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Abstract 

 

During the periodical mechanical quality assurance (QA) checks, the radiotherapy department of 

Limburgs Oncologisch Centrum (L.O.C.) has to measure certain parameters manually (e.g. 

distances). Most parameters are defined using Megavolt EPID images of a mechanical positioned 

radio-opaque sphere. 

This visual determination could introduce various errors and inconsistencies. Therefore this master’s 

thesis focuses on the automatization of these determinations by means of the development of an 

image processing application using MATLAB. 

The image processing algorithms have been developed and tested using MATLAB and specifically 

using the Image Processing Toolbox. These algorithms have been embedded in a user-friendly user 

interface which generates one single PDF as output file. This PDF file encloses a summary of the 

results of the QA analysis, these include:  

➢ distances between radiation and mechanical isocentre of multiple fields; 

➢ deviation on the mechanical movement of the table in three dimensions; 

➢ deviation on the asymmetrical field sizes for three different fields. 

The developed algorithms have proven to be ten times faster with respect to manual measurements. 

Furthermore, these algorithms yield results which averagely deviate 0,273 mm from those acquired 

manually. This was tested using a Varian CLINAC and Truebeam from which the first one was 

equipped with an EPID of higher resolution. It was observed that the difference in resolution 

resulted in the same reproducibility and accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

  



 
 

Abstract in Dutch 
 

Tijdens de periodische mechanische kwaliteitscontrole (QA) moet het personeel van de afdeling 

radiotherapie van het L.O.C. bepaalde parameters (vb. afstanden) visueel afleiden. De meeste van 

deze parameters worden afgeleid uit Megavolt EPID beelden van een mechanisch gepositioneerde 

metalen bol. Deze methode heeft als gevolg dat er mogelijks fouten kunnen geïntroduceerd worden 

en de metingen niet consistent zijn. Daarom wordt er in deze masterthesis gefocust op het 

automatiseren van deze metingen door middel van een beeldverwerkingssoftware ontwikkeld met 

behulp van MATLAB. 

De ontwikkelde algoritmes zijn samengebracht in een userinterface dewelke één enkele PDF file 

wegschrijft als output. Deze PDF file omvat een samenvatting van de resultaten van de QA analyse 

en bevat meer bepaald:  

➢ afstanden tussen stralings- en mechanisch isocentrum van meerdere velden; 

➢ afwijkingen op de mechanische beweging van de tafel in drie dimensies; 

➢ afwijkingen op de asymmetrische veldgroottes. 

De software heeft ongeveer tien keer minder tijd nodig om een analyse te voltooien ten opzichte van 

de manuele bepaling. Bovendien wijken de bekomen resultaten niet meer dan 0,273 mm af van de 

manueel bepaalde resultaten. Dit werd getest gebruikmakend van een Varian CLINAC en Truebeam 

waarvan de eerst genoemde EPID foto’s leverde van hogere resolutie. Er kon worden vastgesteld dat 

dit verschil in resolutie geen aanleiding gaf tot significant verschillende resultaten voor de 

reproduceerbaarheid en accuraatheid van de software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Introduction 

The research is completed in association with the radiotherapy department of Limburgs Oncologisch 

Centrum located in Jessa hospital Hasselt. This department uses linear accelerators (LINAC) to treat 

malignant tumours. It’s obvious, when working with patients, that the quality of the treatment 

should be checked on well determined frequencies by means of quality assurance (QA) tests. 

During the periodical mechanical QA checks, certain parameters have to be visually determined from 

EPID images. Most of these parameters are defined by radio-opaque spheres located in a specialized 

phantom. This visual determination could introduce various errors and/or inconsistencies. Therefore 

it may be a good idea to automate this analysis by means of an image processing software. The 

automatization of the manual QA procedure aims on the improvement of consistency and accuracy. 

In addition, it could also save a significant amount of time since a manual measurement takes about 

20 to 30 minutes. 

The main objective is to develop image processing software which analyses the images of the 

mechanical QA tests. The software must be able to extract the following parameters out of the tests: 

➢ distance between the radiation- and mechanical isocentre; 

➢ deviation on the table position indicators in three dimensions; 

➢ deviation on asymmetrical field size parameters. 

The image processing software was developed using MATLAB. This program offers a wide array of 

opportunities as it gives the user the chance to easily build a graphical user interface. Moreover, the 

image processing toolbox allows the user to perform image processing.  

The first two sections of this dissertation give a brief introduction to the workflow of a radiotherapy 

department and the (mechanical) components of a linear accelerator. The next three sections discuss 

the need for quality assurance in radiotherapy and how it is implemented. Subsequently, chapter 6 

outlines the mechanical QA protocol of L.O.C. Furthermore, the structures of the different 

algorithms are explained and their performance regarding accuracy and reproducibility is evaluated. 
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1 Radiotherapy: basic principles 
 

1.1 Cancer treatment 
 

Three major modalities are used for the treatment of cancer, these are: surgery, radiotherapy and 

chemotherapy. Choosing a suitable treatment method should take into account the location, type and 

size of the tumour within the patient. In some cases a combination of different modalities may also be 

used [1]. 

 

1.2 Aim of radiotherapy treatment 
 

Radiotherapy refers to a technique which uses a beam of radiation to effectively kill tumour cells and 

can be delivered by either an external radiation beam or an internal source (Brachytherapy). The 

latter one will not be dealt with and therefore the word radiotherapy, in this dissertation, refers to 

external beam radiotherapy. There are three main kinds of radiotherapy treatment: curative, 

adjuvant and palliative treatment [1].  

During curative treatment the target volume, which contains the tumour, is exposed to a certain 

radiation dose. The radiation dose during curative treatment often approaches the normal tissue 

tolerance and is restricted by the dose limitations of the organs at risk. On the other hand, adjuvant 

treatment is less likely to make use of radiation doses exceeding the normal tissue tolerance. Finally 

palliative treatment should be performed with regard to relieving pain or avoiding symptomatic 

injury to healthy tissues [1]. 

 

1.3 Patient data acquisition – simulation 
 

In order to treat the tumour accurately one needs certain data concerning the patient to make sure 

the patient can be properly positioned and the tumour volume is sufficiently irradiated. For this 

reason, the first step in external beam treatment is simulation.  

The role of simulation in the treatment process consists of: the determination of patient treatment 

position and tumour location and the acquisition of patient data for treatment planning. Current 

simulation systems are based on computed tomography (CT) which provide anatomical information 

in the form of transverse slices with high resolution and contrast. The electron densities can also be 

extracted from these slices which are needed for treatment planning [2]. 

Image modalities such as magnetic resonance imaging (MRI) provide a better soft tissue contrast in 

areas such as the brain which allows the operator to detect small lesions easier. However, MRI 

cannot be used for simulation for several reasons. First, no electron density information is available 

which is needed for dose calculations in the treatment planning system. Further, MRI is prone to 

geometrical artefacts and noise which may influence the accuracy of the treatment. Therefore CT-

MR images are often fused to combine the accurate volume definition from MR with the electron 

density information from CT [2].  
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1.4 Treatment planning 
 

After simulation the retrieved data is transferred to the treatment planning system (TPS). The 

treatment plan is extremely important because it will determine the execution and it therefore has an 

influence on the quality of the treatment. A successful treatment plan requires a certain minimum 

dose within the target volume and a dose as low as possible in healthy tissues around the tumour. To 

achieve this goal often rotational techniques are used as well as combinations of static beams [2]. 

In treatment planning, the volume that has to be treated is defined by means of the so called ICRU-

volumes. The gross treatment volume (GTV) corresponds to the gross tangible extent and location 

of malignant disease. The clinical treatment volume (CTV) encloses the GTV and the areas 

surrounding this GTV which may contain microscopic disease or that are considered to be at risk 

and require treatment. The internal treatment volume (ITV) encloses the CTV plus an internal 

margin which is chosen to take in consideration the variations in size and position of the CTV. These 

variation can be due to organ motion such as breathing motion, bladder filling, etc.. Finally, the 

planned treatment volume (PTV) is described to choose proper beam arrangements taking into 

account possible geometrical variations. The inclusion of these geometric uncertainties, which 

consist of set-up variations, machine inaccuracies, etc., has to ensure that the prescribed dose is 

actually delivered to the CTV. Usually one PTV is used to encompass one or several CTV’s which 

has to be targeted by one or several fields. Some organs at risk (OAR) might surround the PTV. An 

OAR is an organ which is sensitive to radiation. The dose from the treatment plan must be compared 

to its restriction values [2]. 

Sparing these OAR’s while respecting the minimum dose requirement in the PTV requires the 

examination of different beam arrangements. Single fields are often used for palliative treatments or 

superficial lesions. Deeper lesions are mostly treated with a combination of two or more beams to 

concentrate the dose in the PTV. In Figure 1.2 an example is given of a 4-field box which allows a 

very high dose to be delivered at the intersection of the beams. Today, rotational techniques are also 

popular, Figure 1.1 shows the isodose curves for two bilateral arcs of 120° each. Note that the 

isodose curves become tighter along the angles avoided by the arcs, which allows more accurate dose 

delivery in the PTV and sparing of the OARs [2]. 

 

 

Figure 1.1: Treatment plan for two bilateral arcs of 120° each 
[2: p150]. 

Figure 1.2: Treatment plan of a 4-field box [2: p.145]. 
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2 Medical linear accelerators 
 

Medical linear accelerators (often called LINACs) use radio-frequency (RF) electromagnetic waves to 

accelerate electrons to kinetic energies from 4 to 25 MeV. The electrons follow straight trajectories 

through vacuum constructions called accelerating waveguides. Typical modern LINACs can provide 

several electron energies (e.g. in the range 6 - 22 MeV) and several photon energies (typical 6, 10 

and 15 MV) [3]. Linear accelerators are the most common devices to treat tumours with external 

beam radiation. The final photon beam is shaped as it exits the LINACs gantry and is aimed towards 

the tumour of the patient. The gantry can be fully rotated around the patient to irradiate the target 

volume from many different angles. It’s clear that the patient should be properly positioned before 

the start of the treatment. The positioning happens with the help of lasers, image guided 

radiotherapy treatment (IGRT) tools,  and a moveable treatment couch, which can move in three to 

six different dimensions. 

 

2.1 LINAC composition 
 

The basic composition of a LINAC is given in Figure 2.1. The RF-power generator is situated in the 

stand of the LINAC. The gantry is isocentricly mounted to the stand and contains an electron gun, 

accelerating waveguide and several beam transport systems. The electron gun thermionically emits 

electrons which are accelerated in the accelerating waveguide [3]. As seen in Figure 2.1, the 

accelerating waveguide is positioned perpendicular to the direction of the final beam. Bending magnets 

make sure that the electron beam strikes the X-ray target by bending the electron beam 270 degrees. 

Finally, the intersection of the couch axis and the gantry axis defines the isocentre [4]. 

 

 

Figure 2.1: Accelerating waveguide is in the gantry parallel to the isocentre axis; electrons are brought to the movable target through a 

beam transport system; the rf-power generator is located in the gantry stand; machine can produce megavoltage x rays as well as 

electrons. [4: p. 636] 
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2.2 Photon beam production and treatment head 
 

When a beam of electrons strikes the X-ray target coulomb interactions with the target nuclei will 

transform a small portion (in the order of 10%) of the electrons’ kinetic energy into bremsstrahlung 

X rays. The intensity spectrum of these bremsstrahlung X-rays is strongly forward peaked [4]. 

Therefore flattening filters are used to shape up the spectrum [3]. An example of a flattening filtered 

and a flattening filter free cross beam profile is given in Figure 2.2. For more information about the 

composition and use of X-ray targets and flattening filters the reader is referred to [3: p.125-127], 

[5] and [3: chapter 5] respectively. 

 

 

The collimation of the photon beam in modern LINACs is provided by three components: the 

primary collimator, the adjustable secondary collimator, and the multileaf collimator (MLC). First, a 

circular (maximum) field is produced by a fixed primary collimator. The secondary collimator exists 

of two lower and two upper independently adjustable jaws which can produce rectangular or square 

fields with dimensions up to 40 x 40 cm² at the isocentre [4]. The MLC is the final collimation 

system which a beam passes before reaching the patient. The use of MLC allows the production of 

irregularly shaped radiation fields. It is based on two arrays of narrow collimator leafs, each leaf 

equipped with its own computer-controlled motor and control circuit. Current models incorporate 

usually 120 leaves (60 pairs) which can cover radiation fields up to 40 x 40 cm² [4]. Each leaf is 

made of a tungsten alloy and has a width of 1 cm or less (projected at the isocentre) and a thickness 

of 6 – 7,5 cm. The interleaf X-ray transmission is typically below 3% [7]. A schematic survey of the 

treatment head of a LINAC is given in Figure 2.4 and an example of a MLC is given in Figure 2.3. 

 
 

 
 

Figure 2.2: A crossbeam profile of a flattening filtered 10MV photon beam (dashed line) compared to the crossbeam profile of an 
unflattened 10MV photon beam (solid line). The unflattened beam has approximately four times higher dose rate at central axis 

[6: p.65].. 
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2.3 Lasers, range finder and field defining light 
 

The lasers, range finder and field defining light provide visual methods for correctly positioning the 

patient, which is very important for modern radiotherapy to ensure the accuracy of dose deposition. 

Laser positioning devices are used as an indication of the position of the machines isocentre in the 

treatment bunker. The range finder is used to place the patient at the correct distance from the 

treatment head by projecting a (centimetre) scale on the patient’s skin which indicates the vertical 

distance from the isocentre. Finally, the field light indicates the area that coincides with the radiation 

field, it’s a visual representation of the radiation field [4].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: A multileaf collimator shaping an 
irregular beam shape [7: p.42]. 

Figure 2.4: Schematic survey of a treatment head of a 
LINAC [8: p.896-902]. 
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3 LINAC quality assurance 
 

3.1 Need for quality assurance 
 

The dose deposition in radiotherapy should be as accurate as possible. Quality assurance (QA) can 

improve the results of therapy because it focusses on minimizing the errors in treatment planning 

and dose delivery.  A high degree of accuracy and consistency should be reached to fully exploit the 

equipment, QA makes this possible. Finally, QA allows the comparison of results among different 

radiotherapy centres which may be meaningful [1]. 

 

3.2 Sources of errors 
 

The uncertainty in the delivered dose is due to several different types of errors that may occur. 

These errors can occur at different stages in the treatment process. Errors during the determination 

of the patients  anatomy may be due to patient positioning or defining OARs and target volumes. 

Also during treatment planning several errors could occur like deviations in beam data or anomalies 

in computer software and hardware. These aberrations may be the result of mistakes, inattention or 

misunderstanding [1]. Finally, the performance of the delivery equipment may introduce several 

errors. The functional performance of the LINAC can change suddenly due to phenomena as 

component failure, malfunction of electronic circuits or mechanical breakdown. Also slow changes in 

performance can appear due to fatigue and aging of the components [9]. The above summary of 

possible errors shows the complexity of QA in radiotherapy and points out that a QA programme is 

essential to assure the quality of radiotherapy treatment [1]. 

 

3.3 Goals of a QA programme 

 
“Every patient with cancer deserves to receive the best possible management to achieve cure, long-

term tumour control or palliation, this is the major goal of cancer management (ISCRO, 1986)” [9]. 

“Quality” of treatment is defined as the totality of features of the treatment that bears on its ability to 

achieve the stated goal of patient care. On the other hand, “quality assurance” is all the planned 

interventions that are necessary to achieve sufficient confidence that treatment will satisfy the stated 

achievements for quality care [9]. 

The report of task group 40 (TG-40) recommends that the dose delivered to the patient be within 

±5% of the prescribed dose. Taking into account the amount of steps in the treatment process, each 

step should be performed with an accuracy better than 5% to achieve this goal. Therefore the main 

goal of a QA program is to assure that the machine characteristics do not deviate significantly from 

their baseline values (those acquired at time of acceptance testing) [10]. 
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4 Mechanical QA protocol 
 

Quality assurance checks of a LINAC can be subdivided in dosimetry checks and mechanical checks. 

According to NCS’ report 9 [11] and AAPM’s task group 142 report [10] the minimum frequency 

of these checks depends on the likelihood for a malfunction to occur, the chance the malfunction will 

not be noticed during treatment and the likelihood and severity of the effects of these unnoticed 

malfunctions [10]. These criteria are summarized in Table 4.1 together with the three test 

frequencies: daily, monthly and annual. This dissertation only covers the monthly mechanical QA 

procedures of the LINAC. For a complete overview of QA procedures we refer the reader to the 

reports of TG-40 [9]. and the updated version of TG-142 [10]. 

 

Table 4.1: Relationship between the likelihood of an undetected malfunction, the gravity of the malfunction for the patient or personnel 

and the minimum test frequency [11: p.4]. 

 low likelihood of 

undetected malfunction 

high likelihood of 

undetected malfunction 

no direct harmful effects annual monthly 

possible harmful effects monthly daily 

 

 

4.1 Mechanical QA tools 
 

Before describing specific mechanical QA test procedures an introduction of several QA tools that 

ease the measurements is necessary. This paragraph will briefly define these QA tools and outline 

their contribution to the QA procedure. 

4.1.1 Radiographic film 
 

Radiographic films are used to perform portal imaging (discussed below) and film dosimetry. Film 

dosimetry is a technique used to obtain the distribution of absorbed dose delivered by an external 

radiation source. When radiographic films are exposed to radiation they discolour and the amount of 

discoloration can be linked to the absorbed dose to the film. After irradiation the dose distribution 

can be checked using a flatbed scanner and an appropriate software packet for analysis. In other 

words, radiographic films represent a graphical presentation of the amount of radiation delivered to 

the film. 

Today GAFChromic EBT-3 films are frequently used, which have been designed to address the 

needs of medical physicists and dosimetrist working in a radiotherapy environment. This type of film 

is popular due to its excellent specifications including its wide dose range (0.1 Gy – 20 Gy), near 

tissue-equivalency, water resistance and energy-independence [12]. 
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4.1.2 Electronic portal imaging devices 
 

“Portal imaging is the acquisition of images with a radiotherapy beam” [13: p.789]. There are 

several kinds of portal imaging media such as radiographic films and electronic portal imaging 

devices (EPID). EPID has many advantages over radiographic film. The obtained images are digital 

and therefore directly available and they can be used to adjust patient or beam position during 

treatment delivery. The digital character of the EPID images also allows easier image processing 

and contrast enhancement. The major disadvantage of EPIDs relative to radiographic film is that 

they provide images with disappointing image quality. During the history of EPID generations this 

is changing due to the introduction of new technologies, such as amorphous silicon-based devices, 

but it still remains an issue [13]. 

There are several different EPID systems commercially available such as camera-based systems, 

Liquid ion chamber array systems and amorphous silicon system. This paragraph will briefly discuss 

the construction of amorphous silicon systems. For a complete discussion of EPID systems the 

reader is referred to  the review article “Portal imaging” of K.A. Langmack [13]. The amorphous 

silicon EPID system with the most development uses a front metal sheet, usually 1 mm of copper, 

with a gadolinium oxysulphide phosphor to convert the X rays to visible light. This light is detected 

by an array of hydrogenated amorphous silicon photodiodes and thin film transistors. The 

photodiodes are read electronically and form the pixels of the acquired image [13]. The basic 

composition is given in Figure 4.1. 

 

 

 

4.1.3 Iso-align device 
 

An iso-align device, shown in Figure 4.2, is a multi-functional and precision device for quality 

assurance. It can be used for checking many mechanical parameters including the alignment of lasers, 

light field and radiation field coincidence and treatment table position indicators. The plane of the 

iso-align is inscribed with lines which define several field sizes. The plane can be rotated (usually 

with increments of 45°) and inside there are tungsten or lead balls embedded which can easily be 

distinguished on film or EPID images. Radiochromic films can be inserted in between the two plates 

[15]. 

Figure 4.1: Cross-sectional view of an amorphous silicon EPID. Only one pixel is shown [14]. 
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4.2 Mechanical checks (monthly) 
 

The verification of mechanical parameters of a LINAC is performed to assure an accurate treatment 

delivery as well as to obtain information about changes in time due to wear of mechanical 

components [11]. The mechanical checks that are recommended to be performed monthly are listed 

in Table 4.2. This table is an assembly of the most imported recommendations of NCS report 8 [17] 

and 9 [11] and AAPM’s task group 40 [9]. and 142 [10] reports. The tightness of the tolerance 

values depends on the type of treatment delivery. For example when performing QA for stereotactic 

radiosurgery (SRS), which is delivered by a single high dose fraction, the tolerance values will be 

stricter and certain tests may be different in comparison to a QA procedure for fractionated 

treatment [10]. For simplicity Table 4.2 only covers the tolerance values for treatment units which 

are used for fractionated treatment. 

 

Table 4.2: Most common mechanical checks that are recommended to be performed monthly [9-11], [17] 

mechanical check tolerance value 

crosshair centring (walk out) 1 mm 

deviation mechanical isocentre 1 mm 

light/radiation field coincidence 2 mm or 1 % on a side 

light/radiation field coincidence (asymmetric) 1 mm or 1 % on a side 

Gantry/collimator angle indicators  1.0° 

Jaw position indicators (symmetric) 2 mm 

Jaw position indicators (asymmetric) 1 mm 

Localizing lasers ± 1 mm 

Verification of treatment couch axes 2 mm/1° 

Treatment couch position indicators 2 mm/1° 

 

 

 

Figure 4.2: An iso-align device with 15 x 15; 10 x 10 and 5 x 5 cm² markers. [16] 
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There are two different ways of interpreting a tolerance value. In some papers in literature the 

tolerance values are guidelines for acceptable deviations while in others actions are required when 

the tolerance value is exceeded [11]. In what follows all the stated tolerance values must be 

regarded as guidelines for acceptable deviations, deviations which require immediate action will be 

represented by action levels (which by exceeding an appropriate action is necessary). Note that when 

several consecutive measurements are close to the tolerance value also a corrective action may be 

required.      

The last decades new technologies were introduced in radiotherapy treatment such as image guided 

radiotherapy (IGRT). IGRT basically is the use of imaging during radiotherapy treatment for the 

purpose of improving precision and accuracy. The LINAC used to deliver treatment is equipped with 

imaging modules to allow one to image the tumour directly before or during treatment. These 

images are than automatically compared to the reference images made during simulation. The 

necessary adjustments concerning positioning are then automatically made based on this comparison 

[18].  

 

4.2.1 Isocentre 
 

The isocentre of a linac is a very important mechanical parameter in radiotherapy treatment delivery 

and QA. The isocentre is defined as “the centre of the smallest sphere through which the axes of the 

radiation beams pass in all conditions”[10: p.19]. The concept isocentre can be distinguished in two 

terms: the mechanical isocentre and the radiation isocentre, which are described below. 

 

4.2.2 Mechanical isocentre 
 

The mechanical isocentre is defined as being the point of intersection of the gantry rotation axis, the 

collimator rotation axis and the table rotation axis [10]. Due to a difference in bending of the 

radiation head at different gantry angles this point cannot be determined unambiguously and 

therefore one should define a sphere that envelops the isocentre [11]. 

 

4.2.3 Radiation isocentre 
 

The radiation isocentre is defined as the point of intersection of the radiation beam axes at different 

gantry, collimator and table angles [10]. One can determine the location of the radiation isocentre 

by using the Winston–Lutz method [19]. 

The Winston-Lutz method can be performed by placing a small radio-opaque sphere (e.g. 6 mm 

diameter) at the mechanical isocentre of the linac. This sphere is irradiated with a small collimated 

beam at each available energy (e.g. 6 and 15 MV) and at different gantry, collimator and table angles, 

additionally EPID images are acquired for each setup. The distance between the centre of the 

radiation beam and the centre of the sphere defines the shift between the radiation and mechanical 

isocentre. This distance is measured for each image acquired by the EPID and shifts should be less 

than 1 mm [19], [20]. 

Special attention should be given to the field defining jaws while performing the Winston-Lutz test. 

One should check if the jaws open symmetrically because when this is not the case it will directly 

influence the size of the radiation isocentre sphere which could lead to a misinterpretation of the 

results [19]. 
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4.2.4 Coincidence light and radiation field 
 

The alignment of the radiation field can be established by the light field. It is therefore important to 

check their coincidence. The collimator jaws of a linac rotate on a circular bearing which is attached 

to the gantry. The axis around which the collimator rotates is defined as the collimator axis of 

rotation (AOR) and is given by the intersection of the crosshairs in the light field. Before 

determining the coincidence between the light and radiation field one should raise the table to 

isocentric height while the gantry angle is 0° (gantry is oriented with the collimator AOR directed 

vertically downward). Now the iso-align device is placed on the treatment table (positioned plane 

parallel to the table) and it should be oriented in such a way that the collimator AOR (crosshair) 

coincides with the centre of the iso-align device. The projected image of the crosshair should not 

walkout more than 1mm from this point as the collimator is rotated through its full range. Note that 

this check also can be performed with for example graph paper [3], [10]. 

Now coincidence of light and radiation field can be checked by setting up the iso-align device in such 

a way that the marks (e.g. the 15x15 cm² field size indicators) coincide with the edges of the light 

field. After irradiation at SSD 100cm and EPID imaging the dimensions of the light field can be 

measured and the deviations in both directions can be computed. Note that this check alternatively 

can be performed with a radiographic film by punching holes through the film in the corners of the 

light field. Several plastic slabs are placed on top of the film to position the film near to the depth of 

dose maximum [3]. Both dimensions of the light field should not deviate more than 2mm, as 

denoted by Table 4.2 [10]. 

Like denoted in Table 4.2 the coincidence of light and radiation field should also be checked 

asymmetrically. The test procedure is fully analogous to the symmetrically determination (described 

above) [10]. To determine the asymmetric deviations the radiation field size is measured by 

measuring the distance between the isocentre and the field edge like demonstrated in Figure 4.3. The 

sum of distances x1 and x2 gives the total field size in the x-direction, the same holds for the y-

direction. It should be clear one can maintain the symmetrical deviations by summing the 

asymmetrical deviations and therefore only one (asymmetric) measurement is required. The 

asymmetric deviation should not be greater than 1 mm at each side of the isocentre. Any symmetric 

deviation greater than 2 mm (symmetric) or 1 mm (asymmetric) may point out that the collimator 

AOR is not aligned with the central axis of the radiation field or that the jaws are incorrectly 

calibrated [3]. 

It is important to notice that the coincidence of radiation and light field is becoming less important 

due to the arrival of IGRT. Nowadays the patient is initially positioned using the lasers and 

afterwards this position is adjusted automatically using image guidance. On the other hand it is still 

recommended to check several configured field sizes asymmetrically as given in Figure 4.3. 
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4.2.5 Gantry and collimator angle indicators 
 

The accuracy of the digital gantry and collimator angle indicators can be checked by using a spirit 

level [3]. At each cardinal angle (0, 90, 180 and 270°) the value indicated by the spirit level should 

not deviate more than 1.0° [10]. Today many digital spirit level can measure any angle between 0 

and 360 degrees, with an accuracy of 10-1 or better, and therefore one may consider checking several 

angles between the cardinal angles (e.g. 165°) [3]. 

 

4.2.6 Jaw position indicators 
 

The jaw position indicator accuracy (symmetrically and asymmetrically) can be checked by 

performing the split field test or by measuring the asymmetric field size parameters of Figure 4.3. 

