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Foreword 
 

Pose estimation methods are used in several applications of our daily lives without us even knowing it. 

For example the cameras in our phones are calibrated using pose estimation techniques, several apps 

on our phones use virtual reality which relies heavily on pose estimation techniques. However we have 

never encountered these pose estimation techniques during our studies. We had no idea what to expect 

from this subject and where this thesis would take us. Working on this master's thesis gave us a chance 

to get familiar with these techniques and their (dis)advantages. We were also surprised by the amount 

of research done in this field, pose estimation definitely seems a hot topic. 

First we would like to thank Prof. Dr. Ir. Luc Claesen and Ing. Wout Swinkels for their tremendous 

help and support with this thesis. Their help, ideas and support made this work possible. Their 

combined wisdom and experience helped us understand specific aspects of pose estimation techniques. 

Secondly we would also like to thank our friends and family for their support in this stressful time.  

 

Tom Bortels and Bart Bostijn 2017 
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Abstract Nederlands 
 

Deze masterproef voert onderzoek uit naar positiebepaling met behulp van een camera. Het gebeurde 

in samenwerking met onderzoeksgroep CoSenS van Universiteit Hasselt. Dit is een veel voorkomend 

probleem bij computer visie. In dit onderzoek worden verschillende methoden vergeleken voor het 

bepalen van de positieparameters van de zes vrijheidsgraden (6DOF). Hierbij worden voornamelijk 

methoden bestudeerd die gebruik maken van een camera zonder speciale bijkomende hardware 

vereisten. Dit onderzoek heeft een uitgebreid toepassingsdomein bijvoorbeeld in: augmented reality, 

robotica, gezondheidzorg… 

In deze masterproef bespreken we de stappen die nodig zijn voor het detecteren van de feature points. 

Deze zijn in volgorde: de kalibratie/normalisatie van de camera, het detecteren van kenmerkpunten 

van een gekend patroon en de berekening van de positie. Verder bespreekt deze thesis klassiekere 

methodes zoal DLT, EPnP, OI, NPL, NLL en POSIT en modernere methodes zoals PRSOI en Moiré 

voor het bepalen van de 6DOF coordinaten. Deze thesis bestudeert ook welke methodes het best zijn 

onder bepaalde omstandigheden. Deze kunnen verschillen in hoeveelheid ruis en distorsie, beperkte 

zichtbaarheid van het patroon, resolutie…  

DLT is een methode die gevoelig is voor ruis maar geen kalibratie nodig heeft. PRSOI is meestal de 

nauwkeurige methode voor het bepalen van alle 6 DOF. Moiré kan de rotaties met een zeer hoge 

nauwkeurigheid bepalen. 

 

Abstract English 
 

This master’s thesis researches pose determination methods with a camera in cooperation with the 

research group CoSenS of Hasselt University. 3D position determination is a frequently occurring 

problem in the field of computer vision. In this thesis several methods for determining the 6 degrees of 

freedom are compared. Especially methods which do not require specialized or expensive hardware 

are studied. This research has a wide field of application, for example: augmented reality, robotics, 

healthcare, etc… 

 

In this master’s thesis we discuss the necessary procedures for detecting feature points. These 

procedures are, in order: the calibration and normalization of the camera, the detection of reference 

points in a known pattern and the calculation of the position of the object. This master’s thesis 

researches classical methods like: DLT, EPnP, OI, NPL, NLL and POSIT and also some newer 

methods like PRSOI and Moiré patterns. These methods differ in robustness to noise and distortion, 

limited field of target, resolution, etc… 

 

For example DLT is a method which is very susceptible to noise, but it does not require camera 

calibration. PRSOI is a one of the more accurate methods in determining the pose, however Moiré 

patterns can be used to detect the out-of-plane rotations more accurately. 

  



  

  



  

1 Introduction 
 

This master's thesis investigates 3D position determination using a camera and has been conducted in 

co-operation with the research group CoSenS of Hasselt University. 3D position determination is a 

frequently occurring problem in the field of computer vision. There is an extensive list of applications 

for 3D position determination: e.g. augmented reality, robotics, healthcare.  

The thesis describes and compares several methods for acquiring the 6 degrees of freedom position 

parameters (3D coordinates and 3D orientations). This thesis mainly describes monocular position 

determination methods, which do not require specific extra hardware. But they always require points 

with known positions in a scene. They can consist of fiducials or known patterns. Often used 

currently, this pattern is a checkerboard but it can also be a pattern with circles, only one circle,…  

There are several steps required to determine the pose of an object. The first step is taking an image of 

the calibration pattern. The second step is normalizing the image to reduce the influence of 

manufacturing defects of the camera. The normalization compensates for the radial and tangential 

distortion of the image. The next step is detecting the feature points of the pattern. Most patterns use 

corner or line detection to detect the feature points of the checkerboard in the image. The position of 

the feature point in the image is often refined till subpixel accuracy. The accuracy of this detection 

depends on the resolution, noise, and remaining distortion of the image. The forth step is calculating 

the six degrees of freedom of the pattern. There are both iterative and non-iterative methods.  

The focus of this research is initially in favor of accuracy over speed. This thesis describes which 

methods are best used in specific circumstances. These circumstances can differ in the amount of noise 

and distortion, amount of outliers, the resolution, the necessary speed, the location and size of the 

calibration pattern… 
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2 Theory 
 

To estimate the position of an object, a pinhole camera is used. However a pinhole camera is a 

theoretical concept. Implementing this model, by using a lens camera, causes distortions. The intrinsic 

camera parameters indicate these distortions which are introduced by the manufacturing of the camera. 

These distortion parameters, measured during calibration, depend on the focus distance of the camera. 

Once these parameters are known it is possible to calculate the undistorted image. This process is also 

called normalization. The pinhole model is the most frequently used camera model. There is also a 

study from 2015 of an incident ray tracking camera model [1]. This model tracks each light beam 

individually and thus is more precise but requires more calculations. This will be explained in section 

4.5: Incident ray tracking camera model. 

 

 

2.1 Pinhole model 

 

There is a difference between a pinhole camera and a lens camera. An image captured with a pinhole 

camera has no distortion. The light reflects from an object and goes through an infinitly small hole in 

the front of the camera. The image is then projected on the back of the camera. This is shown in Figure 

1. The image sensor is located at Q’P’. This implies that the image is perfectly displayed on the image 

sensor. However, in reality not enough light will reach the image sensor. To overcome this problem a 

lens is used. The lens bends the incoming light beams so that more light reaches the image sensor but 

it also causes distortion. This is illustrated in Figure 1 and Figure 2. [2] [3] 

 

 

Figure 1: Real image by a pinhole camera [2] 

 

Figure 2: Real image by a lens camera [2] 
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2.2 Intrinsic camera parameters 

 

There are three intrinsic camera parameters [4] 

- Focal length (x , y)  

- Principal point (𝑢0,𝑢0) 

- Skew 

Each of these parameters will be discussed briefly in the following sections. 

 

 

2.2.1 Focal length 

 

The focal length is a parameter which indicates how much the lens will bent the light. It indicates how 

far the clearest objects in the picture are removed from the lens. The range of the objects in focus is 

dependent on the aperture of the camera. This is the hole through which the light enters the camera. 

[5], [6] 

 

 

2.2.2 Principal point 

 

The principal point indicates the centre of an image and is determined by the lens. The light which 

passes through the lens without being bended indicates the optical axis of the lens. The spot where the 

optical axis crosses the image sensor is the principal point. Due to manufacturing inaccuracies this is 

not necessarily the centre of the image sensor. [7] 

 

 

2.2.3 Skew 

 

Due to the manufacturing process the lens is often not placed perfectly parallel with the image sensor. 

The angle between the optical axis of the lens and the image sensor is called the skew as shown in 

Figure 3. Most of the time this angle is so small that it is negligible as a calibration parameter but it 

directly influences the tangential distortion explained further in the text. [4] 

 

Figure 3: Skew of a non-perfect lens [8] 
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2.3 Calibration matrix 

 

These intrinsic camera parameters are used in the calibration matrix. This matrix A represents the 

relationship between the undistorted 2D image coordinates (𝑃𝑈) and the distorted 2D image 

coordinates (𝑃𝐷), where both are in homogeneous coordinates.  

 

 
𝑃𝐷 = 𝐴. 𝑃𝑈 = [

𝑓𝑥 𝛾 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] . 𝑃𝑈 (1) 

 

Hereby A is the calibration matrix, 𝑓𝑥, 𝑓𝑦the focus distance, 𝑐𝑥, 𝑐𝑦 the coordinates of the principal 

point and 𝛾 the skew which is usually negligible and thus set to 0. Note that all parameters are written 

in pixel units except for the skew. [9] 

 

 

2.4 Distortion parameters 

 

There are two kinds of distortion: [10] 

- Radial distortion 

- Tangential distortion.  

In the next sections these two distortions are discussed in more detail. The value of the distortion 

parameters is dependent upon the focal length, principal point and skew of each picture.  

 

 

2.4.1 Radial distortion 

 

Radial distortion is introduced by the fact that the lens is not perfectly parabolic. Therefore straight 

lines at the edges of an image are deformed. This is illustrated in Figure 4. Also the effect of the radial 

deformation gets stronger further away from the principal point. 

 

 

Figure 4: Radial Distortion [11] 

 

The radial deformation can be subdivided in two categories. The first one is the pin cushion distortion 

also called negative radial distortion, shown in Figure 6. The second one is the barrel distortion also 

called positive radial distortion as shown in Figure 7. [11] 
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Figure 5: No Radial Distortion [12] 

 

 

Figure 6: Negative Radial Distortion [12] 

 

 

Figure 7: Positive Radial Distortion [12] 

 

The relation between the distorted image coordinates 𝑃𝐷and the undistorted image coordinates 𝑃𝑈 for 

radial distortion can be modelled by the following equations: 

 

 𝑃𝑥
𝐷 = (1 + 𝑘1𝑟𝑢

2 + 𝑘2𝑟𝑢
4 + 𝑘3𝑟𝑢

6)𝑃𝑥
𝑈 (2) 

 𝑃𝑦
𝐷 = (1 + 𝑘1𝑟𝑢

2 + 𝑘2𝑟𝑢
4 + 𝑘3𝑟𝑢

6)𝑃𝑦
𝑈 (3) 

 

Where the factors k1, k2, k3 are the radial distortion coefficients and where 𝑟𝑢 is the distance between 

the principal point and the corrected pixel. [12] 

 

 

2.4.2 The tangential distortion 

 

In case the lens of the camera is not placed exactly parallel to the image sensor, a distortion is 

introduced in the image which is called the tangential distortion. This is illustrated in Figure 8. 

 

 

Figure 8: Tangential distortion due to imperfect placement of the lens. [13] 
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The angle between the lens and image sensor is indicated by the skew as mentioned before. The 

relation between the distorted image coordinates 𝑃𝐷and the undistorted image coordinates 𝑃𝑈 for 

tangential distortion is given by the following equations: 

 

 𝑃𝑥
𝐷 = 𝑃𝑥

𝑈 + 𝑝2 (𝑟
2 + 2𝑃𝑥

𝑈2 ) + 2𝑝1𝑃𝑦
𝑈 (4) 

 𝑃𝑦
𝐷 = 𝑃𝑦

𝑈 + 𝑝1 (𝑟
2 + 2𝑃𝑦

𝑈2 ) + 2𝑝2𝑃𝑥
𝑈 (5) 

 

Where 𝑟2 = (𝑃𝑥
𝑈)2 + (𝑃𝑦

𝑈)2, 𝑝1 and 𝑝2 are the distortion coefficients.  

The following equations take both kinds of distortion into account. [13] 

 

 𝑃𝑥
𝐷 = (1 + 𝑘1𝑟𝑢

2 + 𝑘2𝑟𝑢
4 + 𝑘3𝑟𝑢

6)𝑃𝑥
𝑈 + 𝑝2 (𝑟

2 + 2𝑃𝑥
𝑈2 ) + 2𝑝1𝑃𝑦

𝑈 (6) 

 𝑃𝑦
𝐷 = (1 + 𝑘1𝑟𝑢

2 + 𝑘2𝑟𝑢
4 + 𝑘3𝑟𝑢

6)𝑃𝑦
𝑈 + 𝑝1 (𝑟

2 + 2𝑃𝑦
𝑈2 ) + 2𝑝2𝑃𝑥

𝑈 (7) 

 

 

2.5 Normalisation 

 

Normalisation is the process in which a picture of a camera is transformed in a picture with 

theoretically no distortion. This is done with the following equations: 

 

 𝑃𝑥
𝑈 = 𝑃𝑥

𝐷 + [𝑝1 (𝑟
2 + 2𝑃𝑥

𝐷2) + 2𝑝2𝑃𝑥
𝐷𝑃𝑦

𝐷] ∗ (1 + 𝑝3𝑟
2)  (8) 

 𝑃𝑦
𝑈 = 𝑃𝑦

𝐷 +  [2𝑝1𝑃𝑥
𝐷𝑃𝑦

𝐷 + 𝑝2 (𝑟
2 + 2𝑃𝑥

𝐷2)] ∗ (1 + 𝑝3𝑟
2) (9) 

 

Note that different calibration methods or options for these methods result in more or less distortion 

parameters. This is the equation for three distortion parameters. Theoretically a higher amount of 

parameters allow for a more accurate normalization. But practically this can result in a less accurate 

normalization because all measured points have a certain error in there subpixel position in the image. 

Because of these errors the normalization function is going to fluctuate heavier, if more parameters are 

used. A higher amount of parameters also results in an increasing calculation time. Therefore most 

methods only use two or three parameters. [11] 

 

 

2.6 Coordinate systems 

 

There are many different coordinate systems. The coordinate systems which correspond to a certain 

method are explained in the chapter describing the relevant method. The most frequently used 

coordinate systems in relation to cameras are: the (real) world coordinate system, the camera 

coordinate system, the image coordinate system and the object coordinate system. The difference 

between them is not always clear because the various methods highlighted in this thesis use distinct 

coordinate systems which can sometimes be coincident. This implies that a few methods have the 

same name for coordinates with different properties.  

