
2016•2017
FACULTEIT INDUSTRIËLE INGENIEURSWETENSCHAPPEN
master in de industriële wetenschappen: nucleaire
technologie

Masterproef
Automatization of mechanical quality assurance of a linac using MATLAB

Promotor :
Prof. dr. Brigitte RENIERS

Promotor :
ing. KENNY GEENS

Copromotor :
MSc. ALEXANDRA JANKELEVITCH

Jelle Smeulders
Scriptie ingediend tot het behalen van de graad van master in de industriële
wetenschappen: nucleaire technologie

Gezamenlijke opleiding Universiteit Hasselt en KU Leuven

 2016•2017
Faculteit Industriële
ingenieurswetenschappen
master in de industriële wetenschappen: nucleaire
technologie

Masterproef
Automatization of mechanical quality assurance of a
linac using MATLAB

Promotor :
Prof. dr. Brigitte RENIERS

Promotor : Copromotor :
ing. KENNY GEENS MSc. ALEXANDRA JANKELEVITCH

Jelle Smeulders
Scriptie ingediend tot het behalen van de graad van master in de industriële
wetenschappen: nucleaire technologie

Acknowledgements

The idea to automatize the periodic mechanical QA analysis was introduced to me by Ir. Marc

Orlandini and Ing. Kenny Geens of Limburgs Oncologisch Centrum (L.O.C.). Together with the

other employees of L.O.C. they introduced me into the workflow of the radiotherapy department of

Jessa hospital (Hasselt). They also guided me, and shared their knowledge with me in order to

successfully accomplish my goal, writing this master’s thesis.

Therefore, I would like to thank everyone who has helped me do this. Above all, I would like to

thank my external and internal promotors, Ing. Kenny Geens and Dr. Brigitte Reniers, for the

continuous support of my master’s thesis, for their patience and the sharing of their knowledge and

experience. Also a special thanks to my external co-promotor MSc. Alexandra Jankelevitch for the

help with the tests and for the rectification of this dissertation.

Furthermore, I would like to thank my fellow students Michiel Darcis and Gert Leurs for pointing

me in the direction of Ghostscript as the solution for the concatenation of individual PDF files. A

final thanks goes to my family and friends for the support throughout the year.

Table of contents

Acknowledgements ...1

List of tables ..7

List of figures ..9

Abbreviations ... 11

Abstract .. 13

Abstract in Dutch ... 15

Introduction ... 17

1 Radiotherapy: basic principles ... 19

1.1 Cancer treatment .. 19

1.2 Aim of radiotherapy treatment ... 19

1.3 Patient data acquisition – simulation .. 19

1.4 Treatment planning ... 20

2 Medical linear accelerators ... 21

2.1 LINAC composition ... 21

2.2 Photon beam production and treatment head ... 22

2.3 Lasers, range finder and field defining light .. 23

3 LINAC quality assurance .. 25

3.1 Need for quality assurance ... 25

3.2 Sources of errors ... 25

3.3 Goals of a QA programme ... 25

4 Mechanical QA protocol ... 27

4.1 Mechanical QA tools ... 27

4.1.1 Radiographic film ... 27

4.1.2 Electronic portal imaging devices ... 28

4.1.3 Iso-align device... 28

4.2 Mechanical checks (monthly) .. 29

4.2.1 Isocentre ... 30

4.2.2 Mechanical isocentre ... 30

4.2.3 Radiation isocentre .. 30

4.2.4 Coincidence light and radiation field .. 31

4.2.5 Gantry and collimator angle indicators ... 32

4.2.6 Jaw position indicators ... 32

4.2.7 Localizing lasers ... 32

4.2.8 Treatment couch position indicators .. 33

5 Image processing ... 35

5.1 DICOM images ... 35

5.2 Basics of digital image processing .. 36

5.2.1 What is a digital image ? ... 36

5.2.2 Images in MATLAB and coordinate conventions ... 36

5.2.3 Image classes and image types in MATLAB .. 37

5.3 Intensity transformations and filtering in the spatial domain .. 38

5.3.1 Intensity transformation .. 38

5.3.2 Median filter .. 39

5.4 Morphological operations .. 39

5.4.1 Dilation and erosion .. 39

5.4.2 Structuring element characteristics and shapes ... 40

5.5 Image segmentation .. 41

5.5.1 Point and line detection.. 42

5.5.2 Edge detection and MATLAB implementation ... 42

6 The mechanical QA protocol of L.O.C.. 45

6.1 Distance between radiation- and mechanical isocentre .. 45

6.2 Deviation on table position indicators in three dimensions ... 46

6.3 Deviation on asymmetrical field sizes ... 46

7 Materials & Methods ... 48

7.1 Distance between radiation- and mechanical isocentre .. 48

7.1.1 Pre-processing radiation isocentre detection .. 49

7.1.2 Field edge algorithm ... 50

7.1.3 Computing radiation isocentre ... 52

7.1.4 Pre-processing mechanical isocentre detection .. 52

7.1.5 Circle detection procedure ... 54

7.1.6 Computing the distance between both isocentres ... 55

7.1.7 Alternative algorithm for detection of the radiation isocentre... 56

7.2 Deviation on the table position indicators in three dimensions ... 57

7.2.1 Image fusing and pre-processing ... 57

7.2.2 Circle detection procedure and distance computation .. 59

7.3 Deviation on asymmetrical field sizes ... 60

7.3.1 Computation of asymmetrical field sizes and deviations ... 60

7.4 Architecture of the GUI ... 61

7.4.1 Open .. 62

7.4.2 Perform analysis and output file .. 62

7.5 Accuracy and reproducibility... 63

7.5.1 Accuracy ... 63

7.5.2 Reproducibility ... 63

8 Results and discussion ... 65

8.1 Algorithm timing considerations ... 65

8.2 Accuracy ... 65

8.2.1 Clinac .. 65

8.2.2 Truebeam ... 68

8.3 Reproducibility .. 70

8.3.1 Clinac .. 70

8.3.2 Truebeam ... 71

9 Conclusions .. 73

10 References ... 75

11 Appendices .. 77

11.1 Appendix A: periodically mechanical QA protocol of L.O.C. .. 77

11.2 Appendix B: source code ... 82

11.3 Appendix C: Example of output file ... 136

List of tables

Table 4.1: Relationship between the likelihood of an undetected malfunction, the gravity of the

malfunction for the patient or personnel and the minimum test frequency [11: p.4]. 27
Table 4.2: Most common mechanical checks that are recommended to be performed monthly [9-11],

[16] .. 29
Table 6.1: The 13 different setups (of L.O.C.) for the determination of the distance between

radiation- and mechanical isocentre. .. 45
Table 8.1: Results of testing the accuracy of the circle detection algorithm using a known

displacement of the treatment table of the CLINAC. Note that the treatment table position indicators

have an uncertainty of ± 2 mm. .. 65
Table 8.2: The mean deviation, SD and maximum deviation in reproducibility in performing the

circle detection algorithm using a CLINAC linear accelerator (N=8). ... 70
Table 8.3: The mean deviation, SD and maximum deviation in reproducibility in computing the

radiation isocentre using a CLINAC linear accelerator (N=8). .. 70
Table 8.4: The mean deviation, SD and maximum deviation in reproducibility in performing the

circle detection algorithm using a Truebeam linear accelerator (N=8). ... 71
Table 8.5: The mean deviation, SD and maximum deviation in reproducibility in computing the

radiation isocentre using a Truebeam linear accelerator (N=8). .. 71

List of figures

Figure 1.1: Treatment plan for two bilateral arcs of 120° each [2: p150]. .. 20
Figure 1.2: Treatment plan of a 4-field box [2: p.145]. .. 20
Figure 2.1: Accelerating waveguide is in the gantry parallel to the isocentre axis; electrons are

brought to the movable target through a beam transport system; the rf-power generator is located in

the gantry stand; machine can produce megavoltage x rays as well as electrons. [4: p. 636].............. 21
Figure 2.2: A crossbeam profile of a flattening filtered 10MV photon beam (dashed line) compared to

the crossbeam profile of an unflattened 10MV photon beam (solid line). The unflattened beam has

approximately four times higher dose rate at central axis [6: p.65].. ... 22
Figure 2.3: A multileaf collimator shaping an irregular beam shape [7: p.42]. 23
Figure 2.4: Schematic survey of a treatment head of a LINAC [8: p.896-902]. 23
Figure 4.1: Cross-sectional view of an amorphous silicon EPID. Only one pixel is shown [14]. 28
Figure 4.2: An iso-align device with 15 x 15; 10 x 10 and 5 x 5 cm² markers. [16]............................... 29
Figure 4.3: Graphical representation of asymmetrical field size measurements.. 32
Figure 5.1: A representation of the pixel index coordinate system (left) and the spatial coordinate

system (right) [22]. ... 36
Figure 5.2: A 3x3 neighbourhood centred at (x, y) in an image f (x, y) [26]. ... 38
Figure 5.3: The different transfer curves that are available in function imadjust [27]. 39
Figure 5.4: The original image (left) and the output image after performing a dilation with a 3x3

square structure element [28]. ... 40
Figure 5.5: The original image (left) and the output image after performing an erosion with a 3x3

square structure element [28]. ... 40
Figure 5.6: The different coordinate systems in filter techniques. w denotes the filter (or mask)

coordinates and f(x, y) denotes coordinates of the underlying original image [29]. 41
Figure 5.7: A 3x3 neighbourhood and the indices used to specify locations in the neighbourhood

[30]. ... 44
Figure 6.1: Result of miscalibrated jaw on the place and size of the radiation isocentre. Note how

these points can be averaged out in order to calculate asymmetrical field size parameters. 47
Figure 7.1: Architecture of the algorithm for computing the distance between the radiation- and

mechanical isocenter. ... 48
Figure 7.2: Left: The histogram of the input image. Right: The histogram of the input image after

contrast stretching. The x-axis denotes the 65536 shades of grey and the y-axis visualizes the

amount of pixels with a certain intensity value. .. 49
Figure 7.3: On the left an input image is shown where the blue line defines the range over which the

spectrum is computed. On the right the resulting crossbeam profile is shown. 50
Figure 7.4: Visualization of the edge scanning procedure, input image with ranges over which

crossbeam profiles are computed. ... 51
Figure 7.5: The result of performing the field edge algorithm in combination with the radiation

isocentre computation.. 52
Figure 7.6: On the left the input image is shown and the right image shows the result of the edge

detection operation. .. 53
Figure 7.7: On the left the result of the closing operation is shown. The image at the right shows the

result of the erosion and dilation operation. .. 54
Figure 7.8: The left image shows the result of the function regionprops and the right image shows

the result of the iterative process for selecting the desired circle... 55
Figure 7.9: The image on the left shows an example of an output file visualizing both the radiation-

and mechanical isocentre. The image on the right shows a zoomed view of this output image. 55
Figure 7.10: The architecture of the discarded alternative algorithm for the computation of the

distance between the radiation- and mechanical isocentre. Only the left branch (radiation isocentre)

differs from the architecture of Figure 7.1 ... 56
Figure 7.11: Architecture of the algorithm for computing the deviation on the table position

indicators in three dimensions. .. 57

file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528129
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528130
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528132
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528132
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528132
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528133
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528134
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528135
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528136
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528137
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528138
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528138
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528139
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528147
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528147
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528147
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528148
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528148
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528151
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528151
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528152
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528152
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528153
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528153
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528154
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528154
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528155
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528155
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528155

Figure 7.12: On the left the reference image is shown, the right image shows the situation after

applying the longitudinal displacement. ... 57
Figure 7.13: Both images of Figure 7.12 fused into one image. .. 58
Figure 7.14: The result of performing the whole pre-processing step on the fused image. The yellow

arrows point to the radio-opaque spheres that are chosen to be detected. ... 58
Figure 7.15: Left shows the result of performing the algorithm for computing the deviation on the

table position indicators for the longitudinal direction. The image on the right is an detail image of

one of the detected circles. .. 59
Figure 7.16: Architecture of the algorithm for computing deviations on asymmetrical field sizes. 60
Figure 7.17: The resulting output image after performing the asymmetrical field size algorithm. 60
Figure 7.18: Screenshot of the graphical user-interface .. 61
Figure 7.19: Architecture of the main file of the graphical user-interface.. 61
Figure 8.1: Comparison of the results of measuring the distance between the radiation- and

mechanical isocentre manually vs. with the software for a CLINAC. The image indices are the same

as those in Table 6.1... 66
Figure 8.2: Comparison of the results of measuring the deviation on the table position indicators

manually vs. with the software for a CLINAC. ... 66
Figure 8.3: Comparison of the results of measuring the deviation on asymmetrical field size

parameters manually vs. with the software for a CLINAC. The first bar for each parameter denoted

the results for the 5x5 cm² field. The second and third bar of each parameter denote the results for

the 10x10 and 18x18 cm² fields respectively. .. 67
Figure 8.4: Comparison of the results of measuring the distance between the radiation- and

mechanical isocentre manually vs. with the software for the Truebeam. ... 68
Figure 8.5: Comparison of the results of measuring the deviation on the table position indicators

manually vs. with the software for a Truebeam. ... 68
Figure 8.6: Comparison of the results of measuring the deviation on asymmetrical field size

parameters manually vs. with the software for a Truebeam. The first bar for each parameter denoted

the results for the 5 x 5 cm² field. The second and third bar of each parameter denote the results for

the 10 x 10 and 18 x 18 cm² fields respectively. ... 69

file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528157
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528157
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528159
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528159
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528160
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528160
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528160
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528162
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528163
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528164
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528168
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528168
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528169
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528169
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528170
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528170
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528170
file:///C:/Users/JelleSm/Desktop/Masterproef/ScriptieJelleSmeulders_PreFinaal_zelf.docx%23_Toc484528170

Abbreviations

CT Computed tomography

CTV Clinical target volume

DICOM Digital imaging and communications in medicine

EPID Electronic portal imaging device

GTV Gross tumour volume

ICRU International commission on radiation units & measurements

IGRT Image guided radiotherapy

ITV Internal treatment volume

LINAC Linear accelerator

L.O.C. Limburg Oncologisch Centrum

MLC Multileaf collimator

MRI Magnetic resonance imaging

NCS Nederlandse comissie voor stralingsdosimetrie

OAR Organs at risk

PDF Portable document format

POI Point of interest

PR Pixel resolution

PSI Pixel size at isocentre

PTV Planned treatment volume

QA Quality assurance

RF Radio-frequency

ROI Region of interest

SAD Source to axis distance

SID Source to imager distance

SSD Source to surface distance

TPS Treatment planning system

Abstract

During the periodical mechanical quality assurance (QA) checks, the radiotherapy department of

Limburgs Oncologisch Centrum (L.O.C.) has to measure certain parameters manually (e.g.

distances). Most parameters are defined using Megavolt EPID images of a mechanical positioned

radio-opaque sphere.

This visual determination could introduce various errors and inconsistencies. Therefore this master’s

thesis focuses on the automatization of these determinations by means of the development of an

image processing application using MATLAB.

The image processing algorithms have been developed and tested using MATLAB and specifically

using the Image Processing Toolbox. These algorithms have been embedded in a user-friendly user

interface which generates one single PDF as output file. This PDF file encloses a summary of the

results of the QA analysis, these include:

➢ distances between radiation and mechanical isocentre of multiple fields;

➢ deviation on the mechanical movement of the table in three dimensions;

➢ deviation on the asymmetrical field sizes for three different fields.

The developed algorithms have proven to be ten times faster with respect to manual measurements.

Furthermore, these algorithms yield results which averagely deviate 0,273 mm from those acquired

manually. This was tested using a Varian CLINAC and Truebeam from which the first one was

equipped with an EPID of higher resolution. It was observed that the difference in resolution

resulted in the same reproducibility and accuracy.

Abstract in Dutch

Tijdens de periodische mechanische kwaliteitscontrole (QA) moet het personeel van de afdeling

radiotherapie van het L.O.C. bepaalde parameters (vb. afstanden) visueel afleiden. De meeste van

deze parameters worden afgeleid uit Megavolt EPID beelden van een mechanisch gepositioneerde

metalen bol. Deze methode heeft als gevolg dat er mogelijks fouten kunnen geïntroduceerd worden

en de metingen niet consistent zijn. Daarom wordt er in deze masterthesis gefocust op het

automatiseren van deze metingen door middel van een beeldverwerkingssoftware ontwikkeld met

behulp van MATLAB.

De ontwikkelde algoritmes zijn samengebracht in een userinterface dewelke één enkele PDF file

wegschrijft als output. Deze PDF file omvat een samenvatting van de resultaten van de QA analyse

en bevat meer bepaald:

➢ afstanden tussen stralings- en mechanisch isocentrum van meerdere velden;

➢ afwijkingen op de mechanische beweging van de tafel in drie dimensies;

➢ afwijkingen op de asymmetrische veldgroottes.

De software heeft ongeveer tien keer minder tijd nodig om een analyse te voltooien ten opzichte van

de manuele bepaling. Bovendien wijken de bekomen resultaten niet meer dan 0,273 mm af van de

manueel bepaalde resultaten. Dit werd getest gebruikmakend van een Varian CLINAC en Truebeam

waarvan de eerst genoemde EPID foto’s leverde van hogere resolutie. Er kon worden vastgesteld dat

dit verschil in resolutie geen aanleiding gaf tot significant verschillende resultaten voor de

reproduceerbaarheid en accuraatheid van de software.

Introduction

The research is completed in association with the radiotherapy department of Limburgs Oncologisch

Centrum located in Jessa hospital Hasselt. This department uses linear accelerators (LINAC) to treat

malignant tumours. It’s obvious, when working with patients, that the quality of the treatment

should be checked on well determined frequencies by means of quality assurance (QA) tests.

During the periodical mechanical QA checks, certain parameters have to be visually determined from

EPID images. Most of these parameters are defined by radio-opaque spheres located in a specialized

phantom. This visual determination could introduce various errors and/or inconsistencies. Therefore

it may be a good idea to automate this analysis by means of an image processing software. The

automatization of the manual QA procedure aims on the improvement of consistency and accuracy.

In addition, it could also save a significant amount of time since a manual measurement takes about

20 to 30 minutes.

The main objective is to develop image processing software which analyses the images of the

mechanical QA tests. The software must be able to extract the following parameters out of the tests:

➢ distance between the radiation- and mechanical isocentre;

➢ deviation on the table position indicators in three dimensions;

➢ deviation on asymmetrical field size parameters.

The image processing software was developed using MATLAB. This program offers a wide array of

opportunities as it gives the user the chance to easily build a graphical user interface. Moreover, the

image processing toolbox allows the user to perform image processing.

The first two sections of this dissertation give a brief introduction to the workflow of a radiotherapy

department and the (mechanical) components of a linear accelerator. The next three sections discuss

the need for quality assurance in radiotherapy and how it is implemented. Subsequently, chapter 6

outlines the mechanical QA protocol of L.O.C. Furthermore, the structures of the different

algorithms are explained and their performance regarding accuracy and reproducibility is evaluated.

19

1 Radiotherapy: basic principles

1.1 Cancer treatment

Three major modalities are used for the treatment of cancer, these are: surgery, radiotherapy and

chemotherapy. Choosing a suitable treatment method should take into account the location, type and

size of the tumour within the patient. In some cases a combination of different modalities may also be

used [1].

1.2 Aim of radiotherapy treatment

Radiotherapy refers to a technique which uses a beam of radiation to effectively kill tumour cells and

can be delivered by either an external radiation beam or an internal source (Brachytherapy). The

latter one will not be dealt with and therefore the word radiotherapy, in this dissertation, refers to

external beam radiotherapy. There are three main kinds of radiotherapy treatment: curative,

adjuvant and palliative treatment [1].

During curative treatment the target volume, which contains the tumour, is exposed to a certain

radiation dose. The radiation dose during curative treatment often approaches the normal tissue

tolerance and is restricted by the dose limitations of the organs at risk. On the other hand, adjuvant

treatment is less likely to make use of radiation doses exceeding the normal tissue tolerance. Finally

palliative treatment should be performed with regard to relieving pain or avoiding symptomatic

injury to healthy tissues [1].

1.3 Patient data acquisition – simulation

In order to treat the tumour accurately one needs certain data concerning the patient to make sure

the patient can be properly positioned and the tumour volume is sufficiently irradiated. For this

reason, the first step in external beam treatment is simulation.

The role of simulation in the treatment process consists of: the determination of patient treatment

position and tumour location and the acquisition of patient data for treatment planning. Current

simulation systems are based on computed tomography (CT) which provide anatomical information

in the form of transverse slices with high resolution and contrast. The electron densities can also be

extracted from these slices which are needed for treatment planning [2].

Image modalities such as magnetic resonance imaging (MRI) provide a better soft tissue contrast in

areas such as the brain which allows the operator to detect small lesions easier. However, MRI

cannot be used for simulation for several reasons. First, no electron density information is available

which is needed for dose calculations in the treatment planning system. Further, MRI is prone to

geometrical artefacts and noise which may influence the accuracy of the treatment. Therefore CT-

MR images are often fused to combine the accurate volume definition from MR with the electron

density information from CT [2].

20

1.4 Treatment planning

After simulation the retrieved data is transferred to the treatment planning system (TPS). The

treatment plan is extremely important because it will determine the execution and it therefore has an

influence on the quality of the treatment. A successful treatment plan requires a certain minimum

dose within the target volume and a dose as low as possible in healthy tissues around the tumour. To

achieve this goal often rotational techniques are used as well as combinations of static beams [2].

In treatment planning, the volume that has to be treated is defined by means of the so called ICRU-

volumes. The gross treatment volume (GTV) corresponds to the gross tangible extent and location

of malignant disease. The clinical treatment volume (CTV) encloses the GTV and the areas

surrounding this GTV which may contain microscopic disease or that are considered to be at risk

and require treatment. The internal treatment volume (ITV) encloses the CTV plus an internal

margin which is chosen to take in consideration the variations in size and position of the CTV. These

variation can be due to organ motion such as breathing motion, bladder filling, etc.. Finally, the

planned treatment volume (PTV) is described to choose proper beam arrangements taking into

account possible geometrical variations. The inclusion of these geometric uncertainties, which

consist of set-up variations, machine inaccuracies, etc., has to ensure that the prescribed dose is

actually delivered to the CTV. Usually one PTV is used to encompass one or several CTV’s which

has to be targeted by one or several fields. Some organs at risk (OAR) might surround the PTV. An

OAR is an organ which is sensitive to radiation. The dose from the treatment plan must be compared

to its restriction values [2].

Sparing these OAR’s while respecting the minimum dose requirement in the PTV requires the

examination of different beam arrangements. Single fields are often used for palliative treatments or

superficial lesions. Deeper lesions are mostly treated with a combination of two or more beams to

concentrate the dose in the PTV. In Figure 1.2 an example is given of a 4-field box which allows a

very high dose to be delivered at the intersection of the beams. Today, rotational techniques are also

popular, Figure 1.1 shows the isodose curves for two bilateral arcs of 120° each. Note that the

isodose curves become tighter along the angles avoided by the arcs, which allows more accurate dose

delivery in the PTV and sparing of the OARs [2].

Figure 1.1: Treatment plan for two bilateral arcs of 120° each
[2: p150].

Figure 1.2: Treatment plan of a 4-field box [2: p.145].

21

2 Medical linear accelerators

Medical linear accelerators (often called LINACs) use radio-frequency (RF) electromagnetic waves to

accelerate electrons to kinetic energies from 4 to 25 MeV. The electrons follow straight trajectories

through vacuum constructions called accelerating waveguides. Typical modern LINACs can provide

several electron energies (e.g. in the range 6 - 22 MeV) and several photon energies (typical 6, 10

and 15 MV) [3]. Linear accelerators are the most common devices to treat tumours with external

beam radiation. The final photon beam is shaped as it exits the LINACs gantry and is aimed towards

the tumour of the patient. The gantry can be fully rotated around the patient to irradiate the target

volume from many different angles. It’s clear that the patient should be properly positioned before

the start of the treatment. The positioning happens with the help of lasers, image guided

radiotherapy treatment (IGRT) tools, and a moveable treatment couch, which can move in three to

six different dimensions.

2.1 LINAC composition

The basic composition of a LINAC is given in Figure 2.1. The RF-power generator is situated in the

stand of the LINAC. The gantry is isocentricly mounted to the stand and contains an electron gun,

accelerating waveguide and several beam transport systems. The electron gun thermionically emits

electrons which are accelerated in the accelerating waveguide [3]. As seen in Figure 2.1, the

accelerating waveguide is positioned perpendicular to the direction of the final beam. Bending magnets

make sure that the electron beam strikes the X-ray target by bending the electron beam 270 degrees.

Finally, the intersection of the couch axis and the gantry axis defines the isocentre [4].

Figure 2.1: Accelerating waveguide is in the gantry parallel to the isocentre axis; electrons are brought to the movable target through a

beam transport system; the rf-power generator is located in the gantry stand; machine can produce megavoltage x rays as well as

electrons. [4: p. 636]

22

2.2 Photon beam production and treatment head

When a beam of electrons strikes the X-ray target coulomb interactions with the target nuclei will

transform a small portion (in the order of 10%) of the electrons’ kinetic energy into bremsstrahlung

X rays. The intensity spectrum of these bremsstrahlung X-rays is strongly forward peaked [4].

Therefore flattening filters are used to shape up the spectrum [3]. An example of a flattening filtered

and a flattening filter free cross beam profile is given in Figure 2.2. For more information about the

composition and use of X-ray targets and flattening filters the reader is referred to [3: p.125-127],

[5] and [3: chapter 5] respectively.

The collimation of the photon beam in modern LINACs is provided by three components: the

primary collimator, the adjustable secondary collimator, and the multileaf collimator (MLC). First, a

circular (maximum) field is produced by a fixed primary collimator. The secondary collimator exists

of two lower and two upper independently adjustable jaws which can produce rectangular or square

fields with dimensions up to 40 x 40 cm² at the isocentre [4]. The MLC is the final collimation

system which a beam passes before reaching the patient. The use of MLC allows the production of

irregularly shaped radiation fields. It is based on two arrays of narrow collimator leafs, each leaf

equipped with its own computer-controlled motor and control circuit. Current models incorporate

usually 120 leaves (60 pairs) which can cover radiation fields up to 40 x 40 cm² [4]. Each leaf is

made of a tungsten alloy and has a width of 1 cm or less (projected at the isocentre) and a thickness

of 6 – 7,5 cm. The interleaf X-ray transmission is typically below 3% [7]. A schematic survey of the

treatment head of a LINAC is given in Figure 2.4 and an example of a MLC is given in Figure 2.3.

Figure 2.2: A crossbeam profile of a flattening filtered 10MV photon beam (dashed line) compared to the crossbeam profile of an
unflattened 10MV photon beam (solid line). The unflattened beam has approximately four times higher dose rate at central axis

[6: p.65]..

23

2.3 Lasers, range finder and field defining light

The lasers, range finder and field defining light provide visual methods for correctly positioning the

patient, which is very important for modern radiotherapy to ensure the accuracy of dose deposition.

Laser positioning devices are used as an indication of the position of the machines isocentre in the

treatment bunker. The range finder is used to place the patient at the correct distance from the

treatment head by projecting a (centimetre) scale on the patient’s skin which indicates the vertical

distance from the isocentre. Finally, the field light indicates the area that coincides with the radiation

field, it’s a visual representation of the radiation field [4].

Figure 2.3: A multileaf collimator shaping an
irregular beam shape [7: p.42].

Figure 2.4: Schematic survey of a treatment head of a
LINAC [8: p.896-902].

24

25

3 LINAC quality assurance

3.1 Need for quality assurance

The dose deposition in radiotherapy should be as accurate as possible. Quality assurance (QA) can

improve the results of therapy because it focusses on minimizing the errors in treatment planning

and dose delivery. A high degree of accuracy and consistency should be reached to fully exploit the

equipment, QA makes this possible. Finally, QA allows the comparison of results among different

radiotherapy centres which may be meaningful [1].

3.2 Sources of errors

The uncertainty in the delivered dose is due to several different types of errors that may occur.

These errors can occur at different stages in the treatment process. Errors during the determination

of the patients anatomy may be due to patient positioning or defining OARs and target volumes.

