
2016•2017
FACULTEIT INDUSTRIËLE INGENIEURSWETENSCHAPPEN
master in de industriële wetenschappen: energie

Masterproef
Collision-free trajectory generation for welding robots: analysis and
improvement of the Descartes algorithm

Promotor :
Prof. dr. ir. Eric DEMEESTER

Copromotor :
De heer Maarten VERHEYEN

Bart Moyaers , Giel Vanvelk
Scriptie ingediend tot het behalen van de graad van master in de industriële
wetenschappen: energie

Gezamenlijke opleiding Universiteit Hasselt en KU Leuven

 2016•2017
Faculteit Industriële
ingenieurswetenschappen
master in de industriële wetenschappen: energie

Masterproef
Collision-free trajectory generation for welding robots:
analysis and improvement of the Descartes algorithm

Promotor : Copromotor :
Prof. dr. ir. Eric DEMEESTER De heer Maarten VERHEYEN

Bart Moyaers , Giel Vanvelk
Scriptie ingediend tot het behalen van de graad van master in de industriële
wetenschappen: energie

Acknowledgments

We, Bart Moyaers and Giel Vanvelk, opted for this master thesis subject because we where

both interested in the application of robot welding. On the one hand, because it is a prime

example of automation, which is the specialization we chose in our engineering study. On the

other hand, we were attracted to the possibilities of automating industrial processes, using

robots.

The master thesis required knowledge which we didn’t have at the start of the project. Neither

of us had any prior knowledge of used software like Ubuntu, ROS, Descartes, etc. We did have

a basic programming knowledge, but not in C++. This made the start a bit rough, but

ensured that we learned a lot by the end of the master thesis.

We would like to thank our promoters, prof. dr. ing. Eric Demeester and ing. Maarten

Verheyen for the help they have given during the master thesis. They followed the project up

close and helped with decision making. A special thanks to Eric Demeester, for the

enlightening conversations we had, and to Maarten Verheyen for providing the robot model,

which really gave us a kick start. We would also like to thank Ir. Jeroen De Maeyer, whose

doctoral research has a similar context. Your insights, ideas, and suggestions were very useful,

enlightening and, not less importantly, motivating.

The code used in this thesis is available online in the following repository:

https://github.com/Bart123456/lasrobot ws

For GIT:

https://github.com/Bart123456/lasrobot ws.git

Our code has also been used in a paper[33] about the Descartes software package.

Contents

List of Figures 5

List of Tables 7

Abstract in English 9

Abstract in Dutch 9

1 Introduction 13

1.1 Background . 13

1.2 Problem definition . 13

1.3 Objectives . 14

1.4 Methods and materials . 14

1.5 Summary . 15

2 Literature study 17

2.1 Utilized software . 17

2.1.1 ROS . 17

2.1.2 Trajectory generation software . 20

2.2 Research trajectory generation software . 22

2.2.1 Descartes Path Planner (ROS-I) . 22

2.2.2 CHOMP . 25

2.2.3 TrajOpt . 27

2.2.4 Comparison . 28

2.3 Chapter summary . 29

3 Set-up and installing the Descartes-software package 31

3.1 Workspace . 31

3.2 Installing the Descartes-software package . 32

3.3 Robot modelling files . 34

3.4 Chapter summary . 34

4 Robot modelling 35

4.1 URDF . 35

4.1.1 Links . 35

4.1.2 Joints . 36

4.1.3 Meshes . 38

4.1.4 Checking the URDF . 39

4.2 URDF-launchfile . 39

4.3 Visualisation in RViz . 39

4.4 MoveIt! set-up assistant . 40

4.5 Integrating the robot model in Descartes . 46

4.6 Chapter summary . 46

5 The Descartes Software Package 47

5.1 Trajectory points . 47

5.2 Transformation matrices and different possible transforms 50

5.3 Inverse Kinematics . 51

5.4 Graph building . 51

5.5 Trajectory visualization in RViz . 54

5.6 Tolerances on local frame vs. Euler angle tolerances 55

5.7 Used convention when defining trajectory points 57

5.8 Custom cost function / edge weights / cost of trajectory point 59

5.9 Saving generated data in .bag files . 63

5.10 Defining trajectory points . 64

6 Simulations and Examples 67

6.1 Test case 1: Tube on Plate . 67

6.2 Test case 2: L Profile . 71

6.3 Test case 6: furniture piece . 76

7 Problems and Ideas 81

7.1 Number of edges and RAM . 81

7.2 Iterative tolerances . 83

7.3 Glitchy behavior / jumping through obstacles . 87

7.4 Smoother trajectories . 89

8 Conclusion 91

References 93

Appendix A Complete URDF 95

Appendix B URDF-tree 99

Appendix C Python script for plotting data from bag-file 101

Appendix D Testcase 1: tube on plate A 103

Appendix E Testcase 2: tube on plate B 107

Appendix F Testcase 3: L-profile with IKfast 111

Appendix G Testcase 4: L-profile with KDL 115

Appendix H Testcase 5: L-profile with iterative tolerances 119

Appendix I Testcase 6: Furniture piece 123

List of Figures

1 KUKA KR5 arc robot arm, with welding transformer and maintenance station. . 15

2 URDF with the corresponding kinematic and dynamic tree [15]. 18

3 Example of a robot displayed by the tf-package. 19

4 Probabilistic Roadmap example [23]. 21

5 Rapidly Exploring Random Tree (RRT) [25]. 21

6 Dijkstra’s algorithm example [24]. 22

7 Rendering of the created workspace. 32

8 Rendering of the workspace with the Descartes-software package. 33

9 The workspace after building. 33

10 The folder which will contain the robot model (’kuka description’). 34

11 Principle of describing a link in the URDF-file [13]. 35

12 Principle of describing an joint in the URDF-file.[13]. 37

13 All original meshes of the robot model. 38

14 The adjustment of the mesh of the robot base. 38

15 The adjustment of the mesh of the first link of the robot model. 38

16 The created robot model visualised in RViz. 40

17 Step1a: Start window of the MoveIt! Setup Assistant. 41

18 Step1b: Opening and parsing the URDF-model. 41

19 step2: Self-Collison Checking . 42

20 step4a: Defining a planning group . 43

21 step4b: Adding the planning group . 43

22 step5: Adding robot poses . 44

23 Resulting robot model displayed in RViz . 45

24 Different joint solutions for a single tool pose. 47

25 Left: robot with base frame and tool frame. Right: tool frame moved into the

trajectory point frame. 48

26 The welding torch with its frame. (Tool frame.) 48

27 Forward kinematics. 49

28 Three possible poses for the welding torch when using an axial-symmetric point. 50

29 Steps to construct a graph from trajectory points without tolerances. 52

30 Different toleranced frames. 52

31 Steps to construct a graph from trajectory points, including tolerances. 53

32 Visualized frames in RViz, every frame consists of three different markers. 54

33 Visualized example of intrinsic XYZ Euler rotations. 55

34 Conical tolerance zone for the z-axis. 56

35 Pyramid-shaped tolerance zone for the z-axis. 57

36 Different welding angles. 58

37 Bead shapes. 58

38 T-profile example for trajectory point convention. 59

39 Deviation with and without deviation cost. 60

40 Angle between optimal frame and toleranced frame’s z-axis. 60

41 Illustrated graph, with chosen path in red. 61

42 Projection of the toleranced z-axis on the x-z- and y-z-planes. 62

43 Angles between z-axis projections and optimal frame’s z-axis. 62

44 Example plot of joint angles. 64

45 Trajectory points across a line in space. 65

46 Trajectory points across a circle arc in space. 65

47 Trajectory points forming a helix. 66

48 Tube on plate workpiece. 67

49 Workpiece with trajectory, placed on the welding table. 68

50 TOP 1: Joint angles through time, with deviation cost. 68

51 TOP 1: Robot executing trajectory. 69

52 TOP 1: Joint angles through time, without deviation cost. 70

53 TOP 1: X angle error throughout time. 70

54 TOP 1: Y angle error throughout time. 71

55 Workpiece with trajectory, placed on the welding table. 71

56 L profile: Joint angles through time, with deviation cost. 72

57 L profile: Welding torch evading collision. 73

58 L profile: Joint angles through time, without deviation cost. 74

59 L profile: Y angle error throughout time. 74

60 L profile: Joint angles through time, with deviation cost and KDL solver. 75

61 L profile: Y angle error throughout time, KDL. 75

62 L profile: X angle error throughout time, KDL. 76

63 Furniture piece: workpiece with trajectory. 77

64 Furniture piece: trajectory points. 77

65 Furniture piece: robot executing trajectory. 78

66 Furniture piece: robot executing trajectory, zoom. 78

67 Furniture piece: Joint angles through time. 79

68 Furniture piece: X angle error throughout time. 79

69 Furniture piece: Y angle error throughout time. 80

70 Steps to construct a graph from trajectory points, including tolerances. 81

71 L profile with trajectory. 84

72 Robot executing trajectory. 85

73 Robot executing trajectory. 85

74 L profile, iterative tolerances, joint angles. 86

75 L profile, Y angle errors, iterative tolerances. 86

76 Scenario with tall pole. 87

77 Joint angles through time, jumps are within ellipses. 88

List of Tables

1 Summary table . 29

Abstract

This master thesis, performed within the research group ACRO, aims to enhance the

production flexibility of robot welding through automatic, collision-free trajectory generation.

The first subgoal was to compare and select an existing open-source software to automatically

generate collision-free trajectories for welding robots. The second subgoal was to evaluate it on

its applicability to robot welding, and subsequently, to improve it.

To select a suitable software package, a literature study has been carried out, in which different

software packages were compared. The chosen Descartes software package starts from a

sequence of trajectory points, with acceptable tolerances specified by the user. With the help

of the inverse robot kinematics, it then generates a graph, which is searched to find the path

with the lowest cost.

To evaluate the chosen software package, different test scenarios were developed. Various

limitations were revealed and improved. A new cost function based on rotational errors of the

welding torch has been added, which keeps the welding torch closer to its optimal orientation.

On top of that, it allows to differentiate between specific welding angles, making it possible to

prioritize changing one over the other. A new implementation to define rotational tolerances

on trajectory points leads to tolerances which are more intuitive and more practical. Finally,

the code has been made available online together with a tutorial. They can be found

respectively on the GitHub and the ROS Descartes wiki page.

Abstract

Deze masterproef, uitgevoerd bij de onderzoeksgroep ACRO, had als doel de

productieflexibiliteit van robotlassen te verhogen door automatische, botsingsvrije

trajectgeneratie. Het eerste subdoel was het vergelijken en selecteren van een bestaande

open-source software voor het automatisch genereren van botsingsvrije paden. Het tweede

subdoel was de gekozen software op zijn toepasbaarheid voor robotlassen evalueren, verbeteren

en uitbreiden.

Het selecteren van een geschikt softwarepakket gebeurde op basis van een literatuurstudie die

verschillende bestaande softwarepakketten vergeleek. Het gekozen Descartes-softwarepakket

vertrekt van een sequentie robotlocaties met aanvaardbare toleranties gespecifieerd door de

gebruiker. Daarna genereert het met behulp van de inverse kinematica van de robot een

diagram en zoekt hierin het pad met de laagste kost.

Om de gekozen software te evalueren zijn verschillende testscenarios uitgewerkt. Verschillende

beperkingen, die zo aan het licht zijn gekomen, zijn verbeterd. Een nieuwe kost op basis van

hoekafwijkingen is toegevoegd, waardoor de bewegingstrajecten de optimale oriëntatie van de

lastoorts beter benaderen. Bovendien laat het toe om bepaalde lashoeken prioritair aan te

passen boven andere. Een nieuwe implementatie voor het definiëren van rotationele toleranties

op trajectpunten zorgt voor toleranties die intüıtiever en praktischer zijn. Ten slotte is de code

online beschikbaar gemaakt en een tutorial geschreven. Ze zijn respectievelijk te vinden op

GitHub en de ROS wikipagina.

1 Introduction

1.1 Background

This master thesis is situated within the research group ACRO, part of the University of

Leuven. ACRO focuses mainly on applications using robotics and machine vision. One of the

projects of ACRO is the so-called Smartfactory project [1]. The goal of this project is to aid the

manufacturing industry to achieve sustainable production by helping with the introduction

and development of the Smart Factory concept. To reach this goal, 7 tangible technological

challenges were conceived. They are also available in [1].

1. Zero ramp-up: trial or test series of products should not be necessary. The start-up

phase of production is reduced to a minimum. (Ideally there is no start-up phase.)

2. Safe interaction between humans and robots: robots and humans are able to work safely

alongside each other, while the production still remains accessible.

3. From computer aided programming to auto-programming: the robot programming

requires no special training, reprogramming the robots for the production of a new series

of products can be achieved in less than 10 minutes.

4. Intelligent quality assurance: quality control is automatic and integrated. All products

are checked.

5. Benchmark of robot control software: using the correct software in different situations,

with a focus on the feasibility of restarting the process when necessary. Complex robot

paths can be programmed offline.

6. Remote production monitoring: production generates data that is fed back into a

real-time monitoring system, to limit potential damage in the case of unplanned events

such as a breakdown.

7. Couple stand-alone resources into networked production cells: smart production cells do

not form isolated islets, but communicate with each other to form a Smart Factory.

The smart factory-concept is relevant to this thesis, specifically regarding challenges 3 and 5.

1.2 Problem definition

Flemish manufacturing companies are experiencing difficulties in competing with companies in

low-wage countries. These manufacturing companies often have an abundance of cheap labor

to their disposal, allowing them to produce their products with a lower cost. Because of this,

many on-shore companies are willing to invest in further automation of their production

processes. The goals of this automation are to reduce costly working hours to a minimum

and/or enhance the flexibility of the production processes. Processes using autonomous robots

offer the possibility to save many hours of manual labor. On the other hand, the programming

of these robots requires specific technical knowledge, and extra time to implement. This

method of automation is especially attractive when large series of products are produced. In

this case the large amounts of time saved in manual labor, far outweighs the extra cost for the

time and knowledge necessary to program the robots. However, this method of automation is

not very feasible in regard to the production of small series of products, or many unique

products. Every time a new series has to be produced, the robots have to be programmed

again, removing the cost reduction of saved manual labor. To allow this method to succeed in

these cases, the manual programming of the robots has to be reduced, or removed altogether.