The object coordinate system is the coordinate system of a known object or pattern and is used for the 

calibration or pose estimation. This coordinate system has its origin on the pattern and its axes are 

aligned according to the pattern. The unit of the coordinate system is in mm. Often the object 

coordinate system is aligned with the world coordinate system. In Figure 9 the object or pattern is 

illustrated as gray and orange dots.  

The world coordinate system is the coordinate system in which the result of the pose estimation is 
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expressed. The unit of the coordinate system is also in mm. The origin and axes of this coordinate 

system can be chosen anywhere relative to the camera or calibration pattern. This is illustrated in 

Figure 9. 

The camera coordinate system has as origin the camera. The x and y axis are usually aligned with the 

borders of the image sensor. The z-axis is aligned with the optical as of the camera lens. The value of 

the z-axis can also be referred to as “distance” or “focus distance”.  The unit of the coordinate system 

is in mm. The pose of the pattern can also be represented with respect to this coordinate system as 

depicted in Figure 9. 

The image coordinate system is the two dimensional system of the picture. The origin is on the top left 

of the image and often the axes are called u and v. The unit of this coordinate system is expressed in 

pixels. 

 

 

Figure 9: Overview of the different coordinate systems [14] 

 

 

2.7 Pose estimation 

 

In order to perform pose estimation the camera calibration calculation is inversely executed. The first 

step is to calculate the rotation and translation from the 2D camera coordinates to the 3D world 

coordinates by using the 2D coordinates of the distorted image. This results in a transformation 

between the origin of the camera coordinate system and the origin of the world coordinate system. The 

relation between the real world 3D coordinates and the camera’s 2D coordinates is illustrated in Figure 

10. 
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Figure 10: Relation between 3D world coordinate system and the camera coordinate system. [15] 

 

 

2.7.1 Rotation 

 

Rotating a point around an axis is the same as rotating the coordinate system by the same angle in the 

reverse direction. For each axis in the 3D real world coordinate system there is a different rotation 

angle.  

Rotations around the x, y and z axis correspond respectively to the angles Ψ, ϕ and θ.  

 

 
𝑅𝑥(𝜓) = [

1 0 0
0 cos𝜓 sin𝜓
0 −sin𝜓 cos𝜓

] (10) 

 
𝑅𝑦(𝜑) = [

𝑐𝑜𝑠 𝜑 0 −𝑠𝑖𝑛 𝜑
0 1 0

𝑠𝑖𝑛 𝜑 0 𝑐𝑜𝑠 𝜑
] (11) 

 
𝑅𝑧(𝜃) = [

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0
−𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 1

] (12) 

 

The total rotation is the product of these three rotation matrices:  

 

 𝑅 = 𝑅𝑥(𝜓)𝑅𝑦(𝜑)𝑅𝑧(𝜃) (13) 

 

 

2.7.2 Translation 

 

The translation vector describes the relation between the origins of two coordinate systems. In this 

case the translation of the world coordinate system origin with respect to the camera coordinate system 

origin can be described as [16] 

 

 𝑇 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑊 − 𝑜𝑟𝑖𝑔𝑖𝑛𝐶 (14) 
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2.7.3 Transformation 

 

The following equation is applied to convert the vector of a point in the 3D world coordinate system 

(PW) to its equivalent point in the undistorted 2D camera coordinate system (PC): 

 

 𝑃𝑐 = 𝑅𝑤
𝑐  (𝑃𝑤 − 𝑇𝑤

𝑐) (15) 

or 

 𝑃𝑐 = [𝑅𝑤
𝑐  𝑇𝑤

𝑐]𝑃𝑤 (16) 

 

The vector of a point in the distorted 2D camera coordinate system is given by the equation: 

 

𝑠𝑃𝐷 = 𝐴. 𝑃𝑐 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] . [𝑅𝑤
𝑐  𝑇𝑤

𝑐]𝑃𝑤 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑟11
𝑟21
𝑟31

 𝑟12 
𝑟22
𝑟32

𝑟13
𝑟23
𝑟33
 

𝑡1
𝑡2
𝑡3

] 𝑃𝑤 

  (17) 

 

Where S, the scale factor, equals to pz
C. To solve this equation the same mathematical principles are 

used as in Direct Linear Transform (DLT) (chapter 4.1). Because the pattern is located in a flat plane, 

a simplified coordinate system can be used namely the marker coordinate system (ΨM). This means 

that the equation can be rewritten to: 

 

 

𝑠𝑃𝑈 = 𝑃𝑐 = [𝑅𝑀
𝑐  𝑇𝑀

𝑐 ]𝑃𝑀 = [

𝑟11
𝑟21
𝑟31

 𝑟12 
𝑟22
𝑟32

𝑟13
𝑟23
𝑟33
 

𝑡1
𝑡2
𝑡3

]

[
 
 
 
𝑃𝑋
𝑀

𝑃𝑌
𝑀

𝑃𝑍
𝑀

1 ]
 
 
 

 (18) 

 

Now 𝑃𝑍
𝑀 can be removed because all the points are in the same plane. 

 

 

𝑠𝑃𝑈 = [𝑅𝑀
𝑐  𝑇𝑀

𝑐 ]𝑃𝑀 = [
𝑟11
𝑟21
0

 𝑟12 
𝑟22
0
 
𝑡1
𝑡2
1
] [
𝑃𝑋
𝑀

𝑃𝑌
𝑀

1

] = 𝐻. [
𝑃𝑋
𝑀

𝑃𝑌
𝑀

1

] (19) 

 

𝑠𝑃𝐷 = 𝐴. 𝑃𝑐 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] . [
𝑟11
𝑟21
0

 𝑟12 
𝑟22
0
 
𝑡1
𝑡2
1
] [
𝑃𝑋
𝑀

𝑃𝑌
𝑀

1

] (20) 

 

The calibration matrix A is known because of the calibration estimation. The rotation and translation 

matrix have to be determined to calculate the 3D position of the camera. For each known point in the 

real world and their corresponding distorted image coordinates two equations can be composed each 

containing 3 unknown variables. This implies that the coordinates of at least six points are needed to 

find a solution. The more points are known the higher the accuracy of the estimation [16] [17]. 

 

 

2.8 Pose estimation error  

 

There are two ways to measure the pose estimation error. The RMS error and physically measuring the 

position of the object or pattern. It is not very practical to measure the physical position of the object 

for each picture. Often electric motors are used to translate and/or rotate the object over a regular 

distance. This way only a few positions have to be measured and the others can be calculated. The 

advantage of this system is that it is the closest testing to a real application and the error is returned in 
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6DOF. The disadvantage is that there are many things that will introduce an error in the pose 

estimation. First of all there are inaccuracies in the position of the pattern relative to the camera. This 

is possible due to stability issues, a measuring mistake in the setup etc. 

The second way is the RMS error. When the pose of the object is calculated it is possible to reproject 

the feature points on to the image. The location of all the feature points in the image are calculated by 

using their position in the calculated object. This results in a difference between the detected feature 

points and the projected feature points as illustrated in Figure 11. 

 

 

Figure 11: Visualization of reprojection [18] 

 

The Euclidean distance between the detected feature point and the reprojected point is used to 

calculate the RMS error value. The RMS error is calculated with the following equation: 

 

 

𝑅𝑀𝑆 𝑒𝑟𝑟𝑜𝑟 =
√∑ (√(𝑥𝑓𝑝𝑖 − 𝑥𝑟𝑝𝑖)

2
+ (𝑦𝑓𝑝𝑖 − 𝑦𝑟𝑝𝑖)

2𝑛
𝑖=1

𝑛
 

(21) 

 

Were n is the total number of detected points, (𝑥𝑓𝑝𝑖, 𝑦𝑓𝑝𝑖) are the coordinates of a feature point and 

(𝑥𝑟𝑝𝑖 , 𝑦𝑟𝑝𝑖) are the coordinates of the reprojection of that feature point. This value is a representation 

of the average distance between the feature point and the projected point.  

The advantage of using the RMS error to test the algorithm is that all other sources of errors are 

eliminated and it can be simulated on a computer. A disadvantage of the RMS error is that it is 

sensitive to outliers. [18] 
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3 Influence on the accuracy of pose estimation by slight deviations 
 

In 2008 a study was done by Thomas Luhmann [19] to find the influence of slight variation or errors 

on the accuracy of a pose estimation method. The method used in this study uses space resection to 

find the 6DOF pose of an object with relation to a reference frame. This method is similar to the DLT 

method discussed in section 4.1. The study uses a test with virtual data. An image resolution of 1300 x 

1030 pixel was used with a focal length of 8 mm. On this image an object with the size of 300 x 

300mm with 9 reference points was captured. Behind the object was a reference grid of 1200 x 1200 

mm with 49 control points. The viewing distance was variable from 500 to 1500 mm. Figure 12 gives 

an overview of the virtual test environment. 

A Monte-Carlo simulation was used to provide an efficient method to detect the numerical properties 

of a model while introducing artificial noise [20]. 

 

 

Figure 12: Overview of the virtual test environment [20] 

 

 

3.1 Variation in planar points 

 

In a first test, an image error was introduced increasing the image coordinate measurement noise from 

the original 0.35 µm to 1.7 µm. As is clearly visible in Figure 13, the accuracy of the detected x, y and 

z measurement decrease linearly with a decrease in image measurement accuracy. The accuracy of the 

depth translation is influenced noticeably more by image noise than in-plane translations where a 

maximum precision of 0.1 mm can be achieved.  

 

 

Figure 13: Translation error in function of image error [19] 
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The same test is performed for the rotation (roll 𝜅, pitch 𝜔, and yaw 𝜑). The results are plotted in 

Figure 14. It’s clear from this graph that the roll is affected far less by a decrease in image 

measurement accuracy compared to the out-of-plane pitch and yaw. The roll can be calculated up to an 

accuracy of 0.02 degrees. Both out-of-plane rotational accuracies are also affected nearly identical 

with an angular precision of up to 0.05 degrees. 

 

 

Figure 14: Rotation error in function of image error [19] 

 

 

3.2 Variation in object size 

 

If the object is scaled down from 100 % (1300 mm x 1030 mm) to 20%, roughly 60 mm x 60 mm, the 

accuracy of the rotation and translation also decreases as shown in Figure 15. Important to note here is 

that the decrease in accuracy is not linear like in the previous test. The accuracy of the translation and 

rotation appear linear up to around 50 % scaling factor. After that, the decrease in accuracy of out-of-

plane rotations and translation occurs drastically. One can also note that the in-plane translations and 

rotation are barely affected by a change in scaling factor. 
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Figure 15: a) Translation error in function of scale factor of object 
b) Rotation error in function of scale factor of object [19] 

 

 

3.3 Variation on object tilt 

 

For the third test, the object was rotated around the x axis. This is an out-of-plane rotation which 

would make the field of vision narrower. In this test, the x –axis was tilted at varying angles starting 

from 0° up to 50°. The results are plotted in Figure 16. Figure 16 a) shows the translation error in 

function of this tilt. The translations are barely affected by this tilt. The depth-estimation decreases 

slight in accuracy from 00 to 10° but stabilizes after that. The rotational error of the out-of-plane 

rotations increases when the object is tilted as seen in Figure 16 b). The reason is that a tilted target 

provides more information about the viewing direction [19]. 
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Figure 16: a) Translation error in function of tilt around x-axis of the object. 
b) Rotation error in function of tilt around x-axis of the object. [19] 

 

 

3.4 Variation in focal length 

 

Changing the focal length while maintaining a fixed image distance will alter the image scale and 

viewing angle. In this test the focal length is varied between 4 mm and 16 mm. The result is shown in 

Figure 17. Increasing the focal length will decrease the translation and rotational errors. Please note 

that the out-of-plane rotations and translation will be affected more by an increase in focal length 

compared to the in-plane rotation and translations. Increasing the image scale and narrowing the field 

of view will improve the accuracy of the pose estimation [19]. 

 



  

28 

 

 

  

Figure 17: a) Translation error in function of a variable focal length 
b) Rotation error in function of a variable focal length 
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4 Non-iterative pose determination methods 
 

4.1 Direct Linear Transformation (DLT) 

 

4.1.1 Introduction 

 

Direct linear transformation (DLT) is an algorithm to solve a linear transformation of a set of points in 

multiple views [21]. It was first discussed in 1971 by Y.I. Abdel-Aziz and Dr H.M. Karara. It’s one of 

the older but also most well-known position determination techniques.  

DLT uses linear equations to find 11 coefficients describing the transformation [22]. 

 

 

4.1.2 Operation principles of DLT 

 

Like the other pose estimation techniques discussed in this thesis, it starts with a reference point in the 

real world coordinate system (X, Y and Z) and its projection (u, v) in the image-plane reference frame 

as shown in Figure 18. In this reference point in the real world coordinates is denoted as O. Its 

projection onto the image plane is denoted as I. N identifies the projection center of the camera. All 

three points are collinear, as clearly shown in the figure. This forms the basic principle of the DLT 

method [23] . 

 

 

Figure 18: DLT projection overview [23] 

 

A new axis, called W, is added perpendicular onto the image plane, effectively extending the 2D 

image plane, into a 3D space. The W-coordinates of all points in the original 2D image frame are 

always 0. Next a new point is added in the 2D image frame, called P. P is the principal point of the 

image located at (𝑢0, 𝑣0) in the 2D image frame. The principal axis connects the projection center of 

the camera and the principal point and is perpendicular to the 2D image frame. The distance d is the 

principal distance and denotes the distance between N and P. The coordinates of the points I, P and N 

in the 3D image space coordinate system become [𝑢, 𝑣, 0], [𝑢0, 𝑣0, 0] and [𝑢0, 𝑣0, 𝑑] respectively. An 

overview of the new image space is shown in Figure 19 [23]. 
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Figure 19: DLT extension of 2D image frame into 3D image space [23] 

 

Now assume the vector A, connecting N and I. This vector will be denoted as [𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0] 

where (x, y, z) are the real-world coordinate of the reference point O and (x0, y0, z0) the real-world 

coordinates of the projection center N. A second vector is assumed, connecting the projection center 

and the principal point, both represented in the 3D image frame reference system. This vector is called 

B and denoted as.[𝑢 − 𝑢0, 𝑣 − 𝑣0, −𝑑]. As mentioned earlier, the points N, I and O are collinear, as 

seen in Figure 18. This implies that the vectors A and B are equal up to an unknown scalar 

multiplication c shown in equation (22).  

