
Remote video monitoring system based on VR

Yangzhou University

A thesis submitted for the partial fulfillment of the requirements for the degree of Master of

Science in Engineering Technology Electronics-ICT

Sebastiaan Poesen en Marijn Ferrari

2016-2017

Contents

1 Introduction 9

1.1 Outline . 9

1.2 Virtual Reality . 10

1.3 Objectives . 10

1.4 Materials and methods . 11

1.4.1 Hardware . 11

1.4.2 Software/Libraries . 12

2 Theory 14

2.1 H.264-compression . 14

2.1.1 Profiles and levels . 14

2.1.2 Frame types . 15

2.1.3 Image compression . 15

2.1.4 Improvements H.264 . 16

2.2 RTP-protocol . 17

3 Framework 18

3.1 Software overview . 18

4 Modules 22

4.1 H.264 video encoder . 22

4.1.1 Framework . 22

4.1.2 Parameters . 23

4.1.3 Determination parameters . 24

4.2 H.264 receiver-streamer . 28

4.2.1 Live555 . 28

4.2.2 Streamer . 29

4.2.3 Receiver . 31

4.2.4 hstreamrec.cpp . 32

4.3 Servo motor control . 34

4.3.1 Server-side . 35

4.3.2 Client-side . 35

4.4 Android application . 38

4.4.1 Video streaming client . 38

4.4.2 Orientation listener and sender . 40

5 Conclusion 43

5.1 Summary . 43

5.2 Future improvements . 43

A hstreamrec.cpp code snippet 45

B streamer: DeviceSource 49

Bibliography 50

List of Figures

2.1 Sequence A-,B- and P-frames. Arrows point to which frames the P-and

B-frames refer. 15

2.2 The motion vector determined by looking at the preceding frame. 16

2.3 Intra prediction technique . 17

3.1 Framework of system . 19

3.2 Software overview of the system . 21

4.1 Flowchart H.264 Encoder. 23

4.2 Qp of 25 . 27

4.3 Qp of 30 . 27

4.4 Qp of 35 . 27

4.5 Qp of 40 . 27

4.6 Qp of 45 . 28

4.7 Qp of 50 . 28

4.8 Flow inside streamer program . 31

4.9 Function calls in main method . 33

4.10 Flow inside streamer-and receiver function 34

4.11 Flowchart of servo position application . 38

4.12 Screenshot application home screen . 40

4.13 Azimuth, pitch and roll of device . 41

B.1 How DeviceSource reads from FIFO and streams the content 49

List of Tables

4.1 Bandwidth in function of the key frame interval and profiles. 25

4.2 Average frame size in function of the profiles. 26

4.3 Bandwidth in function of the frame rate and the quantization level. 27

4.4 Register summary PCA9685 (incomplete) 36

Abstract

The goal of this project is to develop a remote video monitoring system based on virtual

reality technology. The multi-channel video streams can be accessed through a smart

phone and shown on VR-glasses. In this case the smart phone is acting as a client to

receive the multi-channel video streams. The video streams are encoded in H.264 packets

and transmitted via the real-time transfer protocol (RTP). According to the gesture, the

user can choose the various video channels to display on the VR-glasses. At the same time

the camera’s field of vision follows the user’s head movement. Due to the time limitation,

the gesture recognition and VR-compatibility had to be discarded from the project.

Chapter 1

Introduction

Firstly, there will be a brief description of each chapter. Then this chapter introduces

the concept of Virtual Reality, explain its increasing importance to the society and why

it is implemented in this project. Secondly the objectives are recited based on the given

requirements. Finally the materials and methods to achieve these objectives are discussed.

1.1 Outline

In this paragraph the content of each chapter will briefly be discussed.

Chapter 1: Introduction

The first chapter gives a short introduction about Virtual Reality. Next it summarizes the

objectives and the hardware plus the software used to develop the system.

Chapter 2: Theory

The second chapter will give a theoretical background on H.264 and the RTP-protocol. A

good understanding of the H.264 compression method is needed to set the various param-

eters in the encoding program.

Chapter 3: Framework

In this chapter an overview of the system is given. It is divided in a software and a hardware

part. It will not go in detail, just offer basic understanding of the system’s structure.

9

Chapter 4: Modules

The fourth chapter consists of 4 sections: the H.264 video encoder running on the or-

angepi, the H.264 receiver-streamer running on the nanopi, the servo control with the

server program running on the nanopi and clients on the orangepi and smartphone and

finally the Android application which receives/plays the video data and sends its device

orientation to the server.

Chapter 6: Conclusion

Summary and future improvements regarding the project.

1.2 Virtual Reality

Nowadays everyone has heard of the concept of virtual reality (VR), not to be confused

with augmented reality (AR). Virtual reality recreates a real-life environment or situation

while AR adds virtual elements to the existing reality. Although VR has been around for

a couple of decades, it is only in the last couple of years that it has steadily increased

in popularity [1]. In the beginning the main focus used to be gaming and entertainment.

Today it has found its way into other branches of the industry. That is what this project

is about, using VR in a functional way instead of entertainment. Imagine you can lose all

the monitors, keyboards, controls in a standard security-setup. The only thing you need

is your smartphone and a VR-glasses, no need for security rooms because the device is

portable. The smartphone simply connects to a server, the server acts as a buffer for each

video stream. The user can choose a particular stream using a set of predefined gestures.

Additionally the camera moves according to the user’s head movement so in combination

with the VR-goggles it gives the feeling as if the user is in the room.[2].

1.3 Objectives

The initial system requirements contain four parts:

• Dynamic image acquisition and encoding unit with a resolution 640x480, at the same

time the CPU can change the camera angle in two degrees of freedom (pan and tilt)

by controlling two servo motors

• Four channel video convergence and transmission unit: streaming media server using

RTP control to transmit multi-channel H.264 video

10

• Gesture recognition unit uploads the result to the smartphone via Bluetooth

• Smart phone client receives and decodes the video stream that can be watched

through VR-glasses, according to the gesture, the device selects the corresponding

channel

1.4 Materials and methods

The tools used to achieve the objectives discussed in the previous paragraph can be divided

in hardware and software/libraries.

1.4.1 Hardware

The hardware used in the development of the system has been made available by Yangzhou

University. Following boards or modules are used:

• Orange Pi Lite

• Nano Pi M2

• PCA9685

Orange Pi Lite

The orangepi is an open-source single-board computer. The board is equipped with an

ARM Cortex-A7 Quad-core processor and uses the AllWinner H3 SoC. It only supports in-

ternet connection via Wifi, no Ethernet ports are available. It can run Android Lubuntu,

Debian or Raspbian, in this case Debian is installed as the operating system. The or-

angepi is used to acquire and encode the image data because the chip supports hardware

H.264-encoding. The board is released mid 2016, hence the community is still small in

comparison to the Raspberry Pi community. This definitely prolonged the development of

the system because there is little support online available [3].

Nano Pi M2

The nanopi is also an open-source ARM board released by FriendlyARM. It is equipped

with a Samsung Cortex-A9 S5P4418 and runs a Debian distribution of Linux. In

size it is only two thirds the size of the Raspberry Pi. Compared to the orangepi this

board is well supported and is easily operable. The nanopi operates as the buffer between

11

the orangepi and the smartphone-client. It receives and retransmits the video data and

serves the smartphone’s orientation coordinates to the orangepi [4].

