs

and outputs of the FPGA are matched to the other components in the system to inform the

pin planner. The name Pin planner is self explanatory. It is planning which pins of the inputs

and outputs are connected to which components on the PCB. The next stage is the most time

consuming phase. Here, designers program in a HDL like Verilog, VHDL or a schematical

editor to describe the logic circuit. Designers can implement IP-blocks, Intellectual Property

blocks, to interact with the HDL. Some IP-blocks come with the design tool, others need to

be bought from third party companies. Once the design is complete, two possibilities are left.

When the design is considered small, developers start testing on the FPGA. If testing directly

on FPGA is impossible or when dealing with a large design, test benches are desired. A test

bench simulates the HDL as functional verification of the system. Although a HDL is tested

by a test bench, there might still be errors after implementation. A test bench is as good as

the test bench designer. Once the design has been defined, tested or not, synthesis is started.

Synthesis starts checking the code on typos, not included packages, name mismatches, registers

that need to be wires, etc. Once checking is complete, synthesis will optimise the code. The

last step, shown in figure 2.13, is the design verification. Design verification could also be done

by simulation, here the hardware of the specific implementation is tested.

29

System Design

I/O integration with rest of the system

Design Description

Synthesis

Design Verification

Figure 2.13 FPGA design flow

Hardware Description Languages

As mentioned earlier, HDLs describe digital hardware resulting in a physical hardware layout

inside the IC. During the design of HDLs it is important to keep in mind that the source code

is directly represented as hardware. There are two main HDL languages, Verilog and VHDL.

Since we only used Verilog in our thesis, VHDL will not be discussed here. Verilog is difficult to

implement, due to the clocks that keeps everything in synchronization. OpenCL is a C-syntaxt

based alternative to program GPUs and FPGAs. Besides these, other devices are supported,

like CPUs.

Verilog: Both HDL and programming language use variables. Verilog uses two main kinds of

variables, i.e. wires, wire and registers, reg. A ”wire” is a wired connection in the IC and is used

in assignments or modules. Assignments and modules have strong connections between each

other, while registers are considered weak connections. Registers or regs, are only used when

a signal changes inside an ”always” statement. However, unlike in programming languages, a

signal called clock is used. The clock signal is the most important signal in all HDLs. Giving

an example: when horses A, B and C race against each other on different racetracks, they

will probably never finish at the same time. Imagine the horses being electric pulses A, B and

C. There will be a race between the three pulses, because they all travel as fast as they can.

Some pulses travel faster than others, the solution for this is using a clock in order to read all

pulses at the same time. On the rising edge of the clock, referring to figure 2.14, all signals

30

leave register1. Obviously signal A will be the first to reach register2 and there will be a race

between pulses A, B and C to get the second and third place of B and C in register2. Which

one will arrive first is unpredictable, because of the different delays in and between the not

predefined place of the logic elements. This phenomenon is called a race in HDL. Using a clock

makes sure there will be enough time for every signal to arrive, as long as all signals arrive

before the rising edge.

The system also needs a default state. When the reset signal is engaged, the whole system is

set to default. A reset can happen synchronously (Program 2.18) or asynchronously (Program

2.19), meaning respectively resetting only at the edge of the clock or resetting whenever the

reset signal is engaged. The only difference between the two is the added ”posedge reset”

in Program 2.18. When a designer is not consistent and changes between synchronous and

asynchronous reset or puts another signal in the always construct, the behaviour will probably

be unpredictable.

Inside the ”always” function in Verilog syntax if, case, while, for and repeat statements can be

used. All used signals inside an ”always” need to be declared as registers ”reg” and need to

have a default value defined in ”if(reset)”.

Apart from the ”always” statement two possibilities can be considered. The first one is an

assignment between wires and the second one is wiring another module into the current module.

Assignments are used when a signal needs to be delivered immediately when it is present, two

examples can be seen in Program 2.20. Assignment to ”result1” is a ”logical or” between two

wires ”a” and ”b”. While ”result2” looks like an if-else statement without clock. Whenever

”conditionBit” is true, the ”valueBit” will be returned in wire ”return2”, otherwise ”valueFalse”

will be returned. Designers need to remember that in an assignment no clock is used. HDL-races

can result in unpredictable behaviour, If they are not handled carefully. Another possibility

when using assignments is to connect a register and a wire. Assignments provide also the usage

of a module inside another module as can be seen in Program 2.21, where object ”objectAbc”

of module ”abc” is wired to wires ”A”, ”B” and ”C”. The inputs and outputs of module abc

are ”a”, ”b” and ”c”.

Verilog-syntax is very simple, we have already discussed almost all the important syntaxes

except for what modules look like. A module is based on regs, wires, assignments, alwayses,

other modules, inputs, outputs and inouts. The last three have some special rules. An input

always has to be of type net, when used externally they are connected to regs or wires. Outputs

have the opposite rules. Inside the module they can be a wire or reg, but when used externally

the outputs have to be connected to a wire. Lastly inouts are always wired internally and

externally. An elementary example of a module can be found in Program 2.22.

In the following paragraph OpenCL kernels are explained, they are an alternative way to

31

clock

A

B

C

register1

&
≥ 1

clock

A

B

C

register2

Figure 2.14 HDL races figure

always @(posedge c l k) begin
i f (r e s e t)

. . . <= 1 ’ b0 ;
else

. . . <= . . . ;
end

Program 2.18 Verilog example, synchronous reset

configure FPGAs.

OpenCL kernel: An OpenCL kernel is a C/C++ based programming language used to

rapidly extend a compute exhausting task to a hardware accelerator, such as a GPU or in

our case a FPGA. In order to use a kernel, a host in C or C++ should be coded. The host

side, explained in 2.5.1 paragraph OpenCL Host, checks and configures the environment before

initiating the kernel. Kernels are initiated on a device of a specific platform. In our case, the

device is an FPGA. FPGAs are ideal devices for algorithms that parallelize their problems.

We will explain how the kernel works based on figure 2.15 as a representative example. The

idea of this example is found on a website referenced by [27]. This example uses the structure

of a school to calculate a sum of multiplications. Once the example is explained, it will be

linked with the real kernel using figure 2.16. Imagine a very large sum of multiplications, like

equation 2.7, calculated by an algorithm like the structure of a school.

result = (A×B + C ×D + E × F + G×H) + (I × J + K × L + M ×N + O × P) (2.7)

There could be one person doing all the multiplications and adding them to the previous ones,

but he would take a long time doing the same thing over and over again. It would be easier

if the school extends parts of the calculation to different departments, as can be seen in figure

2.15. Department A takes the first 8 numbers and department B the last 8 numbers. Each

department distributes the multiplications to classes of two students. A student goes to the

32

always @(posedge c l k or posedge r e s e t) begin
i f (r e s e t)

. . . <= 1 ’ b0 ;
else

. . . <= . . . ;
end

Program 2.19 Verilog example, assynchronous reset

ass ignment r e s u l t 1 = a or b ;
ass ignment r e s u l t 2 = (cond i t i onB i t) ? valueTrue : va lueFa l s e ;

Program 2.20 Verilog example assignments

blackboard in front of the class, calculates the multiplication and returns the result to the

blackboard. Once all the students are finished, the teacher of the class returns the results to

the department. The department waits for all the other classes to finish and calculates the sum

of all results. When each department has returned its sums, the school director can calculate

the sum of all values returned by the departments.

Figure 2.16 represents the real kernel situation of the previous example. The outer circle

represents the platform of the vendor, like Intel/AMD/Altera. The vendor’s platform could

be seen as the campus, with different schools doing a specific parallelized algorithm, called a

kernel. Devices belong to a vendor platform, but that is not important. It is just a practical

way of structuring devices and managing device driver codes for all vendors. Each device has

its own global memory which is the only memory the host side has access to, so all input and

output data are passed here. Besides the memory needed by the device, it is mandatory for at

least one department to be able to perform the calculation. If there is no department, there

will be no place provided to calculate. Our school example uses two departments A and B.

Compute units can work directly with global memory data, but they are more efficient when

data are transferred to local memory. The differences between local and global memory are

their speed and their size. Global memory is bigger than local memory, but local memory is

faster than global memory. So the department should always copy their data from global to

local memory. Local memory can be represented as the shared blackboard in front of the class.

Every student can take notes from the board, calculate and return his result to the board.

Notes are stored in private memory and the result is returned to local memory as soon as the

work item, in this case a student, finishes calculating. When all workgroups are finished, a

”master workgroup” is assigned to do the job of the school director, who will calculate the final

sum with the returned results from every department.

Understanding a kernel’s code is more difficult than the theory described above. That is why we

33

abc objectAbc (
. a (A) ;
. b (B) ;
. c (C)

) ;

Program 2.21 Verilog example, using a module

module abc (a , b , c) ;
input a ;
input b ;
output c ;

assign c = a and b ;
endmodule

Program 2.22 Verilog example, defining a module

will only explain the kernel code, program 2.23, for a simple matrix addition. Three function

arguments are provided, the first two are the input matrices and the third one corresponds

to the output matrix. To calculate the addition, each element of matrix A should be added

to the corresponding element of matrix B. The sum is saved in the corresponding element of

matrix R. As can be seen by declarator ” global”, only global memory is used to store the

matrices in one dimensional float arrays. In this implementation every sum is made in one

workgroup with one work item. Increasing the work items per group could make the kernel

execution faster in terms of parallel computation. Sometimes it takes more time to copy data

from global to local memory than the execution itself. Efficient kernel design has the need for

research and testing. TUT PhD student Kui Wang has written a paper about using OpenCL

to rapidly prototype FPGA designs [33]. He adjusted the number of work items in a workgroup

and reduced hardware resource usage to replicate more OpenCL compute units. He concluded

that in his Mandelbrot use case: ”adjusting workgroup size has little impact on the speed of

computation”. He also concluded that: ”by reducing the hardware resource usage per OpenCL

compute unit, the number of compute units that can be replicated on the DE1-SoC board is

increased”.

When we return to our matrix addition example, it is important to understand how all work-

groups iterates the data. Because every work item needs to be able to restore its result into

global memory, pointers are commonly used. As explained in 2.5.1, a pointer points to an

address of the register containing a specific value. In order to access each value of an array

in C or C++, a for loop would be used. In OpenCL we use something equal, the function

”get global id(0)”. This function returns the number of the current workgroup, specifying

which elements of the matrices should be accessed. A kernel code must be seen as the code

34

A*B C*D

Class board

Class 1

E*F G*H

Class board

Class 2

Department 1

E*F I*J

Class board

Class 3

K*L M*N

Class board

Class 4

Department 2

AB + CD + EF + GH

School

Campus

Figure 2.15 OpenCL kernel representative school layout

Local memory

Workgroup1

Local memory

Workgroup2

Compute unit 1

Local memory

Workgroup3

Local memory

Workgroup4

Compute unit 2

Global memory

Vendor device

Vendor platform

Figure 2.16 OpenCL kernel layout: The circles represent work items with a dot in the middle as
private memory

for one element of a parallelization, using the global identifiers to iterate all the elements of

the result ”matrixR”. Because OpenCL has influences of C-syntax, pointer notation is used to

point to global memory.

2.5.3 Bridges

Between the HPS and the FPGA three bridges, mentioned in 2.5.1, are used to exchange data

during runtime. By default only the FPGA configuration bridge is enabled, the HPS2FPGA and

FPGA2HPS bridges should be configured in Qsys. Exchanging data from HPS to FPGA and

back requires almost the same source code, but it was hard to find info about the FPGA2HPS

35

k e r n e l void matadd (g l o b a l f loat ∗ matrixA ,
g l o b a l f loat ∗ matrixB ,
g l o b a l f loat ∗ matrixR) {

int i = g e t g l o b a l i d (0) ;
matrixR [i] = matrixA [i] + matrixB [i] ;

}
Program 2.23 OpenCL kernel example: matrix addition

bridge. Both bridges can be configured with three different bus widths: 32, 64 and 128 bits.

Altera uses the ARM AMBA AXI bus to implement the bridges. Both first use the ”mmap”

function, program 2.24, in HPS to call a page of memory into the process’s memory space

[19]. Where ”memoryBaseAddress” is the most important argument, it specifies where the

bridge starts on the AXI bus. The base address is specified in Qsys, we use 0xC0000000. The

base address needs to be added with an offset, for both HPS2FPGA and FPGA2HPS bridges.