In the application of robot welding this comes down to automatically generating the

trajectories of a welding robot to place a weld on a workpiece. The software that generates

this trajectory needs to take into account the possibility of collisions between the robot and its

environment. Otherwise, trajectories could be generated that would be impossible to execute

on a real robot. On top of that, the welding speed and different other weld parameters need to

be controlled to guarantee a certain weld quality.

1.3 Objectives

The goal of this thesis is to select and use existing open-source software to automatically

generate a collision-free trajectory for a welding robot. The software is then evaluated and

subsequently improved and expanded, with our specific application (robot welding) in mind.

The evaluation of the software needs to happen by generating trajectories on multiple,

strategically chosen, test scenarios. A minimum requirement of this thesis is that a trajectory

can be generated for a simple workpiece, together with a simple obstacle which has to be

avoided. Ideally, this would mean that the information about the weld would be extracted

from a CAD file defining the workpiece. However, this is not a goal of this master thesis. The

information about the welding paths is generated ourselves. This information is then used as a

foundation to generate a correct trajectory. As mentioned in the problem definition, the

software needs to take into account possible collisions between the robot and the environment,

or the robot with itself. It also needs to check if the generated movement of the robot is

executable. In other words, do we adhere to the maximum allowed joint ranges and speeds?

Singular positions should also be avoided. If no trajectory can be found, the software must try

to find an alternative trajectory by changing the weld parameters between certain predefined

limits. This could mean changing certain welding angles, or slightly changing the position of

the welding torch when necessary. In the case of changing certain welding angles, different

welding angles are preferred to be changed over others, because of their different effects on the

weld quality. The software should be able to distinguish between the different welding angles.

The user should also have full control over the allowed tolerance limits. After generating the

trajectory, the software needs to automatically generate a report with essential information

regarding the trajectory. This report contains for example the changed welding parameters

and the joint positions during the movement. An important supplementary goal is that the

software needs to be made available to third parties. To do this, the code should be published

online, and if possible, a tutorial should be written.

1.4 Methods and materials

The master thesis can be divided in following parts. First of all a literature study is carried

out. In this literature study, three open-source software packages for trajectory generation are

examined and compared. The different software in question are the Descartes-software package

[2], Trajopt [4] and CHOMP [5].

14

After the literature study, the main focus was the evaluation and enhancement of the chosen

(Descartes) software. Different tests were performed using scenarios. For this purpose, ACRO

provided a KUKA KR5 arc robot arm, equipped with a Fronius 4000 welding transformer, and

a maintenance station with torch cleaner. However, this installation has not been used in this

thesis. All the tests have been carried out in simulation. In this simulation environment, a

robot model based on the KUKA KR5 arc robot arm was used.

Figure 1: KUKA KR5 arc robot arm, with welding transformer and maintenance station.

1.5 Summary

In this chapter, the setup of the workspace of the master thesis has been described. First of all

the framework, in which the master thesis has been conducted, has been described. The

problem definition, which gives the research its meaning, was then explained. After that, the

goals of the master thesis were outlined. Finally, the used methods and materials where shown.

15

16

2 Literature study

To generate trajectories for our robot, an existing software package has to be chosen. At the

present time, there are multiple open source software packages available. To make a good

choice between different path planning software it is essential to compare different software

packages and different path planning methods. This chapter starts with a short introduction of

ROS (Robot Operating System) and other popular software packages used within the ROS

framework. This is done for readers who are not familiar with ROS, so that they are able to

understand certain terms that might be used in the coming chapters of this thesis. After this

familiarization follows a short description of certain path planners that may be used for

collision-free trajectory generation of robots. First a few so-called sampling-based algorithms

will be discussed. Then different software packages for trajectory generation and optimization

will be looked at and compared. (CHOMP, TrajOpt, and Descartes.) We conclude with a

summary table of the advantages and disadvantages of the chosen packages, and the final

choice made for this thesis. Although the Descartes software package was certainly compared

to the other packages in the literature study, this section has been omitted, because the

functioning of this package will be explained in more detail in the following chapters.

2.1 Utilized software

2.1.1 ROS

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a

collection of tools, libraries, and conventions that aim to simplify the task of creating complex

and robust robot behaviour across a wide variety of robotic platforms [6].

Tasks that seem trivial to humans are not always trivial to robots and vice versa. Often, due

to a variation or a change of the environment, the necessary implementation of a robot

function can completely change. Because handling all of these variations is a difficult task, it

cannot be expected that an individual, a laboratory or even an institute can handle all of these

variations for each robot function. As a result, ROS was built from the beginning with

collaboration in mind.

Consequently, at the base of ROS is its communication system, which allows information to be

exchanged between different modules in the form of messages. Messages can be built by

defining a new message class, with all the desired data components and their names. However,

ROS also provides a set of standard messages ranging from information about a robot’s pose,

to maps of the environment. By using these standard messages, self-written code can work

seamlessly with other software that uses the same messages.

Software in ROS is organized in packages [8]. A package might contain ROS nodes, a

ROS-independent library, a dataset, configuration files, a third-party piece of software, or

anything else that logically constitutes a useful module. The goal of these packages is to

provide this useful functionality in an easy-to-consume manner so that software can be easily

reused. For a better understanding of the rest of the thesis, the used packages,nodes and

ROS-based software will be briefly described.

At the moment, multiple versions of ROS are distributed. The version used in this thesis is

17

ROS Indigo Igloo [9], which was released on the 22nd of July 2014. More information about

ROS can be found at the ROS-Wikipage [10].

Nodes and Packages

A node [11] is a process that performs computation. A robot control system usually consists of

multiple nodes, communicating with each other through messages. For example, one node

might calculate the joint positions of a robot while another node visualizes these joint positions.

URDF URDF (Unified Robot Description Format) is an Extensible Markup Language in

XML format for the representation of a robot model. It is used to develop a robot model by

defining the different joints and links of a specific robot model, including their physical

properties. URDF can only describe robots that have a tree-like structure in their links. This

means that the robot must have rigid links, that are connected to each other using joints. The

created robot model can then be used to perform simulations. The URDF-package [12] [13]

contains a built-in C++ parser for URDF.

SRDF The SRDF-package [14] is a package intended to contain information about the robot

that is not in the URDF file. The intention is to include information that has a semantic

aspect to it. Examples of these semantic aspects are:

• The joint and link names of a robot and their assembly into a move-group (a set of links

and joints that work together).

• Predefined robot positions (joint values). For example a home position.

• Information about passive joints that are not actuated.

• Information about the disabling of the collision detection between certain links of the

robot.

kdl parser The Kinematic and Dynamics Library (KDL) [15] is a ROS package that

provides a number of parser-utilities. The goal of the package is, starting from the URDF, to

create a tree-like structure displaying the kinematic and dynamic parameters of the robot.

KDL can be used to publish the joint states, and compute the forward and inverse kinematics

of the used model.

Figure 2: URDF with the corresponding kinematic and dynamic tree [15].

18

Joint State Publisher The joint state publisher [13] [16] is a package containing a node,

which reads the robot model, containing the state of the robot’s joints. It then publishes these

joint values. A GUI with sliders may be used to change the joint values of all non-fixed joints.

Robot State Publisher This package reads the (published) robot joint states and publishes

the 3D poses of each robot link, using the kinematics tree built from the URDF [17]. The 3D

pose of the robot is published as a ROS tf (transform).

tf ROS tf [18] is a package that visualizes the different transformed coordinate frames for

every link of the robot. It is possible to see how the robot’s position will change if there is a

change in joint states.

Figure 3: Example of a robot displayed by the tf-package.

Roslaunch (Launchfiles) Roslaunch [19] is a tool for easily launching ROS-nodes by

writing a so-called .launch-file. The launch file can be executed using following command-line.

$roslaunch package name file.launch

ROS-industrial (ROS-I) ROS-Industrial is an open-source project that extends the

advanced capabilities of ROS to manufacturing automation and robotics. The ROS-Industrial

repository includes interfaces for common industrial manipulators, grippers, sensors, and

device networks. It also provides software libraries for processing path/motion planning.

Unlike the packages described above, ROS-I is a collection of packages [20].

ROS-based software (tools)

RViz RViz [31] is a ROS-package for 3D-visualization. After a robot model has been created,

it can be visualised in RViz. Rviz transforms the URDF-model in a 3D-model and enables the

possibility to observe movements of the robot joints. Next to the robot model another useful

application of RViz is the visualisation of the environment around the robot, the different

coordinate frames, and user-made visual markers.

19

MoveIt! MoveIt! [21] is a ROS-based software for the manipulation of robots. It provides an

easy-to-use platform for developing advanced robotics applications, evaluating new robot

designs and building integrated robotics products. MoveIt! makes it possible to generate

collision-free trajectories for robots.

2.1.2 Trajectory generation software

We begin this section by going into a popular way of automated collision-free trajectory

generation in academia. First, a so-called ”Sampling-based Algorithm” tries to find a possible

trajectory. Often, depending on the used algorithm, the path is not very smooth. This means

that sudden movements may occur in the range, associated with high accelerations. To solve

this problem, an optimization step is often used, in which a separate algorithm tries to make

the trajectory, generated with the ”sampling-based algorithm”, smoother. This is called the

optimization step.

Then, two different sampling-based algorithms are discussed. These are also implemented in

ROS, in a library called OMPL [22] (Open Motion Planning Library). After that, three

different software packages for path generation are discussed and compared: CHOMP, TrajOpt

and Descartes. The comparison is based on the features of the software packages, while

keeping the application of robot welding in mind.

Probabilistic Roadmap (PRM)

The Probabilistic Roadmap Planner (PRM) is an algorithm for the generation of collision-free

trajectories. In this case, a random position in the configuration space is taken and tested

whether or not the robot is in collision. If the robot is not in collision, this point is added to a

list of points within the configuration space that are collision-free. Afterwards, the algorithm

attempts to connect these different points using a local path planner. In the example, these are

linear paths between 2D points, but these paths can also be determined differently. Eventually,

using a search algorithm (e.g. Dijkstra’s algorithm), a trajectory is generated with a set of

these points. The PRM method therefore consists of two phases [23]:

1. The learning phase: A list of points is compiled by calculating collision-free points in the

configuration space. Using a fast local path planner it is checked if a collision-free path

between the different collision-free configurations.

2. The Search phase: A trajectory is searched between start and end points by connecting

the trajectories found in the previous phase. The way this path is chosen depends on the

algorithm used. For example, in the following 2D example (figure 4), the length of

possible paths could be taken as a cost. After that, Dijkstra’s algorithm can be used to

find the path with the lowest cost.

20

Figure 4: Probabilistic Roadmap example [23].

One of the advantages of PRM is that this method is probabilistically complete. That is, if a

collision-free path exists, it can be guaranteed that this global path is found with probability

approximating one as the number of sampled configurations goes to infinity. Thus, if a path

exists, it will be found. But it may cost a lot of calculations to determine the path. Moreover,

this method is well applicable to robots with many degrees of freedom. Trajectory generation

software based on PRM is available within OMPL [22]. OMPL can also be used within

MoveIt! [21].

Rapidly-exploring Random Tree (RRT)

Rapidly Exploring Random Tree (RRT) is an algorithm for the rapid generation of a

trajectory with a single start and end point. The Rapidly Exploring Random Tree is especially

suitable for problems with many degrees of freedom, trajectory-dependent and kinematic

constraints [24]. RRT’s are developed by expanding a tree-like structure with any random

point in the configuration space. This causes the tree structure to grow into large unexplored

areas. The algorithm is very effective in finding a possible trajectory, but it is often not enough

to find a proper, optimzed route. This is among other things due to the fact that the

algorithm does not limit any additional variables, such as the length and the smoothness of the

trajectory. As a result, the algorithm is used as a component that can be integrated into the

development of other path generation algorithms.

Figure 5: Rapidly Exploring Random Tree (RRT) [25].

21

Dijkstras algorithm

Dijkstra’s algorithm, is an algorithm to seek the shortest path between two nodes of a graph.

It can also be used to calculate the shortest distance between a start and end point, connected

by a number of intermediate nodes and edges (6). Dijkstra’s algorithm can be used for the

generation of robot trajectories when a graph is given [26].

Figure 6: Dijkstra’s algorithm example [24].

2.2 Research trajectory generation software

2.2.1 Descartes Path Planner (ROS-I)

Descartes, named after French scientist René Descartes, is a software package used to generate

trajectories for industrial robots. This planner uses information about the desired trajectory,

and the robot geometry, which is then fed into a path planning algorithm.

Trajectory information

This software package uses trajectory points, which are discrete samples from a predefined

22

path. This trajectory can be built using 3 different kinds of trajectory points:

1. Cartesian points

2. Angular position of the robot joints (joint trajectory points)

3. Axial symmetric points: these axial symmetric points are points in which a rotation of

the end effector, around a certain axis, does not have any effect on the process

(symmetric end effector) or this difference in rotation does not matter. For example,

when rotating the wrist joint, if a symmetric tool is precisely fixed in the center of the

wrist, the rotation of this joint does not matter.

Most trajectory points are 6D points, with three translation and rotation components. It is

possible to give a certain degree of uncertainty to the spatial coordinates. For example a

certain tolerance on the X-, Y- and Z-coordinates or a tolerance on the different rotations of

the end effector. It is also necessary that these points are linked to a given timing. The

software needs this to get an idea of the speeds with which the path, consisting of different

trajectory points in 3D space, should be executed. The functioning of this package corresponds

well to the approach of various applications of industrial robots, such as spray painting,

welding and milling. In these applications there is always a predefined desired path which the

robot has to follow. For example, the welding path that has to be followed. Normally the

robot has enough, or even too many, degrees of freedom available to follow this path. Often,

the path to be followed is not fully defining the poses of the robot, because the robot has some

additional degrees of freedom available. With these additional degrees of freedom, different

positions may be adopted that still meet the constraints of the path that has to be followed.

To create a good weld, it is essential to execute this path at a correct speed. As a result, the

points that make up the path are bound in time and thus also useful for the

Descartes-package. At first glance, the necessary trajectory information, which the software

needs to perform proper trajectory planning, seems to be well in line with the available

information about the welding paths used in this project.

