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Abstract

This master thesis, performed within the research group ACRO, aims to enhance the
production flexibility of robot welding through automatic, collision-free trajectory generation.
The first subgoal was to compare and select an existing open-source software to automatically
generate collision-free trajectories for welding robots. The second subgoal was to evaluate it on
its applicability to robot welding, and subsequently, to improve it.

To select a suitable software package, a literature study has been carried out, in which different
software packages were compared. The chosen Descartes software package starts from a
sequence of trajectory points, with acceptable tolerances specified by the user. With the help
of the inverse robot kinematics, it then generates a graph, which is searched to find the path
with the lowest cost.

To evaluate the chosen software package, different test scenarios were developed. Various
limitations were revealed and improved. A new cost function based on rotational errors of the
welding torch has been added, which keeps the welding torch closer to its optimal orientation.
On top of that, it allows to differentiate between specific welding angles, making it possible to
prioritize changing one over the other. A new implementation to define rotational tolerances
on trajectory points leads to tolerances which are more intuitive and more practical. Finally,
the code has been made available online together with a tutorial. They can be found
respectively on the GitHub and the ROS Descartes wiki page.






Abstract

Deze masterproef, uitgevoerd bij de onderzoeksgroep ACRO, had als doel de
productieflexibiliteit van robotlassen te verhogen door automatische, botsingsvrije
trajectgeneratie. Het eerste subdoel was het vergelijken en selecteren van een bestaande
open-source software voor het automatisch genereren van botsingsvrije paden. Het tweede
subdoel was de gekozen software op zijn toepasbaarheid voor robotlassen evalueren, verbeteren
en uitbreiden.

Het selecteren van een geschikt softwarepakket gebeurde op basis van een literatuurstudie die
verschillende bestaande softwarepakketten vergeleek. Het gekozen Descartes-softwarepakket
vertrekt van een sequentie robotlocaties met aanvaardbare toleranties gespecifieerd door de
gebruiker. Daarna genereert het met behulp van de inverse kinematica van de robot een
diagram en zoekt hierin het pad met de laagste kost.

Om de gekozen software te evalueren zijn verschillende testscenarios uitgewerkt. Verschillende
beperkingen, die zo aan het licht zijn gekomen, zijn verbeterd. Een nieuwe kost op basis van
hoekafwijkingen is toegevoegd, waardoor de bewegingstrajecten de optimale oriéntatie van de
lastoorts beter benaderen. Bovendien laat het toe om bepaalde lashoeken prioritair aan te
passen boven andere. Een nieuwe implementatie voor het definiéren van rotationele toleranties
op trajectpunten zorgt voor toleranties die intuitiever en praktischer zijn. Ten slotte is de code
online beschikbaar gemaakt en een tutorial geschreven. Ze zijn respectievelijk te vinden op
GitHub en de ROS wikipagina.






1 Introduction

1.1 Background

This master thesis is situated within the research group ACRO, part of the University of
Leuven. ACRO focuses mainly on applications using robotics and machine vision. One of the
projects of ACRO is the so-called Smartfactory project[1]. The goal of this project is to aid the
manufacturing industry to achieve sustainable production by helping with the introduction
and development of the Smart Factory concept. To reach this goal, 7 tangible technological
challenges were conceived. They are also available in [1].

1. Zero ramp-up: trial or test series of products should not be necessary. The start-up
phase of production is reduced to a minimum. (Ideally there is no start-up phase.)

2. Safe interaction between humans and robots: robots and humans are able to work safely
alongside each other, while the production still remains accessible.

3. From computer aided programming to auto-programming: the robot programming
requires no special training, reprogramming the robots for the production of a new series
of products can be achieved in less than 10 minutes.

4. Intelligent quality assurance: quality control is automatic and integrated. All products
are checked.

5. Benchmark of robot control software: using the correct software in different situations,
with a focus on the feasibility of restarting the process when necessary. Complex robot
paths can be programmed offline.

6. Remote production monitoring: production generates data that is fed back into a
real-time monitoring system, to limit potential damage in the case of unplanned events
such as a breakdown.

7. Couple stand-alone resources into networked production cells: smart production cells do
not form isolated islets, but communicate with each other to form a Smart Factory.