Also during treatment planning several errors could occur like deviations in beam data or anomalies

in computer software and hardware. These aberrations may be the result of mistakes, inattention or

misunderstanding [1]. Finally, the performance of the delivery equipment may introduce several

errors. The functional performance of the LINAC can change suddenly due to phenomena as

component failure, malfunction of electronic circuits or mechanical breakdown. Also slow changes in

performance can appear due to fatigue and aging of the components [9]. The above summary of

possible errors shows the complexity of QA in radiotherapy and points out that a QA programme is

essential to assure the quality of radiotherapy treatment [1].

3.3 Goals of a QA programme

“Every patient with cancer deserves to receive the best possible management to achieve cure, long-

term tumour control or palliation, this is the major goal of cancer management (ISCRO, 1986)” [9].

“Quality” of treatment is defined as the totality of features of the treatment that bears on its ability to

achieve the stated goal of patient care. On the other hand, “quality assurance” is all the planned

interventions that are necessary to achieve sufficient confidence that treatment will satisfy the stated

achievements for quality care [9].

The report of task group 40 (TG-40) recommends that the dose delivered to the patient be within

±5% of the prescribed dose. Taking into account the amount of steps in the treatment process, each

step should be performed with an accuracy better than 5% to achieve this goal. Therefore the main

goal of a QA program is to assure that the machine characteristics do not deviate significantly from

their baseline values (those acquired at time of acceptance testing) [10].

26

27

4 Mechanical QA protocol

Quality assurance checks of a LINAC can be subdivided in dosimetry checks and mechanical checks.

According to NCS’ report 9 [11] and AAPM’s task group 142 report [10] the minimum frequency

of these checks depends on the likelihood for a malfunction to occur, the chance the malfunction will

not be noticed during treatment and the likelihood and severity of the effects of these unnoticed

malfunctions [10]. These criteria are summarized in Table 4.1 together with the three test

frequencies: daily, monthly and annual. This dissertation only covers the monthly mechanical QA

procedures of the LINAC. For a complete overview of QA procedures we refer the reader to the

reports of TG-40 [9]. and the updated version of TG-142 [10].

Table 4.1: Relationship between the likelihood of an undetected malfunction, the gravity of the malfunction for the patient or personnel

and the minimum test frequency [11: p.4].

 low likelihood of

undetected malfunction

high likelihood of

undetected malfunction

no direct harmful effects annual monthly

possible harmful effects monthly daily

4.1 Mechanical QA tools

Before describing specific mechanical QA test procedures an introduction of several QA tools that

ease the measurements is necessary. This paragraph will briefly define these QA tools and outline

their contribution to the QA procedure.

4.1.1 Radiographic film

Radiographic films are used to perform portal imaging (discussed below) and film dosimetry. Film

dosimetry is a technique used to obtain the distribution of absorbed dose delivered by an external

radiation source. When radiographic films are exposed to radiation they discolour and the amount of

discoloration can be linked to the absorbed dose to the film. After irradiation the dose distribution

can be checked using a flatbed scanner and an appropriate software packet for analysis. In other

words, radiographic films represent a graphical presentation of the amount of radiation delivered to

the film.

Today GAFChromic EBT-3 films are frequently used, which have been designed to address the

needs of medical physicists and dosimetrist working in a radiotherapy environment. This type of film

is popular due to its excellent specifications including its wide dose range (0.1 Gy – 20 Gy), near

tissue-equivalency, water resistance and energy-independence [12].

28

4.1.2 Electronic portal imaging devices

“Portal imaging is the acquisition of images with a radiotherapy beam” [13: p.789]. There are

several kinds of portal imaging media such as radiographic films and electronic portal imaging

devices (EPID). EPID has many advantages over radiographic film. The obtained images are digital

and therefore directly available and they can be used to adjust patient or beam position during

treatment delivery. The digital character of the EPID images also allows easier image processing

and contrast enhancement. The major disadvantage of EPIDs relative to radiographic film is that

they provide images with disappointing image quality. During the history of EPID generations this

is changing due to the introduction of new technologies, such as amorphous silicon-based devices,

but it still remains an issue [13].

There are several different EPID systems commercially available such as camera-based systems,

Liquid ion chamber array systems and amorphous silicon system. This paragraph will briefly discuss

the construction of amorphous silicon systems. For a complete discussion of EPID systems the

reader is referred to the review article “Portal imaging” of K.A. Langmack [13]. The amorphous

silicon EPID system with the most development uses a front metal sheet, usually 1 mm of copper,

with a gadolinium oxysulphide phosphor to convert the X rays to visible light. This light is detected

by an array of hydrogenated amorphous silicon photodiodes and thin film transistors. The

photodiodes are read electronically and form the pixels of the acquired image [13]. The basic

composition is given in Figure 4.1.

4.1.3 Iso-align device

An iso-align device, shown in Figure 4.2, is a multi-functional and precision device for quality

assurance. It can be used for checking many mechanical parameters including the alignment of lasers,

light field and radiation field coincidence and treatment table position indicators. The plane of the

iso-align is inscribed with lines which define several field sizes. The plane can be rotated (usually

with increments of 45°) and inside there are tungsten or lead balls embedded which can easily be

distinguished on film or EPID images. Radiochromic films can be inserted in between the two plates

[15].

Figure 4.1: Cross-sectional view of an amorphous silicon EPID. Only one pixel is shown [14].

29

4.2 Mechanical checks (monthly)

The verification of mechanical parameters of a LINAC is performed to assure an accurate treatment

delivery as well as to obtain information about changes in time due to wear of mechanical

components [11]. The mechanical checks that are recommended to be performed monthly are listed

in Table 4.2. This table is an assembly of the most imported recommendations of NCS report 8 [17]

and 9 [11] and AAPM’s task group 40 [9]. and 142 [10] reports. The tightness of the tolerance

values depends on the type of treatment delivery. For example when performing QA for stereotactic

radiosurgery (SRS), which is delivered by a single high dose fraction, the tolerance values will be

stricter and certain tests may be different in comparison to a QA procedure for fractionated

treatment [10]. For simplicity Table 4.2 only covers the tolerance values for treatment units which

are used for fractionated treatment.

Table 4.2: Most common mechanical checks that are recommended to be performed monthly [9-11], [17]

mechanical check tolerance value

crosshair centring (walk out) 1 mm

deviation mechanical isocentre 1 mm

light/radiation field coincidence 2 mm or 1 % on a side

light/radiation field coincidence (asymmetric) 1 mm or 1 % on a side

Gantry/collimator angle indicators 1.0°

Jaw position indicators (symmetric) 2 mm

Jaw position indicators (asymmetric) 1 mm

Localizing lasers ± 1 mm

Verification of treatment couch axes 2 mm/1°

Treatment couch position indicators 2 mm/1°

Figure 4.2: An iso-align device with 15 x 15; 10 x 10 and 5 x 5 cm² markers. [16]

30

There are two different ways of interpreting a tolerance value. In some papers in literature the

tolerance values are guidelines for acceptable deviations while in others actions are required when

the tolerance value is exceeded [11]. In what follows all the stated tolerance values must be

regarded as guidelines for acceptable deviations, deviations which require immediate action will be

represented by action levels (which by exceeding an appropriate action is necessary). Note that when

several consecutive measurements are close to the tolerance value also a corrective action may be

required.

The last decades new technologies were introduced in radiotherapy treatment such as image guided

radiotherapy (IGRT). IGRT basically is the use of imaging during radiotherapy treatment for the

purpose of improving precision and accuracy. The LINAC used to deliver treatment is equipped with

imaging modules to allow one to image the tumour directly before or during treatment. These

images are than automatically compared to the reference images made during simulation. The

necessary adjustments concerning positioning are then automatically made based on this comparison

[18].

4.2.1 Isocentre

The isocentre of a linac is a very important mechanical parameter in radiotherapy treatment delivery

and QA. The isocentre is defined as “the centre of the smallest sphere through which the axes of the

radiation beams pass in all conditions”[10: p.19]. The concept isocentre can be distinguished in two

terms: the mechanical isocentre and the radiation isocentre, which are described below.

4.2.2 Mechanical isocentre

The mechanical isocentre is defined as being the point of intersection of the gantry rotation axis, the

collimator rotation axis and the table rotation axis [10]. Due to a difference in bending of the

radiation head at different gantry angles this point cannot be determined unambiguously and

therefore one should define a sphere that envelops the isocentre [11].

4.2.3 Radiation isocentre

The radiation isocentre is defined as the point of intersection of the radiation beam axes at different

gantry, collimator and table angles [10]. One can determine the location of the radiation isocentre

by using the Winston–Lutz method [19].

The Winston-Lutz method can be performed by placing a small radio-opaque sphere (e.g. 6 mm

diameter) at the mechanical isocentre of the linac. This sphere is irradiated with a small collimated

beam at each available energy (e.g. 6 and 15 MV) and at different gantry, collimator and table angles,

additionally EPID images are acquired for each setup. The distance between the centre of the

radiation beam and the centre of the sphere defines the shift between the radiation and mechanical

isocentre. This distance is measured for each image acquired by the EPID and shifts should be less

than 1 mm [19], [20].

Special attention should be given to the field defining jaws while performing the Winston-Lutz test.

One should check if the jaws open symmetrically because when this is not the case it will directly

influence the size of the radiation isocentre sphere which could lead to a misinterpretation of the

results [19].

31

4.2.4 Coincidence light and radiation field

The alignment of the radiation field can be established by the light field. It is therefore important to

check their coincidence. The collimator jaws of a linac rotate on a circular bearing which is attached

to the gantry. The axis around which the collimator rotates is defined as the collimator axis of

rotation (AOR) and is given by the intersection of the crosshairs in the light field. Before

determining the coincidence between the light and radiation field one should raise the table to

isocentric height while the gantry angle is 0° (gantry is oriented with the collimator AOR directed

vertically downward). Now the iso-align device is placed on the treatment table (positioned plane

parallel to the table) and it should be oriented in such a way that the collimator AOR (crosshair)

coincides with the centre of the iso-align device. The projected image of the crosshair should not

walkout more than 1mm from this point as the collimator is rotated through its full range. Note that

this check also can be performed with for example graph paper [3], [10].

Now coincidence of light and radiation field can be checked by setting up the iso-align device in such

a way that the marks (e.g. the 15x15 cm² field size indicators) coincide with the edges of the light

field. After irradiation at SSD 100cm and EPID imaging the dimensions of the light field can be

measured and the deviations in both directions can be computed. Note that this check alternatively

can be performed with a radiographic film by punching holes through the film in the corners of the

light field. Several plastic slabs are placed on top of the film to position the film near to the depth of

dose maximum [3]. Both dimensions of the light field should not deviate more than 2mm, as

denoted by Table 4.2 [10].

Like denoted in Table 4.2 the coincidence of light and radiation field should also be checked

asymmetrically. The test procedure is fully analogous to the symmetrically determination (described

above) [10]. To determine the asymmetric deviations the radiation field size is measured by

measuring the distance between the isocentre and the field edge like demonstrated in Figure 4.3. The

sum of distances x1 and x2 gives the total field size in the x-direction, the same holds for the y-

direction. It should be clear one can maintain the symmetrical deviations by summing the

asymmetrical deviations and therefore only one (asymmetric) measurement is required. The

asymmetric deviation should not be greater than 1 mm at each side of the isocentre. Any symmetric

deviation greater than 2 mm (symmetric) or 1 mm (asymmetric) may point out that the collimator

AOR is not aligned with the central axis of the radiation field or that the jaws are incorrectly

calibrated [3].

It is important to notice that the coincidence of radiation and light field is becoming less important

due to the arrival of IGRT. Nowadays the patient is initially positioned using the lasers and

afterwards this position is adjusted automatically using image guidance. On the other hand it is still

recommended to check several configured field sizes asymmetrically as given in Figure 4.3.

32

4.2.5 Gantry and collimator angle indicators

The accuracy of the digital gantry and collimator angle indicators can be checked by using a spirit

level [3]. At each cardinal angle (0, 90, 180 and 270°) the value indicated by the spirit level should

not deviate more than 1.0° [10]. Today many digital spirit level can measure any angle between 0

and 360 degrees, with an accuracy of 10-1 or better, and therefore one may consider checking several

angles between the cardinal angles (e.g. 165°) [3].

4.2.6 Jaw position indicators

The jaw position indicator accuracy (symmetrically and asymmetrically) can be checked by

performing the split field test or by measuring the asymmetric field size parameters of Figure 4.3.

Considering the split field test, gaps or overlaps up to 2 mm (symmetric) or 1 mm (asymmetric) are

usually tolerated. The split field test will not be discussed in detail because it will be of little interest

in this dissertation. For more information the reader is referred to the work of Klein et al. [21] and a

brief explanation of the split field test is also given by the medical physicists of the KFJ hospital in

Vienna [22].

4.2.7 Localizing lasers

The accuracy check of the localizing lasers can be divided into two tests. First one should make sure

that the laser beams perfectly describe horizontal and vertical planes. This can be done by comparing

the projection of the beams with certain reference points on the floor and walls. Deviations, with

respect to this reference point, up to 2 mm are usually tolerated for this test. Secondly, the

intersection of the laser beams should coincide with the isocentre and therefore one should check the

distance between this point of intersection and the isocentre [11]. This deviation should not be

greater than 1 mm [10].

Figure 4.3: Graphical representation of asymmetrical field size measurements..

33

4.2.8 Treatment couch position indicators

The accuracy of the couch position indicators should be checked for the lateral, longitudinal and

vertical motion as well as for the rotational motion. The vertical position indicator accuracy can be

checked by placing the iso-align on top of the treatment couch with its plane perpendicular to the

couch, the gantry can be placed either at 90° or 270°. During the irradiation of the iso-align with a

predefined field size (e.g. 10 x 10 cm²) EPID images are acquired. Then the treatment table is moved

vertically over a certain distance (e.g. 5 cm) and again the iso-align is irradiated and EPID images

are acquired. Now one can compute the real distance travelled by comparing certain points (e.g.

metallic dots in the phantom) on both images. The procedures for checking accuracy of the lateral

and longitudinal are analogous but it should be clear other iso-align orientations and gantry angles

should be used [11]. The travelled distance should not deviate more than 2 mm from the value given

by the position indicators [10]. The rotational position indicators can also be checked by comparing

EPID images acquired at different angles, the deviation should not be more than 1° [10].

34

35

5 Image processing

The following section will discuss some basic principles of image processing. The intention of this

section is to give the reader an introduction to the techniques used in this dissertation. It is certainly

not a complete guide on digital image processing1.

5.1 DICOM images

The images acquired from LINAC QA procedures, CT-scans, etc. are stored, transferred and

reviewed as DICOM-files. DICOM stands for Digital Imaging and Communication in Medicine and

it is not just an image or file format. Instead it is a data transfer, storage and display protocol which

is designed to include all aspects of digital imaging. Nowadays DICOM is a universal standard in

digital medical imaging. All current clinical imaging devices produce DICOM files and transfer these

files through a DICOM network. DICOM therefore implicitly controls the medical workflow [23].

DICOM also offers full support for the storage of multiple parameters of different data types. A

DICOM does not only store the images, it also stores parameters such as patient ID, patient

position, several imaging device parameters, and so on. All these parameters (attributes) are encoded

based on the DICOM data dictionary2 which contains more than 2000 standardized attributes

designed to enclose all aspects of medical imaging and diagnostics [23].

Each of these attributes has its own (also standardized) tag so it is easily accessible. This tag is has

the form of a (x , y) coordinate where both x and y are hexadecimal numbers. The first hexadecimal

number defines the group where the attribute belongs to and the second refers to the attribute itself.

Each attribute is formatted in one of the 27 data types or value representations (VR’s). For example,

the attribute “content time” gives the time at which the data was acquired and its data type (VR) is

Time (TM). This means according to the DICOM standard that it is represented as HHMMSS

where H,M and S stands for hours, minutes and seconds respectively [23].

Finally, DICOM images show excellent image quality. DICOM provides up to 65,536 shades of grey

(16 bits) and therefore captures the slightest nuances. In comparison, for example a JPEG file is

always limited to 256 shades of grey (8 bits) which makes them often unsuitable for diagnostic

purposes [23].

1 For a more complete overview the reader is referred to: [24].
2 The DICOM data dictionary is accessible at: http://dicom.nema.org/standard.html.

36

5.2 Basics of digital image processing

5.2.1 What is a digital image ?

An image can be represented by a function, f (x, y), where x and y are spatial coordinates, and the

amplitude of f at a certain point defines the intensity (or grey level) of the image at that point. The

image is called a digital image when all x, y and amplitude values are finite, discrete quantities. A

digital image therefore is composed of a certain finite amount of elements which each have a position

(x, y) and a certain intensity value. These elements are called picture elements or pixels [24]. From

now on in this dissertation, the term image always refers to a digital image.

Digital image processing envelops all processes or operations whose inputs and outputs are images

and also operations that extract data from the image, including object recognition [24].

5.2.2 Images in MATLAB and coordinate conventions

A digital image f (x, y) is represented in MATLAB by a two-dimensional array (matrix). Assuming

the image has m rows and n columns, we can say the image is of size m x n. MATLAB’s image

processing toolbox uses two different coordinate systems: one based on pixel indices and one based

on spatial coordinates [24], [25].

The most common method for indicating certain positions in an image is by means of pixel indices.

This method concerns the image to be a matrix of discrete elements, with its rows ordered from top

to bottom and its columns from left to right. Another method for expressing positions in an image is

to use continuous coordinates instead of discrete indices. In this spatial coordinate system locations

are positions on a plane described in terms of x and y rather than speaking about rows and columns

(pixel indexing system) [25]. Both coordinate systems are shown in Figure 5.1.

Figure 5.1: A representation of the pixel index coordinate system (left) and the spatial coordinate system (right) [22].

37

The preceding discussion together with the discussed coordinate systems leads to the following

representation for a m x n digital image using the spatial coordinate system:



























)1,1(...)1,1()1,0(

.........

)1,1(...)1,1()1,0(

)0,1(...)0,1()0,0(

),(

mnfmfmf

nfff

nfff

yxf (1)

A digital m x n image can also be represented in MATLAB using the pixel index system as followed:





















),(...)2,()1,(

.........

),2(...)2,2()1,2(

),1(...)2,1()1,1(

),(

nmgmgmg

nggg

nggg

crg (2)

Both representations are identical except for the shift in origin, note that f (0,0) = g (1,1) [24].

5.2.3 Image classes and image types in MATLAB

MATLAB and the image processing toolbox provide multiple classes for representing pixel intensity

values. Classes uint8, uint16 and logical are the most common. An image of class uint8 represents the

intensity value of a pixel as an unsigned 8-bit integer in the range [0; 28 - 1] and therefore uses one

byte to represent each pixel. In medical imaging techniques uint16 is much more common than uint8

because these techniques often require a higher dynamic range. The class uint16 provides this by

using two bytes to represent each pixel, thus as an unsigned 16-bit integer in the range of [0; 216 -

1]. Finally, class logical uses one byte to represent each pixel value as either one or zero [24].

Besides different image classes, there are also different image types being: grey-scale images, binary

images and RGB images. Grey-scale images are data matrices whose values represent different

shades of grey. Binary images have a specific meaning in MATLAB. It is defined as a logical array of

zeros and ones. For example, an array of zeros and ones of class uint8 is not considered to be a binary

image. Finally a RGB image is simply a colour image. RGB images will not be used in this

dissertation and therefore they are not discussed [24].

38

5.3 Intensity transformations and filtering in the spatial domain

Intensity transformations and spatial filtering are operations in the spatial domain. Spatial

operations are based on direct manipulation of pixels. Spatial operations can be represented as

followed:

 (3)

where f (x, y) and g (x, y) are the input and output images respectively. The operator T is defined over

a specified neighbourhood about point (x, y). The basic approach is to define a rectangular

neighbourhood centred at point (x, y), as showed in Figure 5.2. This centre is moved from pixel to

pixel throughout the image and so it will envelop different neighbourhoods during its travel. At each

location (x, y), operator T will compute its output g. The value of g at a certain point therefore

depends on all the intensity values in the neighbourhood of f [24].

5.3.1 Intensity transformation

The intensity transformation is based on the simplest form of operator T, when the neighbourhood is

just one pixel in size (1 x 1). When this is the case, the value of g, at a certain point, only depends on

the value of f at that point [24].

MATLAB and the image processing toolbox provide the function imadjust() to perform intensity

transformations, its syntax is the following:

 g = imadjust(f, [low_in high_in], [low_out high_out], gamma) (4)

where f and g are the input and output images respectively. This function transfers the intensity

values in the input image to other values in the output image. Default, gamma equals one and the

intensities in the range [low_in high_in] are linearly transferred to new values in the range [low_out

high_out].

Figure 5.2: A 3x3 neighbourhood centred at (x, y) in an image f (x, y) [26].

 ),(),(yxfTyxg 

39

The value of gamma specifies the shape of the curve that is used to transfer the values, as shown in

Figure 5.3. for example, if gamma is greater than one the transfer is weighted towards lower (darker)

output values and therefore dark details will become more visible [24].

Figure 5.3: The different transfer curves that are available in function imadjust [27].

5.3.2 Median filter

Median filtering is used when an image is corrupted with noise, e.g. salt-and-pepper noise. The

image processing allows to implement a 2D median filter using the following syntax:

 g = medfilt2(f, [m, n], padopt) (5)

where f and g are the input and output images respectively and the matrix [m, n] defines the

neighbourhood of size m x n over which the median has to be computed. Finally, the parameter

padopt specifies a border padding option. One can choose to pad the borders with zeros, ones or the

input image can be extended symmetrically by mirror-reflecting it across its border [24].

5.4 Morphological operations

Morphological operations can be used to extract components that are of interest from an image

[24]. Two fundamental operations will be discussed being: dilation and erosion. Afterwards, an

important characteristic and the different shapes of structuring elements are briefly explained. All

the morphological operations discussed below are only applicable to binary images.

5.4.1 Dilation and erosion

Dilation is a morphological operation that thickens objects in an image. The specific way of this

widening is specified by a so called structure element. A 3 x 3 matrix containing all ones is a

common used structure element to perform dilation. The origin (the value at the centre) of the

structuring element is translated throughout the image to check where the element overlaps one-

valued pixels. The dilated image is one at each position of the origin of the structuring element such

that the element overlaps at least one one-valued pixel of the input image [24]. Figure 5.4 shows the

result of a dilation with a 3 x 3 structure element.

40

Figure 5.4: The original image (left) and the output image after performing a dilation with a 3x3 square structure element [28].

Erosion is the opposite of dilation and therefore this operation shrinks objects in a binary image. The

manner of this shrinking is again controlled by a structure element. The structure element is

translated throughout the image to see where it overlaps one-valued pixels. The output image has a

value of one at each position of the origin of the structure element, in such a way that the element

overlaps only one-valued pixels. In other words, where the element does not overlap any background

pixels. The overall result is a shrinking of the objects in the image as showed in Figure 5.5.

Figure 5.5: The original image (left) and the output image after performing an erosion with a 3x3 square structure element [28].

5.4.2 Structuring element characteristics and shapes

One important aspect from the dilation operation is that it is associative. Suppose having two

structuring elements B1 and B2 and an input image A. The first dilating A with B1 and dilating this

result with B2 gives the same result as first dilating A with B2 and afterwards with B1. This

associativity is an important characteristic as the time required to compute dilation or erosion is

proportional to the amount of nonzero pixels in the structuring element. Let’s assume a dilation with

a 5 x 5 square structuring element filled with ones. One can obtain the same result performing two

dilations, one with a 1 x 5 row element and one with a 5 x 1 row element. The 5 x 5 element contains

25 nonzero values while the two other elements together count 10 nonzero values and therefore the

second method is 2,5 times faster than the first one [24].

41

There are many different structuring element shapes available in MATLAB, the imaging processing

toolbox provides the following function.

 se = strel(shape, parameters) (6)

The parameter shape can be filled in with diamond, disk, square, rectangle, etc. to create different

shapes. Besides the shape it may be necessary to define other parameters such as radius in case of a

disk or size in case of a rectangular shape [24].

5.5 Image segmentation

In this paragraph some techniques are discussed for detecting isolated points, lines and edges in

images. The most common used method to look for discontinuities is to translate a mask through the

image in a manner similar to spatial filtering techniques. A filtering mask is similar to a structuring

element in morphological operations. The mask is translated throughout the input image f going

from pixel to pixel to yield at every position (x, y) of f the response R. For a 3 x 3 mask this involves

the calculation of the sum of products of the coefficients with the intensity levels contained in the

region enveloped by the mask. The response R at any location is given by:

 (7)

where wi is the filter coefficient, as shown in Figure 5.6, the pixel intensities are denoted by zi. The

response of the mask is defined at its origin [24].

Figure 5.6: The different coordinate systems in filter techniques. w denotes the filter (or mask) coordinates and f(x, y) denotes

coordinates of the underlying original image [29].








9

1

992211 ...

i

ii zw

zwzwzwR

42

5.5.1 Point and line detection

Isolated points that are embedded in an area with roughly constant intensity values can be detected

by using the following mask.

(8)

An isolated point has been detected at these points where the mask is centred if the response meets

the following criterion:

TR  (9)

where T is a positive valued threshold. The strongest response of the mask should be at these points

where the mask is centred on an isolated point and the response should be 0 at locations of constant

intensity [24].

Lines in an image can be detected using the same method. It should be clear that for every

orientation of the line that has to be detected one should use a different mask. Masks to detect

horizontal lines and lines angled at 45° (with a width of one pixel) are given below.























111

222

111

linehorizontalW (10)

(11)

5.5.2 Edge detection and MATLAB implementation

Edge detection is the most common method to detect discontinuities in intensity values in an image.

This discontinuities are detected using the first- or second-order derivatives of the image. The most

common first-derivative form used in image processing is the gradient. The gradient of a two

dimensional function, f (x, y), is defined as being the vector:

(12)

























111

181

111

intpoW

























211

121

112

45LineW




































y

f
x

f

g

g

y

x
f

43

and the magnitude of this vector is given in equation 13.

(13)

For simplification, this magnitude is approximated by omitting the square-root or by using absolute

values.

 (14)

(15)

The approximation of the magnitude of the gradient behave in the same manner as the gradient; that

is, as first-order derivatives. They are zero in regions of constant intensity and their values are

related to the rate of change of intensity in other regions. The gradient vector points in the direction

of the maximum rate of change of f at point (x, y) [24].

The aim of edge detection is to find places in an image where the intensity changes rapidly and more

specific places where the magnitude of the first derivative is higher than a predefined threshold. The

image processing toolbox provides multiple edge estimators, it is possible to choose to detect vertical

or horizontal edges or both [24]. The general syntax is:

[g, t] = edge(f, ‘method’, parameters) (16)

where f is the input image and parameters are additional parameters which are characteristic for the

type of method that has been chosen and will be discussed in the following paragraphs. The output g

is a logical image containing ones at places where edges are detected and zeros elsewhere. Finally,

parameter t specifies the threshold used by function edge to determine which gradient values are

strong enough [24].

In this dissertation the sobel operator is chosen to fill in the ‘method’ parameter in function edges.

The sobel edge detector uses first-order derivatives which are digitally approximated by differences.

This operator uses the following differences between rows and columns (see Figure 5.7).

(17)

 












































22

2

1
22

)(mag

y

f

x

f

ggf yxf

yx

yx

ggf

ggf



 22

 
    

     2

1
2

741963

2

321987

2

1
22

22

22

zzzzzz

zzzzzz

ggf yx







44

Figure 5.7: A 3x3 neighbourhood and the indices used to specify locations in the neighbourhood [30].

The general syntax for the Sobel detector is:

[g, t] = edge(f, ‘sobel’, T, dir) (18)

where f is the input image, ‘sobel’ defines the gradient approximation method, T is a predefined

threshold and dir specifies the direction of the detected edges and can be either horizontal, vertical or

both [24].

45

6 The mechanical QA protocol of L.O.C.

This paragraph deals with the periodic mechanical QA protocol of L.O.C. Three main parts that have

to be automated can be distinguished: the distance between radiation- and mechanical isocentre, the

deviation on the table position indicators in three dimensions and the deviation on asymmetric field

sizes. These three parts will be further outlined below3.