In the example on the Wiki page about the Descartes package, trajectory items are generated

in the following way in the code [2]:

for (unsigned int i = 0; i < 10; ++i)

{

Eigen::Affine3d pose;

pose = Eigen::Translation3d(0.0, 0.0, 1.0 + 0.05 * i);

descartes_core::TrajectoryPtPtr pt = makeTolerancedCartesianPoint(pose);

points.push_back(pt);

}

If these points depend on a predefined load path, a solution must be found to make these

points available in the code. For experimental purposes, the trajectory points could also

simply be defined by us. This means that there is no automatic generation of the trajectory

points from a CAD file.

Robot model

23

The robot model contains information about the geometry and kinematics of the robot.

Usually, an industrial robot arm consists of a number of joints, connected through rigid parts

(links). The model determines where and how these parts are connected. For example, how

these joints can move (range of rotation), the sizes of the links, etc. The robot model is used

for:

1. Calculating Inverse Kinematics

2. Calculating Forward Kinematics

3. Collision detection

4. Determine the limits of the robot

As stated above, the robot model is used to determine the forward kinematics. The position of

the end effector is determined by means of the known positions of the robot joints. Also for

the use of inverse kinematics the robot model is needed to determine the positions of the robot

joints from a known position and orientation of the end effector.

When the Descartes planner is executed, it searches the ROS parameter server for the previous

robot model loaded within MoveIt! using the MoveIt! set-up assistant [2]. Using this set-up

assistant, it is possible to load an URDF-file, which describes the robot. Since we currently

have an example of such an URDF, this is an advantage.

Route planner

The path planner is the highest component within the Descartes package. It tries to find the

optimal robot movement, using the given trajectory information, and the given robot model.

The Descartes-package optimizes the generated trajectory to the so-called joint movements of

the robot. This means that for a given path, it will try to move the robot as little as possible.

Currently there are two different path planners available in Descartes. The so-called ”Dense

Planner” and the ”Sparse Planner”.

The Dense Planner tries to find a path optimized for the joint movements through the points

of a given route. This happens in three steps:

1. For all points of the trajectory, all possible robot positions are calculated using the

inverse kinematics.

2. On the generated robot positions, a couple of calculations are performed for each pair of

trajectory points. For every possible robot position of the first trajectory point,

calculated in the previous step, the motion cost is calculated that is required when

moving to any possible robot position of the next point.

3. With this information a graph can be generated, with points representing the kinematic

solutions from the first step. Lines between these points, coupled to a certain cost,

represent the possible movements between the different robot positions.

4. Finally, using the Dijkstra’s algorithm, the trajectory with the lowest cost is determined.

24

The selected trajectory is now the generated trajectory, in the form of discrete joint positions

for every predefined trajectory point.

The Sparse Planner works on the same principle as the Dense Planner, but tries to reduce the

number of calculations by sampling a given path. It will calculate the possible robot positions

for a portion of the points from the range,using the inverse kinematics. Then, an attempt is

made to find a solution to the intermediate points using a linear interpolation within the joint

space, and the forward kinematics. For example, if we want to generate a trajectory through

points A, B and C. The Sparse Planner will then calculate the possible kinematics solutions for

points A and C. It then attempts to reach the intermediate point B by changing the robot

pose from A to C. This is controlled by the forward kinematics that requires fewer calculations

than the inverse kinematics.

Limitations

None of the Descartes planners checks the occurrence of singularities, or points unreachable by

the robot. In these cases, path generation might not be possible [3]. The only factor pushing

the robot away from possible singularities, is the cost that is connected to large movements.

Order of constraints

For the application of robot welding it may be interesting to impose constraints to position

and orientation of the end effector that are adjusted by the planner in the event of a collision.

In this way, when detecting a collision along the trajectory, the position or orientation can be

adjusted so that the effect on the quality of the weld is minimized. With the help of a properly

defined priority of adjustments to the ideal trajectory, depending on which one has a greater

effect on weld quality, the adjustments are only implemented if there is no other solution with

better welding quality.

At this time there is no priority of parameters implemented within Descartes. However,

Descartes is certainly able to handle tolerances on the 6D-Cartesian points, which are used to

partially define the trajectory. With this package, it is thus possible to define a certain

tolerance in advance, on certain welding parameters. This means that parameters that have a

major effect on the quality of the weld will therefore be given a different tolerance priority

than welding parameters with a lesser effect on weld quality.

2.2.2 CHOMP

CHOMP (Covariant Hamiltonian Optimization for Motion Planning) [5], is a method to

optimize robot trajectories. This method differentiates itself from previous optimization

techniques by allowing collisions in the initial trajectory, which it then optimizes. This allows

CHOMP to start off with a very simple representation of a path, out of which it is often able

to generate a collision-free and optimized trajectory, which can be executed directly on the

robot. An example of such a ”simple” starting path can be a movement from point A to B, in

a straight line, that might be in collision with the environment.

By directly optimizing the path, CHOMP does not require a real path-planner to generate the

trajectories. Instead, CHOMP optimizes the starting trajectory in such a way, that it actually

25

generates the final trajectory on its own.

Another advantage of CHOMP is that it is not necessary to transform obstacles into

configuration space, to be able to execute the collision detection. It is often hard to construct

these representations in the configuration space, when there are many degrees of freedom.

To execute its optimization, CHOMP uses a technique called covariant gradient descent. It

uses a cost function consisting of two different terms. The first term calculates a cost based on

the vicinity of obstacles to the different links of the robot, or actual collisions between the

robot and the environment. The second term generates a cost in function of the joint

movements, more precisely the smoothness of the path, and sudden acceleration of the links.

Even though part of the generated cost is based on joint acceleration, there is no constraint on

the path execution time. CHOMP then calculates the gradient of this cost function. Using this

gradient, it will modify the original trajectory by a small step, causing it to have a lower cost

calculated by the same cost function. Repeatedly optimizing the new trajectory generated by

the previous step causes it to converge to a certain (possibly local) minimum cost. CHOMP

guarantees that for each optimization step, the optimized trajectory remains smooth.

Explaining the way that CHOMP takes into account obstacles is also relevant because it

explains why CHOMP is able to generate a collision-free trajectory from an input trajectory

that already contains collisions. If most obstacles are static objects, it can be advantageous to

calculate a distance field in advance. This means every point in space is sampled, and the

distance to the nearest collision object is calculated. The distance is negative inside, positive

outside, and zero on the edge of obstacles. Because the distance field can be calculated inside

of objects, CHOMP is able to calculate a valid gradient for every point within the defined

space. A trajectory can then be optimized, even if the input trajectory intersects obstacles, or

if the robot is in collision.

In CHOMP, the robot is represented by a skeleton which is constructed using a sequence of

intersecting spheres, cylinders, and other shapes created by dragging spheres through space.

This causes the robot to be approximated by a union of spheres. By using this simplified

representation, in combination with the distance field, the collision detection does not require a

lot of computations. Every center point of a sphere from the robot skeleton can be instantly

compared to the value of the distance field in that location. If this distance is greater than the

radius of the sphere, the sphere is not in collision.

A disadvantage of this software is the impossibility to add constraints to a path in between

defined points. If this software were to be used to generate trajectories for a welding robot,

this would mean that the orientation of the welding torch would not be able to be defined

during the movement. This software is more suitable for pick&place trajectories, or other

trajectories where the followed path itself is no concern, as long as it is free of collisions.

Because of this, the software is not very suitable for welding applications.

Above that, as of now there is no CHOMP plugin available for MoveIt! in the indigo version of

ROS. This means that the visualization of the trajectory generation becomes more complex.

26

2.2.3 TrajOpt

TrajOpt [14] is, like CHOMP, a software package to generate trajectories for robots, which is

based on optimizing an already existing path. Just like CHOMP, it is able to find collision-free

trajectories starting from simple, straight-line trajectories between waypoints. The input

trajectories are allowed to be in collision, or intersect the environment. Although the approach

is very similar to that of CHOMP, it differs from CHOMP in two ways. First, a different

method is used to numerically optimize the trajectory. In CHOMP this happens using a

cost-gradient. In TrajOpt, it is formulated as a so-called sequential convex optimization.

Secondly, the method used to detect collisions, and translating these collisions into a cost is

implemented differently.

Sequential Convex Optimization

Path planning problems for robots can be formulated as a non-convex optimization problem.

A function f(x) is tried to be minimized, taking different constraints into account, like limited

joint angles, and joint speeds of the robot. These constraints can be formulated as inequalities

gi(x) ≤ 0. Further, different equalities need to be taken into account, like a certain optimal en

effector pose. These are formulated as hi(x) = 0. As optimization function f(x), TrajOpt uses

the squared sum of the joint movements: f(x1:T) =
∑T−1

t=1 ||xt+1 − xt||2

This means the path is optimized to minimize total robot movement.

When solving a non-convex optimization problem, there is the possibility of local minima

existing in the optimization function f(x). The optimization algorithm will bring the robot to

these local minima, and remain stuck in it. If this is not taken into account, the robot will

execute a trajectory which could possibly be optimized further. To solve this, TrajOpt uses

sequential convex optimization. Around the main non-convex problem, a convex sub-problem

is built. This means that the optimization function contains a minimum, and that this

minimum is the global minimum within the sub-problem. With the help of this sub-problem, a

step ∆x is generated. TrajOpt then guarantees that this step ∆x within the sub-problem, is

also a correct step in the non convex main problem. To be able to construct this sub-problem,

the optimization function f(x) and the constraints gi(x) ≤ 0 and hi(x) = 0 are converted to a

convex approximation.

To be able to use this algorithm well however, two requirements have to be met. First, the

step ∆x has to remain small enough. This means that the found solution is still within the

boundaries where the convex approximation of the different functions is valid. To achieve this,

TrajOpt uses a so-called trust region, a cube-shaped region around the iteration xt.

Secondly, a way has to be chosen to convert unfulfilled constraints into a cost, which in the end

is supposed to reduce the amount of constraint violations to zero. The costs for the

inequalities are defined by |gi(x)|+, where |x|+ = max(x, 0). The costs for the equalities are

defined by |hi(x)|. These costs are added together and multiplied by a cost coefficient µ. Every

iteration, this cost coefficient is multiplied by a factor 10, which will cause the costs to rise

rapidly with a growing size of iterations. This makes sure that for a possible solution that is

very favorable in minimizing f(x), but which does not adhere to the different constraints, the

constraints will create a cost that is many times larger than the favorable effect of the

optimized f(x). In this way, a solution that follows the constraints is thus preferred.

When using TrajOpt, the simulation of the robot is executed using a software package called

27

OpenRave [15]. OpenRave uses different robot models (COLLADA file format, or OpenRave

XML) than MoveIt!. ROS does however have a package called collada urdf, which allows

conversion of a URDF robot model to a COLLADA file format [16]. If TrajOpt is used, the

robotmodel will not have to be created from scratch, but it might be easily converted using

this package.

Constraint priorities

It is possible to edit the used cost functions within TrajOpt [17]. Also, multiple costs can be

used simultaneously. For example, it is possible to add a cost in function of the joint speeds

together with a cost in function of robot collisions with the environment. It’s also possible to

create constraints for the end effector. Using these constraints, it is possible to guarantee that

when placing a weld, the welding torch will assume correct poses throughout the complete

trajectory. Because changing the cost function in TrajOpt is relatively simple, it seems to be

possible to prioritize certain welding angles over others, by combining different costs to them.

It might even be possible to take into account other such welding parameters, like end effector

speed, or the distance between the welding torch and the workpiece. The costs of these

different welding parameters need to be chosen in such a way that their effect on the weld

quality is correctly reflected in the total cost of the trajectory. For example, when changing a

crucial welding parameter, the change in cost is supposed to be greater. When a less

important welding factor is changed, the cost is only supposed to change slightly.

2.2.4 Comparison

In table 1 we use a scoring approach to make a choice between the different software packages

discussed in this literature study. In the left column, the different criteria are specified, based

on which the packages receive a score. In the three following columns, the scores are noted for

every package. A ”+” means that the package satisfies the criterion, and thus offers an

advantage. A ”-” shows a disadvantage. Because not all the criteria are equally important

when it comes to robot welding, we use an extra weight between 1 and 5, displayed in the last

column. This describes the relevance of the criterion. To calculate the final score, the relevance

is added or subtracted for every criterion, depending if the score for that criterion is a ”+” or a

”-”.

28

Criterion Descartes CHOMP TrajOpt Relevance

Starting trajectory doesn’t

have to be collision-free
- + + 2

Different types of input coordinates,

including combination
+ - - 4

Fast calculations - + + 1

Ability to allow tolerances

on input coordinates
+ - - 5

Ability to add timing constraints

to input coordinates
+ - - 5

Available documentation + - + 3

Can start from a simple trajectory - + + 2

Ability to use meshes

to define collision objects
- - + 2

MoveIt! plugin + - - 4

Ability to change the cost function

and add constraints
+ - + 4

Trajectory needs to be

largely known in advance
- + + 1

URDF robotmodel + - - 4

Total 21 -25 -7

Table 1: Summary table

The Descartes software package has a much higher score than the other two, this seems to be a

good choice for this application.

2.3 Chapter summary

In this literature study, we started off with a description of the utilized software. This entails a

description of the used ROS-packages, and a general description of trajectory generation

software. Secondly, three software-packages for the creation of collision-free robot trajectories

were reviewed, based on their potential for robot welding. The Descartes-software package was

chosen to be the most promising software, and was used in the rest of this master thesis.

29

30

3 Set-up and installing the Descartes-software package

This chapter gives an overview of the steps necessary to set up the Descartes software package.

First of all a workspace is created, containing all the necessary files. Then the

Descartes-software package is installed. Finally, the folder containing the robot model files is

created.

In this chapter some of the used code and command-lines will be shown. For clarity, the

following convention will be used.

Code:

Include <ros/ros.h>

Command-line input:

$Sudo apt-get install ros-indigo-perception

3.1 Workspace

The workspace is the place on the hard drive that will contain all files related to this project.

It will contain the Descartes-software package, the robot model, the test cases, etc. The

creation of a workspace is an easy process, but knowing how it is done explains some other

used commands [27].

The first command is to setup the ROS-environment:

$source /opt/ros/indigo/setup.bash

Now to create the catkin workspace:

$mkdir -p /catkin ws/src

$cd /catkin ws /src

This will create an empty workspace. This workspace can now be build using:

$cd /catkin ws/

$catkin make

31

Finally, the workspace needs to be sourced. This allows ROS to recognize packages in your

workspace.

