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ABSTRACT 
 

This thesis, commissioned by Häme University of Applied Sciences, 
researches the possibility of detecting lint by using machine vision. Due to 
the small particle size and high movement speed of the lint, various issues 
occur. Firstly, to detect the small lint particles a sufficient resolution is 
required. Secondly, since the lint has a high movement speed a high 
framerate is required to fully represent all the lint passing by. Lastly, a 
short exposure time is required to prevent inaccuracy due to motion blur. 
The goals of this thesis are to research the most optimal machine vision 
components, if the hardware currently available can detect the small 
particles with a sufficient framerate and a method to prevent motion blur. 
 
The most optimal components were found by performing a literature 
study. Calculations were made to test if the currently available hardware 
can fulfil the goals. A colleague created a short duration strobe light to 
prevent motion blur. Lastly, a practical test setup and MATLAB program 
were created to verify the theoretical conclusions and detect the lint. 
 
The strobe light uses four high power white LEDs with a flash duration of 
one microsecond. The calculations have concluded that the currently 
available hardware is capable of fully representing the lint passing by at a 
minimum particle size of 45 microns. Analyses of the MATLAB program 
verified that the theoretical calculations were correct. 
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ABSTRACT 
 

Deze thesis, uitgevaardigd door Häme University of Applied Sciences, 
onderzoekt de mogelijkheid tot het detecteren van stofdeeltjes door 
gebruik te maken van machine visie. Door de kleine dimensies en hoge 
voortbewegingssnelheden van de deeltjes treden er allerlei problemen op. 
Zo is een hoge resolutie noodzakelijk om de deeltjes te detecteren. Ook 
moet de framerate van de camera voldoende snel zijn om alle deeltjes die 
voorbij bewegen te detecteren. Ten laatste, is een korte sluitertijd van de 
sensor noodzakelijk om motion blur te voorkomen. Het doel van deze 
thesis is om de meest optimale machine visie onderdelen te onderzoeken, 
de mogelijkheid om het lint te detecteren met de hardware die 
beschikbaar is te onderzoeken en om een oplossing te zoeken voor motion 
blur. 
 
De meest optimale machine visie setup werd gevonden met een 
literatuurstudie. Berekeningen zijn gemaakt om de beschikbare hardware 
te testen. Een flits van zeer korte duur is door een collega student gemaakt 
om motion blur te voorkomen. Ten laatste, is er een praktische opstelling 
en een MATLAB-programma gemaakt om de theoretische conclusies te 
verifiëren en het stof te detecteren. 
 
De flits gebruikt vier hoogvermogen witte leds met een flitsduur van één 
microseconde. De berekeningen toonden aan dat de beschikbare 
hardware in staat is om alle deeltjes te filmen met een minimum grote van 
45 micrometer. Het Matlab programma verifieerde dat de theoretische 
berekeningen correct waren.  
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1 INTRODUCTION 

1.1 Theoretical Framework 

This thesis was commissioned by Häme University of Applied Sciences 
(HAMK) located in Valkeakoski, Finland. One of the subjects researched at 
HAMK involves the measurement of lint that is formed during high speed 
offset printing and paper manufacturing. Lint is a fibre formed when 
loosely bonded particles detach from the surface of paper. These fibres 
accumulate on the offset printing blankets and disturb the transfer from 
the inking system onto the blanket. Removing the lint from the printing 
blankets also results in a decrease of production efficiency. (Lestiani, 
Batchelor, & Banham, 2014) 
 
The increase of printing press speeds and use of recycled paper increases 
linting problems for the paper manufacturers. To attenuate problems 
connected to linting, paper manufacturers must be able to monitor the 
linting level during paper production and adjust this level according to the 
tolerances of each printer by applying a suitable control strategy 
(Brouillette, Morneau, Chabot, & Daneault, 2006). Previous research by 
Amiri, Bégin, Deshaies, & Mozaffari (2004) also concluded that increased 
pulp quality reduces pulp linting propensity. A real-time lint measurement 
system can thus help test the quality of the paper during high speed offset 
printing and help paper manufacturers monitor the linting during paper 
production. The subject of this thesis is to design a machine vision setup 
to form an objective measurement of the amount of lint that is formed 
during high speed offset printing and paper manufacturing. 

1.2 Problem Analysis 

Previous research has concluded that a single lint measurement taken 
after a printing trial run does not give an accurate representation of the 
amount of lint that is formed due to the high variance of the amount of lint 
across different trial runs (Lestiani et al., 2014). To get an accurate 
representation, it is therefore necessary to implement a setup that can 
continuously monitor the amount of lint. 
 
Small lint particles up to ten microns can already be detected by using laser 
diffraction, which has a volume flow rate of 27 litres per minute. The larger 
particles, which also pose the most problems during offset printing, cannot 
be detected yet. Therefore, this thesis focuses on detecting the larger 
particles with sizes ranging from ten microns to a few millimetres (Nguyen, 
2015).  
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These specifications pose some difficulties in implementing an accurate 
vision setup. Firstly, there is the effect of motion blur which occurs when 
the object moves relatively quickly compared to the shutter speed of the 
camera, so that the image moves while the shutter is open (Wloka & 
Zeleznik, 1996). The motion blur results in the camera perceiving the lint 
bigger than it is, which reduces the accuracy of the system. Secondly, 
continuously monitoring objects of such high speed requires processing 
many images every second and thus high bandwidth. Lastly, the small size 
of the lint requires a very high resolution. The high resolution and fast 
processing speed are two requirements that are in conflict since a higher 
resolution will increase the sensor readout time (Basler, 2017). 

1.3 Goals 

An optimal machine vision setup must be determined. This overall goal 
presupposes the following research questions: 

 Which type of camera, sensor and lens would be most ideal? 

 Which type of lighting has the most optimal spectrum? 

 How should the lighting be placed to get the most accurate result? 

 Which machine vision software is most ideal? 
 
The number of images that must be taken depends on the speed of the lint 
and the field of view. With a larger field of view a higher resolution is 
required to detect the lint. Since the field of view is limited and the lint 
moves at high speeds, a high number of images need to be taken every 
second. It should be researched if the camera and lens available at HAMK 
can capture enough images at a sufficient resolution to detect particles of 
ten microns. Also, a solution must be found to decrease the exposure time 
of the sensor and thus prevent motion blur. 
 
The three aforementioned goals must be verified by creating a program 
and practical test setup. 
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1.4 Materials and Methods 

An extensive literature study took place to learn the current knowledge 
that is available about machine vision. After this study, it was possible to 
find the most optimal machine vision elements and calculate if the 
available hardware is capable to fulfil the goals. 
 
To tackle the problem of motion blur, there are two viable solutions. If 
budget is not a constraint, then a new camera could be purchased that is 
capable of high speed imaging. If budget is a constraint, a high-speed 
strobe light created by a colleague that is much faster than the minimum 
exposure of the camera could be an option. The high-speed strobe light 
will reduce the time that the lint is visible to the sensor despite the slow 
exposure of a regular industrial camera. However, there may be a problem 
with this method. The flash brightness and duration may not be enough 
for the photodetectors to gather enough light and thus produce 
insufficient contrast.  
 
It is necessary to perform image enhancing functions, detect the edges of 
the lint to form blobs and detect the lint particles. A second literature study 
therefore focused on software. After this study, it was possible to 
implement the features in the software environment that was concluded 
from the first literature study. 
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2 LITERATURE RESEARCH 

2.1 Industrial Background: Linting 

Linting is the process where loosely bonded particles detach from the 
surface of paper. These particles are formed during paper manufacturing 
and during high-speed offset printing (Nguyen, 2015). Linting has various 
negative effects. For example, because the lint accumulates on the printing 
blankets there is a reduction in image quality and in production efficiency 
due to repeatedly having to stop the press to clean the printing blankets 
(Lestiani, Batchelor, & Banham, 2013). 
 
The physical size of the particles is quite small. Various trial runs by Lestiani 
et al. (2013) have shown that the number of particles per square meter 
decreases exponentially with the particle size (Figure 1).  
 

 

Figure 1. Number of lint particles per m2 particle area (Lestiani et al., 
2013) 
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Due to resolution constraints of an area scan camera the smallest size 
distributions, which make up the bulk of the particles (Figure 2) cannot be 
detected.  
 

 

Figure 2. Measured number of lint particles per m² vs. number of 
printed copies (Lestiani et al., 2013) 

These particles are detected by HAMK with a laser diffraction system at a 
volumetric flow of 27 litres per minute. This thesis is therefore focussed on 
detecting the larger lint particles starting at ten microns. The minimum 
speed of the particles is limited to around five metres per second to make 
sure the particle movement does not stop due to Stokes’ law. 
 