6.1 Distance between radiation- and mechanical isocentre

The test procedure for calculating the distance between the radiation- and mechanical isocentre can

be compared with the Winston-Lutz test described in paragraph 4.2.3. The test procedure utilised by

L.O.C. involves the irradiation of an iso-align device which is set up in such a way that the radio-

opaque ball at its centre coincides with the mechanical isocentre which is defined by the centre of the

light field. During irradiation EPID images are acquired and saved for analysis.

The radiation- and mechanical isocentre, like described earlier, cannot be determined unambiguously

and therefore this test is performed for 13 different setups which are given in Table 6.1. Each setup

involves a different combination of gantry, collimator and table angles. For each of these setups the

radiation isocentre is determined by defining it as the centre of the radiation field, subsequently the

mechanical isocentre can be found by determining the centre of the radio-opaque ball. When both the

mechanical- and radiation isocentre are determined, the distance between the two can be measured.

The tolerance level for this distance is set on 1 mm and the action level amounts 2 mm. The

rotational movement of the table (image 4 and 5 in Table 6.1) is an exception on these values and has

a tolerance level of 2 mm and an action level of 3 mm for the distance between the radiation- and

mechanical isocentre.

Table 6.1: The 13 different setups (of L.O.C.) for the determination of the distance between radiation- and mechanical isocentre.

Image no. Gantry angle (°) Collimator angle (°) Table angle (°)

1 0 0 0

2 0 90 0

3 0 165 0

4 0 270 0

5 0 0 90

6 0 0 270

7 180 0 0

8 90 90 0

9 90 0 0

10 90 270 0

11 270 270 0

12 270 0 0

13 270 90 0

3 The entire mechanical QA protocol of L.O.C. is given in appendix A (in Dutch).

46

6.2 Deviation on table position indicators in three dimensions

The deviation on the treatment couch position indicators is determined in three dimensions being:

longitudinal, lateral and vertical. L.O.C.’s protocol re-uses two images from Table 6.1, more

specifically image 1 for the longitudinal and lateral motion and image 12 for the vertical table

motion.

The procedure for the longitudinal table motion involves the irradiation of the iso-align in a setup

similar to this of image 1 in Table 6.1 but this time the treatment couch is displaced 15 cm in the

longitudinal direction. To determine how many cm’s the couch has travelled one has to find a certain

point on the image (e.g. one of the radio-opaque balls of the iso-align device) which is visible on both

images. By merging both images one can measure the distance that the treatment table has travelled.

The procedure for the lateral and vertical motion is completely identical to this described above but

the procedure for the vertical motion uses image 12 from Table 6.1 as a reference instead of image 1.

The tolerance level for the deviation on the table motion is set to 1 mm and the action level amounts

2 mm, this applies to each of the three dimensions. When the table has moved vertically the

longitudinal displacement of the table ideally is zero. In reality this is not the case and the tolerance

value for this longitudinal displacement amounts 1° which corresponds to a longitudinal distance of

2,6 mm. The action level is set on 2° corresponding to a longitudinal displacement of 5,2 mm. The

same holds for the lateral and longitudinal displacements when the table is moved in the longitudinal

and lateral direction respectively.

6.3 Deviation on asymmetrical field sizes

The protocol of L.O.C. uses three different predefined square field sizes to check the size in both

dimensions and check the symmetry of the field, these field sizes are: 5 x 5, 10 x 10 and 18 x 18 cm²

and the EPID images are acquired at gantry- , collimator- and table angles of zero. To acquire these

images there is no iso-align needed, only the radiation field is captured by the EPID. The radiation

isocentre used for the asymmetrical field size measurements is the averaged isocentre of the first four

images of Table 6.1 and not just the radiation isocentre of the first. This is done because while

acquiring the first image (and the others) of Table 6.1 one of the jaws could be mispositioned. If this

is the case this has a direct effect on the position and size of the radiation isocentre [19]. Therefore

this effect has to be averaged out by rotating the collimator over its full range. This is visualised in

Figure 6.1, the black lines define the normal situation at a collimator angle of zero degree. The

vertical red line defines a mispositioned jaw and the intersection of the dashed diagonals define the

corresponding radiation isocentre. Note how the isocentre describes a circle when rotating the

collimator, the centre of mass of this circle coincides with the averaged isocentre discussed above.

After this averaged radiation isocentre is established the 4 asymmetrical field sizes are determined in

the same manner as given in Figure 4.3.

The tolerance value for the error on x1, x2, y1 and y2 has a value of 1 mm for the 5 x 5 and 10 x 10 cm²

fields and these fields have an action level for these parameters which is set on 2 mm. The tolerance

value for the 18 x 18 cm² field amounts 1 % of the total field size which is roughly 2 mm and the

action level is set on 2 % of the total field size and amounts roughly 4 mm. The tolerance levels for

the total field sizes in both direction are exactly the same as these stated above for the asymmetrical

parameters.

47

Figure 6.1: Result of miscalibrated jaw on the place and size of the radiation isocentre. Note how these points can be averaged out in
order to calculate asymmetrical field size parameters.

48

7 Materials & Methods

The application was developed and tested using MATLAB. The algorithms were designed using

standard MATLAB features combined with functionalities from the Image Processing Toolbox and

Symbolic Math Toolbox. The images for testing were acquired using a Varian CLINAC as well as a

Varian Truebeam linear accelerator which are both equipped with the same type of amorphous-

silicon EPID. The only difference is that the EPID of the CLINAC provided images with a

resolution of 768 x 1024, while the resolution provided by the EPID of the Truebeam only was 384 x

512. Throughout the next sections the terms half resolution- and full resolution images refers to the

images acquired with the Truebeam and CLINAC device respectively. All the EPIDs used in this

dissertation are calibrated to perform dosimetry and have a quasi linear dose response.

This section will describe the architectures of the different algorithms separately followed by a

description of the structure of the application as a whole. Subsequently, the methods of determining

accuracy and reproducibility of the software are briefly discussed. This section is rather mend to

describe the structure of the application than to dreary enlarge on the source code itself. The source

code is added to appendix B.

7.1 Distance between radiation- and mechanical isocentre

The problem of calculating the distance between radiation- and mechanical isocentre was solved

using two different approaches. Both algorithms were tested and one has proven to be faster while

the other has proven to be more accurate. Because time, speaking about ± 1 minute, is not an issue

the most accurate algorithm is used for implementation. The architecture of this algorithm is given

in Figure 7.1 and will be discussed in detail throughout this section. The algorithm that has been

designated as inferior will be briefly discussed in section 7.1.7.

Figure 7.1: Architecture of the algorithm for computing the distance between the radiation- and mechanical isocenter.

49

7.1.1 Pre-processing radiation isocentre detection

The Pre-processing step can be divided into two parts: noise reduction and contrast stretching which

are the first two blocks following the input file in Figure 7.1. Since the images obtained from the

EPID can be noisy a median filter with a 3x3 filter mask is implemented to reduce the amount of

noise in the input image.

Since a DICOM image uses 16 bits per pixel to visualise different shades of grey, it has a range of [0

– 65 535] which allows high contrast images to be represented [23]. But in this case the input image

uses only one fifth of this range which results in a low dynamic range and contrast, an example of a

histogram of an input image is given in Figure 7.2. In order to create a wider dynamic range an

intensity transformation is implemented with the following MATLAB command:

g = imadjust(f, stretchlim(f), []); (19)

here f and g are the input and output images respectively. The function stretchlim gives an output

low_High from which the values specify the intensity levels that saturate the bottom and top 1% of

all pixel values in the input image [24]. The third parameter in equation 19 is equivalent to [0 1]

which means that the pixel values have to be mapped over the entire range being [0 - 65 535]. The

histogram of the result of this contrast stretching operation is given in Figure 7.2.

Figure 7.2: Left: The histogram of the input image. Right: The histogram of the input image after contrast stretching. The x-axis
denotes the 65536 shades of grey and the y-axis visualizes the amount of pixels with a certain intensity value.

50

7.1.2 Field edge algorithm

In order to understand how a field edge can be computed one should be aware of the definition of

field size. The field size is defined as the full width at half maximum (FWHM) of the cross beam

profile (profile similar to Figure 2.2) [4]. Working with EPID images of EPIDs with a (quasi) linear

dose response the field size is the FWHM of the intensity spectrum of the image. Figure 7.3 shows a

pre-processed input image and the blue line defines the range over which the spectrum is computed,

the resulting profile is also shown.

Two functions were created in order to compute the field edges individually, one for the vertical and

one for the horizontal field edges. These functions acquire multiple crossbeam profiles and calculate

the x-values for vertical and y-values for horizontal edges of places where the intensity is at the half

of its minimum.

The first step of the field edge algorithm involves calculating the median intensity value of the

intensity range of the pre-processed input image, this will be the target value. The next step involves

guessing where the field edge is located and acquiring little crossbeam profiles at these places.

Figure 7.4 shows the ranges over which the crossbeam profiles are computed (blue lines). The start

and stop signs show where the scanning procedure starts and ends, in between multiple crossbeam

profiles are acquired. The scanning procedure is divided in two sections to make sure the profiles do

not cross one of the radio-opaque spheres or other structures of the iso-align because this could give

rise to misdetections.

Figure 7.3: On the left an input image is shown where the blue line defines the range over which the spectrum is computed. On
the right the resulting crossbeam profile is shown.

51

Figure 7.4: Visualization of the edge scanning procedure, input image with ranges over which crossbeam profiles are computed.

Each little crossbeam profile acquired by the algorithm yields a table with 100 x-values, y-values and

the corresponding intensity values at those points. Assuming the computation of the left vertical

field edge, for each profile the y-value is stored, subsequently, the intensity value which lays the

closest to the target value is sought and the corresponding x-value is acquired. If this intensity value

appears more than one time in a row their corresponding x-values are averaged. When searching for

the target value, two different outcomes are possible:

1. the found value is exactly equal to the target value;

2. the found value is smaller or greater than the target value.

When the found value is exactly equal to the target value, the averaged x-value is simply stored

together with the (already) stored y-value after which the next profile is acquired. When the found

value is not exactly equal to the target value linear interpolation is performed. If the found intensity

value is greater than the target value, the algorithm searches for the next intensity value in the table

which is smaller than the target value and the corresponding x-value (whether or not averaged) is

acquired. Subsequently linear interpolation is performed to calculate the x-value which corresponds

to the target intensity value. Using linear interpolation assumes that the region in the intensity cross

profile (Figure 7.3) where the intensity is at the half of its minimum can be approximated by a linear

function. When interpolation is finished the x-value is stored together with the (already) stored y-

value and the next profile is acquired. When the found intensity value is smaller than the target

value the same interpolation procedure is performed but this time with an interpolation partner

which is greater than the target value.

When the scanning procedure is finished and all the edge points are stored the average and standard

deviation is computed for the x-value dataset. These two parameters are used to detect misdetections

based on the detection of outliers in the dataset. A certain value is designated as an outlier when it is

greater than the average value plus three times the standard deviation or when it is smaller than the

average value minus three times the standard deviation. These outliers and their corresponding y-

values are deleted from the dataset.

The final step of the field edge algorithm consists of fitting a linear curve through the found edge

points. The curve fitting is performed using the least square method. In order to use the least square

method to fit vertical functions the x- and y-values are exchanged and at the end the fitted curve is

inversed.

52

The above described procedure assuming a vertical field edge is completely analogous for horizontal

field edges. Note that the above procedure also could have been performed by means of edge-

detection. The reason why this is not the case is because this requires working with the function

regionprops, to measure the properties of the field, which does not allow to detect oblique field edges4.

7.1.3 Computing radiation isocentre

When all the field edges are computed, the intersections of these four functions are calculated in

order to determine the diagonals of the square field. The intersection of these two diagonals defines

the radiation isocentre of the setup (gantry, collimator and table angle combination). An example of

the result of performing the field edge algorithm in combination with the radiation isocentre

computation on an input image is given in Figure 7.5.

Figure 7.5: The result of performing the field edge algorithm in combination with the radiation isocentre computation.

7.1.4 Pre-processing mechanical isocentre detection

The mechanical isocentre of the gantry-, collimator- and table angle combination coincides with the

central radio-opaque sphere of the iso-align device and thus appears as a circle on the EPID images.

The process of finding the mechanical isocentre therefore is a process of circle detection. The first

step of this procedure involves performing edge detection, followed by several morphological

operations to finally detect the circle within a predefined region of interest (ROI).

The sobel operator, which is discussed in section 5.2.2, is used to implement edge detection. First the

function edge is used to estimate a threshold value. This threshold value is multiplied by a predefined

fudge factor from which the value is chosen by trial and error to give the best overall results.

Subsequently this new threshold value is used in the edge function to perform edge detection using

the sobel operator. The result of performing this procedure on an input image yields a binary image

4 More information about regionprops and the detection of oblique field edges is provided in sections 7.1.5 and
7.1.7.

53

and is given in Figure 7.6. This result was achieved using the following code:

[~, threshold] = edge(f , 'sobel');

corrFactor = 0.5;

g = edge(f ,'sobel', threshold * corrFactor);

where f and g are the input- and output images respectively and the fudge (or correction factor) is set

to 0,5.

The next pre-processing step involves a series of morphological operations. The first operation

which is performed is morphological closing. Closing is the process of a dilation followed by an

erosion [24]. The closing operation is implemented using a disk shaped structuring element with a

radius of one like in equation 20.



















010

111

010

s (20)

The result of performing morphological closing on the binary image in Figure 7.6 is given in Figure

7.7. Comparing both images it’s clear that the encircled structures of Figure 7.6 are filled in (or

closed) in the output image. The next operation that is performed is an erosion to erase little white

dots which originate from noise and structure that are not of interest like the field edges.

Subsequently a dilation is performed on the result to reconstruct the loss of detail induced by the

erosion. Both erosion and dilation operations are performed with disk shaped structuring element

with a radius of one like in equation 20. The result of performing both processes subsequently on the

closed image is also given in Figure 7.7.

Figure 7.6: On the left the input image is shown and the right image shows the result of the edge detection operation.

54

7.1.5 Circle detection procedure

The eventual circle detection is performed with the function regionprops which is provided by the

Image Processing Toolbox of MATLAB. The function is implemented in the following way:

stats = regionprops('table', f, 'Centroid', 'MajorAxisLength', 'MinorAxisLength'); (21)

where f is the binary image on the right side of Figure 7.7. The parameter table denotes that the

output stats will be represented as a MATLAB table. Centroid returns in this table the x- and y-values

of the centres of mass of all the 8-connected regions in the input image. Eight-connectivity is based

on pixel connections with one of their 8 neighbours (at the sides and edges) and is an extension of 4-

connectivity which is based on pixel connections with only one of the four side neighbours. Finally

MajorAxislength and MinorAxisLength return a scalar that specifies the length of the major and minor

axis length of the ellipse structures detected by Centroid [31]. The result of this circle detection

operation after visualizing the detected ellipses on an input image is given in Figure 7.8.

It’s clear, looking at the image at the left of Figure 7.8, that the algorithm still has to select the

desired circle, more specifically this at the centre. To achieve this goal a point of interest (POI) is

defined which is the radiation isocentre (computed previously). Around this POI a square ROI is

established with a width of 2a, where a is initially set to 0.5 and the POI describes the centre of the

ROI. Subsequently the algorithm checks which of the centroids returned by the function regionprops

lays within the ROI. If there is no centroid which fulfils this criteria the value of a is iteratively

increased until there is exactly one centroid which lays inside the ROI. The result of this iterative

process is also given in Figure 7.8 and shows only one detected circle, the mechanical isocentre of the

setup.

Figure 7.7: On the left the result of the closing operation is shown. The image at the right shows the result of the erosion and dilation
operation.

55

7.1.6 Computing the distance between both isocentres

When both isocentres are detected these can be plotted onto the input image to yield the eventual

output image which will be written to a PDF file. An example of such an output is given in Figure

7.9 together with a detailed image of both isocentres. Looking at Figure 7.9, the mechanical isocentre

of the setup is defined by the centroid of the detected circle and the radiation isocentre of the setup is

defined by the intersection of the diagonals which are displayed in yellow.

The last step of the algorithm is to compute the distance between the two found isocentres in

millimetres. First the distance in pixels is calculated based on the standard mathematic formula of

the distance between points and subsequently this result is multiplied by a certain conversion factor

to yield the distance in millimetres. The conversion factor (in mm/pixel) is a magnification

correction on the pixel size and using position information of the EPID and can be computed as

followed.

Figure 7.8: The left image shows the result of the function regionprops and the right image shows the result of the iterative process for
selecting the desired circle.

Figure 7.9: The image on the left shows an example of an output file visualizing both the radiation- and mechanical isocentre. The
image on the right shows a zoomed view of this output image.

56

 (22)

Where PSI stands for pixel size at isocentre, PR is the pixel resolution of the EPID, SAD is the

source to axis distance (usually 100 cm, in the protocol of L.O.C. 140 cm) and RTimageSID is the

source to imager distance [20]. All these parameters can be found in the DICOM header of the

EPID images and should be denoted in millimetre. The PSI in this work has a value of 0,5227

mm/pixel for images acquired from the EPID licenced with half resolution and 0,2613 mm/pixel for

images acquired from the EPID licensed with full resolution. This slight difference in magnification

correction factor is due to the difference in resolution licenses for the TrueBeam and CLINAC

devices at L.O.C.

7.1.7 Alternative algorithm for detection of the radiation isocentre

An alternative algorithm for the detection of the radiation isocentre was designed and tested. The

algorithm has proven to be much faster than the algorithm described above, its architecture is given

in Figure 7.10. The previous algorithm needs 5.418 seconds to finish the analysis of one picture

while this algorithm only needs 1.326 s. This algorithm uses image blurring by means of a Gaussian

filter followed by automatic thresholding in combination with the earlier discussed function

regionprops to detect the field edges. There is one major drawback to this method, that is that

function regionprops always will draw a rectangle to visualize the field, even when the MLC fails and

defines an oblique field edge. The field edge procedure, discussed in section 7.1.2, though can detect

oblique field edges and therefore has been chosen to be superior to the fast detection algorithm

because this is needed for analysis of images with non-cardinal collimator angles and to detect

possible failures of the MLC.

RTimageSID

SAD
PRPSI 

Figure 7.10: The architecture of the discarded alternative algorithm for the computation of the distance between the radiation-
and mechanical isocentre. Only the left branch (radiation isocentre) differs from the architecture of Figure 7.1

57

7.2 Deviation on the table position indicators in three

dimensions

The architecture of the algorithm to compute the deviation on the table position indicators is given

in Figure 7.11. This algorithm, which is embedded in a function, is designed in threefold for the three

dimensions: vertical, longitudinal and lateral. The architecture will only be briefly explained for the

longitudinal dimension because the three algorithms only differ in the placements of POI’s. The

procedures explained in this section will be quite similar to these discussed earlier for the detection

of the radiation- and mechanical isocentre.

Figure 7.11: Architecture of the algorithm for computing the deviation on the table position indicators in three dimensions.

7.2.1 Image fusing and pre-processing

The first step of the algorithm is to fuse the reference image with the longitudinal displaced image

using the function imfuse from the MATLAB Image Processing Toolbox. Both input images are

shown in Figure 7.12, the fused image is given in Figure 7.13.

Figure 7.12: On the left the reference image is shown, the right image shows the situation after applying the
longitudinal displacement.

58

Figure 7.13: Both images of Figure 7.12 fused into one image.

The resulting fused image in Figure 7.13 is used for pre-processing towards the detection of two

radio-opaque balls appearing as circles on the fused image. One of these circles must be visible on the

reference image, the other one (the same radio-opaque ball but shifted 15cm) on the displaced image

and both of the circles must be visible on the fused image. The pre-processing step consists again of

the edge detection procedure together with the morphological closing followed by an erosion and

subsequently a dilation like in section 7.1.4, the result is shown in Figure 7.14. The arrows in Figure

7.14 point at the radio-opaque ball which is chosen to be detected.

Figure 7.14: The result of performing the whole pre-processing step on the fused image. The yellow
arrows point to the radio-opaque spheres that are chosen to be detected.

59

7.2.2 Circle detection procedure and distance computation

The eventual circle detection is completely analogous to the method described in section 7.1.5 and

therefore it will not be discussed again in detail. It is, though, important to discuss the placements of

the POI’s for circle detection since the POI’s in this case are not equal to the radiation isocentre.

The whole imaging procedure of the periodic mechanical QA protocol of L.O.C. is performed each

time in exactly the same way since its embedded in a patient file which is loaded into the linac’s

operating system. For this reason it is safe to assume that the position of the circles that have to be

located will be the same for each direction in which the table is shifted. These positions were

obtained for both half and full resolution images as well as for both directions in which could be

shifted (positive or negative shift). The algorithm first checks the resolutions of the input images and

subsequently the direction of the shift in order to know which pair of POI’s he needs to perform the

iterative process of circle detection.

When both circles are detected the result can be plotted on the original fused image and the distance

travelled in longitudinal direction can simply be computed by subtracting the y-values of the

centroids of both circles. In the same fashion the lateral displacement, which is supposed to be zero,

can be computed by subtracting the x-values of these centroids. Subsequently the deviation is

computed in millimetres by subtracting the found longitudinal distance in millimetres from 150 mm.

The result of the whole algorithm is given in Figure 7.15 together with a detail image of one of the

detected circles.

Figure 7.15: Left shows the result of performing the algorithm for computing the deviation on the table position indicators for the
longitudinal direction. The image on the right is an detail image of one of the detected circles.

60

7.3 Deviation on asymmetrical field sizes

The algorithm for the asymmetrical field size computation is similar to this of the detection of the

radiation isocentre, its architecture is given in Figure 7.16. The architecture will only be explained

for a 5 x 5 cm² field because the computations are exactly the same for all field sizes. Since the first

three steps are completely analogous to these discussed in sections 7.1.1 and 7.1.2 their discussion

will be skipped.

Figure 7.16: Architecture of the algorithm for computing deviations on asymmetrical field sizes.

7.3.1 Computation of asymmetrical field sizes and deviations

Two functions were developed to compute the asymmetrical field size, one for the x-direction and

one for the y-direction. The function for the x-direction plots a line parallel to the x-axis starting

from the averaged radiation isocentre5 towards the field edges. The two intersections are computed

as well as the distance between those intersections and the averaged radiation isocentre which yield

x1 and x2. The procedure for the y-direction is completely analogous. Assuming a 5 x 5 cm² field the

deviation on the asymmetrical field size for x1 in millimetres is computed by subtracting x1 from 25

mm. The resulting output image of the algorithm is eventually given in Figure 7.17.

5 The averaged radiation isocentre is discussed in section 6.3

Figure 7.17: The resulting output image after performing the asymmetrical field size
algorithm.

61

7.4 Architecture of the GUI

The different algorithms discussed above are embedded in a user-friendly graphical user-interface

(GUI) from which the architecture is given in Figure 7.19 and a screenshot of the GUI is given in

Figure 7.18. Notice that the GUI contains as few buttons as possible to make it easy to use and to

prevent user induced mistakes. The complete source code is given in appendix B.

The octagons in Figure 7.19 represent the three push buttons in the graphical user-interface. All the

white boxes and octagons indicate that the end user has to do a handling, in this case it refers to a

mouse click. The grey boxes indicate processes performed by the programme which are not visible

for the end user and do not need responses or handlings from the end user.

Figure 7.18: Screenshot of the graphical user-interface

Figure 7.19: Architecture of the main file of the graphical user-interface

62

7.4.1 Open

The nineteen DICOM files that have to be analysed should all be located in one directory. When one

clicks on the button with the map icon in the upper left corner of Figure 7.18 the programme will ask

if there were any mistakes made during the acquisition of the pictures. When there were no mistakes

made the images can easily be sorted based on the time stamp in de DICOM header since the

measurements are always carried out in the same order following the protocol. In the other case,

when mistakes were made, the images are sorted based on the combination of image properties like:

gantry-, collimator-, table angles, longitudinal, lateral and vertical position. Once the directory paths

to the images are sorted, this list is save for further usage and the “perform analysis” button of

Figure 7.18 is made active.

7.4.2 Perform analysis and output file

Once the “perform analysis” button is clicked, the m-file named analysis begins to run. The first step

in this file is to divide the sorted image path list into 5 distinct groups. The first group consists of the

first 13 images of the sorted list which, regarding to the protocol of L.O.C., have to be examined by

the algorithm for the calculation of the distance between the radiation and mechanical isocentre. The

second, third and fourth group each consists of one image, these are the vertical-, longitudinal- and

lateral displaced images respectively. These have to be examined by the algorithm for computing the

deviation on the table position indicators. The fifth and final group consists of the last three images

of the sorted list which are the three asymmetrical field sizes that have to be analysed.

The first group of 13 images is implemented in a for-loop which the images one by one loads into the

algorithm for the calculation of the distance between the radiation- and mechanical isocentre. This

algorithm returns the found distance in millimetres, the place of the radiation isocentre, the radius

and location of the detected circle and the four corner points of the field for visualization. For the

first 4 images the radiation isocentre will be stored for averaging for the determination of the

asymmetrical field sizes. Once the analysis is done a figure is created (invisible for end user) and the

field, the diagonals and the detected circle together with its centre of mass are plotted. This figure is

written to a PDF file. A detailed image on which there is zoomed in on the detected circle is also

written to another PDF file. These images are mend to serve as a verification that analysis has been

done correctly. Finally the gantry-, collimator- and table angles of the image are acquired from the

DICOM header and are stored together with the found distance in an excel table. Each iteration of

the for-loop therefore yields 2 PDF files. There are 13 iterations thus there will be 26 individual

PDF files created at the end of this section of the analysis file.

The second, third and fourth group which contain respectively the vertical-, longitudinal- and lateral

displaced images are loaded one by one (together with their reference images) in their corresponding

algorithms for computing the deviation on the table position indicators. This algorithm returns the

computed deviation in the displaced direction, the deviation in the direction perpendicular (in the

same plane) to the displaced direction and the location of the two detected circles together with their

radii. Again for each of the images a figure is created with the data plot onto it. Each image yields

three PDF files: one with the entire image and one detail image zoomed in on each of the two

detected circles. The deviations are again written to the excel table.

The fifth and last group contains the three asymmetrical field size images and these are one by one

loaded into the field size algorithm together with the average radiation isocentre by means of a for-

loop. The algorithm returns the four asymmetrical field sizes, the total field size in two dimensions

and the four corners of the field for visualization. Again the figure is created, data plotted and the

figure is written to PDF. The results for the asymmetrical field sizes are written to the excel table.

63

When all the above groups are analysed the process has yielded 38 individual PDF files and one

excel file. The excel table is first written to PDF and subsequently the 39 PDF files are concatenated

into one single output PDF. The approach used to bring these files together into one single output

PDF file was proposed by Michiel Darcis and Gert Leurs, fellow students ICT-electronics, and

requires that the end user has got Ghostscript6 installed. The PDF files are concatenated using the

function appendPDFs which is official courtesy of Oliver Woodford (2011). An example of a few

pages of the output PDF file is given in appendix C.

7.5 Accuracy and reproducibility

7.5.1 Accuracy

The accuracy of the circle detection algorithm could be verified by displacing the iso-align a certain

distance and measure this known displacement of the radio-opaque sphere using the software. Since

accuracy should be tested on submillimetre or at least at millimetre level and in three dimensions

(vertical, longitudinal and lateral). This means that the iso-align should be shifted for example 0,5

mm in longitudinal direction without applying any shift in the lateral direction. This could be done

by using a micrometre but since the iso-align is a relatively big and unwieldy device this is not

possible in reality without the risk of introducing errors. Another drawback of the iso-align device is

that it cannot be adjusted in the vertical direction which makes it difficult to displace it vertically.

The accuracy was tested by applying a series of predefined shifts by means of displacing the

treatment table. Since there is a certain uncertainty on the table position indicators these accuracy

values should be taken with a grain of salt and are rather added to give an indication than to proof

the accuracy of the algorithm.

Due to the above stated problems the accuracy of the algorithm could only be verified by comparing

the values of the output file to these of the manual measurements carried out by the employees of

L.O.C. This is done for CLINAC (full resolution) and Truebeam (half resolution) devices separately.