Explanation about the base memory offset is given in 2.5.4, paragraph Qsys. The second

important argument specifies the size that needs to be reserved starting from the memory base

address, called ”PAGE SIZE”. The other parameters change with different setups. Parameter

”bridge map” is the virtual mapped memory address of the bridge. Writing the bridges assumes

bridge map = mmap(NULL, PAGE SIZE , PROT WRITE,
MAP SHARED, fd , memoryBaseAddress) ;

Program 2.24 mmap function

basic knowledge of pointers, this can be found in 2.5.1, paragraph C programming. The pointer

valueAdress, in 2.25, represents the location to find transmitted values. It needs an offset,

specified during configuration in Qsys, to separate the AMBA AXI bus in different bridges.

To write a value to the bridge, it needs to be written to the address of pointer valueAdress.

Programs 2.25 and 2.26 show the code to write the HPS2FPGA and read the FPGA2HPS

bridges respectively.

va lueAdress = (unsigned char ∗) (bridgeMap + offsetHPS2FPGA) ;
∗ valueAdress = writeValue ;

Program 2.25 HPS2FPGA, transmit over bridge

Reading is done in the same way, by transferring the pointed value of memory address ”val-

ueAdress” into the program.

36

valueAdress = (unsigned char ∗) (bridgeMap + offsetFPGA2HPS) ;
readValue = ∗ valueAdress ;

Program 2.26 FPGA2HPS, receive over bridge

FPGA Configuration: The FPGA can be configured in two ways. The most common

way to configure the FPGA during development is to use ”Quartus programmer”. This tool

uploads the SOF, SRAM Object File, to the FPGA. It is impossible to configure the FPGA

with ”Quartus programmer” each time the SoC is booted. The Cyclone V HPS can configure

the FPGA by using the FPGA configuration bridge. Before the FPGA can be configured, all

the AMBA AXI bridges have to be disabled. When they are not disabled a system crash of

Linux will occur. Program 2.27 disables the bridges, it is written in the Bash programming

language. By using ”echo” text can be written into a file. In this case the text is a ”0” and

the file has a specified file path. Note the not yet discussed ”lwhps2fpga”, abbreviation for

light-weight HPS to FPGA bridge. It is slower than the HPS2FPGA bridge and has a fixed

width of 32bits. Programming the FPGA is done by copying the Raw Binary File with ”dd”

echo 0 > / sys / c l a s s / fpga−br idge / hps2fpga /enable
echo 0 > / sys / c l a s s / fpga−br idge / fpga2hps /enable
echo 0 > / sys / c l a s s / fpga−br idge / lwhps2fpga /enable

Program 2.27 Disable the AMBA AXI bridges from HPS

into the device called ”fpga0”. In program 2.28 the ”dd” command is shown. ”dd” uses two

arguments: ”if” and ”of”, input file and output file. Once the FPGA is configured, the bridges

dd i f =/home/ root / FPGAConfigurationFile . rb f o f=/dev/ fpga0

Program 2.28 Configuration of the FPGA with Linux dd command

need to be enabled again. Otherwise they can’t be used.

2.5.4 Quartus

Design structure

Pin Planner: Every design has to be fit into the device architecture and so do the connection

to the peripherals of the embedded system. The pin planner assigns a signal name and directions

to all used pins in the package. Directions can be Input, Output or Bidirectional. Pin planner

adds other information automatically during ”Assignment & Synthesis”.

37

echo 1 > / sys / c l a s s / fpga−br idge / hps2fpga /enable
echo 1 > / sys / c l a s s / fpga−br idge / fpga2hps /enable
echo 1 > / sys / c l a s s / fpga−br idge / lwhps2fpga /enable

Program 2.29 Enable the AMBA AXI bridges from HPS

Figure 2.17 Qsys internal connections

Qsys: As Verilog is a complicated HDL, implementing a lot of modules in the system is a

confusing task. Qsys simplifies this in figure 2.17, by providing a graphical tool to included

IP. Figure 2.17 pictures all modules shown by name and all possible connections in the far left

column. The highlighted connections are connected. Columns ”Base” and ”End” define the

base and end address of the AMBA AXI bus used by the bridges between HPS and FPGA.

Qsys generates one top module to include the whole Qsys system at once in the developer’s

his Verilog module. All the inputs and outputs of that Qsys top module are defined in column

”export”. Bridges are easy to configure in Qsys. The only choice is whether to use 32, 64 or

128 bits, as shown in figure 2.18. Once selected, Qsys will generate all the connections. When

a Qsys design includes the AMBA AXI bridges, some connections need to be added to the pin

planner. Luckily Quartus generates a .tcl file to add those connections to the pin assignments.

However the .tcl file is only generated during the ”Assignment & Synthesis”, i.e. every time

an AMBA AXI bridge is added, removed or changed in the Qsys-tool. The developer should

restart compilation process ”Assignment & Synthesis” followed by running the .tcl file.

Figure 2.18 Qsys configuration of bridges

38

Analysis & Synthesis

Fitter (Place & Route)

Assembler (Generate programming files)

Time Quest Analysis

Figure 2.19 FPGA design flow

Compilation flow: Quartus compilation flow consists of 4 steps shown in figure 2.19 [4].

Analysis and synthesis checks the design files and overall design for errors. A design hierarchy

is created and a single design database is built. During this step the design is changed to a

minimum resource usage and uses the fixed logic modules as much as possible. This part is

also used to perform a compilation check, because once this step has been completed, errors

are rare. When errors occur in the next steps, it will be a problem on Quartus’s end.

The fitter places and routes the developed logic design into a device architecture. Depending

on the architecture, components need to be repositioned and connections to the components

are routed in different ways.

The assembler creates an image, called SOF, to program the device. It can be compared with

an executable in the C compilation flow.

In the last phase the design assistant checks the reliability of the design. Predefined design

rules are used.

SignalTap II Logic Analyzer: If the configured FPGA does not work, SignalTap can

help you. SignalTap is a logic analyser as shown in figure 2.20, where developers can review

included signals. SignalTap needs two signals to be configured, the clock and a signal to trigger

a ”hold”. Triggering conditions can be set on a signal by rising, falling or either edge. When

the trigger condition occurs, all signals are plotted on a time span of a preset number of clock

cycles. Logic analyzers give a good view into systems with a high clock speed.

39

Figure 2.20 SignalTap II Logic Analyzer layout

Operating system issues

Quartus has some annoying issues. When using Quartus 16.1 installed on Red Hat 6.5, basic

Verilog code and an OpenCL kernel can be compiled. However, Qsys, a tool to rapidly integrate

IP of Altera in Quartus, gives synthesise errors during compilation of a program without faults.

Those errors seemed to be unknown in the community, resulting in a trial and error problem

search. Eventually the solution was installing multiple versions of Quartus on both Linux and

Windows, Quartus 16.1 installed on Windows 10 seemed to work perfectly with Qsys-tool,

but the OpenCL kernel did not compile anymore. Finally we used Quartus 16.1 installed on

Windows 10 and Linux Red Hat 6.5 in order to successfully compile the system. Expensive

commercially available programs like Quartus should work at all times. So when there is an

error, developers expect they created the error, instead of Quartus itself creating error messages.

40

41

3. IMPLEMENTATION

This chapter discusses all the implementations accomplished during our thesis divided in three

main parts: Communication protocol, SoC and Android. The SoC and Android can communi-

cate using Bluetooth or WebSocket, resulting in a Bluetooth and WebSocket implementation

in both the SoC and Android. The communication protocols are the same in SoC and Android,

but the implementation is accomplished in different languages. The SoC is programmed in

C++ and the OpenCL framework, whereas the Android API is programmed in Java. In our

SoC the OpenCL framework is used to accelerate the matrix multiplication in a kernel on the

FPGA. This chapter starts with the implemented character error detection. Character error

detection is needed because we discovered data losses in the Bluetooth communication. In

the next two sections, SoC and Android, both the receiver and transmitter are implemented

with the use of this character error detection algorithm. Besides Bluetooth, we implemented

a WebSocket. Since we did not discover any data losses using the WebSocket, character error

detection was not implemented. Section SoC will also explain how the matrix multiplication is

calculated in the OpenCL kernel.

3.1 Communication protocol

If we want to communicate between the devices, we have to define a set of rules that each of

the devices have to follow. These rules should be made in a way that 100% of the transmitted

data will arrive at the receiving end. For example, if data gets lost through transmission, the

device on the receiving end will not receive all the necessary data. This can be prevented by

adding a checksum that is different then from all other receivable data. If the received message

looks incorrect, the receiving device has to respond by asking to resend this piece of data. We

are trying out two different communication technologies so we have to set up a communication

protocol for each one of them since they both have different performance aspects. To clarify

future images, matrix A and B are the matrices sent to the SoC in order to calculate their

multiplication. Matrix C is the calculated matrix sent back to the phone.

42

3.1.1 Bluetooth communication protocol

To define a set of rules we first analyzed how good the Bluetooth transmission is. We did some

testing and came to the conclusion that there was quite a lot of data loss. We first tried sending

eight characters at once but nearly 80% of the time there was at least one of the characters

missing. Missing one number would mean that the matrix we need is incorrect and this would

lead to an incorrect outcome. We did some further testing and realized it was the best option

to send four numbers at a time. With this we can set up our first rule. The first rule being,

we let both devices know that they should always send four numbers at once. Both devices

also know they should receive four numbers. If this is not the case we have to resend the

message. In order to make sure all characters would arrive at the receiving end, we added an

extra character ’:’ at the end of each message. This character lets the receiving end know that

it is the end of a message. If we would not define the end of a message and a number would

be missing, the receiving end would wait for the next number to come through. The problem

is that the next number would be part of the next message causing all numbers to be messed

up with each other. An example of a message would look like this: 4372: .

Now for the communication, we start off by connecting both devices with Bluetooth. As soon

as the devices are connected with each other, the SoC will send message ”C” to the Android

phone notifying it is ready to receive the two matrices. As soon as the phone receives message

”C”, it will start sending the first number or in some cases a part of the number. In case

the message is received correctly, the SoC sends the message ”O” to let the phone know the

message was received. Figure 3.1 shows an example of how a correct message should look like.

Figure 3.1 Correct message transfer

In case we are missing a number due to data loss, the receiving end will respond with the

message ”R” as shown in figure 3.2

There is also the possibility of a device not responding to a request. The receiving end is

waiting for a response from its request. If the wait time is too long compared to a predefined

waiting time, the receiving end will send a message ”R” as seen in figure 3.3.

As for now, we work with square matrices with a predefined size. Both devices know at the start

of the session how large both matrix A and matrix B are. This way the SoC can calculate how

43

Figure 3.2 Incorrect message transfer

Figure 3.3 Delayed message

many numbers it should receive from the phone. Whenever matrix A is transferred succesfully,

the Soc will send message ”D” to notify the phone it should start sending matrix B (Figure

3.4). The same procedures as mentioned above are applied on matrix B as well.

Figure 3.4 Switch matrix message

When both matrices are transferred, the role of transmitter and receiver are switched. The

phone will now act as a receiver while the SoC becomes the transmitter. The SoC will transmit

matrix C after doing the multiplication of matrices A and B. For this proces, the previous rules

are also applicable. Although this time, the phone will start off by sending a message ”C” to

notify the SoC that it is ready to receive matrix C. The SoC proceeds by sending the data in

the same way as the phone did. Whenever the transmission experiences data loss, the phone

will send message ”R” to the SoC exactly like the SoC does the other way around. Message

”D” is not used by the phone since there is only one matrix it should receive from the SoC.

44

When the phone has received matrix C, the Bluetooth connection between the devices will be

suspended.

3.1.2 WebSocket communication protocol

The WebSocket communication has to achieve the same goal as the Bluetooth communication

being transmitting matrix A and B. Depending on the efficiency and performance of this Web-

Socket communication we set up a similar set of rules. Compared to Bluetooth, the WebSocket

transmission is much more efficient. We can easily transmit over eight characters without hav-

ing any data loss. This means that we do not have to send acknowledgement messages like the

”O” or ”R” message that were necessary with the Bluetooth communication in order to have

a solid data transmission.

If we look at subsection 2.4.2 under data frames, we see that the payload length of a message

can be either 16 or 64 bits. However, this does not mean we are limited to sending messages

smaller than 64 bits at a time since the socket will just split up the data in separate messages.