Information about the amount of lint formed during paper manufacturing 
and high-speed offset printing can be beneficial. For example, in order to 
attenuate problems connected to linting paper manufacturers must be 
able to monitor the linting level and adjust this according to the tolerances 
of each printer (Brouillette et al., 2006). Research by Amiri et al. (2004) has 
also concluded that increased pulp quality and paper coating reduces 
linting propensity. Thus, an objective lint measurement system can be 
used to test the quality of the supplied paper. 
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2.2 Sensor 

The camera sensor contains the photodetectors which convert the 
photons of the incoming light to electrons. The amount of charge 
accumulated is proportional to the photon arrival rate (scene luminance) 
and the exposure interval (Corke, 2011). In this section, the two most 
common sensor technologies will be discussed. 

2.2.1 Charge Coupled Device (CCD) 

A CCD sensor has one common AD convertor for all photodetectors (Figure 
3). The charge of every detector must therefore be read out one by one. 
CCD has the advantage of a high fill factor since there is no loss of space 
between the photodetectors. The light sensitivity and thus the quality of 
the image will be higher than with a comparable CMOS sensor. (Batchelor, 
2012) 
 

 

Figure 3. CCD sensor (Qimaging, n.d.) 

There are two limitations to the CCD technology however. Firstly, because 
each line is read out sequentially it is not possible to select the region of 
interest (ROI). Some CCD cameras do have to capability of selecting the 
ROI, however doing so doesn’t reduce the sensor readout time as CCDs 
must always readout complete lines (Stemmer Imaging, n.d.). Secondly, 
blooming is an effect that happens when two photodetectors gather too 
much light and get saturated, because of this the charge could be 
transported to nearby photodetectors resulting in bright stripes in the 
image.  
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2.2.2  Complementary Metal Oxide Semiconductor (CMOS) 

In a CMOS sensor each pixel is supplied with individual control and readout 
circuits seen in Figure 4 (Batchelor, 2012). Therefore, the fill factor is lower 
though this can be corrected with micro lenses that direct the light to the 
photosensitive parts. This layout has the advantage that every pixel can be 
independently selected so the region of interest can be easily defined and 
that the frame rate is higher.  

 

Figure 4. CMOS sensor (Qimaging, n.d.) 

2.2.3 Line Scan Sensor 

A line scan sensor consists of only one line of photodetectors (Figure 5). 
This means there is no need for vertical transport and therefore much less 
time to transfer the sensor image information into the readout register is 
required. One-line sensors are characterised by a very short exposure time 
of about 25µs. Meaning a very bright light is required to expose the sensor. 
For these reasons a line scan sensor is often used for inspection of small 
objects moving at high speeds. (Batchelor, 2012) 
 

 

Figure 5. Line scan sensor principle (DALSA, n.d.) 
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This would have led to believe it to be an ideal solution for this subject. 
However, synchronization of the movement between the object and the 
camera is required to ensure a constant aspect ratio since an object is 
formed by adding the lines together at a known speed. This would make a 
line scan sensor ideal for objects on a conveyor.as seen in Figure 6 (DALSA, 
n.d.) 
 

 

Figure 6. Line scan and conveyor principle (DALSA, n.d.) 

For this subject, the object speed is not constant or measured since 
different sizes of lint will move at different speeds. Therefore, a line scan 
sensor cannot be used. 

2.2.4 Conclusion 

The advantage CCD has over CMOS is image quality. This however is not a 
defining characteristic for this subject. The advantages that CMOS possess 
such as higher framerate due to all camera functions being placed on the 
image sensor, the ability to define a region of interest and no blooming are 
of higher importance. Therefore, the sensor of choice will be a CMOS 
sensor. 
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2.3 Exposure Control 

Since the minimum speed of the lint is about five meters per second a lot 
of images need to be taken every second. Therefore, the sensor exposure 
and readout time is very important. The shutter mode is thus of significant 
importance in the selection of a sensor. With a CMOS sensor, there are 
two shutter modes available, the global shutter and the rolling shutter. 

2.3.1 Global Shutter 

When the frame start trigger is given the exposure starts for all lines that 
were selected as the ROI. At the end of a frame the exposure ends for all 
lines and the pixel readout begins until all pixel data is read (Figure 7). 
Therefore, all of the pixels expose at the same time and the image 
brightness is uniform throughout the frame, less problems also occur for 
objects in motion. (Qimaging, n.d.) 
 

 

Figure 7. Global shutter (Basler, 2017) 

Once the exposure is complete, each pixel simultaneously transfers its 
charge to a transistor waiting to be digitized. The global shutter mode has 
no spatial aberrations for fast moving objects, however it has a significantly 
reduced frame rate. An advantage that CMOS has over CCD is that it can 
maximize frame rate by not waiting for the entire frame readout to 
complete. In global shutter mode this advantage is lost since in this mode 
the overlapping capability is gone and the frame rate is reduced. 
(Qimaging, n.d.) 
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2.3.2 Rolling Shutter 

Rather than waiting for an entire frame readout, each individual frame is 
now able to begin the next frame’s exposure after completing the readout 
of the previous frame (Figure 8). The time delay (temporal offset trow) 
means that the exposure for each row is the same, but the time they start 
exposure is not. (Basler, 2017) The frame rate is determined by how 
quickly the readout process can be completed, decided by the speed of the 
A/D convertor and the number of rows on the sensor (Qimaging, n.d.). 
 

 

Figure 8. Rolling mode (Basler, 2017) 

The overlapping behaviour and time delay, while fast, has some 
disadvantages. When imaging moving objects, as is the case of this subject, 
considerations concerning the size and speed of the object must be made 
since spatial distortions due to the time delay between each row’s 
exposure are possible. (Qimaging, n.d.) 

 

The total readout time is defined by the sensor readout time plus the 
exposure overhead c1 (Equation 1), which is to prepare the sensor for the 
next acquisition (Basler, 2017). 
 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 𝑡𝑖𝑚𝑒 =  𝑡𝑟𝑜𝑤 ∙  𝑅𝑂𝐼 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑐1  (1) 
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2.3.3 Best of Both Worlds 

To maximize performance, it’s possible to achieve global exposure with a 
rolling shutter by using strobe lighting (Figure 9). This way the advantage 
of high framerate from rolling shutter mode is kept while spatial 
distortions are avoided thanks to the global exposure created by using a 
correctly timed flash. (Qimaging, n.d.) 
 

 

Figure 9. Rolling shutter flash window (Basler, 2017) 

Precise synchronization between the camera and flash lighting is therefore 
required. To ease the synchronization Basler cameras, offer an output that 
signals the ideal time to start the flash lighting i.e. the time all rows are 
exposed in case of a rolling shutter or when the exposure becomes active 
in case of a global shutter.  The schematic of the output line can be seen in 
Figure 10. 
 

 

Figure 10. Direct-coupled general purpose output line 
(Basler, 2017) 
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2.3.4 Conclusion 

To conclude, the ideal camera would have to be an area scan camera with 
a CMOS sensor capable of using the rolling shutter mode and with a 
sufficient resolution to detect the smallest feature. Since HAMK has 
previous experience with Basler cameras a Basler camera will be selected. 
 
Since a rolling shutter requires the use of strobe lighting to avoid spatial 
distortions most CMOS sensors implement a global shutter. Thus, there 
are a lot of high framerate cameras with a global shutter. These use a fast 
readout mode which improves framerate whilst sacrificing image quality. 
Both readout modes are therefore possible assuming the framerate is 
sufficient. 
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2.4 Lens 

The two most commonly used lenses are the conventional and the 
telecentric lens (Figure 11). 

 

Figure 11. Conventional lens angular field of view versus 
telecentric lens zero angle field of view (Edmund Optics, n.d.-a) 

A conventional lens behaves like the human vision. If the distance between 
an object and lens increases the angular field of view makes it so the 
magnification decreases. The angular field of view therefore decreases 
accuracy due to a perspective error (Edmund Optics, n.d.-a). Since the lint 
moves in a glass tube with a depth of three millimetres, the size of the lint 
will vary due to the depth perception error. 
 