PCA9685

The pca9685 is a 12-bit PWM/servo driver which can generate up to 16 signals and is con-

trolled via I2C. Each output has its own 12-bit resolution fixed frequency individual PWM

controller. All the outputs operate at the same PWM frequency which is programmable

from 40 Hz to 1000 Hz. In servo applications the frequency is typically between 50-60 Hz,

in this system it operates at a frequency of 60 Hz.

The software is developed on a laptop with standard performance running Linux as OS.

To test the Android application a Samsung Galaxy S5 and Samsung Galaxy S7 are used.

1.4.2 Software/Libraries

All the applications except the Android application are written in C(++). The Android

application is written in Java. Following libraries are used to implement the objectives

described in Section 1.3:

• Video4Linux2 was created to standardize interfaces related to TV and radio. This

library makes it possible to communicate with a large range of devices without re-

quiring the necessary knowledge about the specific drivers [5].

• Vencoder is part of the Allwinner media codec library. Implementing a range of

hardware encoders and decoders.

• Live555, recommended by professor Zhou, is an open-source library for multimedia

streaming. This library, written in C++, can be used for a wide range of applica-

tions. Such as streaming and receiving of a large number of audio and video codecs,

supporting RTP, RTSP, RTCP and SIP protocols. Live555 can run on multiple op-

erating systems, each using a specific compiler. To deploy the source code on the

orangepi lite and nanopi M2, arm-linux-gcc is used to crosscompile.

• Android Streaming Client (ASC) (and Efflux): is a library provided on GitHub.

The library supports RTP over UDP as transport protocol and decodes H.264 image

data. ASC makes use of the efflux -library to create the underlying RTP-session.

12

• WiringOP is a library provided by Zhao Lei, that can be found on GitHub. It is

a modified version of WiringPi, compatible with the orangepi, used to access the

GPIO’s.

live555 is used to stream content from the orangepi to the nanopi as well as from

nanopi to the smartphone-client.

13

Chapter 2

Theory

The images from the USB-camera are coded by the CPU using the H.264 video compression

standard. Next the coded stream is wrapped in RTP-packets and sent over WIFI to the

server.

2.1 H.264-compression

H.264, also known as MPEG-4 AVC (Moving Picture Experts Group - 4 Advanced Video

Coding), is one of the more popular video encoding codecs for the time being. Despite

the fact that every year, researchers come up with many new and innovative compression

techniques, video encoding applications keep using a set of standard compression meth-

ods[6]. These standards improve the interoperability between different manufacturers of

encoders and decoders. In 2013 the successor of H.264 was published, H.265/HEVC (High

Efficiency Video Coding). In the scope of this project H.264 is used for the reason that

the orangepi’s chip provides hardware H.264-encoding. In addition to this, the H.264

compression is better documented and supported than its successor [7].

2.1.1 Profiles and levels

The main goal when developing H.264 was to create a relatively simple compression method

with the potential to choose from different profiles and levels, respectively sets of algorith-

mic features and performance classes. The H.264 compression method contains seven

profiles, each of which is designed for a specific class of applications.

14

Figure 2.1: Sequence A-,B- and P-frames. Arrows point to which frames the P-and

B-frames refer.

2.1.2 Frame types

Different profiles use different types of frames. There are three types of frames:

• I-frame

• P-frame

• B-frame

An I-frame (intra frame) can be decoded independently without any reference to other

frames. Every pixel has to be encoded so it consumes much more bits, however it is less

likely to cause artifacts in the image.

A P-frame (predictive inter frame) references to previous I/P-frames. They require less

bits than I-frames but are sensitive to transmission errors because they rely on earlier P

and I frames.

A B-frame (bi-predictive inter frame) is similar to a P-frame except that beside it references

to previous frames it also makes reference to future frames. So it makes reference in both

directions.

When a videos stream is received, the decoder always needs to start the decoding process

with an I-frame. P/B-frames must be decoded with their corresponding key frame, see

Figure 2.1. The baseline profile only uses I and P frames.

2.1.3 Image compression

Video data can be compressed within an image frame (intra-frame) and between a series

of frames (inter-frame). Intra-frame (IAF) compression relies on eliminating redundant

15

information from the image. This will affect the image resolution. On the other hand

there are inter-frame (IRF) methods, ie. difference coding. This coding method compares

different frames and only encodes the data that has changed in respect to the reference

frame and thus reduces the amount of pixel values that need to be encoded. To further

compress the image this method can be used on blocks of pixels (macro-blocks) instead

of individual pixels. There is one major problem with this method, if there is a lot of

motion in a video the data will not be significantly reduced. To solve this, methods like

block-based motion compensation are used. Logically, two consecutive frames contain a

lot of data which is the same. This method divides a frame into separate macro-blocks and

then looks for a matching block in a preceding reference frame. If there is a match, instead

of coding the entire macro-block, only the position of the block is encoded as shown in 2.2.

It takes less bits to code the motion vector than the actual content of the block.

Figure 2.2: The motion vector determined by looking at the preceding frame.

2.1.4 Improvements H.264

H.264 introduced an improved intra prediction scheme for encoding I-frames. It reduces

the size of I-frames even more by searching for matching pixel values in the already encoded

block. Extrapolating the encoded pixel values that already have been encoded, it reduces

the bit size significantly, see Figure 2.3. The I-frames of an H.264 stream have a much

smaller size than the key-frames of a Motion JPEG(Joint Photographic Experts Group)

stream. Besides the new intra prediction scheme, the block-based motion compensation

has also been improved. The encoder is able to look for matching blocks in specific areas of

reference frames. Also the block size and shape can be defined to improve the match. If no

16

match is found in a reference frame, intra-coded macro-blocks are used. The high flexibility

of the H.264-compression algorithm helps to compress the video in the most efficient way

for specific applications.

The H.264 encoding is handled by a library available on Github. The library provides an

H.264-encoder that uses the system-on-chip to encode the image data received from the

camera. Initially it has been written to be used on the orangepi pc but it is also running

on the orangepi lite [8].

Figure 2.3: Intra prediction technique

2.2 RTP-protocol

The H.264-encoded frames are packed and sent via RTP, it is a standard specified in

RFC35501, for a detailed explanation it is advised to read this standard. The real-time

transfer protocol (RTP), as the name suggests, provides data transmission, such as audio

and video, over the network in real-time. The RTP-payload format for H.264 packets is

specified in RFC6184(Request for Comments) 2. This paper will not elaborate further on

this subject because it is out of the scope of this project. The entire RTP-part is handled

by the Live555-library which will be explained in the next paragraph.

1https://tools.ietf.org/html/rfc3550
2https://tools.ietf.org/html/rfc6184

17

Chapter 3

Framework

The system can be divided into three parts: orangepi with camera-setup, nanopi-server

and the smartphone-client. The orangepi and the smartphone both act as clients to

the nanopi which operates as a buffer for the video streams. The orangepi collects the

image data from the camera and encodes it into H.264 packets. Using the Live555 library

the packets are sent over RTP to the nanopi. The nanopi receives and retransmits the

RTP packets to the smartphone on which the video stream can be viewed. The use of the

nanopi as a server, was one of the original requirements of this project. When the orangepi,

nanopi and the smartphone are connected to a single network, the use of the nanopi is

not necessary. It can be used to save multiple streams. At the same time the phone’s

orientation is determined by the gyroscope sensor [9]. A custom UDP-protocol sends the

control-data to the nanopi on which runs a server that saves the last received orientation.

The orangepi can send a GET -message to the server and he will reply with the orientation

of the smartphone. Currently the orangepi does not provide any PWM-pins hence the

signal is generated by a PCA96851 controlled via I2C. The complete framework is shown

in Figure 3.1. A remark, this overview shows two orangepi’s connected to the nanopi.