This allows us to basically have any message size. Because of limited memory we chose to use

integer numbers between 0-99. Next, we decided to combine 4 numbers and make one message

with them. The message now contains 4 integers (16 bytes). We convert the integers to strings

and add a ”0”-string in front of numbers that are smaller than 10 to make sure the full message

has a constant length of eight characters.

In order to have any communication at all, we start off by connecting both devices through

WebSocket technology. As soon as both devices are connected with each other, the SoC will

again start off by sending a message. The message will ask the phone to send matrix A. The

phone then will start transferring all data from matrix A to the SoC. Whenever matrix A is

transmitted completely, the SoC will ask to transfer matrix B and the phone will send matrix

B. After the last number of matrix B being transferred, the SoC will confirm that all data has

been received. In figure 3.5 we can see the exact messages needed from the SoC in order to

have a correct communication process. The messages from the phone to the SoC are examples

of how the messages could look like. The first message ”12345678” would be numbers 12, 34,

56 and 78 being transmitted to the SoC.

After the SoC sends its last message it will start doing the matrix multiplication of matrix

A and B with the outcome being matrixC. When the SoC is ready it will send the message

”matrixR =” to notify the phone it will start sending over the values within matrix C. Unlike

the phone, the SoC will send each number one by one since the number length varies with

the size of the matrix. Figure 3.6 shows both types of messages being sent by the SoC. The

phone should receive all numbers without having to give any feedback to the SoC. Whenever

the full result matrix is transmitted by the SoC, the WebSocket connection is terminated and

45

Figure 3.5 Sending matrix A and B

the complete process is finished.

Figure 3.6 Sending result matrix

3.2 SoC

As described in section 2.5, a HPS and FPGA are provided in the DE1SoC development board.

We use the HPS, see paragraph 2.5.1, to run a master program, where all the used peripherals

are accessed and controlled. The master program is cross-compiled into an executable and the

executable is started immediately after logging into the OS. To start a program automatically

after login, the next code line must be added at the end of the file ”/etc/profile”.

exec . / mat r i xMu l t i p l i c a t i on

Command ”exec” starts the execution of executable ”matrixMultiplication”. In this executable

the Bluetooth module, WebSocket module and OpenCL kernel are initialised, executed and

released from the OS. Figure 3.7 represents the complete implemented SoC. Chapter 2, ”The-

oretical background”, gives an introduction to the layout of a SoC. The two main parts are

the HPS and the FPGA connected with bridges to share data. In the next two points we

will explain the data flow in case we choose to transmit our data through the Bluetooth or

WebSocket connection.

Bluetooth Our DE1SoC board does not have on board Bluetooth, but TerASIC provided

the RFS daughter card shipped with the HC-01 Bluetooth module. This card is connected to

46

the GPIO1 socket, which is directly and only connected to the FPGA, see figure 2.9. We used

HDL Verilog to interact with this Bluetooth module through UART in file ”TopLevelMod-

ule.v”. Once the data are received, they need to be transmitted to the HPS. Altera provides

bridges for this, but they need to be configured with Qsys. Qsys provides just a connection with

the bridges, so two extra modules, ”receiverConnection.v” and ”transmitterConnection.v”, are

needed to connect Qsys with the topLevelModule. When we take another look at the imple-

mentation block diagram in figure 3.7, we can see that these two modules are not in between

Qsys and the topLevelModule. We did not want to place them in between, because they are

added as a custom component inside Qsys. The main benefit of importing these files in Qsys,

are the uncluttered connections in topLevelModule. Once the data are transferred to the HPS,

the FPGA is reconfigured with ”OpenCL.rbf” and class ”openclHost” will configure the en-

vironment for the OpenCL kernel. Next, the kernel receives two matrices from the bridges,

calculates the matrix multiplication and returns the result back to the HPS. Lastly, our devel-

oped ”matrixMultiplicatoin.rbf”, is used to reconfigure the FPGA and send the result matrix

back to the Android device using Bluetooth.

WebSocket The implementation of the WebSocket is much simpler. Classes wsReceiver and

wsTransmitter will respectively receive the two matrices and send the result matrix. The Class

openclHost calculates the result matrix by configuring the FPGA with ”OpenCL.rbf” in the

same way as explained above in ”Bluetooth”.

All the used classes and HDL, for matrix multiplication and both Bluetooth and WebSocket

communication are explained in depth in the next paragraphs.

The main function can idle in two states, determined by the first command line option. When

the option is a ”b”, then Bluetooth is enabled as communication protocol. If it is ”w”, the

WebSocket will be used. In either case, the FPGA needs to be configured to use Bluetooth or

OpenCL. Function ”setBridges()” with a string as parameter, indicating Bluetooth or OpenCL,

configures the FPGA with respectively ”matrix multiplication.rbf” and ”opencl.rbf”. Raw Bi-

nary File ”matrix multiplication.rbf” is designed for the Bluetooth communication in this the-

sis, more info about the design can be found in 3.2.3 ”Bluetooth on the FPGA”. The second

RBF ”opencl.rbf” is provided by Altera to configure the AXI AMBA bridges and FPGA, in

order to make them both ready for an OpenCL kernel execution.

3.2.1 Websocket

The websocket server package used in our SoC is called WebsocketD. WebsocketD is the simplest

WebSocket available and can be used on almost all platforms by all languages that can write

47

BridgeswsReceiver.cppmain.cpp

Header files

Qsys

transmitCon.v

receiverCon.v

topLevelModule.v

wsTransmitter.cpp

blTransmitter.cpp

blReceiver.cpp

openclHost.cpp

opencl.rbf

RFS

HPS matrixMultiplication.rbf

FPGA

Figure 3.7 Block diagram of the implemented system on the SoC with both the HPS and FPGA
modules

a ”printf” to the shell. The only requirements are a valid network connection between server-

client and an executable called ”websocketD”. The executable replaces messy code with libraries

by the two required command line arguments listed below.

• Port: All WebSockets uses a specific port to communicate. This port can be chosen

randomly as long as that port is unused and enabled in the OS. We use port: 8080.

• Executable: The executable of the developed program, in our case matrixMultiplication.

This is also the place to give command line arguments to the main program executable,

as can be seen in the example below.

. / websocketd − −port =8080 . / mat r i xMu l t i p l i c a t i on w

There is only disadvantage using this WebSocket setup. It is not practical to debug your

program ’old school’, by printing debug information to the shell, because every printf will be

transferred to the WebSocket client.

receiver

Receiving data in a c++ WebSocket program is simple with WebsocketD. Including the ”std”

library makes the developer able to use ”cin”, a variable that refers to the standard input stream,

to read data from the shell. The example code line below pauses the program execution until

48

there is a new text entry in the shell followed by a ’new line’ to end the word. Variable ”cin”

will be transferred to string ”s”, once the ’new line’ is detected.

c in >> s ;

transmitter

The transmitter uses the same library as the receiver to write to the shell. Variable ”cout”

prints the data given in string ”s” to the shell followed by a ”\n”, as can be seen in the example

code line below. The ”\n” creates a new line. Each new line is considered as a ”send now”

signal to the WebSocket.

cout << s << ”\n” ;

3.2.2 Bluetooth on the HPS

Bluetooth is implemented as one of the communication protocols between the Android API and

the SoC. We implemented a receiver and transmitter C++ class, where the data are read from

and written to the bridges. The main function in figure 3.7 invokes the receiver and transmitter

classes. The character error detection algorithm embedded in those two classes is explained in

the next two paragraphs.

Receiver in C++

The receiver class has two public functions, one called ”pullMatrix” that returns a pointer to

an array, pointing in the pulled matrix and ”receiveChar” used on the character error detection

to receive only one character at a time. Function ”receiveChar” is an almost identical version of

function ”receiveData” discussed in ”pullMatrix”. Function ”pullMatrix” receives one character

at a time from private function ”receiveData()” and organises all the characters into an array

of integers, representing an input matrix.

When function ”receiveData()” is called, then data are read from the bridges by the following

three code lines.

fd = open (”/dev/mem” , ORDWR | O SYNC) ;

bridgeMap = mmap(NULL, PAGE SIZE , PROT READ, MAP SHARED,

fd , b r idge ba s e) ;

cha rac t e r = (unsigned char ∗) ((char∗) bridgeMap +

RECEIVEROFFSET) ;

49

First, system call ”open” handles the receiving of data by opening memory file ”/dev/mem”,

with option ”O RDWR” to give the program read and write permission. The second option

”O SYNC” makes sure that all data have been transferred, when a read or write is requested,

before the program will continue. The value returned into integer ”fd” after the function is

ended, is the identifier of the newly opened file. This identifier is always the smallest available

integer greater than zero.

Secondly parameter ”bridgeMap” contains the base address of the used memory block. Function

”mmap” links the base address of the bridge register ”bridge base” with the base address of the

used memory. Parameter ”PAGE SIZE” defines the space needed for the bridges to be able to

write all the data. The next two parameters are necessary options, they give read-only access

rights to the memory and make sure that the memory updates are immediately available to

other mmap functions.

Thirdly, pointer ”character” points to the begin address of the virtual memory linked with the

bridges register. In other words, the value of pointer ”character” contains the character located

in the bridges. The address of ”character” is formed by adding an offset to the base address of

the memory, ”bridge map”.

Once character points to the base address of the receiver bridge, our error detection algorithm

can start. Program 3.1 is a copy of the algorithm, before we start the algorithm a timer

is invoked. This timer will make sure that, when the algorithm is idling too long without

receiving a character, the algorithm is reset and the data will be repeated. The while loop

will be repeated WORDSIZE times plus two, because there should be received WORDSIZE

characters closed with a ”:” which represents one extra character. A second extra character

does not exist, but adding it to WORDSIZE allows us to detect an error. This error occurs if

there are ”DATASIZE” characters received and the next characters is not an ”:”. Next, two

if-statements are used: one to check if the received character is a number and another one to

detect errors in the communication. The next step is important for a correct execution, the

value pointed to by ”character” is fixed into integer ”c”. This step is mandatory, due to the

fact that ”character” is declared as volatile. When a variable is declared as volatile it can be

changed at any time, in our case it allows us to change the variable during runtime from an

external source. The external source is the bridge. Because the variable can be changed at any

moment, we need to make sure that it will not change during one cycle of the while loop in

program 3.1, resulting in using integer ”c” for the rest of the cycle. The two if-statements will

be discussed independently:

• First if-statement: Here a check will occur if the received value is a number. When

the received value is a number, it can be converted from ascii to integer and added to

array ”preArray”. Once the while loop has finished without any error from the second

50

if-statement, preArray will be returned to function ”pullMatrix()”. Only when a number

is detected successfully, the variable ”numberOfChar” is increased.

• Second if-statement: During every iteration of the while-loop it is checked if the ”num-

berOfChar” is equal, lower or higher than WORDSIZE. When it is equal to WORDSIZE

and the currently received character is a ”:”, then the communication was successful.

After a successful communication command ”OK” is sent using function ”transmitData”

of object ”trans”. In all other cases of the second if-statement an error occurred.

All errors are handled in the same way: send a repeat request using function ”transmit-

Data” of object ”trans” and repeat the same function ”receiveData” concurrently.

s tartTimer () ;
while (numberOfChar < (WORDSIZE+2)) {

int c = ∗ cha rac t e r ;
i f ((c != ’ a ’) && (c != ’ , ’) && (c != ’ : ’)) {

int charValue = asc iToInt (c) ;
i f (charValue = = −1) {

tran . transmitData (REPEAT) ;
rece iveData () ;
break ;

} else {
preArray [numberOfChar] = charValue ;

}
numberOfChar++;

}
i f ((numberOfChar = = WORDSIZE) && (c = = ’ : ’)) {

tran . transmitData (OK) ;
numberOfChar=0;
break ;

} else i f ((numberOfChar < WORDSIZE) && (c = = ’ : ’)) {
tran . transmitData (REPEAT) ;
rece iveData () ;
break ;

} else i f (numberOfChar > WORDSIZE) {
tran . transmitData (REPEAT) ;
rece iveData () ;
break ;

} else i f (durat ion () > PASSEDTIMEREPEATRECEIVEDATA) {
tran . transmitData (REPEAT) ;

rece iveData () ;
break ;

}
}

Program 3.1 Class receiver: receiveData algorithm

51

Transmitter in C++

The moment a matrix is pushed in the main function, the function ”pushMatrix” of class trans-

mitter is called. This function will first establish the connection in order to enable transmitter-

mode. StartTransmitter sets the connection in transmitter-mode by sending a ”DONE”. If the

next received value is a ”COME” transmitter-mode is active. Next, the transmitter will send

each element of the matrix separately. A problem occurs if the number of an element has less

digits compared to the ”DATASIZE”, because the character error detection algorithm does not

allow changes in ”DATASIZE”. In order to make sure that all array elements have the same

”DATASIZE” we add a couple of zeros. Imagine for example an element with value ’123’, while

a defined ”DATASIZE” equals to four characters. Because of the algorithm an error will occur

while the fourth character is sent, but the fourth character does not exist. Our solution for this

problem is adding zeroes to the beginning of the number, resulting in: ’0123’.