7.5.2 Reproducibility

The reproducibility of the circle detection algorithm and the algorithm for the detection of the

radiation isocentre was tested by acquiring repeated images (N = 8) of the iso-align without altering

the setup or position of the iso-align device. The displacement of the centroid of the detected circle

and the displacement of the radiation isocentre both should be zero since no shifts were applied. This

is done for both CLINAC and Truebeam devices, deviation were calculated in millimetre together

with the standard deviation (also in mm) and are summarized in the next section.

6 Ghostscript is freely downloadable at: www.ghostscript.com

64

65

8 Results and discussion

8.1 Algorithm timing considerations

The time needed to estimate the distance between the radiation- and mechanical isocentre amounts

5,418 seconds for one single image. The algorithm for calculating the deviation on the table position

indicators takes 0.918 seconds to analyse one image. The algorithm for calculating the deviation on

the asymmetrical field sizes needs 6,850 seconds. The reason why the second algorithm above is

much faster than the other two is because this algorithm does not compute any field edges. The field

edge algorithm is the most time intensive part of the programme with a time of 4,333 seconds

because it has to examine more than 600 intensity profiles per image. Finally, the whole process

starting from opening the GUI until the creation of the output file takes 2 minutes and 45 seconds.

Comparing this to the time it takes to analyse the 19 images manually (20 to 30 minutes) this is a

considerable improvement in timing considerations.

8.2 Accuracy

8.2.1 Clinac

As denoted in section 7.5.1 the accuracy of the circle detection method was tested by displacing the

iso-align several known distances and by subsequently estimating these shifts with the software. The

iso-align was displaced using the treatment table which has an uncertainty on the position indicators

of about ± 1 mm on 15 cm and therefore the results should be taken with a grain of salt. The results

are given in Table 8.1 and are rather added to give an overall indication than to proof the integrity of

the algorithm. The results are given for each dimension separately in the form of the mean value of

the absolute values of the deviation on the known displacement in millimetres plus/minus the

standard deviation in millimetres, the maximum deviation in millimetres is also shown. These results

are acquired using a CLINAC device and therefore delivered full resolution images. In each

dimension 6 different displacements where applied (N = 6).

Table 8.1: Results of testing the accuracy of the circle detection algorithm using a known displacement of the treatment table of the
CLINAC. Note that the treatment table position indicators have an uncertainty of ± 2 mm.

 Lateral Longitudinal Vertical

Mean deviation ± SD 0,57 ± 0,2 mm 0,81 ± 0,4 mm 0,37 ± 0,2 mm

Max deviation 0,76 mm 1,44 mm 0,53 mm

The displacements used to obtain the results of Table 8.1 where ± 1 mm, ± 2 mm in only one

direction and ± 1 mm in both dimensions of the imaged plane. With an uncertainty of ± 2 mm on 15

cm on the table position indicators these results are not representative for proving accuracy but they

can give an indication that the circle detection algorithm fulfils its task with a sufficient amount of

accuracy. The mean deviations in Table 8.1 are all under 0.81 mm which are reasonable results

taking into account the uncertainty on the applied shift. The maximal deviation in the longitudinal

direction is a bit high but could possibly be ascribed to the uncertainty on the table position

indicators.

66

Because the above results are meaningless speaking about accuracy, the accuracy of the software was

also tested by means of a comparison with manual results obtained by the employees of L.O.C. The

results of the mechanical QA of 29/04/2017 were compared with the software measurements for a

CLINAC device and the deviations of the manual vs. software measurements are given in Figure 8.1

to Figure 8.3.

Figure 8.1: Comparison of the results of measuring the distance between the radiation- and mechanical isocentre manually vs. with the
software for a CLINAC. The image indices are the same as those in Table 6.1.

Looking at the results in Figure 8.1 the deviation on the calculation of the distance between the

radiation- and mechanical isocentre with respect to the manually measured values are almost all

within ± 0,500 mm. Two values exceed this boundary with one of them being the maximum

deviation of 0,572 mm. Finally the mean deviation in absolute values is 0,229 mm, which is a

considerably good result.

Figure 8.2: Comparison of the results of measuring the deviation on the table position indicators manually vs. with the software for a
CLINAC.

67

The deviations for the comparison of the manual vs. software measurements for the calculation of the

deviation on treatment table position of Figure 8.2 show that all, but one, deviations are within ±

0,200 mm. The one outlier defines the maximum deviation which amounts 0,714 mm. Finally the

mean deviation in absolute values is 0,194 mm. These results are again very acceptable regarding

that the manual measurements are very user dependent.

Figure 8.3: Comparison of the results of measuring the deviation on asymmetrical field size parameters manually vs. with the software
for a CLINAC. The first bar for each parameter denoted the results for the 5x5 cm² field. The second and third bar of each parameter

denote the results for the 10x10 and 18x18 cm² fields respectively.

The comparison of the manual vs. software measurements for the determination of the deviation on

asymmetrical field size parameters in Figure 8.3 shows that all deviations for the asymmetrical field

size parameters are within ± 0,500 mm. On the other hand all deviations for the symmetrical (total)

field size parameters are within ± 0,800 mm. The mean deviation in absolute values for the

asymmetrical field size parameters amounts 0,273 mm with a maximum deviation in absolute values

of 0,630 mm. For the symmetrical field size parameters the mean deviation amounts 0,345 mm with a

maximum deviation of 0,740 mm, both calculated using absolute values.

68

8.2.2 Truebeam

The accuracy of the software as a whole was also tested for a Truebeam device, with a half resolution

licensed EPID, by comparing the output files for a certain periodic QA analysis with the manually

obtained results by the employees of L.O.C. The results for the comparison of the results of the

mechanical QA of 05/04/2017 for the Truebeam device are given in Figure 8.4 to Figure 8.6.

Looking at the results in Figure 8.4 the deviations on the computation of the distance between the

radiation- and mechanical isocentre with respect to the manually measured values are all between ±

0,400 mm. The mean deviation in absolute values amounts 0,146 mm with a maximum in absolute

value of 0,400 mm. These are more than acceptable results taking into account that the same manual

measurement performed by two different persons can easily deviate ± 0,2 mm. These values are also

in line with the results obtained for the CLINAC and are even slightly better. This is against

expectations because one could think that a better resolution would yield an increase in accuracy.

Figure 8.4: Comparison of the results of measuring the distance between the radiation- and mechanical isocentre
manually vs. with the software for the Truebeam.

Figure 8.5: Comparison of the results of measuring the deviation on the table position indicators manually vs. with
the software for a Truebeam.

69

The results in Figure 8.5 for the deviation on the treatment table position indicators shows that

most of the deviations are within ± 0,300 mm with the exception of the deviation of -0,784 mm,

which also immediately is the maximum deviation. The mean deviation in absolute values is 0,255

mm. These results are also very reasonable although they are slightly worse than the results for the

CLINAC.

The results for the deviation on the asymmetrical field size parameters of Figure 8.6 show that all

the deviations are within ±0.900 mm. The first bar of each parameter in Figure 8.6 denotes the

results for the 5 x 5 cm² field while the second and third bar of each parameter denote the results for

the 10 x 10 cm² and 18 x 18 cm² field respectively. The mean deviation on the asymmetric

parameters amounts 0.240 mm with a maximum deviation of 0.744 mm. Finally the mean deviation

on the symmetrical total field size is 0.468 mm with a maximum deviation of 0.852 mm. Comparing

these results to those obtained for a CLINAC the asymmetric parameters are slightly more

accurately computed for a Truebeam, while the results for the symmetrical parameters are better for

the CLINAC.

Since the results of the comparison of the manual vs. software measurements do not deviate

significantly comparing CLINAC and Truebeam (and thus, in this case, full- and half resolution

images) it is safe to say that the software has more or less the same accuracy for both devices.

Therefore the effect of using half- or full resolution licensed EPIDs on the resolution is negligible,

which is, like earlier denoted, not in line with the expectations.

Figure 8.6: Comparison of the results of measuring the deviation on asymmetrical field size parameters manually vs.
with the software for a Truebeam. The first bar for each parameter denoted the results for the 5 x 5 cm² field. The

second and third bar of each parameter denote the results for the 10 x 10 and 18 x 18 cm² fields respectively.

70

8.3 Reproducibility

8.3.1 Clinac

The results of the reproducibility testing for the CLINAC device with a full resolution licensed

EPID are summarized in Table 8.2 and Table 8.3. The results are shown in the form of the mean

deviation in reproducibility plus minus the standard deviation (SD) together with the maximum

deviation in absolute value.

Table 8.2: The mean deviation, SD and maximum deviation in reproducibility in performing the circle detection algorithm using a
CLINAC linear accelerator (N=8).

 Reproducibility circle detection - CLINAC

 Lateral Longitudinal Vertical

Mean deviation ± SD 0,144 ± 0,030 mm 0,051 ± 0,037 mm 0,074 ± 0,034 mm

Max. deviation 0,169 mm 0,133 mm 0,124 mm

Table 8.3: The mean deviation, SD and maximum deviation in reproducibility in computing the radiation isocentre using a CLINAC
linear accelerator (N=8).

 Reproducibility radiation isocentre detection - CLINAC

 Lateral Longitudinal Vertical

Mean deviation ± SD 0,069 ± 0,031 mm 0,059 ± 0,026 mm 0,008 ± 0,006 mm

Max. deviation 0,115 mm 0,096 mm 0,013 mm

The capacity to obtain the same locations correctly on repeated images for both the circle- and

radiation isocentre detection algorithm is, according to Table 8.2 and Table 8.3, very appreciable.

Finally, the overall mean deviations in reproducibility in all three dimensions are 0,080 mm ± 0,051

mm and 0,053 mm ± 0,034 mm for the circle- and radiation isocentre detection respectively. The

radiation isocentre detection based on the field edge algorithm7 appears to have the better ability to

locate the same positions on reproduced images for the Varian CLINAC accelerator. This also

confirms the decision to reject the alternative field edge algorithm of section 7.1.7 because it relies on

the same function regionprops8 as the circle detection algorithm.

7 The field edge algorithm is discussed in section 7.1.2.
8 The function regionprops is discussed in section 7.1.5.

71

8.3.2 Truebeam

The results of the reproducibility testing for the Varian Truebeam accelerator are represented in the

same fashion as those of the CLINAC. These results, shown in Table 8.4 and Table 8.5, are more or

less equivalent to these of the CLINAC and show even a slightly better performance in

reproducibility for the circle detection algorithm. This is not in line with the expectations because

the images acquired from the Truebeam have only half the resolution of the images acquired at a

CLINAC. This means the circle detection algorithm has 4 times as much pixels on a CLINAC image

over which it can compute the centre of mass of the circle in comparison to a Truebeam image. In

other words, one could expect that the circle detection algorithm has a better reproducibility for

CLINAC images in comparison to Truebeam images.

Table 8.4: The mean deviation, SD and maximum deviation in reproducibility in performing the circle detection algorithm using a
Truebeam linear accelerator (N=8).

 Reproducibility circle detection - Truebeam

 Lateral Longitudinal Vertical

Mean deviation ± SD 0,040 ± 0,046 mm 0,050 ± 0,042 mm 0,030 ± 0,040 mm

Max. deviation 0,080 mm 0,089 mm 0,081 mm

Table 8.5: The mean deviation, SD and maximum deviation in reproducibility in computing the radiation isocentre using a Truebeam
linear accelerator (N=8).

 Reproducibility radiation isocentre detection - Truebeam

 Lateral Longitudinal Vertical

Mean deviation ± SD 0,088 ± 0,015 mm 0,014 ± 0,010 mm 0,019 ± 0,010 mm

Max. deviation 0,100 mm 0,027 mm 0,023 mm

The overall mean deviations in reproducibility in all three dimensions for Truebeam devices are

0,049 mm ± 0,041 mm and 0,037 ± 0,038 mm for the circle- and radiation isocentre detection

respectively. Both values are better than those for CLINAC devices which is, like already denoted,

against the expectations. But again the capacity to obtain the exact same location on repeated images

is better for the radiation isocentre detection algorithm.

72

73

9 Conclusions

The application developed for the evaluation of the images acquired during the periodic mechanical

QA procedure needs 2 minutes and 45 seconds to finish this analysis. The time needed to perform the

same analysis manually is 20 – 30 minutes which implies an improvement in timing considerations

of, at least, 1000 %.

The accuracy of the three main algorithms was evaluated by comparing the software measurements

with those measured manually. The full- and half resolution images were acquired using a Varian

Truebeam and CLINAC accelerator respectively. The computation of the distance between the

radiation- and mechanical isocentre using the software deviates averagely 0,229 mm and 0,146 mm

from those acquired manually for full- and half resolution images respectively. Subsequently, the

mean deviations of the measurements for the computation of the deviations on the table position

indicators amount 0,194 mm and 0,255 mm, again for full- and half resolution images respectively.

Furthermore, the asymmetrical field size parameters of square, open fields of full resolution images

can be computed within 0,273 mm (average value) of the manually measured value. For images with

half resolution this mean deviation amounts 0,240 mm.

The circle detection algorithm used for the detection of the mechanical isocentre has a mean

reproducibility in three dimensions of 0,080 mm ± 0,051 mm regarding full resolution images.

Analysing half resolution images with the same algorithm shows a mean reproducibility of 0,049 mm

± 0,041 mm (averaged over all three dimensions). Finally, the radiation isocentre can be detected

with a mean reproducibility, in three dimensions, of 0,053 ± 0,034 mm and 0,037 ± 0,038 mm for

full- and half resolution images respectively.

Since there were no significant differences in performance between half- and full resolution images

for the accuracy- as well as the reproducibility tests the computations are assumed to be independent

of the resolution in the range of [384 x 512 ; 768 x 1024]. The slightly better performance

measuring half resolution images (acquired with Varian Truebeam) is a little strange but can be due

to the fact that the Truebeam devices are more recent and accurate in comparison to the Varian

CLINAC devices.

74

75

10 References

[1] Quality assurance in radiotherapy, 1st ed. Genf: WHO, 1988, pp. 3-36.

[2] W. Parker and H. Patrocinio, Chapter 7: Clinical treatment planning in external photon beam
radiotherapy, Heidelberg, 2006.

[3] E. Podgoršak, Radiation physics for medical physicists, 2d ed, Berlin: Springer, 2010, pp. 277-
384.

[4] E. Podgorsak, Radiation oncology physics, 2d ed. Vienna: International Atomic Energy Agency,
2005, pp. 123-271.

[5] N. Juntong, K. Pharaphan, S. Light, and N. Ratchasima, “THE OPTIMIZED X-RAY
TARGET OF ELECTRON LINEAR ACCELERATOR FOR RADIOTHERAPY,” pp. 1–3,
1933.

[6] B. M. Prendergast et al., “Flattening filter-free linac improves treatment delivery efficiency in
stereotactic body radiation therapy.,” J. Appl. Clin. Med. Phys., vol. 14, no. 3, pp. 4126, 2013.

[7] V. M. Tello, “‘ Medical Linear Accelerators and how they work ,’” Florida Hosp. Cancer Inst.
Kissimmee, 2014.

[8] M. M. Mesbahi A, Dadgar H, Ghareh-Aghaji N, “Monte Carlo approach to lung dose
calculation in small fields used in intensity modulated radiation therapy and stereotactic body
radiation therapy.,” Cancer J., vol. 10, no. 4, pp. 896–902, 2014.

[9] G. Kutcher et al., "Report of AAPM Radiation Therpy Committee Task Group 40", Med.
Phys., vol. 21, no. 4, pp. 581-618.

[10] E. E. Klein et al., “Task Group 142 report: Quality assurance of medical accelerators,” Med.
Phys., vol. 36, no. 9, p. 4197, 2009.

[11] G. Meijer, H. Kleffens and B. Mijnheer, Quality control of medical linear accelerators, 1st ed.
Bilthoven: Nederlandse Commissie voor Stralingsdosimetrie, 1996.

[12] "GAFChromic™ EBT3 film specifications". [Online]. Available at www.gafchromic.com
[Accessed: 02- Apr- 2017].

[13] K. A. Langmack, “Review article Portal imaging", The British Journal of Radiology, vol. 74,
2001, pp. 789–804.

[14] H. Takei et al., "Response of electric portal imaging devices to energy spectrum of therapeutic
photons", Scientific Exhibit, Keio Univeristy Hospital, 2014.

[15] Meditronix Corporation."Fixed Lasers, Iso Align Device", 2008. [Online]. Available:
http://www.meditronixindia.com/Dosimetry23-FixedLaser-IsoAlignDevice.htm. [Accessed:
05- Apr- 2017].

[16] Civcort Radiotherapy. "Iso-Align™", 2017. [Online]. Available:
http://civcort.com/ro/physics-qa/isoalign/isoalign-MTIAD1.htm. [Accessed: 05- Apr-
2017].

[17] S. Feenstra, Kwaliteitscontrole van medische lineaire versnellers, 1st ed., Bilthoven: Nederlandse
Commissie voor Stralingsdosimetrie, 1995.

[18] R. (ACR), "Image-Guided Radiation Therapy", 2016. [Online]. Available:

https://www.radiologyinfo.org/en/info.cfm?pg=igrt. [Accessed: 06- Apr- 2017].

 [19] Wiener Krankenanstaltenverbund, "Diameter of the radiation isocentre", 2015. [Online].

Available: http://www.wienkav.at/kav/kfj/91033454/physik/as500/aS500_sphere.htm.

[Accessed: 06- Apr- 2017].

76

[20] P. Ravindran, "A study of Winston–Lutz test on two different electronic portal imaging
devices and with low energy imaging", Australasian Physical & Engineering Sciences in Medicine,
vol. 39, no. 3, pp. 677-685, 2016.

[21] E. E. Klein et al, "A quality assurance program for ancillary high technology devices on a
dual-energy accelerator," Radiotherapy and Oncology, vol. 38, p.51-60, 1995..

[22] Wiener Krankenanstaltenverbund, "Split-field test", 2015. [Online]. Available:
http://www.wienkav.at/kav/kfj/91033454/physik/as500/aS500_split.htm. [Accessed: 06-
Apr- 2017].

[23] O. Pianykh, Digital Imaging and Communications in Medicine (DICOM), 1st ed. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 3-167.

[24] R. Gonzalez, R. Woods and S. Eddins, Digital image processing using MATLAB®, 1st ed.
United States: Gatesmark Publishing, 2010.

[25] Mathworks United Kingdom, "Image Coordinate Systems", 2017. [Online]. Available:
https://nl.mathworks.com/help/images/image-coordinate-systems.html. [Accessed: 07-
Apr- 2017].

[26] "SPATIAL FILTER", 2015. [Online]. Available:

https://www.slideshare.net/shaletks/spatial-filter-47299769. [Accessed: 07- Apr- 2017].

[27] "Histograms and contrast", 2012. [Online]. Available:
http://imgprocessing.tk/intro/histograms.html. [Accessed: 07- Apr- 2017]

[28] R. Fischer et al, "Morphology - Dilation", 2003. [Online]. Available:
http://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm. [Accessed: 08- Apr- 2017].

[29] Danyal, "spatial filtering", 2013. [Online]. Available: https://pt.slideshare.net/lineking/06-
spatial-filtering-dip/16. [Accessed: 08- Apr- 2017].

[30] M. Béla, "Spatial Analysis 3", 2010. [Online]. Available:
http://www.tankonyvtar.hu/en/tartalom/tamop425/0027_SAN3/ch01s03.html. [Accessed:
08- Apr- 2017].

[31] "Measure properties of image regions - MATLAB regionprops - MathWorks United
Kingdom", MathWorks, 2017. [Online]. Available:
https://nl.mathworks.com/help/images/ref/regionprops.html. [Accessed: 25- Apr- 2017].

77

11 Appendices

11.1 Appendix A: periodically mechanical QA protocol of L.O.C.9

Protocol: Mechanische Controle (6-wekelijks)

Deel 1: In bunker

Begin de metingen met parameters G = 0°, C = 0°, T = 0°. Zet de jaws volledig open en stel het Iso-Align
toestel in op de reticel markeringen en SSD = 100 cm. Leg een 2e lock bar onder het Iso-Align en
controleer met de waterpas of het Iso-Align oppervlak parallel staat met de tafel.

 Vul in: uitlezing met waterpas op G = 0°

 Kijk het lichtveld en reticel alignment na. De markeringen van het reticel mogen niet afbuigen op het Iso-Align toestel.

Draai gantry naar G = 90°.

 Vul in: uitlezing met waterpas op G = 90°

 Vul in: uitlezing met waterpas op C = 0°

Draai collimator naar C = 90° en 270°.

 Vul in: uitlezing met waterpas op C = 90°

 Vul in: uitlezing met waterpas op C = 270°

Draai collimator terug naar C = 0°. Draai nu ook het oppervlak van het Iso-Align toestel loodrecht en stel
de hoogte in op de longitudinale reticel markering. Draai vervolgens de gantry naar G = 270° en middel
de hoogte uit.

 Vul in: uitlezing met waterpas op G = 270°

Draai gantry terug naar G = 315°.

 Kijk lasers na (links, rechts, sagittaal) op het Iso-Align toestel

Draai het oppervlak van het Iso-Align toestel weer parallel met de tafel.

 Kijk lasers na (top) op het Iso-Align toestel

Draai gantry verder naar G = 0°.

 Vul in: SSD na uitmiddelen

Deel 2: Aan bediening

Roep de patiënt “Mechanische Controle” op. Neem MV single exposures in QA. Doe indien nodig een
override op de tafelparameters.

 G = 0°, C = 0°, T = 0°, XMLC = 15 cm, YMLC = 15 cm (*)10

Controleer of er geen distortie van het beeld gebeurd is door een gekende afstand op het Iso-Align toestel
te meten. Meet de afstand tussen de bolletjes die een 10 x 10 cm² veld aanduiden.

 Vul in: gemeten lengte van een in werkelijkheid 10 cm lang lijnstuk op het Iso-Align toestel

9 This protocol is original courtesy of L.O.C.
10 Dit beeld wordt verderop in de metingen opnieuw gebruikt door aanduiding van (*)

78

Voer een 2D matching uit in “Offline Review”, namelijk: zet de field edge (= blauwe rechthoek) op de
randen van het gestraalde veld  Finish . Gebruik de functie “Draw a point” om een punt te plaatsen op
het groene stralings isocenter (= verschoven graticule centrum). Dit punt zal verderop in de metingen
gebruikt worden. Ga opnieuw naar 2D matching en druk op “reset anatomy”  Finish. Meet vervolgens
de rechtstreekse afstand van het stralings isocenter tot het mechanisch isocenter (= bolletje).

 Vul in: afstand van stralings isocenter tot mechanisch isocenter in referentiecondities

 G = 0°, C = 90°, T = 0°, XMLC = 15 cm, YMLC = 15 cm
 G = 0°, C = 165°, T = 0°, XMLC = 15 cm, YMLC = 15 cm
 G = 0°, C = 270°, T = 0°, XMLC = 15 cm, YMLC = 15 cm
Voer op elk van deze drie beelden een 2D matching uit zoals beschreven bij de eerste test. Vanaf nu is
het niet langer nodig een punt te plaatsen. Meet de rechtstreekse afstand van het groene stralings
isocenter tot het mechanisch isocenter.

 Vul in: afstanden van stralings isocenter tot mechanisch isocenter op variërende collimatorhoeken

 G = 0°, C = 0°, T = 90°, XMLC = 15 cm, YMLC = 15 cm
 G = 0°, C = 0°, T = 270°, XMLC = 15 cm, YMLC = 15 cm
Voer op elk van deze twee beelden een 2D matching uit zoals beschreven bij de eerste test. Meet de
rechtstreekse afstand van het groene stralings isocenter tot het mechanisch isocenter.

 Vul in: afstanden van stralings isocenter tot mechanisch isocenter op variërende tafelhoeken

Trek vervolgens een lijn door een rij bolletjes (verticaal of horizontaal) in het midden van het beeld. Kijk
of deze lijn parallel loopt met het stralingsveld (verschoven graticule). Indien niet, meet de hoek tussen
deze twee lijnen.

 Vul in: afwijking in hoek van het Iso-Align toestel ten opzichte van het stralingsveld

 G = 180°, C = 0°, T = 0°, XMLC = 15 cm, YMLC = 15 cm
Voer een 2D matching uit zoals beschreven bij de eerste test. Meet de rechtstreekse afstand van het
groene stralings isocenter tot het mechanisch isocenter.

 Vul in: Afstand van stralings isocenter tot mechanisch isocenter op G = 180°

Draai in de bunker het oppervlak van het Iso-Align toestel loodrecht.

 Vul in: uitlezing met waterpas op G = 180°

Deel 3: Aan bediening

 G = 90°, C = 90°, T = 0°, XMLC = 15 cm, YMLC = 15 cm
 G = 90°, C = 0°, T = 0°, XMLC = 15 cm, YMLC = 15 cm
 G = 90°, C = 270°, T = 0°, XMLC = 15 cm, YMLC = 15 cm
Voer op elk van deze drie beelden een 2D matching uit zoals beschreven bij de eerste test. Meet de
rechtstreekse afstand van het groene stralings isocenter tot het mechanisch isocenter.

 Vul in: Afstanden van stralings isocenter tot mechanisch isocenter op variërende gantryhoeken

 G = 270°, C = 270°, T = 0°, XMLC = 15 cm, YMLC = 15 cm
 G = 270°, C = 0°, T = 0°, XMLC = 15 cm, YMLC = 15 cm (**)11

 G = 270°, C = 90°, T = 0°, XMLC = 15 cm, YMLC = 15 cm
Voer op elk van deze drie beelden een 2D matching uit zoals beschreven bij de eerste test. Meet de
rechtstreekse afstand van het groene stralings isocenter tot het mechanisch isocenter.

 Vul in: Afstanden van stralings isocenter tot mechanisch isocenter op variërende gantryhoeken

Zet tafel los en verplaats deze +15 cm verticaal.

 G = 270°, C = 0°, T = 0°, XMLC = 20 cm, YMLC = 20 cm.

11 Dit beeld wordt verderop in de metingen opnieuw gebruikt door aanduiding van (**)

79

Gebruik de functie “Compare with” in “Offline Review” om dit beeld te vergelijken met het beeld voordat
de tafel verschoven werd op G = 270° (**). Verschuif de beelden zodat de overeenkomstige bolletjes op
mekaar liggen. Meet de verticale verschuiving van het graticule (= verplaatsing van de tafel).

 Vul in: verticale verplaatsting van de tafel

Indien er naast een verticale ook een longitudinale verschuiving te zien tussen beide graticules betekent
dit dat de tafel niet loodrecht bewogen heeft. De longitudinale verschuiving moet kleiner zijn dan 0.26
cm om binnen de tolerantie van 1° afwijking te blijven.

 Vul in: longitudinale afwijking van tafelhoek na verticale verplaatsing

Zet tafel los en verplaats deze eerst terug -15 cm verticaal en vervolgens +15 cm longitudinaal. Draai
het oppervlak van het Iso-Align toestel parallel met de tafel.

 G = 0°, C = 0°, T = 0°, XMLC = 20 cm, YMLC = 20 cm
Gebruik de functie “Compare with” in “Offline Review” om dit beeld te vergelijken met het beeld voordat
de tafel verschoven werd op G = 0° (*). Verschuif de beelden zodat de overeenkomstige bolletjes op
mekaar liggen. Meet de longitudinale verschuiving van het graticule (= verplaatsing van de tafel).

 Vul in: longitudinale verplaatsting van de tafel

Indien er naast een longitudinale ook een laterale verschuiving te zien tussen beide graticules betekent
dit dat de tafel niet loodrecht bewogen heeft. De laterale verschuiving moet kleiner zijn dan 0.26 cm om
binnen de tolerantie van 1° afwijking te blijven.

 Vul in: laterale afwijking van tafelhoek na longitudinale verplaatsing

Zet tafel los en verplaats deze eerst terug -15 cm longitudinaal en vervolgens +15 cm lateraal.

 G = 0°, C = 0°, T = 0°, XMLC = 20 cm, YMLC = 20 cm
Gebruik de functie “Compare with” in “Offline Review” om dit beeld te vergelijken met het beeld voordat
de tafel verschoven werd op G = 0° (*). Verschuif de beelden zodat de overeenkomstige bolletjes op
mekaar liggen. Meet de laterale verschuiving van het graticule (= verplaatsing van de tafel).