A telecentric lens has a constant, non-angular field of view. At any distance, 
the field of view will remain the same. Therefore, the magnification of the 
objects does not change in respect to the depth (Figure 12). (Edmund 
Optics, n.d.-a)  
 

 

Figure 12. The telecentric lens has no depth perception 
error in comparison to a conventional lens (Edmund Optics, n.d.-a) 
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There are other advantages when using a telecentric lens. Telecentric 
lenses have a larger depth of field due to symmetrical blurring on either 
side of best focus, whereas conventional lenses blur asymmetrically.  This 
means that features such as edges retain their centre of mass. Therefore, 
an accurate measurement of the lint can still be made even if the object is 
beyond best focus as long as the contrast remains high enough. (Edmund 
Optics, n.d.-a) 
 
Telecentric lenses also have lower distortion values than conventional 
lenses. Distortion decreases measurement accuracy since the position of 
an object appears to be at a different location. When using telecentric 
lenses there is therefore no need to calibrate out distortion, thus 
increasing processing speed. (Edmund Optics, n.d.-a) 

2.5 Considerations when Selecting a Camera and Lens 

2.5.1 Spatial Resolution, Field of View and Frame Rate 

Image sensors break the image plane into discrete areas, usually squares. 
The signal from the sensor is thus sampled. When sampling variations 
occur over many samples the sampling effect is minimal. Unfortunately, 
when detecting small particles, the signal changes by a large amount from 
one location to the next, thus the sampling will produce results that no 
longer resemble the original intensity variations. (Batchelor, 2012) 
 
If a circular object with a diameter smaller than a pixel, which is very 
probable in lint detection, then the camera will reproduce the object as a 
square of one pixel (Figure 13). If the object however falls on the vertices 
of four pixels then it will be reproduced as a square of four dimmer pixels. 
If the object has the same diameter the image reproduction is still not 
faithful. (Andor, n.d.) 
 

 

Figure 13. Circular Object Image Reproduction (Andor, 
n.d.) 
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Therefore, the Nyquist theorem states that the frequency of the digital 
signal should be twice that of the analog signal. In imaging terms, the 
theorem recommends a sampling rate of two pixels relative to the image 
size of the object. Adequate resolutions can thus only be achieved if at 
least two samples are made for each resolvable unit. (Andor, n.d.) 
 
The resolutions is thus defined by Equation 2 (National Instruments, 2014): 
 
 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 2 
𝐹𝑂𝑉

𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒
 (2) 

 
The field of view also decides the number of images that need to be taken 
every second. Choosing the field of view is thus a conundrum since a wider 
field of view will decrease the required frame rate, however it will increase 
the resolution required to detect the smallest feature. For this thesis, the 
field of view is defined by the mechanical design. 

2.5.2 Pixel and Sensor Format 

Since a low duration strobe light is researched the amount of light the 
sensor can gather is rather limited. A large pixel format means there is 
more room to gather light. Larger pixels also have a higher signal-to-noise 
ratio and greater dynamic range. A larger sensor format will increase the 
size the individual pixels can be and is thus best selected as high as 
possible. (Sally Wiener & Daniel, 2012) 
 
However, due to the Nyquist theorem the imaging pixel size should be half 
the size of the smallest feature (University of California; Berkeley, n.d.). For 
ten-micron particles, the pixel size can maximally be 5 microns.   
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2.5.3 Focal Length 

The focal length defines the field of view and working distance and thus 
also indirectly the smallest detected feature. The shorter the focal length 
the shorter the distance needed to obtain the same field of view compared 
to a longer field of view lens. The focal length is thus best kept short. There 
are however also a few disadvantages to a short focal length lens. Firstly, 
a short focal length lens can cause distortion and therefore variations in 
the angle with respect to the working distance. Secondly, short focal length 
lenses have difficulties covering larger sensor sizes. (Edmund Optics, n.d.-
b) 

2.6 Available Hardware at HAMK 

The selection of the optimal lighting is dependent on the camera and lens 
used. At HAMK there are two camera and lens vision setups available 
(Table 1-4). The characteristics of both are summarized in the two tables 
below. 

Table 1. Basler acA 1920-25um specifications 

Camera Basler acA 1920-25um 

Resolution 1920 x 1080 pixels 

Framerate 25 fps 

Pixel Width 2,20 µm 

Pixel Height 2,20 µm 

Sensor Diagonal 4,85 mm 

Sensor Width 4,2 mm 

Sensor Height 2,4 mm 

Shutter type Electronic rolling shutter 

Interface type USB 3 

Table 2. Basler C125-0618-5M specifications 

Lens Basler C125-0618-5M 

Focal Length 6 mm 

Aperture Range f/1.8 to f/22 

Focus Range  0,1 m to infinity 

Wavelength Range Visible range (400 to 700 ηm) 
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Table 3. Basler acA 1300-200um specifications 

Camera Basler acA 1300-200um 

Resolution 1280 x 1024 pixels 

Framerate 200 fps 

Pixel Width 4,80 µm 

Pixel Height 4,80 µm 

Sensor Diagonal 7,87 mm 

Sensor Width 6,14 mm 

Sensor Height 4,92 mm 

Shutter type Electronic global shutter 

Interface type USB 3 

Table 4. Basler C125-0818-5M specifications 

Lens Basler C125-0818-5M 

Focal Length 8 mm 

Aperture Range f/1.8 to f/22 

Focus Range  0,1 m to infinity 

Wavelength Range Visible range (400 to 700 ηm) 

 
It can already be concluded that with 200 frames per second the second 
vision setup will likely perform better. However, the theoretical possibility 
of fulfilling the goals will be calculated for both setups in 3. The camera of 
setup two also maximizes light gathering performance with the bigger 
sensor size, yet is small enough at 4.8 microns to use two pixels for the 
smallest detected feature as stated by the Nyquist theorem for the goal of 
10 microns. 

2.7 Light 

The lighting is one of the most essential elements of a vision setup. A good 
lighting setup will accentuate the object of interest. Therefore, it is 
important to make a calculated choice on the type and placement of the 
lighting. This is not an easy task since humans do not see light directly, but 
rather the reflection of light. It is this process of reflection that decides how 
an object is seen by the camera. The lighting influences this process. 
(Corke, 2011)  
 
To make a calculated choice, knowledge of the type of lighting available 
and its advantages and disadvantages are required. Also, knowledge of the 
camera quantum efficiency (QE), which is the ratio of collected electrons 
to the number of incoming photons, is important to maximize the light the 
camera receives (Batchelor, 2012). For example, if every photon is 
converted into an electron the QE will be 100 percent. Lastly, knowledge 
of the different illumination techniques is required (Daryl, 2017). 
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2.7.1 Features of Interest 

The goal of this thesis is to detect the lint particles. To differentiate the lint 
from the background edge detection will be required. Therefore, 
maximizing the contrast of the lint against the background is very 
important. 

2.7.2 Light Types 

The most widely used lighting types are fluorescent, led and quartz 
halogen. Less commonly used are xenon and metal halide. Some defining 
characteristics of each type are seen in Figure 14. (Martin, Practical Guide 
to Machine Vision Lighting, 2012.) 
 

 

Figure 14. Comparison of lighting types (Daryl, 2017) 

As can be seen unless high output intensity or a large area are required 
then LED is most often used. The advantages of led are thus: 
 

 Flexibility: the light colour can be chosen depending on the QE of the 
sensor and the feature of interest. 

 Long life expectancy; 

 Strobe lighting is possible; 

 Quick response time. 
 
Since output intensity is very important due to the short exposure time 
another good possibility could be xenon lighting. However, considerations 
must be made about the ease of implementation and safety since the flash 
will be created by an electronics student. Xenon requires a very high 
operation voltage to ionize the gas, is more difficult to implement and has 
a shorter lifecycle than LED (Mars, 2009). Therefore, for this research LED 
lighting will be used. 
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2.7.3 Quantum Efficiency and Spectral Output 

In applications requiring high light intensity it is useful to match the 
spectral sensitivity of the sensor to the output of the LED light (Daryl, 
2017). Figure 15 shows the spectral output of various light sources. 
 

 

Figure 15. Comparison of spectral output from various 
light sources (Daryl, 2017) 

The spectral sensitivity for different wavelengths of the sensor can be seen 
in Figure 16. 
 

 

Figure 16. Quantum efficiency (Basler, n.d.) 
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The sensor is most sensitive in the 450-550ηm wavelength. This 
wavelength is well represented by white LEDs. Figure 17 shows the 
spectral transmittance of the Basler lens. 
 

 

Figure 17. Lens transmittance (Basler, 2016) 

The lens is most sensitive in the visible spectrum. A spectrum also well 
represented by white LEDs. It can be concluded that for this thesis white 
LEDs are the most ideal type of lighting. 