Considering the split field test, gaps or overlaps up to 2 mm (symmetric) or 1 mm (asymmetric) are 

usually tolerated. The split field test will not be discussed in detail because it will be of little interest 

in this dissertation. For more information the reader is referred to the work of Klein et al. [21] and a 

brief explanation of the split field test is also given by the medical physicists of the KFJ hospital in 

Vienna [22]. 

 

4.2.7 Localizing lasers 
 

The accuracy check of the localizing lasers can be divided into two tests. First one should make sure 

that the laser beams perfectly describe horizontal and vertical planes. This can be done by comparing 

the projection of the beams with certain reference points on the floor and walls. Deviations, with 

respect to this reference point, up to 2 mm are usually tolerated for this test. Secondly, the 

intersection of the laser beams should coincide with the isocentre and therefore one should check the 

distance between this point of intersection and the isocentre [11]. This deviation should not be 

greater than 1 mm [10]. 

 

 

Figure 4.3: Graphical representation of asymmetrical field size measurements.. 
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4.2.8 Treatment couch position indicators 
 

The accuracy of the couch position indicators should be checked for the lateral, longitudinal and 

vertical motion as well as for the rotational motion. The vertical position indicator accuracy can be 

checked by placing the iso-align on top of the treatment couch with its plane perpendicular to the 

couch, the gantry can be placed either at 90° or 270°. During the irradiation of the iso-align with a 

predefined field size (e.g. 10 x 10 cm²) EPID images are acquired. Then the treatment table is moved 

vertically over a certain distance (e.g. 5 cm) and again the iso-align is irradiated and EPID images 

are acquired. Now one can compute the real distance travelled by comparing certain points (e.g. 

metallic dots in the phantom) on both images. The procedures for checking accuracy of the lateral 

and longitudinal are analogous but it should be clear other iso-align orientations and gantry angles 

should be used [11]. The travelled distance should not deviate more than 2 mm from the value given 

by the position indicators [10]. The rotational position indicators can also be checked by comparing 

EPID images acquired at different angles, the deviation should not be more than 1° [10]. 
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5 Image processing 
 

The following section will discuss some basic principles of image processing. The intention of this 

section is to give the reader an introduction to the techniques used in this dissertation. It is certainly 

not a complete guide on digital image processing1. 

 

5.1 DICOM images 
 

The images acquired from LINAC QA procedures, CT-scans, etc. are stored, transferred and 

reviewed as DICOM-files. DICOM stands for Digital Imaging and Communication in Medicine and 

it is not just an image or file format. Instead it is a data transfer, storage and display protocol which 

is designed to include all aspects of digital imaging. Nowadays DICOM is a universal standard in 

digital medical imaging. All current clinical imaging devices produce DICOM files and transfer these 

files through a DICOM network. DICOM therefore implicitly controls the medical workflow [23]. 

DICOM also offers full support for the storage of multiple parameters of different data types. A 

DICOM does not only store the images, it also stores parameters such as patient ID, patient 

position, several imaging device parameters, and so on. All these parameters (attributes) are encoded 

based on the DICOM data dictionary2 which contains more than 2000 standardized attributes 

designed to enclose all aspects of medical imaging and diagnostics [23].   

Each of these attributes has its own (also standardized) tag so it is easily accessible. This tag is has 

the form of a (x , y) coordinate where both x and y are hexadecimal numbers. The first hexadecimal 

number defines the group where the attribute belongs to and the second refers to the attribute itself. 

Each attribute is formatted in one of the 27 data types or value representations (VR’s). For example, 

the attribute “content time” gives the time at which the data was acquired and its data type (VR) is 

Time (TM). This means according to the DICOM standard that it is represented as HHMMSS 

where H,M and S stands for hours, minutes and seconds respectively [23].  

Finally, DICOM images show excellent image quality. DICOM provides up to 65,536 shades of grey 

(16 bits) and therefore captures the slightest nuances. In comparison, for example a JPEG file is 

always limited to 256 shades of grey (8 bits) which makes them often unsuitable for diagnostic 

purposes [23].  

 

 

 

 

 

 

 

 

                                                      
1 For a more complete overview the reader is referred to: [24].  
2 The DICOM data dictionary is accessible at: http://dicom.nema.org/standard.html.  
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5.2 Basics of digital image processing 
 

5.2.1 What is a digital image ? 
 

An image can be represented by a function, f (x, y), where x and y are spatial coordinates, and the 

amplitude of f at a certain point defines the intensity (or grey level) of the image at that point. The 

image is called a digital image when all x, y and amplitude values are finite, discrete quantities. A 

digital image therefore is composed of a certain finite amount of elements which each have a position 

(x, y) and a certain intensity value. These elements are called picture elements or pixels [24]. From 

now on in this dissertation, the term image always refers to a digital image.  

Digital image processing envelops all processes or operations whose inputs and outputs are images 

and also operations that extract data from the image, including object recognition [24]. 

 

5.2.2 Images in MATLAB and coordinate conventions 
 

A digital image f (x, y) is represented in MATLAB by a two-dimensional array (matrix). Assuming 

the image has m rows and n columns, we can say the image is of size m x n. MATLAB’s image 

processing toolbox uses two different coordinate systems: one based on pixel indices and one based 

on spatial coordinates [24], [25].  

The most common method for indicating certain positions in an image is by means of pixel indices. 

This method concerns the image to be a matrix of discrete elements, with its rows ordered from top 

to bottom and its columns from left to right. Another method for expressing positions in an image is 

to use continuous coordinates instead of discrete indices. In this spatial coordinate system locations 

are positions on a plane described in terms of x and y rather than speaking about rows and columns 

(pixel indexing system) [25]. Both coordinate systems are shown in Figure 5.1.  

 

 

 

 

Figure 5.1: A representation of the pixel index coordinate system (left) and the spatial coordinate system (right) [22]. 
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The preceding discussion together with the discussed coordinate systems leads to the following 

representation for a m x n digital image using the spatial coordinate system:  
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A digital m x n image can also be represented in MATLAB using the pixel index system as followed: 
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Both representations are identical except for the shift in origin, note that f (0,0) = g (1,1) [24]. 

 

5.2.3 Image classes and image types in MATLAB 
 

MATLAB and the image processing toolbox provide multiple classes for representing pixel intensity 

values. Classes uint8, uint16 and logical are the most common. An image of class uint8 represents the 

intensity value of a pixel as an unsigned 8-bit integer in the range [0; 28 - 1] and therefore uses one 

byte to represent each pixel. In medical imaging techniques uint16 is much more common than uint8 

because these techniques often require a higher dynamic range. The class uint16 provides this by 

using two bytes to represent each pixel, thus as an unsigned 16-bit integer in the range of [0; 216 - 

1]. Finally, class logical uses one byte to represent each pixel value as either one or zero [24]. 

Besides different image classes, there are also different image types being: grey-scale images, binary 

images and RGB images. Grey-scale images are data matrices whose values represent different 

shades of grey. Binary images have a specific meaning in MATLAB. It is defined as a logical array of 

zeros and ones. For example, an array of zeros and ones of class uint8 is not considered to be a binary 

image. Finally a RGB image is simply a colour image. RGB images will not be used in this 

dissertation and therefore they are not discussed [24]. 
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5.3 Intensity transformations and filtering in the spatial domain 
 

Intensity transformations and spatial filtering are operations in the spatial domain. Spatial 

operations are based on direct manipulation of pixels. Spatial operations can be represented as 

followed: 

     (3) 

 

where f (x, y) and g (x, y) are the input and output images respectively. The operator T is defined over 

a specified neighbourhood about point (x, y). The basic approach is to define a rectangular 

neighbourhood centred at point (x, y), as showed in Figure 5.2. This centre is moved from pixel to 

pixel throughout the image and so it will envelop different neighbourhoods during its travel. At each 

location (x, y), operator T will compute its output g. The value of g at a certain point therefore 

depends on all the intensity values in the neighbourhood of f [24].  

 

  

 

5.3.1 Intensity transformation 
 

The intensity transformation is based on the simplest form of operator T, when the neighbourhood is 

just one pixel in size (1 x 1). When this is the case, the value of g, at a certain point, only depends on 

the value of f at that point [24]. 

MATLAB and the image processing toolbox provide the function imadjust() to perform intensity 

transformations, its syntax is the following: 

 g = imadjust( f, [low_in high_in], [low_out high_out], gamma) (4) 

where f  and g are the input and output images respectively. This function transfers the intensity 

values in the input image to other values in the output image. Default, gamma equals one and the 

intensities in the range [low_in high_in] are linearly transferred to new values in the range [low_out 

high_out].  

Figure 5.2: A 3x3 neighbourhood centred at (x, y) in an image f (x, y) [26]. 

 ),(),( yxfTyxg 
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The value of gamma specifies the shape of the curve that is used to transfer the values, as shown in 

Figure 5.3. for example, if gamma is greater than one the transfer is weighted towards lower (darker) 

output values and therefore dark details will become more visible [24].  

 

Figure 5.3: The different transfer curves that are available in function imadjust [27]. 

 

5.3.2 Median filter 
 

Median filtering is used when an image is corrupted with noise, e.g. salt-and-pepper noise. The 

image processing allows to implement a 2D median filter using the following syntax: 

 g = medfilt2( f, [m, n], padopt) (5) 

where f and g are the input and output images respectively and the matrix [m, n] defines the 

neighbourhood of size m x n over which the median has to be computed. Finally, the parameter 

padopt specifies a border padding option. One can choose to pad the borders with zeros, ones or the 

input image can be extended symmetrically by mirror-reflecting it across its border [24].  

 

5.4 Morphological operations 
 

Morphological operations can be used to extract components that are of interest from an image 

[24]. Two fundamental operations will be discussed being: dilation and erosion. Afterwards, an 

important characteristic and the different shapes of structuring elements are briefly explained. All 

the morphological operations discussed below are only applicable to binary images. 

 

5.4.1 Dilation and erosion 
 

Dilation is a morphological operation that thickens objects in an image. The specific way of this 

widening is specified by a so called structure element. A 3 x 3 matrix containing all ones is a 

common used structure element to perform dilation. The origin (the value at the centre) of the 

structuring element is translated throughout the image to check where the element overlaps one-

valued pixels. The dilated image is one at each position of the origin of the structuring element such 

that the element overlaps at least one one-valued pixel of the input image [24]. Figure 5.4 shows the 

result of a dilation with a 3 x 3 structure element. 
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Figure 5.4: The original image (left) and the output image after performing a dilation with a 3x3 square structure element [28]. 

 

Erosion is the opposite of dilation and therefore this operation shrinks objects in a binary image. The 

manner of this shrinking is again controlled by a structure element. The structure element is 

translated throughout the image to see where it overlaps one-valued pixels. The output image has a 

value of one at each position of the origin of the structure element, in such a way that the element 

overlaps only one-valued pixels. In other words, where the element does not overlap any background 

pixels. The overall result is a shrinking of the objects in the image as showed in Figure 5.5. 

 

 

Figure 5.5: The original image (left) and the output image after performing an erosion with a 3x3 square structure element [28]. 

 

5.4.2 Structuring element characteristics and shapes 
 

One important aspect from the dilation operation is that it is associative. Suppose having two 

structuring elements B1 and B2 and an input image A. The first dilating A with B1 and dilating this 

result with B2 gives the same result as first dilating A with B2 and afterwards with B1. This 

associativity is an important characteristic as the time required to compute dilation or erosion is 

proportional to the amount of nonzero pixels in the structuring element. Let’s assume a dilation with 

a 5 x 5 square structuring element filled with ones. One can obtain the same result performing two 

dilations, one with a 1 x 5 row element and one with a 5 x 1 row element. The 5 x 5 element contains 

25 nonzero values while the two other elements together count 10 nonzero values and therefore the 

second method is 2,5 times faster than the first one [24]. 
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There are many different structuring element shapes available in MATLAB, the imaging processing 

toolbox provides the following function. 

 

 se = strel( shape, parameters ) (6) 

 

The parameter shape can be filled in with diamond, disk, square, rectangle, etc. to create different 

shapes. Besides the shape it may be necessary to define other parameters such as radius in case of a 

disk or size in case of a rectangular shape [24].    

 

5.5 Image segmentation 
 

In this paragraph some techniques are discussed for detecting isolated points, lines and edges in 

images. The most common used method to look for discontinuities is to translate a mask through the 

image in a manner similar to spatial filtering techniques.  A filtering mask is similar to a structuring 

element in morphological operations. The mask is translated throughout the input image f going 

from pixel to pixel to yield at every position (x, y) of f the response R. For a 3 x 3 mask this involves 

the calculation of the sum of products of the coefficients with the intensity levels contained in the 

region enveloped by the mask. The response R at any location is given by: 

 

 

                       (7) 

 

where wi is the filter coefficient, as shown in Figure 5.6, the pixel intensities are denoted by zi. The 

response of the mask is defined at its origin [24].     

 

Figure 5.6: The different coordinate systems in filter techniques. w denotes the filter (or mask) coordinates and f(x, y) denotes 

coordinates of the underlying original image [29]. 
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5.5.1 Point and line detection  
 

Isolated points that are embedded in an area with roughly constant intensity values can be detected 

by using the following mask. 

 

(8) 

 

An isolated point has been detected at these points where the mask is centred if the response meets 

the following criterion: 

TR    (9) 

where T is a positive valued threshold. The strongest response of the mask should be at these points 

where the mask is centred on an isolated point and the response should be 0 at locations of constant 

intensity [24]. 

Lines in an image can be detected using the same method. It should be clear that for every 

orientation of the line that has to be detected one should use a different mask. Masks to detect 

horizontal lines and lines angled at 45° (with a width of one pixel) are given below.  
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5.5.2 Edge detection and MATLAB implementation 
 

Edge detection is the most common method to detect discontinuities in intensity values in an image. 

This discontinuities are detected using the first- or second-order derivatives of the image. The most 

common first-derivative form used in image processing is the gradient. The gradient of a two 

dimensional function, f (x, y), is defined as being the vector: 

 

(12) 
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and the magnitude of this vector is given in equation 13. 

 

(13) 

 

 

For simplification, this magnitude is approximated by omitting the square-root or by using absolute 

values. 

       (14) 

(15) 

 

 

The approximation of the magnitude of the gradient behave in the same manner as the gradient; that 

is, as first-order derivatives. They are zero in regions of constant intensity and their values are 

related to the rate of change of intensity in other regions. The gradient vector points in the direction 

of the maximum rate of change of f at point (x, y) [24].  

The aim of edge detection is to find places in an image where the intensity changes rapidly and more 

specific places where the magnitude of the first derivative is higher than a predefined threshold. The 

image processing toolbox provides multiple edge estimators, it is possible to choose to detect vertical 

or horizontal edges or both [24]. The general syntax is:  

[ g, t ] = edge( f, ‘method’, parameters) (16) 

where f is the input image and parameters are additional parameters which are characteristic for the 

type of method that has been chosen and will be discussed in the following paragraphs. The output g 

is a logical image containing ones at places where edges are detected and zeros elsewhere. Finally, 

parameter t specifies the threshold used by function edge to determine which gradient values are 

strong enough [24].  

In this dissertation the sobel operator is chosen to fill in the ‘method’ parameter in function edges. 

The sobel edge detector uses first-order derivatives which are digitally approximated by differences. 

This operator uses the following differences between rows and columns (see Figure 5.7). 
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Figure 5.7: A 3x3 neighbourhood and the indices used to specify locations in the neighbourhood [30]. 

 

The general syntax for the Sobel detector is: 

[g, t ] = edge( f, ‘sobel’, T, dir) (18) 

where f is the input image, ‘sobel’ defines the gradient approximation method, T is a predefined 

threshold and dir specifies the direction of the detected edges and can be either horizontal, vertical or 

both [24]. 
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6 The mechanical QA protocol of L.O.C. 
 

This paragraph deals with the periodic mechanical QA protocol of L.O.C. Three main parts that have 

to be automated can be distinguished: the distance between radiation- and mechanical isocentre, the 

deviation on the table position indicators in three dimensions and the deviation on asymmetric field 

sizes. These three parts will be further outlined below3.  

 

6.1 Distance between radiation- and mechanical isocentre 
 

The test procedure for calculating the distance between the radiation- and mechanical isocentre can 

be compared with the Winston-Lutz test described in paragraph 4.2.3. The test procedure utilised by 

L.O.C. involves the irradiation of an iso-align device which is set up in such a way that the radio-

opaque ball at its centre coincides with the mechanical isocentre which is defined by the centre of the 

light field. During irradiation EPID images are acquired and saved for analysis. 

The radiation- and mechanical isocentre, like described earlier, cannot be determined unambiguously 

and therefore this test is performed for 13 different setups which are given in Table 6.1. Each setup 

involves a different combination of gantry, collimator and table angles. For each of these setups the 

radiation isocentre is determined by defining it as the centre of the radiation field, subsequently the 

mechanical isocentre can be found by determining the centre of the radio-opaque ball. When both the 

mechanical- and radiation isocentre are determined, the distance between the two can be measured.  

The tolerance level for this distance is set on 1 mm and the action level amounts 2 mm. The 

rotational movement of the table (image 4 and 5 in Table 6.1) is an exception on these values and has 

a tolerance level of 2 mm and an action level of 3 mm for the distance between the radiation- and 

mechanical isocentre. 

 

Table 6.1: The 13 different setups (of L.O.C.) for the determination of the distance between radiation- and mechanical isocentre. 

Image no. Gantry angle (°) Collimator angle (°) Table angle (°) 

1 0 0 0 

2 0 90 0 

3 0 165 0 

4 0 270 0 

5 0 0 90 

6 0 0 270 

7 180 0 0 

8 90 90 0 

9 90 0 0 

10 90 270 0 

11 270 270 0 

12 270 0 0 

13 270 90 0 

 

 

 

 

                                                      
3 The entire mechanical QA protocol of L.O.C. is given in appendix A (in Dutch). 
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6.2 Deviation on table position indicators in three dimensions 
 

The deviation on the treatment couch position indicators is determined in three dimensions being: 

longitudinal, lateral and vertical. L.O.C.’s protocol re-uses two images from Table 6.1, more 

specifically image 1 for the longitudinal and lateral motion and image 12 for the vertical table 

motion.  

The procedure for the longitudinal table motion involves the irradiation of the iso-align in a setup 

similar to this of image 1 in Table 6.1 but this time the treatment couch is displaced 15 cm in the 

longitudinal direction. To determine how many cm’s the couch has travelled one has to find a certain 

point on the image (e.g. one of the radio-opaque balls of the iso-align device) which is visible on both 

images. By merging both images one can measure the distance that the treatment table has travelled. 

The procedure for the lateral and vertical motion is completely identical to this described above but 

the procedure for the vertical motion uses image 12 from Table 6.1 as a reference instead of image 1.  

The tolerance level for the deviation on the table motion is set to 1 mm and the action level amounts 

2 mm, this applies to each of the three dimensions. When the table has moved vertically the 

longitudinal displacement of the table ideally is zero. In reality this is not the case and the tolerance 

value for this longitudinal displacement amounts 1° which corresponds to a longitudinal distance of 

2,6 mm. The action level is set on 2° corresponding to a longitudinal displacement of 5,2 mm. The 

same holds for the lateral and longitudinal displacements when the table is moved in the longitudinal 

and lateral direction respectively.  

 

6.3 Deviation on asymmetrical field sizes 
 

The protocol of L.O.C. uses three different predefined square field sizes to check the size in both 

dimensions and check the symmetry of the field, these field sizes are: 5 x 5, 10 x 10 and 18 x 18 cm² 

and the EPID images are acquired at gantry- , collimator- and table angles of zero. To acquire these 

images there is no iso-align needed, only the radiation field is captured by the EPID. The radiation 

isocentre used for the asymmetrical field size measurements is the averaged isocentre of the first four 

images of Table 6.1 and not just the radiation isocentre of the first. This is done because while 

acquiring the first image (and the others) of Table 6.1 one of the jaws could be mispositioned. If this 

is the case this has a direct effect on the position and size of the radiation isocentre [19]. Therefore 

this effect has to be averaged out by rotating the collimator over its full range. This is visualised in 

Figure 6.1, the black lines define the normal situation at a collimator angle of zero degree. The 

vertical red line defines a mispositioned jaw and the intersection of the dashed diagonals define the 

corresponding radiation isocentre. Note how the isocentre describes a circle when rotating the 

collimator, the centre of mass of this circle coincides with the averaged isocentre discussed above.  

After this averaged radiation isocentre is established the 4 asymmetrical field sizes are determined in 

the same manner as given in Figure 4.3. 

The tolerance value for the error on x1, x2, y1 and y2 has a value of 1 mm for the 5 x 5 and 10 x 10 cm² 

fields and these fields have an action level for these parameters which is set on 2 mm. The tolerance 

value for the 18 x 18 cm² field amounts 1 % of the total field size which is roughly 2 mm and the 

action level is set on 2 % of the total field size and amounts roughly 4 mm. The tolerance levels for 

the total field sizes in both direction are exactly the same as these stated above for the asymmetrical 

parameters.  

 

 

 



47 
 

 

Figure 6.1: Result of miscalibrated jaw on the place and size of the radiation isocentre. Note how these points can be averaged out in 
order to calculate asymmetrical field size parameters. 
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7 Materials & Methods 
 

The application was developed and tested using MATLAB. The algorithms were designed using 

standard MATLAB features combined with functionalities from the Image Processing Toolbox and 

Symbolic Math Toolbox. The images for testing were acquired using a Varian CLINAC as well as a 

Varian Truebeam linear accelerator which are both equipped with the same type of amorphous-

silicon EPID. The only difference is that the EPID of the CLINAC provided images with a 

resolution of 768 x 1024, while the resolution provided by the EPID of the Truebeam only was 384 x 

512. Throughout the next sections the terms half resolution- and full resolution images refers to the 

images acquired with the Truebeam and CLINAC device respectively. All the EPIDs used in this 

dissertation are calibrated to perform dosimetry and have a quasi linear dose response.  

This section will describe the architectures of the different algorithms separately followed by a 

description of the structure of the application as a whole. Subsequently, the methods of determining 

accuracy and reproducibility of the software are briefly discussed. This section is rather mend to 

describe the structure of the application than to dreary enlarge on the source code itself. The source 

code is added to appendix B.  

 

7.1 Distance between radiation- and mechanical isocentre 
 

The problem of calculating the distance between radiation- and mechanical isocentre was solved 

using two different approaches. Both algorithms were tested and one has proven to be faster while 

the other has proven to be more accurate. Because time, speaking about ± 1 minute, is not an issue 

the most accurate algorithm is used for implementation. The architecture of this algorithm is given 

in Figure 7.1 and will be discussed in detail throughout this section. The algorithm that has been 

designated as inferior will be briefly discussed in section 7.1.7. 

 

 

Figure 7.1: Architecture of the algorithm for computing the distance between the radiation- and mechanical isocenter. 
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7.1.1 Pre-processing radiation isocentre detection 
 

The Pre-processing step can be divided into two parts: noise reduction and contrast stretching which 

are the first two blocks following the input file in Figure 7.1. Since the images obtained from the 

EPID can be noisy a median filter with a 3x3 filter mask is implemented to reduce the amount of 

noise in the input image. 

Since a DICOM image uses 16 bits per pixel to visualise different shades of grey, it has a range of [0 

– 65 535] which allows high contrast images to be represented [23]. But in this case the input image 

uses only one fifth of this range which results in a low dynamic range and contrast, an example of a 

histogram of an input image is given in Figure 7.2. In order to create a wider dynamic range an 

intensity transformation is implemented with the following MATLAB command: 

g = imadjust(f, stretchlim(f), [ ]);       (19) 

here f and g are the input and output images respectively. The function stretchlim gives an output 

low_High from which the values specify the intensity levels that saturate the bottom and top 1% of 

all pixel values in the input image [24]. The third parameter in equation 19 is equivalent to [0 1] 

which means that the pixel values have to be mapped over the entire range being [0 - 65 535]. The 

histogram of the result of this contrast stretching operation is given in Figure 7.2.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Left: The histogram of the input image. Right: The histogram of the input image after contrast stretching. The x-axis 
denotes the 65536 shades of grey and the y-axis visualizes the amount of pixels with a certain intensity value. 
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7.1.2 Field edge algorithm 
 

In order to understand how a field edge can be computed one should be aware of the definition of 

field size. The field size is defined as the full width at half maximum (FWHM) of the cross beam 

profile (profile similar to Figure 2.2) [4]. Working with EPID images of EPIDs with a (quasi) linear 

dose response the field size is the FWHM of the intensity spectrum of the image. Figure 7.3 shows a 

pre-processed input image and the blue line defines the range over which the spectrum is computed, 

the resulting profile is also shown.  

 

  

Two functions were created in order to compute the field edges individually, one for the vertical and 

one for the horizontal field edges. These functions acquire multiple crossbeam profiles and calculate 

the x-values for vertical and  y-values for horizontal edges of places where the intensity is at the half 

of its minimum. 

The first step of the field edge algorithm involves calculating the median intensity value of the 

intensity range of the pre-processed input image, this will be the target value. The next step involves 

guessing where the field edge is located and acquiring little crossbeam profiles at these places. 

Figure 7.4 shows the ranges over which the crossbeam profiles are computed (blue lines). The start 

and stop signs show where the scanning procedure starts and ends, in between multiple crossbeam 

profiles are acquired. The scanning procedure is divided in two sections to make sure the profiles do 

not cross one of the radio-opaque spheres or other structures of the iso-align because this could give 

rise to misdetections.  

 

Figure 7.3: On the left an input image is shown where the blue line defines the range over which the spectrum is computed. On 
the right the resulting crossbeam profile is shown. 
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Figure 7.4: Visualization of the edge scanning procedure, input image with ranges over which crossbeam profiles are computed. 

 

Each little crossbeam profile acquired by the algorithm yields a table with 100 x-values, y-values and 

the corresponding intensity values at those points. Assuming the computation of the left vertical 

field edge, for each profile the y-value is stored, subsequently, the intensity value which lays the 

closest to the target value is sought and the corresponding x-value is acquired. If this intensity value 

appears more than one time in a row their corresponding x-values are averaged. When searching for 

the target value, two different outcomes are possible: 

1. the found value is exactly equal to the target value; 

2. the found value is smaller or greater than the target value. 

When the found value is exactly equal to the target value, the averaged x-value is simply stored 

together with the (already) stored y-value after which the next profile is acquired. When the found 

value is not exactly equal to the target value linear interpolation is performed. If the found intensity 

value is greater than the target value, the algorithm searches for the next intensity value in the table 

which is smaller than the target value and the corresponding x-value (whether or not averaged) is 

acquired. Subsequently linear interpolation is performed to calculate the x-value which corresponds 

to the target intensity value. Using linear interpolation assumes that the region in the intensity cross 

profile (Figure 7.3) where the intensity is at the half of its minimum can be approximated by a linear 

function. When interpolation is finished the x-value is stored together with the (already) stored y-

value and the next profile is acquired. When the found intensity value is smaller than the target 

value the same interpolation procedure is performed but this time with an interpolation partner 

which is greater than the target value.  

When the scanning procedure is finished and all the edge points are stored the average and standard 

deviation is computed for the x-value dataset. These two parameters are used to detect misdetections 

based on the detection of outliers in the dataset. A certain value is designated as an outlier when it is 

greater than the average value plus three times the standard deviation or when it is smaller than the 

average value minus three times the standard deviation. These outliers and their corresponding y-

values are deleted from the dataset.  