Due to the limited time, the use of two cameras is not supported yet.

3.1 Software overview

So far, the hardware part of the framework is described. This section will briefly introduce

the different software and libraries that are implemented in the system. Chapter 4 will

discuss the different software applications in more detail. Figure 3.2 provides a basic

overview. Also the software structure can be separated in three parts: software running

1Adafruit 16-Channel 12-bit PWM-Servo driver

18

Figure 3.1: Framework of system

19

on the Orange Pi Lite, Nano Pi M2 and the smartphone application. Furthermore the

applications on each device can be divided into two groups. One group handles the video

streaming and the other one controls the angle of the camera with the servo motors.

Orange Pi Lite

• videoenc.cpp: program to acquire and encode image data from the USB-camera. It

uses the video4linux2 and, vencoder.h library

• h264streamer.cpp: streams H.264 via RTP over UDP.

• servoClient.c: sends a message to the server and the nanopi will send the latest

orientation of the smartphone.

Nano Pi M2

• hstreamrec.cpp: receives the H.264 RTP packets from the h264streamer.cpp, the

data is written to a buffer and the streamer-thread reads and streams the video

data. The streamer-thread and h264streamer.cpp work exactly the same with the

only difference that the program is rewritten to a thread.

• control servo.c: awaits for messages from both orangepi and smartphone, replies

with coordinates on receive of a certain message(GET).

Smartphone

• Android streaming application: the device only runs one application but calls differ-

ent objects, the RtpMediaDecoder object handles the decoding, unpacking and vi-

sualization of the video stream while the PhoneOrientationListener and UDPClient

acquire and send the device’s orientation to the server.

20

Figure 3.2: Software overview of the system

21

Chapter 4

Modules

4.1 H.264 video encoder

As mentioned before the orangepi lite makes use of an Allwinner H3 processor with

an embedded H.264-encoder. The following library [Rosimildo] implements the encoder

as well as Video4linux2. Video4Linux2 is used to initialize the camera and to obtain the

frames. The following paragraphs describe the encoder library and the parameters.

4.1.1 Framework

First of all the configuration parameters for the encoder and the camera are set. The

YUV420 colorspace is required for most compression standards. YUV splits the color

information in a luminace and two chrominance components. The most important compo-

nent is luminance(Y), therefore it should have the highest sample rate. The chrominance

components can be sampled at half the rate without a noticeable difference. YUV420

samples the U- and V- components with half the Y-rate in both the horizontal and vertical

direction. This results in a lowered bandwidth with an almost unnoticeable difference in

quality, hence the preference of this colorspace. Another colorspace, YUV444 samples the

three components with an equal rate [10].

After the initialization, three threads are started, namely the encoder-, the camera- ant

the out writer-thread. The following diagram describes the flow of the program. The

camera-thread will wait until Camera.c:CameraGetOneframe returns, after a timeout or

until the time per frame expires. After the return a callback is executed. If no frame is

queued the encoder thread will wait until the callback unlocks the wait in this thread.

Videoenc.cpp:processInBuffer will encode the frame and queues it in the buffer of the

22

Streamwriter. The Streamwriter will wait until data is available. Firstly the length will

be written to the FIFO and then the buffer itself. Otherwise the FIFO-reader, in Device-

Source, reads the entire buffer. The frames will be incorrectly segmented. As a result, the

FIFO overflows and the reading process slows down.

Figure 4.1: Flowchart H.264 Encoder.

4.1.2 Parameters

Profile

The vencoder.h library provides three profiles (baseline, main, high). Baseline is the

most primitive profile of the three. As mentioned earlier, B-frames are not implemented.

The main- and high profile use the CABAC (Context-adaptive binary arithmetic coding)

algorithm, instead of CAVLC (Context-adaptive variable-length coding), to encode the

frames1. CABAC is more efficient then CAVLC. The increased complexity involves an

1Main- and highline also support CAVLC.

23

improvement of video quality and compression, also a increase of en- and decoding time

[11].

Quantization level and mode

The quantization level (Qp) is inversely proportional to the quality of the encoded image.

Qp controls the amount of spacial detail preserved. If Qp is 0 almost all the details are

maintained. When Qp increases the quality drops and some distortion is introduced [12].

There are two modes: constant quality (CQP) and constant bitrate (CBR). CQP will

encode all images with the same level of detail, in other words the quantization level

is constant. CBR tries to keep the bitrate constant by varying the quantization levels

between a minimum (Qmin) and a maximum (Qmax). B-frames are based on the previous

frame. Logically if much motion between frames occurs, the size will increase. To limit

the variation in bitrate, the quality is lowered. CBR was not implemented properly in

the encoder library, therefore CQP-mode is used. Regarding this project, there is not

much difference between the modes, because the limited motion prevents strong bitrate

fluctuations [H264RateControl , 13]

Keyframe interval

One frame in every key frame interval is an I-frame. As mentioned before, B- and P-frames

are based on the previous key frame. During a stream, there is a possibility that the key

frame is not properly received. Logically, this interval can not be to large, otherwise the

stream will be distorted for a significant amount of time.

Level

The level provides a set of constrains, according to the maximum specifications of the

decoder. The bitrate and the decoding speed (concerning macroblocks) are limited. This

results in an maximum frame rate and resolution. This project makes use of Androids

phones capable of playing 1080p at 30 frames/s, well under the limit of the specifications

of the orangepi lite and the network. Therefore, the preset level of 3.1 is maintained.

4.1.3 Determination parameters

This paragraph discus the chosen settings for the encoder.

24

Bandwidth(kB/s)

Key frame interval Baseline Main High

1 146.98 131.56 125.83

2 92.09 81.98 78.99

3 70.05 59.50 57.4

5 47.67 42.58 40.33

10 34.96 34.84 33.34

25 28.28 26.11 23.16

100 22.80 20.72 20.33

Table 4.1: Bandwidth in function of the key frame interval and profiles.

Profile and key frames

The following paragraph explains the differences between the three profiles in this project.

An experiment has been conduced with a fixed Qp of 40 and a frame rate of 20 frames/s.

The results are shown in table 4.1.There is an noticeable difference in bandwidth2 between

the profiles. Table 4.2 shows the average frame size in function of the profiles. The

relatively large difference between baseline and main/high is because the use of CABAC

instead of CAVLC encoding. A small difference in quality can be noticed between baseline

and main/high. The delay of high-profile is +-0.5s longer compared to baseline and main

(3s). Due to the increased complexity, the encoding and decoding time increases.

Main-profile is preferred because the slightly increased quality with a decrease in bandwidth

compared to baseline. High-profile is not compatible with older devices. In this case, the

disadvantages outweigh the advantages.

When the key frame interval increases, logically the bandwidth will increase. The video

stream also becomes smoother because of the relative increase of reference frames. In order

to keep the distortion time to a minimum, caused by an incorrect received key frame, the

interval has to be limited. Both 3 and 5 are acceptable values for a large range of frame

rates. An interval of 5 is preferred due to a difference in bandwidth of 28,4%.

Frame rate

The frame rate depends on the speed on which live555 can process each frame. The time

needed is independent of the size of the frames. There is also no distinction between B

2The bandwidth is measured using the nload package

25

Average frame size (Bytes)

Baseline Main High

Keyframe 5608.03 4601.15 4558.17

B/P-frame 125.53 114.14 113.82

Table 4.2: Average frame size in function of the profiles.

and I frames, so the key frame interval has no influence. To conclude, if the frame rate

becomes lager then 25 frames/s a delay tends to build up. Therefore the maximum frame

rate is 25 frames/s.