2.7.4 Illumination Techniques 

Back lighting generates instant sharp contrast as it creates dark silhouettes 
against a bright background (Figure 18). The disadvantage is that surface 
details are lost, this however is not a concern for detecting the lint. (Daryl, 
2017) 

 

Figure 18. Back lighting (Daryl, 2017) 

Also, Pau & Olafsson (1991) state that back lighting is the most obvious 
illumination method for width and length measurements. Which is 
beneficial for further research in calculating the mass lost from linting. 
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2.7.5 Micro Second Strobe Lighting 

Since the sensor is exposed to the strobe light for only one microsecond it 
is likely that a single LED cannot sufficiently expose the sensor. A way must 
therefore be found to increase the brightness. Since a LED will generally 
fail from too high of a temperature rather than overcurrent, a possibility 
researched by Willert, Stasicki, Klinner, & Moessner (2010) is to temporally 
overdrive the LED. Overdriven LEDs with short duration, pulsed current 
beyond their continuous current damage threshold can generate light 
pulses sufficient to illuminate and image micron-sized particles (Willert et 
al., 2010).  
 
When overdriving a LED, the output doesn’t increase linearly with the 
current since some energy is lost in heat. An estimate by Wilson, 
Gustafson, Lincoln, Murari, & Johansen (2014) concludes that ten times 
overdriven LEDs (ten times the maximum current) would result in an 
increase of output intensity by 550 percent. There is no way to calculate 
the output intensity increase. Therefore, the ideal overdrive amount 
would have to be tested by increasing the current in small steps. A second 
possibility is to use multiple LEDs since the output intensity increases 
linearly with the number of LEDs placed. 

2.8 Programming Environment 

There are many machine vision programming environments available. For 
this thesis, only those that are available to HAMK free of charge are 
considered. Commercial software such as Mvtec Halcon, Cognex 
Visionpro, etc. are not considered.  
 
An open source software package is OpenCV which can be programmed 
using C++ or Python, though only C++ is supported by Basler. Programming 
on hardware level like C++ has the advantage of faster performance 
(Fleyeh, 2014). 
 
Another option are academic software packages like Mathworks Matlab 
and National Instruments Labview. While OpenCV is generally better for 
implementation, Matlab and Labview are more interesting for research 
due to ease of programming (Fleyeh, 2014). For example, working with 
matrices is much easier in Matlab than in C++ and images are essentially 
matrices. This thesis is research oriented and not about industrial 
implementation therefore an academic software package like MATLAB will 
be used. 
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2.9 Contrast Improvement 

Most segmentation techniques divide the pixels in binary values by using 
some form of threshold. Sharp contrast is thus advisable to increase the 
ease and accuracy of finding a suitable threshold. An image lacks contrast 
when there are no sharp differences between black and white. (Corke, 
2011) 
 
To improve contrast the grey scale distribution must be altered. This is 
generally done with a monadic operation. A monadic operation means that 
each output pixel is a function of the corresponding input pixel (Equation 
3). (Corke, 2011) 
 

𝑂[𝑢, 𝑣] = 𝑓(𝐼[𝑢, 𝑣]) (3) 
 
The result is an image of the same size as the input image, as can be seen 
in Figure 19. 
 

 

Figure 19. Monadic operation: output (Corke, 2011) 
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The following two common examples highlight why contrast adjustment 
might be necessary. The first example has a histogram which shows three 
significant peaks (Figure 20). However, dependent on where the threshold 
is chosen there may be nine or more peaks. Contrast normalization is 
necessary to give a clear idea on where to select the threshold. (Corke, 
2011) 
 

 

Figure 20. Example one (Corke, 2011) 

 
The second example shows an image where the pixels do not span the full 
range of available grey levels (Figure 21). A linear mapping such as 
histogram normalization can be used which ensures that the pixel 
intensities are distributed linearly. (Corke, 2011) 
 

 

Figure 21. Example two (Corke, 2011) 
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Since the optimal threshold can be selected with Otsu’s method which 
separates an image into two clusters of pixels so that the variance of values 
within each cluster is minimized and the variance of the values between 
the two clusters is maximized. Otsu’s method thus assumes that the 
histogram has just two peaks. Using Otsu’s method on the image above 
would therefore result in poor pixel classification. (Corke, 2011) 
 
To improve contrast a function with a slope higher than one can be used, 
seen in Figure 22. 
 

 

Figure 22. Contrast improvement 

As can be seen it will project a small region of input pixels over a larger 
range of output pixels, thus normalizing the contrast. 
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2.10 Filter 

Filters are applied as a linear spatial operator (Corke, 2011). 
 

𝑂[𝑢, 𝑣] = 𝑓(𝐼[𝑢 + 𝑖, 𝑣 + 𝑗]) (4) 
 
Each pixel in the output image is a function of all pixels in a region 
surrounding the corresponding pixel in the input image as seen in Figure 
23 and Equation 4 (Corke, 2011). 
 

 

Figure 23. Spatial operation (Corke, 2011) 

2.10.1 Edge Detection 

Edges are characterised as abrupt changes in pixel intensity. Edge 
detection is the process of identifying these sharp discontinuities. (Maini 
& Aggarwal, 2009) Contrast improvement may be required since effects 
such as refraction and poor focus result in boundaries with a gradual 
change in intensity, thus no abrupt change (Argyle & Rosenfeld, 1971). 
There are two main principles for edge detection. Firstly, the gradient 
based method which looks for edges at the maxima and minima of the first 
derivative. Secondly, the Laplacian method which looks for zero crossings 
in the second derivative. Since a derivative will also increase the noise 
some form of noise filtering is likely necessary. (Maini & Aggarwal, 2009) 
 
There are several types of edge detectors of which the most optimal 
generally depends on the type of edge that must be detected. Research by 
Maini & Aggarwal (2009) concluded that Canny edge detection yields the 
best results under almost all scenarios, though it is also the most 
computationally expensive. 
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2.11 Image Segmentation 

Image segmentation is the process of partitioning an image into multiple 
segments. It is a necessary process to locate the lint in the images 
(Kaewtrakulpong & Bowden, 2001). The following sections will review all 
the related image segmentation techniques used in this thesis.  

2.11.1 Frame Differencing 

Frame differencing uses the absolute difference between frames to divide 
an image into changed and unchanged regions. Since only the lint moves, 
the changed region is associated with the lint and the unchanged with the 
background. (Lee & Eddins, 2003) 
 
Another possibility, which is also the easiest to implement, would be to 
make an image of the background without the moving lint particles. Then 
all that is required is to subtract the lint recording frame by frame from the 
static background image. The resulting frames will only have the moving 
lint particles. (OpenCV, n.d.) 

2.11.2 Thresholding 

Thresholding is a segmentation technique for images based on the colour 
or grayscale value. It transforms an image into a binary image by 
transforming each pixel according to whether it is inside or outside the 
specified range. Black pixels correspond to the background and white 
pixels to the foreground (or vice versa). (Huang & Chau, 2008) In an ideal 
case the grey-value histogram has a deep sharp valley between two peaks 
(Figure 24 left). Since backlight will be used this is reversed as the lint will 
be represented as dark valleys and the bright background as a peak. The 
threshold can then be chosen at the bottom of the valley. In other words, 
sharp contrast between lint and background is required. (J. M. Prewitt and 
M. L. Mendelsohn, 1966) 
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Because not much is known about the test setup in Tampere it could be 
that due to non-ideal factors such as stray lighting and shadows that this 
ideal case is not possible (Figure 24 right) and the threshold will be difficult 
to select. Therefore, two threshold techniques will be researched. The first 
which assumes the ideal case with the threshold selected as a grey value 
just above the lint’s grey value. Also, another method will be tested which 
overcomes the difficulties when no clear threshold is present. 
 

 

Figure 24. Gray-level density functions of two regions in 
an image. Left image: clear valley present for easy threshold 
selection, right image: non-optimal histogram for threshold 

selection (Huang & Chau, 2008) 

 
One of these techniques is called valley sharpening which is proposed by 
Weszka, Nagel, & Rosenfeld (1974). Valley sharpening restricts the 
histogram to the pixels with the largest absolute values of derivative. A 
second method proposed by Watanabe & Group (1974) selects the 
threshold at the grey level with maximal amount of difference. MATLAB 
however uses Otsu’s method proposed by Otsu (1979). It automatically 
selects a threshold from a grey level histogram which is selected by the 
discriminant criterion. This method is a very simple procedure with limited 
computing time and an optimal threshold is selected automatically and 
stable. (Otsu, 1979) 

2.11.3 Gaussian Mixture Models 

The Gaussian mixture-based background/foreground segmenting 
algorithm used in MATLAB is based on research by Kaewtrakulpong & 
Bowden (2001). It uses a method that models each background pixel by a 
mixture of Gaussian distributions. The weights of each mixture represent 
the time that those colours stay in the scene. The background colours are 
those that stay in the scene longer and are more static. (OpenCV, n.d.) 
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3 VISION SETUP DESIGN: CALCULATIONS 

The literature study concluded some characteristics that are important 
when selecting the hardware for this subject. Since buying new hardware 
is expensive it is beneficial to look if the research cannot be completed 
with sufficient accuracy when using hardware currently available at HAMK. 
There are three hardware components that complete a vision setup. 
Firstly, the lighting which will be designed and created by a bachelor 
electronics student. Secondly, the camera which will be one of the two 
Basler CMOS cameras. Lastly, the lens which is unfortunately not a 
telecentric lens. 
 
