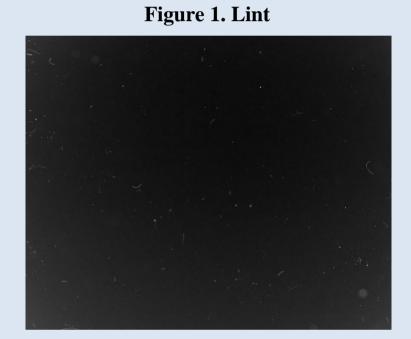
## **Detection of Lint by Using Machine Vision**

Faculty of Engineering Technology University of Hasselt/Leuven

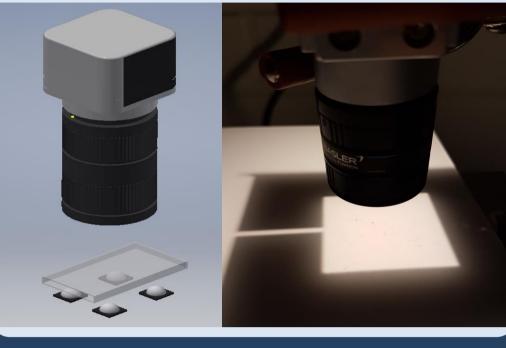

**Benjamin Filtjens** 

## Introduction

This thesis, commissioned by Häme University of Applied Sciences, researches the possibility of detecting lint formed during high-speed offset printing and paper manufacturing by using machine vision.

Due to the small particle size and high speed of the lint various problems occur:

- A high framerate is required to fully ٠ represent all of the lint passing by.
- A high resolution is required to detect ٠ the small particles.
- A short exposure time is required to ٠ prevent inaccuracy due to motion blur [1].




### **Vision Setup**

A visual overview of the settings from table 1 is given in figure 2. Also, a practical test setup, seen in figure 3, was created to verify the theoretical conclusions.

**Figure 2. Visual Overview** 

**Figure 3. Test Setup** 



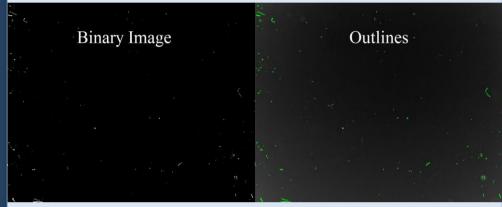
# **Strobe Light**

A high speed strobe light was created with four overdriven LEDs [2] which will decrease the exposure time and thus prevent motion blur. The strobe light (channel two: blue) is synchronized with the exposure active camera output (channel one: yellow).

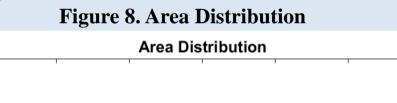
> Figure 4. Strobe Light Synchronization G≌ I∩STEK ∨→**▼** 2.700ms Stop 🌒 Save Save All

> > Ink Saver

## **Image Analysis Results**


The program will segment the original image from figure 1 into a binary image by using a threshold selected based on the histogram.

#### **Figure 6. Histogram Thresholding**




The particles are labelled and outlines are drawn around the particles.

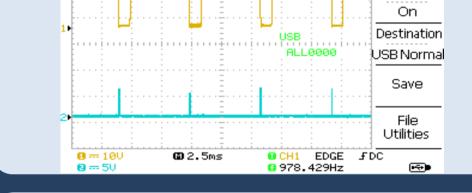
#### Figure 7. Left: Binary Image, Right: Outlines



The smallest detected particle can be as small as one pixel, which is 20 microns. The area distribution of the particles is displayed in figure 8.



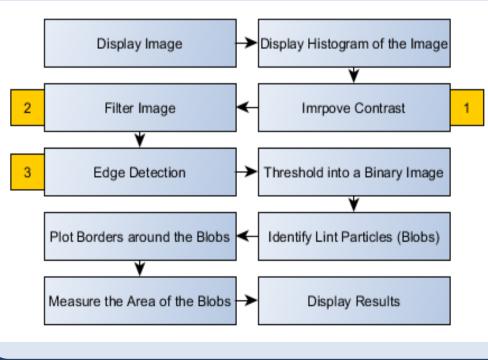
# **Objectives**

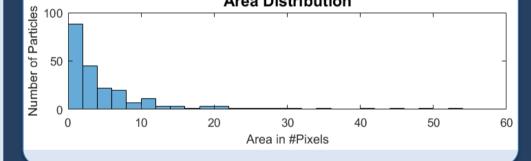

- Research the most optimal machine • vision components.
- Research if the available hardware can • fullfill the goals.
- Research a solution for motion blur. •
- Create a practical test setup and • program to verify the theoretical conclusions and detect the lint.

# **Vision Setup**

A CMOS area scan camera will be used. The settings can be seen in table 1.

### **Table 1. Vision Setup Settings**


| Field of View               | 22,5mm  |
|-----------------------------|---------|
| Working Distance            | 36,59mm |
| Maximum Depth of Field      | 4,3mm   |
| Magnification               | 0,219   |
| Images per Second           | 180     |
| Flash Exposure Time         | 1,06µs  |
| Smallest Detectable Feature | 43,95µm |
|                             |         |




## Program

Two MATLAB programs were created. Firstly, an extensive image analysis program (figure 5) and secondly a program to test the performance of various segmentation techniques.







# Conclusion

- The available hardware is capable of detecting particles as small as 20 microns at sufficient framerate.
- Synchronization between the camera • and strobe light was successful.
- Real time processing is not possible at 180 fps in MATLAB. Further optimization and implementation in C++ is required.
- Frame differencing is the segmentation • technique with the least processing time and highest accuracy.

# References

▶ UHASSELT

[1] M. Wloka and R. C. Zeleznik, "Interactive Real-Time Motion Blur," Sci. Technol., 1996.

[2] C. Willert, B. Stasicki, J. Klinner, and S. Moessner, "Pulsed operation of high-power light emitting diodes for imaging flow velocimetry," Meas. Sci. Technol., vol. 21, no. 7, p. 75402, 2010.

**KU LEUVEN** 

Supervisors: Raine Lehto and Geert Leen



2016-2017