 

 𝐵 = 𝑐𝐴 (22) 

 

Vector A uses the 3D real-world or object-space reference frame and vector B uses the 3D image 

reference frame. For this reason, a 3x3 transformation matrix 𝑇𝐼/𝑂 is introduced to relate these 

coordinates. 

 

 
𝑇𝐼/𝑂 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] (23) 

 

A transformation from vector A in the image reference frame to the object-space reference frame is 

shown in (24) where 𝐴𝐼 is the vector A in the image reference frame and 𝐴𝑂  the same vector in the 

object reference frame. 

 

 
𝐴𝐼 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] 𝐴𝑂   (24) 

 

 Using equation (24) in (22) yields equation (25) where vectors A and B are written in full [22]. 

 

 
[
𝑢 − 𝑢0
𝑣 − 𝑣0
−𝑑

] = 𝑐 [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] ∗ [

𝑥 − 𝑥0
𝑦 − 𝑦0
𝑧 − 𝑧0

] 

 

(25) 

 

Using the last row of equation (25) the scaling factor can be found and substituting it in the first two 

rows results in in two other equations (26) and (27). 

 

 
𝑢 − 𝑢0 = −𝑑 

𝑟11(𝑥 − 𝑥0) + 𝑟12(𝑦 − 𝑦0) + 𝑟13(𝑧 − 𝑧0)

𝑟31(𝑥 − 𝑥0) + 𝑟32(𝑦−𝑦0) + 𝑟33(𝑧 − 𝑧0)
 (26) 
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𝑣 − 𝑣0 = −𝑑 

𝑟21(𝑥 − 𝑥0) + 𝑟22(𝑦 − 𝑦0) + 𝑟23(𝑧 − 𝑧0)

𝑟31(𝑥 − 𝑥0) + 𝑟32(𝑦−𝑦0) + 𝑟33(𝑧 − 𝑧0)
 (27) 

 

Please note that u, u0, v and v0 in equation (26) and (27) use 3D image reference frame, however the 

units in this frame are not expressed in pixel, so a conversion factor  λ is added shown in (28) and 

(29). 

 

 
𝑢 − 𝑢0 = −

𝑑

λu
 
𝑟11(𝑥 − 𝑥0) + 𝑟12(𝑦 − 𝑦0) + 𝑟13(𝑧 − 𝑧0)

𝑟31(𝑥 − 𝑥0) + 𝑟32(𝑦−𝑦0) + 𝑟33(𝑧 − 𝑧0)
 (28) 

   

 
𝑣 − 𝑣0 = −

𝑑

λu
 
𝑟21(𝑥 − 𝑥0) + 𝑟22(𝑦 − 𝑦0) + 𝑟23(𝑧 − 𝑧0)

𝑟31(𝑥 − 𝑥0) + 𝑟32(𝑦−𝑦0) + 𝑟33(𝑧 − 𝑧0)
 (29) 

 

Lastly equations (28) and (29) are rearranged for x, y and as seen in (30) and (31). There the 

coefficients are labeled as 𝐿𝑛|𝑛=1,2,…,11. These are the 11 DLT parameters that need to be found and 

represent the relation between the real-world coordinate system and the image reference system [22]. 

 

 
𝑢 =

𝐿1𝑥 + 𝐿2𝑦 + 𝐿3𝑧 + 𝐿4

𝐿9𝑥 + 𝐿10𝑦 + 𝐿11𝑧 + 1
 (30) 

 

 
𝑣 =

𝐿5𝑥 + 𝐿6𝑦 + 𝐿7𝑍 + 𝐿8
𝐿9𝑥 + 𝐿10𝑦 + 𝐿11𝑧 + 1

 (31) 

 

To obtain the 11 DLT parameters an overdetermined system is needed and, as seen in (30) and (31), 

each reference point is expressed in 2 equations. This means that for finding the DLT parameters a 

minimum of 6 reference points are required [23]. 

 

 

4.1.3 Accuracy  

 

Since DLT is an old and well known method for pose estimation, it has been used several times to 

compare other pose estimation methods to. In this thesis we will use the data from a study done in 

2008 by Thomas Peterson at Aalborg University [24]. The study uses synthetic data with even 

distribution of reference points on a 1200 x 800 pixel image with focal length 882 pixels on both axis. 

A virtual camera positioned at (0, 0, -25) in 3D space is used.  

Figure 20 a) and b) give an overview of the influence of Gaussian noise on the DLT estimated 

translation and rotation respectively.  As is clearly shown in this graph, the DLT method is highly 

susceptible to noise. The x-axis of these graph shows an increasing noise level standard deviation in 

pixel, starting at 0 and going up to 10 pixel standard deviation noise. The y-axis shows the distance 

between the estimated position and the ground truth position of those points expressed as a relative 

camera position. An error of 1 indicates an error of 100 % the distance between the camera and the 

object. In Figure 21 b) the y axis shows the same distance to the ground truth expressed in rotations. 

10 measurement points were used to create these graphs. 
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Figure 20: a) DLT translation accuracy in function of noise level. b) DLT rotation accuracy in function of noise 
level [24]. 

 

In case of no noise, the maximum accuracy achieved by this study is 0.14% error for translation. The 

maximum rotational accuracy achieved by DLT in this study is 0.0008 rotation or 0.288 degrees [24]. 

 

As mentioned earlier, DLT needs a minimum of 6 points to estimate as position, but like nearly all 

pose estimation methods, if more points are used, the accuracy increases. Figure 21 shows the 

influence of extra points on the accuracy of DLT. As seen in these graphs, using the minimum 

requirement of 6 reference points gives a very poor pose estimation. A median translation error of 4 % 

and a median rotational error of 9-10 degrees occur. However, increasing the amount of reference 

points also increases the quality of the pose estimation greatly [24]. 

 

  

Figure 21: a) DLT translation accuracy in function of increasing number of reference points. 

b) DLT rotation accuracy in function of increasing number of reference points [24]. 
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4.1.4 Conclusion 

 

DLT is one of the earlier pose estimation methods and that is clearly reflected in its performance. First 

of all, it requires a minimum of 6 pose estimation points where most other methods require 4. This 

influences the speed of execution of this method. Even though it is not an iterative method, finding 11 

parameters requires more time than the 6 parameters EPnP(see chapter 4.3.2) for example need. In 

case of low noise DLT is fairly accurate, however DLT is highly susceptible to noise. Slight noise 

increases the translation and rotation error noticeably. Also using the minimum required 6 reference 

points yields a poor accuracy, starting at 15 reference points, the accuracy seems to stabilize, but this 

will drastically influence the execution time [22] [23] [24]. 

 

 

4.2 Perspective-n-Point problem (PnP) 

 

Perspective-n-Point (PnP) is a problem which finds its origin in camera calibration. It is a 

mathematical problem that tries to find the position and orientation of a calibrated camera using n 3D 

reference points in the real world coordinate system viewed as 2D points in an image. The position of 

the camera is defined as 6 degrees-of-freedom by a translation (X, Y and Z coordinate) and a rotation 

(roll 𝜗, pitch 𝜃 and yaw 𝜑).  An overview of the problem is shown in Figure 22. 

Equation (32) shows the mathematical approach to the PnP problem. In this formula 

[ 𝑥𝑖 𝑦𝑖 𝑧𝑖 1]𝑇 are the real world coordinates of a reference point i. [𝑢𝑖 𝑣𝑖 1]𝑇 is the 

corresponding homogeneous point detected in the image frame. wi stands for the scaling factor of this 

image point. The 3 x 3 matrix (A) on the right hand side is the calibration matrix, containing the scaled 

focal lengths (fu and fv) and the principal point (uc, vc). The skew 𝛾 is often very small and often 

assumed 0, as seen in equation (39). The 3x4 matrix is the transformation matrix [R|T] with a 3 x 3 

submatrix denoting the rotation and a 3 x 1 matrix identifying the translation. The transformation 

matrix is the unknown that PnP methods try to find. [25] [26] 

 

 

𝑤𝑖 [
𝑢𝑖
𝑣𝑖
1
] = [

𝑓𝑢 𝛾 𝑢𝑐
0 𝑓𝑣 𝑣𝑐
0 0 1

] [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

   

𝑡1
𝑡2
𝑡3

] [

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

] (32) 

 

 

Figure 22: Overview of the PnP problem [14]. 

 

There exist several methods to solve the PnP problem. Each method uses a slightly different technique 

to solve this problem. The methods can be non-iterative, where a solution comes after the first 
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estimation or iterative where first an initial guess is made which is then refined using an iterative 

process. In the next section the Efficient Perspective n Point (EPnP) method will be discussed in 

detail. It is a fairly accurate and computationally fast non-iterative method. EPnP is one of the most 

well-known solutions for the PnP problem and often used to compare with newer techniques [27]. 

 

 

4.3 Efficient PnP (EPnP) 

 

4.3.1 Introduction 

 

Perspective-n-Point problems are already described in the previous section. In 2008 Vincent Lepetit et 

al. proposed an improved method for the PnP problem [27]. It provides a non-iterative solution which 

decreases the time and computation power needed compared to iterative methods which do an initial 

guess and refine the estimated pose with every iteration.  The proposed method has a computational 

complexity of O(n). This means that the required amount of computations to solve the equations scales 

with the amount of reference points (n) that need to be detected in an image frame.  The method does 

require n to be larger than or equal to 4 points in order to get a position estimation. Most other 

methods for solving the PnP have a higher complexity. For example another low complexity method 

for PnP by Fiore, introduced in 2001, has a complexity of O(n²) where the computational power scales 

exponentially with the amount of feature points n [28]. Some higher accuracy methods like those 

proposed by Ansar and Daniilidis have a complexity which can go up to O(n8) [29]. 

This paper claims even better accuracy and noise rejection compared to those other non-iterative 

methods [27].  

 

 

4.3.2 EPnP algorithm 

 

The EPnP method starts with a set of known feature points in the 3D world coordinate system and 

corresponding points in the 2D image coordinate system. It aims to retrieve the coordinates of those 

feature points in the 3D camera coordinate system. If those coordinates are found, the Euclidian 

motion that aligns those sets of coordinates can be found. This motion contains the translation and 

rotation.  Contrary to other iterative PnP methods which start by estimating the depth of the reference 

points in the camera coordinate system, this method expresses those coordinates as a weighted sum of 

Virtual control points. If the reference points are coplanar, the minimum number of points needed to 

estimate this motion is 3. Otherwise at least 4 points are needed. The coordinates of the weighted sum 

points in the camera coordinate system are unknown. Because this technique uses weighted sums and 

not just the depth estimation of every reference point, it requires less computational power when a 

large amount of reference points (n) is used [27]. 

First, a set of reference points in the real world coordinate system are needed.  These points are 

denoted as:  

 𝑝𝑖 , 𝑖 = 1, 2, … , 𝑛. (33) 

 

Each reference point is expressed as a weighted sum of 4 virtual control points. 

The control points are denoted as: 
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 𝑐𝑗, 𝑗 = 1, 2, 3, 4. (34) 

 

The relationship between the control points and the reference points is shown in the following 

formula: 

 

 
𝑝𝑖
𝑤 =∑𝛼𝑖𝑗𝑐𝑗

𝑤

4

𝑗=1

 (35) 

 

In equation (35), the w superscript specifies in which coordinate system the points are viewed. The 

symbol w signifies the world coordinate system, c is the camera coordinate system. The relationship 

for the world coordinate system is the same for the camera coordinate system, as shown in equation 

(36) 

 

 
𝑝𝑖
𝑐 =∑𝛼𝑖𝑗𝑐𝑗

𝑐

4

𝑗=1

 (36) 

 

In both equations is the symbol 𝛼𝑖𝑗 present. This identifies the homogeneous barycentric coordinates 

of the reference points using the 4 control points. Barycentric coordinates use 3 points in a 2D system 

and 4 points in a 3D system do describe coordinates. The coordinates are given as a homogeneous 

combinates of the 3 or 4 reference points. More information about Barycentric coordinates can be 

found in [30]. The 4 control points form a tetrahedron and each reference point can be expressed as a 

combination of the 4 control points. An example is shown in Figure 23. In this figure, point B can be 

expressed as a homogeneous combination of points 1, 2, 3 and 4.  

 

 

Figure 23: Tetrahedral barycentric coordinates [31] 

 

Please note that the sum of the coefficients has to be 1.  

 

 
∑𝛼𝑖𝑗

4

𝑗=1

= 1 (37) 
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Theoretically the position of the control points can be chosen randomly, however the author of this 

method claims that one of the most stable ways to choose these control points is using one of the 

control points in the centroid of the reference points as the origin of a reference coordinate system and 

the other 3 points to construct the principal direction (x, y and z) [27]. 

 

The next step is constructing a matrix M. The solution of the problem lies in the kernel of this matrix, 

expressed as a vector. The dimension of the matrix M can be 2n x 12 or 2n x 9, depending on the 

amount of control points (4 control points with each 3 parameters (x, y and z) equal to 12 vectors 

describing each reference point). The 2n dimension identifies the dimension of the image coordinate 

system (2D). So each reference point has 12 vectors describing its x coordinate in the image 

coordinate system and 12 vectors describing its y coordinate in the image coordinate system, resulting 

in 24 vectors describing each point. Equation (38) shows the connection between the 2D projections of 

a reference point pi, represented as qi and the same reference point viewed in the camera coordinate 

system, notated as 𝑝𝑖
𝑐. A is a matrix that holds the camera internal calibration parameters. A detailed 

description of these parameters is given in section 2.3.  In short, these internal camera parameters are 

the 2D focal length coefficients fu and fv and the 2D principal point coefficients uc and vc. 

 

 
∀𝑖, 𝑤𝑖 [

𝑞𝑖
1
] = 𝐴𝑝𝑖

𝑐 (38) 

 

In equation (38) wi contains scalar projective parameters. Using equation (36) , equation (38) can be 

rewritten, shown in (39). The 4 control points are now written by using their x, y and z coordinates in 

the camera frame.  