The laser diffraction system used to detect the smaller lint particles has a 
volumetric flow of 27 l/min, of which the value cannot be changed. The 
volumetric flow is defined by Equation 5. 
 

𝑞𝑣 = 𝐴 ∙  𝑣 (5) 
 
The area and speed of the lint particles can be altered slightly if the 
volumetric flow remains the same. The speed does have a minimum speed 
of 5 m/s to make sure the heavier particles do not stop moving due to 
Stokes’ Law. An area of 90 mm2 would lead to a speed of 5 m/s. The area 
of the tube is defined by the depth of field and the height.  

3.1 Calculations setup 1 

3.1.1 Field of View 

The field of view is decided by the focal length of the lens and the working 
distance. The field of view is the largest area that the sensor can see. Since 
the lens available is a fixed focal length lens of 6mm the field of view can 
only be changed by varying the working distance.  
 
The smallest feature that can be detected in the selected field of view is 
decided by the resolution of the sensor. Since the vertical resolution is 
known the ideal vertical FOV can be calculated. 
 

V𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐹𝑂𝑉 =
Vertical resolution ∙  Smallest feature

2

=  
1080 ∙  10𝜇𝑚

2
= 5,4𝑚𝑚 
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3.1.2 Working distance 

If the tube is made long with short height the particles will overlap 
decreasing the accuracy of the system. Since the four used LEDs will be 
placed in a 2x2 formation it makes sense to have the same height and 
length to even out the light distribution. This is however not entirely 
possible due to area being limited not the decrease the speed too much. 
For a 4mm depth of field estimation the maximum size the height of the 
tube can be is 22,5mm. 
 
As can be seen in the field of view calculations the field of view is not 
sufficient to cover the complete height of the tube. Since the lens has a 
fixed focal length the working distance must be increased to make the field 
of view cover the complete 22,5 mm of the tube height. The relationship 
between field of view and working distance is given by Equation 6 
(National Instruments, 2014). 
 

F𝑜𝑐𝑎𝑙 𝐿𝑒𝑛𝑔ℎ𝑡 ∙  𝐹𝑖𝑒𝑙𝑑 𝑜𝑓 𝑉𝑖𝑒𝑤 = 𝑆𝑒𝑛𝑠𝑜𝑟 𝑆𝑖𝑧𝑒 ∙  𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (6) 
 
The working distance is thus defined by: 
 

W𝑜𝑟𝑘𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
𝐹𝑜𝑐𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ ∙  𝐹𝑖𝑒𝑙𝑑 𝑜𝑓 𝑉𝑖𝑒𝑤

𝑆𝑒𝑛𝑠𝑜𝑟 𝑆𝑖𝑧𝑒

=  
6𝑚𝑚 ∙  22,5𝑚𝑚

2,4𝑚𝑚
= 56,25𝑚𝑚 

 
The issue is however that no longer two pixels are used for every feature. 
By increasing the working distance and thus also the field of view the 
resolution of the sensor is no longer sufficient to detect the small lint 
particles. For a field of view of 22,5mm a resolution of 4500 pixels would 
be required. The smallest feature that can realistically be detected 
therefore must be increased to around 41,67 microns.  
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3.1.3 Depth of Field 

The depth of field defines the maximum depth of the tube since it is the 
distance the lint can move along the optical axis while still forming a 
sharply focused image (Batchelor, 2012).  It is calculated as the distance 
between the far and near focal length (Figure 25).  

 

Figure 25. Depth of Field. A point in the plane Q is 
focused to a point in plane T. The object can move between 
region PR, the region between the closest focus point S1 and 

furthest S2, while still maintaining an optimal focus. (Batchelor, 
2012) 

The focal length is defined as the distance between the lens and it’s focal 
point seen in Figure 26 (Batchelor, 2012). 
 

 

Figure 26. Relationship between different lens and 
sensor parameters (National Instruments, 2014) 

The depth of field must be solved iteratively since it is also depended on 
the working distance of the camera. 
 
Before calculating the depth of field some other parameters need to be 
known. 
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Firstly, the circle of confusion which is a small finite-sized spot size that is 
a measure of the level of miss-focus (Batchelor, 2012). It can be calculated 
with the Zeiss formula seen in Equation 7. 
 

𝐶 =  
𝑑

1730
=  

4,85

1730
= 0,0028 (7) 

 
With d the sensor diagonal. 
 
Secondly, the distance to the closest point of acceptable focus when the 
lens is focused at infinity, the hyper focal distance seen in Equation 8 
(Psarossy, 2013). 

 

𝐻 =  
𝑓2

𝑁 ∙  𝐶
=  

62

22 · 0,0028
= 584𝑚𝑚 (8) 

 
Where N is the aperture. In this calculation, the maximum possible 
aperture is chosen which will result in the maximum possible depth of field 
of the camera. This however may not be ideal since it will reduce the 
exposure of the sensor to light. 
 
The depth of field is defined as the distance between the furthest and 
closest distance that the lint is acceptably focussed (Equation 9 and 10). 
 

𝑆 𝑐𝑙𝑜𝑠𝑒 =  
𝐻 ∙  𝐷

𝐻 + (𝐷 − 𝑓)
=  

584 ∙  58,25

584 + (58,25 − 6)
= 53,46𝑚𝑚 (9) 

 
 

𝑆 𝑓𝑎𝑟 =  
𝐻 ∙  𝐷

𝐻 + (𝐷 − 𝑓)
=  

584 ∙  58,25

584 − (58,25 − 6)
= 65,46𝑚𝑚 (10) 

 
Where D is the distance to the lint from the front principal point. The 
maximum possible depth of field is thus 12mm. With a 2.8 aperture this 
would be 1,5mm and with a 5.6 aperture 3mm. The previous estimation 
for the depth of the tube of 4mm is thus acceptable. 
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3.1.4 Magnification 

The field of view does not have the same size as the sensor (Figure 27) so 
some magnification setting on the lens is required. 
 

 

Figure 27. Magnification required when the sensor size 
and field of view are not similar (Blankinship, 2005) 

The primary magnification (PMAG) in Equation 11 describes the ratio 
between the sensor size and the field of view (Blankinship, 2005). 
 

P𝑀𝐴𝐺 =  
𝑆𝑒𝑛𝑠𝑜𝑟 𝑆𝑖𝑧𝑒

𝐹𝑖𝑒𝑙𝑑 𝑜𝑓 𝑉𝑖𝑒𝑤
=  

2,4𝑚𝑚

22,5𝑚𝑚
= 0,107 (11) 

3.1.5 Images per Second 

The number of images that need to be taken every second to make a full 
representation of all the lint that passes by is dependent on the horizontal 
field of view since the air moves horizontally, and the speed at which the 
lint moves (Equation 12).  
 

H𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐹𝑂𝑉 =
Horizontal resolution ∙  Smallest feature

2

=  
1920 ∙  41,67𝜇𝑚

2
= 40𝑚𝑚 

 

I𝑚𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 =  
𝑆𝑝𝑒𝑒𝑑

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐹𝑂𝑉
 (12) 

 

=  
5

𝑚
𝑠

40𝑚𝑚
= 125 𝑖𝑚𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 
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3.1.6 Flash Exposure Time 

The exposure time of the camera is too high to reduce motion blur. 
Therefore, a short duration strobe light will be designed to decrease the 
time the lint is visible for the sensor. The ideal pulse duration of the strobe 
light is calculated in the next section. 
 
The lint moves across the sensor at the known speed of v. While the flash 
is active for a duration of N, the lint will move a distance of v ∙ N. The field 
of view is imaged by the lens onto the sensor, because the field of view is 
larger than the sensor size the lens reduces the size of the field of view by 
a factor R = BFL/D with BFL the focal length and D the working distance as 
can be seen in Figure 28. (Facey, sd) 
 

 

Figure 28. Detailed relationship between lens and sensor 
parameters (Edmund Optics, n.d.-b) 

The distance the lint moves across the sensor is thus R ∙ v ∙ N. This distance 
needs to be within an acceptable limit to avoid blurring. An example would 
be to not allow the lint to move more than one pixel, which would be 
2,2µm (C in Equation 13) an acceptable accuracy considering the smallest 
detectable lint particle is 41,67µm. For non-full frame camera’s this value 
needs to be divided by the sensor crop factor (Facey, sd). The crop factor 
gives the ratio of the dimensions of a sensor relative to that of a 35mm full 
frame sensor with a diagonal of 43,3mm (Vorenkamp, 2016). The diagonal 
of the sensor is 4,85mm so the crop factor is 8,93. 
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So, the distance the lint moves across the sensor should be smaller than C 
divided by the crop factor (Equation 13). 
 