$source devel/setup.bash

The above procedure is the general procedure. The commands used to create the specific

workspace used in this master thesis follow here. The name of the workspace used is

’lasrobot ws’.

$mkdir masterproef ws

$cd masterproef ws/

$catkin init workspace

$cd /catkin ws/

$catkin make

After executing these commands, a folder with the following layout should be created (figure:

7).

Figure 7: Rendering of the created workspace.

3.2 Installing the Descartes-software package

To install the Descartes-software package, the necessary files are first downloaded from:

https://github.com/ros-industrial-consortium/descartes.git

Extracting the files into the src-folder of the created workspace will provide all the needed

packages, libraries and utilities necessary to run Descartes. A basic example executable can be

downloaded from:

https://github.com/ros-industrial-consortium/descartes tutorials.git

In the end the src-folder of the workspace should look like figure 8.

32

Figure 8: Rendering of the workspace with the Descartes-software package.

Afterwards the workspace should be build using the command:

$catkin make

By building the workspace there the folders ’build’ and ’devel’ should automatically be created

in the workspace as illustrated in figure 9.

Figure 9: The workspace after building.

The last thing we did was creating a bash-file which makes it easier to source the setup.bash

file in the devel folder. This file contains following code:

#!/bin/bash

source ~/lasrobot_ws/devel/setup.bash

33

3.3 Robot modelling files

The robot model with all necessary utilities will be created inside a folder named

’kuka description’ which is situated in the src-folder of the workspace (figure: 10).

Figure 10: The folder which will contain the robot model (’kuka description’).

This folder contains a folder for the launch-file, the meshes used for the robot model and the

URDF-file.

3.4 Chapter summary

In this chapter, the setup of the environment, and installing the Descartes package has been

described. It was shown how the necessary executable has to be downloaded, which will run a

basic trajectory planning, using a preexisting robot model. Finally, the location of the robot

model files was shown.

34

4 Robot modelling

In this chapter a step-by-step procedure to create the robot model will be provided. First of all

an overview and explanation of the URDF will be given. Then we look at how the launch-file,

needed to launch the URDF-file in RViz, is made. After that, the robot model will be

visualized in RViz to get a 3D representation of the model. The robot model is then made

ready to use with the Descartes-software package by running the MoveIt! setup assistant.

Finally, the robot model is integrated in Descartes.

4.1 URDF

In the URDF-file the visual properties of the links and the physical properties of the joints of

the robot need to be defined. Further in this section, an example for defining a link and a joint

of the robot is given. The complete URDF can be found in appendix A.

The URDF model is based on the Kuka KR5 ARC robot, available at ACRO.

4.1.1 Links

The description of a link can be split into the following parts [13]:

1. An inertial aspect: this part determines the inertial aspects of the link. This aspect is

not necessary to to create a valid robot model an has thus not being incorporated

because this information has not being found.

2. A visual aspect: the visual aspect will determine how the link will be depicted. This

aspect is also optional but is necessary to gain a visual robot model.

3. A collision aspect: the collisional aspect will determine the dimensions of the link that

will be used for collision detection.

In the visual and collision aspect the origin and geometry of the link needs to be defined. To

define the geometry, a mesh is used that needs to be scaled to the required dimensions. The

following code gives an example of the description of a link. Optionally, the color of the mesh

can be defined.

Figure 11: Principle of describing a link in the URDF-file [13].

35

<link name="link1">

<visual>

<origin xyz="-0.0014 -0.003 0.018" rpy="0 0 3.141529" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link1c.stl"

scale=".004 .004 .004"/>

</geometry>

<material name ="orange"/>

</visual>

<collision>

<origin xyz="-0.0014 -0.003 0.018" rpy="0 0 3.141529" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link1c.stl"

scale=".004 .004 .004"/>

</geometry>

</collision>

</link>

4.1.2 Joints

The first thing to do to define a joint is to choose a joint type. The following types can be

selected: (also available in [28].)

• revolute: a hinge joint that rotates along the axis and has a limited range specified by

the upper and lower limits.

• continuous: a continuous hinge joint that rotates around the axis and has no upper and

lower limits

• prismatic: a sliding joint that slides along the axis, and has a limited range specified by

the upper and lower limits.

• fixed - This is not really a joint because it cannot move. All degrees of freedom are

locked. This type of joint does not require the axis, calibration, dynamics, limits or

safety controller.

• floating: This joint allows motion for all 6 degrees of freedom.

• planar: This joint allows motion in a plane perpendicular to the axis.

In our robot model only revolute-joints will be used.

After declaring the joint type following elements need to be defined. This is illustrated in

figure 12.

• parent link:The name of the link that is the parent of this link in the robot tree structure.

• child link: The name of the link that is the child link.

• origin xyz: This is the transform from the parent link to the child link. The joint is

located at the origin of the child link, as shown in the figure above. Represents the x,y,z

offset.

• origin rpy: Represents the rotation around fixed axis: first roll around x, then pitch

around y and finally yaw around z. All angles are specified in radians.

36

• axis xyz: The joint axis specified in the joint frame. This is the axis of rotation for

revolute joints, the axis of translation for prismatic joints, and the surface normal for

planar joints. The axis is specified in the joint frame of reference. Fixed and floating

joints do not use the axis field. Represents the x,y,z components of a vector. The vector

should be normalized.

• limit lower:An attribute specifying the lower joint limit (radians for revolute joints,

meters for prismatic joints). Omit if joint is continuous.

• limit upper: An attribute specifying the upper joint limit (radians for revolute joints,

meters for prismatic joints). Omit if joint is continuous.

• limit effort: An attribute for enforcing the maximum joint effort.

• limit velocity: An attribute for enforcing the maximum joint velocity.

Figure 12: Principle of describing an joint in the URDF-file.[13].

<joint name="joint_1" type="revolute">

<parent link="base_link"/>

<child link="link1"/>

<origin xyz="0 0 0.225" rpy="0 0 0" />

<axis xyz="0 0 -1" />

<limit lower="-2.70526034" upper="2.70526034" effort="0" velocity="0" />

<material name ="orange"/>

</joint>

37

4.1.3 Meshes

The meshes of the robot links were provided by ACRO and have a basic STL file extension. In

figure 13 all the meshes are shown. Unfortunately, these meshes are not fully complete.

Creating an robot model with these meshes results in open spaces between the links of the

robot. To solve this problem the base link, and link 1 have been altered. This is visible in

figure 14 and figure 15. For this reason, the meshes called ”baseb” and ”link1b” are included

in the URDF.

Figure 13: All original meshes of the robot model.

Figure 14: The adjustment of the mesh of the robot base.

Figure 15: The adjustment of the mesh of the first link of the robot model.

38

4.1.4 Checking the URDF

After creating the URDF, it can be checked to test whether it is valid or not. This can be done

using the following command:

$check urdf robot.urdf

Now that the URDF is parsed, it can be visualised in a graph using the ”urdf to graph”

command. The result is written to a pdf file. This pdf can be found in appendix B.

$urdf to graph robot.urdf

$evince robot.pdf

4.2 URDF-launchfile

By running the launch file, multiple nodes can be started at once. The following launch file is

used to open the urdf-model in RViz, and activate the joint state publisher and the

robot state publisher. By activating these nodes, and enabling the GUI of the

joint state publisher, the robot’s joint state defined in the GUI is visualized in RViz.

<?xml version="1.0"?>

<launch>

<arg name="model" />

<arg name="gui" default="true" />

<param name="robot_description" textfile="$(find kuka_description)/urdf/robot.urdf" />

<param name="use_gui" value="$(arg gui)" />

<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />

<node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" />

<node name="rviz" pkg="rviz" type="rviz" required="true" />

</launch>

4.3 Visualisation in RViz

Using the following command, the robot model can be visualised in RViz:

$roslaunch kuka description display.launch

39

Figure 16: The created robot model visualised in RViz.

4.4 MoveIt! set-up assistant

The MoveIt! setup Assistant is a graphical user interface to configure any robot to be used in

MoveIt!. This tool generates SRDF files, configuarion files, launch files and scripts, based on

the robot URDF model. These files are required to configure the move group node integrated

in MoveIt!. The SRDF file contains details about the arm joints, end effector, virtual joints,

and also the collision link pairs which are configured during the MoveIt! configuration process.

The configuration file contains details about the kinematic solvers, joint limits and controllers.

These are also configured and saved during the configuration process. Using the generated

package of the robot, motion planning in RVIz can be done without the presence of a real

robot or other simulation interface[13]. The procedure consists of the following steps:

Step 1: launching the setup assistant tool and loading the URDF-file

This command will start the MoveIt! Setup Assistant tool:

$roslaunch moveit setup assistant setup assistant.launch

When executed, a GUI as illustrated in figure 17 is launched. After loading the URDF file, the

file will automatically be parsed and a 3D representation will be drawn on the right side, as

shown in figure 18.

40

Figure 17: Step1a: Start window of the MoveIt! Setup Assistant.

Figure 18: Step1b: Opening and parsing the URDF-model.

Step 2: generating the self-collision matrix

In this step, MoveIt! searches for a pair of links on the robot which can be safely removed from

the collision checking, if, for example, it is impossible that they ever touch. These can reduce

the collision checking time. This tool analyzes each link pair and categorizes the links as

”always in collision”, ”never in collision”, ”default in collision”, ”adjacent links”, ”disabled”,

41

and ”sometimes in collision”. It then disables collision checking for any pair of links that make

any kind of collision. The sampling density is the number of random positions to check for

self-collision. The default value is 10,000. We can see the disabled pairs of links by pressing

the Regenerate Default Collision Matrix button, as shown in figure 19.

Figure 19: step2: Self-Collison Checking

Step 3: adding virtual joints

Virtual joints can be used to move the complete robot around in the world. It is not necessary

for a static robot which doesn’t move.

Step 4: defining planning groups

A planning group is basically a group of joints and links in a robotic arm, which is planned in

order to achieve a goal position of a link, or the end effector. In this step, the planning group

”robotarm” is created, which consists of all the joints and links of the robot. (Shown in figure

20.) Another thing that has to be done in this step is selecting a Kinematic Solver. In this

case the ”kdl kinematics plugin/KDLKinematicsPlugin” was chosen, as shown in figure 21.

42

Figure 20: step4a: Defining a planning group

Figure 21: step4b: Adding the planning group

43

Step 5: adding the robot poses

In this step, certain fixed poses of the robot can be defined. For example, a home position of

the robot. (Shown in figure 22.)

Figure 22: step5: Adding robot poses

Step 6: setup the robot end effector

In this step, we name the robot’s end effector, and assign the end effector group, the parent

link, and the parent group. This step is not necessary.

Step 7: adding passive joints

In this step, we can specify the passive joints in the robot. Passive joints mean that the joints

do not have any actuators. The used robot does not contain any passive joints so this step is

skipped.

Step 8: generating configuration files

In this step, the tool generates a package, which contains the files that MoveIt! needs.The

name of the package has to be defined. In this case, the package is called

”robot moveit config” and is placed in the src folder of the workspace.

After completing the setup assistant, the robot file can be launched in RViz using following

44

command. Figure 23 shows the result.

$roslaunch robot moveit config descartes pathplanning.launch

We are using a changed version of the launch file, so that the ”joint trajectory action” server,

necessary to execute the generated trajectory, is ran. It contains the following additions:

<!- joint_trajectory_action: provides actionlib interface for high-level robot control -->

<node pkg="industrial_robot_client" type="joint_trajectory_action" name="joint_trajectory_action

"/>

Figure 23: Resulting robot model displayed in RViz

45

4.5 Integrating the robot model in Descartes

To make sure that Descartes is able to use the new robot model, certain names in the

executable (robot.cpp) have to be changed. The lines that need to be checked are lines 305-316

and are displayed below.

// Name of description on parameter server. Typically just "robot_description".//

const std::string robot_description = "robot_description";

// name of the kinematic group you defined when running MoveitSetupAssistant.//

const std::string group_name = "robotarm";

// Name of frame in which you are expressing poses. Typically "world_frame" or "base_link".//

const std::string world_frame = "base_link";

// tool center point frame (name of link associated with tool).//

const std::string tcp_frame = "endpoint";

4.6 Chapter summary

In this chapter, an overview is given of the process to create a new URDF-model. First, the

structure and content of a URDF was described. After that, the necessary launch file was

shown, used to visualise the URDF in RViz. Afterwards, a step-by-step walkthrough of the

MoveIt! Setup Assistant was provided, in order to configure the robot to be used by MoveIt!.

Finally, the necessary adjustments in the Descartes-software were explained, which required to

use the robot model for the simulations.

46

5 The Descartes Software Package

In this chapter an overview of the Descartes software package is given. First, the different

types of trajectory points that the software uses, are discussed. Then we delve deeper into the

path generation itself. More specifically: how are the different trajectory points used to

construct a searchable graph? We discuss how the different trajectories are visualized using

RViz. And finally we go into how the generated data were stored in files, which could then be

used to visualize the data in graphs. In the coming sections, the ”Descartes software package”

will be referred to as ”Descartes”.

5.1 Trajectory points

To generate a trajectory, Descartes expects multiple so-called trajectory points as input.

Trajectory points are individual points along a path, that is to be followed by the end-effector

of the robot. In effect, the Descartes package samples the desired path in discrete steps.

Many industrial processes require an exact positioning of a tool in function of a workpiece, or

simply a defined position in 3D space itself. (This would then be a 6 dimensional pose,

consisting of 3 translation and 3 rotation components.) Robot welding is certainly one of the

processes in which the positions of the tool (in this case a welding torch) can be derived

relatively easily from a predetermined welding path. If the tool is mounted on a robot arm

however, often a fully defined positioning of the tool does not completely define the position of

the robotic arm. There might be multiple differing poses for the robot arm that would put the

tool in a certain position. For this reason, these kind of trajectory points are called

partially-constrained trajectory points, since they only partially constrain the positioning of

the robot.

Figure 24: Different joint solutions for a single tool pose.

The end effector of the robot has a local frame, called the tool frame, as shown in figure 26. All

47

the so-called frames can be visualized as 3D coordinate frames. The x-axis is colored red, the

y-axis is colored green and the z-axis is colored blue. The location of the tool frame can be

calculated using the forward kinematics of the robot. This means that if we know all the joint

positions of the robot, we can transform the base frame using the transform of every individual

robot link. The end result is the tool frame. This is illustrated in figure 27.