 

 

∀𝑖, 𝑤𝑖 [
𝑢𝑖
𝑣𝑖
1
] = [

𝑓𝑢 0 𝑢𝑐
0 𝑓𝑣 𝑣𝑐
0 0 1

]∑𝛼𝑖𝑗 [

𝑥𝑗
𝑐

𝑦𝑗
𝑐

𝑧𝑗
𝑐

]

4

𝑗=1

 (39) 

 

This equation results in 12 unknown parameters from 4 control points {𝑥𝑗
𝑐 𝑦𝑗

𝑐 𝑧𝑗
𝑐
}
𝑗=1,2,3,4

 and 

another n unknown parameters in wi, the scalar projective parameters, with n the amount of reference 

points used. However the parameters in wi can be calculated using equation (39). Using the last row of 

this equation yields: [32] 

 

 
𝑤𝑖 =∑𝛼𝑖𝑗𝑧𝑗

𝑐

4

𝑗=1

 (40) 

 

Equation (40) is substituted in the first two rows of equation (39). This results in two equations (41) 

and (42), which show the relation between the 2D projection coordinates of a reference point I  (ui and 

vi) and the 3D coordinates of the same reference point, expressed as barycentric coordinates by using 4 

control point in the camera coordinate system.(𝑥𝑗
𝑐 , 𝑦𝑗

𝑐 , 𝑧𝑗
𝑐)𝑗=1,2,3,4. 
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∑𝛼𝑖𝑗𝑧𝑗

𝑐𝑢𝑖 =

4

𝑗=1

 ∑(𝛼𝑖𝑗𝑓𝑢𝑥𝑗
𝑐 + 0 + 𝛼𝑖𝑗𝑢𝑐𝑧𝑗

𝑐)

4

𝑗=1

⇔ 

0 =  ∑(𝛼𝑖𝑗𝑓𝑢𝑥𝑗
𝑐 + 𝛼𝑖𝑗(𝑢𝑐 − 𝑢𝑖)𝑧𝑗

𝑐)

4

𝑗=1

 

 

(41) 

 
∑𝛼𝑖𝑗𝑧𝑗

𝑐𝑣𝑖 = ∑(0 + 𝛼𝑖𝑗𝑓𝑣𝑦𝑗
𝑐 + 𝛼𝑖𝑗𝑣𝑐𝑧𝑗

𝑐)

4

𝑗=1

4

𝑗=1

⇔ 

0 =  ∑(𝛼𝑖𝑗𝑓𝑣𝑦𝑗
𝑐 + 𝛼𝑖𝑗(𝑣𝑐 − 𝑣𝑖)𝑧𝑗

𝑐)

4

𝑗=1

 

(42) 

 

With this substitution, the unknown parameters from wi disappear from the equation. As mentioned 

earlier, the goal is to create a matrix 𝑀 𝜖 ℝ2𝑛 𝑥 12 where 2n identifies the 2D coordinates from the 

image coordinate system of each reference point i, and the 12: x, y and z coordinates from the same 

reference point represented as barycentric coordinate using 4 control points in the camera coordinate 

system. To solve the equation a singular vector x is constructed where: 

 

 𝑀𝑥 = 0 (43) 

 

In equation (43) M represents the matrix which contains the coefficients from equation (41) and (42), 

x is a 12-vector containing the unknowns [𝑐1
𝑐𝑇 , 𝑐2

𝑐𝑇 , 𝑐3
𝑐𝑇 , 𝑐4

𝑐𝑇]
𝑇
. These are the coordinates of the 4 

control points in the camera coordinate system. In order to solve equation (43), x is rewritten as shown 

in equation (44). 

 

 

𝑥 =  ∑𝛽𝑖𝑘𝑖

𝑁

𝑖=1

 (44) 

 

In this equation, ki represents the null singular values of M. These are the same as the null 

eigenvectors of the matrix 𝑀𝑇𝑀. The solution of equation (43) can be written as a linear combination 

of eigenvectors of the matrix  𝑀𝑇𝑀 using the 𝛽𝑖 | 𝑖=1,…,𝑁 coefficients. 

According to the author, this method works even when there are less equations than unknowns. For 

example, if 4 reference points are used, matrix M will consist of 8 equations to find the 12 unknown 

parameters of x. 

If there are 6 reference points, matrix M will consist of 12 equations to solve the 12 unknown 

parameters. And the dimension N of the null space of 𝑀𝑇𝑀 is exactly one. In the case of an 

orthographic camera instead of a perspective one, the dimension N is increased to 4. A change in 

depth of the 4 control points does not alter the projections of the reference points. An orthographic 

camera shows a scene without the perspective distortion [33]. This effect can be achieved by 

increasing the focal length of the camera. In small focal lengths 𝑀𝑇𝑀 has one zero eigenvalue. 

Increasing the focal length will result in the camera behaving more like orthographic than perspective, 

and the four smallest eigenvalues of 𝑀𝑇𝑀 will reach near zero. 

This means that there are 4 possible solution for N: 1, 2, 3 or 4. This depends on the configuration of 

the reference points, the amount of noise in the image and the focal length. This also means that there 
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are 4 possible solutions. All 4 solutions are calculated and reprojected. Reprojection is explained in 

section 2.8. The N which results in the smallest reprojection error is kept. The solution is different for 

each N. The central idea is using quadratic equations to calculate the distance as shown in equation 

(44). 

 

 𝑟𝑒𝑠 =  ∑𝑑𝑖𝑠𝑡2 (𝐴[𝑅|𝑡] [
𝑝𝑖
𝑤

1
] , 𝑞𝑖)

𝑖

 (45) 

 

In this equation matrix A contains the internal camera parameters. [R|t] is the transformation matrix 

consisting of the rotation and translation. 𝑝𝑖
𝑤is the reference point, viewed in the world coordinate 

system and qi is the 2D projection of the reference point. dist( ) is the 2D distance between both points 

in homogeneous coordinates. 

The EPnP method is one of the most accurate non-iterative PnP solution. However, compared to some 

iterative methods its accuracy is slightly less. The author proposes an optimization to the EPnP method 

to increase its accuracy using the Gauss-Newton optimization [34]. This method will refine the  

𝛽𝑖|𝑖=1,2,3,4 values in equation (44) by picking a value that has the smallest change in distance between 

the control points [27]. 

 

 

4.3.3 Accuracy 

 

4.3.3.1 Non planar  

 

The accuracy of the EPnP method is calculated for a planar case (minimum 3 reference points) and 

non-planar case (minimum 4 reference points) separately. The EPnP method is compared to other 

recent iterative and non-iterative pose estimation methods. The setup for measuring the accuracy of 

this PnP method uses a 640 x 480 image from a calibrated virtual camera. On this image synthetically 

3D-2D reference points are produced. First, the rotational accuracy is discussed as illustrated in Figure 

24. A boxplot representation of the EPnP method and its rotational error in function of the Gaussian 

noise in the image is shown. 6 reference points are used for this measurement. The red plus signs in 

the boxplot are the high errors detected by the method. In total 300 measurements (20 for each 

Gaussian noise) are calculated and plotted. 

 

 

Figure 24: EPnP rotation error in function of image noise [27].  

 



  

39 

 

Figure 25 shows a comparison is made among Ansar and Daniildis, (AD), Clamped DLT, Lu’s et al. 

(LHM) , LHM using EPnP’s data for a good initial guess (EPnP + LHM) and the previously discussed 

EPnP using Gauss-Newton optimization (EPnP+GN). 

 

 

Figure 25: Non planar mean rotation and translation error comparison in function of image noise [27] 

 

Figure 25 depicts both the rotational and translational errors using a fixed number of reference points 

(n = 6) with an increasing standard deviation of Gaussian noise from 0 to 15. 

As mentioned earlier in this section, the amount of reference points used increases the accuracy of this 

method. This connection is shown in Figure 26 for the rotational error and the translation error. A 

Gaussian noise with standard deviation of 5 pixels is fixed and the amount of reference points is 

increased from 5 to 20 [27]. 

 

 

Figure 26: Non planar rotation and translation error in function of reference points [27]. 

 

 

4.3.3.2 Planar case 

 

Reference points, lying on a plane result in serious instability when a camera pose  based on those 

points is estimated due to an ambiguity. An overview of the rotational and translational errors in a 

planar case in function of the Gaussian noise are depicted in Figure 27. Please note that Clamped DLT 

is no longer present because this method is not applicable in planar configurations. 
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Figure 27: Planar rotation and translation error in function of Gaussian Noise [27]. 

 

However, a study, conducted in 2013 by Zheng et all. [35] shows that compared to more recent PnP 

algorithms, EPnP falls short in the planar case as shown in Figure 28. In the left figure, EPnP is not 

even represented in the graph. 

 

 
 

 

Figure 28: Comparison of EPnP with recent technologies [35]. 

 

 

4.3.4 Conclusion 

 

EPnP is a well-known method for solving the PnP problem and is fairly accurate compared to other 

non-iterative methods and even some iterative methods. The O(n) complexity makes it an ideal choice 

when a fast position estimation needs to be implemented where errors of 5 % or more are acceptable. 
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4.4 Linear pose estimation from points or lines 

 

This method has been developed in 2003 [36] for fast pose estimation with few world objects to 

determine the pose. There are two variations. One of them uses points, n point linear or NPL, another 

one uses lines, n line linear or NLL. This is the first non-iterative pose estimation method that uses 

lines. It has been developed for the National Aeronautics and Space Administration of The United 

States of America. The result of this n point or lines solution is given in camera coordinates. It can 

give the solution of the pose estimation if there are at least 4 known points and if they do no’t lie in a 

critical configuration [36]. 

 

 

4.4.1 Principals pose estimation 

 

In this chapter we describe the pose estimation method. Unfortunately the original paper [36] is 

written for researchers with in depth knowledge of mathematics. However, this is outside the scope of 

this thesis and therefore this section only explains the principals that are used. Interested readers can 

find more information in [36]. 

The method is based upon depth recovery of the world points. This is illustrated in Figure 29. 

 

 

Figure 29: Visualization of depth recovery of the world points. [36] 

 

The basic geometric constraint used in this method relates the distance between points in world 

coordinates 𝑑𝑖𝑗 and the scale factors 𝑡𝑖 and 𝑡𝑗 associated with the projections 𝑃𝑖 and 𝑃𝑗. This method 

avoids a degree increase in the equations derived from these constrains and all couples all n points in a 

single system of equations which are solved simultaneously. It requires no initialization and can be 

used for a small number of points or lines. It also guarantees to find a unique solution, if there is one. 

This is in contrast with iterative solutions such as Lowe [37], which typically have a slow conversion 

with bad initialisations. These iterative solutions can even converge to a local minima and require 

more points for stable results [36]. 
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4.4.2 Test setup 

 

The researchers who developed this method use Matlab to simulate the measurements. It is assume 

that the point method has a focal length of 1500 and that the line case has a focal length of 600. A 

random pose is generated and the correct image points are calculated. Then an error is introduced in 

both the x and y direction for each point. The error is introduced as Gaussian noise between minus 

three and three times the standard deviation (σ). Further they use these points to calculate the pose of 

the object and the relative error that this pose has. Most simulations are repeated over 400 times.  

They comparison is conducted between different point techniques and one other line technique.  The 

point techniques are:  

1. PM: direct recovery and decomposition of the full projection matrix from six or more points 

by singular value decomposition(SVD) methods. SVD is a way to factorize a matrix. A 

triangle( ) is used to indicate this method on the graphs. 

2. F: the n point linear algorithm of Fiore. This algorithm is indicated by a square ( ). 

3. QL: the n point linear algorithm of Quan and Lan [38]. This is signified by a diamond( ). 

4. LHM: the iterative algorithm of Lu et al (see chapter 5.1). initialized at ground truth. This is 

indicated by the circle( ). This algorithm is used as a reference and is expected to have the 

highest accuracy. 

 

The line technique is 

1. KH: the iterative algorithm of Kumar and Hanson. KH is initialized at the ground truth 

translation and rotation (KHRT indicated by a triangle ) this is done to evaluate the 

absolute performance. 

2. KH: the iterative algorithm of Kumar and Hanson. KH is initialized at the ground truth 

translation and identity rotation (KHT indicated by a square ). This shows the disadvantage 

of having initialisation of the algorithm. [36] 

 

 

4.4.3 Results point simulation 1 

 

The first simulation tests the dependence on the noise level. The Gaussian noise varies between σ = 

0.5 and 4. For each pose six points are calculated at a distance between 0 and 200 mm. The translation 

of the object is always smaller then 100. The results are illustrated in Figure 30. 

 

 

Figure 30: Rotation, translation, and reprojection errors for six points by different noise levels [36] 

 

From these graphs we can see that this method (NPL) outperforms the other non-iterative methods. 

[36] 
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4.4.4 Results point simulation 2 

 

In this simulation, the dependence on the number of points is tested. The number of points varies 

between 5 and 11 points. PM and F for 5 points are not plotted because these methods require at least 

6 points. A 1,5 x 1,5 Gaussian noise is added. The results are displayed in Figure 31. 

 

 

Figure 31: Rotation, translation, and reprojection errors for six points by different number of points [36] 

 

Again NPL outperforms the other linear algorithms but the difference is the most significant with a 

lower number of points. [36] 

 

 

4.4.5 Results point simulation 3  

 

This simulation tests the dependence on the effective field of view. The points are generated in the 

same way as in the previous simulations but now there are only six points. The position of these points 

are limited to the vertices of a 10 x 10 x 10 cube centered around the optical axis. The same Gaussian 

noise is applied. This means that all the detected points are in a small portion around the center of the 

image. The results are shown in Figure 32. In which the relative error and the relative object size 

(distance/size) are plotted. [36] 

 

 

Figure 32: Rotation, translation, and reprojection errors for six points versus extend of object given as 
distance/size [36] 

 

From this figure can be concluded that NPL outperforms QL, PM and F for pose estimation when the 

object is approximately seven time as far away as its extent. So NPL works better when the object is 

smaller or further away from the image. [36] 
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4.4.6 Results line simulation 1 

 

In this simulation the dependence on the noise level is also tested. The pixel noise varies between σ = 

0.5 and σ = 5. For each pose six line segments are generated. The world line segments are contained in 

a 20 x 20 x 20 box in front of the camera. This time the translation is limited to 10. The relative 

rotation and translation errors for NLL and KH are plotted in Figure 33.  