We continue with transferring the word into function ”sendWord”. Here each character of the

string is transmitted by function ”transmitData”. When all the characters of a word are sent

and ended with a semicolon, then the algorithm of program 3.2 will verify the transmission.

It begins with a request to receive a character from object ”rec” of the class receiver. If the

receiving device answered with an ”OK”, it returns a ”1” to the function. In all other cases,

where one or more characters of the transmitted package are lost, a ”REPEAT” command

is returned to the transmitter. During the last scenario the function ”sendWord(x, c)” is

called again, concurrently, with the whole word as parameter. This function is called every

time something goes wrong. When the communication succeeds, returning a ”1”, then all

concurrently called functions return a ”1” into each other. By using this return value, function

”pushMatrix” knows whether the transmission was successful or not. Lastly, the characters are

pushed into the bridges. This is simply done by writing the character value into the pointer

pointing to the bridge mapped memory.

while (! r e c e i v e d) {
int rece ivedValue = rec . rece iveChar () ;
i f (rece ivedValue == OK) {

return 1 ;
} else i f (rece ivedValue == REPEAT) {

return sendWord (x , c) ;
}

}
Program 3.2 Class transmitter, function sendWord: algorithm to send a word

52

3.2.3 Bluetooth on the FPGA

We used the RFS daughter card plugged into the 2x20 GPIO socket to provide our SoC with

Bluetooth. That socket is a FPGA-only peripheral, resulting in a Bluetooth data path through

the FPGA. To configure the FPGA, HDL Verilog code is developed. To share the data between

FPGA and HPS, the AMBA AXI bridges are configured using Qsys. A detailed explanation

can be found in 2.5. First the configuration in Qsys of the HPS-FPGA bridges will be clarified.

Secondly and thirdly the Verilog and C++ code of the receiver and transmitter are investigated,

respectively.

Qsys module

Qsys is a graphical programming tool provided in Quartus, paragraph 2.5.3 introduces Qsys

with HPS-FPGA bridge configuration. Figure 3.8 contains 4 modules: clock 0, hps 0, trans-

mitterConnector 0 and receiverConnector 0.

• Clock: The module clock is set as default, because Qsys is a smart graphical interface to

develop a HDL. All HDL designs include a clock signal, so Qsys provides the clock by

default, see paragraph 2.5.2.

• HPS: In Qsys all the internal connections are made in the connections column, left most

column in figure 3.8. This way the clock signal is distributed to all clock inputs of all

the modules. Module called ”hps 0” belongs to the IP of Quartus, here the bridges are

implemented and HDL communication with the bridges is provided. Since in our design

the HPS controls everything, we have chosen to use a master connection for both the

receiver and transmitter, see ”h2f axi master” instead of ”f2h axi slave” in figure 3.8.

• ReceiverConnector: When there is no IP provided by Quartus suitable for the developers’s

design, then developers can include their own HDL into a Qsys system. We made our own

receiver and transmitter HDL modules and included them in the Qsys design. Program

3.3 shows the transmitter module in Verilog. It shows two inputs and two outputs used to

read data from FPGA to HPS. Signal ”inRead” gives the command that the Bluetooth

module wants to send data provided in 8-bit signal ”inReadData”. Assign is used to

assign 8-bits of zeros to the exiting signal when ”inRead” is low, while the incoming data

is directly connected to the output data at the moment ”inRead” becomes high. The read

signal is set at each positive edge of the clock in the always statement. If ”inRead” is high,

”outRead” will become high too. We want to prevent HDL races, see paragraph 2.5.2,

at any cost, but still the input data signal will be assigned to the output data whenever

signal ”inRead” is high. This, however is irrelevant, because the data will be stuck at

53

the next buffer, waiting for the ”read” signal arriving at the buffer and transmitting the

buffered signal through the bridges.

module r e ce ive rConnec to r (
input c lk , r e s e t , inRead ,
input [7 : 0] inReadData ,
output wire [7 : 0] outReadData ,
output reg outRead) ;

assign outReadData = inRead ? inReadData : 8 ’ b0 ;

always @(posedge c l k) begin
i f (r e s e t)

outRead <= 1 ’ b0 ;
else i f (inRead)

outRead <= 1 ’ b1 ;
else

outRead <= 1 ’ b0 ;
end

endmodule

Program 3.3 Module receiverConnector Verilog code

• TransmitterConnector: The transmitter uses a similar program to write data from the

bridges to FPGA, program 3.4 shows the Verilog code. There is an input and output

signal for both write and writeData. Basically the only thing that changes, except for

the direction of data flow, is that in this case the module will need to block the data

signal until the moment the signal ”write” is high on a positive edge of the clock. If

the transmitterConnector module would not do this, races would occur which results in

package loss.

Qsys is integrated as one module into the top-level-module, as can be seen in figure 3.7.

In the top-level-module all wires are assigned to each input or output of the object named

”SoC System”. The third column of figure 3.7 sets a name to export external connections,

those connections correspond to the connections of the previously mentioned assignments.

The only thing in between the data from Qsys and the RFS daughter card of TerASIC is the

UART connection. We implemented an UART module and some extra code, programs 3.5,

3.6 and 3.7, to make a data flow between Qsys and UART. To write and read data in the

UART module, two times three signals are provided. Respectively ”write” and ”read” must

be high when writing or reading data. Signals ”writedata” and ”readdata” are 8-bits signals

to transport the data and signals ”wrfull” and ”rdempty” sign that the UART communication

54

module t ransmitterConnector (
input c lk , r e s e t , inWrite ,
input [7 : 0] inWriteData ,
output [7 : 0] outWriteData ,
output outWrite) ;

reg wr i t e ;
reg [7 : 0] writeData ;

assign outWrite = wr i t e ;
assign outWriteData = writeData ;

always @(negedge c l k) begin
i f (r e s e t)

wr i t e <= 1 ’ b0 ;
else i f (inWrite)

wr i t e <= 1 ’ b1 ;
else

wr i t e <= 1 ’ b0 ;
end

always @(posedge c l k) begin
i f (r e s e t)

writeData <= 8 ’ b0 ;
else i f (inWrite & wr i t e)

writeData <= inWriteData ;
else

writeData <= 8 ’ b0 ;
end

endmodule

Program 3.4 Module transmitterConnector Verilog code

buffer is full or empty. The three last module arguments are a 25MHz clock input and the two

”tx” and ”rx” communication lines. Our main clock of the FPGA has a frequency of 50MHz,

by using program 3.5 the 50MHz clock is converted to a 25MHz clock. In this program ”cnt”

is a single bit register. When ”cnt” is zero and an one is added, then the result will be one.

However, if ”cnt” is one and another one is added, then ”cnt” becomes two. Since the number

two is ”10” in binary and only the least significant bit is assigned to one-bit register ”cnt”,

”cnt” will be zero again.

always@ (posedge c l k)
cnt <= cnt + 1 ;

Program 3.5 FPGA 50MHz clock divider to 25MHz clock for the UART module

55

Figure 3.8 Graphical programming layout of the system in Qsys

Receiver implementation in top-level-module

To connect the UART module with the Qsys system program 3.6 is needed. Because this is

the receiver, the bridge data are written from FPGA when the ”writeBridge” signal is high.

When UART gives the ”read” as high and the ”rdempty” as low, then the incoming data from

UART are forwarded to the register ”readDatahold”. At all other moments, the hexadecimal

value h61, ascii for ”a”, is transmitted. Detecting ”a” is mandatory in case the UART module

is not sending useful data. These situations can happen, because the UART and Qsys modules

are working independently and constantly near each other. At any time, Qsys can ask for data

by setting ”receiveRead” high and checking wire ”receiveData”, these data always come from

register ”readDatahold” and will be either the UART data or an ”a” that is filtered out in the

HPS. The wire ”receiveData” is reset to eight zeros when Qsys does not want to read data.

It is confusing that in the second always statement of program 3.6 the register ”read” is set

by the use of wire ”rdempty”, while in the second assignment both of them are mandatory to

determine the value of wire ”writeBridge”. This is because the second always statement gives

a one clock cycle delay to the Qsys system before reading the data.

Transmitter implementation in top-level-module

The transmitter has a data path in the opposite direction of the receiver data path. The second

always statement of program 3.7 implements a delay-check. It checks if the wire ”nextWrite-

Data”, connected to Qsys, was previously high and currently low. If this situation occurs, then

the data coming from Qsys in ”transmitterWritedata” will be connected to register ”write-

data” in the UART module. At the same time signal ”write” connected to the UART module

is set high. When the writing condition is not achieved, ascii value ”NULL” is sent by the

56

assign rece iveData = (rece iveRead) ? readDatahold : 8 ’ h0 ;
assign wri teBr idge = (read & (˜ rdempty)) ;

always@ (posedge c l k) begin
i f (! r e s e t)

readDatahold <= 8 ’ h30 ;
else i f (wr i t eBr idge)

readDatahold <= readdata ;
else i f (rece iveRead)

readDatahold <= 8 ’ h61 ;
end

always@ (posedge c l k) begin
i f (˜ rdempty)

read <= 1 ;
else

read <= 0 ;
end

Program 3.6 Integration of the receiver in the top-level-module

hexadecimal number h0.

3.2.4 OpenCL host

Our OpenCL uses a host in C++ to configure the environment before implementing an OpenCL

kernel. Chapter ”Theoretical background” handles a general description about the host class,

this paragraph will describe our implementation. It all starts by calling function ”startHost()”

with two input matrices A and B as parameters. First, OpenCL must detect which devices of

which platforms are connected. Next, a context needs to be created for every device used, this

is a medium to connect host program and device to talk with each other. The command queue

on the other hand is a specific data-stream on top of the context, it enables the host program

to talk directly to a kernel running on a device. Up to this point only an environment has

been created, but how the kernel should behave has not yet been defined The code after the

white space in program 3.8 configures the kernel with an offline pre-compiled kernel. Firstly, the

binary file is loaded from the user directory in the OS, running on the SoC. Secondly a program

will be created and built from this binary file, the desired device and corresponding context.

Developers can include specific options during the kernel build. We don’t use these, but to give

an example: ”-cl-opt-disable”. This option will disable the standard enabled compiler kernel

optimimalization. Thirdly and lastly a kernel object will be created. Kernel objects are used

in the next part to easily code the data-stream to the kernel.

57

always@ (posedge c l k) begin
i f (! r e s e t)

oldNextWriteData <= 1 ’ b0 ;
else i f (nextWriteData)

oldNextWriteData <= 1 ’ b1 ;
else

oldNextWriteData <= 1 ’ b0 ;
end

always@ (posedge c l k) begin
i f (! r e s e t) begin

wr i t e <= 1 ’ b0 ;
wr i tedata <= 8 ’ h0 ;

end else i f (nextWriteData = = 1 ’ b0 &&
oldNextWriteData = = 1 ’ b1) begin

wri tedata <= transmit te rWri tedata ;
wr i t e <= 1 ’ b1 ;

end else begin
wr i t e <= 1 ’ b0 ;
wr i tedata <= 8 ’ h0 ;

end
end

Program 3.7 Integration of the transmitter in the top-level-module

plat form = f indPlat fo rm (” Altera ”) ;
dev . r e s e t (getDev ice s (platform , DEVICE TYPE, &num devices)) ;
context = clCreateContext (NULL, 1 , &dev [0] , NULL, NULL, &e r r) ;
queue = clCreateCommandQueue (context , device , OPTIONS, &e r r) ;

b i n F i l e = getBoardBinaryFi le (KERNEL NAME, dev i c e) ;
program = createProgramFromBinary (context , b i n F i l e . c s t r () ,

&dev [0] , 1) ;
c lBuildProgram (program , 0 , NULL, opt ions , NULL, NULL) ;
k e rne l = c lCreateKerne l (program , KERNEL NAME, &e r r) ;

Program 3.8 Declaration of OpenCL kernel environment in OpenCL host

3.2.5 OpenCL kernel

The OpenCL kernel is the main subject of our thesis. If there was no OpenCL, then we would

be forced to use a HDL to accelerate the matrix multiplication. HDL descriptions are way

more difficult to develop and to implement compared to a programming language. Chapter

”Theoretical background” gives the most simple OpenCL kernel example, a matrix addition, in

2.5.2. All kernel codes explained in this chapter are based on the vector addition example. Each

58

kernel will do the same matrix multiplication with their own advantages and disadvantages.