 Vul in: laterale verplaatsting van de tafel

Indien er naast een laterale ook een longitudinale verschuiving te zien tussen beide graticules betekent
dit dat de tafel niet loodrecht bewogen heeft. De longitudinale verschuiving moet kleiner zijn dan 0.26
cm om binnen de tolerantie van 1° afwijking te blijven.

 Vul in: longitudinale afwijking van tafelhoek na laterale verplaatsing

Schuif de tafel/Iso-Align toestel volledig weg van de gantry.

 G = 0°, C = 0°, T = 0°, Xjaws = 5 cm, Yjaws = 5 cm
 G = 0°, C = 0°, T = 0°, Xjaws = 10 cm, Yjaws = 10 cm
 G = 0°, C = 0°, T = 0°, Xjaws = 18 cm, Yjaws = 18 cm
Gebruik de functie “Compare with” in “Offline Review” om elk van deze drie beelden te vergelijken met
het referentiebeeld uit test 1 (*). Deze beelden vind je onder “session timeline”. Zet het onderste
window/level van elk van deze drie beelden op 50% van de dosis, zodat de effectieve veldgrootte
overblijft. Gebruik nu het punt (stralings isocenter) dat in test 1 geplaatst werd. Meet nu de afstanden
van het stralings isocenter tot aan de veldgrenzen in vier richtingen.

 Vul in: afstand van stralings isocenter tot X1, X2, Y1 en Y2 voor een veldgrootte van 5 x 5 cm²

 Vul in: afstand van stralings isocenter tot X1, X2, Y1 en Y2 voor een veldgrootte van 10 x 10 cm²

 Vul in: afstand van stralings isocenter tot X1, X2, Y1 en Y2 voor een veldgrootte van 20 x 20 cm²

80

Deel 4: Aan bediening

Roep nieuwe patiënt “Aansluiting Controle” op om aansluitingen te controleren. Neem hiervoor
integrated images met EPID SSD = 100 cm.

 Kwadrant 1: G = 0°, C = 0°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 7.5 cm, Y2 = 0.0 cm
 Kwadrant 2: G = 0°, C = 0°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 0.0 cm, Y2 = 7.5 cm
 Kwadrant 3: G = 0°, C = 0°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 7.5 cm, Y2 = 0.0 cm
 Kwadrant 4: G = 0°, C = 0°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 0.0 cm, Y2 = 7.5 cm
Creëer in “Portal Dosimetry” een samengesteld beeld (= Create Composite Image) van deze vier beelden.
Trek dosisprofielen door het samengestelde beeld en meet de dosisverschillen ter hoogte van elk van de
vier aansluitingen.

 Vul in: dosisverschillen (∆12, ∆23, ∆34, ∆41) bij over- of onderdosage ter hoogte van de aansluitingen

 Uitbreiding “Aansluiting Controle” (jaarlijks):

De 6 wekelijkse mechanische controle wordt 1x/jaar uitgebreid met extra velden om aansluitingen

extra te controleren. Verifieer op het metingen overzicht of deze metingen moeten gebeuren.

 Kwadrant 1: G = 0°, C = 90°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 7.5 cm, Y2 = 0.0 cm
 Kwadrant 2: G = 0°, C = 90°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 0.0 cm, Y2 = 7.5 cm
 Kwadrant 3: G = 0°, C = 90°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 7.5 cm, Y2 = 0.0 cm
 Kwadrant 4: G = 0°, C = 90°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 0.0 cm, Y2 = 7.5 cm
Creëer in “Portal Dosimetry” een samengesteld beeld (= Create Composite Image) van deze vier beelden.
Trek dosisprofielen door het samengestelde beeld en meet de dosisverschillen ter hoogte van elk van de
vier aansluitingen.

 Vul in: dosisverschillen (∆12,C90, ∆23, C90, ∆34, C90,, ∆41, C90) bij over- of onderdosage ter hoogte van de aansluitingen

 Kwadrant 1: G = 90°, C = 0°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 7.5 cm, Y2 = 0.0 cm
 Kwadrant 2: G = 90°, C = 0°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 0.0 cm, Y2 = 7.5 cm
 Kwadrant 3: G = 90°, C = 0°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 7.5 cm, Y2 = 0.0 cm
 Kwadrant 4: G = 90°, C = 0°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 0.0 cm, Y2 = 7.5 cm
Creëer in “Portal Dosimetry” een samengesteld beeld (= Create Composite Image) van deze vier beelden.
Trek dosisprofielen door het samengestelde beeld en meet de dosisverschillen ter hoogte van elk van de
vier aansluitingen.

 Vul in: dosisverschillen (∆12, G90, ∆23, G90, ∆34, G90, ∆41, G90) bij over- of onderdosage ter hoogte van de aansluitingen

 Kwadrant 1: G = 90°, C = 90°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 7.5 cm, Y2 = 0.0 cm
 Kwadrant 2: G = 90°, C = 90°, T = 0°, X1 = 7.5 cm, X2 = 0.0 cm, Y1 = 0.0 cm, Y2 = 7.5 cm
 Kwadrant 3: G = 90°, C = 90°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 7.5 cm, Y2 = 0.0 cm
 Kwadrant 4: G = 90°, C = 90°, T = 0°, X1 = 0.0 cm, X2 = 7.5 cm, Y1 = 0.0 cm, Y2 = 7.5 cm
Creëer in “Portal Dosimetry” een samengesteld beeld (= Create Composite Image) van deze vier beelden.
Trek dosisprofielen door het samengestelde beeld en meet de dosisverschillen ter hoogte van elk van de
vier aansluitingen.

 Vul in: dosisverschillen (∆12,G90,C90, ∆23,G90,C90, ∆34,G90,C90, ∆41,G90,C90) bij over- of onderdosage ter hoogte van de
aansluitingen

 Kwadrant 1: G = 90°, C = 0°, T = 0°, 6MV
 Kwadrant 2: G = 90°, C = 0°, T = 0°, 15MV
Creëer in “Portal Dosimetry” een samengesteld beeld (= Create Composite Image) van deze twee
beelden. Trek dosisprofielen door het samengestelde beeld en meet de dosisverschillen ter hoogte van
aansluitingen.

 Vul in: dosisverschillen (∆6MV, ∆15MV) bij over- of onderdosage ter hoogte van de aansluitingen

81

Mechanische Controle: 6-Wekelijks

Datum: dinsdag 6 juni 2017

Toestel: Clinac 1 Clinac 2 Truebeam 3

 Clinac 4 Clinac 5

Uitgevoerd door:

Klever aangebracht (enkel voor Hasselt):

Opmerkingen:

82

11.2 Appendix B: source code12

11.2.1 Main file: GUI

function varargout = Mech_Controle_6W(varargin)

% MECH_CONTROLE_6W MATLAB code for Mech_Controle_6W.fig

% MECH_CONTROLE_6W, by itself, creates a new MECH_CONTROLE_6W or raises the existing

% singleton*.

%

% H = MECH_CONTROLE_6W returns the handle to a new MECH_CONTROLE_6W or the handle to

% the existing singleton*.

%

% MECH_CONTROLE_6W('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in MECH_CONTROLE_6W.M with the given input arguments.

%

% MECH_CONTROLE_6W('Property','Value',...) creates a new MECH_CONTROLE_6W or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before Mech_Controle_6W_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to Mech_Controle_6W_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Mech_Controle_6W

% Last Modified by GUIDE v2.5 01-May-2017 20:31:52

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @Mech_Controle_6W_OpeningFcn, ...

 'gui_OutputFcn', @Mech_Controle_6W_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Mech_Controle_6W is made visible.

function Mech_Controle_6W_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

12 Published with MATLAB® R2016b

83

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Mech_Controle_6W (see VARARGIN)

% Choose default command line output for Mech_Controle_6W

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

set(handles.analysis,'Enable','off');

set(handles.openPDF,'Enable','off');

global list;

% --- Outputs from this function are returned to the command line.

function varargout = Mech_Controle_6W_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --

function openImages_ClickedCallback(hObject, eventdata, handles)

% hObject handle to openImages (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

openFiles;%get the images

set(hObject, 'Enable', 'off');

global list;

 % questdialog with two options

 choice = questdlg(['Were there any mistakes made that could have mixed up

the order of the timestamps?'] , ...

 'Order of timestamps', ...

 'Yes','No','No');

 % Handle response

 switch choice

 case 'Yes'

 list = sortImages; %sort the images

 case 'No'

 list = sortImagesTime; %sort the images on timestamp

 end

set(handles.analysis,'Enable','on');

% --- Executes on button press in analysis.

function analysis_Callback(hObject, eventdata, handles)

% hObject handle to analysis (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global totalImages;

if (totalImages > 0)

 set(hObject,'Enable','off');

 analysis

 set(handles.openPDF,'Enable','on');

else

84

 msgbox('There are not any DICOM files loaded.');

end

% --- Executes on button press in openPDF.

function openPDF_Callback(hObject, eventdata, handles)

% hObject handle to openPDF (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global exportloc;

if exist(exportloc)

 open(exportloc);

else

 m = msgbox('There were no outputfiles found.');

end

% --- Executes on selection change in listbox.

function listbox_Callback(hObject, eventdata, handles)

% hObject handle to listbox (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.

function listbox_CreateFcn(hObject, eventdata, handles)

% hObject handle to listbox (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

85

11.2.2 OpenFiles.m

global path;

global imageFiles;

global imageIndex;

global totalImages;

path = uigetdir;

%If there is no directory selected, return messagebox

if(path == 0)

 msgbox('There were no images selected.');

end

imageFiles = dir([path '*.dcm']);%The image files are dicomfiles

set(handles.figure1, 'pointer', 'watch');

imageIndex = find(~[imageFiles.isdir]); %get image indices

list = {imageFiles(~[imageFiles.isdir]).name}; %get list with image names

totalImages = length(imageIndex); %get total amount of images

set(handles.figure1, 'pointer', 'arrow');

%Display files in listbox

set(handles.listbox, 'String', list);

11.2.3 Sort images on timestamp

function [sortedList] = sortImagesTime()

%This function sorts the input image based on the timestamp

% The images were required in a certain predefined order.

% In order to know which image should undergo which operation,

% the images are sorted based on the time stamp in the dicom header.

% Output: List of images sorted on time stamp

global path;

global imageFiles;

global imageIndex;

global totalImages;

listPath = cell(totalImages,1);

listTime = [];

listSorted = cell(totalImages,1);

if totalImages ~= 19

 msgbox('There are not exactly 19 images in the directory');

 error('There are not exactly 19 images in the directory');

end

%Make a list of all the imagefile names and create a time list

for i = 1 : totalImages

 name = imageFiles(imageIndex(i)).name; %get name of image file

 imagePath = fullfile(path, name); %initialise the path of the image

 f = dicomread(imagePath); %Load the dicom file

 metadata = dicominfo(imagePath);%Load dicom header

 time = str2num(metadata.(dicomlookup('0008', '0033')));

86

 listPath{i} = imagePath;

 listTime = [listTime ; time];

end

j = 1;

while size(listTime, 1) >= 1

 [m, i] = min(listTime);%get value and index of lowest timestamp

 lowest = listPath{i};%get the name of that file

 listSorted{j} = lowest;%place in sorted list

 listTime(i,:) = [];%delete it from time and name list

 listPath(i) = [];

 j = j + 1;

end

sortedList = listSorted;

end

11.2.4 Sort images on properties

function [sortedList] = sortImages()

%This function sorts the input image based on the machine parameters

% The images were required in a certain predefined order.

% In order to know which image should undergo which operation,

% the images are sorted based on the collimator/gantry and table angles.

% output: sorted list of images

global path;

global imageFiles;

global imageIndex;

global totalImages;

g0c0t0 = 0;

g0c90t0 = 0;

g0c165t0 = 0;

g0c270t0 = 0;

g0c0t90 = 0;

g0c0t270 = 0;

g180c0t0 = 0;

g90c90t0 = 0;

g90c0t0 = 0;

g90c270t0 = 0;

g270c270t0 = 0;

g270c0t0 = 0;

g270c90t0 = 0;

vertversch = 0;

longversch = 0;

latversch = 0;

fs5x5 = 0;

fs10x10 = 0;

fs18x18 = 0;

gantry270 = cell(1,1);

gantry0 = cell(1,1);

%Sort images wheter on RTimage label (Clinac) or G/C/T angles (Truebeam)

for i = 1 : totalImages

 name = imageFiles(imageIndex(i)).name; %get name of image file

87

 imagePath = fullfile(path, name); %initialise the path of the image

 f = dicomread(imagePath); %Load the dicom file

 metadata = dicominfo(imagePath);%Load dicom header

 header = metadata.(dicomlookup('3002','0002'));%Get RTimageLabel

 machine = metadata.(dicomlookup('0008', '1010'))%Get machine name

 c = metadata.(dicomlookup('300a','0120'));%Collimator angle

 g = metadata.(dicomlookup('300a','011e'));%Gantry angle

 t = metadata.(dicomlookup('300a','0122'));%table angle

 %Voor CLINAC

 if contains(machine, 'CLINAC') == 1 || contains(machine, 'clinac') == 1

 %The three field sizes

 if contains(header, '5x5 VELD-') == 1

 fs5x5 = imagePath;

 elseif contains(header, '10x10 VELD-') == 1

 fs10x10 = imagePath;

 elseif contains(header, '18x18 VELD-') == 1

 fs18x18 = imagePath;

 %Difference mech/rad isocenter (13 images)

 elseif contains(header, 'G0 C0-') == 1

 g0c0t0 = imagePath;

 elseif contains(header, 'G0 C90-') == 1

 g0c90t0 = imagePath;

 elseif contains(header, 'G0 C165-') == 1

 g0c165t0 = imagePath;

 elseif contains(header, 'G0 C270-') == 1

 g0c270t0 = imagePath;

 elseif contains(header, 'G0 T90-') == 1

 g0c0t90 = imagePath;

 elseif contains(header, 'G0 T270-') == 1

 g0c0t270 = imagePath;

 elseif contains(header, 'G180-') == 1

 g180c0t0 = imagePath;

 elseif contains(header, 'G90 C90-') == 1

 g90c90t0 = imagePath;

 elseif contains(header, 'G90-') == 1

 g90c0t0 = imagePath;

 elseif contains(header, 'G90 C270-') == 1

 g90c270t0 = imagePath;

 elseif contains(header, 'G270 C270-') == 1

 g270c270t0 = imagePath;

 elseif contains(header, 'G270-') == 1

 g270c0t0 = imagePath;

 elseif contains(header, 'G270 C90-') == 1

 g270c90t0 = imagePath;

 %lateral/vertical/longitudinal table motion

 elseif contains(header, 'G0 LAT 15-') == 1

 latversch = imagePath;

 elseif contains(header, 'G0 LNG 15-') == 1

 longversch = imagePath;

 elseif contains(header, 'G0 VRT 15-') == 1 || contains(header, 'G270 VRT 15-') == 1

 vertversch = imagePath;

 end

 elseif contains(machine, 'TRUEBEAM') == 1 || contains(machine, 'truebeam') == 1

88

 %G=0; C=165; T=0

 if c <= 166 && c >= 164

 if (g < 1 || g >= 359) && (t <= 1 || t >= 359)

 g0c165t0 = imagePath;

 elseif (g >= 1 || g <= 359) || (t >= 1 || t <= 359)

 % Construct a questdlg with two options

 choice = questdlg(['The gantry and/or table angles are not equal to 0.

Instead the gantry angle is ' num2str(g) ' & the table angle is ' num2str(t) '. Would you

like to go through with this values?'] , ...

 'Image G0C165T0', ...

 'Yes','No','No');

 % Handle response

 switch choice

 case 'Yes'

 g0c165t0 = imagePath;

 case 'No'

 error('Image G0C165T0 is not correct');

 end

 end

 end

 %Table angles 90 and 270 (G and C are 0)

 if t <= 91 && t >= 89

 if (g < 1 || g >= 359) && (c <= 1 || c >= 359)

 g0c0t90 = imagePath;

 elseif (g >= 1 || g <= 359) || (c >= 1 || c <= 359)

 % Construct a questdlg with two options

 choice = questdlg(['The gantry and collimator angles are not equal to 0.

Instead the gantry angle is ' num2str(g) ' & the collimator angle is ' num2str(c) '. Would

you like to go through with this value?'] , ...

 'Image G0C0T90', ...

 'Yes','No','No');

 % Handle response

 switch choice

 case 'Yes'

 g0c0t90 = imagePath;

 case 'No'

 error('Image G0C0T90 is not correct');

 end

 end

 elseif t <= 271 && t >= 269

 if (g < 1 || g >= 359) && (c <= 1 || c >= 359)

 g0c0t270 = imagePath;

 elseif (g >= 1 || g <= 359) || (c >= 1 || c <= 359)

 % Construct a questdlg with two options

 choice = questdlg(['The gantry and collimator angles are not equal to 0.

Instead the gantry angle is ' num2str(g) ' & the collimator angle is ' num2str(c) '. Would

you like to go through with this value?'] , ...

 'Image G0C0T270', ...

 'Yes','No','No');

 % Handle response

 switch choice

 case 'Yes'

 g0c0t270 = imagePath;

 case 'No'

 error('Image G0C0T270 is not correct');

 end

 end

89

 end

 %Collimator 90 (G0C90T0; G90C90T0 and G270C90T0)

 if c <= 91 && c >= 89

 %G0C90T0

 if (g < 1 || g >= 359) && (t <= 1 || t >= 359)

 g0c90t0 = imagePath;

 %G90C90T0

 elseif g <= 91 && g >= 89 && t <= 0.5 && t >= -0.5

 g90c90t0 = imagePath;

 %G270C90T0

 elseif g <= 271 && g >= 269 && t <= 0.5 && t >= -0.5

 g270c90t0 = imagePath;

 else

 % Construct a questdlg with two options

 choice = questdlg(['The gantry angle is ' num2str(g) ' The collimator angle

is' num2str(c) 'and the table angle is ' num2str(t) '. Please select the right image

assignment.'] , ...

 'There went something wrong.', ...

 'G0C90T0','G90C90T0', 'G270C90T0' ,'G0C90T0');

 % Handle response

 switch choice

 case 'G0C90T0'

 g0c90t0 = imagePath;

 case 'G90C90T0'

 g90c90t0 = imagePath;

 case 'G270C90T0'

 g270c90t0 = imagePath;

 end

 end

 end

 %Collimator 270 (G0C270T0; G90C270T0 and G270C270T0)

 if c <= 271 && c >= 269

 %G0C270T0

 if (g <= 1 || g >= 359) && (t <= 1 || t >= 359)

 g0c270t0 = imagePath;

 %G90C270T0

 elseif (g <= 91 && g >= 89) && (t <= 1 || t >= 359)

 g90c270t0 = imagePath;

 %G270C270T0

 elseif (g <= 271 && g >= 269) && (t <= 1 || t >= 359)

 g270c270t0 = imagePath;

 else

 % Construct a questdlg with two options

 choice = questdlg(['The gantry angle is ' num2str(g) ' The collimator angle

is ' num2str(c) 'and the table angle is ' num2str(t) '. Please select the right image

assignment.'] , ...

 'There went something wrong.', ...

 'G0C270T0','G90C270T0', 'G270C270T0' ,'G0C270T0');

 % Handle response

 switch choice

 case 'G0C270T0'

 g0c270t0 = imagePath;

 case 'G90C270T0'

 g90c270t0 = imagePath;

90

 case 'G270C270T0'

 g270c270t0 = imagePath;

 end

 end

 end

 %Gantry 90 and 180 (both with C and T zero)

 if (c <= 1 || c >= 359) && not(g <= 1 || g >= 359)

 %G90C0T0

 if (g <= 91 && g >= 89) && (t <= 1 || t >= 359)

 g90c0t0 = imagePath;

 %G180C0T0

 elseif (g <= 181 && g >= 179) && (t <= 1 || t >= 359)

 g180c0t0 = imagePath;

 %G270C0T0 and G270 VRT 15

 elseif (g <= 271 && g >= 269) && (t <= 1 || t >= 359)

 gantry270 = [gantry270 ; imagePath];

 else

 % Construct a questdlg with two options

 choice = questdlg(['The gantry angle is ' num2str(g) ' The collimator

angle is ' num2str(c) 'and the table angle is ' num2str(t) '. Please select the right image

assignment.'] , ...

 'There went something wrong.', ...

 'G90C0T0','G180C0T0', 'G270C0T0' ,'G90C0T0');

 % Handle response

 switch choice

 case 'G900C0T0'

 g90c0t0 = imagePath;

 case 'G180C0T0'

 g180c0t0 = imagePath;

 case 'G270C0T0'

 gantry270 = [gantry270 ; imagePath];

 end

 end

 end

 %Gantry angle 0 and lateral/longitudinal motion and Fieldsizes

 %(all on G0C0T0)

 if (g <= 1 || g >= 359) && (c <= 1 || c >= 359) && (t <= 1 || t >= 359)

 gantry0 = [gantry0 ; imagePath];

 end

 end

end

if contains(machine, 'TRUEBEAM') == 1 || contains(machine, 'truebeam') == 1

gantry0(1) = [];

gantry270(1) = [];

%Sort the six images with G = 0 on timestamp

[rows, cols] = size(gantry0);

%Check if there are exactly six images in array

if rows ~= 6

 error('There are not exactly six images with G = 0°; C = 0°; T = 0°');

end

gantry0_time = [];

91

gantry0_sort = cell(1,1);

for i = 1 : rows

 metadata_g0 = dicominfo(gantry0{i});

 time = str2num(metadata_g0.(dicomlookup('0008','0033')));

 gantry0_time = [gantry0_time ; time];

end

while size(gantry0_time,1) >= 1

 [m, i] = min(gantry0_time);

 mini = gantry0{i};

 gantry0_sort = [gantry0_sort ; mini];

 gantry0_time(i,:) = [];

 gantry0(i) = [];

end

 gantry0_sort(1) = [];

 j = 1;

 while j <= rows

 switch j

 case 1

 g0c0t0 = gantry0_sort{j};

 case 2

 longversch = gantry0_sort{j};

 case 3

 latversch = gantry0_sort{j};

 case 4

 fs5x5 = gantry0_sort{j};

 case 5

 fs10x10 = gantry0_sort{j};

 case 6

 fs18x18 = gantry0_sort{j};

 otherwise

 %do nothing

 end

 j = j + 1;

 end

%Sort the two images with G = 270 on timestamp

[row, col] = size(gantry270);

%Check if there are exactly two images in array

if row ~= 2

 error('There are not exactly two images with G = 270°; C = 0° and T = 0°.');

end

%Sort them on timestamp

metadata_t1 = dicominfo(gantry270{1});

g270_t1 = metadata_t1.(dicomlookup('0008','0033'));

g270_t1 = str2num(g270_t1);

metadata_t2 = dicominfo(gantry270{2});

g270_t2 = metadata_t2.(dicomlookup('0008','0033'));

g270_t2 = str2num(g270_t2);

if g270_t1 < g270_t2

 g270c0t0 = gantry270{1};

 vertversch = gantry270{2};

else

 g270c0t0 = gantry270{2};

 vertversch = gantry270{1};

end

end

92

listSorted = cell(19,1);

listSorted{1} = g0c0t0;

listSorted{2} = g0c90t0;

listSorted{3} = g0c165t0;

listSorted{4} = g0c270t0;

listSorted{5} = g0c0t90;

listSorted{6} = g0c0t270;

listSorted{7} = g180c0t0;

listSorted{8} = g90c90t0;

listSorted{9} = g90c0t0;

listSorted{10} = g90c270t0;

listSorted{11} = g270c270t0;

listSorted{12} = g270c0t0;

listSorted{13} = g270c90t0;

listSorted{14} = vertversch;

listSorted{15} = longversch;

listSorted{16} = latversch;

listSorted{17} = fs5x5;

listSorted{18} = fs10x10;

listSorted{19} = fs18x18;

sortedList = listSorted;

end

11.2.5 Perform analysis

global path;

global imageFiles;

global imageIndex;

global totalImages;

global location;

global list;

global exportloc;

files = cell(1,totalImages);

%First divide the list of images into 5 groups

%1: distance between mech/rad isocenter

dist = list(1:13);

%2: Vertical table motion

vert = list{14};

%3: Longitudinal table motion

long = list{15};

%4: Lateral table motion

lat = list{16};

%5 field sizes;

fs = list(17:19);

%% Distance between mech/rad isocenter

w = waitbar(0, 'Calculating distances between mech/rad isocenter');

dist_results = struct('i',0,'Gantry',0, 'Collimator', 0, 'Table', 0, 'deltaIso', 0);

x_iso = [];

y_iso = [];

for i = 1 : 13

 metadata = dicominfo(dist{i}); %get dicom header

93

 c = metadata.(dicomlookup('300a','0120'));%Collimator angle

 g = metadata.(dicomlookup('300a','011e'));%Gantry angle

 t = metadata.(dicomlookup('300a','0122'));%table angle

 try

 if i == 3

 [deltaIso, xRad, yRad, xMech, yMech, rad, veld] = deltaiso165(dist{i}); %computations

 else

 [deltaIso, xRad, yRad, xMech, yMech, rad, veld] = deltaiso(dist{i}); %computations

 end

 %create figure without displaying and save a handle

 fhandle = figure('visible','off');

 imshow(dicomread(dist{i}),'DisplayRange',[]);

 %plotting

 set(0,'CurrentFigure',fhandle), hold on, plot(xRad, yRad, '*'); %radiationiso

 %plot field edges

 set(0,'CurrentFigure',fhandle), hold on, line([veld(1) veld(3)], [veld(2) veld(4)],

'Color', 'y');

 set(0,'CurrentFigure',fhandle), hold on, line([veld(5) veld(7)], [veld(6) veld(8)],

'Color', 'y');

 set(0,'CurrentFigure',fhandle), hold on, line([veld(3) veld(7)], [veld(4) veld(8)],

'Color', 'y');

 set(0,'CurrentFigure',fhandle), hold on, line([veld(5) veld(1)], [veld(6) veld(2)],

'Color', 'y');

 set(0,'CurrentFigure',fhandle), hold on, viscircles([xMech yMech], rad); %mechanical iso

 set(0,'CurrentFigure',fhandle), hold on, plot(xMech, yMech, '+');

 %diagonals

 set(0,'CurrentFigure',fhandle), hold on, line([veld(1) veld(7)], [veld(2) veld(8)],

'Color', 'y');

 set(0,'CurrentFigure',fhandle), hold on, line([veld(5) veld(3)], [veld(6) veld(4)],

'Color', 'y');

 %Setting up results

 inl = sprintf('%d: G: %.2f°, C: %.2f° en T: %.2f°',i,g,c,t);

 res = sprintf('; distance between mechanical and radiation isocenter = %.3fmm.',deltaIso);

 result = title({inl;res}, 'Fontsize', 8);

 %Save results

 dist_results(i).i = i;

 dist_results(i).Gantry = round(g,0);

 dist_results(i).Collimator = round(c,0);

 dist_results(i).Table = round(t,0);

 dist_results(i).deltaIso = round(deltaIso, 3);

 catch

 disp('Error occured during the analysis of one of the pictures. Code will continue

running.');

 end

 %Save radiation iso's for Colli = 0,165,90,270 for averaging

 switch i

 case 1

 x_iso = [x_iso xRad];

 y_iso = [y_iso yRad];

94

 k = dicomread(dist{i})

 [Rr, Cc] = size(k);

 case 2

 x_iso = [x_iso xRad];

 y_iso = [y_iso yRad];

 case 3

 x_iso = [x_iso xRad];

 y_iso = [y_iso yRad];

 case 4

 x_iso = [x_iso xRad];

 y_iso = [y_iso yRad];

 otherwise

 %do nothing

 end

 %write to pdf

 try

 %Zoom to dot

 pos = get(fhandle, 'CurrentPoint');

 zoom_pos = [xMech yMech];

 set(fhandle, 'CurrentPoint', zoom_pos);

 field = zoom(fhandle);

 field.Enable = 'on';

 %Make sure one page in pdf is one image

 fhandle.PaperPositionMode = 'auto';

 fig_pos = fhandle.PaperPosition;

 fhandle.PaperSize = [fig_pos(3) fig_pos(4)];