Quantization level and frame rate

The lower limit depends on the size of the buffer that can be processed in live555 and

the available bandwidth. Due to the limitations of this library and the orangepi lite

a buffer size of 32768 Bytes was chosen, a larger buffer results in a bad quality stream.

After some experiments a lower limit of 25 was determined. The actual quantization level

depends on the available bandwidth.

Table 4.3 represents the bandwidth in function of the quantization and the frame rate with

an key frame interval of 5. Screen shots from the stream are showed from figure 4.2 until

4.7. There is a large difference in bandwidth when to video is encode using a Qp of 25

and 30, the quality is nearly the same. The quality is judged based on visual appearance

on the Android phone. Therefore a quantization level of 25 is not recommended. The

following images show a slight decrease in quality accompanied by a justifiable difference

in bandwidth. The decrease in bandwidth between a Qp of 45 and 50 is not worth the

quality drop.

The bandwidth in function of the frame rate approaches a linear relation. The average

frame size, for key- and reference frames is constant. As mentioned before, each frame is

sent individually. Therefore an increase in frame rate results in an increase of frequency in

which RTP-packets are send.

To determine the actual frame rate and the quantization level, a trade off has to be made

based on the available bandwidth.

26

Bandwidth(kB/s)

Framerate(frames/s) 5 10 15 20 25

Quantization level

25 80.1 160.68 226.62 304.23 370.13

30 41,65 83.33 110.15 145.21 183.95

35 18.65 36.32 51.35 63.12 79.18

40 12.36 23.13 31.54 41.65 50.13

45 10.11 18.43 23.51 28.74 33.58

50 8.25 14.68 20.99 25.85 30.65

Table 4.3: Bandwidth in function of the frame rate and the quantization level.

Figure 4.2: Qp of 25 Figure 4.3: Qp of 30

Figure 4.4: Qp of 35 Figure 4.5: Qp of 40

27

Figure 4.6: Qp of 45 Figure 4.7: Qp of 50

4.2 H.264 receiver-streamer

This section will explain de hstreamrec.cpp that runs on the nanopi, see Figure 3.2. The

program consists of two parts, the streamer-part and the receiver-part, both are based on

the test programs offered by the live555-library. First there will be a brief introduction

to the live555-library, the most important classes will be discussed. Next the changes

that are made in the streamer- and receiver test programs, provided by live555, will be

explained. The final part in the section describes the flow in the hstreamrec.cpp program

and gives an example of how to start a new streamer-receiver pair.

4.2.1 Live555

live555 is an open-source library for multimedia streaming, programmed in C++ (more

information see Section 1.4.2). Both streamer and receiver are based on the example

programs offered by the library. The streamer is based on testH264VideoStreamer and the

receiver on the testMPEG1or2VideoReceiver. Initially both applications were developed

as stand-alone programs but later they are rewritten to run inside a streamer-thread and

receiver-thread. So it is possible to receive and stream multiple concurrent streams. A

necessary remark, live555 assumes a single thread of execution. It is not built with the

intention to be run in different threads. However there are several ways to make the code

run in concurrent threads. The first option is to run the library in one thread, and all

the other threads communicate with the library only via sockets, by setting global flag

variables, or by calling event-triggers. The second option, and also the option used in the

application, is to initialize UsageEnvironment and TaskScheduler objects for every thread.

In the faq found on the website of live555 do not recommend to use this configuration,

28

a multi-process configuration is recommended rather than the multi-threaded environment

used in this project. Until now no problem has established regarding this issue.[14]

Classes

This paragraph describes the most important classes and libraries used in live555 regard-

ing this project.

• UsageEnvironment-class and TaskScheduler-class

Accommodates the printing of warning and error messages, scheduling deferred and

asynchronous events.

• Groupsock-library

Provides all the network interfaces and sockets. For example, Groupsock is used to

create the sockets, packing RTP-packets with the appropriate header and sending

them afterwards.

• LiveMedia-library

Support for handling a large variery of audio- and videocodecs, both for streaming

and receiving a certain codec.

• testH264VideoStreamer.cpp

The application reads from a H.264 elementary stream video file (video.h264), and

streams it using RTP multicast, besides it also provides a built-in RTSP server

• testMPEG1or2VideoReceiver.cpp

This program reads incoming MPEG-encoded RTP packets and writes the output to

”stdout” or a video file

4.2.2 Streamer

The streamer-thread is based on the testH264VideoStreamer program provided by live555.

A couple of modifications are made to achieve the requirements.

Unicast instead of multicast

In the example program from live555 the custom function chooseRandomIPv4SSMAddress()

from the class GroupsockHelper is used to generate a random multicast IP-address. Hence

every device on the network could listen to the broadcast. Replacing this by the stan-

dard inet addr()-function found in the inet.h-library permits to choose our own unicast

29

IP-address. For the moment every IP-address in the application is hard-coded so it is

necessary to pick a particular IP-addresses within the network.

Only RTP transmission

Next to the RTP-session, the test program also starts a RTSP-server. The RTSP-server

can be opened in a web browser to view the stream but it is not relevant in this project.

Buffer-parameter

There is the option to choose the maximum size of outgoing packets. The value has no

direct influence on the quality of the video or the speed of transmission. As long as the

size of it is large enough to contain the captured frames, the size does not matter. Several

tests pointed out that it should not be smaller than the arbitrary value of 50000.

Implementation DeviceSource

The original streaming program is only able to stream data from a static file. It opens the

file as a byte-stream file source then a filter is applied to break up the H.264 video elemen-

tary stream into NAL-units. Finally the NAL-units are passed to the H264VideoRTPSink

which streams them to a specific port of an IP-address on the network. To stream a live

video feed the class ByteStreamFileSource can not be used, live555 provides a template

for a MediaSource encapsulating a video input device, called DeviceSource. The provided

class is modified so it is able to read directly from a FIFO (first-in-first-out). The received

stream is written into a FIFO, DeviceSource reads from it, fills up a buffer and flushes the

buffer into the FramedSource, as is shown in Figure 4.8.

Multiple concurrent streams

The final requirement in the streamer-program is that multiple streams run simultaneously.

Section 4.2.1 explains the different methods available to achieve this goal. At this moment

it is only possible to stream multiple files and not live video streams. The reason is that

a static file uses ByteStreamFileSource instead of DeviceSource. The DeviceSource class

implements a global variable and thus is not thread safe. Each thread creates its own

TaskScheduler - and UsageEnvironment variable.

30

Figure 4.8: Flow inside streamer program

4.2.3 Receiver

live555 does not provide any H.264 video receivers but it contains the classes necessary

to build one. The example program testMPEG1or2VideoReceiver forms the base of the

receiver thread. With some modifications in this class and the FileSink -class, it is possible

to receive an H.264 stream over RTP.

H264VideoFileSink instead of FileSink

The original receiver only uses a FileSink object to write the extracted frame to a file. When

an H.264 stream is to be received the sink needs to add Source-Specific Parameters (SPS) in

the header preceding the first frame. The SPS define characteristics of the stream, ie. which

profile is used. Also each NAL-unit has to begin with the start code: 0x00000001. In order

to do this the H264VideoFileSink is called, this function is derived from H264or265FileSink

which is derived from FileSink itself, as shown below.

FileSink ← H264or265FileSink ← H264FileSink

Initially the FileSink class is developed to write the received content to a file or the console.