In the following item list, all used kernel codes are explained in depth. They all have the

same parameters A, B, result and ”ARRAYSIZE”, corresponding respectively to the two input

matrices, the output matrix and the dimension of the square matrices. OpenCL can not handle

pointers to pointers, resulting in one-dimensional kernel function arguments, instead of two-

dimensional function arguments.

• The first OpenCL kernel we developed is the most simple one, represented in program

3.9. When programming a matrix multiplication in a single thread, multiple for-loops

are used to provide the iterators used in the calculation. Because a kernel represents the

behaviour of one element, called a workgroup, of all the parallelized elements, a constant

iterator parameter is needed in each workgroup. More info about how workgroups fit in

the OpenCL architecture can be found in paragraph 2.5.2. Constant integers ”r” and ”c”

correspond to these iterators. To store a result in between calculations, global integer

”sum” is used. Table 3.1 represents the basic principle of our kernel algorithm for a 2 x 2

matrix multiplication. As can be seen ”r” and ”c” are iterating all possible situations for

each matrix. For each iteration, derived by equation 2.2, ”ARRAYSIZE” multiplications,

represented by ”i”, need to be calculated and added into global parameter ”sum”. When

the ”ARRAYSIZE” multiplications are added together, then the result ”sum” is returned

into the corresponding place of array ”result”.

• Where the first kernel uses global memory to store the result in between calculations,

this second kernel will use local memory. Paragraph 2.5.2 describes the advantages and

limitations of using global vs local memory. Global memory is bigger but slower than local

memory. We expect to have a shorter calculation time when doing a matrix multiplication

on bigger matrices. Program 3.10 represents the second kernel. Local memory parameter

sum cannot be accessed by a pointer like a global parameter, because it is stored in a

register on the FPGA side. Although data on the FPGA side are equally stored as data

in software, by using register addresses, OpenCL does not allow pointing to local memory.

• Our third kernel implementation, program 3.11 is more advanced. The second kernel

writes all the sums to local memory, but it reads global memory twice every time a

multiplication is done. We tried to reduce the amount of time we read from global

memory to the minimum, by copying the input matrices into two-dimensional arrays in

local memory. This step will add some time to the process, but we think that it pays off

when calculating big matrices, because reading local memory is much faster than global

memory. The algorithm stays the same, but one additional step is required. All elements

are processed in this kernel in parallel, but the algorithm can only be invoked when all

the data are transferred from the global into the local memory. Function ”barrier()” with

59

parameter ”CLK GLOBAL MEM FENCE” makes sure that each workgroup has written

to local memory, before they can start the matrix multiplication algorithm.

ke rne l void mult ip l i cat ionSum (g l o b a l int∗ r e s t r i c t A,
g l o b a l int∗ r e s t r i c t B, g l o b a l int∗ r e s t r i c t r e s u l t ,
int ARRAYSIZE, g l o b a l int∗ r e s t r i c t sum) {

const int r = g e t g l o b a l i d (0) ;
const int c = g e t g l o b a l i d (1) ;
∗sum = 0 ;

for (int i =0; i<ARRAYSIZE; i++) {
∗sum += A[r x ARRAYSIZE + i] x B[i x ARRAYSIZE + c] ;

}
r e s u l t [r x ARRAYSIZE + c] = ∗sum ;

}
Program 3.9 OpenCl kernel: global memory implementation

r c i = 0 i = 1 sum r x Size + c
0 0 A x E B x G A x E + B x G 0
0 1 A x F B x H A x F + B x H 1
1 0 C x E D x G C x E + D x G 2
1 1 C x D D x H C x D + D x H 3

Table 3.1 OpenCL kernel: matrix multiplication implementation flow table with matrixSize equal to
two

ke rne l void mult ip l i cat ionSum (g l o b a l int∗ r e s t r i c t A,
g l o b a l int∗ r e s t r i c t B, g l o b a l int∗ r e s t r i c t r e s u l t ,
int ARRAYSIZE) {

const int r = g e t g l o b a l i d (0) ;
const int c = g e t g l o b a l i d (1) ;
l o c a l int sum ;
sum = 0 ;

for (int i =0; i<ARRAYSIZE; i++) {
sum += A[r x ARRAYSIZE + i] x B[i x ARRAYSIZE + c] ;

}
r e s u l t [r x ARRAYSIZE + c] = sum ;

}
Program 3.10 OpenCl kernel: local memory implementation

60

ke rne l void mult ip l i cat ionSum (g l o b a l int∗ r e s t r i c t A,
g l o b a l int∗ r e s t r i c t B, g l o b a l int∗ r e s t r i c t r e s u l t ,
int ARRAYSIZE) {

const int row = g e t g l o b a l i d (0) ;
const int c o l = g e t g l o b a l i d (1) ;

l o c a l int subA [6 4] [6 4] ;
l o c a l int subB [6 4] [6 4] ;
l o c a l int sum ;
sum = 0 ;

subA [row] [c o l] = A[row x ARRAYSIZE + c o l] ;
subB [row] [c o l] = B[row x ARRAYSIZE + c o l] ;
b a r r i e r (CLK LOCAL MEM FENCE) ;

for (int k=0; k<ARRAYSIZE; k++) {
sum += subA [row] [k] x subB [k] [c o l] ;

}
r e s u l t [row x ARRAYSIZE + c o l] = sum ;

}
Program 3.11 OpenCl kernel: global to local memory copy implementation

3.3 Android apps

The android phone needs proper software in order to function well in our expirement. To

build this software we use Android Studio. It is an easy-to-use java environment with a lot

of information that can be found on the internet. We will make three different applications

using Android Studio. One application to test the matrix mulitplication with the phone itself

to compare the speed with the SoC. A second application is responsible for the Bluetooth

communication and a third application is used for the WebSocket communication.

3.3.1 Matrix multiplication

This app will multiply two square matrices that are filled with random integers converted to

strings (see subsection 3.1.2 on why we do this). We start off with creating two matrices.

Program 3.12 shows how this is done. First, we make an array of integers that is ”arraySize”

large. We start a for loop that will cycle ”arraySize” times. In line 4 we create a random integer

between value 0 and 99 and put this in the array ”matrixA” in the next line. MatrixB is made

in exactly the same way.

We then go through program 3.13 which is a basic way of multiplying two matrices.

61

1 | matrixA = new I n t e g e r [a r r ayS i z e] ;
2 | int random ;
3 | for (int i =0; i<a r rayS i z e ; i ++){
4 | random = (int) (Math . random ()∗1 0 0) ;
5 | matrixA [i] = random ;
6 | }

Program 3.12 Creating matrix

1 | t1 = (int) System . cur r entT imeMi l l i s () ;
2 | for (int i =0; i<a r rayS i z e ; i ++){
3 | for (int j =0; j<a r rayS i z e ; j++){
4 | sum = 0 ;
5 | for (int k=0; k<a r rayS i z e ; k++){
6 | sum = sum + matrixA [i ∗ a r rayS i z e+k]∗matrixB [k∗ a r rayS i z e+j] ;
7 | }
8 | matrixC [i ∗ a r rayS i z e+j] = sum ;
9 | }

10 | }
11 | t2 = (int) System . cur r entT imeMi l l i s () ;

Program 3.13 Code for matrix multiplication on Android phone

First, we determine the system time and assign this value to t1. In section 2.1, we explain how

matrix multiplication works so this should clear up lines 2-10 in the program above. After the

multiplication is finished we determine another system time and assign this value to t2. If we

substract t1 from t2, we know how many milliseconds it took to complete the full multiplication.

The layout of this app can be seen in figure 3.9.

Figure 3.9 Matrix multiplication app Figure 3.10 Bluetooth menu

62

3.3.2 Bluetooth application

In the next two apps, we will transfer the matrics over to the SoC that will perform the matrix

multiplicaiton. First, we will explain how the Bluetooth app works.

Since this app works with Bluetooth, we have to set up the permissions for the app to use the

phone’s Bluetooth adapter in the AndroidManifest.xml file like so:

<uses-permission android:name=”android.permission.BLUETOOTH ADMIN”/>

<uses-permission android:name=”android.permission.BLUETOOTH”/>

The first thing the app will do is check wether or not your phone’s Bluetooth is enabled.

If not, it will ask you if you want to enable the Bluetooth. If you press allow, you will be

directed to the main screen. If the Bluetooth was already enabled, nothing will pop up and you

will see the main screen in front of you. The front end of the app is simple, consisting of only

one textview and two buttons. The textview has the purpose to allow you to input a custom

size for your matrix’s row and column. The first button ”Start” will make 2 matrices with the

given size. The other button will open a menu with 2 lists and a third button. The first list will

show you all the already paired Bluetooth devices on your phone. The other list is empty, but

after pressing the button ”Search new devices”, the list will fill up with discoverable devices

around you as you can see in figure 3.10.Tapping on one of the new devices will result in an

attempt to pair with this device. Tapping on a paired device in the list will result in an attempt

to connect to that device. The device you selected will be the device you will communicate

with. Android Studio provides libraries that easily gives you acces to the Bluetooth adapter in

the phone. More information on how the Bluetooth adapter works can be found on the Android

developer website [1]. When the connection is established, the protocol described in 3.1.1 will

be executed.

The Bluetooth adapter has an input and an output stream to respectively read and write data.

Both of which run in a thread so whenever there is new data coming from the SoC, the app

will be able to read that. The received messages go to the message handler. In this message

handler, various things happen depending on which message was received. Some of the effects

of the messages are described in 3.1.1 and here we will explain what happens in the background

of the app.

Program 3.14 is a piece of the handler code. First, we set up some byte array variables. One of

these will read and copy whatever is in the buffer, while the other is used to send our message to

the SoC. The following if-statement asks if the phone is the device that is currently ”sending”

matrices. If so, a second if-statement awaits with cases for all possible messages the phone can

receive from the SoC. As we already know, when the phone receives the message ”C”, we will

be starting to send over the matrices. We define an integer ”i” that functions as an index to

go through the matrix that contains the messages we have to send. We define a new message

63

with the first element of the array and we define a first timestamp that indicates the beginning

of the whole process. Next up is the ”O” message. This message is received whenever the SoC

acknowledges that it has received our previous data. We increment our index and check if the

index is not exceeding our matrix length. If the index is ok, we send a message with the next

array component. When the SoC did not receive our message correctly, we should receive the

message ”R”. If this is the case we will not increment the index so it will just send the previous

message again. As for now, we only send one matrix over to the SoC for the sole purpose of

testing the transmission time since sending the second matrix would take the same amount of

time because they have the same size. Whenever the matrix has been transferred, the SoC

will send an ”X”. At that point we make another timestamp so we know the elapsed time for

sending one matrix from the phone to the SoC. The time will be printed in the log with the

code shown in program 3.15. Meanwhile, the phone sends a message ”C” to the SoC in order

to switch the roles. The SoC will become the transmitter and the phone will act as a receiver.