 %write to pdf

 pathOut = path;

 fileOut = sprintf('out%d_v1.pdf', i);

 loc = fullfile(pathOut, fileOut);

 %Check if file already exists

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf'); %save as pdf

 fileattrib(loc, '+h -w', '', 's'); %hidden&read-only

 files{end+1} = loc;

 %Zoomed in image to pdf

 set(0, 'CurrentFigure', fhandle), hold on, zoom(20);

 fileOut = sprintf('out%d_v2.pdf', i);

 loc = fullfile(pathOut, fileOut);

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf');

 fileattrib(loc, '+h -w', '', 's');

 files{end+1} = loc;

 catch ME

 msgbox(ME.message);

 msgbox('Error during writing to pdf');

 %delete files????

 close(w);

 close(fhandle);

 end

 waitbar(i/13);

 close(fhandle);

95

end

table_dist = struct2table(dist_results); %results to table

%Write table to excel

waitbar(1, w, 'Writing results to excel');

fileOut = 'table.xls';

loc = fullfile(pathOut,fileOut);

deleteifexist(loc);

writetable(table_dist, loc);

fileattrib(loc,'+h ','','s'); %hidden maken

%% Vertical table motion

waitbar(1, w, 'Calculating lateral table motion.');

vert_results = struct('VRT15', 0, 'VRT_dev', 0, 'Long_dev', 0);

try

 dcm1 = dist{12};

 dcm2 = vert;

 [vertAfw, longVer2, vert_x1, vert_y1, vert_x2, vert_y2, vert_r1, vert_r2] =

Verticaal(dcm1, dcm2);

 vertImage = imfuse(dicomread(dcm1), dicomread(dcm2), 'blend', 'Scaling', 'joint');

 %Create figure without displaying and save its handle

 fhandle = figure('visible','off');

 imshow(vertImage,'DisplayRange',[]);

 [R, C] = size(vertImage);

 %plotting

 set(0,'CurrentFigure',fhandle), hold on, viscircles([vert_x1 vert_y1], vert_r1); %first

circle

 set(0,'CurrentFigure',fhandle), hold on, viscircles([vert_x2 vert_y2], vert_r2); %second

circle

 set(0,'CurrentFigure',fhandle), hold on, line([vert_x1 vert_x2], [vert_y1 vert_y2]);%join

with line

 %Setting up results

 inl = sprintf('The vertical deviation is %.2fmm', vertAfw);

 res = sprintf('The longitudinal displacement is %.2fmm.',longVer2);

 result = title({inl;res}, 'Fontsize', 8);

 %Save results

 lat_results(1).VRT15 = 'done';

 lat_results(1).VRT_dev = round(vertAfw,3);

 lat_results(1).Long_dev = round(longVer2,3);

 catch

 disp('Error occured during the analysis of one of the pictures. Code will continue

running.');

end

%write to pdf

 try

 %Full picture

 pos = get(fhandle, 'CurrentPoint');

 zoom_pos = [vert_x1 vert_y1];

 set(fhandle, 'CurrentPoint', zoom_pos);

 field = zoom(fhandle);

 field.Enable = 'on';

96

 %Make sure one page in pdf is one image

 fhandle.PaperPositionMode = 'auto';

 fig_pos = fhandle.PaperPosition;

 fhandle.PaperSize = [fig_pos(3) fig_pos(4)];

 %write to pdf

 pathOut = path;

 fileOut = sprintf('out%d_v1.pdf', 14);

 loc = fullfile(pathOut, fileOut);

 %Check if file already exists

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf'); %save as pdf

 fileattrib(loc, '+h -w', '', 's'); %hidden&read-only

 files{end+1} = loc;

 %First zoomed in image to pdf

 set(fhandle, 'CurrentPoint', zoom_pos);

 set(0, 'CurrentFigure', fhandle), hold on,

 axis([vert_x1-20 vert_x1+20 vert_y1-20 vert_y2+20]), zoom(4);

 fileOut = sprintf('out%d_v2.pdf', 14);

 loc = fullfile(pathOut, fileOut);

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf');

 fileattrib(loc, '+h -w', '', 's');

 files{end+1} = loc;

 %Second zoomed in image to pdf

 set(fhandle, 'CurrentPoint', zoom_pos);

 set(0, 'CurrentFigure', fhandle), hold on,

 axis([vert_x2-20 vert_x2+20 vert_y1-20 vert_y2+20]), zoom(4);

 fileOut = sprintf('out%d_v3.pdf', 14);

 loc = fullfile(pathOut, fileOut);

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf');

 fileattrib(loc, '+h -w', '', 's');

 files{end+1} = loc;

 close(fhandle);

 catch ME

 msgbox(ME.message);

 msgbox('Error during writing to pdf');

 close(fhandle);

 end

table_vert = struct2table(lat_results); %results to table

%Table to excel

waitbar(1, w, 'Writing results to excel');

fileOut = 'table.xls';

loc = fullfile(pathOut,fileOut);

writetable(table_vert,loc,'Sheet',1,'Range','A16')

fileattrib(loc,'+h ','','s'); %hidden maken

%% Longitudinal table motion

waitbar(1, w, 'Calculating longitudinal table motion.');

long_results = struct('LNG15',0,'LNG_dev',0, 'Lat_dev', 0);

try

97

 dcm1 = dist{1};

 dcm2 = long;

 [longAfw, latVer, long_x1, long_y1, long_x2, long_y2, long_r1, long_r2] =

Longitudinaal(dcm1, dcm2); %calculate

 longImage = imfuse(dicomread(dcm1),dicomread(dcm2),'blend','Scaling','joint');

 %create figure without displaying and save a handle

 fhandle = figure('visible','off');

 imshow(longImage,'DisplayRange',[]);

 [R, C] = size(longImage);

 %plotting

 set(0,'CurrentFigure',fhandle), hold on, viscircles([long_x1 long_y1], long_r1); %first

circle

 set(0,'CurrentFigure',fhandle), hold on, viscircles([long_x2 long_y2], long_r2); %second

circle

 set(0,'CurrentFigure',fhandle), hold on, line([long_x1 long_x2], [long_y1 long_y2]);%join

with line

 %Setting up results

 inl = sprintf('The longitudinal deviation is %.2fmm', longAfw);

 res = sprintf('The lateral displacement is %.2fmm.',latVer);

 result = title({inl;res}, 'Fontsize', 8);

 %Save results

 long_results(1).LNG15 = 'done';

 long_results(1).LNG_dev = round(longAfw,3);

 long_results(1).Lat_dev = round(latVer,3);

 catch

 disp('Error occured during the analysis of one of the pictures. Code will continue

running.');

end

%write to pdf

 try

 %Full picture

 pos = get(fhandle, 'CurrentPoint');

 zoom_pos = [C/2 R/2];

 set(fhandle, 'CurrentPoint', zoom_pos);

 field = zoom(fhandle);

 field.Enable = 'on';

 %Make sure one page in pdf is one image

 fhandle.PaperPositionMode = 'auto';

 fig_pos = fhandle.PaperPosition;

 fhandle.PaperSize = [fig_pos(3) fig_pos(4)];

 %write to pdf

 pathOut = path;

 fileOut = sprintf('out%d_v1.pdf', 15);

 loc = fullfile(pathOut, fileOut);

 %Check if file already exists

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf'); %save as pdf

 fileattrib(loc, '+h -w', '', 's'); %hidden&read-only

 files{end+1} = loc;

 %First zoomed in image to pdf

98

 set(fhandle, 'CurrentPoint', zoom_pos);

 set(0, 'CurrentFigure', fhandle), hold on,

 axis([long_x1-20 long_x1+20 long_y1-20 long_y1+20]), zoom(4);

 fileOut = sprintf('out%d_v2.pdf', 15);

 loc = fullfile(pathOut, fileOut);

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf');

 fileattrib(loc, '+h -w', '', 's');

 files{end+1} = loc;

 %Second zoomed in image to pdf

 set(fhandle, 'CurrentPoint', zoom_pos);

 set(0, 'CurrentFigure', fhandle), hold on,

 axis([long_x2-20 long_x2+20 long_y2-20 long_y2+20]), zoom(4);

 fileOut = sprintf('out%d_v3.pdf', 15);

 loc = fullfile(pathOut, fileOut);

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf');

 fileattrib(loc, '+h -w', '', 's');

 files{end+1} = loc;

 close(fhandle);

 catch ME

 msgbox(ME.message);

 msgbox('Error during writing to pdf');

 close(fhandle);

 end

table_long = struct2table(long_results); %results to table

%Table to excel

waitbar(1, w, 'Writing results to excel');

fileOut = 'table.xls';

loc = fullfile(pathOut,fileOut);

writetable(table_long,loc,'Sheet',1,'Range','A19')

fileattrib(loc,'+h ','','s'); %hidden maken

%% Lateral table motion

waitbar(1, w, 'Calculating lateral table motion.');

lat_results = struct('LAT15', 0, 'LAT_dev', 0, 'Long_dev', 0);

try

 dcm1 = dist{1};

 dcm2 = lat;

 [latAfw, longVer, lat_x1, lat_y1, lat_x2, lat_y2, lat_r1, lat_r2] = Lateraal(dcm1, dcm2);

 latImage = imfuse(dicomread(dcm1), dicomread(dcm2), 'blend', 'Scaling', 'joint');

 %Create figure without displaying and save its handle

 fhandle = figure('visible','off');

 imshow(latImage,'DisplayRange',[]);

 [R, C] = size(latImage);

 %plotting

 set(0,'CurrentFigure',fhandle), hold on, viscircles([lat_x1 lat_y1], lat_r1); %first

circle

 set(0,'CurrentFigure',fhandle), hold on, viscircles([lat_x2 lat_y2], lat_r2); %second

circle

 set(0,'CurrentFigure',fhandle), hold on, line([lat_x1 lat_x2], [lat_y1 lat_y2]);%join

with line

 %Setting up results

99

 inl = sprintf('The lateral deviation is %.2fmm', latAfw);

 res = sprintf('The longitudinal displacement is %.2fmm.',longVer);

 result = title({inl;res}, 'Fontsize', 8);

 %Save results

 lat_results(1).LAT15 = 'done';

 lat_results(1).LAT_dev = round(latAfw,3);

 lat_results(1).Long_dev = round(longVer,3);

 catch

 disp('Error occured during the analysis of one of the pictures. Code will continue

running.');

end

%write to pdf

 try

 %Full picture

 pos = get(fhandle, 'CurrentPoint');

 zoom_pos = [C/2 R/2];

 set(fhandle, 'CurrentPoint', zoom_pos);

 field = zoom(fhandle);

 field.Enable = 'on';

 %Make sure one page in pdf is one image

 fhandle.PaperPositionMode = 'auto';

 fig_pos = fhandle.PaperPosition;

 fhandle.PaperSize = [fig_pos(3) fig_pos(4)];

 %write to pdf

 pathOut = path;

 fileOut = sprintf('out%d_v1.pdf', 16);

 loc = fullfile(pathOut, fileOut);

 %Check if file already exists

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf'); %save as pdf

 fileattrib(loc, '+h -w', '', 's'); %hidden&read-only

 files{end+1} = loc;

 %First zoomed in image to pdf

 set(fhandle, 'CurrentPoint', zoom_pos);

 set(0, 'CurrentFigure', fhandle), hold on,

 axis([lat_x1-20 lat_x1+20 lat_y1-20 lat_y1+20]), zoom(4);

 fileOut = sprintf('out%d_v2.pdf', 16);

 loc = fullfile(pathOut, fileOut);

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf');

 fileattrib(loc, '+h -w', '', 's');

 files{end+1} = loc;

 %Second zoomed in image to pdf

 set(fhandle, 'CurrentPoint', zoom_pos);

 set(0, 'CurrentFigure', fhandle), hold on,

 axis([lat_x2-20 lat_x2+20 lat_y2-20 lat_y2+20]), zoom(4);

 fileOut = sprintf('out%d_v3.pdf', 16);

 loc = fullfile(pathOut, fileOut);

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf');

100

 fileattrib(loc, '+h -w', '', 's');

 files{end+1} = loc;

 close(fhandle);

 catch ME

 msgbox(ME.message);

 msgbox('Error during writing to pdf');

 close(fhandle);

 end

table_lat = struct2table(lat_results); %results to table

%Table to excel

waitbar(1, w, 'Writing results to excel');

fileOut = 'table.xls';

loc = fullfile(pathOut,fileOut);

writetable(table_lat,loc,'Sheet',1,'Range','A22');

fileattrib(loc,'+h ','','s'); %hidden maken

%% Assymetric fieldsizes

if Rr ~= 384

x_iso = double(mean(x_iso));

y_iso = double(mean(y_iso));

else

x_iso = double(mean(x_iso))*2;

y_iso = double(mean(y_iso))*2;

end

w = waitbar(0, 'Calculating asymmetrical fieldsizes');

field_results = struct('field', 0, 'x1_dev', 0, 'x2_dev', 0,'y1_dev',0,'y2_dev',0,

'x_total_dev', 0, 'y_total_dev', 0);

for i = 1 : 3

 try

 dcm = fs{i};

 [fs_x1, fs_x2, fs_xtot, fs_y1, fs_y2, fs_ytot, fs_veld] = Veldgrootte(dcm, x_iso, y_iso);

 image = dicomread(dcm);

 [R, C] = size(image);

 %Create figure without displaying and save its handle

 fhandle = figure('visible','off');

 imshow(image,'DisplayRange',[]);

 %plotting

 set(0,'CurrentFigure',fhandle), hold on, plot(x_iso, y_iso, '*');

 set(0,'CurrentFigure',fhandle), hold on, line([fs_veld(1) fs_veld(3)], [fs_veld(2)

fs_veld(4)], 'Color', 'y');

 set(0,'CurrentFigure',fhandle), hold on, line([fs_veld(5) fs_veld(7)], [fs_veld(6)

fs_veld(8)], 'Color', 'y');

 set(0,'CurrentFigure',fhandle), hold on, line([fs_veld(3) fs_veld(7)], [fs_veld(4)

fs_veld(8)], 'Color', 'y');

 set(0,'CurrentFigure',fhandle), hold on, line([fs_veld(5) fs_veld(1)], [fs_veld(6)

fs_veld(2)], 'Color', 'y');

 switch i

 case 1

 name = '5x5:';

 fsize_a = 25;

 fsize = 50;

 case 2

 name = '10x10:';

 fsize_a = 50;

 fsize = 100;

101

 case 3

 name = '18x18:';

 fsize_a = 90;

 fsize = 180;

 end

 %Setting up results

 inl = sprintf('%s x1 is %.2fmm and x2 is %.2fmm', name ,fs_x1, fs_x2);

 res = sprintf('y1 is %.2fmm and y2 is %.2fmm',fs_y1, fs_y2);

 res2 = sprintf('Total field size x: %.2fmm and total field size y: %.2fmm', fs_xtot,

fs_ytot);

 result = title({inl;res;res2}, 'Fontsize', 5);

 %Compute deviations

 fs_x1 = fsize_a - fs_x1;

 fs_x2 = fsize_a - fs_x2;

 fs_y1 = fsize_a - fs_y1;

 fs_y2 = fsize_a - fs_y2;

 fs_xtot = fsize - fs_xtot;

 fs_ytot = fsize - fs_ytot;

 %Save results

 field_results(i).field = name;

 field_results(i).x1_dev = round(fs_x1,3);

 field_results(i).x2_dev = round(fs_x2,3);

 field_results(i).y1_dev = round(fs_y1,3);

 field_results(i).y2_dev = round(fs_y2,3);

 field_results(i).x_total_dev = round(fs_xtot,3);

 field_results(i).y_total_dev = round(fs_ytot,3);

 catch

 disp('Error occured during the analysis of one of the pictures. Code will continue

running.');

 end

 %write to pdf

 try

 %Zoom to dot

 pos = get(fhandle, 'CurrentPoint');

 zoom_pos = [x_iso y_iso];

 set(fhandle, 'CurrentPoint', zoom_pos);

 field = zoom(fhandle);

 field.Enable = 'on';

 %Make sure one page in pdf is one image

 fhandle.PaperPositionMode = 'auto';

 fig_pos = fhandle.PaperPosition;

 fhandle.PaperSize = [fig_pos(3) fig_pos(4)];

 %write to pdf

 pathOut = path;

 fileOut = sprintf('out%d_v1.pdf', i+16);

 loc = fullfile(pathOut, fileOut);

 %Check if file already exists

 deleteifexist(loc);

 saveas(fhandle, loc, 'pdf'); %save as pdf

102

 fileattrib(loc, '+h -w', '', 's'); %hidden&read-only

 files{end+1} = loc;

 catch ME

 msgbox(ME.message);

 msgbox('Error during writing to pdf');

 close(w);

 close(fhandle);

 end

 waitbar(i/3);

 close(fhandle);

end

table_field = struct2table(field_results); %results to table

%Table to excel

waitbar(1, w, 'Writing results to excel');

fileOut = 'table.xls';

loc = fullfile(pathOut,fileOut);

writetable(table_field,loc,'Sheet',1,'Range','A25')

fileattrib(loc,'+h ','','s'); %hidden maken

%% Convert individual PDFs to one PDF (gohstscript needed)

Outputfile = 'Mechanische_QA_6W.pdf'; %Create output file

exportloc = fullfile(pathOut,Outputfile);

try

 hExcel = actxserver('Excel.Application'); %Start excel

 hWorkbook = hExcel.Workbooks.Open(loc); %Open excel table

 hWorksheet = hWorkbook.Sheets.Item(1);

 deleteifexist(exportloc);

 hWorksheet.ExportAsFixedFormat('xlTypePDF', exportloc);

 append_pdfs(exportloc, files{:}); %Fuse all the PDFs in one file

 %Delete all other pdf's & excel files

 for k = 1 : length(files)

 delete(files{k});

 end

 %Close excel

 hWorkbook.Save;

 Quit(hExcel);

 delete(hExcel);

 delete(fullfile(pathOut,'table.xls')); %Excel tabel verwijderen

catch ME

 msgbox(ME.message);

 msgbox('Error: writing to PDF');

 %Close excel

 hWorkbook.Save;

 Quit(hExcel);

 delete(hExcel);

 %Delete Files

 delete(fullfile(pathOut,'table.xls'));

 for k=1:length(files)

 delete(files{k});

 end

 close(w);

 error('Error: writing to PDF');

end

103

%Close waitbar

close(w);

%Messagebox when analysis is done

bericht = sprintf('Analysis done');

msgbox(bericht);

11.2.6 Distance between mechanical- and radiation isocentre

function [deltaiso, x_straliso, y_straliso, x_mechiso, y_mechiso, radius, veld] = deltaiso(

dcm)

%This function detects the radiation and mechanical isocenter

%Afterwards it computes the distance between both

%input: the dicom image

%output: distance between both iso's, the radiation and mechanical iso,

% radius of detected circle and field parameters for plotting

dicom = dcm;

g = dicomread(dicom);

f = medfilt2(g, 'symmetric');%noise removal

g_med = imadjust(f,stretchlim(f),[]);%contrast stretching

%Size of the image (resolution)

[R, C] = size(f);

%Convert image to class uint16

o_u16 = uint16(g_med);

%Conversionfactor for distance computation (mm per pixel)

metadata = dicominfo(dicom);

conversiefactor = metadata.ImagePlanePixelSpacing(1) * (metadata.RadiationMachineSAD /

metadata.RTImageSID);

%Find left field edge (splitted up in two to avoid crossing one of the

%dots in the image, which could disturb the computation)

[x_links1, y_links1] = veldrand_recht(o_u16, [C/3.5 C/6], R/3.5, R/2.1, 1);

[x_links2, y_links2] = veldrand_recht(o_u16, [C/3.5 C/6], R/1.9, 2.5*R/3.5, 1);

%Fuse datasets and remove outliers

x_links3 = [x_links1 x_links2];

 x_mul = mean(x_links3);

 stdevl = std(x_links3);

 indl = find(abs(x_links3)<(x_mul - 3*stdevl));

 x_links3(indl) = [];

 x_links4 = x_links3;

 ind2l = find(abs(x_links4)>(x_mul + 3*stdevl));

 x_links4(ind2l) = [];

 x_links = x_links4;

y_links3 = [y_links1 y_links2];

 y_links3(indl) = [];

 y_links3(ind2l) = [];

 y_links = y_links3;

p_links = polyfit(y_links,x_links,1);%Fit function through points

syms X ;

yfit_links(X) = p_links(1)*X + p_links(2);

yfit_linksinv(X) = finverse(yfit_links(X));

104

%Find right field edge (splitted up in two to avoid crossing one of the

%dots in the image, which could disturb the computation)

[x_rechts1, y_rechts1] = veldrand_recht(o_u16, [2.5*C/3.5 5*C/6], R/3.5, R/2.1, 0);

[x_rechts2, y_rechts2] = veldrand_recht(o_u16, [2.5*C/3.5 5*C/6], R/1.9, 2.5*R/3.5, 0);

%Fuse datasets and remove outliers

x_rechts3 = [x_rechts1 x_rechts2];

 x_mur = mean(x_rechts3);

 stdevr = std(x_rechts3);

 indr = find(abs(x_rechts3)<(x_mur - 3*stdevr));

 x_rechts3(indr) = [];

 x_rechts4 = x_rechts3;

 ind2r = find(abs(x_rechts4)>(x_mur + 3*stdevr));

 x_rechts4(ind2r) = [];

 x_rechts = x_rechts4;

y_rechts3 = [y_rechts1 y_rechts2];

 y_rechts3(indr) = [];

 y_rechts3(ind2r) = [];

 y_rechts = y_rechts3;

p_rechts = polyfit(y_rechts,x_rechts,1); %fit function through points

yfit_rechts(X) = p_rechts(1)*X + p_rechts(2);

yfit_rechtsinv(X) = finverse(yfit_rechts(X));

%Find top field edge (splitted up in two to avoid crossing one of the

%dots in the image, which could disturb the computation)

[x_boven1, y_boven1] = veldrand_liggend(o_u16, [R/10 R/6], C/3, C/2.1, 1);

[x_boven2, y_boven2] = veldrand_liggend(o_u16, [R/10 R/6], C/1.9, 2*C/3, 1);

y_boven3 = [y_boven1 y_boven2];

 y_mub = mean(y_boven3);

 stdevb = std(y_boven3);

 indb = find(abs(y_boven3)<(y_mub - 3*stdevb));

 y_boven3(indb) = [];

 y_boven4 = y_boven3;

 ind2b = find(abs(y_boven4)>(y_mub + 3*stdevb));

 y_boven4(ind2b) = [];

 y_boven = y_boven4;

x_boven3 = [x_boven1 x_boven2];

 x_boven3(indb) = [];

 x_boven3(ind2b) = [];

 x_boven = x_boven3;

p_boven = polyfit(x_boven,y_boven,1);

yfit_boven(X) = p_boven(1)*X + p_boven(2);

%Find bottom field edge (splitted up in two to avoid crossing one of the

%dots in the image, which could disturb the computation)

[x_onder1, y_onder1] = veldrand_liggend(o_u16, [9*R/10 5*R/6], C/3, C/2.1, 0);

[x_onder2, y_onder2] = veldrand_liggend(o_u16, [9*R/10 5*R/6], C/1.9, 2*C/3, 0);

y_onder3 = [y_onder1 y_onder2];

 y_muo = mean(y_onder3);

 stdevo = std(y_onder3);

 indo = find(abs(y_onder3)<(y_muo - 3*stdevo));

 y_onder3(indo) = [];

 y_onder4 = y_onder3;

 ind2o = find(abs(y_onder4)>(y_muo + 3*stdevo));

 y_onder4(ind2o) = [];

105

 y_onder = y_onder4;

x_onder3 = [x_onder1 x_onder2];

 x_onder3(indo) = [];

 x_onder3(ind2o) = [];

 x_onder = x_onder3;

p_onder = polyfit(x_onder,y_onder,1);

yfit_onder(X) = p_onder(1)*X + p_onder(2);

%Find intersection of field edges

[x1,y1] = vindSnijpunt(yfit_linksinv, yfit_boven);

[x2,y2] = vindSnijpunt(yfit_rechtsinv, yfit_boven);

[x3,y3] = vindSnijpunt(yfit_linksinv, yfit_onder);

[x4,y4] = vindSnijpunt(yfit_rechtsinv, yfit_onder);

veld = [x1 y1 x2 y2 x3 y3 x4 y4];%save field parameters for plotting

%Compute radiation iso (intersection of diagonals)

x_straliso = vindSnijpiso_x(x1, y1, x2, y2, x3, y3, x4, y4);

y_straliso = vindSnijpiso_y(x1, y1, x2, y2, x3, y3, x4, y4)

%edge detection

[~, threshold] = edge(o_u16, 'sobel');

fudgeFactor = .5;

BWs = edge(o_u16,'sobel', threshold * fudgeFactor);

%morphological closing

BWdfill = imclose(BWs, strel('disk', 1));

se = strel('disk', 1);%set up structure element

erode = imerode(BWdfill, se);%erosion

dilate = imdilate(erode, se);%dilation

%Detect all circles and their centroids and radii

stats = regionprops('table',dilate,'Centroid',...