When defining a trajectory point in Descartes, we actually just define a new frame in space.

Let’s simply call this frame the goal frame. Descartes then tries to place the tool frame into

the goal frame by moving the robot into a certain pose, as shown in figure 25. (Multiple or no

poses may be possible, depending on the number of IK-solutions.)

Figure 25: Left: robot with base frame and tool frame. Right: tool frame moved into the

trajectory point frame.

Figure 26: The welding torch with its frame. (Tool frame.)

48

Joint 1
θJoint1

Joint 2
θJoint2

Joint 3
θJoint3

Joint 4
θJoint4

Joint 5
θJoint5

Joint 6
θJoint6

Tool frame

Base frame

Figure 27: Forward kinematics.

As of now, Descartes allows the user to define three different kinds of trajectory points.

First, and most importantly, of all, partially constrained trajectory points can be defined using

the so called Cartesian trajectory point class. These Cartesian trajectory points represent an

arbitrary robot pose, where the tool tip is in a defined six dimensional point. This point is

defined by a transformation matrix, which contains the necessary rotations and translations to

transform an arbitrary base frame into the goal frame.

Descartes also allows users to define so-called joint trajectory points, in which every single joint

of the robot is defined. Unlike the Cartesian trajectory points, this is a fully constrained robot

pose. The tool frame is then fully defined using the robot’s forward kinematics.

The last type of trajectory points are called Axial-symmetric points. It is actually a sub class

of the Cartesian trajectory points class. The only difference lies in the fact that using this type

of trajectory point, a rotation tolerance is defined around an arbitrary axis of the transform

frame. This is especially handy for processes where the tool has a symmetric shape, or the

rotation of the tool around one axis does not have an influence on the process.

49

Figure 28: Three possible poses for the welding torch when using an axial-symmetric point.

Descartes also allows to define different tolerances using these types of trajectory points. In the

case of the Cartesian trajectory points, tolerances can be defined around every coordinate of

the points. Since the points are defined by a 6 dimensional transform frame, 6 dimensions can

be toleranced: three translations, and three rotations. In the case of Joint trajectory points,

tolerances can also be defined for every joint angle. This translates into an upper and lower

limit for every joint angle. A more detailed explanation of tolerances follows in section 5.6.

The Axial symmetric points are actually a special kind of Cartesian point with a

predetermined rotational tolerance around one axis. It is impossible to define any extra

tolerances when using this type of trajectory points.

5.2 Transformation matrices and different possible transforms

Descartes allows trajectory points to be defined in multiple different local frames. For example,

one may define a workpiece, with a certain origin in space. It is then possible to define the

trajectory points in function of this workpiece frame. This can be handy, in case the workpiece

is rotated, or otherwise moved around. The trajectory points will then move along with it.

Points can also be defined local to the tool frame, and the tool’s base frame.

Although this can certainly be handy, in this thesis it was chosen to always define trajectory

points in function of the robot base frame, which in our case is also the world frame. This

50

allows for easier debugging, and helped us start off when we were not yet familiar with the

concepts of these different frames.

It also makes the code more compact and easier to understand.

5.3 Inverse Kinematics

Suppose now that we have a sequence of defined tool positions that we need to move through

to place a weld on a workpiece. Since the tool positions itself do not necessarily define the

complete positioning of the robot, the different pose solutions for the robot first need to be

generated by using a certain Inverse Kinematic solver. This can result in multiple joint

solutions for any unique trajectory point. The used IK-solvers are actually not a part of the

Descartes software package, and are thus only mentioned here. In this thesis two IK solvers

were used:

• KDL solver

• IKfast solver

The KDL solver uses a numerical approach to generate IK solutions. The IKfast solver

searches for IK solutions analytically. The IKfast solver is about 100 times faster than the

KDL solver. Furthermore, it generates a greater number of more accurate solutions.

5.4 Graph building

To generate a final trajectory that goes through all of the trajectory points, a choice needs to

be made in regard to the different Inverse Kinematic Solutions. For every trajectory point one

of its solutions needs to be chosen in order to generate a complete path. To be able to make

this choice, Descartes generates a graph.

This graph consists of the different joint solutions for every trajectory point (vertices). These

joint solutions are connected to every joint solution of the next trajectory point with an edge.

The edges have a so-called weight that can be calculated in function of the two joint solutions

they connect. This weight is a real number calculated by the cost function.

The graph is then searched by an algorithm that tries to find a path through the graph with

the lowest cost. That is, the trajectory with the smallest sum of the edge weights it traverses.

51

Trajectory points

IK-solver

Edge generation
Jo

in
t s

ol
ut

io
ns

Figure 29: Steps to construct a graph from trajectory points without tolerances.

In figure 29 the main steps of graph building are shown. However, one step is not included in

this figure, being the generation of the different toleranced trajectory points. As explained in

section 5.1, different tolerances can be defined when using certain kinds of trajectory points.

Descartes probes these tolerance intervals by stepping through them in discrete steps. The

step size used by Descartes is called the discretization step size. By stepping through a

tolerance window, Descartes generates multiple new trajectory points, which now are

completely defined Cartesian trajectory points. To distinguish them from the original

trajectory points, used to define the trajectory before path planning started, these points are

called toleranced trajectory points.

Figure 30 shows the toleranced frames that are generated from a trajectory point with a

symmetric tolerance of about 40 degrees around its x-axis, and a discretization step size of 10

degrees.

Figure 30: Different toleranced frames.

52

These toleranced frames (or toleranced trajectory points) all belong to a single trajectory point

defined by the user. The IK-solver will then try to find IK-solutions for every toleranced frame

that has been generated, just like a regular trajectory point. When the graph is built, each

toleranced frame is connected with an edge to every toleranced frame of the following

trajectory point. This is illustrated in figure 31.

Trajectory points

Tolerance
discretization

IK-solver

To
le

ra
n
ce

d
fr

am
es

Joint solutions

Edge generation (only one point illustrated)

Figure 31: Steps to construct a graph from trajectory points, including tolerances.

So, tolerances on different rotations and translations can be constructed by defining the

necessary tolerance intervals. These tolerance intervals contain the upper and lower bounds of

the corresponding rotation or translation. What is currently not possible however, is defining

unique discretization step sizes for different rotations. This means that a single, global,

discretization step size is used for all rotations, or all translations in a single Cartesian

trajectory point. In our application, this leads to the problem that some some large tolerances

which should not be sampled very accurately, are still sampled using the same step size.

53

5.5 Trajectory visualization in RViz

As mentioned before, the cartesian trajectory points, that Descartes uses to execute its path

planning, are internally represented by transformation matrices. Because it is quite hard to

visualize all of the trajectory points mentally, based on transformation matrices, a

visualization step was required. So one of the first steps in this thesis was writing a small

library used to visualize the different trajectory points that are fed into Descartes.

Thanks to the ROS framework, and the flexibility of RViz, this was not a hard feat.

The ROS framework allows us to easily send packets of information, called messages, between

different running programs. In this case, the program running the Descartes software (we will

call this the Descartes node) had to send information to the RViz node, so that it could

visualize the necessary points. RViz already had a message type defined, called MarkerArray,

which contains data about the markers it has to visualize.

Figure 32: Visualized frames in RViz, every frame consists of three different markers.

The only real ”problem” was to extract the necessary information, that was required to build

up the MarkerArray message, from the transformation matrices used to define the Cartesian

trajectory points. By using the Eigen library we could transform the transformation matrices

into seperate translations and a quaternion defining the rotation, which are required to define

the positioning of a marker in RViz.

Now that we could generate visual markers in RViz, it first was decided to only visualize a

transform of the base frame’s Z-axis. This means, that a single Z-axis was visualized, in the

desired position of the tool frame. The reason for this was that we would always use trajectory

points with a rotational tolerance around its Z-axis. In the case of robot welding, the rotation

of the welding torch has no effect on weld quality, and to allow a more flexible path generation

this tolerance is quite essential.

It soon became clear however, that it was much better to visualize the full transform of the

base frame. This means that all of the axes were transformed and visualized. This was a much

better representation of the transformation matrices used by the trajectory points, because it

clearly showed all the different coordinates used to define the matrices. This also helped us to

better understand the exact way that Descartes expected us to generate trajectory points,

using XYZ-translations and XYZ Euler-rotations. Figure 32 shows a couple of frames

visualized in RViz.

54

5.6 Tolerances on local frame vs. Euler angle tolerances

It was already mentioned that Descartes allows tolerances to be defined for trajectory points.

By tolerance it is meant that a certain coordinate of a trajectory point will be tolerated

between an upper and lower limit. With the exception of joint trajectory points, the trajectory

points in Descartes need 6 coordinates to be fully defined in 3D space: x, y, z translations, and

three Euler rotations (α, β, γ) around arbitrary axes. Tolerances may be defined on all of these

coordinates.

Suppose now that we want to define a trajectory point with a value of 10 as its

x-translation-coordinate. We might define a translational tolerance on this coordinate, say a

symmetric tolerance of 10. This would allow the trajectory point to have an x-coordinate

between 5 and 15. The same applies for rotational tolerances.

When using Euler rotations, there exist many different conventions to define a complete

rotation. Although Descartes allows to use different Euler conventions, most of the time the

XY Z-Euler convention is used. This means that a complete 3D-rotation is defined by three

rotations, one around the X-axis, one around the Y-axis and finally one around the Z-axis of

the local frame, in this order. These rotations always start off with a base frame, according to

which different rotations are executed. This base frame can be the absolute center frame of the

used space (frame with 0,0,0 translations and 0,0,0 rotations) or a different pre-transformed

frame as explained in section 5.2.

Figure 33: Visualized example of intrinsic XYZ Euler rotations.

The Euler rotations used by Descartes are intrinsic. This means that the frame which defines

the different axes changes its orientation after every elemental rotation. A visualized example

is given in figure 33. The frame on the left is the base frame. The two frames in the middle are

the intermediary transforms. The frame on the right is the transformed frame.

Given a certain rotational pose in 3D space, it can be pretty hard to mentally visualize the

different intrinsic XYZ Euler rotations necessary to get to this pose from the used base frame.

Another disadvantage is that a change in, let’s say, the Euler rotation around the y-axis, does

not translate into a rotation around the y-axis of either the base frame or the transformed

frame. Instead, it is a rotation around an intermediate frame’s y-axis. When using the XYZ

Euler convention, this intermediate frame would be the base frame, rotated around its X-axis.

An advantage of intrinsic Euler angles however, is the fact the the last Euler rotation (rotation

around the z-axis in the case of the XYZ convention) is a rotation around the local frame’s

z-axis. Since most of the time, the robot’s tool frame has its z-axis pointing directly out of the

55

end effector, a tolerance on this last Euler angle can be handy in the case of a symmetric tool,

or a process where the rotation of the tool around its z-axis doesn’t matter. Since this is the

case for robot welding, using intrinsic Euler rotations is, in some sense, a logical choice.

By using these tolerances, we can make the trajectory generation more flexible. In cases where

no solutions can be found, tolerances may be used to allow certain deviations from the ideal

trajectory. However, when allowing tolerances, the possible effects of the tolerances on the

process have to be taken into account. In the case of robot welding, the welding torch needs to

point in the general direction of the weld.

The first intuitive tolerance we may want to allow is a certain deviation of the welding torch

from the optimal path by a few degrees. If the direction of this tolerance would not matter,

this would ideally result in a cone-shaped tolerance, as shown in figure 34. This would mean

that the z-axis of the robot’s end effector would be allowed to in any position within the cone.

Figure 34: Conical tolerance zone for the z-axis.

Take into account, however, that the only possible tolerances we can define in the Descartes

package, are tolerances on the different coordinates. For rotations, these would be tolerances

defined on the different Euler rotation angles. The question now arises, if we want to allow

such a cone shaped tolerance for the z-axis, how would the tolerances on the Euler angles have

to be defined?

This is not an easy problem to solve, because the intuitive tolerance we want to allow is

defined in the local (transformed) frame. This while tolerances on the different Euler angles,

are defined in the intermediary transform frames. When defining trajectory points, together

with their tolerances, the user intuitively wants the rotational tolerances to be defined in the

transformed frame. This is because the user is able to see the transformed frame (which can be

a trajectory point, and can be visualized) but is unable to see the intermediary transforms

generated by using Euler rotations.

Above that, the proposed conical tolerance zone can only be approximated using Euler angle

tolerances. Secondly, a given Euler angle solution for a 3D rotation is not necessarily unique.

Different possible Euler rotations may exist for one spacial rotation. Descartes stores the Euler

angles, given as inputs to define the trajectory points, in rotation matrices. When the

toleranced frames are calculated, Descartes uses this rotation matrix to calculate the XYZ

56

Euler angles for a certain trajectory point. This solution for the Euler angles (which is

internally used to apply the tolerances) can differ from the input which the user originally gave

to define the trajectory point.

Suppose that we were able to define rotational tolerances around the local (transformed)

frame’s axes. We could then easily define rotational tolerances around the x- and the y-axis,

leading to the tolerance zone shown in figure 35.

Figure 35: Pyramid-shaped tolerance zone for the z-axis.

This tolerance zone approximates the intuitively proposed conical tolerance zone (figure 34)

well. On top of that, it allows to differentiate between different tolerance angles. In this case,

the angles around the x- and the y-axis.

5.7 Used convention when defining trajectory points

To be able to allow correct tolerances on trajectory points, a certain convention had to be

chosen to place the frames of the trajectory points. A smart placement of the trajectory point

frames makes sure that a tolerance around one axis of the frame results in a modification of

only one welding angle.

To explain this we first give an overview of the different welding angles used in this application.

Figure 36 shows the two different welding angles, the transverse angle and the push/drag angle.

57

Transverse
angle(45°)

Tra
vel

 plan
e

Push angle
Drag angle

Figure 36: Different welding angles.

The transverse angle has a stronger effect on the weld quality than the push/drag angle. The

push/drag angles mostly have an effect on the bead shape, as shown in figure 37.
D
irection of travel Drag Push

Figure 37: Bead shapes.

When changing the transverse angle too much from the ideal value, the bead will connect less

well to one of the plates.

Since we want to allow certain transverse and push/drag angles using tolerances in Descartes,

the trajectory point frames need to be placed in a certain pre-defined way. We chose to always

aim the frame’s y-axis in the direction of travel. While aiming the z-axis straight into the

weld. This is illustrated in figure 38.