The final step of the field edge algorithm consists of fitting a linear curve through the found edge 

points. The curve fitting is performed using the least square method. In order to use the least square 

method to fit vertical functions the x- and y-values are exchanged and at the end the fitted curve is 

inversed.  

 



52 
 

The above described procedure assuming a vertical field edge is completely analogous for horizontal 

field edges. Note that the above procedure also could have been performed by means of edge-

detection. The reason why this is not the case is because this requires working with the function 

regionprops, to measure the properties of the field, which does not allow to detect oblique field edges4. 

 

7.1.3 Computing radiation isocentre 
 

When all the field edges are computed, the intersections of these four functions are calculated in 

order to determine the diagonals of the square field. The intersection of these two diagonals defines 

the radiation isocentre of the setup (gantry, collimator and table angle combination). An example of 

the result of performing the field edge algorithm in combination with the radiation isocentre 

computation on an input image is given in Figure 7.5.  

 

Figure 7.5: The result of performing the field edge algorithm in combination with the radiation isocentre computation. 

 

7.1.4 Pre-processing mechanical isocentre detection 
 

The mechanical isocentre of the gantry-, collimator- and table angle combination coincides with the 

central radio-opaque sphere of the iso-align device and thus appears as a circle on the EPID images. 

The process of finding the mechanical isocentre therefore is a process of circle detection. The first 

step of this procedure involves performing edge detection, followed by several morphological 

operations to finally detect the circle within a predefined region of interest (ROI).  

The sobel operator, which is discussed in section 5.2.2, is used to implement edge detection. First the 

function edge is used to estimate a threshold value. This threshold value is multiplied by a predefined 

fudge factor from which the value is chosen by trial and error to give the best overall results. 

Subsequently this new threshold value is used in the edge function to perform edge detection using 

the sobel operator. The result of performing this procedure on an input image yields a binary image 

                                                      
4 More information about regionprops and the detection of oblique field edges is provided in sections 7.1.5 and 
7.1.7. 
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and is given in Figure 7.6. This result was achieved using the following code: 

 

[~, threshold] = edge(f , 'sobel'); 

corrFactor = 0.5; 

g = edge(f ,'sobel', threshold * corrFactor); 

 

where f and g are the input- and output images respectively and the fudge (or correction factor) is set 

to 0,5.  

 

 

The next pre-processing step involves a series of morphological operations. The first operation 

which is performed is morphological closing. Closing is the process of a dilation followed by an 

erosion [24]. The closing operation is implemented using a disk shaped structuring element with a 

radius of one like in equation 20. 
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The result of performing morphological closing on the binary image in Figure 7.6 is given in Figure 

7.7. Comparing both images it’s clear that the encircled structures of Figure 7.6 are filled in (or 

closed) in the output image. The next operation that is performed is an erosion to erase little white 

dots which originate from noise and structure that are not of interest like the field edges. 

Subsequently a dilation is performed on the result to reconstruct the loss of detail induced by the 

erosion. Both erosion and dilation operations are performed with disk shaped structuring element 

with a radius of one like in equation 20. The result of performing both processes subsequently on the 

closed image is also given in Figure 7.7.   

 

 

 

 

Figure 7.6: On the left the input image is shown and the right image shows the result of the edge detection operation. 
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7.1.5 Circle detection procedure 
 

The eventual circle detection is performed with the function regionprops which is provided by the 

Image Processing Toolbox of MATLAB. The function is implemented in the following way: 

stats = regionprops('table', f, 'Centroid', 'MajorAxisLength', 'MinorAxisLength'); (21) 

where f is the binary image on the right side of Figure 7.7. The parameter table denotes that the 

output stats will be represented as a MATLAB table. Centroid returns in this table the x- and y-values 

of the centres of mass of all the 8-connected regions in the input image. Eight-connectivity is based 

on pixel connections with one of their 8 neighbours (at the sides and edges) and is an extension of 4-

connectivity which is based on pixel connections with only one of the four side neighbours. Finally 

MajorAxislength and MinorAxisLength return a scalar that specifies the length of the major and minor 

axis length of the ellipse structures detected by Centroid [31]. The result of this circle detection 

operation after visualizing the detected ellipses on an input image is given in Figure 7.8. 

It’s clear, looking at the image at the left of Figure 7.8, that the algorithm still has to select the 

desired circle, more specifically this at the centre. To achieve this goal a point of interest (POI) is 

defined which is the radiation isocentre (computed previously). Around this POI a square ROI is 

established with a width of 2a, where a is initially set to 0.5 and the POI describes the centre of the 

ROI. Subsequently the algorithm checks which of the centroids returned by the function regionprops 

lays within the ROI. If there is no centroid which fulfils this criteria the value of a is iteratively 

increased until there is exactly one centroid which lays inside the ROI. The result of this iterative 

process is also given in Figure 7.8 and shows only one detected circle, the mechanical isocentre of the 

setup. 

Figure 7.7: On the left the result of the closing operation is shown. The image at the right shows the result of the erosion and dilation 
operation. 
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7.1.6 Computing the distance between both isocentres 
 

When both isocentres are detected these can be plotted onto the input image to yield the eventual 

output image which will be written to a PDF file. An example of such an output is given in Figure 

7.9 together with a detailed image of both isocentres. Looking at Figure 7.9, the mechanical isocentre 

of the setup is defined by the centroid of the detected circle and the radiation isocentre of the setup is 

defined by the intersection of the diagonals which are displayed in yellow.  

 

  

The last step of the algorithm is to compute the distance between the two found isocentres in 

millimetres. First the distance in pixels is calculated based on the standard mathematic formula of 

the distance between points and subsequently this result is multiplied by a certain conversion factor 

to yield the distance in millimetres. The conversion factor (in mm/pixel) is a magnification 

correction on the pixel size and using position information of the EPID and can be computed as 

followed. 

Figure 7.8: The left image shows the result of the function regionprops and the right image shows the result of the iterative process for 
selecting the desired circle. 

Figure 7.9: The image on the left shows an example of an output file visualizing both the radiation- and mechanical isocentre. The 
image on the right shows a zoomed view of this output image. 
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         (22) 

 

Where PSI stands for pixel size at isocentre, PR is the pixel resolution of the EPID, SAD is the 

source to axis distance (usually 100 cm, in the protocol of L.O.C. 140 cm) and RTimageSID is the 

source to imager distance [20]. All these parameters can be found in the DICOM header of the 

EPID images and should be denoted in millimetre. The PSI in this work has a value of 0,5227 

mm/pixel for images acquired from the EPID licenced with half resolution and 0,2613 mm/pixel for 

images acquired from the EPID licensed with full resolution. This slight difference in magnification 

correction factor is due to the difference in resolution licenses for the TrueBeam and CLINAC 

devices at L.O.C. 

 

7.1.7 Alternative algorithm for detection of the radiation isocentre 
 

An alternative algorithm for the detection of the radiation isocentre was designed and tested. The 

algorithm has proven to be much faster than the algorithm described above, its architecture is given 

in Figure 7.10. The previous algorithm needs 5.418 seconds to finish the analysis of one picture 

while this algorithm only needs 1.326 s. This algorithm uses image blurring by means of a Gaussian 

filter followed by automatic thresholding in combination with the earlier discussed function 

regionprops to detect the field edges. There is one major drawback to this method, that is that 

function regionprops always will draw a rectangle to visualize the field, even when the MLC fails and 

defines an oblique field edge. The field edge procedure, discussed in section 7.1.2, though can detect 

oblique field edges and therefore has been chosen to be superior to the fast detection algorithm 

because this is needed for analysis of images with non-cardinal collimator angles and to detect 

possible failures of the MLC. 

 

 

 

RTimageSID

SAD
PRPSI 

Figure 7.10: The architecture of the discarded alternative algorithm for the computation of the distance between the radiation- 
and mechanical isocentre. Only the left branch (radiation isocentre) differs from the architecture of Figure 7.1 
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7.2 Deviation on the table position indicators in three 

dimensions 
 

The architecture of the algorithm to compute the deviation on the table position indicators is given 

in Figure 7.11. This algorithm, which is embedded in a function, is designed in threefold for the three 

dimensions: vertical, longitudinal and lateral. The architecture will only be briefly explained for the 

longitudinal dimension because the three algorithms only differ in the placements of POI’s. The 

procedures explained in this section will be quite similar to these discussed earlier for the detection 

of the radiation- and mechanical isocentre. 

 

 

Figure 7.11: Architecture of the algorithm for computing the deviation on the table position indicators in three dimensions. 

 

7.2.1 Image fusing and pre-processing 
 

The first step of the algorithm is to fuse the reference image with the longitudinal displaced image 

using the function imfuse from the MATLAB Image Processing Toolbox. Both input images are 

shown in Figure 7.12, the fused image is given in Figure 7.13.  

Figure 7.12: On the left the reference image is shown, the right image shows the situation after applying the 
longitudinal displacement. 
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Figure 7.13: Both images of Figure 7.12 fused into one image. 

 

The resulting fused image in Figure 7.13 is used for pre-processing towards the detection of two 

radio-opaque balls appearing as circles on the fused image. One of these circles must be visible on the 

reference image, the other one (the same radio-opaque ball but shifted 15cm) on the displaced image 

and both of the circles must be visible on the fused image. The pre-processing step consists again of 

the edge detection procedure together with the morphological closing followed by an erosion and 

subsequently a dilation like in section 7.1.4, the result is shown in Figure 7.14. The arrows in Figure 

7.14 point at the radio-opaque ball which is chosen to be detected.  

 

  

Figure 7.14: The result of performing the whole pre-processing step on the fused image. The yellow 
arrows point to the radio-opaque spheres that are chosen to be detected. 
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7.2.2 Circle detection procedure and distance computation 
 

The eventual circle detection is completely analogous to the method described in section 7.1.5 and 

therefore it will not be discussed again in detail. It is, though, important to discuss the placements of 

the POI’s for circle detection since the POI’s in this case are not equal to the radiation isocentre.  

The whole imaging procedure of the periodic mechanical QA protocol of L.O.C. is performed each 

time in exactly the same way since its embedded in a patient file which is loaded into the linac’s 

operating system. For this reason it is safe to assume that the position of the circles that have to be 

located will be the same for each direction in which the table is shifted. These positions were 

obtained for both half and full resolution images as well as for both directions in which could be 

shifted (positive or negative shift). The algorithm first checks the resolutions of the input images and 

subsequently the direction of the shift in order to know which pair of POI’s he needs to perform the 

iterative process of circle detection.  

When both circles are detected the result can be plotted on the original fused image and the distance 

travelled in longitudinal direction can simply be computed by subtracting the y-values of the 

centroids of both circles. In the same fashion the lateral displacement, which is supposed to be zero, 

can be computed by subtracting the x-values of these centroids. Subsequently the deviation is 

computed in millimetres by subtracting the found longitudinal distance in millimetres from 150 mm. 

The result of the whole algorithm is given in Figure 7.15 together with a detail image of one of the 

detected circles.  

 

 

  

 

 

 

 

 

 

 

Figure 7.15: Left shows the result of performing the algorithm for computing the deviation on the table position indicators for the 
longitudinal direction. The image on the right is an detail image of one of the detected circles. 
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7.3 Deviation on asymmetrical field sizes 
 

The algorithm for the asymmetrical field size computation is similar to this of the detection of the 

radiation isocentre, its architecture is given in Figure 7.16. The architecture will only be explained 

for a 5 x 5 cm² field because the computations are exactly the same for all field sizes. Since the first 

three steps are completely analogous to these discussed in sections 7.1.1 and 7.1.2 their discussion 

will be skipped.  

 

Figure 7.16: Architecture of the algorithm for computing deviations on asymmetrical field sizes. 

 

7.3.1 Computation of asymmetrical field sizes and deviations 
 

Two functions were developed to compute the asymmetrical field size, one for the x-direction and 

one for the y-direction. The function for the x-direction plots a line parallel to the x-axis starting 

from the averaged radiation isocentre5 towards the field edges. The two intersections are computed 

as well as the distance between those intersections and the averaged radiation isocentre which yield 

x1 and x2. The procedure for the y-direction is completely analogous. Assuming a 5 x 5 cm² field the 

deviation on the asymmetrical field size for x1 in millimetres is computed by subtracting x1 from 25 

mm. The resulting output image of the algorithm is eventually given in Figure 7.17. 

 

                                                      
5 The averaged radiation isocentre is discussed in section 6.3 

Figure 7.17: The resulting output image after performing the asymmetrical field size 
algorithm. 
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7.4 Architecture of the GUI 
 

The different algorithms discussed above are embedded in a user-friendly graphical user-interface 

(GUI) from which the architecture is given in Figure 7.19 and a screenshot of the GUI is given in 

Figure 7.18. Notice that the GUI contains as few buttons as possible to make it easy to use and to 

prevent user induced mistakes. The complete source code is given in appendix B.  

 

 

The octagons in Figure 7.19 represent the three push buttons in the graphical user-interface. All the 

white boxes and octagons indicate that the end user has to do a handling, in this case it refers to a 

mouse click. The grey boxes indicate processes performed by the programme which are not visible 

for the end user and do not need responses or handlings from the end user.  

 

Figure 7.18: Screenshot of the graphical user-interface 

Figure 7.19: Architecture of the main file of the graphical user-interface 
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7.4.1 Open 
 

The nineteen DICOM files that have to be analysed should all be located in one directory. When one 

clicks on the button with the map icon in the upper left corner of Figure 7.18 the programme will ask 

if there were any mistakes made during the acquisition of the pictures. When there were no mistakes 

made the images can easily be sorted based on the time stamp in de DICOM header since the 

measurements are always carried out in the same order following the protocol. In the other case, 

when mistakes were made, the images are sorted based on the combination of image properties like: 

gantry-, collimator-, table angles, longitudinal, lateral and vertical position. Once the directory paths 

to the images are sorted, this list is save for further usage and the “perform analysis” button of 

Figure 7.18 is made active.   

 

7.4.2  Perform analysis and output file 
 

Once the “perform analysis” button is clicked, the m-file named analysis begins to run. The first step 

in this file is to divide the sorted image path list into 5 distinct groups. The first group consists of the 

first 13 images of the sorted list which, regarding to the protocol of L.O.C., have to be examined by 

the algorithm for the calculation of the distance between the radiation and mechanical isocentre. The 

second, third and fourth group each consists of one image, these are the vertical-, longitudinal- and 

lateral displaced images respectively. These have to be examined by the algorithm for computing the 

deviation on the table position indicators. The fifth and final group consists of the last three images 

of the sorted list which are the three asymmetrical field sizes that have to be analysed.  

The first group of 13 images is implemented in a for-loop which the images one by one loads into the 

algorithm for the calculation of the distance between the radiation- and mechanical isocentre. This 

algorithm returns the found distance in millimetres, the place of the radiation isocentre, the radius 

and location of the detected circle and the four corner points of the field for visualization. For the 

first 4 images the radiation isocentre will be stored for averaging for the determination of the 

asymmetrical field sizes. Once the analysis is done a figure is created (invisible for end user) and the 

field, the diagonals and the detected circle together with its centre of mass are plotted. This figure is 

written to a PDF file. A detailed image on which there is zoomed in on the detected circle is also 

written to another PDF file. These images are mend to serve as a verification that analysis has been 

done correctly. Finally the gantry-, collimator- and table angles of the image are acquired from the 

DICOM header and are stored together with the found distance in an excel table. Each iteration of 

the for-loop therefore yields 2 PDF files. There are 13 iterations thus there will be 26 individual 

PDF files created at the end of this section of the analysis file.  

The second, third and fourth group which contain respectively the vertical-, longitudinal- and lateral 

displaced images are loaded one by one (together with their reference images) in their corresponding 

algorithms for computing the deviation on the table position indicators. This algorithm returns the 

computed deviation in the displaced direction, the deviation in the direction perpendicular (in the 

same plane) to the displaced direction and the location of the two detected circles together with their 

radii. Again for each of the images a figure is created with the data plot onto it. Each image yields 

three PDF files: one with the entire image and one detail image zoomed in on each of the two 

detected circles. The deviations are again written to the excel table.  

The fifth and last group contains the three asymmetrical field size images and these are one by one 

loaded into the field size algorithm together with the average radiation isocentre by means of a for-

loop. The algorithm returns the four asymmetrical field sizes, the total field size in two dimensions 

and the four corners of the field for visualization. Again the figure is created, data plotted and the 

figure is written to PDF. The results for the asymmetrical field sizes are written to the excel table.  
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When all the above groups are analysed the process has yielded 38 individual PDF files and one 

excel file. The excel table is first written to PDF and subsequently the 39 PDF files are concatenated 

into one single output PDF. The approach used to bring these files together into one single output 

PDF file was proposed by Michiel Darcis and Gert Leurs, fellow students ICT-electronics, and 

requires that the end user has got Ghostscript6 installed. The PDF files are concatenated using the 

function appendPDFs which is official courtesy of Oliver Woodford (2011). An example of a few 

pages of the output PDF file is given in appendix C. 

 

7.5 Accuracy and reproducibility 
 

7.5.1 Accuracy 
 

The accuracy of the circle detection algorithm could be verified by displacing the iso-align a certain 

distance and measure this known displacement of the radio-opaque sphere using the software. Since 

accuracy should be tested on submillimetre or at least at millimetre level and in three dimensions 

(vertical, longitudinal and lateral). This means that the iso-align should be shifted for example 0,5 

mm in longitudinal direction without applying any shift in the lateral direction. This could be done 

by using a micrometre but since the iso-align is a relatively big and unwieldy device this is not 

possible in reality without the risk of introducing errors. Another drawback of the iso-align device is 

that it cannot be adjusted in the vertical direction which makes it difficult to displace it vertically.     

The accuracy was tested by applying a series of predefined shifts by means of displacing the 

treatment table. Since there is a certain uncertainty on the table position indicators these accuracy 

values should be taken with a grain of salt and are rather added to give an indication than to proof 

the accuracy of the algorithm.  

Due to the above stated problems the accuracy of the algorithm could only be verified by comparing 

the values of the output file to these of the manual measurements carried out by the employees of 

L.O.C. This is done for CLINAC (full resolution) and Truebeam (half resolution) devices separately. 

 

7.5.2 Reproducibility 
 

The reproducibility of the circle detection algorithm and the algorithm for the detection of the 

radiation isocentre was tested by acquiring repeated images (N = 8) of the iso-align without altering 

the setup or position of the iso-align device. The displacement of the centroid of the detected circle 

and the displacement of the radiation isocentre both should be zero since no shifts were applied. This 

is done for both CLINAC and Truebeam devices, deviation were calculated in millimetre together 

with the standard deviation (also in mm) and are summarized in the next section. 

 

 

 

 

 

 

                                                      
6 Ghostscript is freely downloadable at: www.ghostscript.com 
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8 Results and discussion 
 

8.1 Algorithm timing considerations 
 

The time needed to estimate the distance between the radiation- and mechanical isocentre amounts 

5,418 seconds for one single image. The algorithm for calculating the deviation on the table position 

indicators takes 0.918 seconds to analyse one image. The algorithm for calculating the deviation on 

the asymmetrical field sizes needs 6,850 seconds. The reason why the second algorithm above is 

much faster than the other two is because this algorithm does not compute any field edges. The field 

edge algorithm is the most time intensive part of the programme with a time of 4,333 seconds 

because it has to examine more than 600 intensity profiles per image. Finally, the whole process 

starting from opening the GUI until the creation of the output file takes 2 minutes and 45 seconds. 

Comparing this to the time it takes to analyse the 19 images manually (20 to 30 minutes) this is a 

considerable improvement in timing considerations. 

  

8.2 Accuracy 
 

8.2.1 Clinac 
 

As denoted in section 7.5.1 the accuracy of the circle detection method was tested by displacing the 

iso-align several known distances and by subsequently estimating these shifts with the software. The 

iso-align was displaced using the treatment table which has an uncertainty on the position indicators 

of about ± 1 mm on 15 cm and therefore the results should be taken with a grain of salt. The results 

are given in Table 8.1 and are rather added to give an overall indication than to proof the integrity of 

the algorithm. The results are given for each dimension separately in the form of the mean value of 

the absolute values of the deviation on the known displacement in millimetres plus/minus the 

standard deviation in millimetres, the maximum deviation in millimetres is also shown. These results 

are acquired using a CLINAC device and therefore delivered full resolution images. In each 

dimension 6 different displacements where applied (N = 6). 

 

Table 8.1: Results of testing the accuracy of the circle detection algorithm using a known displacement of the treatment table of the 
CLINAC. Note that the treatment table position indicators have an uncertainty of ± 2 mm. 

 Lateral Longitudinal Vertical 

Mean deviation ± SD 0,57 ± 0,2 mm 0,81 ± 0,4 mm 0,37 ± 0,2 mm 

Max deviation  0,76 mm 1,44 mm 0,53 mm 

 

The displacements used to obtain the results of Table 8.1 where ± 1 mm, ± 2 mm in only one 

direction and ± 1 mm in both dimensions of the imaged plane. With an uncertainty of  ± 2 mm on 15 

cm on the table position indicators these results are not representative for proving accuracy but they 

can give an indication that the circle detection algorithm fulfils its task with a sufficient amount of 

accuracy. The mean deviations in Table 8.1 are all under 0.81 mm which are reasonable results 

taking into account the uncertainty on the applied shift. The maximal deviation in the longitudinal 

direction is a bit high but could possibly be ascribed to the uncertainty on the table position 

indicators. 
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Because the above results are meaningless speaking about accuracy, the accuracy of the software was 

also tested by means of a comparison with manual results obtained by the employees of L.O.C. The 

results of the mechanical QA of 29/04/2017 were compared with the software measurements for a 

CLINAC device and the deviations of the manual vs. software measurements are given in Figure 8.1 

to Figure 8.3.  

 

 

Figure 8.1: Comparison of the results of measuring the distance between the radiation- and mechanical isocentre manually vs. with the 
software for a CLINAC. The image indices are the same as those in Table 6.1. 

 

Looking at the results in Figure 8.1 the deviation on the calculation of the distance between the 

radiation- and mechanical isocentre with respect to the manually measured values are almost all 

within ± 0,500 mm. Two values exceed this boundary with one of them being the maximum 

deviation of 0,572 mm. Finally the mean deviation in absolute values is 0,229 mm, which is a 

considerably good result. 

 

 

Figure 8.2: Comparison of the results of measuring the deviation on the table position indicators manually vs. with the software for a 
CLINAC. 
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The deviations for the comparison of the manual vs. software measurements for the calculation of the 

deviation on treatment table position of Figure 8.2 show that all, but one, deviations are within  ± 

0,200 mm. The one outlier defines the maximum deviation which amounts 0,714 mm. Finally the 

mean deviation in absolute values is 0,194 mm. These results are again very acceptable regarding 

that the manual measurements are very user dependent. 

 

 

Figure 8.3: Comparison of the results of measuring the deviation on asymmetrical field size parameters manually vs. with the software 
for a CLINAC. The first bar for each parameter denoted the results for the 5x5 cm² field. The second and third bar of each parameter 

denote the results for the 10x10 and 18x18 cm² fields respectively. 
 

The comparison of the manual vs. software measurements for the determination of the deviation on 

asymmetrical field size parameters in Figure 8.3 shows that all deviations for the asymmetrical field 

size parameters are within ± 0,500 mm. On the other hand all deviations for the symmetrical (total) 

field size parameters are within ± 0,800 mm. The mean deviation in absolute values for the 

asymmetrical field size parameters amounts 0,273 mm with a maximum deviation in absolute values 

of 0,630 mm. For the symmetrical field size parameters the mean deviation amounts 0,345 mm with a 

maximum deviation of 0,740 mm, both calculated using absolute values.  
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8.2.2 Truebeam 
 

The accuracy of the software as a whole was also tested for a Truebeam device, with a half resolution 

licensed EPID, by comparing the output files for a certain periodic QA analysis with the manually 

obtained results by the employees of L.O.C. The results for the comparison of the results of the 

mechanical QA of 05/04/2017 for the Truebeam device are given in Figure 8.4 to Figure 8.6.  

 

 

Looking at the results in Figure 8.4 the deviations on the computation of the distance between the 

radiation- and mechanical isocentre with respect to the manually measured values are all between ± 

0,400 mm. The mean deviation in absolute values amounts 0,146 mm with a maximum in absolute 

value of 0,400 mm. These are more than acceptable results taking into account that the same manual 

measurement performed by two different persons can easily deviate ± 0,2 mm. These values are also 

in line with the results obtained for the CLINAC and are even slightly better. This is against 

expectations because one could think that a better resolution would yield an increase in accuracy. 

 

 

Figure 8.4: Comparison of the results of measuring the distance between the radiation- and mechanical isocentre 
manually vs. with the software for the Truebeam. 

 

Figure 8.5: Comparison of the results of measuring the deviation on the table position indicators manually vs. with 
the software for a Truebeam. 
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The results in Figure 8.5 for the deviation on the treatment table position indicators shows that 

most of the deviations are within ± 0,300 mm with the exception of the deviation of -0,784 mm, 

which also immediately is the maximum deviation. The mean deviation in absolute values is 0,255 

mm. These results are also very reasonable although they are slightly worse than the results for the 

CLINAC.  

The results for the deviation on the asymmetrical field size parameters of Figure 8.6 show that all 

the deviations are within ±0.900 mm. The first bar of each parameter in Figure 8.6 denotes the 

results for the 5 x 5 cm² field while the second and third bar of each parameter denote the results for 

the 10 x 10 cm² and 18 x 18 cm² field respectively. The mean deviation on the asymmetric 

parameters amounts 0.240 mm with a maximum deviation of 0.744 mm. Finally the mean deviation 

on the symmetrical total field size is 0.468 mm with a maximum deviation of 0.852 mm. Comparing 

these results to those obtained for a CLINAC the asymmetric parameters are slightly more 

accurately computed for a Truebeam, while the results for the symmetrical parameters are better for 

the CLINAC. 

Since the results of the comparison of the manual vs. software measurements do not deviate 

significantly comparing CLINAC and Truebeam (and thus, in this case, full- and half resolution 

images) it is safe to say that the software has more or less the same accuracy for both devices. 

Therefore the effect of using half- or full resolution licensed EPIDs on the resolution is negligible, 

which is, like earlier denoted, not in line with the expectations.  

 

 

 

 

 

 

 

Figure 8.6: Comparison of the results of measuring the deviation on asymmetrical field size parameters manually vs. 
with the software for a Truebeam. The first bar for each parameter denoted the results for the 5 x 5 cm² field. The 

second and third bar of each parameter denote the results for the 10 x 10 and 18 x 18 cm² fields respectively. 
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8.3 Reproducibility 
 

8.3.1 Clinac 
 

The results of the reproducibility testing for the CLINAC device with a full resolution licensed 

EPID are summarized in Table 8.2 and Table 8.3. The results are shown in the form of the mean 

deviation in reproducibility plus minus the standard deviation (SD) together with the maximum 

deviation in absolute value.  

Table 8.2: The mean deviation, SD and maximum deviation in reproducibility in performing the circle detection algorithm using a 
CLINAC linear accelerator (N=8). 

 Reproducibility circle detection - CLINAC 

 Lateral Longitudinal Vertical 

Mean deviation ± SD 0,144 ± 0,030 mm 0,051 ± 0,037 mm 0,074 ± 0,034 mm 

Max. deviation 0,169 mm 0,133 mm 0,124 mm 

 

Table 8.3: The mean deviation, SD and maximum deviation in reproducibility in computing the radiation isocentre using a CLINAC 
linear accelerator (N=8). 