 

 

Figure 33: Rotation, translation, and reprojection errors for six lines by different noise levels [36] 

 

The KHRT performs the best but this was expected because it is initialized with the correct position. 

From this simulation it is also possible to conclude that the NLL has the best mean performance. This 

is because even at ground truth initialization the iterative algorithm can converge on a local minima. 

[36] 

 

 

4.4.7 Results line simulation 2 

 

This simulation tests the dependence on the number of lines. The line simulation is the same as in the 

previous simulation but now the number of lines varies between 4 and 11. Also a fixed noise of  

1,5 x 1,5 pixels is added. This is illustrated in  

 

 

Figure 34: Rotation, translation, and reprojection errors for six lines by different number of points [36] 

 

It is clear that for both algorithms the accuracy increases with increasing lines. The absolute 

performance of NLL is comparable to KH but it is more likely to converge to al local minima. [36] 

 

 

4.4.8 Results timing simulation 

 

The timing simulation makes clear that NPL is a slow method compared to the other linear algorithms 

but it preforms relatively better when there are less points. This is in sharp contrast to NLL which is 

ten to hundred times faster than its iterative counterparts. This was of course to be expected. Also this 

variation performs relatively better when there are less points. [36] 
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4.4.9 Conclusion 

 

The NPL algorithm works relatively better when there are only a few known world points and when 

all these points are located near the center of the image. It is a relative slow algorithm but it has a high 

accuracy. 

As expected The NLL is a fast algorithm for pose estimation with lines. It also has a comparable 

accuracy with respect to the iterative algorithm but it will not converge on a local minimum. [36] 

 

 

4.5 Incident ray tracking camera model 

 

Most applications use the pin hole camera model. In this model, all incident rays are directly projected 

onto the detection plane through the pinhole. However in reality the light rays go through compound 

lenses.  

In a general imaging model, virtual sensing elements are used to make the linear mapping between the 

incident rays and the image plane. These elements have three parameters, an image projection, the yaw 

and the pitch directions of the projective ray. The calibration of these elements strongly depends on 

how accurate the rotation can be determined. This camera model simplification results in a less 

accurate position estimation. 

The lens geometry model calculates, the geometric relationship between images and objects via 

Snell’s Law and skew ray tracking. Snell’s Law describes the angle of an incidence light ray with 

respect to the refraction of this light ray when it passes through the boundary between two different 

materials like glass and air. Figure 35 gives an overview of the path of an incident ray in an imaging 

system. This is used to make the connection between incident rays and the image pixels. 

 

 

Figure 35: Representation of an incident ray passing through a camera [1] 

 

Each pixel corresponds with an incident ray in the imaging system. However the path of an incident 

ray through the imaging system can be complex and is therefore replaced by the abstract mathematical 

equivalent which is call the perspective ray. The corresponding camera model is the incident ray 

tracking camera model (IRT). [1] 
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4.5.1 Parameters of the incident ray tracking camera model 

 

The ray to image mapping for the camera is parameterized as depicted in Figure 36. 

 

 

Figure 36: Geometrization of the IRT [1] 

 

A point 𝑃𝑖 (x, y, t) with image coordinates (x, y) and at depth t is located on the perspective ray l. The 

depth is the distance between 𝑃𝑖 and п𝑐. The most convenient way to define the perspective rays, such 

as l, is to let them intersect two parallel reference planes. Here п𝑚 and п𝑛are used. One point in each 

reference plane, namely 𝑃𝑚 and 𝑃𝑛 will define all perspective rays. The reference planes are defined 

as: 

 

 
{
п𝑚(𝑥, 𝑦) = {𝑃

𝑚}

п𝑛(𝑥, 𝑦) = {𝑃
𝑛}

 (46) 

 

The parameters used in IRT are calculated from the reference planes. The mapping from the reference 

frame п𝑛 to the camera sensor plane is illustrated in Figure 37. 

 

 

Figure 37: Mapping between reference plane and image plane. [1] 
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The mapping between the two planes is given by the equation: 

 

 

{
 
 

 
 𝑥 =∑∑𝐶𝑖𝑗𝑢

𝑖𝑣𝑖
𝑛−1

𝑗=0

𝑛

𝑖=0

𝑦 =∑∑𝐷𝑖𝑗𝑢
𝑖𝑣𝑖

𝑛−1

𝑗=0

𝑛

𝑖=0

 (47) 

 

Where (𝐶𝑖𝑗, 𝐷𝑖𝑗) are the mapping parameters, n is the order of the mapping, (x, y) are the space 

coordinates of the points in the reference plane and (u,v) are the image coordinates. The mapping 

parameters (𝐶𝑖𝑗, 𝐷𝑖𝑗) are calculated with the Levenberg-Marquard method. This is a least-square 

estimation of non-linear parameters which is a combination between a Taylor series method and a 

gradient method. [1] 

 

 

4.5.2 Incident ray camera model 

 

Figure 38 depicts the perspective rays used for the camera pose estimation.  

 

 

Figure 38: The perspective rays used for object pose [1] 

 

 

The superscript of the point in the figure means that the points are an element of that reference frame. 

The subscript means that they are part of that perspective ray. 𝑙0(𝐼0, 𝑝0
𝑚, 𝑝0

𝑛) is the perspective ray 

through the origin of the object coordinate system 𝑝0
𝑖 -u v w. The perspective ray 𝑙𝑘(𝐼𝑘,  𝑝𝑘

𝑚, 𝑝𝑘
𝑛) goes 

through 𝑝𝑘
𝑗
 which is located on the object with known coordinates in the object coordinate system. The 

origin of the reference plane coordinate system is O -i j k. Object coordinates like 𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ can be 

transformed by the rotation matrix in to coordinates of a reference frame  like 𝑝0
𝑛𝑝𝑘

𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . The Rotation 

matrix R is defined as: 

 

 
𝑅 = [

𝑖𝑢 𝑖𝑣 𝑖𝑤
𝑗𝑢 𝑗𝑣 𝑗𝑤
𝑘𝑢 𝑘𝑣 𝑘𝑤

] (48) 
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Where 𝑖𝑢, 𝑖𝑣 , 𝑖𝑤 are the coordinates of unit vector i in the object coordinate system. The same applies 

for the other unit vectors of the object coordinate system. The vector k is the cross-product of i and j.  

So only the transformations of i and j have to be estimated to be able to estimate the rotation.  

The translation vector is determined by the vector 𝑂𝑝0
𝑖⃗⃗ ⃗⃗ ⃗⃗  ⃗ This is the vector between the origins of the 

coordinate systems. 𝑝0
𝑖  is an element of the perspective ray 𝑙0 which is defined as: 

 

 
{
𝑓𝑥
0(𝑧) = 𝑔𝑥

𝑛(𝑢0, 𝑣0) + (𝑔𝑥
𝑚(𝑢0, 𝑣0) − 𝑔𝑥

𝑛(𝑢0, 𝑣0))(𝑧 − 𝑧
𝑛)/(𝑧𝑚 − 𝑧𝑛) 

𝑓𝑦
0(𝑧) = 𝑔𝑦

𝑛(𝑢0, 𝑣0) + (𝑔𝑦
𝑚(𝑢0, 𝑣0) − 𝑔𝑦

𝑛(𝑢0, 𝑣0))(𝑧 − 𝑧
𝑛)/(𝑧𝑚 − 𝑧𝑛)

 (49) 

 

𝑧𝑚 and 𝑧𝑛 are z coordinates of the reference planes п𝑚 and п𝑛 respectively. This means that 𝑝0
𝑖  can be 

defined as:  

 

 𝑂𝑝0
𝑖⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑓𝑥

0(𝑧𝑖) − 𝑔𝑥
𝑛(0,0), 𝑓𝑦

0(𝑧𝑖) − 𝑔𝑦
𝑚(0,0), 𝑧𝑖 − 𝑧𝑛) (50) 

 

Here 𝑧𝑖 is the z coordinate of the plane п𝑖. This plane is parallel to both reference planes and goes 

through the origin of the object coordinate system 𝑝0
𝑖 . When analysing the formula above it can be 

conclude that only the 𝑧𝑖 coordinate needs to be determined to know the object translation. However, 

there are three parameters that need to be computed to know the object pose namely, i, j and z. [1] 

 

 

4.5.3 Projection on the perspective ray 

 

Figure 39 shows an imaging model of the perspective rays with a scaled orthographic projection. Only 

two image points correspond with two feature points, 𝑝0
𝑖  and 𝑝𝑘

𝑖 , are in the п𝑖 plane.  
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Figure 39: The imaging model of the perspective rays [1] 

 

The perspective rays 𝑙0 and 𝑙𝑘, are the rays of the points 𝑝0
𝑖  and 𝑝𝑘

𝑖  respectively. They are determined 

with the calibration parameters. 𝑝0
𝑖  is the origin of the object coordinate system, therefore the 

coordinates of 𝑝0
𝑖  in the object coordinate system are known.  п𝑚 and п𝑛 are the reference planes, the 

plane п𝑖 is parallel to both reference planes and goes through 𝑝0
𝑖 . The point 𝑝𝑘

𝑖  is projected on the 

plane п𝑖 at 𝑄𝑖  according to the k axis. 𝑙𝑘′ is the perspective ray trough 𝑄𝑖 . [1] 

 

 

4.5.4 Formulation of projections 

The next equation defines the relationship between three unknowns, the unknown vectors i and j of the 

rotation matrix and the unknown 𝑧𝑖 coordinate, and the known vector the 𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ in the object coordinate 

system.Figure 39 shows that vector 𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the sum of three vectors. 

 

 𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑝0
𝑖𝑝𝑘
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑝𝑘

𝑖𝑄𝑘
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑄𝑘

𝑖 𝑝𝑘
𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (51) 

 

The perspective rays 𝑙0 and 𝑙𝑘 constrain the vector 𝑝0
𝑖𝑝𝑘
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. If (𝑓𝑥

0, 𝑓𝑦
0) and ( 𝑓𝑥

𝑘, 𝑓𝑦
𝑘)  are the functions of 

𝑙0 and 𝑙𝑘, the coordinates of this vector can also be defined as:  

 

 𝑝0
𝑖𝑝𝑘
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑓𝑥

𝑘(𝑧𝑖) − 𝑓𝑥
0(𝑧𝑖), 𝑓𝑦

𝑘(𝑧𝑖) − 𝑓𝑦
0(𝑧𝑖), 0) (52) 
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The perspective rays 𝑙0 and 𝑙𝑘′ constrain the vector 𝑝𝑘
𝑖𝑄𝑘

𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  which can be defined as: 

 

 𝑝𝑘
𝑖 𝑄𝑘

𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   = (𝑓𝑥
𝑘(𝑧𝑖′) − 𝑓𝑥

𝑘(𝑧𝑖), 𝑓𝑦
𝑘(𝑧𝑖′) − 𝑓𝑦

𝑘(𝑧𝑖), 0) (53) 

 

Hereby is 𝑧𝑖′ the z coordinate of 𝑝𝑘
𝑗
. 𝑧𝑖′ = (1 + 𝜀𝑖) 𝑚𝑒𝑡 𝜀𝑖 = 𝑝0

𝑖𝑝𝑘
𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ •

𝑘

𝑧𝑖
.  

The vector 𝑄𝑘
𝑖 𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is perpendicular to plane п𝑖. The vector can be expressed as:  

 

 𝑄𝑘
𝑖 𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (0,0, 𝑧𝑖 ∗ 𝜀𝑖) (54) 

 

The sum of the three vectors can then be expressed as: 

 

 𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑓𝑥
𝑘(𝑧𝑖′) − 𝑓𝑥

0(𝑧𝑖), 𝑓𝑦
𝑘(𝑧𝑖′) − 𝑓𝑦

0(𝑧𝑖), 𝑧𝑖 ∗ 𝜀𝑖) (55) 

 

The dot products of 𝑝0
𝑖𝑝𝑘
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ with the unit vectors i and j are defined as: 

 

 

{
𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ • 𝑖 = 𝑓𝑥
𝑘(𝑧𝑖′) − 𝑓𝑥

0(𝑧𝑖)

𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ • 𝑗 = 𝑓𝑦
𝑘(𝑧𝑖′) − 𝑓𝑦

0(𝑧𝑖)
 (56) 

 

Solving this equation would make it possible to calculate the object pose.  

 

 

4.5.5 Iteration for scaled orthographic projection 

 

The dot products of 𝑝0
𝑖𝑝𝑘

𝐽⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 can also be expressed as: 

 

 

{
𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ • 𝑖 = 𝑓𝑥
𝑘 (𝑧𝑖(1 + 𝜀𝑖)) − 𝑓𝑥

0(𝑧𝑖)

𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ • 𝑗 = 𝑓𝑦
𝑘 (𝑧𝑖(1 + 𝜀𝑖)) − 𝑓𝑦

0(𝑧𝑖)
 (57) 

 

Because the points 𝑝0 
𝑖 , 𝑝0 

𝑛 , 𝑝𝑘
𝑗
 and 𝑝𝑘

𝑛 are located on the perspective rays 𝑙0 and 𝑙𝑘, this equation can 

be written as: 

 

 

{
𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ • 𝐼 = 𝑓𝑥
𝑘(𝑧𝑛) − 𝑓𝑥

0(𝑧𝑛)

𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ • 𝐽 = 𝑓𝑦
𝑘(𝑧𝑛) − 𝑓𝑦

0(𝑧𝑛)
 (58) 

 

Hereby is 𝐼 = 𝑠𝑖 ∗ 𝑖, 𝐽 = 𝑠𝑗 ∗ 𝑗. I and J are the only unknowns in this linear system. The norm of I and 

J are respectively the scaling factor 𝑠𝑖 and 𝑠𝑗 between the vectors 𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗and 𝑝0
𝑛𝑝𝑘

𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . The length of the 

two vectors can be written as: 

 

 
|𝑝0
𝑛𝑝𝑘

𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | =
𝑠𝑖 + 𝑠𝑗

2
|𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| (59) 
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This can be rewritten as: 

 

 
|𝑝0
𝑛𝑝𝑘

𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | =
𝑠𝑖 + 𝑠𝑗

2
√(𝑓𝑥

𝑘(𝑧𝑖′) − 𝑓𝑥
0(𝑧𝑖))² + (𝑓𝑦

𝑘(𝑧𝑖′) − 𝑓𝑦
0(𝑧𝑖))² + ( 𝑧𝑖 ∗ 𝜀𝑖)² (60) 

 

If the values of 𝜀𝑖 and 𝑧𝑖 are given then this is the algorithm for estimating the pose. It is called the 

perspective-ray-based scaled orthographic projection (PRSO). The solution of the algorithm is only an 

estimation because the term 𝜀𝑖 can not exactly be determined. However, the calculated values of i and 

j can be used to obtain a more accurate value of 𝜀𝑖. The iterative version of this algorithm is called 

PRSOI (PRSO with Iterations) and it converges towards the correct pose.  