58

Direction of movement

Figure 38: T-profile example for trajectory point convention.

When using this convention, it is possible to define a tolerance around the y-axis of the

trajectory point frame, which is the same as a tolerance on the transverse welding angle. While

a tolerance around the local x-axis, has the same result as a tolerance on the push/drag angle.

5.8 Custom cost function / edge weights / cost of trajectory point

When generating its graph, Descartes generates edges, with a certain weight. This edge weight

is a real number, and reflects the movement cost to go from joint position A to joint position

B. Suppose the robot has i amount of joints, with joint angles written as θi, and the edge

weight for a jth trajectory point is calculated. We’ll write the jth joint position as xj . The ith

joint angle of the jth trajectory point is written as θi(xj). Then the edge weight wj is

calculated as follows:

wj =
i∑
1

|θi(xj)− θi(xj+1)| (1)

The standard edge weight that Descartes uses is thus a simple sum of the differences in joint

angles between different joint solutions. With a simple change of the code, Descartes allows

the possibility to create custom cost functions to generate the edge weights. However, the only

variables that can be used in these custom cost functions, is information that can be extracted

from the two joint solutions given to the edge weight function.

Thanks to the tolerances that Descartes allows, and the convention we chose to place

trajectory points, we can now make the trajectory generation more flexible. By allowing a

tolerance on the optimal path, the welding torch can deviate from this path, only restrained by

the limits of the defined tolerance.

59

Figure 39: Deviation with and without deviation cost.

This results in paths where the welding torch will deviate from the optimal position across the

whole path, simply because it is allowed to do so, and there is no method to limit deviations

where they are not necessary. This is illustrated in figure 39, the red line depicts the rotational

deviation around the y axis without an extra cost. This plot was generated from one of our

test scenarios.

For this reason, an extra cost was added to penalize deviations from the optimal path. The

first idea was to penalize toleranced frames, based on the angle between their z-axis and the

z-axis of the optimal frame. (In this case the optimal frame, is the frame defined by the

trajectory point.) The angle is illustrated in figure 40. The cost would be the size of the angle

multiplied by a cost factor.

θdeviation

Figure 40: Angle between optimal frame and toleranced frame’s z-axis.

However, with the introduction of our convention to place the trajectory points, and to

differentiate between the different welding angles, it was then decided to actually split this cost

into two separate parts. Both parts would be proportional to the deviation of one of the

welding angles. This is illustrated in figure 43.

60

From now on we will call this extra cost the welding cost or the deviation cost. Since this

deviation cost is based on the deviation of a toleranced frame in comparison to the optimal

frame, the cost is not part of any graph edge. Instead, one could say that the deviation cost

belongs to the toleranced frame it was based on. Descartes uses this toleranced frame to

calculate its IK-solutions, which are joint solutions, and thus in Descartes are saved as joint

trajectory points. These joint trajectory points now need to include the extra deviation cost

from the original toleranced frame they were generated from.

To implement this, all the different trajectory point classes used in Descartes, received an

extra deviation cost variable, to store this extra cost.

Because the graph searching method can not take into account node costs but only edge

weights, it was decided that for every generated edge, the deviation cost of the node it connects

to is added to its edge weight, this is illustrated in figure 41. The costs from the nodes are

added to their corresponding edges, illustrated by the bent arrows. If the deviation cost of the

jth trajectory point is written as Cj , then the new edge weight is calculated as follows:

wj =

i∑
1

|θi(xj)− θi(xj+1)|+ Cj+1 (2)

Figure 41: Illustrated graph, with chosen path in red.

To calculate the deviation cost, we need both the optimal frame, and a toleranced frame. (The

toleranced frame is one discretization of the allowed tolerances on the optimal frame.) Because

the function used in Descartes to calculate the edge weights only uses 2 joint trajectory points

as input, it was not possible to calculate the deviation cost within this function. Instead this

costwas calculated immediately after generating the list of toleranced frames for a certain

trajectory point. The values were then stored inside of their extra cost variable.

When the toleranced frames were converted to joint trajectory points by the IK-solver, it was

made sure that the deviation cost from the toleranced frames was copied into the joint

solutions.

The calculation of the two different welding angle deviations used both the optimal frame, and

the z-axis of the toleranced frame, as illustrated in figure 42. By projecting the toleranced

frame’s z-axis onto the x-z-plane of the optimal frame, the angle between this projection and a

unit vector placed along the z-axis of the optimal frame can be calculated using the dot

product of these two vectors. This results in the deviation of the transverse welding angle.

When projecting the toleranced frame’s z-axis onto the y-z-plane of the optimal frame, the

angle between this projection and the unit-vector along the z-axis of the optimal frame is the

deviation of the push/drag angle.

61

If ~a and ~b are vectors, and θ is the smallest angle between them, the dot product ~a ·~b can be

defined in the following manner:

~a ·~b = ||~a|| ||~b|| cos(θ) (3)

If we calculate the dot product between unit vector ~zunit along the optimal frame’s z-axis, and

the projected vector ~zproj tol the smallest angle θ between them can be calculated as follows:

θ = acos

(
~a ·~b
||~a|| ||~b||

)
(4)

These angles are then multiplied by unique cost factors and added together to obtain the

deviation cost. The unique cost factors allow us to differentiate between the different welding

angle costs. This means that we can give a higher cost to an angle that can be more crucial to

a given situation, and a lower cost to the angle that is allowed to change more.

Because the graph search tries to minimize the total trajectory cost, this results in a

prioritization of certain welding angles over others.

Figure 42: Projection of the toleranced z-axis on the x-z- and y-z-planes.

θtransverse θpush/drag

Figure 43: Angles between z-axis projections and optimal frame’s z-axis.

62

5.9 Saving generated data in .bag files

To plot graphs, and extract data from the program, it was necessary to save data to files.

Thankfully, ROS has a handy tool for that called rosbag [29]. It allows the user to save any

ROS message to a so-called BAG file. They are called bag files because of their .bag file name

extension. Rosbag has a C++ and a Python API, so in both languages bag files can easily be

written and read.

The first data we saved was simply the generated list of joint solutions (the trajectory of the

robot) generated by Descartes. This could then be used to play back the desired trajectory

without having to generate it again. We then continued to add the used collision objects to the

bag file, which could then be loaded together with the saved trajectory. (The collision objects

were part of a Moveit! planning scene which was stored completely into the bag file.) Now we

could play back generated trajectories, together with the environment they were created for.

The following other data was stored in the bag file:

• List of trajectory points defined by the user.

• The list of robot poses, chosen by Descartes, in joint trajectory point type.

• List of deviation costs for every trajectory point.

• List of the angle errors around the x axis. (Corresponds to the push/pull welding angle

error.)

• List of the angle errors around the y axis. (Corresponds to the transverse welding angle

error.)

Thanks to rosbag’s Python API, in combination with existing open-source plotting libraries for

Python, like matplotlib[30], the data can be read from the bag file and plotted in a few lines of

code. An example plot is illustrated in figure 44. An example script, used to generate such a

plot, can be found in Appendix B.

63

Figure 44: Example plot of joint angles.

5.10 Defining trajectory points

Multiple help functions were written to generate the necessary trajectory points for our test

cases. One such function was a simple function to generate multiple poses across any line in

space. This helped with defining welding paths that consisted out of straight lines. An

example of these generated trajectory points is shown in figure 45.

64

Figure 45: Trajectory points across a line in space.

A second help function we wrote was a function to define circular welding paths in space. This

happened by defining the center point of the circular welding ath, and a radius. The circular

paths could be turned in any way in space. It was also possible to define smaller circle arcs.

An example generation is shown in figure 46.

Figure 46: Trajectory points across a circle arc in space.

Finally, thanks to the local frame functions defined to help with the local tolerances, it was

also possible to generate more complex trajectories, like ellipses and spiral shapes. An example

is shown in figure 47.

65

Figure 47: Trajectory points forming a helix.

66

6 Simulations and Examples

In this chapter, several of our simulations are shown. All the variables of the test cases,

together with multiple renderings can also be found in appendix D, E, F, G and H.

In every simulation, the generation of the trajectory can be split up into three phases. In the

first phase, the IK-solver calculates all possible joint solutions. In the second phase the graph

is generated. In the final third phase, the graph is searched for the trajectory with the lowest

cost. For each of these phases, the time needed to perform the phase is tracked.

6.1 Test case 1: Tube on Plate

One of the first workpieces we tested the trajectory generation on, was a hollow cylinder on a

plate. Hence called ”Tube on plate”.

Figure 48: Tube on plate workpiece.

To weld these pieces together, a circular weld was necessary, turned downwards under 45

degrees, as illustrated in figure 49. The trajectory consisted out of 30 trajectory points. We

allowed 50◦ of tolerance around both the x and the y axis. Tolerance around the z axis was

360◦. The discretization step size was 5◦. The welding speed was set to 0.1m/s.

67

Figure 49: Workpiece with trajectory, placed on the welding table.

Using the IK-fast solver, the generation time was about 27 seconds for the trajectory

generation with the welding cost. This resulted in a pretty smooth trajectory, shown in figure

50.

Figure 50: TOP 1: Joint angles through time, with deviation cost.

This is in fact one of the smoothest trajectories of all the test cases. It is interesting to see

that joint 6 turns a full circle.

68

Figure 51: TOP 1: Robot executing trajectory.

The trajectory was then generated again, but without the extra deviation cost. This resulted

in a similar trajectory. Watching it move, the trajectory looked smooth, but looking at the

joint positions through time (figure 52), it can be seen that joint 4 makes some jumps.

69

Figure 52: TOP 1: Joint angles through time, without deviation cost.

It can also be noticed that without a deviation cost, the planner deviates from the optimal

path by a constant value throughout the whole trajectory. While this error becomes zero when

the cost is enabled. This is shown in figures 53 and 54.

Figure 53: TOP 1: X angle error throughout time.

70

Figure 54: TOP 1: Y angle error throughout time.

6.2 Test case 2: L Profile

This test case was made to illustrate the effect of the deviation cost on the trajectory

generation. The workpiece is an L-shaped metal profile, with a small rectangular plate, as

shown in figure 55. The purpose of the rectangular plate is to force the welding torch to

deviate from the optimal welding path, by forcing a collision.

Figure 55: Workpiece with trajectory, placed on the welding table.

The trajectory consists of 50 trajectory points, placed in the corner of the L profile. Two

71

tolerances are given, one around the y axis, of 50 degrees. The other one is the tolerance

around the z axis, of 360 degrees. Discretization step size is 5 degrees. The welding speed is

set to 0.1m/s. The first trajectory generation took about 130 seconds using the IKfast solver,

including the deviation cost. In figure 56 you can clearly see at about 14 seconds, that the

welding torch starts to deviate from its path to evade the rectangular plate. At about 17

seconds, the robot returns back to its original path, this is exactly what the extra deviation

cost is meant to do.

Figure 56: L profile: Joint angles through time, with deviation cost.

72

Figure 57: L profile: Welding torch evading collision.

A second trajectory generation with the same settings was done, but without the extra

deviation cost. This resulted in the joint angles shown in figure 58. It can already be seen that

the robot does not seem to evade any objects during the path. In fact, the robot constantly

deviated from the optimal trajectory, causing the welding torch to evade the rectangular plate.

This can also be seen in the error plot, figure 59. Without the cost, the torch keeps a constant

deviation from the optimal path. With the deviation cost, it only evades the restangular plate,

and then reverts back to the optimal trajectory.

73

Figure 58: L profile: Joint angles through time, without deviation cost.

Figure 59: L profile: Y angle error throughout time.

This trajectory was also generated using the slower KDL solver. It used the same settings, but

took about 8479 seconds to generate. Using the deviation cost, the welding torch evaded the

rectangular plate as expected.

74

Figure 60: L profile: Joint angles through time, with deviation cost and KDL solver.

Figure 61: L profile: Y angle error throughout time, KDL.

Another interesting graph is shown in figure 62. This graph shows the angular error around

the x axis. Since no tolerance around the x axis was defined, this error should always remain

zero. However, this plot shows an effect of the KDL solver’s numerical nature. Unlike the IK

fast solver, the joint solutions generateed by the KDL solver, for a certain trajectory point, do

75

not place the tool frame in exactly the same position as the trajectory point. Instead there are

some small rounding errors.

Figure 62: L profile: X angle error throughout time, KDL.

6.3 Test case 6: furniture piece

The final test case shown here is a work piece based on a piece of furniture made by the

company Robberechts. As shown in figure 63, the workpiece consists of a large U-shaped

profile, with two smaller profiles, perpendicular on the larger frame.

76

Figure 63: Furniture piece: workpiece with trajectory.

The goal of the weld is mounting the smaller pieces onto the larger frame. A zoom of the

trajectory points is shown in figure 64.

Figure 64: Furniture piece: trajectory points.

The trajectory consists of 20 trajectory points. Tolerance about the x and y axis were both set

to 50 degrees. Tolerance around the z axis was 360 degrees. The tolerance discretization step

size was set to 5 degrees.

Using the IKfast solver, the generation time was about 368 seconds. In figures 65 and 66, the

robot is shown executing the trajectory.

77

Figure 65: Furniture piece: robot executing trajectory.

Figure 66: Furniture piece: robot executing trajectory, zoom.

In figure 67, the generated joint angles are shown. It’s a pretty smooth trajectory, except for

around the 3 second time mark, where the robot has to switch from one weld line to another.

78

Figure 67: Furniture piece: Joint angles through time.

When looking at the angle errors, shown in figure 68 and 69, it is interesting to note that the

angle error around the y axis is almost completely the same, whether we use the extra

deviation cost or not. When looking at the angle error around the local x axis however, it can

clearly be seen that the error is substantially lower when using the extra cost function.

Figure 68: Furniture piece: X angle error throughout time.

79

Figure 69: Furniture piece: Y angle error throughout time.

80

7 Problems and Ideas

7.1 Number of edges and RAM

One of the problems we encountered during our simulations was that the trajectory generation

would crash during execution. Inspecting the problem more closely, it became clear that the

node crashed because it started to allocate huge amounts of RAM. It happened while

generating trajectories with multiple tolerances, and a small discretization step size.