R ∙  𝑣 ∙  𝑁 =  
𝐵𝐹𝐿

𝐷
∙  𝑣 ∙  𝑁 ≤  

𝐶

8,93
 (13) 

 
Therefore, the flash duration N should be: 
 

N ≤  
𝐶 ∗ 𝐷

8,93 · 𝐵𝐹𝐿 · 𝑣
=  

2,2µ𝑚 ∙  56,25𝑚𝑚 

8,93 ∙  6𝑚𝑚 ∙  5
𝑚
𝑠

= 462𝜂𝑠 

3.1.7 Sensor Readout Time 

The readout time is defined by: 
 

T𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 𝑡𝑖𝑚𝑒 =  𝑡𝑟𝑜𝑤 ∙  𝑅𝑂𝐼 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑐1
= 35µs ∙  1080 + 490µs = 38,3ms 

 
This means that with the full resolution, region of interest height of 1080, 
only 26 images can be taken every second. This is much less than the 
previously calculated 125 images that are needed every second for a 
complete representation. As can be concluded the major stumbling block 
in reaching the goal is the readout time.  
 
For the camera to process enough images the ROI must be decreased 
which is possible by increasing the size of the smallest detectable feature. 
The smallest possible feature that can be detected can be easily calculated.  
Since the vertical field of view cannot be further increased because of the 
minimum required speed always 125 images need to be taken for a full 
representation. The ROI required to sufficiently reduce the readout time 
is: 
 
T𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 𝑡i𝑚𝑒 =  𝑡𝑟𝑜𝑤 ∙ 𝑅𝑂𝐼 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑐1 = 35µs ∙ ROI + 490µs

=
1

125
 

 
Thus, the vertical region of interest (ROI) is maxed at 215 pixels. Finally, 
can be calculated what the smallest possible feature is that can be 
detected with such a limited vertical resolution: 
 

V𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐹𝑂𝑉 =
Vertical resolution ∙ Smallest feature

2

=  
215 ∙ 𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

2
= 22,5𝑚𝑚 

 
This concludes that the smallest feature that can be detected and 
processed is 210µm.  
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3.1.8 Summary 

The results of these calculations are summarized in Table 5. 

Table 5. Vision setup one, summary 

Field of View 22,5mm 

Working Distance 56,25mm 

Maximum Depth of Field 12mm 

Magnification 0,107 

Images per Second 125 

Flash Exposure Time 462ηs 

Smallest Detectable Feature 210µm 

3.2 Calculations setup two 

The calculations were performed again for setup two. The results are 
displayed in Table 6. 

Table 6. Vision setup two, summary 

Field of View 22,5mm 

Working Distance 36,59mm 

Maximum Depth of Field 4,3mm 

Magnification 0,219 

Images per Second 180 

Flash Exposure Time 1,06µs 

Smallest Detectable Feature 43,95µm 
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3.3 Conclusion 

It can be concluded that the goal of detecting particles of ten microns is 
not possible with the hardware available at HAMK. The best results are 
possible with setup two, therefore this setup will be used. Some possible 
improvements could be: 

 Change the goal from 10 to roughly 45 microns. This would mean 
that research must be done to extend the laser diffraction to also 
detect between 10 and 45 microns. 

 Change the mechanical design. A solution could be to, for example, 
blow the lint on a conveyor so that all the lint moves at the same 
velocity. If this is the case a line scan camera can be used which is 
ideal for this subject. 

 There are area scan camera’s in Basler’s catalogue that can acquire 
images with sufficient resolution and framerate. Though researching 
each one would be too time inefficient. 

 
A visual overview of the settings of setup two is given in Figure 29. 
 

 

Figure 29. Vision setup overview 
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4 VISION SETUP OVERVIEW 

Vision setup two and a strobe light created by a colleague will be used. 
Both elements must be synchronized when the exposure of the sensor 
becomes active. Programs were created to test the framerate, smallest 
detectable feature, segmentation performances and detect the lint 
passing by. An overview of the practical test setup is seen in Figure 30. 
 

 

Figure 30. Vision Setup 
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4.1 Strobe Light 

The block diagram in Figure 31 displays the various functions that make up 
the strobe light. 
 

 

Figure 31. Strobe Light Diagram 

Two PCBs were created. The first PCB contains the monostable 
multivibrator. The second PCB contains the MOSFET and LED driver. In this 
thesis only a brief overview of each component is given. More in-depth 
information is given by De Brabanter (2017). 

4.1.1 Strobe and Camera Exposure Synchronization 

One of the general-purpose output lines (GPO) will be used to synchronize 
with the strobe light. The output will send a signal when the exposure of 
the camera becomes active. It can be configured in Basler Pylon as seen in 
Figure 32. 
 

 

Figure 32. General-purpose output line settings 
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The GPO has an internal voltage of 3.3V that will send 180 signals every 
second to the monostable multivibrator. Since the exposure time is too 
long, the strobe light will switch on after receiving the signal but turn off 
at a user defined time as explained in 4.1.2. In Figure 33 the output of the 
GPO can be seen. 
 

 

Figure 33. General Purpose Output at 180 Frames per 
Second 

The monostable multivibrator requires an input voltage of five volts. 
Therefore, an external voltage source and pull-up resistor is used to bring 
the GPO output to five volts. 
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4.1.2 Monostable Multivibrator 

When the monostable multivibrator gets a trigger from the camera it will 
give a pulse on the output pin. The pulse width depends on the resistor 
and capacitance value. The resistor value can be adjusted to change the 
duration of the output pulse between 100ηs and 1µs. The circuit of the 
monostable multivibrator can be seen in Figure 34. 
 

 

Figure 34. Monostable multivibrator circuit (De 
Brabanter, 2017) 

In Figure 35 the potentiometer is adjusted so the pulse width is at its 
minimum duration of 100ηs.  
 

 

Figure 35. 100ηs Pulse Width (De Brabanter, 2017) 
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4.1.3 MOSFET and LED driver 

The LED driver has a maximum current of 1.5A. Therefore, the R1 resistor 
is placed to limit the current. The monostable multivibrator however 
cannot drive this resistor since the output current is limited to 50mA. 
Therefore, a MOSFET driven by a 12V power source is placed which will 
wire through the pulses of the monostable multivibrator to the LED driver. 
The LED driver can deliver sufficient power for four high power LEDs by 
using an external power source of 70V. The circuit of the MOSFET and LED 
driver is seen in Figure 36. 

 

Figure 36. MOSFET and LED driver circuit (De Brabanter, 
2017) 

4.1.4 LED 

Four high power white LEDs (LZ4-40CW08-0065) are used (Figure 37).  
 

 

Figure 37. High-power LEDs 

At a nominal current of 700mA a single LED will provide 680 lumens. Using 
four LEDs should thus offer sufficient brightness across the field of view to 
expose the sensor. If necessary the LEDs can also be overdriven. The pulse 
duration is defined by the monostable multivibrator.  
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4.2 Program Overview 

Three programs are created. The first program contains the video 
recording settings. The video will be recorded at 180 frames per second at 
a user defined recording time. The code for this program is found in 
appendix 1. The second program is the video processing program. This 
program is used to process a pre-recorded recording. The code can be 
found in appendix 2-4 with each appendix containing one of the three 
different segmentation techniques tested. An overview is given in Figure 
38.  
 

 

Figure 38. Video processing diagram 

As can be seen the frame by frame processing is kept to a minimum. Since 
the goal is to research the possibility of identifying the passing by lint, 
processing must be kept to minimum to make real-time processing a 
possibility. 180 frames per second is still likely too much even with this 
minimal amount of processing. Therefore, this program is created three 
times with three different segmentation techniques to compare 
performances. 
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For extensive analysis to verify the theoretical conclusions such as the 
smallest detected feature a third program is created. The diagram of the 
program can be seen in Figure 39 and the code can be found in appendix 
5. 
 

