
Master’s Thesis Engineering Technology

Supervisors / Cosupervisors:

Lander Beckers

How to distribute most efficiently a computation intensive 
calculation on an Android device to external compute 

units with an Android API?

K. Aerts, J. Nurmi, K. Wang

Master of Electronics and ICT Engineering Technology

Henning Lakiere

Master of Electronics and ICT Engineering Technology

2016-2017

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

0 500 1000 1500 2000 2500 3000 3500

Ca
lcu

la
tio

n	
tim

e	
(m

s)

Matrix	size

Matrix	multiplication	execution	times	on	different	architectures	

GlobalMemMac

GlobalMemSoC

Android

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

Ti
m
e	
[s
]

Arraysize

Transmission	speed	Bluetooth	vs.	Websocket

Bluetooth

WebSocket	Phone->SoC

WebSocket	SoC->Phone

Although CPUs increased in speed and throughput during the last few years,
computation intensive calculation are still slow on moderate CPUs, like
smartphones. It would be interesting to compare execution times of a
computation intensive calculation on a CPU and FPGA inside an Android phone
and DE1SoC board, respectively. The figure below shows our setup.

Results

The matrix multiplication data was transferred using Bluetooth or WebSocket,
as can be seen in the figure below. While the WebSocket is implemented
directly on the HPS of the SoC, the Bluetooth data are received using the
TerASIC RFS daughter card and must be transferred from FPGA to CPU using
the AXI AMBA bridges. Figure 2 shows the data communication and OpenCL
implementation.

Once the data is transferred into the SoC, OpenCL is used to accelerate the
matrix multiplication. As can be seen in figure 2, OpenCL data is saved into on-
chip SDRAM memory and the AXI AMBA bridges are used to communicate
with the kernel.

Method

Introduction

Firstly, matrix multiplication execution times for the OpenCL kernel and
Android phone are compared, corresponding to their increasing matrix size,
the graph below. Although calculating a matrix multiplication using the
OpenCL kernel on the DE1SoC seems to be slower than multiplying directly on
the Android phone, the calculations on the SoC progress in a continuous
motion. However, when the same OpenCL kernel is executed on the MacBook
Pro, then the achieved calculation times are significantly faster and they
evolve smoother.

Conclusion

Secondly, Bluetooth and WebSocket matrix transfer times are compared in
function of their matrix size. Bluetooth is much slower than WebSocket,
concluded from the gaph below.

The final conclusion is made out of the next two sub conclusions. It is possible
to win time by transferring the calculation of a matrix multiplication to an
external compute unit, but there can be a significant difference in calculation
time depending on the architecture. It would be faster, but more expensive, to
replace the DE1SoC by the MacBook Pro.
A more efficient way of improving the system would be using a faster data
transfer protocol. Although WebSocket is 500 times faster than Bluetooth,
transportation is still the slowest link in the chain. Increasing matrix transfer
speed will be the main factor to improve the current results.

The use case researched in this thesis is the transfer of a matrix multiplication
from the android phone to a FPGA, by the use of Bluetooth or WebSocket. This
forms two questions. Firstly, is it possible to calculate the same matrix
multiplication faster on a FPGA than on an Android phone? Secondly, how do
the data transfer times relate to an increasing matrix size? A final conclusion
can be formed combining the answers on these two questions.