Instead of writing to a file, the FileSink is modified to write to a FIFO out of which the

DeviceSource can read, as noted in Section 4.2.2.

31

Other minor modifications

• unicast instead of multicast

Sometimes the IP-address to receive a unicast stream changes. For unknown reasons

it differs between 0.0.0.0 and the IP-address of the host itself

• only receives RTP

The example receiver also receives multimedia over RTCP, this is not necessary

• H264RTPSource class instead of MPEG1or2RTPSource

Due to the time limit, the requirement to receive multiple streams at once is not ac-

complished.

4.2.4 hstreamrec.cpp

Sections 4.2.2 and 4.2.3 describe the modifications in the streamer and the receiver test

program. The hstreamrec merges both parts together, each running concurrently in their

own thread. This section will explain how both threads are called, work together and

describe in detail the flow of the application using the code snippet in Appendix A in

combination with Figures 4.9 and 4.10.

main method

The first function call of the main method is config servers. This function initializes the

receiver-and streamer-struct. The structs hold the name of the FIFO and a port num-

ber. The variables are defined inside a struct so they can be passed to a thread as an

argument. Next in line are the receiver-and streamer-threads, the threads call respectively

the init new receiver method and the init new streamer method. Both methods will be

described in following paragraphs. The main method ends with a pthread join()-function

call. It waits for the specified thread to terminate, otherwise the application will stop when

the main-thread is finished.

init new receiver

This method will receive the incoming RTP-packets with H.264 encoded image data and

write the data inta a FIFO. Figure 4.10 shows an overview of the flow inside this method.

First the TaskScheduler and UsageEnvironment objects will be created. They organize

32

Figure 4.9: Function calls in main method

the chronological execution of events and print warning/error messages throughout the

program. The sessionAdressStr variable is the IP-address where the receiver listens to.

In this case it is declared: 0.0.0.0 because the orangepi streams directly to the nanopi.

Next an H264VideoFileSink is created, this is a derived class of FileSink which writes the

received data to the FIFO. Finally rtpGroupsock and H264VideoRTPSource work together

to handle the underlying RTP-connection and unpack the received RTP packets.

init new server

The structure of this method is very similar to the one of the receiver (Figure 4.10). Here

also, the TaskScheduler and UsageEnvironment are created. The IP-address of the device

where it streams to is declared in destinationAdressStr. The rtpGroupsock handles the un-

derlying RTP-connection and H264VideoRTPSink encapsulates the frames in RTP-packets.

DeviceSource obtains the frame data by reading the FIFO, a complete diagram is given in

Appendix B. It also adds a start code prefix for the NAL-unit if necessary and transfers it

to a shared buffer. H264VideoStreamFramer separates the stream of frames into NAL-units

and keeps them in order to maintain the dataflow. In this project only complete frames

are read from the buffer. The data is passed to and processed by H264or5Fragmenter, an

inner class of H264or5VideoRTPSink. During processing the following possibilities occur;

The buffer contains a new NAL unit. When it is small enough to be send in one RTP-pack,

it is delivered entirely to the RTPSink. When it is too large, the first fragmented unit(FU)

33

Figure 4.10: Flow inside streamer-and receiver function

is delivered to the sink. The existing NAL header is overwritten by a new NAL header and

1 Byte is added as the FU header. The third and last possibility, the next FU is delivered,

two extra preceding header Bytes are added (NAL and FU).

MultiframedRTPSink will handle the packing and sending using Groupsocket. If neces-

sary, H264or5Fragmenter is recalled, to transfer the next fragmented unit. After a com-

plete frame is send, FramesSource::afterGetting(this) is called. This will execute Device-

Source::doGetNextFrame().

4.3 Servo motor control

The servo motor attached to the camera has to move according to the user’s head move-

ment. The server, written in C, runs on the nanopi. The communication between server

and client is handled by the User Datagram Protocol (UDP). UDP is chosen as commu-

nication method because reliable data transmission is not important as the smartphone

sends its orientation 10-50 times a second. Hence data loss will not be noticed. The

server receives the control information from the smartphone and needs to update the or-

angepi accordingly, all of this is shown in Figure 3.1. A custom protocol is developed, the

smartphone sends its azimuth and roll in the following order:

{azimuth; roll}

34

Section 4.4 explains the the method to obtain the device’s orientation and send it to the

server as it is implemented in the smartphone application. This section will discuss the

server-program on the nanopi and client-program running on the orangepi.3

4.3.1 Server-side

The server is constantly listening to incoming messages on port number 6000. When

a message is received, it will first be checked using following regular expression: {[0 −
9]∗; [0−9]∗}. If the message satisfies this requirement the whole string will be saved in the

control info variable. The server will not reply the smartphone-client when receiving the

orientation coordinates. If the message contains the string GET , the server will reply the

control info variable to the orangepi-client. Every other message that does not apply to

one of these two requirements will be discarded.

4.3.2 Client-side

The previous paragraph explains how the orangepi obtains the orientation of the smart-

phone. This section describes the program to set the position of the servo. According to

the datasheet the orangepi is provided with 1 PWM-pin but for unknown reasons it is

inaccessible. Hence there is no access to the PWM-pin and two PWM-pins are needed to

control the pan-tilt motors, the pca9685 is used to generate the PWM-signals.

PCA9685

The pca9685 (see Section 1.4.1) has 16 channels that can generate their own PWM-signals.

Each channel is controlled by four registers. Channel 0 for example, is handled by registers

6-9, as shown in Table 4.4. Register 6 and 7, respectively LED0 ON L and LED0 ON H,

define when the signal transitions from low to high. Most of the times these registers are

set to 0. Register 8 and 9, respectively LED0 OFF L and LED0 OFF H, define when the

signal transitions from high to low. The latter registers are set to different values to change

the servo to a specific position. Every channel has a 12-bit resolution so the four most

significant bits of LED0 ON H and LED0 OFF H are not used. The same conditions apply

for the other 14 channels.

PCA9685-library

The orangepi supports no existing C-libraries to operate this module. Hence a sim-

3http://www.binarytides.com/programming-udp-sockets-c-linux

35

Table 4.4: Register summary PCA9685 (incomplete)

Register#(decimal) Register# (hex) D7 D6 D5 D4 D3 D2 D1 D0 Name Type Function

0 0 0 0 0 0 0 0 0 0 MODE1 read/write Mode register 1

1 1 0 0 0 0 0 0 0 1 MODE2 read/write Mode register 2

2 2 0 0 0 0 0 0 1 0 SUBADR1 read/write I2C-bus subaddress 1

3 3 0 0 0 0 0 0 1 1 SUBADR2 read/write I2C-bus subaddress 2

4 4 0 0 0 0 0 1 0 0 SUBADR3 read/write I2C-bus subaddress 3

5 5 0 0 0 0 0 1 0 1 ALLCALLADR read/write LED All Call I2C-bus address

6 6 0 0 0 0 0 1 1 0 LED0 ON L read/write LED0 output and brightness control byte 0

7 7 0 0 0 0 0 1 1 1 LED0 ON H read/write LED0 output and brightness control byte 1

8 8 0 0 0 0 1 0 0 0 LED0 OFF L read/write LED0 output and brightness control byte 2

9 9 0 0 0 0 1 0 0 1 LED0 OFF H read/write LED0 output and brightness control byte 3

10 0A 0 0 0 0 1 0 1 0 LED1 ON L read/write LED1 output and brightness control byte 0

11 0B 0 0 0 0 1 0 1 1 LED1 ON H read/write LED1 output and brightness control byte 1

12 0C 0 0 0 0 1 1 0 0 LED1 OFF L read/write LED1 output and brightness control byte 2

13 0D 0 0 0 0 1 1 0 1 LED1 OFF H read/write LED1 output and brightness control byte 3

...