 

Figure 39. Extensive image analysis diagram 

As can be seen in the diagram this program has more extensive processing. 
Processing blocks one, two and three are likely not necessary depended on 
the recording conditions. It should be noted that these extensive analyses 
functions can be easily implemented in the for loop that steps through the 
video frame by frame if more extensive analysis is required in the video 
processing program.  

  



52 

 

Unfortunately, some issues occurred with the strobe light which will be 
explained in the conclusion. The other available lighting system seen in 
Figure 40 is not optimal.  
 

 

Figure 40. Alternative light source 

The light source is angled in such a way that all light is focussed to the 
middle of the field of view. Therefore, light is not evenly distributed with 
brightness gradually decreasing away from the centre of the field of view. 
In image analysis, the darker portion of the field of view was cut to have a 
good histogram distribution. For the video recording this was not possible. 
Therefore, histogram segmentation results will be less accurate in the 
video recorded section (5.2) than in the image analysis section (5.3). 
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5 TEST SETUP RESULTS 

5.1 Flash Synchronization 

In Figure 41 the result of the monostable multivibrator being driven by the 
general purpose direct output of the camera can be seen. 
 

 

Figure 41. Camera and strobe light synchronization (De 
Brabanter, 2017) 

The yellow signal on channel one is the output of the camera without 
inversion. The blue signal on channel two is the output of the monostable 
multivibrator. As can be seen, the output of the monostable multivibrator 
is successfully synchronized with the exposure active output of the camera 
at 180 frames per second. In this result, the output pulse is 250ηs as can 
be seen in Figure 42. 
 

 

Figure 42. 250ηs output pulse (De Brabanter, 2017)  
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5.2 Pre-recorded Performance 

To test the possibility of real-time recording the performance of three 
different segmentation techniques was analysed. 

5.2.1 Gaussian Mixture Models 

Figure 43 displays the output of the Gaussian mixture foreground detector. 
 

 

Figure 43. Gaussian mixture models result 

The left image displays an unmodified frame of the original recording. The 
right image is the binary image that is the result of the Gaussian mixture 
model segmenting. As can be seen, false detections occur due to noise. 
Therefore, a separate filter is required.  
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An example of such a filter is to morphologically open the image with a 
disk of radius one. This will filter out all the noise with a radius smaller than 
one pixel. It will however also remove all the particles with a radius smaller 
than one, thus reducing accuracy. For size and mass measurements these 
particles are inaccurate due to the Nyquist theorem explained 2.5.1 so this 
loss of accuracy is less of a concern. 
 

 

Figure 44. Gaussian mixture models with an additional 
noise filter 

The used filter not only successfully removes all noise (for example, the 
region in red) it also fills the holes in the detected blobs (Figure 44). The 
number of particles removed due the filter (for example, the particle in 
green) is very minimal.  
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A performance analysis of the Gaussian mixture foreground detector is 
seen in Figure 45. 
 

 

Figure 45. Gaussian mixture models performance 
analysis 

In comparison with the other two segmentation techniques, Gaussian 
mixture models requires significantly more processing time. Therefore, 
this segmentation technique is not ideal for real-time processing. In Figure 
46 the filters are included in the performance analysis. 
 

 

Figure 46. Noise filter performance analysis 

The filters have a further negative impact on the performance. 
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5.2.2 Histogram Binary Imaging 

Figure 47 display the output of histogram binary segmenting using Otsu’s 
method for automatic thresholding. 
 

 

Figure 47. Segmentation using Otsu’s thresholding result 

The results are very poor with many objects not detected. This is due to 
the poor contrast of the original video frame as can be seen in the 
histogram of Figure 48. 
 

 

Figure 48. Poor contrast 

The poor contrast is a result of poor light distribution of the alternative 
light source. Thresholding is still a viable method when sufficient contrast 
is possible as seen in 5.3. 
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A performance analysis of the segmentation method by using Otsu’s 
thresholding is seen in Figure 49. 
 

 

Figure 49. Segmentation using Otsu’s thresholding 
performance analysis 
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5.2.3 Frame Differencing 

Figure 50 displays the output of segmentation by using image subtraction. 
 

 

Figure 50. Image Subtraction Results 

The results are very good even in non-optimal testing conditions. Though 
due to non-uniform lighting the result of the image subtraction is not a 
binary image. A separate step to binarize the image is necessary. 
 
Figure 51 analyses the performance of the image subtraction 
segmentation. 
 

 

Figure 51. Image Subtraction Performance Analysis 

In comparison with the other two segmentation techniques, frame 
differencing requires significantly less processing time and is thus the best 
method for real-time processing.  
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5.3 Image Analysis 

To detect the smallest detected particle the image analysis program works 
as follows (Figure 52). 
 

 

Figure 52. Image analysis process 

Firstly, the original image is segmented to a binary image using a manual 
threshold selected based on the histogram of the original image. 
Afterwards the particles are identified, the properties of the particles are 
calculated and they are individually labelled. Then an outline is drawn 
around the identified particles. Lastly, the size of the particles is displayed 
and a histogram is created to show the particle distribution. 
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5.3.1 Smallest Detected Feature 

The smallest detected particle has an area of one pixel (Figure 53).  
 

 

Figure 53. Smallest Detected Particle 

The pixel size of the camera is 4,8 microns. It would be wrong to conclude 
that the smallest detected particles are 4,8 microns since it does not take 
in factors such as working distance and magnification. To find the size of 
one pixel, an image was taken of 5mm squares (Figure 54).  
 

 

Figure 54. Calculating Pixel Size 

The 5mm square is 222 pixels wide. Thus, one pixel is about 23 microns. 
The previous calculations of 42 microns which factor in the Nyquist 
theorem is therefore quite accurate. Of course, particles could be detected 
even smaller than 23 microns as stated in 2.5.1. Though size 
measurements on features smaller than 46 microns are inaccurate. 
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5.4 Frames per Second 

The camera is successful in taking 180 frames per second (Figure 55). 
 

 

Figure 55. Framerate 

As can be seen, a recording of five seconds captures 900 frames, thus 180 
frames per second, enough for a full representation of the lint passing by. 
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6 CONCLUSION 

As the theoretical calculations confirmed the available hardware is not 
capable of detecting particles of 10 microns. However, the results are still 
positive and particles with sizes as small as 40 microns can be detected 
accurately while fully representing all the lint passing by at 180 frames per 
second. The practical tests verified these calculations and confirmed that 
when neglecting the Nyquist theorem even particles smaller than 20 
microns, which is one pixel, can be detected. These detections however do 
not adhere to the Nyquist theorem and are thus not accurate for size 
measurements. 
 
Synchronization between the industrial area scan camera and the strobe 
light was successful. Using a short duration strobe light is thus a capable 
method to prevent motion blur in setups using an industrial camera with a 
long exposure time. Unfortunately, due to issues with the LEDs it could not 
be tested if the strobe duration is sufficient to expose the sensor. 
 
As expected real time processing of the passing by lint is not possible at 
180 frames per second in MATLAB. This was however not the goal of the 
thesis. This thesis was focussed on research, for implementation the 
programs should be further optimized and programmed in C++ for better 
performance.  
 
The segmentation technique with the best performance, both in accuracy 
and processing time, is frame differencing. Automated thresholding by 
using Otsu’s method suffered the most from the poor contrast of the test-
setup. Under more ideal recording conditions this method would still be a 
viable alternative especially under conditions where the background is not 
static. Gaussian mixture models require too much processing time for 
segmentation at 180 frames per second. 
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Appendix 1 
Recording Settings 

Clear workspace 

clear all; 

close all 

clc; 

Create the video input object 

vid = videoinput('gentl', 1, 'Mono8'); 

src = getselectedsource(vid); 

Implement the various recording settings 

recordingTime = 5; % Select the recording durations 

numFrames = 180 * recordingTime; % The amount of frames that must be recorded is equal 

to the framerate * the recording time 

 

vid.FramesPerTrigger = numFrames; % When the recording is triggered it records the 

amount of frames 

 

% Write the recording to the disk 

vid.LoggingMode = 'disk'; 

 

diskLogger = VideoWriter('C:\Users\benja\Pictures\MATLAB\Recording_0001.avi', 'Grayscale 

AVI'); 

 

vid.DiskLogger = diskLogger; 

 

diskLogger.FrameRate = 180; % Recorded at 180 frames per second 

Select the output line for flash synchronization 
One setting is missing in MATLAB (selection for when the output becomes high). 
Therefore, it might be necessary to first use Basler's Pylon for configuring the output 
lines. 