 Reproducibility radiation isocentre detection - CLINAC 

 Lateral Longitudinal Vertical 

Mean deviation ± SD 0,069 ± 0,031 mm 0,059 ± 0,026 mm 0,008 ± 0,006 mm 

Max. deviation 0,115 mm 0,096 mm 0,013 mm 

 

The capacity to obtain the same locations correctly on repeated images for both the circle- and 

radiation isocentre detection algorithm is, according to Table 8.2 and Table 8.3, very appreciable. 

Finally, the overall mean deviations in reproducibility in all three dimensions are 0,080 mm ± 0,051 

mm and 0,053 mm ± 0,034 mm for the circle- and radiation isocentre detection respectively. The 

radiation isocentre detection based on the field edge algorithm7 appears to have the better ability to 

locate the same positions on reproduced images for the Varian CLINAC accelerator. This also 

confirms the decision to reject the alternative field edge algorithm of section 7.1.7 because it relies on 

the same function regionprops8 as the circle detection algorithm.  

 

 

 

 

 

 

 

 

                                                      
7 The field edge algorithm is discussed in section 7.1.2. 
8 The function regionprops is discussed in section 7.1.5. 
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8.3.2 Truebeam 
 

The results of the reproducibility testing for the Varian Truebeam accelerator are represented in the 

same fashion as those of the CLINAC. These results, shown in Table 8.4 and Table 8.5, are more or 

less equivalent to these of the CLINAC and show even a slightly better performance in 

reproducibility for the circle detection algorithm. This is not in line with the expectations because 

the images acquired from the Truebeam have only half the resolution of the images acquired at a 

CLINAC. This means the circle detection algorithm has 4 times as much pixels on a CLINAC image 

over which it can compute the centre of mass of the circle in comparison to a Truebeam image. In 

other words, one could expect that the circle detection algorithm has a better reproducibility for 

CLINAC images in comparison to Truebeam images.  

 

Table 8.4: The mean deviation, SD and maximum deviation in reproducibility in performing the circle detection algorithm using a 
Truebeam linear accelerator (N=8). 

 Reproducibility circle detection - Truebeam 

 Lateral Longitudinal Vertical 

Mean deviation ± SD 0,040 ± 0,046 mm 0,050 ± 0,042 mm 0,030 ± 0,040 mm 

Max. deviation 0,080 mm 0,089 mm 0,081 mm 

 

 

Table 8.5: The mean deviation, SD and maximum deviation in reproducibility in computing the radiation isocentre using a Truebeam 
linear accelerator (N=8). 

 Reproducibility radiation isocentre detection - Truebeam 

 Lateral Longitudinal Vertical 

Mean deviation ± SD 0,088 ± 0,015 mm 0,014 ± 0,010 mm 0,019 ± 0,010 mm 

Max. deviation 0,100 mm 0,027 mm 0,023 mm 

 

The overall mean deviations in reproducibility in all three dimensions for Truebeam devices are 

0,049 mm ± 0,041 mm and 0,037 ± 0,038 mm for the circle- and radiation isocentre detection 

respectively. Both values are better than those for CLINAC devices which is, like already denoted, 

against the expectations. But again the capacity to obtain the exact same location on repeated images 

is better for the radiation isocentre detection algorithm.  
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9 Conclusions 
 

The application developed for the evaluation of the images acquired during the periodic mechanical 

QA procedure needs 2 minutes and 45 seconds to finish this analysis. The time needed to perform the 

same analysis manually is 20 – 30 minutes which implies an improvement in timing considerations 

of, at least, 1000 %.  

The accuracy of the three main algorithms was evaluated by comparing the software measurements 

with those measured manually. The full- and half resolution images were acquired using a Varian 

Truebeam and CLINAC accelerator respectively. The computation of the distance between the 

radiation- and mechanical isocentre using the software deviates averagely 0,229 mm and 0,146 mm 

from those acquired manually for full- and half resolution images respectively. Subsequently, the 

mean deviations of the measurements for the computation of the deviations on the table position 

indicators amount 0,194 mm and 0,255 mm, again for full- and half resolution images respectively. 

Furthermore, the asymmetrical field size parameters of square, open fields of full resolution images 

can be computed within 0,273 mm (average value) of the manually measured value. For images with 

half resolution this mean deviation amounts 0,240 mm.  

The circle detection algorithm used for the detection of the mechanical isocentre has a mean 

reproducibility in three dimensions of 0,080 mm ± 0,051 mm regarding full resolution images. 

Analysing half resolution images with the same algorithm shows a mean reproducibility of 0,049 mm 

± 0,041 mm (averaged over all three dimensions). Finally, the radiation isocentre can be detected 

with a mean reproducibility, in three dimensions, of 0,053 ± 0,034 mm and 0,037 ± 0,038 mm for 

full- and half resolution images respectively.  

Since there were no significant differences in performance between half- and full resolution images 

for the accuracy- as well as the reproducibility tests the computations are assumed to be independent 

of the resolution in the range of [384 x 512 ; 768 x 1024]. The slightly better performance 

measuring half resolution images (acquired with Varian Truebeam) is a little strange but can be due 

to the fact that the Truebeam devices are more recent and accurate in comparison to the Varian 

CLINAC devices. 
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11 Appendices 
 

11.1 Appendix A: periodically mechanical QA protocol of L.O.C.9 
 

Protocol: Mechanische Controle (6-wekelijks) 

Deel 1: In bunker  

Begin de metingen met parameters G = 0°, C = 0°, T = 0°. Zet de jaws volledig open en stel het Iso-Align 
toestel in op de reticel markeringen en SSD = 100 cm. Leg een 2e lock bar onder het Iso-Align en 
controleer met de waterpas of het Iso-Align oppervlak parallel staat met de tafel. 

 Vul in: uitlezing met waterpas op G = 0° 

 Kijk het lichtveld en reticel alignment na. De markeringen van het reticel mogen niet afbuigen op het Iso-Align toestel.  

 
Draai gantry naar G = 90°. 

 Vul in: uitlezing met waterpas op G = 90° 

 Vul in: uitlezing met waterpas op C = 0° 

 
Draai collimator naar C = 90° en 270°. 

 Vul in: uitlezing met waterpas op C = 90° 

 Vul in: uitlezing met waterpas op C = 270°  

 
Draai collimator terug naar C = 0°. Draai nu ook het oppervlak van het Iso-Align toestel loodrecht en stel 
de hoogte in op de longitudinale reticel markering. Draai vervolgens de gantry naar G = 270° en middel 
de hoogte uit. 

 Vul in: uitlezing met waterpas op G = 270° 

 
Draai gantry terug naar G = 315°. 

 Kijk lasers na (links, rechts, sagittaal) op het Iso-Align toestel 
 

Draai het oppervlak van het Iso-Align toestel weer parallel met de tafel. 

 Kijk lasers na (top) op het Iso-Align toestel 
 

Draai gantry verder naar G = 0°.  

 Vul in: SSD na uitmiddelen 

 
Deel 2: Aan bediening 

Roep de patiënt “Mechanische Controle” op. Neem MV single exposures in QA. Doe indien nodig een 
override op de tafelparameters.  
 

 G = 0°, C = 0°, T = 0°, XMLC = 15 cm, YMLC = 15 cm (*)10 

Controleer of er geen distortie van het beeld gebeurd is door een gekende afstand op het Iso-Align toestel 
te meten. Meet de afstand tussen de bolletjes die een 10 x 10 cm² veld aanduiden. 

 Vul in: gemeten lengte van een in werkelijkheid 10 cm lang lijnstuk op het Iso-Align toestel 
 

                                                      
9 This protocol is original courtesy of L.O.C. 
10 Dit beeld wordt verderop in de metingen opnieuw gebruikt door aanduiding van (*) 
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Voer een 2D matching uit in “Offline Review”, namelijk: zet de field edge (= blauwe rechthoek) op de 
randen van het gestraalde veld  Finish . Gebruik de functie “Draw a point” om een punt te plaatsen op 
het groene stralings isocenter (= verschoven graticule centrum). Dit punt zal verderop in de metingen 
gebruikt worden. Ga opnieuw naar 2D matching en druk op “reset anatomy”  Finish. Meet vervolgens 
de rechtstreekse afstand van het stralings isocenter tot het mechanisch isocenter (= bolletje).  

 Vul in: afstand van stralings isocenter tot mechanisch isocenter in referentiecondities  

 
 G = 0°, C = 90°, T = 0°, XMLC = 15 cm, YMLC = 15 cm 
 G = 0°, C = 165°, T = 0°, XMLC = 15 cm, YMLC = 15 cm 
 G = 0°, C = 270°, T = 0°, XMLC = 15 cm, YMLC = 15 cm 
Voer op elk van deze drie beelden een 2D matching uit zoals beschreven bij de eerste test. Vanaf nu is 
het niet langer nodig een punt te plaatsen. Meet de rechtstreekse afstand van het groene stralings 
isocenter tot het mechanisch isocenter. 

 Vul in: afstanden van stralings isocenter tot mechanisch isocenter op variërende collimatorhoeken 

 

 G = 0°, C = 0°, T = 90°, XMLC = 15 cm, YMLC = 15 cm 
 G = 0°, C = 0°, T = 270°, XMLC = 15 cm, YMLC = 15 cm 
Voer op elk van deze twee beelden een 2D matching uit zoals beschreven bij de eerste test. Meet de 
rechtstreekse afstand van het groene stralings isocenter tot het mechanisch isocenter.  

 Vul in: afstanden van stralings isocenter tot mechanisch isocenter op variërende tafelhoeken 

 
Trek vervolgens een lijn door een rij bolletjes (verticaal of horizontaal) in het midden van het beeld. Kijk 
of deze lijn parallel loopt met het stralingsveld (verschoven graticule). Indien niet, meet de hoek tussen 
deze twee lijnen. 

 Vul in: afwijking in hoek van het Iso-Align toestel ten opzichte van het stralingsveld 

 
 G = 180°, C = 0°, T = 0°, XMLC = 15 cm, YMLC = 15 cm 
Voer een 2D matching uit zoals beschreven bij de eerste test. Meet de rechtstreekse afstand van het 
groene stralings isocenter tot het mechanisch isocenter. 

 Vul in: Afstand van stralings isocenter tot mechanisch isocenter op G = 180°  

 

Draai in de bunker het oppervlak van het Iso-Align toestel loodrecht. 

 Vul in: uitlezing met waterpas op G = 180° 

 

Deel 3: Aan bediening 

 G = 90°, C = 90°, T = 0°, XMLC = 15 cm, YMLC = 15 cm 
 G = 90°, C = 0°, T = 0°, XMLC = 15 cm, YMLC = 15 cm 
 G = 90°, C = 270°, T = 0°, XMLC = 15 cm, YMLC = 15 cm 
Voer op elk van deze drie beelden een 2D matching uit zoals beschreven bij de eerste test. Meet de 
rechtstreekse afstand van het groene stralings isocenter tot het mechanisch isocenter. 

 Vul in: Afstanden van stralings isocenter tot mechanisch isocenter op variërende gantryhoeken 

 
 G = 270°, C = 270°, T = 0°, XMLC = 15 cm, YMLC = 15 cm  
 G = 270°, C = 0°, T = 0°, XMLC = 15 cm, YMLC = 15 cm (**)11 

 G = 270°, C = 90°, T = 0°, XMLC = 15 cm, YMLC = 15 cm  
Voer op elk van deze drie beelden een 2D matching uit zoals beschreven bij de eerste test. Meet de 
rechtstreekse afstand van het groene stralings isocenter tot het mechanisch isocenter. 

 Vul in: Afstanden van stralings isocenter tot mechanisch isocenter op variërende gantryhoeken 

 

Zet tafel los en verplaats deze +15 cm verticaal. 
 

 G = 270°, C = 0°, T = 0°, XMLC = 20 cm, YMLC = 20 cm.  

                                                      
11 Dit beeld wordt verderop in de metingen opnieuw gebruikt door aanduiding van (**) 



79 
 

Gebruik de functie “Compare with” in “Offline Review” om dit beeld te vergelijken met het beeld voordat 
de tafel verschoven werd op  G = 270° (**). Verschuif de beelden zodat de overeenkomstige bolletjes op 
mekaar liggen. Meet de verticale verschuiving van het graticule (= verplaatsing van de tafel). 

 Vul in:  verticale verplaatsting van de tafel  
 

Indien er naast een verticale ook een longitudinale verschuiving te zien tussen beide graticules betekent 
dit dat de tafel niet loodrecht bewogen heeft. De longitudinale verschuiving moet kleiner zijn dan 0.26 
cm om binnen de tolerantie van 1° afwijking te blijven.  

 Vul in: longitudinale afwijking van tafelhoek na verticale verplaatsing 
 

Zet tafel los en verplaats deze eerst terug -15 cm verticaal en vervolgens +15 cm longitudinaal. Draai 
het oppervlak van het Iso-Align toestel parallel met de tafel. 
 

 G = 0°, C = 0°, T = 0°, XMLC = 20 cm, YMLC = 20 cm  
Gebruik de functie “Compare with” in “Offline Review” om dit beeld te vergelijken met het beeld voordat 
de tafel verschoven werd op  G = 0° (*). Verschuif de beelden zodat de overeenkomstige bolletjes op 
mekaar liggen. Meet de longitudinale verschuiving van het graticule (= verplaatsing van de tafel). 

 Vul in:  longitudinale verplaatsting van de tafel  
 

Indien er naast een longitudinale ook een laterale verschuiving te zien tussen beide graticules betekent 
dit dat de tafel niet loodrecht bewogen heeft. De laterale verschuiving moet kleiner zijn dan 0.26 cm om 
binnen de tolerantie van 1° afwijking te blijven.  

 Vul in: laterale afwijking van tafelhoek na longitudinale verplaatsing 

 

Zet tafel los en verplaats deze eerst terug -15 cm longitudinaal en vervolgens +15 cm lateraal. 
 

 G = 0°, C = 0°, T = 0°, XMLC = 20 cm, YMLC = 20 cm  
Gebruik de functie “Compare with” in “Offline Review” om dit beeld te vergelijken met het beeld voordat 
de tafel verschoven werd op  G = 0° (*). Verschuif de beelden zodat de overeenkomstige bolletjes op 
mekaar liggen. Meet de laterale verschuiving van het graticule (= verplaatsing van de tafel). 

 Vul in:  laterale verplaatsting van de tafel  
 

Indien er naast een laterale ook een longitudinale verschuiving te zien tussen beide graticules betekent 
dit dat de tafel niet loodrecht bewogen heeft. De longitudinale verschuiving moet kleiner zijn dan 0.26 
cm om binnen de tolerantie van 1° afwijking te blijven.  

 Vul in: longitudinale afwijking van tafelhoek na laterale verplaatsing 

 

Schuif de tafel/Iso-Align toestel volledig weg van de gantry.  
 

 G = 0°, C = 0°, T = 0°, Xjaws = 5 cm, Yjaws = 5 cm 
 G = 0°, C = 0°, T = 0°, Xjaws = 10 cm, Yjaws = 10 cm 
 G = 0°, C = 0°, T = 0°, Xjaws = 18 cm, Yjaws = 18 cm 
Gebruik de functie “Compare with” in “Offline Review” om elk van deze drie beelden te vergelijken met 
het referentiebeeld uit test 1 (*). Deze beelden vind je onder “session timeline”. Zet het onderste 
window/level van elk van deze drie beelden op 50% van de dosis, zodat de effectieve veldgrootte 
overblijft. Gebruik nu het punt (stralings isocenter) dat in test 1 geplaatst werd. Meet nu de afstanden 
van het stralings isocenter tot aan de veldgrenzen in vier richtingen.   

 Vul in: afstand van stralings isocenter tot X1, X2, Y1 en Y2 voor een veldgrootte van 5 x 5 cm² 

 Vul in: afstand van stralings isocenter tot X1, X2, Y1 en Y2 voor een veldgrootte van 10 x 10 cm² 

 Vul in: afstand van stralings isocenter tot X1, X2, Y1 en Y2 voor een veldgrootte van 20 x 20 cm²  
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Deel 4: Aan bediening 

Roep nieuwe patiënt “Aansluiting Controle” op om aansluitingen te controleren. Neem hiervoor 
integrated images met EPID SSD = 100 cm. 
 

 Kwadrant 1: G = 0°, C = 0°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 7.5 cm, Y2 = 0.0 cm 
 Kwadrant 2: G = 0°, C = 0°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 0.0 cm, Y2 = 7.5 cm 
 Kwadrant 3: G = 0°, C = 0°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 7.5 cm, Y2 = 0.0 cm 
 Kwadrant 4: G = 0°, C = 0°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 0.0 cm, Y2 = 7.5 cm 
Creëer in “Portal Dosimetry” een samengesteld beeld (= Create Composite Image) van deze vier beelden. 
Trek dosisprofielen door het samengestelde beeld en meet de dosisverschillen ter hoogte van elk van de 
vier aansluitingen. 

 Vul in: dosisverschillen (∆12, ∆23, ∆34, ∆41) bij over- of onderdosage ter hoogte van de aansluitingen  

 

  Uitbreiding “Aansluiting Controle” (jaarlijks): 

De 6 wekelijkse mechanische controle wordt 1x/jaar uitgebreid met extra velden om aansluitingen 

extra te controleren. Verifieer op het metingen overzicht of deze metingen moeten gebeuren. 

 Kwadrant 1: G = 0°, C = 90°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 7.5 cm, Y2 = 0.0 cm 
 Kwadrant 2: G = 0°, C = 90°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 0.0 cm, Y2 = 7.5 cm 
 Kwadrant 3: G = 0°, C = 90°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 7.5 cm, Y2 = 0.0 cm 
 Kwadrant 4: G = 0°, C = 90°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 0.0 cm, Y2 = 7.5 cm 
Creëer in “Portal Dosimetry” een samengesteld beeld (= Create Composite Image) van deze vier beelden. 
Trek dosisprofielen door het samengestelde beeld en meet de dosisverschillen ter hoogte van elk van de 
vier aansluitingen. 

 Vul in: dosisverschillen (∆12,C90, ∆23, C90, ∆34, C90,, ∆41, C90) bij over- of onderdosage ter hoogte van de aansluitingen  

 

 Kwadrant 1: G = 90°, C = 0°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 7.5 cm, Y2 = 0.0 cm 
 Kwadrant 2: G = 90°, C = 0°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 0.0 cm, Y2 = 7.5 cm 
 Kwadrant 3: G = 90°, C = 0°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 7.5 cm, Y2 = 0.0 cm 
 Kwadrant 4: G = 90°, C = 0°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 0.0 cm, Y2 = 7.5 cm 
Creëer in “Portal Dosimetry” een samengesteld beeld (= Create Composite Image) van deze vier beelden. 
Trek dosisprofielen door het samengestelde beeld en meet de dosisverschillen ter hoogte van elk van de 
vier aansluitingen. 

 Vul in: dosisverschillen (∆12, G90, ∆23, G90, ∆34, G90, ∆41, G90) bij over- of onderdosage ter hoogte van de aansluitingen  

 

 Kwadrant 1: G = 90°, C = 90°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 7.5 cm, Y2 = 0.0 cm 
 Kwadrant 2: G = 90°, C = 90°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 0.0 cm, Y2 = 7.5 cm 
 Kwadrant 3: G = 90°, C = 90°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 7.5 cm, Y2 = 0.0 cm 
 Kwadrant 4: G = 90°, C = 90°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 0.0 cm, Y2 = 7.5 cm 
Creëer in “Portal Dosimetry” een samengesteld beeld (= Create Composite Image) van deze vier beelden. 
Trek dosisprofielen door het samengestelde beeld en meet de dosisverschillen ter hoogte van elk van de 
vier aansluitingen. 

 Vul in: dosisverschillen (∆12,G90,C90, ∆23,G90,C90, ∆34,G90,C90, ∆41,G90,C90) bij over- of onderdosage ter hoogte van de 
aansluitingen  

 
 Kwadrant 1: G = 90°, C = 0°, T = 0°, 6MV 
 Kwadrant 2: G = 90°, C = 0°, T = 0°, 15MV 
Creëer in “Portal Dosimetry” een samengesteld beeld (= Create Composite Image) van deze twee 
beelden. Trek dosisprofielen door het samengestelde beeld en meet de dosisverschillen ter hoogte van 
aansluitingen. 

 Vul in: dosisverschillen (∆6MV, ∆15MV) bij over- of onderdosage ter hoogte van de aansluitingen 
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Mechanische Controle: 6-Wekelijks 

 

Datum:  dinsdag 6 juni 2017 

Toestel:   Clinac 1   Clinac 2   Truebeam 3 

   Clinac 4   Clinac 5 

Uitgevoerd door:  

Klever aangebracht (enkel voor Hasselt):   

Opmerkingen: 
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11.2 Appendix B: source code12 
 

11.2.1 Main file: GUI 

 

function varargout = Mech_Controle_6W(varargin) 

% MECH_CONTROLE_6W MATLAB code for Mech_Controle_6W.fig 

%      MECH_CONTROLE_6W, by itself, creates a new MECH_CONTROLE_6W or raises the existing 

%      singleton*. 

% 

%      H = MECH_CONTROLE_6W returns the handle to a new MECH_CONTROLE_6W or the handle to 

%      the existing singleton*. 

% 

%      MECH_CONTROLE_6W('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in MECH_CONTROLE_6W.M with the given input arguments. 

% 

%      MECH_CONTROLE_6W('Property','Value',...) creates a new MECH_CONTROLE_6W or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before Mech_Controle_6W_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to Mech_Controle_6W_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

 

% Edit the above text to modify the response to help Mech_Controle_6W 

 

% Last Modified by GUIDE v2.5 01-May-2017 20:31:52 

 

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @Mech_Controle_6W_OpeningFcn, ... 

                   'gui_OutputFcn',  @Mech_Controle_6W_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

 

 

% --- Executes just before Mech_Controle_6W is made visible. 

function Mech_Controle_6W_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

                                                      
12 Published with MATLAB® R2016b 
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% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to Mech_Controle_6W (see VARARGIN) 

 

% Choose default command line output for Mech_Controle_6W 

handles.output = hObject; 

 

% Update handles structure 

guidata(hObject, handles); 

set(handles.analysis,'Enable','off'); 

set(handles.openPDF,'Enable','off'); 

global list; 

 

 

 

% --- Outputs from this function are returned to the command line. 

function varargout = Mech_Controle_6W_OutputFcn(hObject, eventdata, handles) 

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Get default command line output from handles structure 

varargout{1} = handles.output; 

 

% -------------------------------------------------------------------- 

function openImages_ClickedCallback(hObject, eventdata, handles) 

% hObject    handle to openImages (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

openFiles;%get the images 

set(hObject, 'Enable', 'off'); 

global list; 

 % questdialog with two options 

                    choice = questdlg(['Were there any mistakes made that could have mixed up 

the order of the timestamps?'] , ... 

                        'Order of timestamps', ... 

                        'Yes','No','No'); 

                    % Handle response 

                    switch choice 

                        case 'Yes' 

                            list = sortImages; %sort the images 

                        case 'No' 

                            list = sortImagesTime; %sort the images on timestamp 

                    end 

 

set(handles.analysis,'Enable','on'); 

 

% --- Executes on button press in analysis. 

function analysis_Callback(hObject, eventdata, handles) 

% hObject    handle to analysis (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global totalImages; 

if (totalImages > 0) 

    set(hObject,'Enable','off'); 

    analysis 

    set(handles.openPDF,'Enable','on'); 

else 
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    msgbox('There are not any DICOM files loaded.'); 

end 

 

% --- Executes on button press in openPDF. 

function openPDF_Callback(hObject, eventdata, handles) 

% hObject    handle to openPDF (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global exportloc; 

if exist(exportloc) 

    open(exportloc); 

else 

    m = msgbox('There were no outputfiles found.'); 

end 

 

% --- Executes on selection change in listbox. 

function listbox_Callback(hObject, eventdata, handles) 

% hObject    handle to listbox (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

 

% --- Executes during object creation, after setting all properties. 

function listbox_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to listbox (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: listbox controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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11.2.2 OpenFiles.m 
 

global path; 

global imageFiles; 

global imageIndex; 

global totalImages; 

 

path = uigetdir; 

%If there is no directory selected, return messagebox 

if(path == 0) 

    msgbox('There were no images selected.'); 

end 

imageFiles = dir([path '\*.dcm']);%The image files are dicomfiles 

 

set(handles.figure1, 'pointer', 'watch'); 

imageIndex = find(~[imageFiles.isdir]); %get image indices 

list = {imageFiles(~[imageFiles.isdir]).name}; %get list with image names 

totalImages = length(imageIndex); %get total amount of images 

set(handles.figure1, 'pointer', 'arrow'); 

 

%Display files in listbox 

set(handles.listbox, 'String', list); 

 

11.2.3 Sort images on timestamp 

 

function [ sortedList ] = sortImagesTime() 

%This function sorts the input image based on the timestamp 

%   The images were required in a certain predefined order. 

%   In order to know which image should undergo which operation, 

%   the images are sorted based on the time stamp in the dicom header. 

%   Output: List of images sorted on time stamp 

 

global path; 

global imageFiles; 

global imageIndex; 

global totalImages; 

 

listPath = cell(totalImages,1); 

listTime = []; 

listSorted = cell(totalImages,1); 

 

if totalImages ~= 19 

    msgbox('There are not exactly 19 images in the directory'); 

    error('There are not exactly 19 images in the directory'); 

end 

 

%Make a list of all the imagefile names and create a time list 

for i = 1 : totalImages 

 

    name = imageFiles(imageIndex(i)).name; %get name of image file 

    imagePath = fullfile(path, name); %initialise the path of the image 

    f = dicomread(imagePath); %Load the dicom file 

    metadata = dicominfo(imagePath);%Load dicom header 

    time = str2num(metadata.(dicomlookup('0008', '0033'))); 
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    listPath{i} = imagePath; 

    listTime = [listTime ; time]; 

 

end 

 

j = 1; 

while size(listTime, 1) >= 1 

    [m, i] = min(listTime);%get value and index of lowest timestamp 

    lowest = listPath{i};%get the name of that file 

    listSorted{j} = lowest;%place in sorted list 

    listTime(i,:) = [];%delete it from time and name list 

    listPath(i) = []; 

    j = j + 1; 

end 

 

sortedList = listSorted; 

 

end 

 

11.2.4 Sort images on properties 

function [ sortedList ] = sortImages() 

%This function sorts the input image based on the machine parameters 

%   The images were required in a certain predefined order. 

%   In order to know which image should undergo which operation, 

%   the images are sorted based on the collimator/gantry and table angles. 