The smart factory-concept is relevant to this thesis, specifically regarding challenges 3 and 5.

1.2 Problem definition

Flemish manufacturing companies are experiencing difficulties in competing with companies in
low-wage countries. These manufacturing companies often have an abundance of cheap labor
to their disposal, allowing them to produce their products with a lower cost. Because of this,
many on-shore companies are willing to invest in further automation of their production
processes. The goals of this automation are to reduce costly working hours to a minimum

and /or enhance the flexibility of the production processes. Processes using autonomous robots
offer the possibility to save many hours of manual labor. On the other hand, the programming
of these robots requires specific technical knowledge, and extra time to implement. This
method of automation is especially attractive when large series of products are produced. In
this case the large amounts of time saved in manual labor, far outweighs the extra cost for the



time and knowledge necessary to program the robots. However, this method of automation is
not very feasible in regard to the production of small series of products, or many unique
products. Every time a new series has to be produced, the robots have to be programmed
again, removing the cost reduction of saved manual labor. To allow this method to succeed in
these cases, the manual programming of the robots has to be reduced, or removed altogether.
In the application of robot welding this comes down to automatically generating the
trajectories of a welding robot to place a weld on a workpiece. The software that generates
this trajectory needs to take into account the possibility of collisions between the robot and its
environment. Otherwise, trajectories could be generated that would be impossible to execute
on a real robot. On top of that, the welding speed and different other weld parameters need to
be controlled to guarantee a certain weld quality.

1.3 Objectives

The goal of this thesis is to select and use existing open-source software to automatically
generate a collision-free trajectory for a welding robot. The software is then evaluated and
subsequently improved and expanded, with our specific application (robot welding) in mind.
The evaluation of the software needs to happen by generating trajectories on multiple,
strategically chosen, test scenarios. A minimum requirement of this thesis is that a trajectory
can be generated for a simple workpiece, together with a simple obstacle which has to be
avoided. Ideally, this would mean that the information about the weld would be extracted
from a CAD file defining the workpiece. However, this is not a goal of this master thesis. The
information about the welding paths is generated ourselves. This information is then used as a
foundation to generate a correct trajectory. As mentioned in the problem definition, the
software needs to take into account possible collisions between the robot and the environment,
or the robot with itself. It also needs to check if the generated movement of the robot is
executable. In other words, do we adhere to the maximum allowed joint ranges and speeds?
Singular positions should also be avoided. If no trajectory can be found, the software must try
to find an alternative trajectory by changing the weld parameters between certain predefined
limits. This could mean changing certain welding angles, or slightly changing the position of
the welding torch when necessary. In the case of changing certain welding angles, different
welding angles are preferred to be changed over others, because of their different effects on the
weld quality. The software should be able to distinguish between the different welding angles.
The user should also have full control over the allowed tolerance limits. After generating the
trajectory, the software needs to automatically generate a report with essential information
regarding the trajectory. This report contains for example the changed welding parameters
and the joint positions during the movement. An important supplementary goal is that the
software needs to be made available to third parties. To do this, the code should be published
online, and if possible, a tutorial should be written.

1.4 Methods and materials

The master thesis can be divided in following parts. First of all a literature study is carried
out. In this literature study, three open-source software packages for trajectory generation are
examined and compared. The different software in question are the Descartes-software package
2], Trajopt [4] and CHOMP [5].
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After the literature study, the main focus was the evaluation and enhancement of the chosen
(Descartes) software. Different tests were performed using scenarios. For this purpose, ACRO
provided a KUKA KR5 arc robot arm, equipped with a Fronius 4000 welding transformer, and
a maintenance station with torch cleaner. However, this installation has not been used in this
thesis. All the tests have been carried out in simulation. In this simulation environment, a
robot model based on the KUKA KR5 arc robot arm was used.

Figure 1: KUKA KR5 arc robot arm, with welding transformer and maintenance station.

