3D position determination using a camera

Tom Bortels

Bart Bostijn

Master of Electronics and ICT Engineering Technology

Master of Electronics and ICT Engineering Technology

Objective

The objective of this thesis is a study into pose estimation techniques using a camera. Several methods are compared and a guide into using the optimal technique in different environments is provided.

Result

An overview of the properties of the discussed methods.

DLT is an older method, mostly used for comparison. For real-time applications with moderate accuracy, use EPnP.

EPnP.

NPL is a slow but high accuracy method.

NLL is also a slow but accurate method with uses lines.

PRSOI is a complex and accurate iterative method.

Posit is used as an iterative comparing method.

Moiré patterns have a high accuracy in depth and out-of plane rotations.

OI has a high accuracy, good outlier rejection and fast

Calibration: Find the camera parameters: Focal length Principal point •Skew •Radial distortion Tangential **Normalization** distortion Use the camera parameters to undistort the acquired image

RADIAL DISTORTION

Several 6 Degrees of Freedom (DOF) pose estimation algorithms exist. Selection of the most suitable pose estimation algorithm is essential. These methods differ in :

Pose estimation algorithms

Speed

convergence.

- Susceptibility to noise
- Accuracy
- Detection of out-of-plane or in plane rotations
- Cost of setup
- Possibility of partial occlusion of the calibration pattern

Discussed methods are: DLT, POSIT, EPnP, PRSO, OI, NPL, NLL and Moiré patterns

Feature detection

Detection of specific features in the 2D camera image with known coordinates in the object coordinate system. There are methods that use line and/or corner detect. Most also use an iterative algorithm for higher accuracy.

Supervisors / Cosupervisors:

Prof. Dr. Ir. Luc Claesen Ing. Wout Swinkels