 'MajorAxisLength','MinorAxisLength');

centers = stats.Centroid;%get centroids

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);%diameters

radii = diameters/2;%radii

[maxRad, ind] = max(radii);%Since there is always one circle detected which

 %enveloppes the whole image -> discard this one

radii(ind) = [];

centers(ind,:) = [];

mechiso = [];

zoekcrit = 0.5;

done = 0;

it = 0;

%Iterative process which expands the ROI untill one circle is detected

while done == 0

 %Set up ROI

 r_roi = double(y_straliso);

 c_roi = double(x_straliso);

 a = zoekcrit/conversiefactor;

 r_roi_array = [(r_roi)-a ; (r_roi)-a; (r_roi)+a; (r_roi)+a];

 c_roi_array = [(c_roi)-a ; (c_roi)+a; (c_roi)+a; (c_roi)-a];

 xq = centers(:,1);

 yq = centers(:,2);

 in = inpolygon(xq, yq, c_roi_array, r_roi_array);

 %Find centers in ROI

 x_mechiso = xq(in);

106

 y_mechiso = yq(in);

 mechiso = [x_mechiso y_mechiso];

 [ro, co] = size(mechiso);

 if ro == 1

 done = 1;

 end

 if it > 10

 done = 1;

 end

 zoekcrit = zoekcrit*2;

 it = it + 1;

end

%Find radius of detected circle

ind1 = find(xq == x_mechiso);

ind2 = find(yq == y_mechiso);

ind = intersect(ind1,ind2);

radius = radii(ind);

%Compute distance between rad and mech iso (in mm)

delta_iso = afstand2p(x_mechiso, x_straliso, y_mechiso, y_straliso);

deltaiso = delta_iso*conversiefactor;

end

function [deltaiso, x_straliso, y_straliso, x_mechiso, y_mechiso, radius, veld] =

deltaiso165(dcm)

%This function detects the radiation and mechanical isocenter (colli = 165)

%Afterwards it computes the distance between both

%input: the dicom image

%output: distance between both iso's, the radiation and mechanical iso,

% radius of detected circle and field parameters for plotting

dicom = dcm;

g = dicomread(dicom);

f = medfilt2(g, 'symmetric');%noise removal

g_med = imadjust(f,stretchlim(f),[]);%contrast stretching

%Size of the image (resolution)

[R, C] = size(f);

%Convert image to class uint16

o_u16 = uint16(g_med);

%Conversion factor in mm per pixel

metadata = dicominfo(dicom);

conversiefactor = metadata.ImagePlanePixelSpacing(1) * (metadata.RadiationMachineSAD /

metadata.RTImageSID);

%Find left field edge

[x_links1, y_links1] = veldrand_recht(o_u16, [C/3 C/5], R/5, R/2.2, 1);

x_links3 = x_links1;

 x_mul = mean(x_links3);

 stdevl = std(x_links3);

 indl = find(abs(x_links3)<(x_mul - 3*stdevl));

 x_links3(indl) = [];

 x_links4 = x_links3;

107

 ind2l = find(abs(x_links4)>(x_mul + 3*stdevl));

 x_links4(ind2l) = [];

 x_links = x_links4;

y_links3 = y_links1;

 y_links3(indl) = [];

 y_links3(ind2l) = [];

 y_links = y_links3;

p_links = polyfit(x_links,y_links,1);

syms X ;

yfit_links(X) = p_links(1)*X + p_links(2);

%Find right field edge

[x_rechts1, y_rechts1] = veldrand_recht(o_u16, [2.3*C/3.5 5*C/6], R/1.8, 3.3*R/4, 0);

x_rechts3 = x_rechts1;

 x_mur = mean(x_rechts3);

 stdevr = std(x_rechts3);

 indr = find(abs(x_rechts3)<(x_mur - 3*stdevr));

 x_rechts3(indr) = [];

 x_rechts4 = x_rechts3;

 ind2r = find(abs(x_rechts4)>(x_mur + 3*stdevr));

 x_rechts4(ind2r) = [];

 x_rechts = x_rechts4;

y_rechts3 = y_rechts1;

 y_rechts3(indr) = [];

 y_rechts3(ind2r) = [];

 y_rechts = y_rechts3;

p_rechts = polyfit(x_rechts,y_rechts,1);

yfit_rechts(X) = p_rechts(1)*X + p_rechts(2);

%Find top field edge

[x_boven1, y_boven1] = veldrand_liggend(o_u16, [R/30 R/6], C/3, C/2.1, 1);

[x_boven2, y_boven2] = veldrand_liggend(o_u16, [R/10 R/4], 1.8*C/3, C/1.32, 1);

y_boven3 = [y_boven1 y_boven2];

 y_mub = mean(y_boven3);

 stdevb = std(y_boven3);

 indb = find(abs(y_boven3)<(y_mub - 3*stdevb));

 y_boven3(indb) = [];

 y_boven4 = y_boven3;

 ind2b = find(abs(y_boven4)>(y_mub + 3*stdevb));

 y_boven4(ind2b) = [];

 y_boven = y_boven4;

x_boven3 = [x_boven1 x_boven2];

 x_boven3(indb) = [];

 x_boven3(ind2b) = [];

 x_boven = x_boven3;

p_boven = polyfit(x_boven,y_boven,1);

yfit_boven(X) = p_boven(1)*X + p_boven(2);

%Find bottom field edge

[x_onder1, y_onder1] = veldrand_liggend(o_u16, [9*R/10 3.7*R/5], C/4, C/2.5, 0);

[x_onder2, y_onder2] = veldrand_liggend(o_u16, [29*R/30 2.5*R/3], C/1.9, 2*C/3, 0);

y_onder3 = [y_onder1 y_onder2];

 y_muo = mean(y_onder3);

 stdevo = std(y_onder3);

 indo = find(abs(y_onder3)<(y_muo - 3*stdevo));

 y_onder3(indo) = [];

 y_onder4 = y_onder3;

 ind2o = find(abs(y_onder4)>(y_muo + 3*stdevo));

 y_onder4(ind2o) = [];

108

 y_onder = y_onder4;

x_onder3 = [x_onder1 x_onder2];

 x_onder3(indo) = [];

 x_onder3(ind2o) = [];

 x_onder = x_onder3;

p_onder = polyfit(x_onder,y_onder,1);

yfit_onder(X) = p_onder(1)*X + p_onder(2);

%Find intersections of field edges

[x1,y1] = vindSnijpunt(yfit_links, yfit_boven);

[x2,y2] = vindSnijpunt(yfit_rechts, yfit_boven);

[x3,y3] = vindSnijpunt(yfit_links, yfit_onder);

[x4,y4] = vindSnijpunt(yfit_rechts, yfit_onder);

veld = [x1 y1 x2 y2 x3 y3 x4 y4];%save field parameters for plotting

%Find intersection of diagonals (= radiation isocenter)

x_straliso = vindSnijpiso_x(x1, y1, x2, y2, x3, y3, x4, y4);

y_straliso = vindSnijpiso_y(x1, y1, x2, y2, x3, y3, x4, y4);

%edge detection

[~, threshold] = edge(f, 'sobel');

fudgeFactor = .5;

BWs = edge(f,'sobel', threshold * fudgeFactor);

%Morphological closing

BWdfill = imclose(BWs, strel('disk', 1));

se = strel('disk', 1);%set up structering element

erode = imerode(BWdfill, se);%erosion

dilate = imdilate(erode, se);%dilation

%Detect all circles and their centroids and radii

stats = regionprops('table',dilate,'Centroid',...

 'MajorAxisLength','MinorAxisLength');

centers = stats.Centroid;%get centroids

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);%diameters

radii = diameters/2;%radii

[maxRad, ind] = max(radii);%discard the biggest circle

radii(ind) = [];

centers(ind,:) = [];

mechiso = [];

zoekcrit = 0.5;

done = 0;

it = 0;

%Iterative process which expands the ROI untill one circle is detected

while done == 0

 %Set up ROI

 r_roi = double(y_straliso);

 c_roi = double(x_straliso);

 a = zoekcrit/conversiefactor;

 r_roi_array = [(r_roi)-a ; (r_roi)-a; (r_roi)+a; (r_roi)+a];

 c_roi_array = [(c_roi)-a ; (c_roi)+a; (c_roi)+a; (c_roi)-a];

 xq = centers(:,1);

 yq = centers(:,2);

 in = inpolygon(xq, yq, c_roi_array, r_roi_array);

 %Find centers in ROI

 x_mechiso = xq(in);

 y_mechiso = yq(in);

109

 mechiso = [x_mechiso y_mechiso];

 [ro, co] = size(mechiso);

 if ro == 1

 done = 1;

 end

 if it > 10

 done = 1;

 end

 zoekcrit = zoekcrit*2;

 it = it + 1;

end

%Find radius of detected circle

ind1 = find(xq == x_mechiso);

ind2 = find(yq == y_mechiso);

ind = intersect(ind1,ind2);

radius = radii(ind);

%Compute distance between rad/mech isocenter in mm

delta_iso = afstand2p(x_mechiso, x_straliso, y_mechiso, y_straliso);

deltaiso = delta_iso*conversiefactor;

end

11.2.7 Field edge algorithm (horizontal and vertical)

function [x_waarden, y_waarden] = veldrand_liggend(I, yv, xk1, xk2,reverse)

%Function to search horizontal field-edges

%Inputs: the input image, yv = length of profiles

% xk1 & xk2 = begin en end of the moving profiles

% reverse = 1 for top edge and 0 for bottom edge

%Output: The points that are defining the field edge

f = I;

y_prof = yv;

[R,C] = size(f);

minimum = double(min(min(f)));%get min & max intensity value

maximum = double(max(max(f)));

range = [minimum:maximum];

val = double(median(range)); %get intensity value of fwhm

y_values = [];%initialize the output arrays

x_values = [];

%Iterative process

for k = xk1 : xk2

 [cx,cy,c] = improfile(f, [k k], y_prof, 100); %create an intensity profile

 if reverse == 1 %flip arrays if reverse = 1

 cx = flip(cx);

 cy = flip(cy);

 c = flip(c);

 end

 x_values = [x_values cx(1)];%add x-value to output array

 C = c.'; %transpose c

 [Verschil index] = min(abs(C-val)); %find smallest difference from VAL and it's index.

 i = index;

 c_w1 = C(i); %Get the intensity value

110

 teller = 0;

 indices = [0];

 %Check if this value appears more than one time in a row and how many

 while C(index) == C(index+1)

 teller = teller + 1;

 indices = [indices teller];

 index = index + 1;

 end

 %Get al the corresponding y-values and compute mean value

 y_tot = 0;

 for k = 1 : teller+1

 y_tot = y_tot + cy(i+indices(k));

 end

 y_gem1 = y_tot/(teller+1);

 %Find a partner to interpolate to VAL

 if c_w1 ~= val && c_w1 < val %if the found value is greater than VAL

 %we have to find a partner smaller than VAL

 index2 = i - 1;

 t = 0;

 indic = [0];

 i2 = index2;

 %Check if partner appears more than one time in a row and how many

 while C(index2) == C(index2-1)

 t = t+1;

 indic = [indic t];

 index2 = index2-1;

 end

 y_tot2 = 0;

 %Find corresponding y-values and compute mean value

 for k = 1 : t + 1

 y_tot2 = y_tot2 + cy(i2 - indic(k));

 end

 y_gem2 = y_tot2/(t+1);

 c_w2 = C(i2);

 elseif c_w1 ~= val && c_w1 > val%if the found value is smaller than VAL

 %we have to find a partner greater than VAL

 index2 = i;

 t = 0;

 indic = [0];

 %Check if partner appears more than one time in a row and how many

 while C(index2) == C(index2+1)

 index2 = index2+1;

 end

 i2 = index2 + 1;

 i_i2 = i2;

 while C(i2) == C(i2+1)

 t = t+1;

 indic = [indic t];

 i2 = i2+1;

 end

 y_tot2 = 0;

 %Get corresponding y-values and compute mean

111

 for k = 1 : t+1

 y_tot2 = y_tot2 + cy(i_i2 + indic(k));

 end

 y_gem2 = y_tot2/(t+1);

 c_w2 = C(i_i2);

 elseif c_w1 == val %if found value = VAL interpolation is not needed

 y_gem2 = 0;

 end

 x_fin = 0;

 %Interpolate to VAL if needed

 if c_w1 == val;

 y_fin = y_gem1;

 elseif c_w1 ~= val && c_w1 < c_w2

 x1 = c_w1;

 x2 = c_w2;

 y1 = y_gem1;

 y2 = y_gem2;

 x = val;

 y_fin = interpoleer(x1,x2,y1,y2,x);

 elseif c_w1 ~= val && c_w1 > c_w2

 x1 = c_w2;

 x2 = c_w1;

 y1 = y_gem2;

 y2 = y_gem1;

 x = val;

 y_fin = interpoleer(x1,x2,y1,y2,x);

 end

 y_values = [y_values y_fin];

end

 %Assign values to output arrays

 y_waarden = y_values;

 x_waarden = x_values;

end

function [x_waarden, y_waarden] = veldrand_recht(I, xv, yk1, yk2, reverse)

%Function to search vertical field-edges

%Inputs: the input image, xv = length of profile

% yk1 & yk2 = begin en end of the moving profiles

% reverse = 1 for left edge and 0 for right hand edge

%Output: The points that are defining the field edge

f = I;

x_prof = xv;

[R,C] = size(f);

minimum = double(min(min(f))); %get min & max intensity value

maximum = double(max(max(f)));

range = [minimum:maximum];

val = double(median(range)); %get intensity value of fwhm

x_values = []; %initialize the output arrays

y_values = [];

%Iterative process

for k = yk1 : yk2

 [cx,cy,c] = improfile(f, x_prof, [k k], 100); %create an intensity profile

112

 if reverse == 1 %flip arrays if reverse = 1

 cx = flip(cx);

 cy = flip(cy);

 c = flip(c);

 end

 C = c.'; %transpose c

 y_values = [y_values cy(1)]; %add y-value to output array

 [Verschil index] = min(abs(C-val)); %find smallest difference from VAL and it's index.

 i = index;

 c_w1 = C(i); %Get the intensity value

 teller = 0;

 indices = [0];

 %Check if this value appears more than one time in a row and how many

 while C(index) == C(index+1)

 teller = teller + 1;

 indices = [indices teller];

 index = index + 1;

 end

 %Get al the corresponding x-values and compute mean value

 x_tot = 0;

 for k = 1 : teller+1

 x_tot = x_tot + cx(i+indices(k));

 end

 x_gem1 = x_tot/(teller+1);

 %Find a partner to interpolate to VAL

 if c_w1 ~= val && c_w1 > val %if the found value is greater than VAL

 %we have to find a partner smaller than VAL

 index2 = i - 1;

 t = 0;

 indic = [0];

 i2 = index2;

 %Check if partner appears more than one time in a row and how many

 while C(index2) == C(index2-1)

 t = t+1;

 indic = [indic t];

 index2 = index2-1;

 end

 x_tot2 = 0;

 %Find corresponding x-values and compute mean value

 for k = 1 : t + 1

 x_tot2 = x_tot2 + cx(i2 - indic(k));

 end

 x_gem2 = x_tot2/(t+1);

 c_w2 = C(i2);

 elseif c_w1 ~= val && c_w1 < val%if the found value is smaller than VAL

 %we have to find a partner greater than VAL

 index2 = i;

 t = 0;

 indic = [0];

 %Check if partner appears more than one time in a row and how many

113

 while C(index2) == C(index2+1)

 index2 = index2+1;

 end

 i2 = index2 + 1;

 i_i2 = i2;

 while C(i2) == C(i2+1)

 t = t+1;

 indic = [indic t];

 i2 = i2+1;

 end

 x_tot2 = 0;

 %Get corresponding x-values and compute mean

 for k = 1 : t+1

 x_tot2 = x_tot2 + cx(i_i2 + indic(k));

 end

 x_gem2 = x_tot2/(t+1);

 c_w2 = C(i_i2);

 %If the found value = VAL we don't have to interpolate

 elseif c_w1 == val

 x_gem2 = 0;

 end

 %Interpolate to VAL

 x_fin = 0;

 if c_w1 == val;

 x_fin = x_gem1;

 elseif c_w1 ~= val && c_w1 < c_w2

 x1 = c_w1;

 x2 = c_w2;

 y1 = x_gem1;

 y2 = x_gem2;

 x = val;

 x_fin = interpoleer(x1,x2,y1,y2,x);

 elseif c_w1 ~= val && c_w1 > c_w2

 x1 = c_w2;

 x2 = c_w1;

 y1 = x_gem2;

 y2 = x_gem1;

 x = val;

 x_fin = interpoleer(x1,x2,y1,y2,x);

 end

 x_values = [x_values x_fin]; %add found x-value to output array

end

%Assign values to the output arrays

x_waarden = x_values;

y_waarden = y_values;

end

114

11.5.8 Deviations on table position indicators (3 dimensions)

function [vertAfw, longVer, x_p1, y_p1, x_p2, y_p2, radius1, radius2] = Verticaal(dcm1,

dcm2)

%Function to calculate the vertical table motion

%Inputs: original image at G270 and image after 15 cm vertical displacement

%Outputs: vertical deviation of the motion, the longitudinal displacement

%of the table, centers and radius of the two detected dots.

dicom = dcm1;

dicom2 = dcm2;

f = dicomread(dicom);

g = dicomread(dicom2);

metadata1 = dicominfo(dcm1);

metadata2 = dicominfo(dcm2);

%Get size (resolution) of images

[R, C] = size(f);

[R2, C2] = size(g);

%Initialize conversionfactor

conversiefactor = metadata1.ImagePlanePixelSpacing(1) * (metadata1.RadiationMachineSAD /

metadata1.RTImageSID); %amount of mm's per pixel

%Fuze both images

c = imfuse(f,g,'blend','Scaling','joint');

%Edge detection

[~, threshold] = edge(c, 'sobel');

fudgeFactor = .5;

BWs = edge(c,'sobel', threshold * fudgeFactor);

%Morphological closing/erosion/dilation

BWdfill = imclose(BWs, strel('disk', 1));

BWdfill = imerode(BWdfill, strel('disk', 1));

BWdfill = imdilate(BWdfill, strel('disk', 1));

%Detect all circles/elipses together with their centroids and radii

stats = regionprops('table',BWdfill,'Centroid',...

 'MajorAxisLength','MinorAxisLength');

centers = stats.Centroid; %get center of circles

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2); %calculate diameters

radii = diameters/2; %calc. radii

radii_boven10 = radii > 10; %Circles with radii > 10 are neglected

k = find(radii_boven10);

radii(k) = [];

centers(k,:) = [];

%Find 1st circle

%ROI differs for positive vs. negative table motion

if metadata1.TableTopVerticalPosition < metadata2.TableTopVerticalPosition %(+)

if C == 512

 r_roi = 330;

 c_roi = 147;

 a = 1;

elseif C == 1024

 r_roi = 661;

115

 c_roi = 298;

 a = 1; %

end

elseif metadata1.TableTopVerticalPosition > metadata2.TableTopVerticalPosition %(-)

if C == 512

 r_roi = 329;

 c_roi = 76;

 a = 1;

elseif C == 1024

 r_roi = 329*2;

 c_roi = 76*2;

 a = 1;

end

end

done = 0;

it = 0;

%Iterative process which expands ROI untill one circle is detected

while done == 0

 r_roi_array = [(r_roi)-a ; (r_roi)-a; (r_roi)+a; (r_roi)+a];

 c_roi_array = [(c_roi)-a ; (c_roi)+a; (c_roi)+a; (c_roi)-a];

 xq = centers(:,1);

 yq = centers(:,2);

 in = inpolygon(xq, yq, c_roi_array, r_roi_array);

 %Find centers in ROI

 x_p1 = xq(in);

 y_p1 = yq(in);

 center1 = [x_p1 y_p1];

 [ro, co] = size(center1);

 if ro == 1

 done = 1;

 end

 if it > 10

 done = 1;

 end

 a = a*2;

 it = it + 1;

end

%Find radius of detected circle (only needed for visualisation purposes)

ind1 = find(xq == x_p1);

ind2 = find(yq == y_p1);

ind = intersect(ind1,ind2);

radius1 = radii(ind);

%Find 2nd circle

%ROI differs for positive vs. negative table motion

if metadata1.TableTopVerticalPosition < metadata2.TableTopVerticalPosition %(+)

if C == 512

 r_roi2 = 331;

 c_roi2 = 433;

 a2 = 1;

elseif C == 1024

 r_roi2 = 660;

 c_roi2 = 882;

 a2 = 1;

end

elseif metadata1.TableTopVerticalPosition > metadata2.TableTopVerticalPosition %(-)

if C == 512

116

 r_roi2 = 328;

 c_roi2 = 364;

 a2 = 1;

elseif C == 1024

 r_roi2 = 328*2;

 c_roi2 = 364*2;

 a2 = 1;

end

end

done = 0;

it = 0;

%Iterative proces which expands ROI untill one circle is detected

while done == 0

 r_roi_array2 = [(r_roi2)-a2 ; (r_roi2)-a2; (r_roi2)+a2; (r_roi2)+a2];

 c_roi_array2 = [(c_roi2)-a2 ; (c_roi2)+a2; (c_roi2)+a2; (c_roi2)-a2];

 xq2 = centers(:,1);

 yq2 = centers(:,2);

 in = inpolygon(xq2, yq2, c_roi_array2, r_roi_array2);

 %Find centers in ROI

 x_p2 = xq2(in);

 y_p2 = yq2(in);

 center2 = [x_p2 y_p2];

 [ro, co] = size(center2);

 if ro == 1

 done = 1;

 end

 if it > 10

 done = 1;

 end

 a2 = a2*2;

 it = it + 1;

end

%Find radius of detected circle

ind3 = find(xq2 == x_p2);

ind4 = find(yq2 == y_p2);

ind_2 = intersect(ind3,ind4);

radius2 = radii(ind_2);

%Compute Vertical and longitudinal distance between both centroids of both circles

if x_p1 > x_p2

 verschVert = abs(x_p1 - x_p2)*conversiefactor;

else

 verschVert = abs(x_p2 - x_p1)*conversiefactor;

end

if y_p1 > y_p2

 longVer = abs(y_p1 - y_p2)*conversiefactor;

else

 longVer = abs(y_p2 - y_p1)*conversiefactor;

end

vertAfw = 150 - verschVert; %Compute deviation

end

117

function [AfwLong, verschLat, x_p1, y_p1, x_p2, y_p2, radius1, radius2] = Longitudinaal(

dcm1, dcm2)

%Function to calculate the longitudinal table motion

%Inputs: original image at G0 and image after 15 cm LNG displacement

%Outputs: LNG deviation of the motion & the lateral displacement

%of the table, centers and radius of the two detected dots.

dicom = dcm1;

dicom2 = dcm2;

f = dicomread(dicom);

g = dicomread(dicom2);

metadata1 = dicominfo(dcm1);

metadata2 = dicominfo(dcm2);

%size of the images

[R, C] = size(f);

[R2, C2] = size(g);

%Conversionfactor in mm per pixel

conversiefactor = metadata1.ImagePlanePixelSpacing(1) * (metadata1.RadiationMachineSAD /

metadata1.RTImageSID);

%Fuse both images

c = imfuse(f,g,'blend','Scaling','joint');

%Edge detection

[~, threshold] = edge(c, 'sobel');

fudgeFactor = .5;

BWs = edge(c,'sobel', threshold * fudgeFactor);

%Morphological closing/erosion/dilation

BWdfill = imclose(BWs, strel('disk', 1));

BWdfill = imerode(BWdfill, strel('disk', 1));

BWdfill = imdilate(BWdfill, strel('disk', 1));

%Detect all circles/elipses together with their centroids and radii

stats = regionprops('table',BWdfill,'Centroid',...

 'MajorAxisLength','MinorAxisLength');

centers = stats.Centroid;%get centers

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);%diameters

radii = diameters/2;%radii

radii_boven10 = radii > 10;%discard radii greater than 10

k = find(radii_boven10);

radii(k) = [];

centers(k,:) = [];

%Find 1st circle

%ROI differs for positive vs. negative table motion

if metadata1.TableTopLongitudinalPosition < metadata2.TableTopLongitudinalPosition %(+)

if C == 512

 r_roi = 300;

 c_roi = 392;

 a = 1;

elseif C == 1024

 r_roi = 14;

 c_roi = 784;

 a = 1;

118

end

elseif metadata1.TableTopLongitudinalPosition > metadata2.TableTopLongitudinalPosition %(-)

if C == 512

 r_roi = 85;

 c_roi = 393;

 a = 1;

elseif C == 1024

 r_roi = 85*2;

 c_roi = 393*2;

 a = 1;

end

end

done = 0;

it = 0;

%Iterative process which expands ROI untill one circle is detected

while done == 0

 r_roi_array = [(r_roi)-a ; (r_roi)-a; (r_roi)+a; (r_roi)+a];

 c_roi_array = [(c_roi)-a ; (c_roi)+a; (c_roi)+a; (c_roi)-a];

 xq = centers(:,1);

 yq = centers(:,2);

 in = inpolygon(xq, yq, c_roi_array, r_roi_array);

 %Find centers in ROI

 x_p1 = xq(in);

 y_p1 = yq(in);

 center1 = [x_p1 y_p1];

 [ro co] = size(center1);

 if ro == 1

 done = 1;

 end

 if it > 10

 done = 1;

 end

 a = a*2;

 it = it+1;

end

%Find radius of detected circle (only needed for visualisation purposes)

ind1 = find(xq == x_p1)

ind2 = find(yq == y_p1)

ind = intersect(ind1,ind2)

radius1 = radii(ind)

%Find 2nd circle

%ROI differs for positive vs. negative table motion

if metadata1.TableTopLongitudinalPosition < metadata2.TableTopLongitudinalPosition %(+)

if C == 512

 r_roi2 = 15;

 c_roi2 = 392;

 a2 = 1;

elseif C == 1024

 r_roi2 = 596;

 c_roi2 = 789;

 a2 = 1;

end

elseif metadata1.TableTopLongitudinalPosition > metadata2.TableTopLongitudinalPosition %(-)

if C == 512

 r_roi2 = 371;

 c_roi2 = 393;

119

 a2 = 1;

elseif C == 1024

 r_roi2 = 371*2;

 c_roi2 = 393*2;

 a2 = 1;

end

end

done = 0;

it = 0;

%Iterative proces which expands ROI untill one circle is detected

while done == 0

 r_roi_array2 = [(r_roi2)-a2 ; (r_roi2)-a2; (r_roi2)+a2; (r_roi2)+a2];

 c_roi_array2 = [(c_roi2)-a2 ; (c_roi2)+a2; (c_roi2)+a2; (c_roi2)-a2];

 xq2 = centers(:,1);

 yq2 = centers(:,2);

 in = inpolygon(xq2, yq2, c_roi_array2, r_roi_array2);

 %Find centers in ROI

 x_p2 = xq2(in);

 y_p2 = yq2(in);

 center2 = [x_p2 y_p2];

 [ro, co] = size(center2);

 if ro == 1

 done = 1;

 end

 if it > 10

 done = 1;

 end

 a2 = a2*2;

 it = it+1;

end

%Find radius of detected circle

ind3 = find(xq2 == x_p2);

ind4 = find(yq2 == y_p2);

ind_2 = intersect(ind3,ind4);

radius2 = radii(ind_2);

%Compute Vertical and longitudinal distance between both centroids of both circles

if y_p1 > y_p2

 verschLong = abs(y_p1 - y_p2)*conversiefactor;

else

 verschLong = abs(y_p2 - y_p1)*conversiefactor;

end

if x_p1 > x_p2

 verschLat = abs(x_p1 - x_p2)*conversiefactor;

else

 verschLat = abs(x_p2 - x_p1)*conversiefactor;

end

AfwLong = 150 - verschLong; %Compute deviation

end

120

function [afwLat, verschLong, x_p1, y_p1, x_p2, y_p2, radius1, radius2] = Lateraal(dcm1,

dcm2)

%Function to calculate the lateral table motion

%Inputs: original image at G0 and image after 15 cm LAT displacement

%Outputs: LAT deviation of the motion & the longitudinal displacement

%of the table, centers and radius of the two detected dots.

dicom = dcm1;

dicom2 = dcm2;

f = dicomread(dicom);

g = dicomread(dicom2);

metadata1 = dicominfo(dcm1);

metadata2 = dicominfo(dcm2);

%size of the images

[R, C] = size(f);

[R2, C2] = size(g);

%Conversionfactor in mm per pixel

conversiefactor = metadata1.ImagePlanePixelSpacing(1) * (metadata1.RadiationMachineSAD /

metadata1.RTImageSID);

%Fuse both images

c = imfuse(f,g,'blend','Scaling','joint');

%Edge detection

[~, threshold] = edge(c, 'sobel');

fudgeFactor = .5;

BWs = edge(c,'sobel', threshold * fudgeFactor);

%Morphological closing/erosion/dilation

BWdfill = imclose(BWs, strel('disk', 1));

BWdfill = imerode(BWdfill, strel('disk', 1));

BWdfill = imdilate(BWdfill, strel('disk', 1));

%Detect all circles/elipses together with their centroids and radii

stats = regionprops('table',BWdfill,'Centroid',...