%   output: sorted list of images 

global path; 

global imageFiles; 

global imageIndex; 

global totalImages; 

g0c0t0 = 0; 

g0c90t0 = 0; 

g0c165t0 = 0; 

g0c270t0 = 0; 

g0c0t90 = 0; 

g0c0t270 = 0; 

g180c0t0 = 0; 

g90c90t0 = 0; 

g90c0t0 = 0; 

g90c270t0 = 0; 

g270c270t0 = 0; 

g270c0t0 = 0; 

g270c90t0 = 0; 

vertversch = 0; 

longversch = 0; 

latversch = 0; 

fs5x5 = 0; 

fs10x10 = 0; 

fs18x18 = 0; 

gantry270 = cell(1,1); 

gantry0 = cell(1,1); 

 

%Sort images wheter on RTimage label (Clinac) or G/C/T angles (Truebeam) 

for i = 1 : totalImages 

 

    name = imageFiles(imageIndex(i)).name; %get name of image file 
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    imagePath = fullfile(path, name); %initialise the path of the image 

    f = dicomread(imagePath); %Load the dicom file 

    metadata = dicominfo(imagePath);%Load dicom header 

    header = metadata.(dicomlookup('3002','0002'));%Get RTimageLabel 

    machine = metadata.(dicomlookup('0008', '1010'))%Get machine name 

    c = metadata.(dicomlookup('300a','0120'));%Collimator angle 

    g = metadata.(dicomlookup('300a','011e'));%Gantry angle 

    t = metadata.(dicomlookup('300a','0122'));%table angle 

 

    %Voor CLINAC 

    if contains(machine, 'CLINAC') == 1 || contains(machine, 'clinac') == 1 

 

        %The three field sizes 

        if contains(header, '5x5 VELD-') == 1 

            fs5x5 = imagePath; 

        elseif contains(header, '10x10 VELD-') == 1 

            fs10x10 = imagePath; 

        elseif contains(header, '18x18 VELD-') == 1 

            fs18x18 = imagePath; 

 

        %Difference mech/rad isocenter (13 images) 

        elseif contains(header, 'G0 C0-') == 1 

            g0c0t0 = imagePath; 

        elseif contains(header, 'G0 C90-') == 1 

            g0c90t0 = imagePath; 

        elseif contains(header, 'G0 C165-') == 1 

            g0c165t0 = imagePath; 

        elseif contains(header, 'G0 C270-') == 1 

            g0c270t0 = imagePath; 

        elseif contains(header, 'G0 T90-') == 1 

            g0c0t90 = imagePath; 

        elseif contains(header, 'G0 T270-') == 1 

            g0c0t270 = imagePath; 

        elseif contains(header, 'G180-') == 1 

            g180c0t0 = imagePath; 

        elseif contains(header, 'G90 C90-') == 1 

            g90c90t0 = imagePath; 

        elseif contains(header, 'G90-') == 1 

            g90c0t0 = imagePath; 

        elseif contains(header, 'G90 C270-') == 1 

            g90c270t0 = imagePath; 

        elseif contains(header, 'G270 C270-') == 1 

            g270c270t0 = imagePath; 

        elseif contains(header, 'G270-') == 1 

            g270c0t0 = imagePath; 

        elseif contains(header, 'G270 C90-') == 1 

            g270c90t0 = imagePath; 

 

        %lateral/vertical/longitudinal table motion 

        elseif contains(header, 'G0 LAT 15-') == 1 

            latversch = imagePath; 

        elseif contains(header, 'G0 LNG 15-') == 1 

            longversch = imagePath; 

        elseif contains(header, 'G0 VRT 15-') == 1 || contains(header, 'G270 VRT 15-') == 1 

            vertversch = imagePath; 

        end 

 

 

 

    elseif contains(machine, 'TRUEBEAM') == 1 || contains(machine, 'truebeam') == 1 



88 
 

            %G=0; C=165; T=0 

            if c <= 166 && c >= 164 

                    if (g < 1 || g >= 359) &&  (t <= 1 || t >= 359) 

                        g0c165t0 = imagePath; 

                    elseif (g >= 1 || g <= 359) ||  (t >= 1 || t <= 359) 

                        % Construct a questdlg with two options 

                        choice = questdlg(['The gantry and/or table angles are not equal to 0. 

Instead the gantry angle is ' num2str(g) ' & the table angle is '  num2str(t) '. Would you 

like to go through with this values?'] , ... 

                            'Image G0C165T0', ... 

                            'Yes','No','No'); 

                        % Handle response 

                        switch choice 

                            case 'Yes' 

                                g0c165t0 = imagePath; 

                            case 'No' 

                                error('Image G0C165T0 is not correct'); 

                        end 

                    end 

            end 

 

            %Table angles 90 and 270 (G and C are 0) 

            if t <= 91 && t >= 89 

                if (g < 1 || g >= 359) &&  (c <= 1 || c >= 359) 

                        g0c0t90 = imagePath; 

 

                elseif (g >= 1 || g <= 359) || (c >= 1 || c <= 359) 

                    % Construct a questdlg with two options 

                    choice = questdlg(['The gantry and collimator angles are not equal to 0. 

Instead the gantry angle is ' num2str(g) ' & the collimator angle is '  num2str(c) '. Would 

you like to go through with this value?'] , ... 

                        'Image G0C0T90', ... 

                        'Yes','No','No'); 

                    % Handle response 

                    switch choice 

                        case 'Yes' 

                            g0c0t90 = imagePath; 

                        case 'No' 

                            error('Image G0C0T90 is not correct'); 

                    end 

                end 

 

            elseif t <= 271 && t >= 269 

                if (g < 1 || g >= 359) &&  (c <= 1 || c >= 359) 

                        g0c0t270 = imagePath; 

                elseif (g >= 1 || g <= 359) || (c >= 1 || c <= 359) 

                    % Construct a questdlg with two options 

                    choice = questdlg(['The gantry and collimator angles are not equal to 0. 

Instead the gantry angle is ' num2str(g) ' & the collimator angle is '  num2str(c) '. Would 

you like to go through with this value?'] , ... 

                        'Image G0C0T270', ... 

                        'Yes','No','No'); 

                    % Handle response 

                    switch choice 

                        case 'Yes' 

                            g0c0t270 = imagePath; 

                        case 'No' 

                            error('Image G0C0T270 is not correct'); 

                    end 

                end 
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            end 

 

        %Collimator 90 (G0C90T0; G90C90T0 and G270C90T0) 

        if c <= 91 && c >= 89 

            %G0C90T0 

            if (g < 1 || g >= 359) &&  (t <= 1 || t >= 359) 

                g0c90t0 = imagePath; 

            %G90C90T0 

            elseif g <= 91 && g >= 89 &&  t <= 0.5 && t >= -0.5 

                g90c90t0 = imagePath; 

            %G270C90T0 

            elseif g <= 271 && g >= 269 &&  t <= 0.5 && t >= -0.5 

                g270c90t0 = imagePath; 

            else 

                % Construct a questdlg with two options 

                choice = questdlg([ 'The gantry angle is ' num2str(g) ' The collimator angle 

is' num2str(c) 'and the table angle is ' num2str(t) '. Please select the right image 

assignment.' ] , ... 

                    'There went something wrong.', ... 

                    'G0C90T0','G90C90T0', 'G270C90T0' ,'G0C90T0'); 

                % Handle response 

                switch choice 

                    case 'G0C90T0' 

                        g0c90t0 = imagePath; 

                    case 'G90C90T0' 

                        g90c90t0 = imagePath; 

                    case 'G270C90T0' 

                        g270c90t0 = imagePath; 

                end 

            end 

        end 

 

 

 

        %Collimator 270 (G0C270T0; G90C270T0 and G270C270T0) 

        if c <= 271 && c >= 269 

            %G0C270T0 

            if (g <= 1 || g >= 359) &&  (t <= 1 || t >= 359) 

                g0c270t0 = imagePath; 

 

            %G90C270T0 

            elseif (g <= 91 && g >= 89) &&  (t <= 1 || t >= 359) 

                g90c270t0 = imagePath; 

 

            %G270C270T0 

            elseif (g <= 271 && g >= 269) &&  (t <= 1 || t >= 359) 

                g270c270t0 = imagePath; 

            else 

             % Construct a questdlg with two options 

                choice = questdlg([ 'The gantry angle is ' num2str(g) ' The collimator angle 

is ' num2str(c) 'and the table angle is ' num2str(t) '. Please select the right image 

assignment.' ] , ... 

                    'There went something wrong.', ... 

                    'G0C270T0','G90C270T0', 'G270C270T0' ,'G0C270T0'); 

                % Handle response 

                switch choice 

                    case 'G0C270T0' 

                        g0c270t0 = imagePath; 

                    case 'G90C270T0' 

                        g90c270t0 = imagePath; 
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                    case 'G270C270T0' 

                        g270c270t0 = imagePath; 

                end 

            end 

        end 

 

        %Gantry 90 and 180 (both with C and T zero) 

        if (c <= 1 || c >= 359) && not(g <= 1 || g >= 359) 

                %G90C0T0 

                if (g <= 91 && g >= 89) && (t <= 1 || t >= 359) 

                        g90c0t0 = imagePath; 

                %G180C0T0 

                elseif (g <= 181 && g >= 179) && (t <= 1 || t >= 359) 

                        g180c0t0 = imagePath; 

 

                %G270C0T0 and G270 VRT 15 

                elseif (g <= 271 && g >= 269) && (t <= 1 || t >= 359) 

                       gantry270 = [gantry270 ; imagePath]; 

 

                else 

                    % Construct a questdlg with two options 

                    choice = questdlg([ 'The gantry angle is ' num2str(g) ' The collimator 

angle is ' num2str(c) 'and the table angle is ' num2str(t) '. Please select the right image 

assignment.' ] , ... 

                        'There went something wrong.', ... 

                        'G90C0T0','G180C0T0', 'G270C0T0' ,'G90C0T0'); 

                    % Handle response 

                    switch choice 

                        case 'G900C0T0' 

                            g90c0t0 = imagePath; 

                        case 'G180C0T0' 

                            g180c0t0 = imagePath; 

                        case 'G270C0T0' 

                             gantry270 = [gantry270 ; imagePath]; 

                    end 

                end 

        end 

 

              %Gantry angle 0 and lateral/longitudinal motion and Fieldsizes 

              %(all on G0C0T0) 

 

 

              if (g <= 1 || g >= 359) && (c <= 1 || c >= 359) && (t <= 1 || t >= 359) 

                        gantry0 = [gantry0 ; imagePath]; 

              end 

    end 

end 

 

if contains(machine, 'TRUEBEAM') == 1 || contains(machine, 'truebeam') == 1 

gantry0(1) = []; 

gantry270(1) = []; 

 

%Sort the six images with G = 0 on timestamp 

[rows, cols] = size(gantry0); 

%Check if there are exactly six images in array 

if rows ~= 6 

    error('There are not exactly six images with G = 0°; C = 0°; T = 0°'); 

end 

 

gantry0_time = []; 
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gantry0_sort = cell(1,1); 

 

for i = 1 : rows 

    metadata_g0 = dicominfo(gantry0{i}); 

    time = str2num(metadata_g0.(dicomlookup('0008','0033'))); 

    gantry0_time = [gantry0_time ; time]; 

end 

 

while size(gantry0_time,1) >= 1 

    [m, i] = min(gantry0_time); 

    mini = gantry0{i}; 

    gantry0_sort = [gantry0_sort ; mini]; 

    gantry0_time(i,:) = []; 

    gantry0(i) = []; 

end 

    gantry0_sort(1) = []; 

    j = 1; 

    while j <= rows 

        switch j 

            case 1 

                g0c0t0 = gantry0_sort{j}; 

            case 2 

                longversch = gantry0_sort{j}; 

            case 3 

                latversch = gantry0_sort{j}; 

            case 4 

                fs5x5 = gantry0_sort{j}; 

            case 5 

                fs10x10 = gantry0_sort{j}; 

            case 6 

                fs18x18 = gantry0_sort{j}; 

            otherwise 

                %do nothing 

        end 

        j = j + 1; 

    end 

 

 

%Sort the two images with G = 270 on timestamp 

[row, col] = size(gantry270); 

%Check if there are exactly two images in array 

if row ~= 2 

    error('There are not exactly two images with G = 270°; C = 0° and T = 0°.'); 

end 

%Sort them on timestamp 

metadata_t1 = dicominfo(gantry270{1}); 

g270_t1 = metadata_t1.(dicomlookup('0008','0033')); 

g270_t1 = str2num(g270_t1); 

metadata_t2 = dicominfo(gantry270{2}); 

g270_t2 = metadata_t2.(dicomlookup('0008','0033')); 

g270_t2 = str2num(g270_t2); 

 

if g270_t1 < g270_t2 

    g270c0t0 = gantry270{1}; 

    vertversch = gantry270{2}; 

else 

    g270c0t0 = gantry270{2}; 

    vertversch = gantry270{1}; 

end 

end 
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listSorted = cell(19,1); 

listSorted{1} = g0c0t0; 

listSorted{2} = g0c90t0; 

listSorted{3} = g0c165t0; 

listSorted{4} = g0c270t0; 

listSorted{5} = g0c0t90; 

listSorted{6} = g0c0t270; 

listSorted{7} = g180c0t0; 

listSorted{8} = g90c90t0; 

listSorted{9} = g90c0t0; 

listSorted{10} = g90c270t0; 

listSorted{11} = g270c270t0; 

listSorted{12} = g270c0t0; 

listSorted{13} = g270c90t0; 

listSorted{14} = vertversch; 

listSorted{15} = longversch; 

listSorted{16} = latversch; 

listSorted{17} = fs5x5; 

listSorted{18} = fs10x10; 

listSorted{19} = fs18x18; 

 

sortedList = listSorted; 

 

end 

 

11.2.5 Perform analysis 
 

global path; 

global imageFiles; 

global imageIndex; 

global totalImages; 

global location; 

global list; 

global exportloc; 

 

files = cell(1,totalImages); 

%First divide the list of images into 5 groups 

%1: distance between mech/rad isocenter 

dist = list(1:13); 

%2: Vertical table motion 

vert = list{14}; 

%3: Longitudinal table motion 

long = list{15}; 

%4: Lateral table motion 

lat = list{16}; 

%5 field sizes; 

fs = list(17:19); 

%% Distance between mech/rad isocenter 

w = waitbar(0, 'Calculating distances between mech/rad isocenter'); 

dist_results = struct('i',0,'Gantry',0, 'Collimator', 0, 'Table', 0, 'deltaIso', 0); 

x_iso = []; 

y_iso = []; 

for i = 1 : 13 

    metadata = dicominfo(dist{i}); %get dicom header 
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    c = metadata.(dicomlookup('300a','0120'));%Collimator angle 

    g = metadata.(dicomlookup('300a','011e'));%Gantry angle 

    t = metadata.(dicomlookup('300a','0122'));%table angle 

    try 

    if i == 3 

 

        [deltaIso, xRad, yRad, xMech, yMech, rad, veld] = deltaiso165(dist{i}); %computations 

 

    else 

 

        [deltaIso, xRad, yRad, xMech, yMech, rad, veld] = deltaiso(dist{i}); %computations 

 

    end 

 

 

 

    %create figure without displaying and save a handle 

    fhandle = figure('visible','off'); 

    imshow(dicomread(dist{i}),'DisplayRange',[]); 

 

    %plotting 

    set(0,'CurrentFigure',fhandle), hold on,  plot(xRad, yRad, '*'); %radiationiso 

    %plot field edges 

    set(0,'CurrentFigure',fhandle), hold on,  line([veld(1) veld(3)], [veld(2) veld(4)], 

'Color', 'y'); 

    set(0,'CurrentFigure',fhandle), hold on,  line([veld(5) veld(7)], [veld(6) veld(8)], 

'Color', 'y'); 

    set(0,'CurrentFigure',fhandle), hold on,  line([veld(3) veld(7)], [veld(4) veld(8)], 

'Color', 'y'); 

    set(0,'CurrentFigure',fhandle), hold on,  line([veld(5) veld(1)], [veld(6) veld(2)], 

'Color', 'y'); 

    set(0,'CurrentFigure',fhandle), hold on,  viscircles([xMech yMech], rad); %mechanical iso 

    set(0,'CurrentFigure',fhandle), hold on,  plot(xMech, yMech, '+'); 

    %diagonals 

    set(0,'CurrentFigure',fhandle), hold on,  line([veld(1) veld(7)], [veld(2) veld(8)], 

'Color', 'y'); 

    set(0,'CurrentFigure',fhandle), hold on,  line([veld(5) veld(3)], [veld(6) veld(4)], 

'Color', 'y'); 

 

    %Setting up results 

    inl = sprintf('%d: G: %.2f°, C: %.2f° en T: %.2f°',i,g,c,t); 

    res = sprintf('; distance between mechanical and radiation isocenter = %.3fmm.',deltaIso); 

    result = title({inl;res}, 'Fontsize', 8); 

 

    %Save results 

    dist_results(i).i = i; 

    dist_results(i).Gantry = round(g,0); 

    dist_results(i).Collimator = round(c,0); 

    dist_results(i).Table = round(t,0); 

    dist_results(i).deltaIso = round(deltaIso, 3); 

 

    catch 

        disp('Error occured during the analysis of one of the pictures. Code will continue 

running.'); 

    end 

    %Save radiation iso's for Colli = 0,165,90,270 for averaging 

    switch i 

        case 1 

            x_iso = [x_iso xRad]; 

            y_iso = [y_iso yRad]; 
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            k = dicomread(dist{i}) 

            [Rr, Cc] = size(k); 

        case 2 

            x_iso = [x_iso xRad]; 

            y_iso = [y_iso yRad]; 

        case 3 

            x_iso = [x_iso xRad]; 

            y_iso = [y_iso yRad]; 

        case 4 

            x_iso = [x_iso xRad]; 

            y_iso = [y_iso yRad]; 

        otherwise 

            %do nothing 

    end 

 

    %write to pdf 

    try 

        %Zoom to dot 

        pos = get(fhandle, 'CurrentPoint'); 

        zoom_pos = [xMech yMech]; 

        set(fhandle, 'CurrentPoint', zoom_pos); 

        field = zoom(fhandle); 

        field.Enable = 'on'; 

 

 

        %Make sure one page in pdf is one image 

        fhandle.PaperPositionMode = 'auto'; 

        fig_pos = fhandle.PaperPosition; 

        fhandle.PaperSize = [fig_pos(3) fig_pos(4)]; 

 

 

        %write to pdf 

        pathOut = path; 

        fileOut = sprintf('out%d_v1.pdf', i); 

        loc = fullfile(pathOut, fileOut); 

 

        %Check if file already exists 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); %save as pdf 

        fileattrib(loc, '+h -w', '', 's'); %hidden&read-only 

        files{end+1} = loc; 

 

        %Zoomed in image to pdf 

        set(0, 'CurrentFigure', fhandle), hold on, zoom(20); 

        fileOut = sprintf('out%d_v2.pdf', i); 

        loc = fullfile(pathOut, fileOut); 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); 

        fileattrib(loc, '+h -w', '', 's'); 

        files{end+1} = loc; 

 

    catch ME 

        msgbox(ME.message); 

        msgbox('Error during writing to pdf'); 

        %delete files???? 

        close(w); 

        close(fhandle); 

    end 

    waitbar(i/13); 

    close(fhandle); 
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end 

 

table_dist = struct2table(dist_results); %results to table 

 

%Write table to excel 

waitbar(1, w, 'Writing results to excel'); 

fileOut = 'table.xls'; 

loc = fullfile(pathOut,fileOut); 

deleteifexist(loc); 

writetable(table_dist, loc); 

fileattrib(loc,'+h ','','s'); %hidden maken 

%% Vertical table motion 

waitbar(1, w, 'Calculating lateral table motion.'); 

vert_results = struct('VRT15', 0, 'VRT_dev', 0, 'Long_dev', 0); 

 

try 

    dcm1 = dist{12}; 

    dcm2 = vert; 

    [vertAfw, longVer2, vert_x1, vert_y1, vert_x2, vert_y2, vert_r1, vert_r2] = 

Verticaal(dcm1, dcm2); 

    vertImage = imfuse(dicomread(dcm1), dicomread(dcm2), 'blend', 'Scaling', 'joint'); 

    %Create figure without displaying and save its handle 

    fhandle = figure('visible','off'); 

    imshow(vertImage,'DisplayRange',[]); 

    [R, C] = size(vertImage); 

 

    %plotting 

    set(0,'CurrentFigure',fhandle), hold on,  viscircles([vert_x1 vert_y1], vert_r1); %first 

circle 

    set(0,'CurrentFigure',fhandle), hold on,  viscircles([vert_x2 vert_y2], vert_r2); %second 

circle 

    set(0,'CurrentFigure',fhandle), hold on,  line([vert_x1 vert_x2], [vert_y1 vert_y2]);%join 

with line 

 

    %Setting up results 

    inl = sprintf('The vertical deviation is %.2fmm', vertAfw); 

    res = sprintf('The longitudinal displacement is %.2fmm.',longVer2); 

    result = title({inl;res}, 'Fontsize', 8); 

 

    %Save results 

    lat_results(1).VRT15 = 'done'; 

    lat_results(1).VRT_dev = round(vertAfw,3); 

    lat_results(1).Long_dev = round(longVer2,3); 

 

    catch 

        disp('Error occured during the analysis of one of the pictures. Code will continue 

running.'); 

end 

 

%write to pdf 

    try 

        %Full picture 

        pos = get(fhandle, 'CurrentPoint'); 

        zoom_pos = [vert_x1 vert_y1]; 

        set(fhandle, 'CurrentPoint', zoom_pos); 

        field = zoom(fhandle); 

        field.Enable = 'on'; 
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        %Make sure one page in pdf is one image 

        fhandle.PaperPositionMode = 'auto'; 

        fig_pos = fhandle.PaperPosition; 

        fhandle.PaperSize = [fig_pos(3) fig_pos(4)]; 

 

 

        %write to pdf 

        pathOut = path; 

        fileOut = sprintf('out%d_v1.pdf', 14); 

        loc = fullfile(pathOut, fileOut); 

 

        %Check if file already exists 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); %save as pdf 

        fileattrib(loc, '+h -w', '', 's'); %hidden&read-only 

        files{end+1} = loc; 

 

        %First zoomed in image to pdf 

        set(fhandle, 'CurrentPoint', zoom_pos); 

        set(0, 'CurrentFigure', fhandle), hold on, 

        axis([vert_x1-20 vert_x1+20 vert_y1-20 vert_y2+20]), zoom(4); 

        fileOut = sprintf('out%d_v2.pdf', 14); 

        loc = fullfile(pathOut, fileOut); 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); 

        fileattrib(loc, '+h -w', '', 's'); 

        files{end+1} = loc; 

 

        %Second zoomed in image to pdf 

        set(fhandle, 'CurrentPoint', zoom_pos); 

        set(0, 'CurrentFigure', fhandle), hold on, 

        axis([vert_x2-20 vert_x2+20 vert_y1-20 vert_y2+20]), zoom(4); 

        fileOut = sprintf('out%d_v3.pdf', 14); 

        loc = fullfile(pathOut, fileOut); 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); 

        fileattrib(loc, '+h -w', '', 's'); 

        files{end+1} = loc; 

        close(fhandle); 

    catch ME 

        msgbox(ME.message); 

        msgbox('Error during writing to pdf'); 

        close(fhandle); 

    end 

 

 

table_vert = struct2table(lat_results); %results to table 

 

%Table to excel 

waitbar(1, w, 'Writing results to excel'); 

fileOut = 'table.xls'; 

loc = fullfile(pathOut,fileOut); 

writetable(table_vert,loc,'Sheet',1,'Range','A16') 

fileattrib(loc,'+h ','','s'); %hidden maken 

%% Longitudinal table motion 

waitbar(1, w, 'Calculating longitudinal table motion.'); 

long_results = struct('LNG15',0,'LNG_dev',0, 'Lat_dev', 0); 

 

try 
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    dcm1 = dist{1}; 

    dcm2 = long; 

    [longAfw, latVer, long_x1, long_y1, long_x2, long_y2, long_r1, long_r2] = 

Longitudinaal(dcm1, dcm2); %calculate 

    longImage = imfuse(dicomread(dcm1),dicomread(dcm2),'blend','Scaling','joint'); 

    %create figure without displaying and save a handle 

    fhandle = figure('visible','off'); 

    imshow(longImage,'DisplayRange',[]); 

    [R, C] = size(longImage); 

 

    %plotting 

    set(0,'CurrentFigure',fhandle), hold on,  viscircles([long_x1 long_y1], long_r1); %first 

circle 

    set(0,'CurrentFigure',fhandle), hold on,  viscircles([long_x2 long_y2], long_r2); %second 

circle 

    set(0,'CurrentFigure',fhandle), hold on,  line([long_x1 long_x2], [long_y1 long_y2]);%join 

with line 

 

    %Setting up results 

    inl = sprintf('The longitudinal deviation is %.2fmm', longAfw); 

    res = sprintf('The lateral displacement is %.2fmm.',latVer); 

    result = title({inl;res}, 'Fontsize', 8); 

    %Save results 

    long_results(1).LNG15 = 'done'; 

    long_results(1).LNG_dev = round(longAfw,3); 

    long_results(1).Lat_dev = round(latVer,3); 

 

    catch 

        disp('Error occured during the analysis of one of the pictures. Code will continue 

running.'); 

end 

 

%write to pdf 

    try 

        %Full picture 

        pos = get(fhandle, 'CurrentPoint'); 

        zoom_pos = [C/2 R/2]; 

        set(fhandle, 'CurrentPoint', zoom_pos); 

        field = zoom(fhandle); 

        field.Enable = 'on'; 

 

 

        %Make sure one page in pdf is one image 

        fhandle.PaperPositionMode = 'auto'; 

        fig_pos = fhandle.PaperPosition; 

        fhandle.PaperSize = [fig_pos(3) fig_pos(4)]; 

 

 

        %write to pdf 

        pathOut = path; 

        fileOut = sprintf('out%d_v1.pdf', 15); 

        loc = fullfile(pathOut, fileOut); 

 

        %Check if file already exists 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); %save as pdf 

        fileattrib(loc, '+h -w', '', 's'); %hidden&read-only 

        files{end+1} = loc; 

 

        %First zoomed in image to pdf 
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        set(fhandle, 'CurrentPoint', zoom_pos); 

        set(0, 'CurrentFigure', fhandle), hold on, 

        axis([long_x1-20 long_x1+20 long_y1-20 long_y1+20]), zoom(4); 

        fileOut = sprintf('out%d_v2.pdf', 15); 

        loc = fullfile(pathOut, fileOut); 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); 

        fileattrib(loc, '+h -w', '', 's'); 

        files{end+1} = loc; 

 

        %Second zoomed in image to pdf 

        set(fhandle, 'CurrentPoint', zoom_pos); 

        set(0, 'CurrentFigure', fhandle), hold on, 

        axis([long_x2-20 long_x2+20 long_y2-20 long_y2+20]), zoom(4); 

        fileOut = sprintf('out%d_v3.pdf', 15); 

        loc = fullfile(pathOut, fileOut); 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); 

        fileattrib(loc, '+h -w', '', 's'); 

        files{end+1} = loc; 

        close(fhandle); 

    catch ME 

        msgbox(ME.message); 

        msgbox('Error during writing to pdf'); 

        close(fhandle); 

    end 

 

 

table_long = struct2table(long_results); %results to table 

 

%Table to excel 

waitbar(1, w, 'Writing results to excel'); 

fileOut = 'table.xls'; 

loc = fullfile(pathOut,fileOut); 

writetable(table_long,loc,'Sheet',1,'Range','A19') 

fileattrib(loc,'+h ','','s'); %hidden maken 

%% Lateral table motion 

waitbar(1, w, 'Calculating lateral table motion.'); 

lat_results = struct('LAT15', 0, 'LAT_dev', 0, 'Long_dev', 0); 