1.5 Summary

In this chapter, the setup of the workspace of the master thesis has been described. First of all
the framework, in which the master thesis has been conducted, has been described. The
problem definition, which gives the research its meaning, was then explained. After that, the
goals of the master thesis were outlined. Finally, the used methods and materials where shown.
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2 Literature study

To generate trajectories for our robot, an existing software package has to be chosen. At the
present time, there are multiple open source software packages available. To make a good
choice between different path planning software it is essential to compare different software
packages and different path planning methods. This chapter starts with a short introduction of
ROS (Robot Operating System) and other popular software packages used within the ROS
framework. This is done for readers who are not familiar with ROS, so that they are able to
understand certain terms that might be used in the coming chapters of this thesis. After this
familiarization follows a short description of certain path planners that may be used for
collision-free trajectory generation of robots. First a few so-called sampling-based algorithms
will be discussed. Then different software packages for trajectory generation and optimization
will be looked at and compared. (CHOMP, TrajOpt, and Descartes.) We conclude with a
summary table of the advantages and disadvantages of the chosen packages, and the final
choice made for this thesis. Although the Descartes software package was certainly compared
to the other packages in the literature study, this section has been omitted, because the
functioning of this package will be explained in more detail in the following chapters.

2.1 Utilized software

2.1.1 ROS

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a
collection of tools, libraries, and conventions that aim to simplify the task of creating complex
and robust robot behaviour across a wide variety of robotic platforms [6].

Tasks that seem trivial to humans are not always trivial to robots and vice versa. Often, due
to a variation or a change of the environment, the necessary implementation of a robot
function can completely change. Because handling all of these variations is a difficult task, it
cannot be expected that an individual, a laboratory or even an institute can handle all of these
variations for each robot function. As a result, ROS was built from the beginning with
collaboration in mind.

Consequently, at the base of ROS is its communication system, which allows information to be
exchanged between different modules in the form of messages. Messages can be built by
defining a new message class, with all the desired data components and their names. However,
ROS also provides a set of standard messages ranging from information about a robot’s pose,
to maps of the environment. By using these standard messages, self-written code can work
seamlessly with other software that uses the same messages.

Software in ROS is organized in packages [8]. A package might contain ROS nodes, a
ROS-independent library, a dataset, configuration files, a third-party piece of software, or
anything else that logically constitutes a useful module. The goal of these packages is to
provide this useful functionality in an easy-to-consume manner so that software can be easily
reused. For a better understanding of the rest of the thesis, the used packages,nodes and
ROS-based software will be briefly described.

At the moment, multiple versions of ROS are distributed. The version used in this thesis is

17



ROS Indigo Igloo [9], which was released on the 22nd of July 2014. More information about
ROS can be found at the ROS-Wikipage [10].

Nodes and Packages

A node [11] is a process that performs computation. A robot control system usually consists of
multiple nodes, communicating with each other through messages. For example, one node
might calculate the joint positions of a robot while another node visualizes these joint positions.

URDF URDF (Unified Robot Description Format) is an Extensible Markup Language in
XML format for the representation of a robot model. It is used to develop a robot model by
defining the different joints and links of a specific robot model, including their physical
properties. URDF can only describe robots that have a tree-like structure in their links. This
means that the robot must have rigid links, that are connected to each other using joints. The
created robot model can then be used to perform simulations. The URDF-package [12] [13]
contains a built-in C++ parser for URDF.

SRDF The SRDF-package [14] is a package intended to contain information about the robot
that is not in the URDF file. The intention is to include information that has a semantic
aspect to it. Examples of these semantic aspects are:

e The joint and link names of a robot and their assembly into a move-group (a set of links
and joints that work together).

e Predefined robot positions (joint values). For example a home position.
e Information about passive joints that are not actuated.

e Information about the disabling of the collision detection between certain links of the
robot.

kdl parser The Kinematic and Dynamics Library (KDL) [15] is a ROS package that
provides a number of parser-utilities. The goal of the package is, starting from the URDF, to
create a tree-like structure displaying the kinematic and dynamic parameters of the robot.
KDL can be used to publish the joint states, and compute the forward and inverse kinematics
of the used model.