1 | byte [] readBuf = (byte []) msg . obj ;
2 | byte [] newMsg ;
3 | St r ing readMessage = new St r ing (readBuf , 0 , msg . arg1)
4 | i f (sending){
5 | i f (readMessage . equa l s (”C”)) {
6 | i = 0 ;
7 | newMsg = (St r ing . valueOf (matrixD [i]) + ” : ”) . getBytes () ;
8 | t1 = System . cur r entT imeMi l l i s () ;
9 | } else i f (readMessage . equa l s (”O”)) {

10 | i ++;
11 | i f (i<matrixD . l ength){
12 | newMsg = (St r ing . valueOf (matrixD [i]) + ” : ”) . getBytes () ;
13 | }
14 | } else i f (readMessage . equa l s (”R”)) {
15 | newMsg = (St r ing . valueOf (matrixD [i]) + ” : ”) . getBytes () ;
16 | } else i f (readMessage . equa l s (”X”)) {
17 | t2 = System . cur r entT imeMi l l i s () ;
18 | newMsg = ”C” . getBytes () ;
19 | printTime () ;
20 | i = 0 ;
21 | }
22 | else {
23 | newMsg = ” : ” . getBytes () ;
24 | }
25 | mChatService . wr i t e (newMsg) ;

Program 3.14 Bluetooth message handler as transmitter

Program 3.16 starts of with the else-statement that is related to the if-statement from program

3.14. Now that the phone is the receiver the first message we would receive from the SoC should

64

1 | public void printTime (){
2 | Log . i (TAG, ”−−−”) ;
3 | Log . i (TAG, ”Time = ” + Str ing . valueOf (t2 − t1)) ;
4 | Log . i (TAG, ”−−−”) ;
5 | }

Program 3.15 Prints elapsed time for sending matrices

be a ”D”, indicating the SoC is done with the matrix multiplication. We send over message

”C” to tell the SoC that the phone is ready to receive data. We also set up a timestamp to

indicate the beginning of the receive time. Further messages that will be received will be a

set of numbers with a ”:”-symbol at the end to indicate that it is the end of the message. In

subsection 3.1.1 we explain why we do this. If the received number follows the rules of the

protocol we confirm that we received the number correctly by sending an ”O” as a message to

the SoC. In case we suffered from data loss or any other error, we send an ”R”. Line 10 in

program 3.16 will check wether or not our matrix is full. If it is, we make a second timestamp

and print the time it took to receive te matrix.

1 | else {
2 | i f (readMessage . equa l s (”D”)){
3 | newMsg = ”C” . getBytes () ;
4 | t1 = System . cur r entT imeMi l l i s () ;
5 | } else i f (readMessage . l ength ()==wordSize+1 && readMessage . endsWith (” : ”)){
6 | try{
7 | matrixC [counter] = I n t e g e r . pa r s e In t (readMessage . sub s t r i ng (0 , wordSize)) ;
8 | counter++;
9 | }catch (Exception e){}

10 | i f (matrixC [elements −1] != null){
11 | t2 = System . cur r entT imeMi l l i s () ;
12 | printTime () ;
13 | }
14 | newMsg = ”O” . getBytes () ;
15 | }
16 | else {
17 | newMsg = ”R” . getBytes () ;
18 | }
19 | mChatService . wr i t e (newMsg) ;
20 | }

Program 3.16 Bluetooth message handler as receiver

65

3.3.3 WebSocket application

Just like in the Bluetooth application, the SoC has to solve the matrix multiplication. Again,

the front end of the app is really simple, containing only a textview and a button (figure 3.9).

The textview is for defining a matrix size for the rows and columns. With the first tap on the

button, you confirm the matrix size and create 2 square matrices with the chosen size contain-

ing random values from 0 to 99. The second tap will connect you to the WebSocket whose IP

address is predefined as you can see in line 4 of program 3.17. In order for us to connect the

phone to the WebSocket server, we need to create a WebSocket client first. The WebSocket

client can be created with the code shown in program 3.17. For the WebSocket client, we used

the ”org.java-websocket:Java-WebSocket:1.3.0” library since it is good and easy to use. Also,

to allow the app to use the phone’s internet connection, we have to put the following line in

the AndroidManifest.xml file:

<uses-permission android:name=”android.permission.INTERNET”/>

Now, whenever we call the method to initiate the WebSocket client, the URI from the server

is required (line 4). Line 9-50 are shown in program 3.18 that gives the detailed code on which

methods the socket has to contain in order to function properly. In line 51 we try to establish

a connection between the client and the server.

1 | public void connectWebSocket () {
2 | URI u r i ;
3 | try {
4 | u r i = new URI(”ws : / / 1 3 0 . 2 3 0 . 1 4 4 . 4 0 : 8 0 8 0 ”) ;
5 | } catch (URISyntaxException e) {
6 | e . pr intStackTrace () ;
7 | return ;
8 | }
9 | socket = new WebSocketClient (ur i , new Draft 17 ()) { . . . } ;

51 | socket . connect () ;
52 | }

Program 3.17 Making a WebSocket client

The socket requires certain methods that are invoked on a call from the server. For example, if

the client connects succesfully with the server, method ”OnOpen” is invoked. In this method

we print a message to our Log that the phone succesfully connected to the server. The second

method required for the WebSocket client is ”onMessage”. This method is invoked whenever

the client receives a message from the server. What happens next depends on the message this

method received. All different types of messages are put into an if-statement so we execute

different code depending on the received message. You can read more about the messages

66

on line 16, 19 and 23 in subsection 3.1.2 where the transmission protocol is explained. If we

receive ”matrixA=” or ”MatrixB=”, we respectively start transferring matrix A and matrix

B. However, before we start sending them over, we create a timestamp t1 that will measure

the system time in milliseconds at that point. We do the same thing for t2 as soon as we

start sending matrixB. Having a timestamp for matrixB seems redunant but why this is done

will be explained in the results. A third timestamp t3 is defined after receiving the message

”matrixR=” which will represent the start of receiving data. The message in the next case is

to determing how long the SoC’s execution time was for calculating the matrix multiplication.

When we receive message ”done :D”, we measure our last timestamp and close the WebSocket

connection.

67

9 | socket = new WebSocketClient (ur i , new Draft 17 ()) {
10 | @Override
11 | public void onOpen(ServerHandshake serverHandshake) {
12 | Log . i (TAG, ”Connected to : ” + u r i . getHost () + ” : ” + u r i . getPort ()) ;
13 | }
14 | @Override
15 | public void onMessage (S t r ing s) {
16 | i f (s . equa l s (”matrixA=”)){
17 | t1 = System . cur r entT imeMi l l i s () ;
18 | sendMatrixA () ;
19 | }
20 | else i f (s . equa l s (”matrixB=”)){
21 | t2 = System . cur r entT imeMi l l i s () ;
22 | sendMatrixB () ;
23 | }
24 | else i f (s . equa l s (”matrixR=”)){
25 | t3 = System . cur r entT imeMi l l i s () ;
26 | }
27 | else i f (s . conta in s (” Execution time in ”)){
28 | exeTime=s ;
29 | }
30 | else i f (s . equa l s (”done :D”)){
31 | t4 = System . cur r entT imeMi l l i s () ;
32 | displayTimes () ;
33 | }
34 | else {
35 | try{
36 | int i = I n t eg e r . pa r s e In t (s) ;
37 | matrixC [counter] = i ;
38 | counter++;
39 | } catch (Exception e){}
40 | }
41 | }
42 | @Override
43 | public void onClose (int i , S t r ing s , boolean b) {
44 | counter = 0 ;
45 | }
46 | @Override
47 | public void onError (Exception e) {
48 | //Log . i (TAG, ”Error ” + e . getMessage ()) ;
49 | }
50 | } ;

Program 3.18 Detailed look at creating the WebSocket client

68

69

4. RESULTS

Corresponding to the research question of this thesis, two questions needs to be answered.

Firstly, is it possible to accelerate the matrix multiplication on the SoC, in order to make

it faster than the same multiplication on a single threaded Android application? Section 4.1

describes the outcome during SoC performance testings on three different OpenCL kernels.

This section is ended by an interesting fact, discovered during the OpenCL kernel development

on the MacBook Pro. Secondly, in section 4.3 a speed comparison between data transfer

protocols Bluetooth and WebSocket is described. Besides the comparison of the communication

speed only, a total performance comparison is made between: the total data transmission plus

calculation time and the calculation time of the Android matrix multiplication. Here the second

and main question is answered: is it possible to receive a faster matrix calculation result by

extending the matrices to a SoC, instead of performing the calculation inside the Android

application?

4.1 OpenCL performance

The implemented OpenCL kernels have been developed and tested on a MacBook Pro, before

they were implemented on the DE1SoC. We discovered a huge difference in matrix multiplica-

tion calculation time on both architectures, as can be seen in graph 4.1. We will discuss the

performance and resource usage of each kernel implementation in the next paragraphs. The

implementation of each OpenCL kernel is explained in paragraph 3.2.5. All kernels, except the

one copying global to local memory, support an experimentally determined maximum matrix

size of 3516x3516. The SoC is theoretically able to allocate maximum 402 653 184 bytes in

memory, equation 4.1 shows the calculated amount of memory that must be allocated to store

all the data. There are 7 060 992 bytes allocated, but not used to store matrices. These bytes

are used by other OpenCL parameters. All the data are consist of two input matrices, one

output matrix and one buffer matrix. The last paragraph discusses the general evolution of the

calculation times on the three architectures: Android, DE1SoC and MacBook Pro.

4× 35162 × 8 = 395592192bytes (4.1)

70

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

0 500 1000 1500 2000 2500 3000 3500

Ca
lc
ul
at
io
n	
tim

e

Matrix	size

LocalMemSoC

GlobalMemMac

GlobalMemSoC

Android

GlobalMemCopyLocSoC

Figure 4.1 Comparison between OpenCL kernel and Android matrix multiplication calculation times.
The vertical axis is in logarithmic scaled.

4.1.1 Global memory sum storage

The first developed OpenCL kernel uses global memory to store the temporary result of sums.

We consider this the most simple and expected it to be the slowest implementation. As can be

seen in figure 4.1, the orange line, representing the global memory implementation, looks equally

fast as the local memory implementation discussed next. This, however, is not true. Our global

memory implementation is slightly faster than the local one, because they are plotted in the

same graph it seems that they are equal. Although the global memory seems to have a smooth

curve in figure 4.1, strange things happen around matrix size 2048 and above matrix size 3246.

We cannot explain what exactly happens in these points, but similar issues seems to happen

in both the local memory implementation on the SoC and the Android phone. Matrix sizes

1024, 1536, 2048, 2560 and 3072 are problematical points, with a specific correlation between

all points: addition of matrices of size 512x512. Although the amount of elements in 512x512

(=262 144) do not correspond to a commonly used amount of memory, we hypothesize that it

is caused by memory allocation.

Table 4.1 reports, at offline compilation time, all the estimated resources used by our global

memory implementation in the DE1SoC. We conclude that there are a lot of possibilities to

enhance the matrix multiplication, because there still are a lot of resources that remain unused.

The next implementations are an attempt to use more resources.

71

Resource Usage

Logic utilization 32%
ALUTs 19%
Dedicated logic registers 14%
Memory blocks 28%
DSP blocks 7%

Table 4.1 Resource usage in global memory implementation

4.1.2 Local memory sum storage

In theory, the local memory storage is smaller and faster than global memory. When the matrix

size increases, then memory is accessed more often. Because the local memory is faster much

faster in reading and a little faster in writing than global, it seemed a good idea to use local

memory to store a result in between calculations. If we take a look at figure 4.1, we can conclude

that there is no significant difference between using global and local memory. We derive this

from the fact that reading memory is always faster than writing memory. Because we write

”ARRAYSIZE” times and read only one time the local memory per result matrix element, the

difference might be negligible. Matrix sizes 1024, 1536, 2048, 2560 and 3072 show the same

weird behaviour as mentioned in 4.1.1.

The resource usage in table 4.2 results in less resource usage for the local memory implemen-

tation. This is due to the fact that OpenCL requires global memory variables to be declared

in the argument list of the kernel function. When looking at the architecture of the SoC, this

OpenCL requirement is easily explainable. All global data is stored into the shared DDR3

SDRAM, so every wire of global memory is routed all the way to shared memory. Those wires

take a bit extra resourec usage.

Resource Usage

Logic utilization 28%
ALUTs 16%
Dedicated logic registers 13%
Memory blocks 25%
DSP blocks 7%

Table 4.2 Resource usage in local memory implementation

4.1.3 Global to local memory copy

Because we access the two input matrices ”ARRAYSIZE” times in order to calculate the result

for every element of the result matrix, it seemed a good idea to copy the two input matrices

72

into local memory, before executing the matrix multiplication. The disadvantage is that it will

take a while to write all the data from global into local memory, but the algorithm will receive

the data faster during calculation. When we look again at the yellow curve in figure 4.1, we

see that this last implementation results in the worst developed kernel. This can be explained

by the delay as a result of copying the whole matrices into local memory. Because the local

memory is smaller than global memory, the maximum matrix size is limited by 64 x 64. That

size is determined by looking at the resource usage. When the matrix size equals 128, table 4.3

shows that 115% of the memory blocks are used. By limiting the matrix size to 64, only 40%

of the memory blocks are used in table 4.4.