254 FE 1 1 1 1 1 1 1 0 PRE SCALE[1] read/write prescaler for output frequency

255 FF 1 1 1 1 1 1 1 1 TestMode[2] read/write defines the test mode to be entered

ple library is written in C, based on the python library provided by the GitHub-page of

adafruit.4 To access the GPIO’s and I2C communication of the orangepi, the WiringOP-

library of zhaolei is used.5 WiringOP, also provided on GitHub, is a modified version of

WiringPi, compatible with the orangepi. The developed pca9685-library contains two

main functions:

1. set PWM frequency

1 i n t s e t f r equency (i n t bus , i n t f r e q) {
2 f l o a t p r e s c a l e r = 25000000/(4096∗ f r e q) − 1 ;

3 p r i n t f (” p r e s c a l e r va lue = %i \n” , (i n t) p r e s c a l e r) ;

4 wiringPiI2CWriteReg8 (bus , 0 x00 , 1 6) ; // s l e e p b i t i s s e t to 1

5 wiringPiI2CWriteReg8 (bus , 0xFE , (i n t) p r e s c a l e r) ;

6 wiringPiI2CWriteReg8 (bus , 0 x00 , 0) ;

7 }

On start-up it is necessary to initialize the PWM frequency. The clock frequency is

25 MHz, by setting a prescaler it is possible to choose different clock rates. In the

case of servo-control, the value is chosen between 50-60 Hz. In line 4, the sleep-bit

D4 is set to 1 before writing to the prescaler register, see Table 4.4. This is necessary

because it is impossible to write to the prescaler register while the oscillator is turned

on. After the prescale value is set, the sleep-bit is set back to 0 again.

2. set frequency PWM controller

4https://github.com/adafruit/Adafruit Python PCA9685
5https://github.com/zhaolei/WiringOP

36

1 i n t writepwm (i n t bus , i n t pin , i n t on=0, i n t o f f) {
2 wiringPiI2CWriteReg8 (bus , LED ON L+4∗pin , on & 0xFF) ;

3 wiringPiI2CWriteReg8 (bus , LED ON H+4∗pin , on >> 8) ;

4 wiringPiI2CWriteReg8 (bus , LED OFF L+4∗pin , o f f & 0xFF) ;

5 wiringPiI2CWriteReg8 (bus , LED OFF H+4∗pin , o f f >> 8) ;

6

7 re turn 0 ;

8 }

The duty-cycle of a specific channel is modified by setting 4-registers as is explained

in Section 4.3.2. For LED OFF L, an AND-operation between off and OxFF is used

to keep only the 8 least significant bits. The 4 most significant bits, to set register

LED OFF H, are obtained by shifting off 8 bits to the right. The minimum pulse

length is 150 out of 4096 and the maximum is 600 out of 4096. LED ON L and

LED ON H are set to 0 by default.

OrangePi client application

The servo client application, also written in C, makes use of the library described in the

previous paragraph to communicate with the pca9685 and control the servo’s position.

The client obtains the smartphone’s orientation by sending the ”GET” message to the

server. Figure 4.11 shows the flow of the client-program. The constructor initializes two

threads, one to get the orientation and one to control the pca9685 to generate the correct

PWM signal. Thread 1 is really straight-forward, every 40 ms it sends the message to the

server, the server replies the orientation. The orientation is then stored in shared memory

and locked/unlocked using a mutex. Next every 40 ms thread 2 will lock the mutex and

read the variables. To smoothen the movement of the servo motor, a technique called

easing/ramping is used.6 The technique is really simple to implement and delivers neat

results. First the difference between the current position of the servo and the received

coordinates is calculated. Thereafter the difference multiplied with an easing parameter is

added to the current position. In the program a value of 0.8 is chosen for this parameter.

If the value is too high, it will have no effect and result in shaky movement. On the other

hand a too low value results in a constant delay. Both threads execute a while loop that

runs every 40 ms. Better results (smoother movement) are achieved if the loops run every

20 ms but then the program crashes, due to the wiringPiI2CWriteReg8 that takes too long

to execute.

6http://lab.guilhermemartins.net/2009/08/21/filtering-servo-movements/

37

Figure 4.11: Flowchart of servo position application

4.4 Android application

The smartphone running the android application serves as front-end client in the setup.

The android application consists of two parts. One part gathers and unpacks the RTP-

packets, decodes the H.264 content and plays it. The other part retrieves the orientation

of the phone and sends it over UDP to the server, using a protocol described in Section

4.3. Both parts will be discussed separately in following paragraphs.

4.4.1 Video streaming client

The real-time video data is played by Android Streaming Client (ASC), a library provided

on GitHub.[15] The library only supports RTP over UDP as transport protocol and decodes

H.264 image data. ASC makes use of the efflux -library to create the underlying RTP-

session. There are two options to handle package arrival:

• time-window, which uses an RTP buffer that collects packets for a certain amount

of time and pushes them upstream in the right order and at a fixed rate. It is

38

handled by two threads, one thread to collect the incoming packets and the other

one to deliver them upstream in the right order.

• min-delay, each packet received by the RTP buffer is transfered directly for pro-

cessing. The packets are only transfered for processing when they are the ones being

expected. If a received packet is newer than the one expected it will be stored for

later use. A threshold determines how long packets are kept before being discarded.

The time-window method results in bad quality video, many frames are dropped and the

image contains blocky artifacts hence min-delay is used. In the configuration file different

parameters regarding the decoder can be set. In this case the most important ones are:

• RECEIVE BUFFER SIZE BYTES = 100000 : size of the buffer

• BUFFER TYPE = min-delay : type of buffer

• NODELAY TIMEOUT = 1000 : (in ms) maximum delay to keep incoming packets

The library is really easy to implement. In the OnCreate-method of the main activity

an RtpMediaDecoder object is created and started ()as shown in the code below). The

decoded video is played in the surface view assigned to the RtpMediaDecoder.

1 @Override

2 protec ted void onCreate (Bundle savedIns tanceState) {
3 . . .

4 // c r e a t e an RtpMediaDecoder with the s u r f a c e view where you want

5 // the video to be shown

6 RtpMediaDecoder rtpMediaDecoder = new RtpMediaDecoder (sur faceView) ;

7 // s t a r t i t

8 rtpMediaDecoder . s t a r t () ;

9 . . .

10 }

Initially the library could only listen to one port. So the ACR is slightly modified

in a way the user can choose between multiple video streams. A spinner, populated with

different streams, is used to change the port where the application is listening to. A Stream-

object only contains a name, a port number and its corresponding getters/setters. The

application consists of one activity, as shown in Figure 4.12. On the left the spinner where

the stream can be chosen and on the right there is the surface view in which the video is

played. Below the spinner, the phone’s relative orientation coordinates are displayed. How

they are determined will be discussed in the next paragraph.

39

Figure 4.12: Screenshot application home screen

Both efflux and Android Streaming Client are licensed under the Apache License, Version

2.0.

4.4.2 Orientation listener and sender

The other function of the android application is to determine its orientation and send it

over UDP to the nanopi-server. In the OnCreate method of the main activity a Phone-

OrientationListener (POL) is created. In the constructor of this object a UDP connection

with the server and sensor listener are initialized. On change, the sensor values are updated

and send to the server.