 

try 

    dcm1 = dist{1}; 

    dcm2 = lat; 

    [latAfw, longVer, lat_x1, lat_y1, lat_x2, lat_y2, lat_r1, lat_r2] = Lateraal(dcm1, dcm2); 

    latImage = imfuse(dicomread(dcm1), dicomread(dcm2), 'blend', 'Scaling', 'joint'); 

    %Create figure without displaying and save its handle 

    fhandle = figure('visible','off'); 

    imshow(latImage,'DisplayRange',[]); 

    [R, C] = size(latImage); 

 

    %plotting 

    set(0,'CurrentFigure',fhandle), hold on,  viscircles([lat_x1 lat_y1], lat_r1); %first 

circle 

    set(0,'CurrentFigure',fhandle), hold on,  viscircles([lat_x2 lat_y2], lat_r2); %second 

circle 

    set(0,'CurrentFigure',fhandle), hold on,  line([lat_x1 lat_x2], [lat_y1 lat_y2]);%join 

with line 

 

    %Setting up results 
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    inl = sprintf('The lateral deviation is %.2fmm', latAfw); 

    res = sprintf('The longitudinal displacement is %.2fmm.',longVer); 

    result = title({inl;res}, 'Fontsize', 8); 

 

    %Save results 

    lat_results(1).LAT15 = 'done'; 

    lat_results(1).LAT_dev = round(latAfw,3); 

    lat_results(1).Long_dev = round(longVer,3); 

 

    catch 

        disp('Error occured during the analysis of one of the pictures. Code will continue 

running.'); 

end 

 

%write to pdf 

    try 

        %Full picture 

        pos = get(fhandle, 'CurrentPoint'); 

        zoom_pos = [C/2 R/2]; 

        set(fhandle, 'CurrentPoint', zoom_pos); 

        field = zoom(fhandle); 

        field.Enable = 'on'; 

 

 

        %Make sure one page in pdf is one image 

        fhandle.PaperPositionMode = 'auto'; 

        fig_pos = fhandle.PaperPosition; 

        fhandle.PaperSize = [fig_pos(3) fig_pos(4)]; 

 

 

        %write to pdf 

        pathOut = path; 

        fileOut = sprintf('out%d_v1.pdf', 16); 

        loc = fullfile(pathOut, fileOut); 

 

        %Check if file already exists 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); %save as pdf 

        fileattrib(loc, '+h -w', '', 's'); %hidden&read-only 

        files{end+1} = loc; 

 

        %First zoomed in image to pdf 

        set(fhandle, 'CurrentPoint', zoom_pos); 

        set(0, 'CurrentFigure', fhandle), hold on, 

        axis([lat_x1-20 lat_x1+20 lat_y1-20 lat_y1+20]), zoom(4); 

        fileOut = sprintf('out%d_v2.pdf', 16); 

        loc = fullfile(pathOut, fileOut); 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); 

        fileattrib(loc, '+h -w', '', 's'); 

        files{end+1} = loc; 

 

        %Second zoomed in image to pdf 

        set(fhandle, 'CurrentPoint', zoom_pos); 

        set(0, 'CurrentFigure', fhandle), hold on, 

        axis([lat_x2-20 lat_x2+20 lat_y2-20 lat_y2+20]), zoom(4); 

        fileOut = sprintf('out%d_v3.pdf', 16); 

        loc = fullfile(pathOut, fileOut); 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); 
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        fileattrib(loc, '+h -w', '', 's'); 

        files{end+1} = loc; 

        close(fhandle); 

    catch ME 

        msgbox(ME.message); 

        msgbox('Error during writing to pdf'); 

        close(fhandle); 

    end 

 

 

table_lat = struct2table(lat_results); %results to table 

 

%Table to excel 

waitbar(1, w, 'Writing results to excel'); 

fileOut = 'table.xls'; 

loc = fullfile(pathOut,fileOut); 

writetable(table_lat,loc,'Sheet',1,'Range','A22'); 

fileattrib(loc,'+h ','','s'); %hidden maken 

%% Assymetric fieldsizes 

if Rr ~= 384 

x_iso = double(mean(x_iso)); 

y_iso = double(mean(y_iso)); 

else 

x_iso = double(mean(x_iso))*2; 

y_iso = double(mean(y_iso))*2; 

end 

w = waitbar(0, 'Calculating asymmetrical fieldsizes'); 

field_results = struct('field', 0, 'x1_dev', 0, 'x2_dev', 0,'y1_dev',0,'y2_dev',0, 

'x_total_dev', 0, 'y_total_dev', 0); 

for i = 1 : 3 

    try 

    dcm = fs{i}; 

    [fs_x1, fs_x2, fs_xtot, fs_y1, fs_y2, fs_ytot, fs_veld] = Veldgrootte(dcm, x_iso, y_iso); 

    image = dicomread(dcm); 

    [R, C] = size(image); 

    %Create figure without displaying and save its handle 

    fhandle = figure('visible','off'); 

    imshow(image,'DisplayRange',[]); 

 

    %plotting 

    set(0,'CurrentFigure',fhandle), hold on, plot(x_iso, y_iso, '*'); 

    set(0,'CurrentFigure',fhandle), hold on, line([fs_veld(1) fs_veld(3)], [fs_veld(2) 

fs_veld(4)], 'Color', 'y'); 

    set(0,'CurrentFigure',fhandle), hold on, line([fs_veld(5) fs_veld(7)], [fs_veld(6) 

fs_veld(8)], 'Color', 'y'); 

    set(0,'CurrentFigure',fhandle), hold on, line([fs_veld(3) fs_veld(7)], [fs_veld(4) 

fs_veld(8)], 'Color', 'y'); 

    set(0,'CurrentFigure',fhandle), hold on, line([fs_veld(5) fs_veld(1)], [fs_veld(6) 

fs_veld(2)], 'Color', 'y'); 

 

    switch i 

        case 1 

            name = '5x5:'; 

            fsize_a = 25; 

            fsize = 50; 

        case 2 

            name = '10x10:'; 

            fsize_a = 50; 

            fsize = 100; 
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        case 3 

            name = '18x18:'; 

            fsize_a = 90; 

            fsize = 180; 

    end 

 

    %Setting up results 

    inl = sprintf('%s x1 is %.2fmm and x2 is %.2fmm', name ,fs_x1, fs_x2); 

    res = sprintf('y1 is %.2fmm and y2 is %.2fmm',fs_y1, fs_y2); 

    res2 = sprintf('Total field size x: %.2fmm and total field size y: %.2fmm', fs_xtot, 

fs_ytot); 

    result = title({inl;res;res2}, 'Fontsize', 5); 

 

    %Compute deviations 

    fs_x1 = fsize_a - fs_x1; 

    fs_x2 = fsize_a - fs_x2; 

    fs_y1 = fsize_a - fs_y1; 

    fs_y2 = fsize_a - fs_y2; 

    fs_xtot = fsize - fs_xtot; 

    fs_ytot = fsize - fs_ytot; 

 

 

    %Save results 

    field_results(i).field = name; 

    field_results(i).x1_dev = round(fs_x1,3); 

    field_results(i).x2_dev = round(fs_x2,3); 

    field_results(i).y1_dev = round(fs_y1,3); 

    field_results(i).y2_dev = round(fs_y2,3); 

    field_results(i).x_total_dev = round(fs_xtot,3); 

    field_results(i).y_total_dev = round(fs_ytot,3); 

 

    catch 

        disp('Error occured during the analysis of one of the pictures. Code will continue 

running.'); 

    end 

 

    %write to pdf 

    try 

        %Zoom to dot 

        pos = get(fhandle, 'CurrentPoint'); 

        zoom_pos = [x_iso y_iso]; 

        set(fhandle, 'CurrentPoint', zoom_pos); 

        field = zoom(fhandle); 

        field.Enable = 'on'; 

 

 

        %Make sure one page in pdf is one image 

        fhandle.PaperPositionMode = 'auto'; 

        fig_pos = fhandle.PaperPosition; 

        fhandle.PaperSize = [fig_pos(3) fig_pos(4)]; 

 

 

        %write to pdf 

        pathOut = path; 

        fileOut = sprintf('out%d_v1.pdf', i+16); 

        loc = fullfile(pathOut, fileOut); 

 

        %Check if file already exists 

        deleteifexist(loc); 

        saveas(fhandle, loc, 'pdf'); %save as pdf 
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        fileattrib(loc, '+h -w', '', 's'); %hidden&read-only 

        files{end+1} = loc; 

 

    catch ME 

        msgbox(ME.message); 

        msgbox('Error during writing to pdf'); 

        close(w); 

        close(fhandle); 

    end 

    waitbar(i/3); 

    close(fhandle); 

end 

 

table_field = struct2table(field_results); %results to table 

 

%Table to excel 

waitbar(1, w, 'Writing results to excel'); 

fileOut = 'table.xls'; 

loc = fullfile(pathOut,fileOut); 

writetable(table_field,loc,'Sheet',1,'Range','A25') 

fileattrib(loc,'+h ','','s'); %hidden maken 

%% Convert individual PDFs to one PDF (gohstscript needed) 

Outputfile = 'Mechanische_QA_6W.pdf'; %Create output file 

exportloc = fullfile(pathOut,Outputfile); 

try 

    hExcel = actxserver('Excel.Application'); %Start excel 

    hWorkbook = hExcel.Workbooks.Open(loc); %Open excel table 

    hWorksheet = hWorkbook.Sheets.Item(1); 

    deleteifexist(exportloc); 

    hWorksheet.ExportAsFixedFormat('xlTypePDF', exportloc); 

 

    append_pdfs(exportloc, files{:}); %Fuse all the PDFs in one file 

 

    %Delete all other pdf's & excel files 

    for k = 1 : length(files) 

        delete(files{k}); 

    end 

    %Close excel 

    hWorkbook.Save; 

    Quit(hExcel); 

    delete(hExcel); 

    delete(fullfile(pathOut,'table.xls')); %Excel tabel verwijderen 

catch ME 

    msgbox(ME.message); 

    msgbox('Error: writing to PDF'); 

    %Close excel 

    hWorkbook.Save; 

    Quit(hExcel); 

    delete(hExcel); 

    %Delete Files 

    delete(fullfile(pathOut,'table.xls')); 

    for k=1:length(files) 

        delete(files{k}); 

    end 

    close(w); 

    error('Error: writing to PDF'); 

end 
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%Close waitbar 

close(w); 

 

%Messagebox when analysis is done 

bericht = sprintf('Analysis done'); 

 

msgbox(bericht); 

 

11.2.6 Distance between mechanical- and radiation isocentre 

function [ deltaiso, x_straliso, y_straliso, x_mechiso, y_mechiso, radius, veld ] = deltaiso( 

dcm ) 

%This function detects the radiation and mechanical isocenter 

%Afterwards it computes the distance between both 

%input: the dicom image 

%output: distance between both iso's, the radiation and mechanical iso, 

%        radius of detected circle and field parameters for plotting 

dicom = dcm; 

g = dicomread(dicom); 

f = medfilt2(g, 'symmetric');%noise removal 

g_med = imadjust(f,stretchlim(f),[]);%contrast stretching 

 

%Size of the image (resolution) 

[R, C] = size(f); 

 

%Convert image to class uint16 

o_u16 = uint16(g_med); 

 

%Conversionfactor for distance computation (mm per pixel) 

metadata = dicominfo(dicom); 

conversiefactor = metadata.ImagePlanePixelSpacing(1) * (metadata.RadiationMachineSAD / 

metadata.RTImageSID); 

%Find left field edge (splitted up in two to avoid crossing one of the 

%dots in the image, which could disturb the computation) 

[ x_links1, y_links1 ] = veldrand_recht(o_u16, [C/3.5 C/6], R/3.5, R/2.1, 1); 

 

[ x_links2, y_links2 ] = veldrand_recht(o_u16, [C/3.5 C/6], R/1.9, 2.5*R/3.5, 1); 

%Fuse datasets and remove outliers 

x_links3 = [x_links1 x_links2]; 

    x_mul = mean(x_links3); 

    stdevl = std(x_links3); 

    indl = find(abs(x_links3)<(x_mul - 3*stdevl)); 

    x_links3(indl) = []; 

    x_links4 = x_links3; 

    ind2l = find(abs(x_links4)>(x_mul + 3*stdevl)); 

    x_links4(ind2l) = []; 

    x_links = x_links4; 

y_links3 = [y_links1 y_links2]; 

    y_links3(indl) = []; 

    y_links3(ind2l) = []; 

    y_links = y_links3; 

p_links = polyfit(y_links,x_links,1);%Fit function through points 

syms X ; 

yfit_links(X) = p_links(1)*X + p_links(2); 

yfit_linksinv(X) = finverse(yfit_links(X)); 
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%Find right field edge (splitted up in two to avoid crossing one of the 

%dots in the image, which could disturb the computation) 

[ x_rechts1, y_rechts1 ] = veldrand_recht(o_u16, [2.5*C/3.5 5*C/6], R/3.5, R/2.1, 0); 

 

[ x_rechts2, y_rechts2 ] = veldrand_recht(o_u16, [2.5*C/3.5 5*C/6], R/1.9, 2.5*R/3.5, 0); 

%Fuse datasets and remove outliers 

x_rechts3 = [x_rechts1 x_rechts2]; 

    x_mur = mean(x_rechts3); 

    stdevr = std(x_rechts3); 

    indr = find(abs(x_rechts3)<(x_mur - 3*stdevr)); 

    x_rechts3(indr) = []; 

    x_rechts4 = x_rechts3; 

    ind2r = find(abs(x_rechts4)>(x_mur + 3*stdevr)); 

    x_rechts4(ind2r) = []; 

    x_rechts = x_rechts4; 

y_rechts3 = [y_rechts1 y_rechts2]; 

    y_rechts3(indr) = []; 

    y_rechts3(ind2r) = []; 

    y_rechts = y_rechts3; 

p_rechts = polyfit(y_rechts,x_rechts,1); %fit function through points 

yfit_rechts(X) = p_rechts(1)*X + p_rechts(2); 

yfit_rechtsinv(X) = finverse(yfit_rechts(X)); 

 

%Find top field edge (splitted up in two to avoid crossing one of the 

%dots in the image, which could disturb the computation) 

[x_boven1, y_boven1] = veldrand_liggend(o_u16, [R/10 R/6], C/3, C/2.1, 1); 

 

[x_boven2, y_boven2] = veldrand_liggend(o_u16, [R/10 R/6], C/1.9, 2*C/3, 1); 

 

y_boven3 = [y_boven1 y_boven2]; 

    y_mub = mean(y_boven3); 

    stdevb = std(y_boven3); 

    indb = find(abs(y_boven3)<(y_mub - 3*stdevb)); 

    y_boven3(indb) = []; 

    y_boven4 = y_boven3; 

    ind2b = find(abs(y_boven4)>(y_mub + 3*stdevb)); 

    y_boven4(ind2b) = []; 

    y_boven = y_boven4; 

x_boven3 = [x_boven1 x_boven2]; 

    x_boven3(indb) = []; 

    x_boven3(ind2b) = []; 

    x_boven = x_boven3; 

p_boven = polyfit(x_boven,y_boven,1); 

yfit_boven(X) = p_boven(1)*X + p_boven(2); 

 

%Find bottom field edge (splitted up in two to avoid crossing one of the 

%dots in the image, which could disturb the computation) 

[x_onder1, y_onder1] = veldrand_liggend(o_u16, [9*R/10 5*R/6], C/3, C/2.1, 0); 

 

[x_onder2, y_onder2] = veldrand_liggend(o_u16, [9*R/10 5*R/6], C/1.9, 2*C/3, 0); 

 

y_onder3 = [y_onder1 y_onder2]; 

    y_muo = mean(y_onder3); 

    stdevo = std(y_onder3); 

    indo = find(abs(y_onder3)<(y_muo - 3*stdevo)); 

    y_onder3(indo) = []; 

    y_onder4 = y_onder3; 

    ind2o = find(abs(y_onder4)>(y_muo + 3*stdevo)); 

    y_onder4(ind2o) = []; 
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    y_onder = y_onder4; 

x_onder3 = [x_onder1 x_onder2]; 

    x_onder3(indo) = []; 

    x_onder3(ind2o) = []; 

    x_onder = x_onder3; 

p_onder = polyfit(x_onder,y_onder,1); 

yfit_onder(X) = p_onder(1)*X + p_onder(2); 

 

%Find intersection of field edges 

[x1,y1] = vindSnijpunt(yfit_linksinv, yfit_boven); 

[x2,y2] = vindSnijpunt(yfit_rechtsinv, yfit_boven); 

[x3,y3] = vindSnijpunt(yfit_linksinv, yfit_onder); 

[x4,y4] = vindSnijpunt(yfit_rechtsinv, yfit_onder); 

 

veld = [x1 y1 x2 y2 x3 y3 x4 y4];%save field parameters for plotting 

 

%Compute radiation iso (intersection of diagonals) 

x_straliso = vindSnijpiso_x(x1, y1, x2, y2, x3, y3, x4, y4); 

y_straliso = vindSnijpiso_y(x1, y1, x2, y2, x3, y3, x4, y4) 

%edge detection 

[~, threshold] = edge(o_u16, 'sobel'); 

fudgeFactor = .5; 

BWs = edge(o_u16,'sobel', threshold * fudgeFactor); 

 

%morphological closing 

BWdfill = imclose(BWs, strel('disk', 1)); 

 

se = strel('disk', 1);%set up structure element 

erode = imerode(BWdfill, se);%erosion 

dilate = imdilate(erode, se);%dilation 

 

%Detect all circles and their centroids and radii 

stats = regionprops('table',dilate,'Centroid',... 

    'MajorAxisLength','MinorAxisLength'); 

centers = stats.Centroid;%get centroids 

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);%diameters 

radii = diameters/2;%radii 

[maxRad, ind] = max(radii);%Since there is always one circle detected which 

                           %enveloppes the whole image -> discard this one 

radii(ind) = []; 

centers(ind,:) = []; 

 

mechiso = []; 

zoekcrit = 0.5; 

done = 0; 

it = 0; 

%Iterative process which expands the ROI untill one circle is detected 

while done == 0 

    %Set up ROI 

    r_roi = double(y_straliso); 

    c_roi = double(x_straliso); 

    a = zoekcrit/conversiefactor; 

 

    r_roi_array = [(r_roi)-a ; (r_roi)-a; (r_roi)+a; (r_roi)+a]; 

    c_roi_array = [(c_roi)-a ; (c_roi)+a; (c_roi)+a; (c_roi)-a]; 

    xq = centers(:,1); 

    yq = centers(:,2); 

    in = inpolygon(xq, yq, c_roi_array, r_roi_array); 

    %Find centers in ROI 

    x_mechiso = xq(in); 
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    y_mechiso = yq(in); 

    mechiso = [x_mechiso y_mechiso]; 

    [ro, co] = size(mechiso); 

    if ro == 1 

        done = 1; 

    end 

    if it > 10 

        done = 1; 

    end 

    zoekcrit = zoekcrit*2; 

    it = it + 1; 

end 

 

%Find radius of detected circle 

ind1 = find(xq == x_mechiso); 

ind2 = find(yq == y_mechiso); 

ind = intersect(ind1,ind2); 

radius = radii(ind); 

 

%Compute distance between rad and mech iso (in mm) 

delta_iso = afstand2p(x_mechiso, x_straliso, y_mechiso, y_straliso); 

deltaiso = delta_iso*conversiefactor; 

end 

 

function [ deltaiso, x_straliso, y_straliso, x_mechiso, y_mechiso, radius, veld ] = 

deltaiso165( dcm ) 

%This function detects the radiation and mechanical isocenter (colli = 165) 

%Afterwards it computes the distance between both 

%input: the dicom image 

%output: distance between both iso's, the radiation and mechanical iso, 

%        radius of detected circle and field parameters for plotting 

dicom = dcm; 

g = dicomread(dicom); 

f = medfilt2(g, 'symmetric');%noise removal 

g_med = imadjust(f,stretchlim(f),[]);%contrast stretching 

 

%Size of the image (resolution) 

[R, C] = size(f); 

 

%Convert image to class uint16 

o_u16 = uint16(g_med); 

 

%Conversion factor in mm per pixel 

metadata = dicominfo(dicom); 

conversiefactor = metadata.ImagePlanePixelSpacing(1) * (metadata.RadiationMachineSAD / 

metadata.RTImageSID); 

%Find left field edge 

[ x_links1, y_links1 ] = veldrand_recht(o_u16, [C/3 C/5], R/5, R/2.2, 1); 

 

x_links3 = x_links1; 

    x_mul = mean(x_links3); 

    stdevl = std(x_links3); 

    indl = find(abs(x_links3)<(x_mul - 3*stdevl)); 

    x_links3(indl) = []; 

    x_links4 = x_links3; 
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    ind2l = find(abs(x_links4)>(x_mul + 3*stdevl)); 

    x_links4(ind2l) = []; 

    x_links = x_links4; 

y_links3 = y_links1; 

    y_links3(indl) = []; 

    y_links3(ind2l) = []; 

    y_links = y_links3; 

p_links = polyfit(x_links,y_links,1); 

syms X ; 

yfit_links(X) = p_links(1)*X + p_links(2); 

 

%Find right field edge 

[ x_rechts1, y_rechts1 ] = veldrand_recht(o_u16, [2.3*C/3.5 5*C/6], R/1.8, 3.3*R/4, 0); 

 

x_rechts3 = x_rechts1; 

    x_mur = mean(x_rechts3); 

    stdevr = std(x_rechts3); 

    indr = find(abs(x_rechts3)<(x_mur - 3*stdevr)); 

    x_rechts3(indr) = []; 

    x_rechts4 = x_rechts3; 

    ind2r = find(abs(x_rechts4)>(x_mur + 3*stdevr)); 

    x_rechts4(ind2r) = []; 

    x_rechts = x_rechts4; 

y_rechts3 = y_rechts1; 

    y_rechts3(indr) = []; 

    y_rechts3(ind2r) = []; 

    y_rechts = y_rechts3; 

p_rechts = polyfit(x_rechts,y_rechts,1); 

yfit_rechts(X) = p_rechts(1)*X + p_rechts(2); 

 

%Find top field edge 

[x_boven1, y_boven1] = veldrand_liggend(o_u16, [R/30 R/6], C/3, C/2.1, 1); 

[x_boven2, y_boven2] = veldrand_liggend(o_u16, [R/10 R/4], 1.8*C/3, C/1.32, 1); 

y_boven3 = [y_boven1 y_boven2]; 

    y_mub = mean(y_boven3); 

    stdevb = std(y_boven3); 

    indb = find(abs(y_boven3)<(y_mub - 3*stdevb)); 

    y_boven3(indb) = []; 

    y_boven4 = y_boven3; 

    ind2b = find(abs(y_boven4)>(y_mub + 3*stdevb)); 

    y_boven4(ind2b) = []; 

    y_boven = y_boven4; 

x_boven3 = [x_boven1 x_boven2]; 

    x_boven3(indb) = []; 

    x_boven3(ind2b) = []; 

    x_boven = x_boven3; 

p_boven = polyfit(x_boven,y_boven,1); 

yfit_boven(X) = p_boven(1)*X + p_boven(2); 

 

%Find bottom field edge 

[x_onder1, y_onder1] = veldrand_liggend(o_u16, [9*R/10 3.7*R/5], C/4, C/2.5, 0); 

[x_onder2, y_onder2] = veldrand_liggend(o_u16, [29*R/30 2.5*R/3], C/1.9, 2*C/3, 0); 

y_onder3 = [y_onder1 y_onder2]; 

    y_muo = mean(y_onder3); 

    stdevo = std(y_onder3); 

    indo = find(abs(y_onder3)<(y_muo - 3*stdevo)); 

    y_onder3(indo) = []; 

    y_onder4 = y_onder3; 

    ind2o = find(abs(y_onder4)>(y_muo + 3*stdevo)); 

    y_onder4(ind2o) = []; 
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    y_onder = y_onder4; 

x_onder3 = [x_onder1 x_onder2]; 

    x_onder3(indo) = []; 

    x_onder3(ind2o) = []; 

    x_onder = x_onder3; 

p_onder = polyfit(x_onder,y_onder,1); 

yfit_onder(X) = p_onder(1)*X + p_onder(2); 

 

%Find intersections of field edges 

[x1,y1] = vindSnijpunt(yfit_links, yfit_boven); 

[x2,y2] = vindSnijpunt(yfit_rechts, yfit_boven); 

[x3,y3] = vindSnijpunt(yfit_links, yfit_onder); 

[x4,y4] = vindSnijpunt(yfit_rechts, yfit_onder); 

 

veld = [x1 y1 x2 y2 x3 y3 x4 y4];%save field parameters for plotting 

 

%Find intersection of diagonals (= radiation isocenter) 

x_straliso = vindSnijpiso_x(x1, y1, x2, y2, x3, y3, x4, y4); 

y_straliso = vindSnijpiso_y(x1, y1, x2, y2, x3, y3, x4, y4); 

%edge detection 

[~, threshold] = edge(f, 'sobel'); 

fudgeFactor = .5; 

BWs = edge(f,'sobel', threshold * fudgeFactor); 

 

%Morphological closing 

BWdfill = imclose(BWs, strel('disk', 1)); 

 

se = strel('disk', 1);%set up structering element 

erode = imerode(BWdfill, se);%erosion 

dilate = imdilate(erode, se);%dilation 

 

%Detect all circles and their centroids and radii 

stats = regionprops('table',dilate,'Centroid',... 