As illustrated in figure 31, Descartes generates edges between every joint solution of a certain

trajectory point to each joint solution of the following trajectory point. For clarity, this

illustration is repeated here.

Trajectory points

Tolerance
discretization

IK-solver

To
le

ra
n
ce

d
fr

am
es

Joint solutions

Edge generation (only one point illustrated)

Figure 70: Steps to construct a graph from trajectory points, including tolerances.

81

To calculate the amount of graph edges that are generated, we will walk through the different

steps used to generate the graph. First we start off with the tolerance discretization. Suppose

that we have a trajectory point with only rotational tolerances. (Translational tolerances were

never used during this thesis.) First we have the allowed tolerance around the tool’s z axis.

Since the tool is allowed to rotate completely around its z axis, the total allowed deviation is

2π. Above this allowed rotational tolerance, two more rotational tolerances may be defined,

both around the x and the y axis. For clarity’s sake, let’s suppose the rotational x and y

tolerances are of the same value, written as θtol. We also have a discretization step size θdisc.

The amount of toleranced frames ntolframes generated for this single trajectory point can be

calculated as follows:

ntolframes =

(
θtol
θdisc

)2

· 2π

θdisc
(5)

For a common discretization step size of 1 degree, the second term
2π

θdisc
already results in 360

toleranced frames.

The second step is the generation of joint solutions by the IK-solver. Because the number of

inverse kinematic solutions depends strongly on the trajectory point itself, it is impossible to

predict this amount. However, through experience we have noted that the amount of IK

solutions is usually greater than 1, going up to 10 or more. To illustrate the amount of edges,

we will simply guess that every toleranced frame will have 5 IK solutions. The total number of

joint solutions njointsol then is:

njointsol = 5 · ntolframes = 5 ·
(
θtol
θdisc

)2

· 2π

θdisc
(6)

Suppose that we start with a trajectory consisting of n trajectory points. Except for the last

trajectory point, every joint solutions of any trajectory point will be connected to every joint

solution of the next trajectory point. If we suppose that every trajectory point has the same

amount of joint solutions njointsol, the total amount of generated edges nedges can be calculated

as follows:

nedges = (n− 1) · n2jointsol = (n− 1) ·
(

5 ·
(
θtol
θdisc

)2

· 2π

θdisc

)2

(7)

To get an idea of the amount of generated edges, the following variable values were used:

• Amount of trajectory points: n = 100

• Allowed tolerances on x and y axis: θtol = 30◦

• Discretization step size: θdisc = 1◦

The total number of edges nedges then equals 10 392 624 000 000 or about 10.4 · 1012.

Since the edge weight value is stored as a double, which takes 64 bits of data, the amount of

RAM necessary for storing only the edge weights, would be about 77 431 gigabytes, in this

example. The edge weight object also includes data regarding the joint solutions it belongs to.

So we can say that the amount of RAM necessary to store all of the edges will certainly exceed

77 431 gigabytes. To be able to generate trajectories on normal computers, it was thus

82

necessary to lower the total number of edges, by increasing the discretization step size, or

lowering the allowed tolerance intervals, or even removing a certain tolerance altogether.

There are a few other ideas that we had to lower the amount of edges that have to be

generated, but they all cause the trajectory generation to lose completion.

The first idea was to only allow tolerances where they are necessary. (Iterative tolerances.)

This means that if a trajectory point is encountered, where no IK-solutions can be found, the

software automatically replaces this point with a version that includes tolerances. Then the

trajectory generation is restarted. This has been tested, and can show promising results, in

lowering both the necessary generation time and the number of generated edges. The main

disadvantage is that the trajectory generation loses completeness. Using the normal

generation, all the possible toleranced frames are calculated. Using one of the toleranced

frames in the beginning may open up a totally different interesting trajectory later on. If these

tolerances are not calculated, possibilities are lost.

A second idea was to split the trajectory up into smaller sub-trajectories. This was not tested

in this thesis.

7.2 Iterative tolerances

The iterative tolerances, mentioned in the previous section, were also tested on the L profile

case, which showed very promising results. We start off the trajectory generation with

trajectory points with no tolerances on any axis. We let the trajectory generation execute, thus

proceeding with the IK-calculations, until a trajectory point is found for which no IK-solutions

can be found. The trajectory generation is then stopped. The trajectory point where no

IK-solutions can be found for, is then replaced with an identical copy, except this time with

allowed tolerances. We restart the trajectory generation, if the same point has problems, we

enlarge the allowed tolerances (until a limit is reached), and restart the generation again.

This way, tolerances are only used on the trajectory points where they are absolutely necessary.

We used this approach on the same trajectory of the L-profile case mentioned in the previous

chapter. This is shown again in figure 71.

83

Figure 71: L profile with trajectory.

We used the same 50 trajectory points as the previous case. The discretization step size was

set to 1 degree. (More accurate and smooth generations.) As IK solver we used IKfast.

The trajectory was generated in 0.37 seconds. (!) This is very fast, compared to the generation

time of 8479 seconds when using KDL and the same scenario. When using IKfast on the same

scenario without using iterative tolerances, the generation time was 129 seconds. So this is a

thousand fold improvement, in this case.

Figures 72 and 57 show the robot executing the trajectory.

84

Figure 72: Robot executing trajectory.

Figure 73: Robot executing trajectory.

In figure 74, the joint angles are shown, which are as smooth (if not smoother) as the original

scenario.

85

Figure 74: L profile, iterative tolerances, joint angles.

Figure 75 shows another interesting behavior caused by iterative tolerances. You can see that

without using an extra deviation cost, the welding torch still return to its optimal trajectory.

This is because in the surrounding points, no tolerances are allowed, so the welding torch will

automatically return to the optimal trajectory, without requiring any extra functionality like

deviation costs.

Figure 75: L profile, Y angle errors, iterative tolerances.

86

7.3 Glitchy behavior / jumping through obstacles

When generating a trajectory for our robot, with environmental collision objects, it was

sometimes noticed that the robot ”jumped through” obstacles. In fact, we made up some

scenarios that force the robot to pass through an obstacle, and noticed that it did just that.

The actual thing happening with the collision detection in Descartes (Descartes uses the

collision detection from MoveIt!, while MoveIt! uses a package called FCL[32].) is that every

generated joint solution is tested whether it is in collision or not. This can be a self-collision or

a collision with the environment. If this joint solution is in collision, it is simply thrown away,

and it is not used in the graph, and thus, also not searched in the graph.

Because a trajectory consists of discrete trajectory points, it is guaranteed that the robot will

never collide in any of these trajectory points. The problem however, lies in what happens in

between these trajectory points. As an example, take a look at figure 76. The robot has to

perform a circular weld on a work object, but in front of the work object is a tall pole, which

the robot can collide with.

Figure 76: Scenario with tall pole.

In the generated trajectory, the robot will start to execute the weld, until it starts to come

closer to the pole. It will then start to ”evade” the pole, while continuing its weld. This works

well, until there is a trajectory point that can only be reached if the robot arm is placed on the

other side of the pole. The Descartes package will then simply generate the next joint solution,

where the robot is positioned on the other side of the pole. In effect, it just jumped right

through the obstacle. Because of this ”jump” in joint angles, Descartes will generate a pretty

high cost for this jump. But because it is the only possible solution to complete the trajectory,

this cost is simply accepted.

These jumps can also be seen in the plot of the joint positions, as shown in figure 77.

87

Figure 77: Joint angles through time, jumps are within ellipses.

The ”correct” solution would of course be for the robot to stop welding, move around the pole,

and then continue welding. Of course, the Descartes package is not made to generate

trajectories like this, nor do we expect it to. What should be expected of the package,

however, is that it detects impossible trajectories.

To solve this issue, we had the idea of generating intermediary joint positions, in between

different joint solutions. Suppose we have joint solutions A and B, consisting of the different

joint angles θAi and θBi, where i is the joint number. Suppose that between joint positions A

and B, the robot jumps through the obstacle. We now want to find out, with relative

certainty, that the robot collides with the environment in between these joint positions.

To find out, we generate n intermediary joint position steps, for a robot with m joints.

With : j = 1...n

and : i = 1...m

The joint angles of the jth intermediary joint solution θi(j) can then be written as:

θi(j) = j · θBi − θAi

n
(8)

Now that we have these intermediary joint position steps, we can do a collision check on all of

them. If one of them proves to be in collision, this means that the movement in between joint

solutions A and B must also be in collision. Descartes should then give a warning to the user

that collisions are detected, and the trajectory can not be executed.

Of course, the same discretization problem arises. The collision detection between trajectory

points can only be guaranteed if the number of intermediary joint steps n goes to infinity. But

for larger collision objects, one or more intermediary steps are enough to detect the collision.

88

Although we had the idea to implement this, it was not yet done or tested in this master thesis.

7.4 Smoother trajectories

The results from chapter 6 often show trajectories that have multiple jumps in joint space.

These trajectories are not smooth enough to be executed on a real robot, because the ”point to

point” movements of the robot to switch between these, suddenly changing, joint positions,

could cause collisions.

There were two ideas we had to limit these jumps. Both are not yet tested.

To limit the amount of jumps the robot makes, an extra cost could be added based on the

acceleration of the robot joints. This would then make the joint trajectories smoother, so more

focus on smoother trajectories, instead of trajectories with the smallest total movement.

Another idea was to limit the maximum allowed change in tolerance value in between adjacent

trajectory points. This would force the robot to slowly change into a new position, instead of

suddenly jumping into the new position.

89

90

8 Conclusion

The Descartes software package proved to be a useful tool to generate trajectories for welding

robots. However, due to its experimental nature, a lot of improvements can still be made to

the software.

In this thesis a few improvements were proposed and tested:

• Activated collision detection between the robot and its environment.

• Created a library to visualize the trajectory points in RViz.

• Implemented code to calculate the deviations of toleranced frames.

• Added and tested the deviation cost. The deviation cost causes the welding torch to

remain closer to its optimal path.

• Changed the rotational tolerances from Euler angle tolerances, to local frame tolerances.

Causing the tolerances to be easier to define, and mentally visualize.

On top of that, a few problems arising with the software package were discovered, and

solutions were explored:

• Huge amounts of RAM memory necessary to store the graph when multiple accurate

tolerances are defined.

An offered solution to this problem, is the use of iterative tolerances. Iterative tolerances

can greatly lower the generation time and the amount of necessary RAM. The drawback

is that the algorithm loses its probabilistic completeness.

• Robot model can jump through collision objects.

A solution to this problem was proposed, but not tested. The solution consists of

interpolating the generated joint solutions, and doing more collision checks on these

interpolations.

The used robot model of the KUKA KR5 ARC robot was also improved.

When the correct improvements are added, we believe that the Descartes software package can

be a useful and practical tool for trajectory generation for industrial robots.

The code used in this thesis is available online in the following repository:

https://github.com/Bart123456/lasrobot ws

For GIT:

https://github.com/Bart123456/lasrobot ws.git

Our code has also been used in a paper[33] about the Descartes software package.

91

92

References

[1] E. Demeester, M. Verheyen. (2016). Smartfactory Project ACRO, [Online]. Available:

http://iiw.kuleuven.be/onderzoek/acro/smartfactory

[2] R. Madaan. (2016). ”descartes”. [Online]. Available: http://wiki.ros.org/descartes.

[3] Jonathan Mey. (2015, April 3) ”descartes trajectory”. [Online]. Available:

http://wiki.ros.org/descartes trajectory.

[4] John Schulman. (2013.) trajopt: Trajectory Optimization for Motion Planning – trajopt

0.1 documentation [Online]. Available:

http://rll.berkeley.edu/trajopt/doc/sphinx build/html/.

[5] N. Ratliff, M. Zucker et al. (2009). ”CHOMP: Gradient Optimization Techniques for

Efficient Motion Planning”, [Online]. Available:

http://www.ri.cmu.edu/pub/ files/2009/5/icra09-chomp.pdf

[6] ROS. ”About ROS”. [Online]. Available: http://www.ros.org/about-ros/.

[7] ROS. ”Core Components”. [Online]. Available: http://www.ros.org/core-components/.

[8] Karl Hansen. (2015, October 19). ”Packages”. [Online]. Available:

http://wiki.ros.org/Packages.

[9] Mike Purvis. (2014, August 22). ”ROS Indigo Igloo”. [Online]. Available:

http://wiki.ros.org/indigo.

[10] Hoang Giang. (2017, March 31). ”Documentation”. [Online]. Available:

http://wiki.ros.org/.

[11] Ken Conley. (2012, February 02). ”Nodes”. [Online]. Available: http://wiki.ros.org/Nodes.

[12] Davet Coleman. (2014, October 12). ”urdf”. [Online]. Available: http://wiki.ros.org/urdf.

[13] L. Joseph, Mastering ROS for Robotics Programming, Livery Place, Birmingham, Packt

Publishing Ltd., 2015, ch.2 p.59-113,

[14] Acorn Pooley. (2013, May 20). ”srdf”. [Online]. Available: http://wiki.ros.org/srdf.

[15] Dave Coleman. (2013, October 18). ”kdl parser”. [Online]. Available:

http://wiki.ros.org/kdl parser.

[16] jarvis Schultz. (2015, October 15). joint state publisher ”. [Online]. Available:

http://wiki.ros.org/joint state publisher.

[17] Mithun Jacob. (2016, December 04). robot state publisher ”. [Online]. Available:

http://wiki.ros.org/robot state publisher.

[18] Isaac Saito. (2015, Julie 19). tf”. [Online]. Available: http://wiki.ros.org/tf.

[19] Kamic Colo. (2015, May 12). ”roslaunch”. [Online]. Available:

http://wiki.ros.org/roslaunch.

[20] ROS Industrial ”Description”. [Online]. Available: http://rosindustrial.org/contributors/.

93

[21] Ioan A. Sucan, Sachin Chitta. (2011). ”MoveIt!”. [Online]. Available:

http://moveit.ros.org/.

[22] M. M. L. E. K. Ioan A. ucan, ”The Open Motion Planning Library”, IEEE Robotics and

Automation Magazine, nr. 19, pp. 72-82, 2012.

[23] Rice University, ”Probabilistic Roadmap Method (PRM)”, Kavraki Lab, [Online].

Available: http://www.kavrakilab.org/robotics/prm.html. [Geopend 21 12 2016].

[24] S. Lavalle, ”RRT Page: About RRT’s” [Online]. Available:

http://msl.cs.uiuc.edu/rrt/about.html. [Geopend 21 12 2016].