MainActivity → PhoneOrientationListener → UDPClient

Sensor listener

The device’s position relative to the device’s frame of reference is determined by using the

motion sensors of the android device.[16] The sensor TYPE ROTATION VECTOR is used

in this case. It returns an array of sensor values for each SensorEvent. During a single

sensor event the sensor returns an array consisting of the four following values:

• SensorEvent.values[0]: Rotation vector component along the x axis (x ∗ sin(θ/2))

• SensorEvent.values[1]: Rotation vector component along the y axis (y ∗ sin(θ/2))

• SensorEvent.values[2]: Rotation vector component along the z axis (z ∗ sin(θ/2))

40

• SensorEvent.values[3]: Scalar component of the rotation vector (cos(θ/2))

It is possible to calculate the orientation of the device out of the rotation vector in

simply 2 steps:

1. getRotationMatrixFromVector(float[] R, float[] rotationVector), helper func-

tion to convert rotation vector to a rotation matrix

2. getOrientation(float[] R, float[] values), computes the device’s orientation based

on the rotation matrix

The latter function returns following values:

• values[0]: Azimuth, angle of rotation about the z-axis, represents the angle between

the y-axis and the magnetic north pole

• values[1]: Pitch, angle of rotation about the x-axis

• values[2]: Roll, angle of rotation about the y-axis

Only azimuth and roll are used in this case, Figure 4.13 illustrates the coordinate

system of the device.

Figure 4.13: Azimuth, pitch and roll of device

The class SensorManager registers the motion sensor, the data delay can be set.[17]

The data delay specifies the sample period of the sensor, the default-setting is 200 ms, to

smoothly control the servo movement the SENSOR GAME DELAY with a sample period

of 20 ms is chosen. Initially the sensor values were fluctuating so an averaging filter is

applied. The last 10 values are kept in an array and the average of the values in the array

is calculated. By pressing the volume down button the sensors get re-calibrated.

41

UDP client

The azimuth and roll are used to control the servo movement. These values are transmitted

using the custom UDP protocol discussed in Section ??. In the constructor of PhoneOri-

entationListener, the UDPClient is alled. It needs three arguments: IP-address and port

number of server and the amount of messages per second (= 50). After initialization the

UDP client simply waits for the sendMessages() method to be called. On the left side

of Figure 4.12 the coordinates are displayed in a TextView which contains an OnClick-

listener, when clicked the sender -variable in PhoneOrientationListener is toggled true or

false. The message rate per second is set to 50 so every 20 ms the azimuth and roll are

sent to the server.

42

Chapter 5

Conclusion

The first part of this chapter will summarize the implementation, achieved goals and give

remarks where needed. The second part elaborates about future improvements or other

approaches.

5.1 Summary

The main goal of the project is accomplished. Successfully capture and encode the video

data from the USB camera. Send it over RTP to the nanopi-server and send the live feed,

again over RTP, to the smartphone-client. The smartphone receives, decodes and displays

the video on screen. Additionally the device orientation is acquired and transmitted via

UDP to the nanopi, the orangepi retrieves the coordinates from the server and controls

the servo’s position with the use of the PCA9685 servo/PWM. The big parts in the project

are solved with the use of libraries, such as live555, efflux, Android Streaming Client, etc.

The challenge was to connect all the separate programs and let them work together as one

entity.

5.2 Future improvements

This section proposes several improvements that can be made in the future. Due to the

time limitation the system does not satisfy all the requirements. Following changes can be

made:

• Multiple concurrent camera streams instead of one. The nanopi is able to set up

multiple streams by calling the streamer-thread several times. This is not the case

43

for the receiver-thread because it still uses a global variable to pass the name of

the FIFO to the FileSink. If this variable is eliminated multiple camera streams are

possible.

• The video stream is shown in 2D on the smartphone, a future requirement is to

display it in 3D using the VR-goggles.

• The current framework streams to the nanopi and the nanopi to the smartphone-

client. So the same video data is streamed two times inside the network. An inter-

esting modification could be that the orangepi’s stream directly to the smartphone

without the nanopi as buffer to save bandwidth.

• When multiple streams are implemented the user can choose the channel by different

gestures. The user wears a glove with a gesture recognition unit attached to it. Addi-

tional functionalities like zooming, adjust contrast/brightness,... can be implemented

too.

44

Appendix A

hstreamrec.cpp code snippet

1 . . .

2

3 H264VideoStreamFramer∗ videoSource ;

4 RTPSink∗ videoSink ;

5

6 s t r u c t s e r v s t r u c t {
7 unsigned shor t port ;

8 char const ∗ stream ;

9 } ;

10

11 s t r u c t s e r v s t r u c t a rg s s1 , a r g s s 2 ;

12

13 //h264−r e c e i v e r i n i t i a l i z e //

14 void a f t e rP lay ingRec (void ∗ c l i en tData) ; // forward

15 void i n i t n e w r e c e i v e r (unsigned shor t port num , char const ∗ f i foName) ; //

forward

16

17 s t r u c t r e c s t r u c t {
18 unsigned shor t port ;

19 char const ∗ stream ;

20 } ;

21

22 s t r u c t r e c s t r u c t a rg s r1 , a r g s r 2 ;

23

24 // A s t r u c t u r e to hold the s t a t e o f the cur rent s e s s i o n .

25 // I t i s used in the ” a f t e r P l a y i n g () ” func t i on to c l ean up the s e s s i o n .

26 s t r u c t s e s s i o n S t a t e t {
27 RTPSource∗ source ;

28 MediaSink∗ s ink ;

45

29 } s e s s i o n S t a t e ;

30

31

32 void c o n f i g s e r v e r s () {
33 a r g s s 1 . port = 5008 ;

34 a r g s s 1 . stream = ” stream1 ” ;

35 mknod(” stream1 ” , S IFIFO | 0666 , 0) ;

36

37 a r g s s 2 . port = 5010 ;

38 a r g s s 2 . stream = ” stream2 ” ;

39 mknod(” stream2 ” , S IFIFO | 0666 , 0) ;

40 }
41

42 void ∗ th read new se rve r (void ∗arguments) {
43 s t r u c t s e r v s t r u c t ∗ args = (s t r u c t s e r v s t r u c t ∗) arguments ;

44 i n i t n e w s e r v e r (args −> port , a rgs −> stream) ;

45 p t h r e a d e x i t (NULL) ;

46 }
47

48 void ∗ th r ead new re c e i v e r (void ∗arguments) {
49 s t r u c t r e c s t r u c t ∗ args = (s t r u c t r e c s t r u c t ∗) arguments ;

50 i n i t n e w r e c e i v e r (args −> port , a rgs −> stream) ;

51 p t h r e a d e x i t (NULL) ;

52 }
53

54 i n t main (i n t argc , char const ∗argv [])

55 {
56 c o n f i g s e r v e r s () ;

57

58 pthread t th2 ;

59 i n t i d th2 ;

60 i d th2 = pthr ead c r ea t e (&th2 , NULL, thread new rece ive r , (void ∗) &a r g s r 1

) ;

61

62 s l e e p (2) ;

63 // s e r v e r thread //

64 pthread t th1 ;

65 i n t i d th1 ;

66 i d th1 = pthr ead c r ea t e (&th1 , NULL, thread new server , (void ∗) &a r g s s 1) ;

67

68 p t h r e a d j o i n (th1 ,NULL) ;

69 p t h r e a d j o i n (th2 ,NULL) ;

70

46

71 re turn 0 ;

72 }
73

74 void i n i t n e w r e c e i v e r (unsigned shor t port num , char const ∗ f i foName) {
75 TaskScheduler ∗ s chedu l e r = BasicTaskScheduler : : createNew () ;

76 UsageEnvironment∗ env = BasicUsageEnvironment : : createNew (∗ s chedu l e r) ;

77

78 // Create the data s ink f o r ’ s tdout ’ :

79 s e s s i o n S t a t e . s ink = H264VideoFileSink : : createNew (∗ env , fifoName , ” t e s t ” ,

NULL, 50000 , Fa l se) ;

80 // Note : The s t r i n g ” stdout ” i s handled as a s p e c i a l case .