%src.SensorReadoutMode = 'Fast'; $ Not necessary for 180 frames per second, use if 

higher framerate is required (200+). 

src.LineSelector = 'Line3'; 

src.LineMode = 'Output'; 

Start recording 

start(vid) 

Published with MATLAB® R2016b 
  

http://www.mathworks.com/products/matlab
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Appendix 2 
Gaussian Mixture Models 

Clear workspace 

clear all; 

close all 

clc; 

Read video 

videoReader = vision.VideoFileReader('Recording_0001.avi'); 

Create video players 

videoPlayer = vision.VideoPlayer; 

foregroundPlayer = vision.VideoPlayer; 

originalPlayer = vision.VideoPlayer; 

Background subtraction 
Background subtraction by using Gaussian mixture models (computer vision toolbox is 
required) 

foregroundDetector = vision.ForegroundDetector('NumGaussians', 2,'NumTrainingFrames', 

100); 

 

%First 100 frames are used to learn the background 

for i = 1:100 

    videoFrame = step(videoReader); 

    foreground = step(foregroundDetector, videoFrame); 

end 

Loop through video 

while ~isDone(videoReader) 

    videoFrame = step(videoReader); % read the next video frame 

 

    % Detect the foreground in the current video frame 

    foreground = step(foregroundDetector, videoFrame); 

 

    % Noise filter: ideal settings can be found by using the Image Morphology MATLAB 

application 

    cleanForeground = imopen(foreground, strel('Disk',1)); 

    cleanForeground = imfill(cleanForeground, 'holes'); 

 

    % Show original video, foreground after segmentation and foreground after filter 

    step(originalPlayer, videoFrame); 

    step(videoPlayer, foreground); 

    step(foregroundPlayer, cleanForeground); 

end 
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Release 

release(videoPlayer); 

release(videoReader); 

delete(videoPlayer); 

Published with MATLAB® R2016b 
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Appendix 3 
Automatic Thresholding by Using Otsu’s Method 

Clear workspace 

clear all; 

close all 

clc; 

Read video 

videoReader = vision.VideoFileReader('Recording_0001.avi'); 

Create video players 

videoPlayer = vision.VideoPlayer; 

foregroundPlayer = vision.VideoPlayer; 

Loop through video 

while ~isDone(videoReader) 

    videoFrame = step(videoReader); 

    videoFrame = rgb2gray(videoFrame); 

 

    % Threshold level is decided automatically by using Otsu's method 

    level = graythresh(videoFrame); 

    BW = imbinarize(videoFrame, level); 

    foreground = imcomplement(BW); 

 

    step(videoPlayer, videoFrame); 

    step(foregroundPlayer, foreground); 

end 

Release 

release(videoPlayer); 

release(videoReader); 

delete(videoPlayer); 

Published with MATLAB® R2016b 
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Appendix 4 
Frame Differencing 

Clear workspace 

clear all; 

close all 

clc; 

Read video 

videoReader = vision.VideoFileReader('Recording_0001.avi'); 

Create video players 

videoPlayer = vision.VideoPlayer; 

foregroundPlayer = vision.VideoPlayer; 

Loop through video 

load('background.mat') 

background = im2single(background); 

while ~isDone(videoReader) 

    videoFrame = step(videoReader); 

    videoFrame = rgb2gray(videoFrame); 

 

    foreground = imsubtract(background, videoFrame); 

 

    step(videoPlayer, videoFrame); 

    step(foregroundPlayer, foreground); 

end 

Release 

release(videoPlayer); 

release(videoReader); 

delete(videoPlayer); 

Published with MATLAB® R2016b 
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Appendix 5 
Image Analysis 

Start-up 

tic; % Start timer 

clc; % Clear the command window 

clearvars; % Clear variables from prior runs 

fprintf('Running Lint Analysis'); % Message to command window 

imtool close all; % Close all figures 

captionFontSize = 14; % Font for figure titles 

Check if image processing toolbox is installed 

hasIPT = license('test', 'image_toolbox'); 

if ~hasIPT 

 % User does not have the toolbox installed. 

 message = sprintf('Sorry, but you do not seem to have the Image Processing 

Toolbox.\nDo you want to try to continue anyway?'); 

 reply = questdlg(message, 'Toolbox missing', 'Yes', 'No', 'Yes'); 

 if strcmpi(reply, 'No') 

  % User said No, so exit. 

  return; 

 end 

end 

Import the image with the lint particles 

originalImage = imread('Backlight.png'); 

%originalImage = rgb2gray(originalImage); % Convert to grayscale if the input is in rgb 

originalImage = imcomplement(originalImage); % Complement the image (white = foreground 

lint, black = background) 

subplot(4,3,1); % Display Image 

imshow(originalImage); 

set(gcf, 'units', 'normalized', 'outerposition', [0 0 1 1]); % Maximize figure window 

drawnow; % Force to display image right away 

title('Original Image', 'FontSize', captionFontSize); 

axis image; % Don't stretch to screens aspect ratio 

Display histogram of original image 

[pixelCount, grayLevels] = imhist(originalImage); 

subplot(4,3,2); 

bar(pixelCount); 

title('Histogram of Original Image','FontSize', captionFontSize); 

xlim([0 grayLevels(end)]); %Scale x axis manually 

grid on; 
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Thresholding into a binary image (0 = dark, 1 = bright) by analysing the 
histogram 
Threshold is manually selected by analysing the histogram and performing trial and error 
runs. An automatic threshold using Otsu's method is possible, though a manual 
threshold is more accurate. 

thresholdValue = 70; 

binaryImage = originalImage > thresholdValue; 

binaryImage = imfill(binaryImage, 'holes'); % Fill holes inside the blobs 

 

% Show the used threshold as a red line in the histogram 

hold on; 

maxYValue = ylim; 

line([thresholdValue, thresholdValue], maxYValue, 'Color', 'r'); 

 

% Place a text label on the bar chart showing the threshold. 

annotationText = sprintf('Thresholded at %d gray levels', thresholdValue); 

% For text(), the x and y need to be of the data class "double" so cast both to double. 

text(double(thresholdValue + 5), double(0.5 * maxYValue(2)), annotationText, 'FontSize', 

10, 'Color', [0 .5 0]); 

text(double(thresholdValue - 70), double(0.94 * maxYValue(2)), 'Background', 'FontSize', 

10, 'Color', [0 0 .5]); 

text(double(thresholdValue + 50), double(0.94 * maxYValue(2)), 'Foreground', 'FontSize', 

10, 'Color', [0 0 .5]); 

 

% Display the binary image 

subplot(4,3,3); 

imshow(binaryImage); 

title('Binary Image','FontSize', captionFontSize); 

Identify individual blobs (lint particles) 

labeledImage = bwlabel(binaryImage, 4); % Label connected components in a 2D binary 

image 

subplot(4,3,4); 

imshow(labeledImage, []); 

title('Labeled Image','FontSize', captionFontSize); 

 

% Get the properties of the blobs 

blobMeasurements = regionprops(labeledImage, originalImage, 'all'); 

numberOfBlobs = size(blobMeasurements, 1); 
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Plot borders of the lint on the original grayscale image using 
coordinates returned by bwboundaries 

subplot(4,3,5); 

imshow(originalImage); 

title('Outlines','FontSize', captionFontSize); 

axis image; 

 

hold on; 

boundaries = bwboundaries(binaryImage); 

numberOfBoundaries = size(boundaries, 1); 

 

for k=1 : numberOfBoundaries 

    thisBoundary = boundaries{k}; 

    plot(thisBoundary(:,2), thisBoundary(:,1), 'g', 'LineWidth', 1); 

end 

hold off; 

Measure the pixels in a blob 
Since the measurements are plotted the number of blobs plotted is limited by the 
number of figures that can be plotted in the subplot. 

for k = 5 : 11 

   thisBlobsBoundingBox = blobMeasurements(k).BoundingBox; % Pixels in current blob 

   subImage = imcrop(originalImage, thisBlobsBoundingBox); 

   subplot(4,3,k+1); 

   imshow(subImage); 

   caption = sprintf('Blob #%d has %d pixels Area', ... 

   k, blobMeasurements(k).Area); 

   title(caption, 'FontSize', captionFontSize); 

end 

Plot the distribution of particle area in relation with the number of 
detected particles 

particleArea = zeros(numberOfBoundaries,1); % Array containing the area distributions 

 

for i = 1 : numberOfBoundaries 

    particleArea(i) = blobMeasurements(i).Area; % X-axis of histogram (area distribution 

of all the lint particles) 

end 

 

xbins = 0:2:60; % Histogram consists of blocks of two pixel area's and 60 blocks (so 

untill 120 pixels area) 

histogram(particleArea, xbins); 

xlabel('Area in #Pixels') 

ylabel('Number of Particles') 

elapsedTime = toc; % Elapsed time of running this image analysis program 
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