    'MajorAxisLength','MinorAxisLength'); 

centers = stats.Centroid;%get centroids 

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);%diameters 

radii = diameters/2;%radii 

[maxRad, ind] = max(radii);%discard the biggest circle 

radii(ind) = []; 

centers(ind,:) = []; 

 

mechiso = []; 

zoekcrit = 0.5; 

done = 0; 

it = 0; 

%Iterative process which expands the ROI untill one circle is detected 

while done == 0 

    %Set up ROI 

    r_roi = double(y_straliso); 

    c_roi = double(x_straliso); 

    a = zoekcrit/conversiefactor; 

 

    r_roi_array = [(r_roi)-a ; (r_roi)-a; (r_roi)+a; (r_roi)+a]; 

    c_roi_array = [(c_roi)-a ; (c_roi)+a; (c_roi)+a; (c_roi)-a]; 

    xq = centers(:,1); 

    yq = centers(:,2); 

    in = inpolygon(xq, yq, c_roi_array, r_roi_array); 

    %Find centers in ROI 

    x_mechiso = xq(in); 

    y_mechiso = yq(in); 



109 
 

    mechiso = [x_mechiso y_mechiso]; 

    [ro, co] = size(mechiso); 

    if ro == 1 

        done = 1; 

    end 

    if it > 10 

        done = 1; 

    end 

    zoekcrit = zoekcrit*2; 

    it = it + 1; 

end 

 

%Find radius of detected circle 

ind1 = find(xq == x_mechiso); 

ind2 = find(yq == y_mechiso); 

ind = intersect(ind1,ind2); 

radius = radii(ind); 

 

%Compute distance between rad/mech isocenter in mm 

delta_iso = afstand2p(x_mechiso, x_straliso, y_mechiso, y_straliso); 

deltaiso = delta_iso*conversiefactor; 

end 

 

11.2.7 Field edge algorithm (horizontal and vertical) 

function [x_waarden, y_waarden] = veldrand_liggend(I, yv, xk1, xk2,reverse) 

%Function to search horizontal field-edges 

%Inputs: the input image, yv = length of profiles 

%        xk1 & xk2 = begin en end of the moving profiles 

%        reverse = 1 for top edge and 0 for bottom edge 

%Output: The points that are defining the field edge 

 

f = I; 

y_prof = yv; 

[R,C] = size(f); 

minimum = double(min(min(f)));%get min & max intensity value 

maximum = double(max(max(f))); 

range = [minimum:maximum]; 

val = double(median(range)); %get intensity value of fwhm 

y_values = [];%initialize the output arrays 

x_values = []; 

 

%Iterative process 

for k = xk1 : xk2 

    [cx,cy,c] = improfile(f, [k k], y_prof, 100); %create an intensity profile 

    if reverse == 1 %flip arrays if reverse = 1 

        cx = flip(cx); 

        cy = flip(cy); 

        c = flip(c); 

    end 

    x_values = [x_values cx(1)];%add x-value to output array 

    C = c.'; %transpose c 

 

    [Verschil index] = min(abs(C-val)); %find smallest difference from VAL and it's index. 

    i = index; 

    c_w1 = C(i); %Get the intensity value 
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    teller = 0; 

    indices = [0]; 

 

    %Check if this value appears more than one time in a row and how many 

    while C(index) == C(index+1) 

        teller = teller + 1; 

        indices = [indices teller]; 

        index = index + 1; 

    end 

 

    %Get al the corresponding y-values and compute mean value 

    y_tot = 0; 

    for k = 1 : teller+1 

        y_tot = y_tot + cy(i+indices(k)); 

    end 

    y_gem1 = y_tot/(teller+1); 

 

    %Find a partner to interpolate to VAL 

    if c_w1 ~= val && c_w1 < val %if the found value is greater than VAL 

                                %we have to find a partner smaller than VAL 

        index2 = i - 1; 

        t = 0; 

        indic = [0]; 

        i2 = index2; 

 

        %Check if partner appears more than one time in a row and how many 

        while C(index2) == C(index2-1) 

            t = t+1; 

            indic = [indic t]; 

            index2 = index2-1; 

        end 

 

        y_tot2 = 0; 

 

        %Find corresponding y-values and compute mean value 

        for k = 1 : t + 1 

            y_tot2 = y_tot2 + cy(i2 - indic(k)); 

        end 

        y_gem2 = y_tot2/(t+1); 

        c_w2 = C(i2); 

 

    elseif c_w1 ~= val && c_w1 > val%if the found value is smaller than VAL 

                                %we have to find a partner greater than VAL 

        index2 = i; 

        t = 0; 

        indic = [0]; 

        %Check if partner appears more than one time in a row and how many 

        while C(index2) == C(index2+1) 

            index2 = index2+1; 

        end 

        i2 = index2 + 1; 

        i_i2 = i2; 

        while C(i2) == C(i2+1) 

            t = t+1; 

            indic = [indic t]; 

            i2 = i2+1; 

        end 

        y_tot2 = 0; 

        %Get corresponding y-values and compute mean 
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        for k = 1 : t+1 

            y_tot2 = y_tot2 + cy(i_i2 + indic(k)); 

        end 

        y_gem2 = y_tot2/(t+1); 

        c_w2 = C(i_i2); 

 

    elseif c_w1 == val %if found value = VAL interpolation is not needed 

        y_gem2 = 0; 

    end 

 

    x_fin = 0; 

    %Interpolate to VAL if needed 

    if c_w1 == val; 

        y_fin = y_gem1; 

    elseif c_w1 ~= val && c_w1 < c_w2 

        x1 = c_w1; 

        x2 = c_w2; 

        y1 = y_gem1; 

        y2 = y_gem2; 

        x = val; 

        y_fin = interpoleer(x1,x2,y1,y2,x); 

    elseif c_w1 ~= val && c_w1 > c_w2 

        x1 = c_w2; 

        x2 = c_w1; 

        y1 = y_gem2; 

        y2 = y_gem1; 

        x = val; 

        y_fin = interpoleer(x1,x2,y1,y2,x); 

    end 

        y_values = [y_values y_fin]; 

end 

 

    %Assign values to output arrays 

    y_waarden = y_values; 

    x_waarden = x_values; 

end 

 

function [ x_waarden, y_waarden ] = veldrand_recht(I, xv, yk1, yk2, reverse) 

%Function to search vertical field-edges 

%Inputs: the input image, xv = length of profile 

%        yk1 & yk2 = begin en end of the moving profiles 

%        reverse = 1 for left edge and 0 for right hand edge 

%Output: The points that are defining the field edge 

 

f = I; 

x_prof = xv; 

[R,C] = size(f); 

minimum = double(min(min(f))); %get min & max intensity value 

maximum = double(max(max(f))); 

range = [minimum:maximum]; 

val = double(median(range)); %get intensity value of fwhm 

x_values = []; %initialize the output arrays 

y_values = []; 

 

%Iterative process 

for k = yk1 : yk2 

    [cx,cy,c] = improfile(f, x_prof, [k k], 100); %create an intensity profile 
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    if reverse == 1 %flip arrays if reverse = 1 

        cx = flip(cx); 

        cy = flip(cy); 

        c = flip(c); 

    end 

    C = c.'; %transpose c 

    y_values = [y_values cy(1)]; %add y-value to output array 

 

    [Verschil index] = min(abs(C-val)); %find smallest difference from VAL and it's index. 

    i = index; 

    c_w1 = C(i); %Get the intensity value 

 

    teller = 0; 

    indices = [0]; 

 

    %Check if this value appears more than one time in a row and how many 

    while C(index) == C(index+1) 

        teller = teller + 1; 

        indices = [indices teller]; 

        index = index + 1; 

    end 

 

    %Get al the corresponding x-values and compute mean value 

    x_tot = 0; 

    for k = 1 : teller+1 

        x_tot = x_tot + cx(i+indices(k)); 

    end 

    x_gem1 = x_tot/(teller+1); 

 

 

    %Find a partner to interpolate to VAL 

    if c_w1 ~= val && c_w1 > val %if the found value is greater than VAL 

                                %we have to find a partner smaller than VAL 

        index2 = i - 1; 

        t = 0; 

        indic = [0]; 

        i2 = index2; 

        %Check if partner appears more than one time in a row and how many 

        while C(index2) == C(index2-1) 

            t = t+1; 

            indic = [indic t]; 

            index2 = index2-1; 

        end 

 

        x_tot2 = 0; 

 

        %Find corresponding x-values and compute mean value 

        for k = 1 : t + 1 

            x_tot2 = x_tot2 + cx(i2 - indic(k)); 

        end 

        x_gem2 = x_tot2/(t+1); 

        c_w2 = C(i2); 

 

    elseif c_w1 ~= val && c_w1 < val%if the found value is smaller than VAL 

                                %we have to find a partner greater than VAL 

 

        index2 = i; 

        t = 0; 

        indic = [0]; 

        %Check if partner appears more than one time in a row and how many 
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        while C(index2) == C(index2+1) 

            index2 = index2+1; 

        end 

        i2 = index2 + 1; 

        i_i2 = i2; 

 

        while C(i2) == C(i2+1) 

            t = t+1; 

            indic = [indic t]; 

            i2 = i2+1; 

        end 

        x_tot2 = 0; 

        %Get corresponding x-values and compute mean 

        for k = 1 : t+1 

            x_tot2 = x_tot2 + cx(i_i2 + indic(k)); 

        end 

        x_gem2 = x_tot2/(t+1); 

        c_w2 = C(i_i2); 

    %If the found value = VAL we don't have to interpolate 

    elseif c_w1 == val 

        x_gem2 = 0; 

    end 

 

    %Interpolate to VAL 

    x_fin = 0; 

    if c_w1 == val; 

        x_fin = x_gem1; 

    elseif c_w1 ~= val && c_w1 < c_w2 

        x1 = c_w1; 

        x2 = c_w2; 

        y1 = x_gem1; 

        y2 = x_gem2; 

        x = val; 

        x_fin = interpoleer(x1,x2,y1,y2,x); 

    elseif c_w1 ~= val && c_w1 > c_w2 

        x1 = c_w2; 

        x2 = c_w1; 

        y1 = x_gem2; 

        y2 = x_gem1; 

        x = val; 

        x_fin = interpoleer(x1,x2,y1,y2,x); 

    end 

        x_values = [x_values x_fin]; %add found x-value to output array 

end 

 

%Assign values to the output arrays 

x_waarden = x_values; 

y_waarden = y_values; 

 

end 

 

 

 

 

 



114 
 

11.5.8 Deviations on table position indicators (3 dimensions) 

function [ vertAfw, longVer, x_p1, y_p1, x_p2, y_p2, radius1, radius2 ] = Verticaal( dcm1, 

dcm2 ) 

%Function to calculate the vertical table motion 

%Inputs: original image at G270 and image after 15 cm vertical displacement 

%Outputs: vertical deviation of the motion, the longitudinal displacement 

%of the table, centers and radius of the two detected dots. 

dicom = dcm1; 

dicom2 = dcm2; 

f = dicomread(dicom); 

g = dicomread(dicom2); 

 

metadata1 = dicominfo(dcm1); 

metadata2 = dicominfo(dcm2); 

 

%Get size (resolution) of images 

[R, C] = size(f); 

[R2, C2] = size(g); 

 

%Initialize conversionfactor 

conversiefactor = metadata1.ImagePlanePixelSpacing(1) * (metadata1.RadiationMachineSAD / 

metadata1.RTImageSID); %amount of mm's per pixel 

 

%Fuze both images 

c = imfuse(f,g,'blend','Scaling','joint'); 

%Edge detection 

[~, threshold] = edge(c, 'sobel'); 

fudgeFactor = .5; 

BWs = edge(c,'sobel', threshold * fudgeFactor); 

 

%Morphological closing/erosion/dilation 

BWdfill = imclose(BWs, strel('disk', 1)); 

 

BWdfill = imerode(BWdfill, strel('disk', 1)); 

 

BWdfill = imdilate(BWdfill, strel('disk', 1)); 

 

%Detect all circles/elipses together with their centroids and radii 

stats = regionprops('table',BWdfill,'Centroid',... 

    'MajorAxisLength','MinorAxisLength'); 

centers = stats.Centroid; %get center of circles 

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2); %calculate diameters 

radii = diameters/2; %calc. radii 

radii_boven10 = radii > 10; %Circles with radii > 10 are neglected 

k = find(radii_boven10); 

radii(k) = []; 

centers(k,:) = []; 

 

%Find 1st circle 

%ROI differs for positive vs. negative table motion 

if metadata1.TableTopVerticalPosition < metadata2.TableTopVerticalPosition %(+) 

if C == 512 

    r_roi = 330; 

    c_roi = 147; 

    a = 1; 

elseif C == 1024 

    r_roi = 661; 
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    c_roi = 298; 

    a = 1; % 

end 

elseif metadata1.TableTopVerticalPosition > metadata2.TableTopVerticalPosition %(-) 

if C == 512 

    r_roi = 329; 

    c_roi = 76; 

    a = 1; 

elseif C == 1024 

    r_roi = 329*2; 

    c_roi = 76*2; 

    a = 1; 

end 

end 

 

done = 0; 

it = 0; 

%Iterative process which expands ROI untill one circle is detected 

while done == 0 

    r_roi_array = [(r_roi)-a ; (r_roi)-a; (r_roi)+a; (r_roi)+a]; 

    c_roi_array = [(c_roi)-a ; (c_roi)+a; (c_roi)+a; (c_roi)-a]; 

 

    xq = centers(:,1); 

    yq = centers(:,2); 

    in = inpolygon(xq, yq, c_roi_array, r_roi_array); 

    %Find centers in ROI 

    x_p1 = xq(in); 

    y_p1 = yq(in); 

    center1 = [x_p1 y_p1]; 

    [ro, co] = size(center1); 

    if ro == 1 

        done = 1; 

    end 

    if it > 10 

        done = 1; 

    end 

    a = a*2; 

    it = it + 1; 

end 

 

%Find radius of detected circle (only needed for visualisation purposes) 

ind1 = find(xq == x_p1); 

ind2 = find(yq == y_p1); 

ind = intersect(ind1,ind2); 

radius1 = radii(ind); 

 

%Find 2nd circle 

%ROI differs for positive vs. negative table motion 

if metadata1.TableTopVerticalPosition < metadata2.TableTopVerticalPosition %(+) 

if C == 512 

    r_roi2 = 331; 

    c_roi2 = 433; 

    a2 = 1; 

elseif C == 1024 

    r_roi2 = 660; 

    c_roi2 = 882; 

    a2 = 1; 

end 

elseif metadata1.TableTopVerticalPosition > metadata2.TableTopVerticalPosition %(-) 

if C == 512 
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    r_roi2 = 328; 

    c_roi2 = 364; 

    a2 = 1; 

elseif C == 1024 

    r_roi2 = 328*2; 

    c_roi2 = 364*2; 

    a2 = 1; 

end 

end 

 

done = 0; 

it = 0; 

%Iterative proces which expands ROI untill one circle is detected 

while done == 0 

    r_roi_array2 = [(r_roi2)-a2 ; (r_roi2)-a2; (r_roi2)+a2; (r_roi2)+a2]; 

    c_roi_array2 = [(c_roi2)-a2 ; (c_roi2)+a2; (c_roi2)+a2; (c_roi2)-a2]; 

 

    xq2 = centers(:,1); 

    yq2 = centers(:,2); 

    in = inpolygon(xq2, yq2, c_roi_array2, r_roi_array2); 

    %Find centers in ROI 

    x_p2 = xq2(in); 

    y_p2 = yq2(in); 

    center2 = [x_p2 y_p2]; 

    [ro, co] = size(center2); 

    if ro == 1 

        done = 1; 

    end 

    if it > 10 

        done = 1; 

    end 

    a2 = a2*2; 

    it = it + 1; 

end 

 

%Find radius of detected circle 

ind3 = find(xq2 == x_p2); 

ind4 = find(yq2 == y_p2); 

ind_2 = intersect(ind3,ind4); 

radius2 = radii(ind_2); 

 

%Compute Vertical and longitudinal distance between both centroids of both circles 

if x_p1 > x_p2 

    verschVert = abs(x_p1 - x_p2)*conversiefactor; 

else 

    verschVert = abs(x_p2 - x_p1)*conversiefactor; 

end 

if y_p1 > y_p2 

    longVer = abs(y_p1 - y_p2)*conversiefactor; 

else 

    longVer = abs(y_p2 - y_p1)*conversiefactor; 

end 

vertAfw = 150 - verschVert; %Compute deviation 

end 
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function [ AfwLong, verschLat, x_p1, y_p1, x_p2, y_p2, radius1, radius2 ] = Longitudinaal( 

dcm1, dcm2 ) 

%Function to calculate the longitudinal table motion 

%Inputs: original image at G0 and image after 15 cm LNG displacement 

%Outputs: LNG deviation of the motion  & the lateral displacement 

%of the table, centers and radius of the two detected dots. 

 

dicom = dcm1; 

dicom2 = dcm2; 

f = dicomread(dicom); 

g = dicomread(dicom2); 

metadata1 = dicominfo(dcm1); 

metadata2 = dicominfo(dcm2); 

 

%size of the images 

[R, C] = size(f); 

[R2, C2] = size(g); 

 

%Conversionfactor in mm per pixel 

conversiefactor = metadata1.ImagePlanePixelSpacing(1) * (metadata1.RadiationMachineSAD / 

metadata1.RTImageSID); 

 

%Fuse both images 

c = imfuse(f,g,'blend','Scaling','joint'); 

%Edge detection 

[~, threshold] = edge(c, 'sobel'); 

fudgeFactor = .5; 

BWs = edge(c,'sobel', threshold * fudgeFactor); 

 

%Morphological closing/erosion/dilation 

BWdfill = imclose(BWs, strel('disk', 1)); 

 

BWdfill = imerode(BWdfill, strel('disk', 1)); 

 

BWdfill = imdilate(BWdfill, strel('disk', 1)); 

 

%Detect all circles/elipses together with their centroids and radii 

stats = regionprops('table',BWdfill,'Centroid',... 

    'MajorAxisLength','MinorAxisLength'); 

centers = stats.Centroid;%get centers 

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);%diameters 

radii = diameters/2;%radii 

radii_boven10 = radii > 10;%discard radii greater than 10 

k = find(radii_boven10); 

radii(k) = []; 

centers(k,:) = []; 

 

%Find 1st circle 

%ROI differs for positive vs. negative table motion 

if metadata1.TableTopLongitudinalPosition < metadata2.TableTopLongitudinalPosition %(+) 

if C == 512 

    r_roi = 300; 

    c_roi = 392; 

    a = 1; 

elseif C == 1024 

    r_roi = 14; 

    c_roi = 784; 

    a = 1; 
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end 

elseif metadata1.TableTopLongitudinalPosition > metadata2.TableTopLongitudinalPosition %(-) 

if C == 512 

    r_roi = 85; 

    c_roi = 393; 

    a = 1; 

elseif C == 1024 

    r_roi = 85*2; 

    c_roi = 393*2; 

    a = 1; 

end 

end 

 

done = 0; 

it = 0; 

%Iterative process which expands ROI untill one circle is detected 

while done == 0 

    r_roi_array = [(r_roi)-a ; (r_roi)-a; (r_roi)+a; (r_roi)+a]; 

    c_roi_array = [(c_roi)-a ; (c_roi)+a; (c_roi)+a; (c_roi)-a]; 

 

    xq = centers(:,1); 

    yq = centers(:,2); 

    in = inpolygon(xq, yq, c_roi_array, r_roi_array); 

    %Find centers in ROI 

    x_p1 = xq(in); 

    y_p1 = yq(in); 

    center1 = [x_p1 y_p1]; 

    [ro co] = size(center1); 

    if ro == 1 

        done = 1; 

    end 

    if it > 10 

        done = 1; 

    end 

    a = a*2; 

    it = it+1; 

end 

 

%Find radius of detected circle (only needed for visualisation purposes) 

ind1 = find(xq == x_p1) 

ind2 = find(yq == y_p1) 

ind = intersect(ind1,ind2) 

radius1 = radii(ind) 

 

%Find 2nd circle 

%ROI differs for positive vs. negative table motion 

if metadata1.TableTopLongitudinalPosition < metadata2.TableTopLongitudinalPosition %(+) 

if C == 512 

    r_roi2 = 15; 

    c_roi2 = 392; 

    a2 = 1; 

elseif C == 1024 

    r_roi2 = 596; 

    c_roi2 = 789; 

    a2 = 1; 

end 

elseif metadata1.TableTopLongitudinalPosition > metadata2.TableTopLongitudinalPosition %(-) 

if C == 512 

    r_roi2 = 371; 

    c_roi2 = 393; 
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    a2 = 1; 

elseif C == 1024 

    r_roi2 = 371*2; 

    c_roi2 = 393*2; 

    a2 = 1; 

end 

end 

 

done = 0; 

it = 0; 

%Iterative proces which expands ROI untill one circle is detected 

while done == 0 

    r_roi_array2 = [(r_roi2)-a2 ; (r_roi2)-a2; (r_roi2)+a2; (r_roi2)+a2]; 

    c_roi_array2 = [(c_roi2)-a2 ; (c_roi2)+a2; (c_roi2)+a2; (c_roi2)-a2]; 

 

    xq2 = centers(:,1); 

    yq2 = centers(:,2); 

    in = inpolygon(xq2, yq2, c_roi_array2, r_roi_array2); 

    %Find centers in ROI 

    x_p2 = xq2(in); 

    y_p2 = yq2(in); 

    center2 = [x_p2 y_p2]; 

    [ro, co] = size(center2); 

    if ro == 1 

        done = 1; 

    end 

    if it > 10 

        done = 1; 

    end 

    a2 = a2*2; 

    it = it+1; 

end 

 

%Find radius of detected circle 

ind3 = find(xq2 == x_p2); 

ind4 = find(yq2 == y_p2); 

ind_2 = intersect(ind3,ind4); 

radius2 = radii(ind_2); 

 

%Compute Vertical and longitudinal distance between both centroids of both circles 

if y_p1 > y_p2 

    verschLong = abs(y_p1 - y_p2)*conversiefactor; 

else 

    verschLong = abs(y_p2 - y_p1)*conversiefactor; 

end 

if x_p1 > x_p2 

    verschLat = abs(x_p1 - x_p2)*conversiefactor; 

else 

    verschLat = abs(x_p2 - x_p1)*conversiefactor; 

end 

AfwLong = 150 - verschLong; %Compute deviation 

end 
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function [ afwLat, verschLong, x_p1, y_p1, x_p2, y_p2, radius1, radius2 ] = Lateraal( dcm1, 

dcm2 ) 

%Function to calculate the lateral table motion 

%Inputs: original image at G0 and image after 15 cm LAT displacement 

%Outputs: LAT deviation of the motion & the longitudinal displacement 

%of the table, centers and radius of the two detected dots. 

dicom = dcm1; 

dicom2 = dcm2; 

f = dicomread(dicom); 

g = dicomread(dicom2); 

 

metadata1 = dicominfo(dcm1); 

metadata2 = dicominfo(dcm2); 

 

%size of the images 

[R, C] = size(f); 

[R2, C2] = size(g); 

 

%Conversionfactor in mm per pixel 

conversiefactor = metadata1.ImagePlanePixelSpacing(1) * (metadata1.RadiationMachineSAD / 

metadata1.RTImageSID); 

 

 

%Fuse both images 

c = imfuse(f,g,'blend','Scaling','joint'); 

%Edge detection 

[~, threshold] = edge(c, 'sobel'); 

fudgeFactor = .5; 

BWs = edge(c,'sobel', threshold * fudgeFactor); 

 

%Morphological closing/erosion/dilation 

BWdfill = imclose(BWs, strel('disk', 1)); 

 

BWdfill = imerode(BWdfill, strel('disk', 1)); 

 

BWdfill = imdilate(BWdfill, strel('disk', 1)); 

 

%Detect all circles/elipses together with their centroids and radii 

stats = regionprops('table',BWdfill,'Centroid',... 

    'MajorAxisLength','MinorAxisLength'); 

centers = stats.Centroid; 

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);%diameters 

radii = diameters/2;%radii 

radii_boven10 = radii > 10;%discard radii greater than 10 

k = find(radii_boven10); 

radii(k) = []; 

centers(k,:) = []; 

 

%Find 1st circle 

%ROI differs for positive vs. negative table motion 

if metadata1.TableTopLateralPosition < metadata2.TableTopLateralPosition %(+) 

if C == 512 

    r_roi = 329; 

    c_roi = 147; 

    a = 1; 

elseif C == 1024 

    r_roi = 604; 

    c_roi = 198; 
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    a = 1; 

end 

elseif metadata1.TableTopLateralPosition > metadata2.TableTopLateralPosition %(-) 

if C == 512 

    r_roi = 330; 

    c_roi = 73; 

    a = 1; 

elseif C == 1024 

    r_roi = 330*2; 

    c_roi = 73*2; 

    a = 1; 

end 

end 

 

done = 0; 

it = 0; 

%Iterative process which expands ROI untill one circle is detected 

while done == 0 

    r_roi_array = [(r_roi)-a ; (r_roi)-a; (r_roi)+a; (r_roi)+a]; 

    c_roi_array = [(c_roi)-a ; (c_roi)+a; (c_roi)+a; (c_roi)-a]; 

 

    xq = centers(:,1); 

    yq = centers(:,2); 

    in = inpolygon(xq, yq, c_roi_array, r_roi_array); 

    %Find centers in ROI 

    x_p1 = xq(in); 

    y_p1 = yq(in); 

    center1 = [x_p1 y_p1]; 

    [ro co] = size(center1); 

    if ro == 1 

        done = 1; 

    end 

    if it > 10 

        done = 1; 

    end 

    a = a*2; 

    it = it + 1; 

end 

 

%Find radius of detected circle 

ind1 = find(xq == x_p1); 

ind2 = find(yq == y_p1); 

ind = intersect(ind1,ind2); 

radius1 = radii(ind); 

 

%Find 2nd circle 

%ROI differs for positive vs. negative table motion 

if metadata1.TableTopLateralPosition < metadata2.TableTopLateralPosition %(+) 

if C == 512 

    r_roi2 = 329; 

    c_roi2 = 434; 

    a2 = 1; 

elseif C == 1024 

    r_roi2 = 596; 

    c_roi2 = 789; 

    a2 = 1; 

end 

elseif metadata1.TableTopLateralPosition > metadata2.TableTopLateralPosition %(-) 

if C == 512 

    r_roi2 = 331; 
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    c_roi2 = 361; 

    a2 = 1; 

elseif C == 1024 

    r_roi2 = 331*2; 

    c_roi2 = 361*2; 

    a2 = 1; 

end 

end 

 

done = 0; 

it = 0; 

%Iterative proces which expands ROI untill one circle is detected 

while done == 0 

    r_roi_array2 = [(r_roi2)-a2 ; (r_roi2)-a2; (r_roi2)+a2; (r_roi2)+a2]; 

    c_roi_array2 = [(c_roi2)-a2 ; (c_roi2)+a2; (c_roi2)+a2; (c_roi2)-a2]; 

 

    xq2 = centers(:,1); 

    yq2 = centers(:,2); 

    in = inpolygon(xq2, yq2, c_roi_array2, r_roi_array2); 

    %Find centers in ROI 

    x_p2 = xq2(in); 

    y_p2 = yq2(in); 

    center2 = [x_p2 y_p2]; 

    [ro, co] = size(center2); 

    if ro == 1 

        done = 1; 

    end 

    if it > 10 

        done = 1; 

    end 

    a2 = a2*2; 

    it = it + 1 

end 

 

%Find radius of detected circle 

ind3 = find(xq2 == x_p2); 

ind4 = find(yq2 == y_p2); 

ind_2 = intersect(ind3,ind4); 

radius2 = radii(ind_2); 

 

%Compute Vertical and longitudinal distance between both centroids of both circles 

if y_p1 > y_p2 

    verschLong = abs(y_p1 - y_p2)*conversiefactor; 

else y_p2 > y_p1 

    verschLong = abs(y_p2 - y_p1)*conversiefactor; 

end 

if x_p1 > x_p2 

    verschLat = abs(x_p1 - x_p2)*conversiefactor; 

else 

    verschLat = abs(x_p2 - x_p1)*conversiefactor; 

end 

afwLat = 150 - verschLat; 

end 
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11.2.9 Deviation on asymmetrical field size parameters 

function [ fsx1, fsx2, fsxtot, fsy1, fsy2, fsytot, veld ] = Veldgrootte(dcm, x_stral, y_stral) 

%This function calculates the assymetrical fieldsize 

%Inputs: The dicom image and the radiation isocenter 

%Outputs: Assymetrical fieldsizes x1,x2,y1 and y2 

%         Total fieldsize in x and y direction 

%         veld = nessecary parameters to plot the field 

x_straliso = x_stral; 

y_straliso = y_stral; 

dicom = dcm; 

metadata1 = dicominfo(dcm); 

g = dicomread(dicom); 

f = medfilt2(g, 'symmetric'); %noise removal 

g_med = imadjust(f,stretchlim(f),[]); %Contrast stretching 

 

%Get size of image (resolution) 

[R, C] = size(f); 

 

%Convert class to uint16 

o_u16 = uint16(g_med); 

 