 'MajorAxisLength','MinorAxisLength');

centers = stats.Centroid;

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);%diameters

radii = diameters/2;%radii

radii_boven10 = radii > 10;%discard radii greater than 10

k = find(radii_boven10);

radii(k) = [];

centers(k,:) = [];

%Find 1st circle

%ROI differs for positive vs. negative table motion

if metadata1.TableTopLateralPosition < metadata2.TableTopLateralPosition %(+)

if C == 512

 r_roi = 329;

 c_roi = 147;

 a = 1;

elseif C == 1024

 r_roi = 604;

 c_roi = 198;

121

 a = 1;

end

elseif metadata1.TableTopLateralPosition > metadata2.TableTopLateralPosition %(-)

if C == 512

 r_roi = 330;

 c_roi = 73;

 a = 1;

elseif C == 1024

 r_roi = 330*2;

 c_roi = 73*2;

 a = 1;

end

end

done = 0;

it = 0;

%Iterative process which expands ROI untill one circle is detected

while done == 0

 r_roi_array = [(r_roi)-a ; (r_roi)-a; (r_roi)+a; (r_roi)+a];

 c_roi_array = [(c_roi)-a ; (c_roi)+a; (c_roi)+a; (c_roi)-a];

 xq = centers(:,1);

 yq = centers(:,2);

 in = inpolygon(xq, yq, c_roi_array, r_roi_array);

 %Find centers in ROI

 x_p1 = xq(in);

 y_p1 = yq(in);

 center1 = [x_p1 y_p1];

 [ro co] = size(center1);

 if ro == 1

 done = 1;

 end

 if it > 10

 done = 1;

 end

 a = a*2;

 it = it + 1;

end

%Find radius of detected circle

ind1 = find(xq == x_p1);

ind2 = find(yq == y_p1);

ind = intersect(ind1,ind2);

radius1 = radii(ind);

%Find 2nd circle

%ROI differs for positive vs. negative table motion

if metadata1.TableTopLateralPosition < metadata2.TableTopLateralPosition %(+)

if C == 512

 r_roi2 = 329;

 c_roi2 = 434;

 a2 = 1;

elseif C == 1024

 r_roi2 = 596;

 c_roi2 = 789;

 a2 = 1;

end

elseif metadata1.TableTopLateralPosition > metadata2.TableTopLateralPosition %(-)

if C == 512

 r_roi2 = 331;

122

 c_roi2 = 361;

 a2 = 1;

elseif C == 1024

 r_roi2 = 331*2;

 c_roi2 = 361*2;

 a2 = 1;

end

end

done = 0;

it = 0;

%Iterative proces which expands ROI untill one circle is detected

while done == 0

 r_roi_array2 = [(r_roi2)-a2 ; (r_roi2)-a2; (r_roi2)+a2; (r_roi2)+a2];

 c_roi_array2 = [(c_roi2)-a2 ; (c_roi2)+a2; (c_roi2)+a2; (c_roi2)-a2];

 xq2 = centers(:,1);

 yq2 = centers(:,2);

 in = inpolygon(xq2, yq2, c_roi_array2, r_roi_array2);

 %Find centers in ROI

 x_p2 = xq2(in);

 y_p2 = yq2(in);

 center2 = [x_p2 y_p2];

 [ro, co] = size(center2);

 if ro == 1

 done = 1;

 end

 if it > 10

 done = 1;

 end

 a2 = a2*2;

 it = it + 1

end

%Find radius of detected circle

ind3 = find(xq2 == x_p2);

ind4 = find(yq2 == y_p2);

ind_2 = intersect(ind3,ind4);

radius2 = radii(ind_2);

%Compute Vertical and longitudinal distance between both centroids of both circles

if y_p1 > y_p2

 verschLong = abs(y_p1 - y_p2)*conversiefactor;

else y_p2 > y_p1

 verschLong = abs(y_p2 - y_p1)*conversiefactor;

end

if x_p1 > x_p2

 verschLat = abs(x_p1 - x_p2)*conversiefactor;

else

 verschLat = abs(x_p2 - x_p1)*conversiefactor;

end

afwLat = 150 - verschLat;

end

123

11.2.9 Deviation on asymmetrical field size parameters

function [fsx1, fsx2, fsxtot, fsy1, fsy2, fsytot, veld] = Veldgrootte(dcm, x_stral, y_stral)

%This function calculates the assymetrical fieldsize

%Inputs: The dicom image and the radiation isocenter

%Outputs: Assymetrical fieldsizes x1,x2,y1 and y2

% Total fieldsize in x and y direction

% veld = nessecary parameters to plot the field

x_straliso = x_stral;

y_straliso = y_stral;

dicom = dcm;

metadata1 = dicominfo(dcm);

g = dicomread(dicom);

f = medfilt2(g, 'symmetric'); %noise removal

g_med = imadjust(f,stretchlim(f),[]); %Contrast stretching

%Get size of image (resolution)

[R, C] = size(f);

%Convert class to uint16

o_u16 = uint16(g_med);

%Conversionfactor for distance measurements (in mm per pixel)

conversiefactor = metadata1.ImagePlanePixelSpacing(1) * (metadata1.RadiationMachineSAD /

metadata1.RTImageSID);

%Find left field edge

[x_links1, y_links1] = veldrand_recht(o_u16, [0 C/2], 115*R/300, 185*R/300, 1);

%Following lines removes outliers from dataset when they are situated

%further than 3 times a stdev from the mean

x_links3 = x_links1;

 x_mul = mean(x_links3);%mean

 stdevl = std(x_links3);%stdev

 indl = find(abs(x_links3)<(x_mul - 3*stdevl));%detect outliers

 x_links3(indl) = [];%remove outliers

 x_links4 = x_links3;

 ind2l = find(abs(x_links4)>(x_mul + 3*stdevl));

 x_links4(ind2l) = [];

 x_links = x_links4;

%Also remove the corresponding y-values

y_links3 = y_links1;

 y_links3(indl) = [];

 y_links3(ind2l) = [];

 y_links = y_links3;

%Fit a linear function through the remaining points (X & Y are reversed)

p_links = polyfit(y_links,x_links,1);

syms X ;

yfit_links(X) = p_links(1)*X + p_links(2);%Horizontal fit

yfit_linksinv(X) = finverse(yfit_links(X));%inverse function yields the

 %recquired vertical fit

%Find right field edge

[x_rechts1, y_rechts1] = veldrand_recht(o_u16, [C/2 C], 115*R/300, 185*R/300, 0);

x_rechts3 = x_rechts1;

 x_mur = mean(x_rechts3);

 stdevr = std(x_rechts3);

 indr = find(abs(x_rechts3)<(x_mur - 3*stdevr));

 x_rechts3(indr) = [];

124

 x_rechts4 = x_rechts3;

 ind2r = find(abs(x_rechts4)>(x_mur + 3*stdevr));

 x_rechts4(ind2r) = [];

 x_rechts = x_rechts4;

y_rechts3 = y_rechts1;

 y_rechts3(indr) = [];

 y_rechts3(ind2r) = [];

 y_rechts = y_rechts3;

p_rechts = polyfit(y_rechts,x_rechts,1);

yfit_rechts(X) = p_rechts(1)*X + p_rechts(2);

yfit_rechtsinv(X) = finverse(yfit_rechts(X));

%Find top field edge

[x_boven1, y_boven1] = veldrand_liggend(o_u16, [0 R/2], 123*C/300, 177*C/300, 1);

y_boven3 = y_boven1;

 y_mub = mean(y_boven3);

 stdevb = std(y_boven3);

 indb = find(abs(y_boven3)<(y_mub - 3*stdevb));

 y_boven3(indb) = [];

 y_boven4 = y_boven3;

 ind2b = find(abs(y_boven4)>(y_mub + 3*stdevb));

 y_boven4(ind2b) = [];

 y_boven = y_boven4;

x_boven3 = x_boven1;

 x_boven3(indb) = [];

 x_boven3(ind2b) = [];

 x_boven = x_boven3;

p_boven = polyfit(x_boven,y_boven,1);

yfit_boven(X) = p_boven(1)*X + p_boven(2);

%Find bottom field edge

[x_onder1, y_onder1] = veldrand_liggend(o_u16, [R/2 R], 123*C/300, 177*C/300, 0);

y_onder3 = y_onder1;

 y_muo = mean(y_onder3);

 stdevo = std(y_onder3);

 indo = find(abs(y_onder3)<(y_muo - 3*stdevo));

 y_onder3(indo) = [];

 y_onder4 = y_onder3;

 ind2o = find(abs(y_onder4)>(y_muo + 3*stdevo));

 y_onder4(ind2o) = [];

 y_onder = y_onder4;

x_onder3 = x_onder1;

 x_onder3(indo) = [];

 x_onder3(ind2o) = [];

 x_onder = x_onder3;

p_onder = polyfit(x_onder,y_onder,1);

yfit_onder(X) = p_onder(1)*X + p_onder(2);

%Calculate the intersections (corners) of the field edges

[x1,y1] = vindSnijpunt(yfit_linksinv, yfit_boven);

[x2,y2] = vindSnijpunt(yfit_rechtsinv, yfit_boven);

[x3,y3] = vindSnijpunt(yfit_linksinv, yfit_onder);

[x4,y4] = vindSnijpunt(yfit_rechtsinv, yfit_onder);

veld = [x1 y1 x2 y2 x3 y3 x4 y4]; %Save field corners for visualisation

%Find assymetric fieldsizes in y direction

[grootte_boven, grootte_onder] = AssymVeldgrootte_y(yfit_boven, yfit_onder, x_straliso,

y_straliso);

fsy1 = double(grootte_boven*conversiefactor);

125

fsy2 = double(grootte_onder*conversiefactor);

fsytot = fsy1 + fsy2;

%Find assymetric fieldsizes in x direction

[grootte_links ,grootte_rechts] = AssymVeldgrootte_x(yfit_linksinv, yfit_rechtsinv,

x_straliso, y_straliso);

fsx1 = grootte_links*conversiefactor;

fsx2 = grootte_rechts*conversiefactor;

fsxtot = fsx1 + fsx2;

end

function [x_links, x_rechts] = AssymVeldgrootte_x(vgl1, vgl2, x, y)

%This function computes the assymetrical field size in y direction

%Input: the two function which define both horizontal field edges

% the reference point (averaged radiation isocenter)

%Output: both assymetrical fieldsizes

afstand_l = [];

afstand_r = [];

 syms f(X)

 f(X) = vgl1;

 x1 = solve(f(X) == y, X);

 y1 = y;

 x2 = x;

 y2 = y;

 syms g(X)

 g(X) = vgl2;

 x3 = solve(g(X) == y, X);

 y3 = y;

 afst_l = afstand2p(x1, x2, y1, y2);

 afst_r = afstand2p(x3, x2, y3, y2);

 afstand_l = [afstand_l afst_l];

 afstand_r = [afstand_r afst_r];

x_links = mean(afstand_l);

x_rechts = mean(afstand_r);

end

126

function [y_boven, y_onder] = AssymVeldgrootte_y(vgl1, vgl2, x, y)

%This function computes the assymetrical field size in y direction

%Input: the two function which define both horizontal field edges

% the reference point (averaged radiation isocenter)

%Output: both assymetrical fieldsizes

afstand_b = [];

afstand_o = [];

 syms f(X)

 f(X) = vgl1;

 x1 = x;

 y1 = f(x);

 x2 = x;

 y2 = y;

 syms g(X)

 g(X) = vgl2;

 x3 = x;

 y3 = g(x);

 afst_b = afstand2p(x1, x2, y1, y2);

 afst_o = afstand2p(x3, x2, y3, y2);

 afstand_b = [afstand_b afst_b];

 afstand_o = [afstand_o afst_o];

y_boven = mean(afstand_b);

y_onder = mean(afstand_o);

end

11.2.10 Concatenating PDF files13

%APPEND_PDFS Appends/concatenates multiple PDF files

%

% Example:

% append_pdfs(output, input1, input2, ...)

% append_pdfs(output, input_list{:})

% append_pdfs test.pdf temp1.pdf temp2.pdf

%

% This function appends multiple PDF files to an existing PDF file, or

% concatenates them into a PDF file if the output file doesn't yet exist.

%

% This function requires that you have ghostscript installed on your

% system. Ghostscript can be downloaded from: http://www.ghostscript.com

%

% IN:

% output - string of output file name (including the extension, .pdf).

% If it exists it is appended to; if not, it is created.

% input1 - string of an input file name (including the extension, .pdf).

% All input files are appended in order.

% input_list - cell array list of input file name strings. All input

% files are appended in order.

13 These functions are original courtesy of Oliver Woodford (2011).

127

% Copyright: Oliver Woodford, 2011

% Thanks to Reinhard Knoll for pointing out that appending multiple pdfs in

% one go is much faster than appending them one at a time.

% Thanks to Michael Teo for reporting the issue of a too long command line.

% Issue resolved on 5/5/2011, by passing gs a command file.

% Thanks to Martin Wittmann for pointing out the quality issue when

% appending multiple bitmaps.

% Issue resolved (to best of my ability) 1/6/2011, using the prepress

% setting

% 26/02/15: If temp dir is not writable, use the output folder for temp

% files when appending (Javier Paredes); sanity check of inputs

function append_pdfs(varargin)

if nargin < 2, return; end % sanity check

% Are we appending or creating a new file

append = exist(varargin{1}, 'file') == 2;

output = [tempname '.pdf'];

try

 % Ensure that the temp dir is writable (Javier Paredes 26/2/15)

 fid = fopen(output,'w');

 fwrite(fid,1);

 fclose(fid);

 delete(output);

 isTempDirOk = true;

catch

 % Temp dir is not writable, so use the output folder

 [dummy,fname,fext] = fileparts(output); %#ok<ASGLU>

 fpath = fileparts(varargin{1});

 output = fullfile(fpath,[fname fext]);

 isTempDirOk = false;

end

if ~append

 output = varargin{1};

 varargin = varargin(2:end);

end

% Create the command file

if isTempDirOk

 cmdfile = [tempname '.txt'];

else

 cmdfile = fullfile(fpath,[fname '.txt']);

end

fh = fopen(cmdfile, 'w');

fprintf(fh, '-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="%s"

-f', output);

fprintf(fh, ' "%s"', varargin{:});

fclose(fh);

% Call ghostscript

ghostscript(['@"' cmdfile '"']);

% Delete the command file

delete(cmdfile);

% Rename the file if needed

if append

 movefile(output, varargin{1});

128

end

end

function varargout = ghostscript(cmd)

%GHOSTSCRIPT Calls a local GhostScript executable with the input command

%

% Example:

% [status result] = ghostscript(cmd)

%

% Attempts to locate a ghostscript executable, finally asking the user to

% specify the directory ghostcript was installed into. The resulting path

% is stored for future reference.

%

% Once found, the executable is called with the input command string.

%

% This function requires that you have Ghostscript installed on your

% system. You can download this from: http://www.ghostscript.com

%

% IN:

% cmd - Command string to be passed into ghostscript.

%

% OUT:

% status - 0 iff command ran without problem.

% result - Output from ghostscript.

% Copyright: Oliver Woodford, 2009-2015, Yair Altman 2015-

%{

% Thanks to Jonas Dorn for the fix for the title of the uigetdir window on Mac OS.

% Thanks to Nathan Childress for the fix to default location on 64-bit Windows systems.

% 27/04/11 - Find 64-bit Ghostscript on Windows. Thanks to Paul Durack and

% Shaun Kline for pointing out the issue

% 04/05/11 - Thanks to David Chorlian for pointing out an alternative

% location for gs on linux.

% 12/12/12 - Add extra executable name on Windows. Thanks to Ratish

% Punnoose for highlighting the issue.

% 28/06/13 - Fix error using GS 9.07 in Linux. Many thanks to Jannick

% Steinbring for proposing the fix.

% 24/10/13 - Fix error using GS 9.07 in Linux. Many thanks to Johannes

% for the fix.

% 23/01/14 - Add full path to ghostscript.txt in warning. Thanks to Koen

% Vermeer for raising the issue.

% 27/02/15 - If Ghostscript croaks, display suggested workarounds

% 30/03/15 - Improved performance by caching status of GS path check, if ok

% 14/05/15 - Clarified warning message in case GS path could not be saved

% 29/05/15 - Avoid cryptic error in case the ghostscipt path cannot be saved (issue #74)

% 10/11/15 - Custom GS installation webpage for MacOS. Thanks to Andy Hueni via FEX

%}

 try

 % Call ghostscript

 [varargout{1:nargout}] = system([gs_command(gs_path()) cmd]);

 catch err

 % Display possible workarounds for Ghostscript croaks

 url1 = 'https://github.com/altmany/export_fig/issues/12#issuecomment-61467998'; %

issue #12

 url2 = 'https://github.com/altmany/export_fig/issues/20#issuecomment-63826270'; %

issue #20

129

 hg2_str = ''; if using_hg2, hg2_str = ' or Matlab R2014a'; end

 fprintf(2, 'Ghostscript error. Rolling back to GS 9.10%s may possibly solve this:\n *

%s ',hg2_str,url1,url1);

 if using_hg2

 fprintf(2, '(GS 9.10)\n * %s (R2014a)',url2,url2);

 end

 fprintf('\n\n');

 if ismac || isunix

 url3 = 'https://github.com/altmany/export_fig/issues/27'; % issue #27

 fprintf(2, 'Alternatively, this may possibly be due to a font path issue:\n * %s\n\n',url3,url3);

 % issue #20

 fpath = which(mfilename);

 if isempty(fpath), fpath = [mfilename('fullpath') '.m']; end

 fprintf(2, 'Alternatively, if you are using csh, modify shell_cmd from "export..."

to "setenv ..."\nat the bottom of %s\n\n',fpath,fpath);

 end

 rethrow(err);

 end

end

function path_ = gs_path

 % Return a valid path

 % Start with the currently set path

 path_ = user_string('ghostscript');

 % Check the path works

 if check_gs_path(path_)

 return

 end

 % Check whether the binary is on the path

 if ispc

 bin = {'gswin32c.exe', 'gswin64c.exe', 'gs'};

 else

 bin = {'gs'};

 end

 for a = 1:numel(bin)

 path_ = bin{a};

 if check_store_gs_path(path_)

 return

 end

 end

 % Search the obvious places

 if ispc

 default_location = 'C:\Program Files\gs\';

 dir_list = dir(default_location);

 if isempty(dir_list)

 default_location = 'C:\Program Files (x86)\gs\'; % Possible location on 64-bit

systems

 dir_list = dir(default_location);

 end

 executable = {'\bin\gswin32c.exe', '\bin\gswin64c.exe'};

 ver_num = 0;

 % If there are multiple versions, use the newest

 for a = 1:numel(dir_list)

 ver_num2 = sscanf(dir_list(a).name, 'gs%g');

 if ~isempty(ver_num2) && ver_num2 > ver_num

 for b = 1:numel(executable)

 path2 = [default_location dir_list(a).name executable{b}];

 if exist(path2, 'file') == 2

130

 path_ = path2;

 ver_num = ver_num2;

 end

 end

 end

 end

 if check_store_gs_path(path_)

 return

 end

 else

 executable = {'/usr/bin/gs', '/usr/local/bin/gs'};

 for a = 1:numel(executable)

 path_ = executable{a};

 if check_store_gs_path(path_)

 return

 end

 end

 end

 % Ask the user to enter the path

 while true

 if strncmp(computer, 'MAC', 3) % Is a Mac

 % Give separate warning as the uigetdir dialogue box doesn't have a

 % title

 uiwait(warndlg('Ghostscript not found. Please locate the program.'))

 end

 base = uigetdir('/', 'Ghostcript not found. Please locate the program.');

 if isequal(base, 0)

 % User hit cancel or closed window

 break;

 end

 base = [base filesep]; %#ok<AGROW>

 bin_dir = {'', ['bin' filesep], ['lib' filesep]};

 for a = 1:numel(bin_dir)

 for b = 1:numel(bin)

 path_ = [base bin_dir{a} bin{b}];

 if exist(path_, 'file') == 2

 if check_store_gs_path(path_)

 return

 end

 end

 end

 end

 end

 if ismac

 error('Ghostscript not found. Have you installed it

(http://pages.uoregon.edu/koch)?');

 else

 error('Ghostscript not found. Have you installed it from www.ghostscript.com?');

 end

end

function good = check_store_gs_path(path_)

 % Check the path is valid

 good = check_gs_path(path_);

 if ~good

 return

 end

 % Update the current default path to the path found

 if ~user_string('ghostscript', path_)

 filename = fullfile(fileparts(which('user_string.m')), '.ignore', 'ghostscript.txt');

131

 warning('Path to ghostscript installation could not be saved in %s (perhaps a

permissions issue). You can manually create this file and set its contents to %s, to improve

performance in future invocations (this warning is safe to ignore).', filename, path_);

 return

 end

end

function good = check_gs_path(path_)

 persistent isOk

 if isempty(path_)

 isOk = false;

 elseif ~isequal(isOk,true)

 % Check whether the path is valid

 [status, message] = system([gs_command(path_) '-h']); %#ok<ASGLU>

 isOk = status == 0;

 end

 good = isOk;

end

function cmd = gs_command(path_)

 % Initialize any required system calls before calling ghostscript

 % TODO: in Unix/Mac, find a way to determine whether to use "export" (bash) or "setenv"

(csh/tcsh)

 shell_cmd = '';

 if isunix

 shell_cmd = 'export LD_LIBRARY_PATH=""; '; % Avoids an error on Linux with GS 9.07

 end

 if ismac

 shell_cmd = 'export DYLD_LIBRARY_PATH=""; '; % Avoids an error on Mac with GS 9.07

 end

 % Construct the command string

 cmd = sprintf('%s"%s" ', shell_cmd, path_);

end

function string = user_string(string_name, string)

%USER_STRING Get/set a user specific string

%

% Examples:

% string = user_string(string_name)

% isSaved = user_string(string_name, new_string)

%

% Function to get and set a string in a system or user specific file. This

% enables, for example, system specific paths to binaries to be saved.

%

% The specified string will be saved in a file named <string_name>.txt,

% either in a subfolder named .ignore under this file's folder, or in the

% user's prefdir folder (in case this file's folder is non-writable).

%

% IN:

% string_name - String containing the name of the string required, which

% sets the filename storing the string: <string_name>.txt

% new_string - The new string to be saved in the <string_name>.txt file

%

% OUT:

% string - The currently saved string. Default: ''

% isSaved - Boolean indicating whether the save was succesful

132

% Copyright (C) Oliver Woodford 2011-2014, Yair Altman 2015-

% This method of saving paths avoids changing .m files which might be in a

% version control system. Instead it saves the user dependent paths in

% separate files with a .txt extension, which need not be checked in to

% the version control system. Thank you to Jonas Dorn for suggesting this

% approach.

% 10/01/2013 - Access files in text, not binary mode, as latter can cause

% errors. Thanks to Christian for pointing this out.

% 29/05/2015 - Save file in prefdir if current folder is non-writable (issue #74)

 if ~ischar(string_name)

 error('string_name must be a string.');

 end

 % Create the full filename

 fname = [string_name '.txt'];

 dname = fullfile(fileparts(mfilename('fullpath')), '.ignore');

 file_name = fullfile(dname, fname);

 if nargin > 1

 % Set string

 if ~ischar(string)

 error('new_string must be a string.');

 end

 % Make sure the save directory exists

 %dname = fileparts(file_name);

 if ~exist(dname, 'dir')

 % Create the directory

 try

 if ~mkdir(dname)

 string = false;

 return

 end

 catch

 string = false;

 return

 end

 % Make it hidden

 try

 fileattrib(dname, '+h');

 catch

 end

 end

 % Write the file

 fid = fopen(file_name, 'wt');

 if fid == -1

 % file cannot be created/updated - use prefdir if file does not already exist

 % (if file exists but is simply not writable, don't create a duplicate in prefdir)

 if ~exist(file_name,'file')

 file_name = fullfile(prefdir, fname);

 fid = fopen(file_name, 'wt');

 end

 if fid == -1

 string = false;

 return;

 end

 end

 try

 fprintf(fid, '%s', string);

 catch

133

 fclose(fid);

 string = false;

 return

 end

 fclose(fid);

 string = true;

 else

 % Get string

 fid = fopen(file_name, 'rt');

 if fid == -1

 % file cannot be read, try to read the file in prefdir

 file_name = fullfile(prefdir, fname);

 fid = fopen(file_name, 'rt');

 if fid == -1

 string = '';

 return

 end

 end

 string = fgetl(fid);

 fclose(fid);

 end

end

%USING_HG2 Determine if the HG2 graphics engine is used

%

% tf = using_hg2(fig)

%

%IN:

% fig - handle to the figure in question.

%

%OUT:

% tf - boolean indicating whether the HG2 graphics engine is being used

% (true) or not (false).

% 19/06/2015 - Suppress warning in R2015b; cache result for improved performance

% 06/06/2016 - Fixed issue #156 (bad return value in R2016b)

%

%This function is original courtesy of Oliver Woodford, 2011

function tf = using_hg2(fig)

 persistent tf_cached

 if isempty(tf_cached)

 try

 if nargin < 1, fig = figure('visible','off'); end

 oldWarn = warning('off','MATLAB:graphicsversion:GraphicsVersionRemoval');

 try

 % This generates a [supressed] warning in R2015b:

 tf = ~graphicsversion(fig, 'handlegraphics');

 catch

 tf = ~verLessThan('matlab','8.4'); % =R2014b

 end

 warning(oldWarn);

 catch

 tf = false;

 end

 if nargin < 1, delete(fig); end

 tf_cached = tf;

134

 else

 tf = tf_cached;

 end

end

11.2.11 Other functions

function [afstand] = afstand2p(x1, x2, y1, y2)

%This function computes the distance between two points

%Input: the two points

%Output: the distance between both points

afstand = double(sqrt((((x2-x1)^2)+((y2-y1)^2))));

end

function [] = deleteifexist(fileloc)

% Deletes file if it already exists

% Input: fileloc = relative path to file

%Set up warning (e.g. if the file is opened MATLAB will deny permission)

w = warning('error','MATLAB:DELETE:Permission');

try

 if (exist(fileloc, 'file') == 2)

 delete(fileloc);

 end

catch ME

 error(ME.message);

end

warning(w);

end

function [interp] = interpoleer(x1, x2, y1, y2, x)

%This function linearly interpolates to a target x value

%input: 2 points to define the function y(x), a target x value

%output: The interpolated y-value

interp = y1 + ((y2-y1)/(x2-x1))*(x-x1);

end

135

function [xsnijpunt] = vindSnijpiso_x(P1x, P1y, P2x, P2y, P3x, P3y, P4x, P4y)

%Finds the y-coordinate of the intersection point of the diagonals that

%define the radiation isocenter

%inputs: the four points that define the two diagonals

%outputs: the y-coordinate of intersection

syms x;

y1 = (((P4y-P1y)/(P4x-P1x))*(x-P1x)) + P1y;

y2 = (((P2y-P3y)/(P2x-P3x))*(x-P3x)) + P3y;

eqn = y1 == y2;

xsnijpunt = solve(eqn, x);

end

function [ysnijpunt] = vindSnijpiso_y(P1x, P1y, P2x, P2y, P3x, P3y, P4x, P4y)

%Finds the y-coordinate of the intersection point of the diagonals that

%define the radiation isocenter

%inputs: the four points that define the two diagonals

%outputs: the y-coordinate of intersection

syms y;

x1 = (((P4x-P1x)/(P4y-P1y))*(y-P1y)) + P1x;

x2 = (((P2x-P3x)/(P2y-P3y))*(y-P3y)) + P3x;

eqn = x1 == x2;

ysnijpunt = solve(eqn, y);

end

function [x_snijpunt, y_snijpunt] = vindSnijpunt(vgl1, vgl2)

%Finds intersection (x,y) of two equations

%inputs : 2 equations

%outputs : x&y coordinate of intersection

syms X

eqn = vgl1 == vgl2;

x_snijpunt = solve(eqn, X);

y_snijpunt = vgl1(x_snijpunt);

end

136

11.3 Appendix C: Example of output file

In this appendix a few pages of the output file are given. An output file always starts with a table on

the first page which contains a summarize of the results. The following pages contain all the

processed output images together with a detailed image. The example starts below. It contains one

example of each operation.

i Gantry Collimat Table deltaIso

1 0 360 360 0,358

2 0 90 360 0,719

3 0 165 360 0,714

4 0 270 360 0,244

5 0 360 90 0,533

6 0 360 270 1,332

7 180 360 0 1,364

8 90 90 0 0,939

9 90 360 0 1,161

10 90 270 0 1,053

11 270 270 0 0,952

12 270 0 0 1,13

13 270 90 0 1,3

VRT15 VRT_dev Long_dev

done -0,425 0,105

LNG15 LNG_dev Lat_dev

done 0,41 0,627

LAT15 LAT_dev Long_dev

done 0,254 0,261

field x1_dev x2_dev y1_dev y2_dev x_total_dev y_total_dev

5x5: 0,367 0,257 0,556 0,047 0,623 0,603

10x10: -0,469 -0,382 0,709 0,488 -0,852 1,197

18x18: 0,108 0,637 0,645 0,546 0,744 1,191

137

3: G: 0.00°, C: 165.00° en T: 359.96°

; distance between mechanical and radiation isocenter = 0.714mm.

138

3: G: 0.00°, C: 165.00° en T: 359.96°

; distance between mechanical and radiation isocenter = 0.714mm.

139

The vertical deviation is -0.42mm The

longitudinal displacement is 0.10mm.

140

The vertical deviation is -0.42mm The

longitudinal displacement is 0.10mm.

141

The vertical deviation is -0.42mm The

longitudinal displacement is 0.10mm.

142

18x18: x1 is 89.89mm and x2 is 89.36mm y1

is 89.36mm and y2 is 89.45mm
Total field size x: 179.26mm and total field size y: 178.81mm

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Automatization of mechanical quality assurance of a linac using MATLAB

Richting: master in de industriële wetenschappen: nucleaire
technologie-nucleaire technieken / medisch nucleaire technieken
Jaar: 2017

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Smeulders, Jelle

Datum: 6/06/2017