[25] S. Lavalle, (2013, February 14) ”Rapidly Exploring Manifolds: when going from A to B

aint easy” [Online]. Available: https://mappingignorance.org/2013/02/14/rapidly-

exploring-manifolds-when-going-from-a-to-b-aint-easy/l.

[26] J. Sibeyn, Chapter 10, 15 Februari 2005. [Online]. Available:

http://users.informatik.uni-halle.de/ jopsi/dinf204/chap10.shtml. [Geopend 21 12 2016].

[27] William Woodall. (2017, May 11). ”Creating a workspace for catkin”. [Online]. Available:

http://wiki.ros.org/catkin/Tutorials/create a workspace.

[28] GVD Hoorn. (2016, December 20). ”urdf/XML/joint”. [Online]. Available:

http://wiki.ros.org/urdf/XML/joint.

[29] Tim Field, Jeremy Leibs, James Bowman. (2015, June 16). ”rosbag - ROS Wiki”. [Online].

Available: http://wiki.ros.org/rosbag.

[30] The Matplotlib development team. (2017, May 10). ”Matplotlib: Python Plotting”.

[Online]. Available: https://matplotlib.org/.

[31] David Gossow, William Woodall. (2016, June 15). ”rviz - ROS Wiki”. [Online]. Available:

http://wiki.ros.org/rviz.

[32] Ioan Sucan. (2013, January 27). ”fcl - ROS Wiki”. [Online]. Available:

http://wiki.ros.org/fcl.

[33] J. De Maeyer et al, ”Cartesian Path Planning for Arc Welding Robots: Evaluation of the

Descartes Algorithm,” presented at the Emerging Technologies And Factory Automation,

Limassol, ETFA, Cyprus, 2017.

94

Appendix A Complete URDF

<robot name="robot">

<!-___________________________________COLORS__-->

<material name="orange">

<color rgba="1 0.5 0 1"/>

</material>

<!--___________________________________LINKS___-->

<link name="base_link">

<visual>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Baseb.stl"

scale=".001 .001 .001"/>

</geometry>

<material name ="orange"/>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Baseb.stl"

scale=".001 .001 .001"/>

</geometry>

</collision>

</link>

<link name="link1">

<visual>

<origin xyz="-0.0014 -0.003 0.018" rpy="0 0 3.141529" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link1b.stl"

scale=".004 .004 .004"/>

</geometry>

<material name ="orange"/>

</visual>

<collision>

<origin xyz="-0.0014 -0.003 0.018" rpy="0 0 3.141529" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link1b.stl"

scale=".004 .004 .004"/>

</geometry>

</collision>

</link>

<link name="link2">

<visual>

<origin xyz="-0.18742 0 -0.400" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link2.stl"

scale=".001 .001 .001"/>

</geometry>

<material name ="orange"/>

</visual>

<collision>

<origin xyz="-0.18742 0 -0.400" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link2.stl"

95

scale=".001 .001 .001"/>

</geometry>

</collision>

</link>

<link name="link3">

<visual>

<origin xyz="-0.180 0 -1.0" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link3.stl"

scale=".001 .001 .001"/>

</geometry>

<material name ="orange"/>

</visual>

<collision>

<origin xyz="-0.180 0 -1.0" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link3.stl"

scale=".001 .001 .001"/>

</geometry>

</collision>

</link>

<link name="link4">

<visual>

<origin xyz="-0.5835 0 -1.12" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link4.stl"

scale=".001 .001 .001"/>

</geometry>

<material name ="orange"/>

</visual>

<collision>

<origin xyz="-0.5835 0 -1.12" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link4.stl"

scale=".001 .001 .001"/>

</geometry>

</collision>

</link>

<link name="link5">

<visual>

<origin xyz="-0.800 0 -1.12" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link5.stl"

scale=".001 .001 .001"/>

</geometry>

<material name ="orange"/>

</visual>

<collision>

<origin xyz="-0.800 0 -1.12" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link5.stl"

scale=".001 .001 .001"/>

</geometry>

</collision>

</link>

<link name="link6">

96

<visual>

<origin xyz="-0.9088 0 -1.12" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link6.stl"

scale=".001 .001 .001"/>

</geometry>

<material name ="orange"/>

</visual>

<collision>

<origin xyz="-0.9088 0 -1.12" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/kuka_kr5_arc/visual/Link6.stl"

scale=".001 .001 .001"/>

</geometry>

</collision>

</link>

<link name="link7">

<visual>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/Welding_Torch/Assembly4_origin_tip3

.stl"

scale=".01 .01 .01"/>

</geometry>

<material name ="orange"/>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<mesh filename="package://kuka_description/meshes/Welding_Torch/Assembly4_origin_tip3

.stl"

scale=".01 .01 .01"/>

</geometry>

</collision>

</link>

<link name="endpoint"/>

<!--_____________________________________JOINTS__-->

<joint name="joint_1" type="revolute">

<parent link="base_link"/>

<child link="link1"/>

<origin xyz="0 0 0.225" rpy="0 0 0" />

<axis xyz="0 0 -1" />

<limit lower="-2.70526034" upper="2.70526034" effort="0" velocity="0" />

<material name ="black"/>

</joint>

<joint name="joint_2" type="revolute">

<parent link="link1"/>

<child link="link2"/>

<origin xyz="0.180 0 0.175" rpy="0 0 0" />

<axis xyz="0 1 0" />

<limit lower="-3.1415927" upper="1.13446401" effort="0" velocity="0" />

</joint>

<joint name="joint_3" type="revolute">

<parent link="link2"/>

97

<child link="link3"/>

<origin xyz="0 0 0.600" rpy="0 0 0" />

<axis xyz="0 1 0" />

<limit lower="-0.2617994" upper="2.75762022" effort="0" velocity="0" />

</joint>

<joint name="joint_4" type="revolute">

<parent link="link3"/>

<child link="link4"/>

<origin xyz="0.4035 0 0.120" rpy="0 0 0" />

<axis xyz="-1 0 0" />

<limit lower="-6.10865238" upper="6.10865238" effort="0" velocity="0" />

</joint>

<joint name="joint_5" type="revolute">

<parent link="link4"/>

<child link="link5"/>

<origin xyz="0.2165 0 0" rpy="0 0 0" />

<axis xyz="0 1 0" />

<limit lower="-2.26892803" upper="2.26892803" effort="0" velocity="0" />

</joint>

<joint name="joint_6" type="revolute">

<parent link="link5"/>

<child link="link6"/>

<origin xyz="0.1088 0 0" rpy="0 0 0" />

<axis xyz="-1 0 0" />

<limit lower="-6.10865238" upper="6.10865238" effort="0" velocity="0" />

</joint>

<joint name="joint_7" type="fixed">

<parent link="link6"/>

<child link="link7"/>

<origin xyz="0.326 0 0.034" rpy="0 0 3.141529" />

</joint>

<joint name="joint_8" type= "fixed">

<parent link="link7"/>

<child link="endpoint"/>

<origin xyz="0 0 0" rpy="0 3.92685325 0" />

</joint>

</robot>

98

Appendix B URDF-tree

99

100

Appendix C Python script for plotting data from bag-file

import rosbag

bag = rosbag.Bag(’TOP_Cost.bag’)

errorsX = []

errorsY = []

points = []

for topic, msg, t in bag.read_messages(topics=[’angleErrorsX’,’angleErrorsY’,’trajectory’]):

if topic == ’angleErrorsX’:

errorsX = msg.data

if topic == ’angleErrorsY’:

errorsY = msg.data

if topic == ’trajectory’:

points = msg.points

bag.close()

bag2 = rosbag.Bag(’TOP_noCost.bag’)

errorsXnocost = []

for topic, msg, t in bag2.read_messages(topics=[’angleErrorsX’]):

if topic == ’angleErrorsX’:

errorsXnocost = msg.data

bag2.close()

time = []

joint_positions = []

for point in points:

time.append(point.time_from_start.secs + point.time_from_start.nsecs / 1e9)

joint_positions.append(point.positions)

#remove ’NaN’ values from lists (supposed to be 0)

count = 0

for error in errorsX:

if error == ’nan’:

errorsX[count] = 0.0

count += 1

count = 0

for error in errorsY:

if error == ’nan’:

errorsY[count] = 0.0

count += 1

count = 0

for error in errorsXnocost:

if error == ’nan’:

errorsXnocost[count] = 0.0

count += 1

import matplotlib.pyplot as plt

plt.plot(time, errorsX, ’k’, time, errorsXnocost, ’r’, linewidth=2.0)

plt.ylabel(’Angle X Error [rad]’)

plt.xlabel(’Time [s]’)

plt.grid(’on’)

plt.legend([’Without cost function’, ’With cost function’])

plt.savefig("TOP_angleErrorX_IKfast.png")

101

102

Appendix D Testcase 1: tube on plate A

Testcase 1: Tube on plate A

Settings
Trajectory distance: 67,86 cm Tolerance X-axis: 50

Number of trajectory points: 30 Tolerance Y-axis: 50

Tolerance Z-axis: 360

WeldingSpeed: 0.1 Tolerance discretization step: 5

Welding cost weight 10 Kinematics solver Ikfast

Results
With cost Without Cost

Time fase1: 8.612 s Time fase1: 22.414 s

Time fase2: 15.167 s Time fase2: 13.886 s

Time fase3: 2.935 s Time fase3: 1.974 s

Time total: 26.72 s Time total: 38.280 s

103

Testcase 1: Tube on plate A
Error on X-axis angle

Error on Y-axis angle

Joint angles with cost Joint angles without Cost

104

Testcase 1: Tube on plate A
Simulation with cost Simulation without Cost

105

106

Appendix E Testcase 2: tube on plate B

Testcase 2: Tube on plate B

Settings
Trajectory distance: 67,86 cm Tolerance X-axis: 0

Number of trajectory points: 300 Tolerance Y-axis: 0

Tolerance Z-axis: 360

WeldingSpeed: 0.1 Tolerance discretization step: 1

Welding cost weight 10 Kinematics solver Ikfast

Results
With cost Without Cost

Time fase1: 89,977 s Time fase1: 88,717 s

Time fase2: 183,57 s Time fase2: 179,88 s

Time fase3: 31,165 s Time fase3: 24,297 s

Time total: 304,75 s Time total: 292,93 s

107

Testcase 2: Tube on plate B
Error on X-axis angle

Error on Y-axis angle

Joint angles with cost Joint angles without Cost

108

Testcase 2: Tube on plate B

109

110

Appendix F Testcase 3: L-profile with IKfast

Testcase 3: L-profile with IKfast

Settings
Trajectory distance: 40 cm Tolerance X-axis: 0

Number of trajectory points: 300 Tolerance Y-axis: 50

Tolerance Z-axis: 360

WeldingSpeed: 0.1 Tolerance discretization step: 5

Welding cost weight 10 Kinematics solver Ikfast

Results
With cost Without Cost

Time fase1: 21,941 s Time fase1: 20,962 s

Time fase2: 92,270 s Time fase2: 90,414 s

Time fase3: 15,243 s Time fase3: 12,205 s

Time total: 129,47 s Time total: 123,59 s

111

Testcase 3: L-profile with IKfast
Error on X-axis angle

Error on Y-axis angle

Joint angles with cost Joint angles without Cost

112

Testcase 3: L-profile with IKfast

113

114

Appendix G Testcase 4: L-profile with KDL

Testcase 4: L-profile with KDL

Settings
Trajectory distance: 40 cm Tolerance X-axis: 0

Number of trajectory points: 300 Tolerance Y-axis: 50

Tolerance Z-axis: 360

WeldingSpeed: 0.1 Tolerance discretization step: 5

Welding cost weight 10 Kinematics solver KDL

Results
With cost Without Cost

Time fase1: 7955,0 s Time fase1: 8114,6 s

Time fase2: 378,87 s Time fase2: 380,71 s

Time fase3: 145,04 s Time fase3: 97,43 s

Time total: 8479,3 s Time total: 8593,2 s

115

Testcase 4: L-profile with KDL
Error on X-axis angle

Error on Y-axis angle

Joint angles with cost Joint angles without Cost

116

Testcase 4: L-profile with KDL

117

118

Appendix H Testcase 5: L-profile with iterative toler-

ances

Testcase 5: L-profile with iterative tolerances

Settings
Trajectory distance: 40 cm Number of trajectory points: 300

WeldingSpeed: 0.1 Tolerance discretization step: 5

Welding cost weight: 10 Kinematics solver: KDL

primary tolerances: secondary tolerances:

Tolerance X-axis: 0 Tolerance X-axis: 0

Tolerance Y-axis: 0 Tolerance Y-axis: 36

Tolerance Z-axis: 0 Tolerance Z-axis: 0

Results
With cost Without Cost

Time fase1: 0.1273 s Time fase1: 0.1410 s

Time fase2: 0.0053 s Time fase2: 0.0071 s

Time fase3: 0.0030 s Time fase3: 0.0029 s

Time total: 0.3739 s Time total: 0.4063 s

119

Testcase 5: L-profile with iterative tolerances
Error on X-axis angle

Error on Y-axis angle

Joint angles with cost Joint angles without Cost

120

Testcase 5: L-profile with iterative tolerances

121

122

Appendix I Testcase 6: Furniture piece

Testcase 6: Furniture piece

Settings
Trajectory distance: 6,5 cm Tolerance X-axis: 50

Number of trajectory points: 300 Tolerance Y-axis: 50

Tolerance Z-axis: 360

WeldingSpeed: 0.1 Tolerance discretization step: 5

Welding cost weight 10 Kinematics solver IKfast

Results
With cost Without Cost

Time fase1: 10.115 s Time fase1: 68.924 s

Time fase2: 3.3680 s Time fase2: 186.12 s

Time fase3: 0.6530 s Time fase3: 25.762 s

Time total: 14.138 s Time total: 280.82 s

123

Testcase 6: Furniture piece
Error on X-axis angle

Error on Y-axis angle

Joint angles with cost Joint angles without Cost

124

Testcase 6: Furniture piece

125

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Collision-free trajectory generation for welding robots: analysis and
improvement of the Descartes algorithm

Richting: master in de industriële wetenschappen: energie-automatisering
Jaar: 2017

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Moyaers, Bart Vanvelk, Giel

Datum: 7/06/2017