Initially the term 𝜀𝑖 is set to zero, this means that it is assumed that 𝑝𝑘
𝑖  and 𝑄𝑘

𝑖  coincide. When tracking 

a moving object is tracked the value of 𝜀𝑖 from the previous frame is used. [1] 

 

 

4.5.6 Solving the system of the PRSO algorithm 

 

From all the equation above there is still an equation which is difficult to solve namely: 

 

 

{
𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ • 𝐼 = 𝑓𝑥
𝑘(𝑧𝑛) − 𝑓𝑥

0(𝑧𝑛)

𝑝0
𝑖𝑝𝑘

𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ • 𝐽 = 𝑓𝑦
𝑘(𝑧𝑛) − 𝑓𝑦

0(𝑧𝑛)
 (61) 

 

If we define 𝜉𝑖 as 𝑓𝑥
𝑘(𝑧𝑛) − 𝑓𝑥

0(𝑧𝑛) and 𝜂𝑖 as 𝑓𝑦
𝑘(𝑧𝑛) − 𝑓𝑦

0(𝑧𝑛). The dot products use vector 

coordinates in the object frame. This can be rewritten as  

 

 
{
[𝑢𝑖 𝑣𝑖 𝑤𝑖][𝑖𝑢 𝑖𝑣 𝑖𝑤]

𝑇 = 𝜉𝑖

[𝑢𝑖 𝑣𝑖 𝑤𝑖][𝑗𝑢 𝑗𝑣 𝑗𝑤]
𝑇 = 𝜂𝑖

 (62) 

 

The coordinates of I and J are the only unknowns in these linear equations. 𝑓𝑥
0,  𝑓𝑦

0and  𝑓𝑥
𝑘,  𝑓𝑦

𝑘 are the 

functions of the perspective rays 𝑙0 and 𝑙𝑘, and 𝑢𝑖, 𝑣𝑖, 𝑤𝑖 are the known coordinates of 𝑝𝑘
𝑗
 in the object 

coordinates. Substitute the n feature points for the previous equation.  

 

 
{
𝐴 • 𝐼 = 𝑥′
𝐴 • 𝐽 = 𝑦′

 (63) 

 

In this equation A is the object points coordinates matrix in the object coordinate frame, 𝑥′ =

[𝜉0
𝑖 …𝜉𝑗

𝑖…𝜉𝑛
𝑖 ] , 𝑦′ = [𝜂0

𝑖 …𝜂𝑗
𝑖 …𝜂𝑛

𝑖 ]. If there are at least four non-coplanar points, the least square 

solution is given by: 

 

 
{
𝐼 = B ∗ 𝑥′
𝐽 = B ∗ 𝑦′

 (64) 

 

Here matrix B is the pseudo inverse of object matrix A. Once I and J are determined i and j can be 

calculated by normalizing I and J.  

The translation vector T of the object can now be computed. It is equal to vector 𝑂𝑝0
𝑖⃗⃗ ⃗⃗ ⃗⃗  ⃗. This vector can 

be calculated with the equations: 
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 𝑂𝑝0
𝑖⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑓𝑥

0(𝑧𝑖) − 𝑔𝑥
𝑛(0,0), 𝑓𝑦

0(𝑧𝑖) − 𝑔𝑦
𝑚(0,0), 𝑧𝑖 − 𝑧𝑛) (65) 

 

And 

 

 
|𝑝0
𝑛𝑝𝑘

𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | =
𝑠𝑖 + 𝑠𝑗

2
√(𝑓𝑥

𝑘(𝑧𝑖′) − 𝑓𝑥
0(𝑧𝑖))² + (𝑓𝑦

𝑘(𝑧𝑖′) − 𝑓𝑦
0(𝑧𝑖))² + ( 𝑧𝑖 ∗ 𝜀𝑖)² (66) 

 

Which were previously mentioned in this chapter. [1] 

 

 

4.5.7 Camera calibration results 

 

In this experiment a 768 x 576 CCD camera is used, with a pixel size of 0,0083 mm x 0,0086 mm and 

a View angle of 60°. A Zolix KSA300-11-X actuates the linear movement of the camera based on a 

solid evenly distributed 7 x 9 circular pattern.  

The size of the pattern is 500 x 600 mm² with a distance of 60 mm between adjacent points.  

In this experiment there are six images taken each 30 mm apart. The first and last image, at distance 0 

mm and 150 mm, are used for the calibration. These are shown in Figure 40 and Figure 41. If the 

calibration is complete, the space error of the calibration points is calculated using IRT. The results are 

shown in Figure 42. 

 

 

Figure 40: Checkerboard pattern at distance of 0mm [1] 

 

 

Figure 41: Checkerboard pattern at distance of 150mm [1] 
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Figure 42: Position distribution of the calibration points [1] 

 

The root mean square error (RMSE) (explained in chapter 2.8) represents of how far the reprojected 

point differs from the measured points. This measurement is used to determine the accuracy of the 

calibration parameters. In this experiment the average RMSE is 0,17 mm in horizontal direction and 

0,12 mm in vertical direction. From all these points the four points with the lowest RMSE are selected 

and used for the pose estimation. This is a P4P method because it only uses four carefully selected 

points to determine the pose. [1] 

 

 

4.5.8 Pose estimation results 

 

The experimental setup for pose estimation uses a Zolix RAK-200 for the yaw rotation and Zolix 

RAD-100 for the pitch and roll directions. The two-phase stepping motor is controlled using the Zolix 

MC600-4B in closed-loop control. 

During this experiment a picture is taken every 1°. The target rotation angel is measured by using the 

image of the initial position and the image of the current position. The same method is used for 

measuring the translation every 2 mm. 

To test the accuracy of the POSIT algorithm the position is also calculated with different PnP 

algorithms using a pinhole model. These other algorithms include the geometric configuration solution 

by Liu ML and Wong KH denoted by LW and POSIT. POSIT is also explained in chapter 5.2. The 

LW can also incorporate the incident ray tracking camera model. This is denoted as LW+IRT. Table 1 

gives an overview of the average RSME for the six degrees of freedom for the different algorithms. 
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Table 1: The RMSE for each degree of freedom of the different PnP algorithms 

method Rotation 

yaw (deg.) 

Rotation 

pitch (deg.) 

Rotation 

roll (deg.) 

Translation 

in x 

direction 

(mm) 

Translation 

in y 

direction 

(mm) 

Translation 

in z 

direction 

(mm) 

POSIT 0.290 0.243 0.071 0.369 0.241 0.552 

LW 0.258 0.258 0.110 0.340 0.248 0.448 

LW+IRT 0.201 0.176 0.083 0.146 0.130 0.362 

PRSOI 0.136 0.115 0.062 0.152 0.128 0.272 

 

Table 1 illustrates that the accuracy of LW+IRT is higher than LW for each degree of freedom. This 

indicates that the IRT model has improved the accuracy. From the table can also be derived that the 

accuracy of PRSOI is higher than POSIT for all degrees of freedom except for the roll rotation. For the 

roll rotation the accuracy is almost the same. PRSOI also has a higher accuracy than LW+IRT for the 

rotations and the z translation. The accuracy for the x and y translation are almost the same. 

To conclude, PRSOI has a higher accuracy using the perspective ray model but it uses more 

calculating power. However, it is a recent study (2015) so there is not any other algorithm who uses 

this camera model yet. [1] 

 

 

4.6 Moiré patterns 

 

4.6.1 Introduction 

 

Another way to determine the 6-DOF pose of an object is to utilize interference patterns. More 

specifically the moiré effect which occurs when two different sets of opaque lines or dots with 

transparent gaps between the lines are superimposed. A pattern of dark and light lines with a lower 

spatial frequency than the original set of lines can be observed. This is called a moiré pattern. The 

pattern appears when the two sets are not identical. The cause of the moiré fringes can be due to two 

distinct mechanisms. The first one is because of a slightly different frequency in the lines of both sets. 

The second cause is the inclination between the sets.  An example of a moiré pattern is shown in 

Figure 43. Here there are two sets of lines with equal distance P between the lines. However one set is 

rotated by an angle α. An advantage of a moiré pattern is that a slight deviation in translation or 

rotation between the two sets results in a significant change in the pattern [39]. 
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.  

Figure 43: Example of a Moiré pattern [40] 

 

Consider two sets of parallel lines. The first set consists of lines separated by distance p. The second 

set is separated by a distance 𝑝 + δ𝑝. The middle of the first dark line that appears in the moiré fringe 

appears at the overlap of the nth line of both sets. The relationship between n and the distance p is 

shown in the next formula. 

 

 𝑛 =
𝑝

2δ𝑝
. (67) 

 

This is only the case if there is no rotation between both sets. The symbol ϕ is the angle between the 

visible dark moiré fringe and the direction of the primary set of lines. θ is the angle between the first 

set of line and the secondary set. Using the next formula one can calculate ϕ from θ [41]. 

 

 ϕ =
π

2
+

θ

2
⇔ θ = 2ϕ − π. (68) 

 

 

4.6.2 Working of RGR-6D 

 

The paper utilizing moiré patterns to determine an accurate 6-DOF estimation uses Retro-Grate 

Reflectors (RGR). These RGRs reflect most of the incoming light back to the source with a minimum 

of scattering. The RGRs are fitted with a small gratings. These gratings act as the black and 

transparent lines of the moiré pattern. The test pattern used for pose estimation, also called the “target” 

consists of 4 RGRs in the horizontal and 4 in the vertical direction as shown in Figure 44. 

Each direction has 3 high resolution and one low-resolution grating. 

The corners of the target consists of StarBurst marks which are only used for the detection of the target 

in noisy environments. In order to create a moiré effect, there need to be two slightly different gratings 

overlapping each other. The horizontal and vertical gratings in the target do not overlap (the vertical 

gratings are split in two parts). The moiré effect is achieved by using an identical pattern at the back of 

target.  The front gratings have 2480 cycles per meter whereas the back gratings have 2500. Both 

layers are separated by a transparent glass substrate of 5.6 mm. This technique focuses on the accurate 

estimation of out-of-plane rotations and depth. [42]  
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Figure 44: RGR target [42] 

 

As mentioned in section 4.2, there are three coordinate systems needed to estimate the pose of an 

object from an image: the image (2D), camera (3D) and real world coordinate system. (3D). 

 

 

4.6.3 Out-of-plane rotation estimation 

 

For accurately estimating a small out-of-plane yaw rotation this technique looks at the displacement of 

the moiré pattern in the horizontal gratings. A 1 degree rotation in the positive yaw direction results in 

a right shift of the moiré pattern in the outer region gratings, while the center grating will shift to the 

left. The difference in phase shifting direction is due to the grating difference between the center and 

outer region. The outer region gratings are the first and third RGR starting from the top. The center 

region is the second RGR starting from the top.  All back RGRs have grating of 2500 cycles/m. The 

outer region front RGRs have a 2480 cycles/m grating whereas the center front RGR has a 2520 

grating. Both the outer and inner grating have 20 cycle/m difference with the back grating. But 

because the center grating has a larger spatial frequency than the back grating, the shifting is in the 

opposite direction. This is called the near-field effect which will be explained later in this section. 

Figure 45 shows how a positive + 1 degree yaw rotation influences the shifting in the outer and central 

region of the RGRs. A more precise measuring method of this shifting is shown in Figure 46. The 

luminosity of both regions are measured and displayed in a 8 bit gray-scale.  The graph is measured 

using a Kodak KAI-0372M Imager by using a microlens. 
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Figure 45: RGR-6D, luminosity shift due to + 1 degree yaw rotation [42] 

 

 

Figure 46: RGR-6D,  Moiré pattern shift due to +1 degree yaw rotation [42]. 

 

The green curve has a +1 degree yaw rotation compared to the blue curve. This results in a 60 degree 

phase difference between the green and blue curve.  The sensitivity of this system is 60 degrees shift 

to a 1 degree rotation. The pitch rotation is measured in a similar way by using the vertical RGRs. 

As mentioned before the phase shift in the center region is opposite compared to the outer region. The 

back RGR of the center region has a larger spatial frequency in its gratings compared to the front RGR 

while the outer region back RGR has a smaller spatial frequency compared to the front RGR. This 

difference in phase shifting direction is used to perform a differential phase measurement between 

both regions in order to increase the accuracy. This method claims to achieve a yaw rotation 

estimation accuracy of +- 1 arc minute (1/60th of a degree) [42]. 
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4.6.4 Depth estimation 

 

Figure 44 shows clearly a lower spatial frequency of the central region compared to the outer region. 

This effect can be used to measure the distance between the target frame and the origin of the camera 

frame (the optical center of the camera) also called the depth. Other techniques to estimate the depth of 

a target in a camera frame uses the true size of the target and the principal distance or lens’ focal 

length. However, a variable focus or zoom make it harder to know the principal distance beforehand. 

Estimation of the depth using this method is divided in two parts: depth estimation in near field and 

depth estimation in far field. A camera is in near field when ‖𝑐𝑃
𝑡
˚‖ < 1000 ∗ 𝑑𝑡where dt is the target 

thickness and  𝑐𝑃
𝑡
˚ indicates the target coordinate system origin, viewed in the camera frame. The 

distance between the origin of the target frame a and the camera frame origin is represented as ‖𝑐𝑃
𝑡
˚‖. 