81 // A r e a l f i l e name could have been used in s t ead .

82

83 // Create ’ groupsocks ’ f o r RTP

84 char const ∗ s e s s i onAddre s sS t r = ” 0 . 0 . 0 . 0 ” ;

85 // Note : I f the s e s s i o n i s un i ca s t ra the r than mult i cas t ,

86 // then r e p l a c e t h i s s t r i n g with ” 0 . 0 . 0 . 0 ”

87

88 const unsigned char t t l = 7 ;

89 const unsigned shor t rtpPortNum = port num ;

90

91 s t r u c t in addr se s s i onAddre s s ;

92 s e s s i onAddre s s . s addr = o u r i n e t a d d r (s e s s i onAddre s sS t r) ;

93

94 const Port rtpPort (rtpPortNum) ;

95

96 Groupsock rtpGroupsock (∗ env , ses s ionAddress , rtpPort , t t l) ;

97

98 s e s s i o n S t a t e . source = H264VideoRTPSource : : createNew (∗ env , &rtpGroupsock

,96 ,50000) ;

99

100 // Fina l ly , s t a r t r e c e i v i n g

101 ∗env << ” Star t r e c e i v i n g . . . \ n” ;

102 s e s s i o n S t a t e . s ink−>s t a r t P l a y i n g (∗ s e s s i o n S t a t e . source , a f terPlay ingRec ,

NULL) ;

103

104 env−>ta skSchedu le r () . doEventLoop () ;

105 }
106

107 void i n i t n e w s e r v e r (unsigned shor t port num , char const ∗ v i d f i l e) {
108 TaskScheduler ∗ s chedu l e r = BasicTaskScheduler : : createNew () ;

109 UsageEnvironment ∗env = BasicUsageEnvironment : : createNew (∗ s chedu l e r) ;

110

47

111 char const ∗ des t ina t i onAddre s sS t r = ” 192 . 168 . 199 . 139 ” ;

112 const unsigned char t t l = 255 ;

113

114 s t r u c t in addr de s t ina t i onAddre s s ;

115 des t ina t i onAddre s s . s addr = o u r i n e t a d d r (de s t ina t i onAddre s sS t r) ;

116

117 const Port rtpPort (port num) ;

118

119 ∗env << ” rtp :// ” << des t ina t i onAddre s sS t r << ” : ” << port num << ”\n” ;

120

121 Groupsock rtpGroupsock (∗ env , des t inat ionAddress , rtpPort , t t l) ;

122

123 OutPacketBuffer : : maxSize = 50000 ;

124 videoSink = H264VideoRTPSink : : createNew (∗ env , &rtpGroupsock , 96) ;

125

126 ∗env << ” Beginning streaming . . . \ n” ;

127 play (v i d f i l e , env) ;

128

129 env−>ta skSchedu le r () . doEventLoop () ;

130 }
131

132 . . .

133

134 void play (char const ∗ v i d f i l e , UsageEnvironment ∗env) {
135 DeviceSource ∗ devS = DeviceSource : : createNew (∗ env , v i d f i l e) ;

136 i f (devS == NULL)

137 {
138

139 ∗env << ”Unable to read from\”” << ” Buf f e r ”

140 << ”\” as a byte−stream source \n” ;

141 e x i t (1) ;

142 }
143

144 FramedSource∗ videoES = devS ;

145

146 // Create a framer f o r the Video Elementary Stream :

147 videoSource = H264VideoStreamFramer : : createNew (∗ env , videoES , Fa l se) ;

148

149 // Fina l ly , s t a r t p lay ing :

150 ∗env << ” Beginning to read from f i l e . . . \ n” ;

151 videoSink−>s t a r t P l a y i n g (∗ videoSource , a f t e rP lay ing , v ideoSink) ;

152 }

48

Appendix B

streamer: DeviceSource

Figure B.1: How DeviceSource reads from FIFO and streams the content

49

Bibliography

[1] Lindsay. Virtual reality vs. Augmented reality. [online]. Oct. 2015. url: http://www.

augment.com/blog/virtual-reality-vs-augmented-reality/.

[2] Don Reisinger. Why virtual reality is about to go mainstream. [online]. Oct. 2015.

url: http://fortune.com/2015/10/07/virtual-reality-mainstream/.

[3] Orange Pi. Orange Pi Lite. [online]. url: http://orangepi.com/orange-pi-lite.

[4] FriendlyArm. Nano Pi M2. [online]. url: http://wiki.friendlyarm.com/wiki/

index.php/NanoPi_M2.

[5] Corbet. The Video4Linux2 API: an introduction. [online]. Oct. 2006. url: https:

//lwn.net/Articles/203924/.

[6] Iain E. Richardson. The H.264 Advanced Video Compression Standard. John Wiley

& Sons, 2011.

[7] MulticoreWare Inc. HEVC / H.265 Explained. [online]. url: http://x265.org/

hevc-h265/.

[8] LSI logic. H.264/MPEG-4 AVC Video Compression Tutorial. [online]. Wite Paper.

url: http://web.cs.ucla.edu/classes/fall03/cs218/paper/H.264_MPEG4_

Tutorial.pdf.

[9] google android. Position Sensors. [online]. url: https://developer.android.com/

guide/topics/sensors/sensors_position.html.

[10] Sensoray. Color Spaces in Frame Grabbers: RGB vs. YUV. [online]. url: http :

//www.sensoray.com/support/appnotes/frame_grabber_capture_modes.htm.

[11] Ben Balser. Compressor: H.264 Profiles and Entropy Modes. [online]. Sept. 2014. url:

https://www.macprovideo.com/hub/final-cut/compressor-h264-profiles-

entropy-modes.

[12] PixelTools. Rate Control and H.264. [online]. url: http://www.pixeltools.com/

rate_control_paper.html.

50

[13] Fabio Sonnati. FFmpeg the swiss army knife of Internet Streaming part III. [online].

July 2012. url: https://sonnati.wordpress.com/2011/08/19/ffmpeg-%e2%80%

93-the-swiss-army-knife-of-internet-streaming-%e2%80%93-part-iii.

[14] Inc. Live Networks. FAQ Live555. [online]. url: http : / / www . live555 . com /

liveMedia/faq.html#threads.

[15] Julian Cerruti Ayelen Chavez. Android Streaming Client. [online]. url: https://

github.com/ekumenlabs/AndroidStreamingClient.

[16] google android. Motion Sensors. [online]. url: https://developer.android.com/

guide/topics/sensors/sensors_motion.html.

[17] google android. SensorManager. [online]. url: https://developer.android.com/

reference/android/hardware/SensorManager.html.

51

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Remote video monitoring system based on VR

Richting: master in de industriële wetenschappen: elektronica-ICT
Jaar: 2017

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Poesen, Sebastiaan Ferrari, Marijn

Datum: 26/06/2017