Figure 2: URDF with the corresponding kinematic and dynamic tree [15].
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Joint State Publisher The joint state publisher[13] [16] is a package containing a node,
which reads the robot model, containing the state of the robot’s joints. It then publishes these
joint values. A GUI with sliders may be used to change the joint values of all non-fixed joints.
Robot State Publisher This package reads the (published) robot joint states and publishes
the 3D poses of each robot link, using the kinematics tree built from the URDF [17]. The 3D
pose of the robot is published as a ROS tf (transform).

tf ROS tf [18] is a package that visualizes the different transformed coordinate frames for
every link of the robot. It is possible to see how the robot’s position will change if there is a

>L_LLL,L

.
i\

Figure 3: Example of a robot displayed by the tf-package.

change in joint states.

Roslaunch (Launchfiles) Roslaunch [19] is a tool for easily launching ROS-nodes by
writing a so-called .launch-file. The launch file can be executed using following command-line.

$roslaunch package_name file.launch

ROS-industrial (ROS-I) ROS-Industrial is an open-source project that extends the
advanced capabilities of ROS to manufacturing automation and robotics. The ROS-Industrial
repository includes interfaces for common industrial manipulators, grippers, sensors, and
device networks. It also provides software libraries for processing path/motion planning.
Unlike the packages described above, ROS-I is a collection of packages [20].

ROS-based software (tools)

RViz RViz[31] is a ROS-package for 3D-visualization. After a robot model has been created,
it can be visualised in RViz. Rviz transforms the URDF-model in a 3D-model and enables the
possibility to observe movements of the robot joints. Next to the robot model another useful
application of RViz is the visualisation of the environment around the robot, the different
coordinate frames, and user-made visual markers.

19



Movelt! Movelt! [21] is a ROS-based software for the manipulation of robots. It provides an
easy-to-use platform for developing advanced robotics applications, evaluating new robot
designs and building integrated robotics products. Movelt! makes it possible to generate
collision-free trajectories for robots.

2.1.2 Trajectory generation software

We begin this section by going into a popular way of automated collision-free trajectory
generation in academia. First, a so-called ”Sampling-based Algorithm” tries to find a possible
trajectory. Often, depending on the used algorithm, the path is not very smooth. This means
that sudden movements may occur in the range, associated with high accelerations. To solve
this problem, an optimization step is often used, in which a separate algorithm tries to make
the trajectory, generated with the ”sampling-based algorithm”, smoother. This is called the
optimization step.

Then, two different sampling-based algorithms are discussed. These are also implemented in
ROS, in a library called OMPL [22] (Open Motion Planning Library). After that, three
different software packages for path generation are discussed and compared: CHOMP, TrajOpt
and Descartes. The comparison is based on the features of the software packages, while
keeping the application of robot welding in mind.

Probabilistic Roadmap (PRM)

The Probabilistic Roadmap Planner (PRM) is an algorithm for the generation of collision-free
trajectories. In this case, a random position in the configuration space is taken and tested
whether or not the robot is in collision. If the robot is not in collision, this point is added to a
list of points within the configuration space that are collision-free. Afterwards, the algorithm
attempts to connect these different points using a local path planner. In the example, these are
linear paths between 2D points, but these paths can also be determined differently. Eventually,
using a search algorithm (e.g. Dijkstra’s algorithm), a trajectory is generated with a set of
these points. The PRM method therefore consists of two phases [23]:

1. The learning phase: A list of points is compiled by calculating collision-free points in the
configuration space. Using a fast local path planner it is checked if a collision-free path
between the different collision-free configurations.

2. The Search phase: A trajectory is searched between start and end points by connecting
the trajectories found in the previous phase. The way this path is chosen depends on the
algorithm used. For example, in the following 2D example (figure 4), the length of
possible paths could be taken as a cost. After that, Dijkstra’s algorithm can be used to
find the path with the lowest cost.
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Figure 4: Probabilistic Roadmap example [23].

One of the advantages of PRM is that this method is probabilistically complete. That is, if a
collision-free path exists, it can be guaranteed that this global path is found with probability
approximating one as the number of sampled configurations goes to infinity. Thus, if a path
exists, it will be found. But it may cost a lot of calculations to determine the path. Moreover,
this method is well applicable to robots with many degrees of freedom. Trajectory generation
software based on PRM is available within OMPL [22]. O