If the camera is in the near field, the depth can be immediately estimated using the distribution of the 

moiré patterns, because a variation in depth results in a variation of the observed moiré fringes. 

 

If the distance from the principal point to the origin of the target is much larger than the thickness of 

the target itself (‖𝑐𝑃
𝑡
˚‖ ≫ 𝑑𝑡 ) the camera is said to be in far field.  

In the far field there is a linear relation between the spatial frequencies of the front and back RGR 

gratings and the observable moiré pattern frequency shown in the next formula 

 

 𝑟𝐹𝑚
∞  =  𝐹𝑏 − 𝐹𝑓 (69) 

 

In this formula 𝑟𝐹𝑚
∞   represents the spatial frequency of the observed moiré pattern seen in the far 

field. In the near field this relation is different as the apparent frequency of the back RGR grating 

increases. The origin of this increase in observable spatial frequency is the way that the rays of light 

are collected by the camera chip. Figure 47 gives a clear overview. The dotted lines are rays of 

incident light. It’s obvious that the light coming from behind the target shows a bit more of the back 

RGR grating then the front RGR. This increases the apparent spatial frequency of the back RGR 

grating. In far field the two dotted lines can be seen as nearly parallel and this problem does not occur. 

[42] 
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Figure 47: RGR-6D test setup [42] 

 

This increase in spatial frequency will also alter the apparent spatial frequency of the observable moiré 

pattern. This apparent frequency changes with the point of observation. Using the images the camera 

produces to measure the moiré pattern can only result in the magnitude of the moiré pattern. Figure 48 

gives an overview of the depth influences on the apparent moiré frequency in near field. 

The x-axis indicates the distance (m) from the optical center of the camera to the target frame in both 

graphs. In the upper graph, the y-axis signifies the observable moiré fringe frequency (cycle/m). The 

blue and green line represent the outer region and central region respectively. The lower graph shows 

the ratio of the apparent moiré fringe frequency of the outer region to the center region. Please note 

that |𝑟𝐹𝑚| represents the apparent moiré frequency in the real world coordinate system. |𝑖𝐹𝑚|, however 

represents the apparent moiré frequency in the image coordinate system. The relationship between 

|𝑖𝐹𝑚| and |𝑟𝐹𝑚| will be discussed in the next section. 
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The transition from |𝑖𝐹𝑚|to |𝑟𝐹𝑚|, which requires camera calibration parameters and the unknown 

pose of the target, can be quite complex. Luckily the outer and center region RGR are on a common 

plane. This means that the ratio of the outer and center region in both the image coordinate system and 

real world coordinate system should be the same. This ratio is shown in the next formula.   

 

 |𝑟𝐹𝑚
𝑂|

|𝑟𝐹𝑚
𝐶|
=
|𝑖𝐹𝑚

𝑂|

|𝑖𝐹𝑚
𝐶|

 

 

(70) 

 

O and C identify the outer and center region respectively.  This ratio is also shown in the y-axis of the 

lower graph of Figure 48. The result of the depth estimation is not as accurate as the yaw and pitch 

estimation. The authors claim to achieve an accuracy of 1-2% on a distance from 2 to 3.25 meter. 

However this technique does not require a calibrated or a high resolution camera. A yaw rotation 

accuracy of 4 arc minutes (1/15 th of a degree) could be achieved by using only a target image of 60 x 

60 pixels [42]. 

 

 

4.6.5 Conclusion 

 

This technique seems very promising as it achieves one of the highest accuracy in out-of-plane 

rotations of all the techniques in this thesis. An accuracy up to 1 arc minute can be achieved for out-of-

plane rotations. Measuring depth can be accurate up to 1 % - 2 % on a distance from 2 to 3.25 m. The 

lack in need of a high resolution camera or camera calibration is also very appealing. However, in-

plane rotation and translations need other (standard) photogrammetry functions. The depth estimation 

accuracy is accurate enough for most applications but if the need for high-accuracy depth estimation 

emerges, another method should be used. This technique is ideal if high-accuracy out-of-plane 

rotations need to be estimated. Combined with other techniques which provide high depth and in-plane 

accuracy this technique might be ideal.   

 

Figure 48: a) Moiré frequency as a function of the camera-target distance; 
 b) Ratio of real world image coordinate system moiré frequency in function of the distance [37]. 
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5 Iterative pose determination methods 
 

5.1 The orthogonal iteration algorithm 

 

The orthogonal iteration (OI) algorithm is also often referred to as method of Lu’s et al. It is a globally 

convergent iterative algorithm from 1998. Which is optimized for pose determination unlike the 

algorithms before it. It is one of the first algorithms for which there is a mathematical proof that it is 

globally convergent and which effectively account for the orthonormal structure of the rotation 

matrices. They minimize the error matric based on collinearity in object space as opposed to the image 

space which most other existing algorithms before did. This means that it is a fast algorithm which is 

as accurate as existing methods and which has a high robustness against outliers. 

The OI algorithm is inspired by the work of Haralick et al. He developed a method who calculates 

simultaneously the object pose and the depth of the feature points. The main advantage of this 

algorithm is that the non-linearity due to perspective projection is eliminated through the inclusion of 

the depth variables. The main disadvantage of this method is that it has a slow convergence rate.  

In the OI algorithm they use the minimizing of the object-space collinearity error to estimate the pose. 

It first estimates the rotation and then it calculates the translation. The orthogonality constraint is 

enforced by using singular value decomposition (SVD). [43] 

 

 

5.1.1 Principals orthogonal iteration algorithm 

 

In this algorithm the object position is determent in the camera coordinate system. The symbol for the 

feature points in the object coordinate system is 𝑃𝑖. The symbol for the corresponding camera 

coordinates is 𝑄𝑖. The coordinates of 𝑃𝑖 are projected to the plane with a depth of 1 called the 

normalized image plane. 𝑉𝑖 is the image point on the normalized image plane which is the projection 

of 𝑃𝑖. According to the pinhole model (see chapter 2.1). 𝑉𝑖, 𝑃𝑖 and the origin of the camera coordinate 

system should be collinear. This results in the equation: 

 

 
𝑉𝑖 =

1

𝑟𝑧𝑃𝑖 + 𝑡𝑧
(𝑅𝑃𝑖 + 𝑡) (71) 

 

Hereby is R the rotation matrix, is 𝑟𝑧 the rotation round the z-as, is t the translation matrix and 𝑡𝑧 the 

translation of the z-as. Another approach to the collinearity is that the orthogonal projection of 𝑄𝑖 on 

𝑉𝑖 should be 𝑄𝑖 itself. This is expressed in the following equation: 

 

 𝑄𝑖 = 𝑅𝑃𝑖 + 𝑡 = 𝐹𝑖(𝑅𝑃𝑖 + 𝑡) 

 
(72) 

 

Were 

 

 
𝐹𝑖 =

𝑉𝑖𝑉𝑖
𝑡

𝑉𝑖
𝑡𝑉𝑖

 (73) 
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The difference between the image space error and the object space error is visualized in Figure 49. 

 

 

Figure 49: Object-space and image-space collinearity errors. [43] 

 

To determine the pose the algorithm uses the object space error function: 

 

 𝑒𝑖 = (𝐼 − 𝐹𝑖)(𝑅𝑃𝑖 + 𝑡) (74) 

 

This equation is then rewritten so it admits an iteration based on the solution to the 3D-3D pose 

estimation or absolute orientation problem. This is solved using singular value decomposition(SVD). 

 

The mathematical proof of the algorithms global convergence is described in the original paper. Since 

it is globally convergent only the speed is effected by the initialisation. The original paper preforms 

absolute orientation between the set of reference points and the set of image points considered as 

coplanar 3D points. This is equivalent to using the weak perspective camera model. Often the other 

non-iterative methods discussed in this paper will provide a better initialisation. 

The problem that this idea has is that it will give more weight to the reference points that are farther 

away. This is because the object-space collinearity error is greater farther away for the same pixel 

error in the image. This can cause problems for the pose estimation when the object is very close to the 

camera or when the depth of the object is similar as the distance between the object and the camera. 

This bias can be reduced by slightly modifying the equation. [43] 
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5.1.2 Test setup 

 

To test the accuracy they generated the feature points. They had 3 control parameters the number of 

points N, the signal to noise ratio (SNR) and the percentage of outliers (PO). 

The reference points were uniformly generated in a 10 x 10 x 10 box where the centre of the box was 

the centre of the object space. Also the rotation and the translation were uniformly generated. The x 

and y were selected in the interval [5, 15] and the z component in the interval [20, 50]. After this a 

fraction (according to PO) of the reference points was replaced by another point in the same box. The 

reference points are then projected onto the image plane. Gausian noise with a variance σ. σ is 

determend according to the equation: 

 

 𝑆𝑁𝑅 = −20 log (
𝜎

0.3
) 𝑑𝐵 (75) 

 

There were three tests conducted on the simulation data: 

C1: N = 20, PO = 0, the SNR varies between 30 db till 70 dB with 10 dB steps. This test the resistance 

against noise. 

C2: N = 20, SNR = 60 dB, PO varies between 5 % till 25 % with 5 % steps. This is used to investigate 

how resistant the algorithm is against outliers.  

C3: PO = 0, SNR = 50 dB, N varies between 10 till 50 with  steps of 10. The purpose of this test is to 

see how the accuracy changes with more reference points. 

 

The accuracy is determent by the mean errors of translation and rotation of 1000 trials for each case.   

the OI algorithm is compared to a linear method using full perspective camera model and a method 

using Levenberg-Marquardt (LM) minimalization. In this test LM uses the same initialisation as the 

OI algorithm. With poor initial guesses, LM has a slow convergence rate like a steepest descent 

method. This is the main reason why LM is slower than OI when there is more SNR or PO. When 

there is a good initialisation both algorithms have about the same speed. [43] 

 

 

5.1.3 Results 

 

Figure 50 shows the average runtime for each number of iterations for the different methods. The 

simulation has run 1000 times with SNR = 60 dB and PO = 0.  

 

 

Figure 50: Running times and average number of iterations [43] 
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From this it is possible to determine that the OI algorithm needs les iterations to converge than LM. 

The results of test C1 are shown in Figure 51. 

 

 

Figure 51: Result of simulation C1 error is in log scale. [43] 

 

From these graphs it is possible to determine that the resistance against noise of LM is as good as OI. 

The results of test C2 are shown in Figure 52. 

 

 

Figure 52: Results of simulation C2, error is in log scale. [43] 

 

These graphs illustrate that OI is better resistant against outliers then LM. The results of the rotation 

error are expressed in quaternions. The advantage of quaternions is that they are more compact, 

numerically stable and may be more efficient than rotation matrices. For the rotation we can see that if 

there are few outliers OI is a lot more accurate as LM but when there are more outliers the difference 

is less significant but still present. By the translation error we see the same when there are few outliers 

OI preforms significantly better than LM. When there are more outliers OI is still better but the 

difference is less. Most surprising is that the initial guess has a higher accuracy for the translation. In 

Figure 53 are the results shown of test C3. Note that the rotation in the graph is this time in degrees.  

 



  

65 

 

 

Figure 53: Results of simulation C3, error is in log scale. [43] 

 

From these graphs we can determine that the influence on the number of points on the accuracy for 

LM and OI are almost the same. There is a fast improvement in accuracy until 20 feature points after 

that the improvement is less noticeable. [43] 

 

 

5.1.4  Conclusion 

 

The OI algorithm is a fast globally convergent iterative pose estimation algorithm. It has a high 

accuracy for its time, is robust against outliers and is fast. It is especially good when there is poor 

initialisation but this is unlikely with the more modern linear techniques. If there are more than 20 

feature points the accuracy of the algorithm no longer improves significantly. [43] 

 

 

5.2 POS and POSIT 

 

5.2.1 Introduction 

 

Another pose estimation method is called POSIT, this method was proposed by Daniel DeMenthon 

and Larry Davis in 1994. In this method, a minimum of 4 non coplanar points are needed to detect the 

objects pose [44]. The method consists of two algorithms. The first algorithm is called POS (Pose 

from Orthography and Scaling). This algorithm gives an approximation of the perspective projection 

using a scaled orthographic one. A scaled orthographic projection (SOP) is used instead of the 

conventional perspective projection. The rotation and translation of the object can be found by solving 

a linear system. The second algorithm is called POSIT (Pose from Orthography and Scaling with 

Iterations).  This algorithms uses several iterations to refine the estimated pose, found by POS and 

increases its accuracy [44].  

 

5.2.2 Working of POS and POSIT 

 

Like all other pose estimation techniques, in the end, a rotation matrix and a translation vector needs to 

be found, describing the transformation between the camera coordinate frame and the real-world 

coordinate frame. Figure 54 shows a graphical overview of the coordinate systems and their 

projections used in this method. 
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Figure 54: POSIT perspective and scaled orthographic projection of an object using feature points [44]. 

 

In this image the center of projection is denoted as O, this is used as the origin of the camera 

coordinate system where the vectors (i, j and k) represent the unit vectors of the axes of the camera 

coordinate system. The symbol f denotes the focal length and is also the distance between O and the 

2D image frame. This 2D image frame is also called the image plane and is denoted in Figure 54 as G. 

Please note that the image plane G is parallel to the axes Ox and Oy of the camera reference plane, 

where Ox and Oy are the columns and rows of the camera’s sensors. The camera has an object with 

several feature points in its field of view. In Figure 54, these feature points are shown 

as 𝑀0,𝑀1,𝑀2, … . ,𝑀𝑛. The real world or object coordinate system uses M0 as the origin of its 

coordinate system and use 𝑀0𝑢,𝑀0𝑣 𝑎𝑛𝑑 𝑀0𝑤 to form its axes. M0 is also called the reference point, 

however, in other techniques, feature points are often called reference points and so we will use the 

name main feature point for M0 to avoid confusion. Only two feature points (M0 and Mi) are shown in 

Figure 54. Since the shape of the object is known beforehand, the coordinates of point Mi (𝑈𝑖 ,  𝑉𝑖,  𝑊𝑖) 

in the object reference system are known. However, the coordinates of this point ( 𝑋𝑖,  𝑌𝑖,  𝑍𝑖) in the 

camera coordinate system are unknown. The projection of Mi on the image reference frame gives the 

point mi. The coordinates (𝑥𝑖, 𝑦𝑖) of this projection are also known. 