%Conversionfactor for distance measurements (in mm per pixel) 

conversiefactor = metadata1.ImagePlanePixelSpacing(1) * (metadata1.RadiationMachineSAD / 

metadata1.RTImageSID); 

 

%Find left field edge 

[ x_links1, y_links1 ] = veldrand_recht(o_u16, [0 C/2], 115*R/300, 185*R/300, 1); 

 

%Following lines removes outliers from dataset when they are situated 

%further than 3 times a stdev from the mean 

x_links3 = x_links1; 

    x_mul = mean(x_links3);%mean 

    stdevl = std(x_links3);%stdev 

    indl = find(abs(x_links3)<(x_mul - 3*stdevl));%detect outliers 

    x_links3(indl) = [];%remove outliers 

    x_links4 = x_links3; 

    ind2l = find(abs(x_links4)>(x_mul + 3*stdevl)); 

    x_links4(ind2l) = []; 

    x_links = x_links4; 

%Also remove the corresponding y-values 

y_links3 = y_links1; 

    y_links3(indl) = []; 

    y_links3(ind2l) = []; 

    y_links = y_links3; 

%Fit a linear function through the remaining points (X & Y are reversed) 

p_links = polyfit(y_links,x_links,1); 

syms X ; 

yfit_links(X) = p_links(1)*X + p_links(2);%Horizontal fit 

yfit_linksinv(X) = finverse(yfit_links(X));%inverse function yields the 

                                           %recquired vertical fit 

 

%Find right field edge 

[ x_rechts1, y_rechts1 ] = veldrand_recht(o_u16, [C/2 C], 115*R/300, 185*R/300, 0); 

x_rechts3 = x_rechts1; 

    x_mur = mean(x_rechts3); 

    stdevr = std(x_rechts3); 

    indr = find(abs(x_rechts3)<(x_mur - 3*stdevr)); 

    x_rechts3(indr) = []; 
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    x_rechts4 = x_rechts3; 

    ind2r = find(abs(x_rechts4)>(x_mur + 3*stdevr)); 

    x_rechts4(ind2r) = []; 

    x_rechts = x_rechts4; 

y_rechts3 = y_rechts1; 

    y_rechts3(indr) = []; 

    y_rechts3(ind2r) = []; 

    y_rechts = y_rechts3; 

p_rechts = polyfit(y_rechts,x_rechts,1); 

yfit_rechts(X) = p_rechts(1)*X + p_rechts(2); 

yfit_rechtsinv(X) = finverse(yfit_rechts(X)); 

 

%Find top field edge 

[x_boven1, y_boven1] = veldrand_liggend(o_u16, [0 R/2], 123*C/300, 177*C/300, 1); 

y_boven3 = y_boven1; 

    y_mub = mean(y_boven3); 

    stdevb = std(y_boven3); 

    indb = find(abs(y_boven3)<(y_mub - 3*stdevb)); 

    y_boven3(indb) = []; 

    y_boven4 = y_boven3; 

    ind2b = find(abs(y_boven4)>(y_mub + 3*stdevb)); 

    y_boven4(ind2b) = []; 

    y_boven = y_boven4; 

x_boven3 = x_boven1; 

    x_boven3(indb) = []; 

    x_boven3(ind2b) = []; 

    x_boven = x_boven3; 

p_boven = polyfit(x_boven,y_boven,1); 

yfit_boven(X) = p_boven(1)*X + p_boven(2); 

 

%Find bottom field edge 

[x_onder1, y_onder1] = veldrand_liggend(o_u16, [R/2 R], 123*C/300, 177*C/300, 0); 

y_onder3 = y_onder1; 

    y_muo = mean(y_onder3); 

    stdevo = std(y_onder3); 

    indo = find(abs(y_onder3)<(y_muo - 3*stdevo)); 

    y_onder3(indo) = []; 

    y_onder4 = y_onder3; 

    ind2o = find(abs(y_onder4)>(y_muo + 3*stdevo)); 

    y_onder4(ind2o) = []; 

    y_onder = y_onder4; 

x_onder3 = x_onder1; 

    x_onder3(indo) = []; 

    x_onder3(ind2o) = []; 

    x_onder = x_onder3; 

p_onder = polyfit(x_onder,y_onder,1); 

yfit_onder(X) = p_onder(1)*X + p_onder(2); 

 

%Calculate the intersections (corners) of the field edges 

[x1,y1] = vindSnijpunt(yfit_linksinv, yfit_boven); 

[x2,y2] = vindSnijpunt(yfit_rechtsinv, yfit_boven); 

[x3,y3] = vindSnijpunt(yfit_linksinv, yfit_onder); 

[x4,y4] = vindSnijpunt(yfit_rechtsinv, yfit_onder); 

 

veld = [x1 y1 x2 y2 x3 y3 x4 y4]; %Save field corners for visualisation 

 

%Find assymetric fieldsizes in y direction 

[grootte_boven, grootte_onder] = AssymVeldgrootte_y(yfit_boven, yfit_onder, x_straliso, 

y_straliso); 

fsy1 = double(grootte_boven*conversiefactor); 
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fsy2 = double(grootte_onder*conversiefactor); 

fsytot = fsy1 + fsy2; 

 

%Find assymetric fieldsizes in x direction 

[grootte_links ,grootte_rechts] = AssymVeldgrootte_x(yfit_linksinv, yfit_rechtsinv, 

x_straliso, y_straliso); 

fsx1 = grootte_links*conversiefactor; 

fsx2 = grootte_rechts*conversiefactor; 

fsxtot = fsx1 + fsx2; 

 

end 

 

function [ x_links, x_rechts ] = AssymVeldgrootte_x(vgl1, vgl2, x, y) 

%This function computes the assymetrical field size in y direction 

%Input: the two function which define both horizontal field edges 

%       the reference point (averaged radiation isocenter) 

%Output: both assymetrical fieldsizes 

afstand_l = []; 

afstand_r = []; 

 

    syms f(X) 

    f(X) = vgl1; 

    x1 = solve(f(X) == y, X); 

    y1 = y; 

 

    x2 = x; 

    y2 = y; 

 

    syms g(X) 

    g(X) = vgl2; 

    x3 = solve(g(X) == y, X); 

    y3 = y; 

 

 

    afst_l = afstand2p(x1, x2, y1, y2); 

    afst_r = afstand2p(x3, x2, y3, y2); 

 

    afstand_l = [afstand_l afst_l]; 

    afstand_r = [afstand_r afst_r]; 

 

 

x_links = mean(afstand_l); 

x_rechts = mean(afstand_r); 

end 
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function [ y_boven, y_onder ] = AssymVeldgrootte_y(vgl1, vgl2, x, y) 

%This function computes the assymetrical field size in y direction 

%Input: the two function which define both horizontal field edges 

%       the reference point (averaged radiation isocenter) 

%Output: both assymetrical fieldsizes 

afstand_b = []; 

afstand_o = []; 

 

    syms f(X) 

    f(X) = vgl1; 

    x1 = x; 

    y1 = f(x); 

 

    x2 = x; 

    y2 = y; 

 

    syms g(X) 

    g(X) = vgl2; 

    x3 = x; 

    y3 = g(x); 

 

    afst_b = afstand2p(x1, x2, y1, y2); 

    afst_o = afstand2p(x3, x2, y3, y2); 

 

    afstand_b = [afstand_b afst_b]; 

    afstand_o = [afstand_o afst_o]; 

 

 

y_boven = mean(afstand_b); 

y_onder = mean(afstand_o); 

end 

 

11.2.10 Concatenating PDF files13 

%APPEND_PDFS Appends/concatenates multiple PDF files 

% 

% Example: 

%   append_pdfs(output, input1, input2, ...) 

%   append_pdfs(output, input_list{:}) 

%   append_pdfs test.pdf temp1.pdf temp2.pdf 

% 

% This function appends multiple PDF files to an existing PDF file, or 

% concatenates them into a PDF file if the output file doesn't yet exist. 

% 

% This function requires that you have ghostscript installed on your 

% system. Ghostscript can be downloaded from: http://www.ghostscript.com 

% 

% IN: 

%    output - string of output file name (including the extension, .pdf). 

%             If it exists it is appended to; if not, it is created. 

%    input1 - string of an input file name (including the extension, .pdf). 

%             All input files are appended in order. 

%    input_list - cell array list of input file name strings. All input 

%                 files are appended in order. 

                                                      
13 These functions are original courtesy of Oliver Woodford (2011). 
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% Copyright: Oliver Woodford, 2011 

 

% Thanks to Reinhard Knoll for pointing out that appending multiple pdfs in 

% one go is much faster than appending them one at a time. 

 

% Thanks to Michael Teo for reporting the issue of a too long command line. 

% Issue resolved on 5/5/2011, by passing gs a command file. 

 

% Thanks to Martin Wittmann for pointing out the quality issue when 

% appending multiple bitmaps. 

% Issue resolved (to best of my ability) 1/6/2011, using the prepress 

% setting 

 

% 26/02/15: If temp dir is not writable, use the output folder for temp 

%           files when appending (Javier Paredes); sanity check of inputs 

 

function append_pdfs(varargin) 

 

if nargin < 2,  return;  end  % sanity check 

 

% Are we appending or creating a new file 

append = exist(varargin{1}, 'file') == 2; 

output = [tempname '.pdf']; 

try 

    % Ensure that the temp dir is writable (Javier Paredes 26/2/15) 

    fid = fopen(output,'w'); 

    fwrite(fid,1); 

    fclose(fid); 

    delete(output); 

    isTempDirOk = true; 

catch 

    % Temp dir is not writable, so use the output folder 

    [dummy,fname,fext] = fileparts(output); %#ok<ASGLU> 

    fpath = fileparts(varargin{1}); 

    output = fullfile(fpath,[fname fext]); 

    isTempDirOk = false; 

end 

if ~append 

    output = varargin{1}; 

    varargin = varargin(2:end); 

end 

% Create the command file 

if isTempDirOk 

    cmdfile = [tempname '.txt']; 

else 

    cmdfile = fullfile(fpath,[fname '.txt']); 

end 

fh = fopen(cmdfile, 'w'); 

fprintf(fh, '-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="%s" 

-f', output); 

fprintf(fh, ' "%s"', varargin{:}); 

fclose(fh); 

% Call ghostscript 

ghostscript(['@"' cmdfile '"']); 

% Delete the command file 

delete(cmdfile); 

% Rename the file if needed 

if append 

    movefile(output, varargin{1}); 
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end 

end 

 

function varargout = ghostscript(cmd) 

%GHOSTSCRIPT  Calls a local GhostScript executable with the input command 

% 

% Example: 

%   [status result] = ghostscript(cmd) 

% 

% Attempts to locate a ghostscript executable, finally asking the user to 

% specify the directory ghostcript was installed into. The resulting path 

% is stored for future reference. 

% 

% Once found, the executable is called with the input command string. 

% 

% This function requires that you have Ghostscript installed on your 

% system. You can download this from: http://www.ghostscript.com 

% 

% IN: 

%   cmd - Command string to be passed into ghostscript. 

% 

% OUT: 

%   status - 0 iff command ran without problem. 

%   result - Output from ghostscript. 

 

% Copyright: Oliver Woodford, 2009-2015, Yair Altman 2015- 

%{ 

% Thanks to Jonas Dorn for the fix for the title of the uigetdir window on Mac OS. 

% Thanks to Nathan Childress for the fix to default location on 64-bit Windows systems. 

% 27/04/11 - Find 64-bit Ghostscript on Windows. Thanks to Paul Durack and 

%            Shaun Kline for pointing out the issue 

% 04/05/11 - Thanks to David Chorlian for pointing out an alternative 

%            location for gs on linux. 

% 12/12/12 - Add extra executable name on Windows. Thanks to Ratish 

%            Punnoose for highlighting the issue. 

% 28/06/13 - Fix error using GS 9.07 in Linux. Many thanks to Jannick 

%            Steinbring for proposing the fix. 

% 24/10/13 - Fix error using GS 9.07 in Linux. Many thanks to Johannes 

%            for the fix. 

% 23/01/14 - Add full path to ghostscript.txt in warning. Thanks to Koen 

%            Vermeer for raising the issue. 

% 27/02/15 - If Ghostscript croaks, display suggested workarounds 

% 30/03/15 - Improved performance by caching status of GS path check, if ok 

% 14/05/15 - Clarified warning message in case GS path could not be saved 

% 29/05/15 - Avoid cryptic error in case the ghostscipt path cannot be saved (issue #74) 

% 10/11/15 - Custom GS installation webpage for MacOS. Thanks to Andy Hueni via FEX 

%} 

 

    try 

        % Call ghostscript 

        [varargout{1:nargout}] = system([gs_command(gs_path()) cmd]); 

    catch err 

        % Display possible workarounds for Ghostscript croaks 

        url1 = 'https://github.com/altmany/export_fig/issues/12#issuecomment-61467998';  % 

issue #12 

        url2 = 'https://github.com/altmany/export_fig/issues/20#issuecomment-63826270';  % 

issue #20 
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        hg2_str = ''; if using_hg2, hg2_str = ' or Matlab R2014a'; end 

        fprintf(2, 'Ghostscript error. Rolling back to GS 9.10%s may possibly solve this:\n * 

<a href="%s">%s</a> ',hg2_str,url1,url1); 

        if using_hg2 

            fprintf(2, '(GS 9.10)\n * <a href="%s">%s</a> (R2014a)',url2,url2); 

        end 

        fprintf('\n\n'); 

        if ismac || isunix 

            url3 = 'https://github.com/altmany/export_fig/issues/27';  % issue #27 

            fprintf(2, 'Alternatively, this may possibly be due to a font path issue:\n * <a 

href="%s">%s</a>\n\n',url3,url3); 

            % issue #20 

            fpath = which(mfilename); 

            if isempty(fpath), fpath = [mfilename('fullpath') '.m']; end 

            fprintf(2, 'Alternatively, if you are using csh, modify shell_cmd from "export..." 

to "setenv ..."\nat the bottom of <a 

href="matlab:opentoline(''%s'',174)">%s</a>\n\n',fpath,fpath); 

        end 

        rethrow(err); 

    end 

end 

 

function path_ = gs_path 

    % Return a valid path 

    % Start with the currently set path 

    path_ = user_string('ghostscript'); 

    % Check the path works 

    if check_gs_path(path_) 

        return 

    end 

    % Check whether the binary is on the path 

    if ispc 

        bin = {'gswin32c.exe', 'gswin64c.exe', 'gs'}; 

    else 

        bin = {'gs'}; 

    end 

    for a = 1:numel(bin) 

        path_ = bin{a}; 

        if check_store_gs_path(path_) 

            return 

        end 

    end 

    % Search the obvious places 

    if ispc 

        default_location = 'C:\Program Files\gs\'; 

        dir_list = dir(default_location); 

        if isempty(dir_list) 

            default_location = 'C:\Program Files (x86)\gs\'; % Possible location on 64-bit 

systems 

            dir_list = dir(default_location); 

        end 

        executable = {'\bin\gswin32c.exe', '\bin\gswin64c.exe'}; 

        ver_num = 0; 

        % If there are multiple versions, use the newest 

        for a = 1:numel(dir_list) 

            ver_num2 = sscanf(dir_list(a).name, 'gs%g'); 

            if ~isempty(ver_num2) && ver_num2 > ver_num 

                for b = 1:numel(executable) 

                    path2 = [default_location dir_list(a).name executable{b}]; 

                    if exist(path2, 'file') == 2 
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                        path_ = path2; 

                        ver_num = ver_num2; 

                    end 

                end 

            end 

        end 

        if check_store_gs_path(path_) 

            return 

        end 

    else 

        executable = {'/usr/bin/gs', '/usr/local/bin/gs'}; 

        for a = 1:numel(executable) 

            path_ = executable{a}; 

            if check_store_gs_path(path_) 

                return 

            end 

        end 

    end 

    % Ask the user to enter the path 

    while true 

        if strncmp(computer, 'MAC', 3) % Is a Mac 

            % Give separate warning as the uigetdir dialogue box doesn't have a 

            % title 

            uiwait(warndlg('Ghostscript not found. Please locate the program.')) 

        end 

        base = uigetdir('/', 'Ghostcript not found. Please locate the program.'); 

        if isequal(base, 0) 

            % User hit cancel or closed window 

            break; 

        end 

        base = [base filesep]; %#ok<AGROW> 

        bin_dir = {'', ['bin' filesep], ['lib' filesep]}; 

        for a = 1:numel(bin_dir) 

            for b = 1:numel(bin) 

                path_ = [base bin_dir{a} bin{b}]; 

                if exist(path_, 'file') == 2 

                    if check_store_gs_path(path_) 

                        return 

                    end 

                end 

            end 

        end 

    end 

    if ismac 

        error('Ghostscript not found. Have you installed it 

(http://pages.uoregon.edu/koch)?'); 

    else 

        error('Ghostscript not found. Have you installed it from www.ghostscript.com?'); 

    end 

end 

 

function good = check_store_gs_path(path_) 

    % Check the path is valid 

    good = check_gs_path(path_); 

    if ~good 

        return 

    end 

    % Update the current default path to the path found 

    if ~user_string('ghostscript', path_) 

        filename = fullfile(fileparts(which('user_string.m')), '.ignore', 'ghostscript.txt'); 
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        warning('Path to ghostscript installation could not be saved in %s (perhaps a 

permissions issue). You can manually create this file and set its contents to %s, to improve 

performance in future invocations (this warning is safe to ignore).', filename, path_); 

        return 

    end 

end 

 

function good = check_gs_path(path_) 

    persistent isOk 

    if isempty(path_) 

        isOk = false; 

    elseif ~isequal(isOk,true) 

        % Check whether the path is valid 

        [status, message] = system([gs_command(path_) '-h']); %#ok<ASGLU> 

        isOk = status == 0; 

    end 

    good = isOk; 

end 

 

function cmd = gs_command(path_) 

    % Initialize any required system calls before calling ghostscript 

    % TODO: in Unix/Mac, find a way to determine whether to use "export" (bash) or "setenv" 

(csh/tcsh) 

    shell_cmd = ''; 

    if isunix 

        shell_cmd = 'export LD_LIBRARY_PATH=""; '; % Avoids an error on Linux with GS 9.07 

    end 

    if ismac 

        shell_cmd = 'export DYLD_LIBRARY_PATH=""; ';  % Avoids an error on Mac with GS 9.07 

    end 

    % Construct the command string 

    cmd = sprintf('%s"%s" ', shell_cmd, path_); 

end 

 

function string = user_string(string_name, string) 

%USER_STRING  Get/set a user specific string 

% 

% Examples: 

%   string  = user_string(string_name) 

%   isSaved = user_string(string_name, new_string) 

% 

% Function to get and set a string in a system or user specific file. This 

% enables, for example, system specific paths to binaries to be saved. 

% 

% The specified string will be saved in a file named <string_name>.txt, 

% either in a subfolder named .ignore under this file's folder, or in the 

% user's prefdir folder (in case this file's folder is non-writable). 

% 

% IN: 

%   string_name - String containing the name of the string required, which 

%                 sets the filename storing the string: <string_name>.txt 

%   new_string  - The new string to be saved in the <string_name>.txt file 

% 

% OUT: 

%   string  - The currently saved string. Default: '' 

%   isSaved - Boolean indicating whether the save was succesful 
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% Copyright (C) Oliver Woodford 2011-2014, Yair Altman 2015- 

 

% This method of saving paths avoids changing .m files which might be in a 

% version control system. Instead it saves the user dependent paths in 

% separate files with a .txt extension, which need not be checked in to 

% the version control system. Thank you to Jonas Dorn for suggesting this 

% approach. 

 

% 10/01/2013 - Access files in text, not binary mode, as latter can cause 

%              errors. Thanks to Christian for pointing this out. 

% 29/05/2015 - Save file in prefdir if current folder is non-writable (issue #74) 

 

    if ~ischar(string_name) 

        error('string_name must be a string.'); 

    end 

    % Create the full filename 

    fname = [string_name '.txt']; 

    dname = fullfile(fileparts(mfilename('fullpath')), '.ignore'); 

    file_name = fullfile(dname, fname); 

    if nargin > 1 

        % Set string 

        if ~ischar(string) 

            error('new_string must be a string.'); 

        end 

        % Make sure the save directory exists 

        %dname = fileparts(file_name); 

        if ~exist(dname, 'dir') 

            % Create the directory 

            try 

                if ~mkdir(dname) 

                    string = false; 

                    return 

                end 

            catch 

                string = false; 

                return 

            end 

            % Make it hidden 

            try 

                fileattrib(dname, '+h'); 

            catch 

            end 

        end 

        % Write the file 

        fid = fopen(file_name, 'wt'); 

        if fid == -1 

            % file cannot be created/updated - use prefdir if file does not already exist 

            % (if file exists but is simply not writable, don't create a duplicate in prefdir) 

            if ~exist(file_name,'file') 

                file_name = fullfile(prefdir, fname); 

                fid = fopen(file_name, 'wt'); 

            end 

            if fid == -1 

                string = false; 

                return; 

            end 

        end 

        try 

            fprintf(fid, '%s', string); 

        catch 
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            fclose(fid); 

            string = false; 

            return 

        end 

        fclose(fid); 

        string = true; 

    else 

        % Get string 

        fid = fopen(file_name, 'rt'); 

        if fid == -1 

            % file cannot be read, try to read the file in prefdir 

            file_name = fullfile(prefdir, fname); 

            fid = fopen(file_name, 'rt'); 

            if fid == -1 

                string = ''; 

                return 

            end 

        end 

        string = fgetl(fid); 

        fclose(fid); 

    end 

end 

 

%USING_HG2 Determine if the HG2 graphics engine is used 

% 

%   tf = using_hg2(fig) 

% 

%IN: 

%   fig - handle to the figure in question. 

% 

%OUT: 

%   tf - boolean indicating whether the HG2 graphics engine is being used 

%        (true) or not (false). 

 

% 19/06/2015 - Suppress warning in R2015b; cache result for improved performance 

% 06/06/2016 - Fixed issue #156 (bad return value in R2016b) 

% 

%This function is original courtesy of Oliver Woodford, 2011 

 

function tf = using_hg2(fig) 

    persistent tf_cached 

    if isempty(tf_cached) 

        try 

            if nargin < 1,  fig = figure('visible','off');  end 

            oldWarn = warning('off','MATLAB:graphicsversion:GraphicsVersionRemoval'); 

            try 

                % This generates a [supressed] warning in R2015b: 

                tf = ~graphicsversion(fig, 'handlegraphics'); 

            catch 

                tf = ~verLessThan('matlab','8.4');  % =R2014b 

            end 

            warning(oldWarn); 

        catch 

            tf = false; 

        end 

        if nargin < 1,  delete(fig);  end 

        tf_cached = tf; 
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    else 

        tf = tf_cached; 

    end 

end 

 

11.2.11 Other functions 

function [ afstand ] = afstand2p( x1, x2, y1, y2 ) 

%This function computes the distance between two points 

%Input: the two points 

%Output: the distance between both points 

 

afstand = double(sqrt((((x2-x1)^2)+((y2-y1)^2)))); 

 

end 

 

function [] = deleteifexist(fileloc) 

%   Deletes file if it already exists 

%   Input: fileloc = relative path to file 

 

%Set up warning (e.g. if the file is opened MATLAB will deny permission) 

w = warning('error','MATLAB:DELETE:Permission'); 

try 

    if (exist(fileloc, 'file') == 2) 

            delete(fileloc); 

    end 

catch ME 

    error(ME.message); 

end 

warning(w); 

 

end 

 

function [ interp ] = interpoleer( x1, x2, y1, y2, x ) 

%This function linearly interpolates to a target x value 

%input: 2 points to define the function y(x), a target x value 

%output: The interpolated y-value 

interp = y1 + ((y2-y1)/(x2-x1))*(x-x1); 

end 
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function [ xsnijpunt ] = vindSnijpiso_x(P1x, P1y, P2x, P2y, P3x, P3y, P4x, P4y) 

%Finds the y-coordinate of the intersection point of the diagonals that 

%define the radiation isocenter 

%inputs: the four points that define the two diagonals 

%outputs: the y-coordinate of intersection 

syms x; 

y1 = (((P4y-P1y)/(P4x-P1x))*(x-P1x)) + P1y; 

y2 = (((P2y-P3y)/(P2x-P3x))*(x-P3x)) + P3y; 

eqn = y1 == y2; 

xsnijpunt = solve(eqn, x); 

end 

 

function [ ysnijpunt ] = vindSnijpiso_y(P1x, P1y, P2x, P2y, P3x, P3y, P4x, P4y) 

%Finds the y-coordinate of the intersection point of the diagonals that 

%define the radiation isocenter 

%inputs: the four points that define the two diagonals 

%outputs: the y-coordinate of intersection 

syms y; 

x1 = (((P4x-P1x)/(P4y-P1y))*(y-P1y)) + P1x; 

x2 = (((P2x-P3x)/(P2y-P3y))*(y-P3y)) + P3x; 

eqn = x1 == x2; 

ysnijpunt = solve(eqn, y); 

end 

 

function [ x_snijpunt, y_snijpunt ] = vindSnijpunt(vgl1, vgl2) 

%Finds intersection (x,y) of two equations 

%inputs : 2 equations 

%outputs : x&y coordinate of intersection 

syms X 

eqn = vgl1 == vgl2; 

x_snijpunt = solve(eqn, X); 

y_snijpunt = vgl1(x_snijpunt); 

 

end 
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11.3 Appendix C: Example of output file 
 

In this appendix a few pages of the output file are given. An output file always starts with a table on 

the first page which contains a summarize of the results. The following pages contain all the 

processed output images together with a detailed image. The example starts below. It contains one 

example of each operation. 

 

i Gantry Collimat Table deltaIso   

1 0 360 360 0,358   

2 0 90 360 0,719   

3 0 165 360 0,714   

4 0 270 360 0,244   

5 0 360 90 0,533   

6 0 360 270 1,332   

7 180 360 0 1,364   

8 90 90 0 0,939   

9 90 360 0 1,161   

10 90 270 0 1,053   

11 270 270 0 0,952   

12 270 0 0 1,13   

13 270 90 0 1,3   

VRT15 VRT_dev Long_dev    

done -0,425 0,105     

LNG15 LNG_dev Lat_dev     

done 0,41 0,627     

LAT15 LAT_dev Long_dev    

done 0,254 0,261     

field x1_dev x2_dev  y1_dev y2_dev  x_total_dev y_total_dev 

5x5: 0,367 0,257 0,556 0,047 0,623 0,603 

10x10: -0,469 -0,382 0,709 0,488 -0,852 1,197 

18x18: 0,108 0,637 0,645 0,546 0,744 1,191 
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3: G: 0.00°, C: 165.00° en T: 359.96° 
 
; distance between mechanical and radiation isocenter = 0.714mm. 
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3: G: 0.00°, C: 165.00° en T: 359.96° 
 
; distance between mechanical and radiation isocenter = 0.714mm. 
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The vertical deviation is -0.42mm The 

longitudinal displacement is 0.10mm. 
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The vertical deviation is -0.42mm The 

longitudinal displacement is 0.10mm. 
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The vertical deviation is -0.42mm The 

longitudinal displacement is 0.10mm. 
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18x18: x1 is 89.89mm and x2 is 89.36mm y1 

is 89.36mm and y2 is 89.45mm  
Total field size x: 179.26mm and total field size y: 178.81mm 
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