During the testing of this kernel on the DE1SoC, we discovered that copying data from global

to local memory has a big influence on our total calculation time. The yellow line in figure

4.1 represents this kernel. Although this kernel was definitely not a faster solution due to the

limited size in local memory, we can conclude that access speed of memory has a big influence

in kernel execution time. Future kernels for matrix multiplication should implement global,

local and private memory in such a way that global memory access is held to a minimum.

Resource Usage

Logic utilization 23%
ALUTs 13%
Dedicated logic registers 11%
Memory blocks 115%
DSP blocks 5%

Table 4.3 Resource usage global to local memory copy implementation for 128 x 128 matrices

Resource Usage

Logic utilization 23%
ALUTs 13%
Dedicated logic registers 11%
Memory blocks 40%
DSP blocks 5%

Table 4.4 Resource usage global to local memory copy implementation for 64 x 64 matrices

4.1.4 Global memory sum storage on the MacBook Pro

Although all kernels are developed and tested on the MacBook Pro, comparing their perfor-

mance with all kernels on the DE1SoC is not in the scope of this thesis. We did find an inter-

esting quest. The execution time of the global memory kernel on the MacBook Pro, grey curve

in figure 4.1, has an amazingly shorter calculation time compared to the DE1SoC. OpenCL

was initially developed to be used on GPUs combined with a host on CPU, not FPGAs. This

73

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

0 500 1000 1500 2000 2500 3000 3500

Tr
an
sm

iss
io
n	
tim

e

Matrix	size

AndroidFuture

FutureTotTransmissionTime

FutureMac

FutureSoC

FutureMacWithTransferTime

FutureSoCWithTransferTime

Figure 4.2 Comparison between matrix multiplications on different architectures, with and without
the matrix transportation time

explains why the MacBook Pro was able to compute a much faster result. We suggest that in

further research OpenCL kernels could be extended to other external computing sources like

computers with their GPU.

4.1.5 Comparison between matrix multiplications on different architec-

tures in Java and OpenCL

The last curve to discuss in figure 4.1 is the black one, representing the Android device. We

talked already about strange behaviour on certain matrix sizes, but in the Android application

the calculation time becomes really weird from matrix size 960. Between the already discussed

spikes at 1024, 1536, 2048 and 2560, there are a lot of unexplainable spikes. In order to

compare results for bigger matrices, a 6th grade polynomial trend line, equation 4.2, was

generated by Excel from the black curve in figure 4.2 in between 4 and 896. Equations 4.3

and 4.4 represent both the global memory OpenCL kernel execution on the MacBook Pro and

DE1SoC, respectively.

y = 1×10−14×x6−1×10−11×x5−2×10−8×x4+4×10−5×x3−1, 2×10−2×x2+1, 4×x−18, 1

(4.2)

y = 3× 10−10 × x4 − 1× 10−6 × x3 + 2, 1× 10−3 × x2 − 7, 7× 10−1 × x + 45, 6 (4.3)

74

y = −3× 10−10 × x4 + 2× 10−5 × x3 − 2, 1× 10−3 × x2 − 0, 2801× x + 142, 83 (4.4)

All the not yet discussed curves on figure 4.2 are discussed in the next part of this chapter and

used in the end conclusion. Until now, we can conclude that calculations on the SoC with a

matrix size bigger than 1660 are faster than on the Android phone.

4.2 Phone performance

In this section we will describe the performance and the results we got from our applications

from section 3.3. The phone we used is a Huawei P9 (EVA-L09) that has following specifications:

• CPU: HiSilicon Kirin 955 2.52 GHz

• RAM: 2780MB

• Android version: 7.0

4.2.1 Matrix multiplication

The Huawei P9 is quite a powerful device and was able to outperform the SoC when calculating

with medium sized matrices. When the app is executed correctly the screen should look like

figure 4.3. While testing, we came accros some interesting findings when calculating matrices

with the size of 1024. The time skyrocketed when the matrix had an exact size of 1024. One

column/row more or less and the app would behave as expected. From there on, the time

for certain matrix sizes is inconsistent. Because we work with large matrices, we can hardly

determine whether or not the phone is executing everything correctly making the results in

figure 4.5 for large matrices unreliable.

Figure 4.4 shows us the CPU and RAM usage over time. In the RAM graph we can clearly

see where the matrices are generated. Over time the RAM usage increases and it drops after

all matrices in the app are cleared. The CPU usage is around 12-13% throughout the whole

process.

4.2.2 Bluetooth app

After connecting the devices, the SoC will request for the transmission of the data. There is

not a lot happening in the front end but the transmission time and receive time are displayed

in the Logcat like in figure 4.7 when the full process is done. Again we will check out the CPU

and RAM usage of the app as we did with the previous app. If we look at figure 4.6 we notice

75

Figure 4.3 Result screen matrix multi-
plication

Figure 4.4 CPU and RAM usage

0E+0

1E+4

2E+4

3E+4

4E+4

5E+4

6E+4

7E+4

8E+4

9E+4

1E+5

0 200 400 600 800 1000 1200 1400 1600

Ti
m

e
 [

s]

Matrixsize

Solve time matrix multiplication Android

Figure 4.5 Results for Android matrix multiplication

a lot of changes. The app barely uses and CPU power at all and only requires a small amount

of RAM to create the matrices. As for the Bluetooth app we were only able to test matrices

that were smaller than 20x20 as the SoC would give the error: ”Too many files open”.

4.2.3 WebSocket app

As for the WebSocket, there is a little more interesting data to show. If we look at the RAM

usage in figure 4.9, the first increase in RAM is the app startup. The next one is where we

create the matrices. Around 8 seconds the matrices are created and the network graph indicates

we are transmitting the matrices over to the SoC. The decrease around 18 seconds indicates

that we clear the matrices that have been sent. After that we are in an idle state where we

send the last few messages that are in the WebSocket queue. When the SoC has executed the

76

Figure 4.6 CPU and RAM usage Bluetooth

Figure 4.7 Bluetooth app log

multiplication it will send the solution back to the phone, hence the receive (Rx) spikes in the

network graph. When we look at the CPU, it is mostly used when we receive data from the

SoC. This is probably CPU intensive since we slowly fill up the solution matrix with the data

that is received from the SoC.

The log file in figure 4.8 shows all time intervals mentioned in 3.3.3.

Figure 4.8 WebSocket app log

4.3 Bluetooth vs WebSocket communication speed

In order to choose the best communication protocol, we have to test both Bluetooth and

WebSocket communication preferable with large sized arrays. First, we perform the actual

communication in order to find a relation between the arraysize and the elapsed time. When

we find this relation we can set up a formula that allows us to calculate an estimate value for

the elapsed time for any matrix size.

77

Figure 4.9 RAM, network and CPU usage WebSocket

4.3.1 WebSocket transmission

We first performed multiple calculations with WebSocket communication. We separated the

elapsed time it took the phone to transmit the data and the elapsed time it took the SoC to

transmit the data. If we divide the total number of separate symbols in one matrix with the

elapsed time, we know the number of symbols that are transmitted per second (sym/s). For

small matrices, the sym/s is not reliable since there are background processes that influence

these results. However, these background processes barely affect the sym/s with larger matrices.

So in order to determine the relation, we will take an average of all the sym/s with all matrix

sizes, apart from those that are highly affected by background processes. This resulted in a

sym/s value of 86843,61 for the phone transmission and 127228,7 for the SoC transmission.

Knowing these values we can make graph 4.10. In the graph we compare the transmission

time for the phone with the time for the SoC. The small dent in the SoC curve is the change

in average number length in the matrix from 6 to 7.

4.3.2 Bluetooth transmission

Next we determine the transmission time using the Bluetooth communication. We only mention

the practical elapsed time to send over one matrix from the phone to the SoC, as the elapsed

time the other way around was very similar. We were only able to test small matrices of up to

a size of 20x20. The sym/s for this communication protocol was around 258 sym/s including

a lot of repeated messages due to package loss. Although we are not able to transfer large

matrices, we are able to set up a formula that allows us to make an estimate of the elapsed

time for higher matricex sizes. The results for this are shown in graph 4.11.

78

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600

Ti
m

e
 [

s]

Arraysize

Websocket transmission theoretical Phone->SoC Websocket transmission theoretical SoC->Phone

Figure 4.10 WebSocket transmission time for phone to SoC and vice versa

0E+0

1E+4

2E+4

3E+4

4E+4

5E+4

6E+4

7E+4

8E+4

9E+4

1E+5

0 200 400 600 800 1000 1200 1400 1600

Ti
m

e
 [

s]

Matrixsize

Bluetooth transmission theoretical

Figure 4.11 Bluetooth transmission time

4.3.3 Bluetooth vs. WebSocket

Comparing the sym/s and looking at both graph scales, it is very clear that the WebSocket is

way faster than Bluetooth communication. The WebSocket transfer time from the phone to

the SoC is around 340 times faster while vice versa the WebSocket is almost 500 times faster.

The WebSocket also allowed us to practically transfer much larger matrices, making it superior

compared to our Bluetooth communication. Graph 4.12 visualizes the difference in scale for

79

both communication protocols. We can clearly see that the WebSocket requires less time to

transfer one matrix compared to Bluetooth.

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600

Ti
m

e
 [

s]

Matrixsize

Bluetooth transmission theoretical Websocket transmission theoretical Phone->SoC Websocket transmission theoretical SoC->Phone

Figure 4.12 Bluetooth transfer time vs. WebSocket transfer time

4.3.4 WebSocket and SoC vs. Android smartphone

As discussed in previous subsection, we can conclude that there is no way of Bluetooth being

worthwhile for this project. Thus, we are only testing the WebSocket protocol combined with

the SoC’s ability to multiply matrices. Subsection 4.1.5 gives us a comparison between the

phone and the SoC on how fast they can process the matrix multiplication. Now we want

to know at which point the Android phone will be slower than transferring all three matrices

and performing the matrix multiplication on the SoC. If we look back at graph figure 4.1,

the orange curve represents the estimate of the total transfer time of all three matrices. While

the yellow and gray curves respectively represent the calculation time it takes to perform the

multiplication with the SoC and the Mac. The yellow and gray curves are trendlines derived

from data we achieved from performing multiple matrix multiplications with different matrix

sizes. The equation for the yellow curve trendline is equation 4.4 and the grey curve’s trendline

is equation 4.3. Combining these gives us the blue curve which represents the combination of

the transfer time and the Mac calculation time, while the green curve shows the combination of

the transfer time and the SoC calculation time. If we look at the green curve we see it crosses

the black curve, which is the trendline made with equation 4.2 around a matrix size value of

2350. If we want a more correct value for this we take a look at the equation that defines both

curves. Equation 4.2 represents the used function to generate the trend line of the Android

phone execution time. Equation 4.6 is a combination of the data transfer time from both the

80

phone and the SoC. The transfer speed from the phone is 43,42 numbers/second while the SoC

can transfer the larger numbers back to the phone at a rate of 18,85 numbers/second. In order

to find the the value for the matrix size where the phone execution time will be the same as

the full process time from the SoC, we have to find x in y=v+w, with y equal to equation 4.2.

v = −3 ∗ 10−10 ∗ x4 + 2 ∗ 10−5 ∗ x3 − 0, 0021 ∗ x2 − 0, 2801 ∗ x + 142, 83 (4.5)

w =
2 ∗ x2

43, 42
+

x2

18, 85
(4.6)

If we extract x from y=v+w we get a value of 2338. This means we have an equal time for

both processes in case we try to do a matrix multiplication with two 2338x2338 matrices.

4.4 Conclusion of the results

In the first section, we concluded that calculations on the SoC with a matrix size bigger than

1660 are faster than on the Android phone, due to the increasing amount of calculations when

the matrices grow.

The previous section gave us a determined answer about the speed difference between Bluetooth

and Websocket. Results of experiments showed that Bluetooth is around 500 times slower than

WebSocket, because of this we will not do any other test with Bluetooth. The implemented

WebSocket resulted in an easy to develop and rugged system. Using the WebSocket, we were

able to achieve a faster matrix multiplication above matrix size 2338x2338 on the SoC than the

statistical values of the Android phone. Statistics were used on the Android phone in order to

create a trustworthy result at bigger matrix sizes.