As mentioned in the introduction, a rotation matrix and translation vector need to be found. Where the 

rotation matrix, denoted R, will use the unit vectors of the camera frame reference system (i,  j,  k) and 

the coordinates of the object coordinate system (𝑀0𝑢,  𝑀0𝑣,  𝑀0𝑤) to depict the rotation between these 

coordinate systems. This rotation matrix can be written as seen in equation (76) [44]. 
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𝑅 = [

𝑖𝑢 𝑖𝑣 𝑖𝑤
𝑗𝑢 𝑗𝑣 𝑗𝑤
𝑘𝑢 𝑘𝑣 𝑘𝑤

] (76) 

 

In this equation 𝑖𝑢, 𝑖𝑣 , 𝑖𝑤 describe the coordinates of unit vector i in the object coordinate system. 

Keep in mind that only i and j need to be calculated in the object coordinate system. The reason 

behind this is that vector k can be calculated as the cross-product of i and j (i x j). The translation 

vector is denoted as T and it’s the vector OM0. This vector is also shown in Figure 54 and connects the 

projection center of the camera O with the main feature point M0, which is the center of the object 

coordinate system. This translation vector connects the origins of both coordinate systems. The 

coordinates of the translation vector are (X0, Y0, Z0). The translation vector T is aligned with the 

vector Om0 (please note the lowercase m) where m0 is the perspective projection of M0 on the image 

plane G. The translation vector T forms a right triangle O-H-M0 as seen in Figure 55 [44].  

 

 

Figure 55: Trigonometric ratios in right triangles 

 

In this triangle is a smaller triangle O-C-m0.In this triangle is the distance |𝑂𝐶| the focal length f and 

the distance |𝑂𝐻| is the Z0 coordinate of the main feature point M0. Using the properties of 

trigonometric ratios in right triangles equation (77) can be found. 

 

 𝑂𝑀0
𝑂𝑚0

=
𝑍0
𝑓
  

 
⇔𝑂𝑚0 =

𝑍0
𝑓
𝑂𝑚0 

(77) 

 

As described earlier is the translation vector T = OM0. Using equation (77) this results in  

 

 𝑇 =
𝑧0
𝑓
𝑂𝑚0 (78) 

 

Because O and m0 are assumed to be known. So to get the pose of the object i, j and Z0 are required. 

POSIT uses scaled orthographic projection (SOP) instead of the conventional perspective projection. 

In orthographic projection the projection lines are orthogonal to the image plane [45].  
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Now assume the feature point Mi. In normal perspective projection the x coordinate in the image 

reference plane of point Mi would be defined as show in equation 4. This equation uses the method 

visible in equation (77) and Figure 55. 

 

 
𝑥 = 𝑓

𝑋𝑖
𝑍𝑖

 (79) 

 

Figure 54 also shows a plane K. This is plane through M0 and perpendicular on the Z –axis of the 

camera coordinate system. This plane is also parallel to the image plane G. Every point on the plan K 

has a Z coordinate in the camera reference system of Z0. In order to get an SOP of Mi, Mi  is first 

projected orthographic onto the plane K to form point Pi in K. Then the perspective projection of Pi is 

used to form the point pi in the image plane. The x coordinate in the 2D image reference system of this 

point Pi can be written as seen in equation (80). 

 

 
𝑥𝑖
′ = 𝑓

𝑋𝑖
𝑍0

 (80) 

 

In this equation, the ratio 
𝑓

𝑍0
 is called the scaling factor of the SOP and is written with the symbol s. 

The y coordinates of points Mi, in perspective projection and Pi can be found in a similar manner. 

As mentioned earlier, the translation vectors i and j need to be found. Equations (81) and (82) show a 

connection between the unknown parameters (the translation vectors i, j and Z0 ) and the known 

parameters ( the vectors M0Mi in the object reference system and  xi, yi, x0, y0,the coordinates the 

projections of Mi and M0 in the image reference system). This is a connection in the perspective 

projection. The connection between these parameters in POS will be described in (84) and (85). 

 

 
𝑴𝟎𝑴𝒊 ∗

𝑓

𝑍0
𝒊 = 𝑥𝑖(1 + 𝜖𝑖) − 𝑥0 (81) 

 
𝑴𝟎𝑴𝒊 ∗

𝑓

𝑍0
𝒋 = 𝑦𝑖(1 + 𝜖𝑖) − 𝑦0 (82) 

 

The proof of these equation is shown in the original paper and will not be discussed in this thesis. 

In these equation 𝜖𝑖 is defined as shown in (83). 

 

 
𝜖𝑖 =

1

𝑍0
𝑴𝟎𝑴𝒊 ∗ 𝒌 (83) 

 

The connection between the unknown and known parameters in POS is shown in equation (84) and 

(85). These equation start from equation (81) and (82) where 𝑥𝑖(1 + 𝜖𝑖) = 𝑥𝑖
′ 𝑎𝑛𝑑 𝑦𝑖(1 + 𝜖𝑖) = 𝑦𝑖

′. 

X’i is the POS projection of Mi onto the image reference plane, which is the same as the perspective 

projection of Pi onto the image reference plane.  

 

 
𝑴𝟎𝑴𝒊 ∗

𝑓

𝑍0
𝒊 = 𝑥′𝑖 − 𝑥0 (84) 

 
𝑴𝟎𝑴𝒊 ∗

𝑓

𝑍0
𝒋 = 𝑦′𝑖 − 𝑦0 (85) 

 

The proof of this is also assumed valid and omitted in this thesis. 

Equations (81) and (82) are rewritten as shown in (86) and (87).  
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 𝑴𝟎𝑴𝒊 ∗ 𝐈 = 𝑥𝑖(1 + 𝜖𝑖) − 𝑥0 

 
⇔𝑴𝟎𝑴𝒊 ∗ 𝐈 = ζi 

(86) 

   

 𝑴𝟎𝑴𝒊 ∗ 𝐉 = 𝑦𝑖(1 + 𝜖𝑖) − 𝑦0 

 
⇔𝑴𝟎𝑴𝒊 ∗ 𝐉 = ηi 

(87) 

With 𝐈 =
f

Z0
𝒊 ,   𝐉 =

f

Z0
𝒋,   𝜁𝑖 = 𝑥𝑖(1 + 𝜖𝑖) − 𝑥0, 𝜂𝑖 = 𝑦𝑖(1 + 𝜖𝑖) − 𝑦0 

 

Using the definition of dot product of vectors. The left-hand side of (86) and (87) are rewritten as 

visible in (88) and (89). 

 

 𝑴𝟎𝑴𝒊𝑰 =  [𝑈𝑖  𝑉𝑖 𝑊𝑖] ∗  [𝐼𝑢 𝐼𝑣 𝐼𝑤]
𝑇 = 𝜁𝑖  (88) 

 𝑴𝟎𝑴𝒊 𝑱 =  [𝑈𝑖  𝑉𝑖 𝑊𝑖] ∗  [𝐽𝑢 𝐽𝑣 𝐽𝑤]
𝑇 = 𝜁𝑖  (89) 

 

In this equation we use 𝑴𝟎𝑴𝒊 = [𝑈𝑖  𝑉𝑖 𝑊𝑖]. Because there are n feature points in the object reference 

system. A linear system of equations can be found as seen in (90). 

 

 𝑨𝑰 = 𝑥′, 𝑨𝑱 = 𝑦′ (90) 

 

In this equation A signifies the coordinates of the feature points Mi in the object reference system, 

𝑥′ = ( 𝜁1, 𝜁2, … , 𝜁𝑛)
𝑇 and 𝑦′ = (𝜂1, 𝜂2, … , 𝜂𝑛)

𝑇. A minimum of 4 visible feature points is require 

that are noncoplanar. This is necessary because a matrix of rank 3 is needed to solve this system. If 

these conditions are met equation (91) give the solution. 

 

 𝑰 = 𝑩𝑥′, 𝑱 = 𝑩𝑦′ (91) 

 

Matrix B is the pseudoinverse matrix of matrix A. Because A is not a square matrix, the pseudoinverse 

needs to be found. Matrix B is found using Singular Value Decomposition (SVD). If I and J are 

found, i and j can be calculated by normalizing I and J. k can be found by i x j. The translation vector 

𝑂𝑀0 =
𝑍0

𝑓
 𝑂𝑚0 =

𝑂𝑚0

𝑠 
  with s the scaling factor. The scaling factor can be found by calculation the 

norm of vector I and J. If the 𝜖𝑖 is accurate, the estimated pose will also be accurate otherwise POSIT 

will use 𝜖𝑖 to refine the previously estimated pose [44]. In the first iteration is 𝜖𝑖 = 0, then the pose is 

estimated. This will result in an estimated translation vector, rotation matrix and a new value of 𝜖𝑖. If 

higher accuracy is needed, the new value of  𝜖𝑖 will be used in another iteration of POS to achieve 

higher accuracy. In most cases, 4 or 5 iteration are used to achieve an accurate result. 

 

 

5.2.3 Accuracy 

 

Several tests have been done using the POSIT algorithm. In this thesis, a test performed by Philips in 

2002 will be discussed. In the first iteration, 𝜖𝑖 is set as 0. The reprojection of the estimated pose of the 

first iteration is shown in Figure 56. The blue lines represent the original model of the object. The 

corner points are used as reference points. The red lines are the reprojection of the estimated pose in 

the first iteration of posit. As is clearly visible in this image, the estimated pose in the first iteration is 

near the original pose but not accurate enough for some applications. In this test, the camera is placed 

at a distance of 60 mm from the object. [46] 
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Figure 56: Reprojection error in POSIT test 

 

The reason of this accuracy loss is the fact that POSIT uses scaled-orthographic perspective, which is 

a weak perspective camera model, in order to get linear equations. Pose estimations with 𝜖𝑖 =  0 only 

produce a fairly accurate result when the distance between the camera and the object is much larger 

than the size of the object. This effect is seen in Figure 57. In this Figure the x-axis indicates the ratio 

of the distance between the camera and the object and the size of the object itself. The y-axis of Figure 

57 a) indicates the absolute translation error expressed in mm. Figure 57 b) shows the rotational 

accuracy of POSIT.  This graph shows clearly that accuracy starts to improve when the distance is at 

least 8 times greater than the size of the object. The improvement occurs exponential until the ratio is 

around 20. After that, the accuracy appears to stabilize. [46] 

 

 

Figure 57: a) POSIT translation error in function of distance/object size ratio 
b) POSIT rotation error in function of distance/object size ratio 

 

5.2.4 POSIT Conclusion 

 

POSIT is an interesting method since it uses a Scaled Orthographic Projection instead of the usual 

perspective projection. Its accuracy appears not to accurate, average errors of over 2 mm in translation 

and 10 degrees in rotation occur if the object is not far enough from the camera. Another comparison 

between POSIT and PRSO can also be seen in 4.5.8. However, POSIT also has advantages, as it does 

not need an initial guess other iterative methods do. Its computational speed is also fairly fast, 

especially for an iterative method. [46] [24] 
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6 Conclusion 
 

There are many different algorithms for pose estimation. Each one has its strong and weak 

points. It is difficult to design a single test to compare each algorithm. Because the algorithms 

are optimized for different criteria and circumstances. Therefore we use the tests of the 

original papers and give an overview of the strong and weak points of each algorithm. 

Sometimes the test displays the results in a similar manner but due to different test conditions 

it is still difficult to compare them. It is especially difficult to compare the absolute speed of 

the algorithms. The reasons are the improvements of the processors over the years which have 

a big influence on the final speed of an algorithm. We can compare the complexity of the 

algorithms with the big O notation.  

Direct Linear Transform (DLT) is one of the earlier pose estimation methods from 1971. DLT 

is very susceptible to noise. When there is almost no noise the accuracy is fairly high. An 

advantage of DLT is that it also determines the intrinsic camera parameters. This means that 

there is no need to calibrate the camera. However it reduces the accuracy of the algorithm. 

The algorithm can calculate the position by using a minimum of 6 reference points but the 

accuracy seems to starts to stabilize when there are 15 reference points. 

Efficient perspective endpoint (EPnP) from 2008 is a well-known method for pose estimation. 

It is fairly accurate compared to other non-iterative methods of its time. The O(n) complexity 

makes it a fast algorithm but it is not very accurate.  

The n point linear (NPL) algorithm works relatively better when there are only a few known 

world points which are located near the center of the image. It is a slow algorithm but is has a 

high accuracy. 

The n linear lines (NLL) algorithm from 2003 is a fast algorithm for line detect. It has a 

comparable accuracy to the iterative algorithm. The main advantage is that it will not 

converge on local minima. 

The perspective ray camera model has proven to improve the accuracy of the method of  

Liu ML and Wong KH. The algorithm perspective-ray-based scaled orthographic projection 

with iterations (PRSOI) has under the original test conditions a higher accuracy then POSIT. 

Because PRSOI preforms an iterative process to find the four points with the least RMS error 

the method is probably highly resistant against outliers but is likely more susceptible to image 

noise. The difference in accuracy was most noticeable in the yaw, pitch and the translations. 

The roll was only slightly more accurate. The main disadvantage of the perspective ray 

camera model is that it is more complex. 

Because this is a relative recent study of 2015 we have not found any other methods that are 

integrated with the perspective ray camera model. 

Moiré patterns seems a very promising technique to determine the pitch and yaw with a very 

high accuracy. This accuracy can even be up to 1 arc minute. The measuring depth can be 

accurate up to 1 % - 2 % on a distance from 2 to 3.25 m. The method works perfect with low 

resolutions. The disadvantage is that it does not calculate the other pose parameters. This is a 

method developed in 2016. 

The orthogonal iteration algorithm is a globally fast converging iterative pose estimation 

algorithm from 1998. It is robust against outliers and was one of the first to not converge on 

local minima. For an optimal performance there needs to be 20 feature points. Adding more 

points does no longer improve the accuracy significantly. 

Scaled Orthographic Projection with Iteration is from 1994 and is one of the most popular 

methods of its day. It is not a very accurate iterative algorithm but it does not need an initial 

guess and it is fairly fast for an iterative method. 
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