Further research could investigate the development of more efficient OpenCL kernels or im-

plementing multiple kernels to accelerate other algorithms. Algorithms like the ”Mandlebrot

fractal”, accelerated in the paper of K. Wang and J. Nurmi [33].

81

5. CONCLUSION

By the use of the theoretical background a Bluetooth and WebSocket communication between

Android and SoC could be developed. The used Bluetooth module is the by Altera provided

RFS TerASIC daughter card directly connected to the FPGA side of the DE1SoC. AMBA AXI

bridges are configured to share Bluetooth data between HPS and FPGA on the DE1SoC. The

WebSocket communication is directly programmed on the HPS by the use of the ’WebsocketD’

executable. Once all the data is received, it is saved into two one-dimensional arrays represent-

ing the matrices. Next, the OpenCL host initiates the OpenCL kernel, in order to accelerate

the matrix multiplication on the FPGA-side. Once the kernel result is returned, result data

are returned back to the Android phone.

Chapter result responds to the research question, ”How to most efficiently distribute a compu-

tation intensive calculation on an Android device to external compute units with an Android

API?”, in two stages. Firstly, is verified if the accelerated multiplication on a FPGA can be

faster than on the Android phone. Results proved that matrix multiplications are faster on

a FPGA than Android phone, as long as the matrices exceed size 1660x1660. Due to this

conclusion, the next question can be verified. Secondly, the total times needed to transfer all

matrices for different matrix sizes are observed. Here two interesting facts were discovered.

Starting with: matrix sizes bigger than 2338x2338 are faster transferred and calculated on the

DE1SoC than on the Android phone. The second interesting discovery is that the MacBook

Pro is able to calculate an even faster matrix multiplication than the DE1SoC, with the same

OpenCL kernels. This discovery was found due to the long offline OpenCL kernel compilation

times, using Xcode speeds up the OpenCL kernel development. The calculation OpenCL ker-

nel matrix multiplication time is way faster on the MacBook Pro than on the DE1SoC. Since

the calculation times differ in function of the matrix sizes, it is difficult to determine exactly

how much faster the MacBook Pro is compared to the DE1SoC. Lastly, the communication

protocols are discussed. Both Bluetooth and Websocket have a constant data transfer speed,

but Bluetooth seems to be 500 times slower than WebSocket. The future research discussed in

the next paragraph should definitely be implemented using the WebSocket.

Our final conclusion is that it is possible to extend a matrix multiplication to the DE1SoC to

speed up calculation times by the use of OpenCL, but it would even be much better to use

the MacBook Pro with a GPU. There are two ways future research can be done based on this

82

thesis. Firstly, a lot of resources remain unused, which could lead to an OpenCL kernel with

higher performance. Secondly, this systems performance can be tested with other calculations,

algorithms like a ”Mandlebrot fractal”.

83

BIBLIOGRAPHY

[1] Bluetoothadapter. [Online]. Available: https://developer.android.com/reference/android/

bluetooth/BluetoothAdapter.html

[2] Kronos members. [Online]. Available: https://www.khronos.org/members/list

[3] MCSE-011: Parallel Computing. Gullybaba Publishing House, 2008.

[4] Altera, “About compilation.” [Online]. Available: http://quartushelp.altera.com/15.0/

mergedProjects/comp/comp/comp view comp.htm

[5] ——, Cyclone V SoC Hard Processor System. [Online]. Available: https://www.altera.

com/products/fpga/features/cyv-soc-hps.html

[6] ——, “Cyclone v device datasheet,” altera.com, 2016. [Online]. Avail-

able: https://www.altera.com/content/dam/altera-www/global/en US/pdfs/literature/

hb/cyclone-v/cv 51002.pdf

[7] Angstrom, “Angstrom main page.” [Online]. Available: http://www.

angstrom-distribution.org

[8] B. Barney, “What is parallel computing,” Introduction to Parallel Computing, 2012.

[9] S. Bhardwaj, S. Arora, and S. Malik, “Research paper on operating system,” IJIRT,

vol. 1, no. 5, pp. 774–783, 2014. [Online]. Available: http://ijirt.org/vol1/paperpublished/

IJIRT100384 PAPER.pdf

[10] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38,

no. 8, Apr. 1965. [Online]. Available: http://www.monolithic3d.com/uploads/6/0/5/5/

6055488/gordon moore 1965 article.pdf

[11] L. Hardesty, “Concepts familiar from grade-school algebra have broad ramifications in

computer science,” MIT news, 2013. [Online]. Available: http://news.mit.edu/2013/

explained-matrices-1206

[12] H. W. Heil and D. M. Harris, CMOS VLSI Design: A circuit and system perspective.,

H. W. Heil and D. M. Harris, Eds. Pearson, 2013, no. 181-182. [Online]. Available: http:

//ic.sjtu.edu.cn/ic/dic/wp-content/uploads/sites/10/2013/04/CMOS-VLSI-design.pdf

[13] ——, CMOS VLSI Design: A circuit and system perspective., H. W. Heil

and D. M. Harris, Eds. Pearson, 2013, no. 38-59. [Online]. Available: http:

//ic.sjtu.edu.cn/ic/dic/wp-content/uploads/sites/10/2013/04/CMOS-VLSI-design.pdf

https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
https://www.khronos.org/members/list
http://quartushelp.altera.com/15.0/mergedProjects/comp/comp/comp_view_comp.htm
http://quartushelp.altera.com/15.0/mergedProjects/comp/comp/comp_view_comp.htm
https://www.altera.com/products/fpga/features/cyv-soc-hps.html
https://www.altera.com/products/fpga/features/cyv-soc-hps.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-v/cv_51002.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-v/cv_51002.pdf
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://ijirt.org/vol1/paperpublished/IJIRT100384_PAPER.pdf
http://ijirt.org/vol1/paperpublished/IJIRT100384_PAPER.pdf
http://www.monolithic3d.com/uploads/6/0/5/5/6055488/gordon_moore_1965_article.pdf
http://www.monolithic3d.com/uploads/6/0/5/5/6055488/gordon_moore_1965_article.pdf
http://news.mit.edu/2013/explained-matrices-1206
http://news.mit.edu/2013/explained-matrices-1206
http://ic.sjtu.edu.cn/ic/dic/wp-content/uploads/sites/10/2013/04/CMOS-VLSI-design.pdf
http://ic.sjtu.edu.cn/ic/dic/wp-content/uploads/sites/10/2013/04/CMOS-VLSI-design.pdf
http://ic.sjtu.edu.cn/ic/dic/wp-content/uploads/sites/10/2013/04/CMOS-VLSI-design.pdf
http://ic.sjtu.edu.cn/ic/dic/wp-content/uploads/sites/10/2013/04/CMOS-VLSI-design.pdf

84

[14] Intel, “The story of the intel 4004.” [Online]. Available: http://www.intel.com/content/

www/us/en/history/museum-story-of-intel-4004.html

[15] V. James, “99.6 percent of new smartphones run android or ios,” The Verge, 2017.

[16] J. Jenkov. (2015) Amdahl’s law. [Online]. Available: http://tutorials.jenkov.com/

java-concurrency/amdahls-law.html

[17] B. Kernighan and D. Ritchie, The C programming language, B. Kernighan and D. Ritchie,

Eds. Prentice hall, 1978.

[18] J. Lawson. (2012) Websockets, a guide. [Online]. Available: http://buildnewgames.com/

websockets/

[19] H. Mao, Exploring the Arrow SoCKit, 2013. [Online]. Available: https://zhehaomao.com/

blog/fpga/2013/12/27/sockit-3.html

[20] K. McMahon, “The c++ compilation process.” [Online]. Available: http://faculty.cs.niu.

edu/∼mcmahon/CS241/Notes/compile.html

[21] A. Melnikov. (2011) The websocket protocol. [Online]. Available: https://tools.ietf.org/

html/rfc6455

[22] A. Moore and R. WIlson, FPGA for dummies, A. Moore and R. WIlson, Eds. intel, 2017.

[Online]. Available: https://www.altera.com/content/dam/altera-www/global/en US/

pdfs/literature/misc/fpgas for dummies ebook.pdf

[23] Mozilla. (2017) Writing websocket servers. [Online]. Available: https://developer.mozilla.

org/en-US/docs/Web/API/WebSockets API/Writing WebSocket servers

[24] S. M. Patterson, “Q1 2017 smartphone shipments: Samsung rebounds, apple goes sideways,

chinese makers roar,” 2017.

[25] M. H. Qusay. (2003) Wireless application programming with j2me and bluetooth. [Online].

Available: http://www.oracle.com/technetwork/systems/index-156651.html

[26] T. Saggu, “Bluetooth technology,” S.U.S.CET.

[27] M. Scarpino, “A gentle introduction to opencl,” website, Aug. 2011. [Online]. Available:

http://www.drdobbs.com/parallel/a-gentle-introduction-to-opencl/231002854?pgno=2

[28] W. Stallings. (2001) Introduction to bluetooth. [Online]. Available: http://www.informit.

com/articles/article.aspx?p=23760

[29] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard for het-

erogeneous computing systems,” Computing in science & engineering, vol. 12, no. 3, pp.

66–73, 2010.

http://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
http://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
http://tutorials.jenkov.com/java-concurrency/amdahls-law.html
http://tutorials.jenkov.com/java-concurrency/amdahls-law.html
http://buildnewgames.com/websockets/
http://buildnewgames.com/websockets/
https://zhehaomao.com/blog/fpga/2013/12/27/sockit-3.html
https://zhehaomao.com/blog/fpga/2013/12/27/sockit-3.html
http://faculty.cs.niu.edu/~mcmahon/CS241/Notes/compile.html
http://faculty.cs.niu.edu/~mcmahon/CS241/Notes/compile.html
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/misc/fpgas_for_dummies_ebook.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/misc/fpgas_for_dummies_ebook.pdf
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers
http://www.oracle.com/technetwork/systems/index-156651.html
http://www.drdobbs.com/parallel/a-gentle-introduction-to-opencl/231002854?pgno=2
http://www.informit.com/articles/article.aspx?p=23760
http://www.informit.com/articles/article.aspx?p=23760

85

[30] TerASIC, DE1-SoC Getting Started Guide, 2016. [Online]. Available: http://www.ee.ic.

ac.uk/pcheung/teaching/E2 experiment/DE1-SoC Getting Started Guide.pdf

[31] ——, Quartus Prime Standard Handbook v16.1, 16th ed., Altera, 2016. [Online]. Avail-

able: https://www.altera.com/content/dam/altera-www/global/en US/pdfs/literature/

hb/qts/qts-qps-handbook.pdf

[32] R. Tsuchiyama, T. Nakamura, T. Iizuka, A. Asahara, J. Son, and S. Miki, The OpenCL

Programming Book, S. Tagawa, Ed. Fixstars Corporation, 2010. [Online]. Available: https:

//www.fixstars.com/en/opencl/book/OpenCLProgrammingBook/basic-program-flow/

[33] K. Wang and J. Nurmi, “Using opencl to rapidly prototype fpga designs,” ieee, 2016.

[34] E. Weisstein, Matrix multiplication, MathWorld–A Wolfram. [Online]. Available:

http://mathworld.wolfram.com/MatrixMultiplication.html

[35] R. Wilson, “In the beginning,” Altera site. [Online]. Available: https://www.altera.com/

solutions/technology/system-design/articles/ 2013/in-the-beginning.html

[36] M. wolman, “Compilers, assemblers, linkers, loaders: A short course,”

1997. [Online]. Available: https://courses.cs.washington.edu/courses/cse378/97au/help/

compilation.html

http://www.ee.ic.ac.uk/pcheung/teaching/E2_experiment/DE1-SoC_Getting_Started_Guide.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/E2_experiment/DE1-SoC_Getting_Started_Guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
https://www.fixstars.com/en/opencl/book/OpenCLProgrammingBook/basic-program-flow/
https://www.fixstars.com/en/opencl/book/OpenCLProgrammingBook/basic-program-flow/
http://mathworld.wolfram.com/MatrixMultiplication.html
https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-beginning.html
https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-beginning.html
https://courses.cs.washington.edu/courses/cse378/97au/help/compilation.html
https://courses.cs.washington.edu/courses/cse378/97au/help/compilation.html

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
How to distribute most efficiently a computation intensive calculation on an
Android device to external compute units with an Android API

Richting: master in de industriële wetenschappen: elektronica-ICT
Jaar: 2017

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Beckers, Lander Lakiere, Henning

Datum: 7/06/2017

