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Abstract (摘 要)

Nowadays, there is a high demand of Location Based Services (LBS) for indoor
environments. Because the widely used Global Positioning System (GPS) is
unavailable indoors, many technologies and methods have been investigated to
address this problem. Indoor positioning based on Wi-Fi fingerprinting has
attracted significant interest due to its potential to obtain high accuracy at low
costs. It can be applied to any indoor scenario where Wi-Fi networks are deployed
without any additional hardware.

This thesis first examines the current developments in the field of indoor
positioning and it investigates the problems with Wi-Fi fingerprinting in particular.
In a second stage an Indoor Positioning System (IPS) is developed based on a novel
implementation using a modified Weighted K-Nearest-Neighbors (WKNN)
algorithm with prior Spearman’s Rank Correlation Coefficient (SRCC) calculation.
The proposed positioning algorithm also takes into account the number of signals
being omitted during localization. Therefore, unreliable results have a smaller
impact on the final result. The proposed system consists of two parts: an Android
smartphone application and a webserver provided with the proposed algorithm
written in Erlang. The proposed IPS achieves an exceptional accuracy with an
average positioning error of approximately 80 cm using an up-to-date fingerprint
database.

On the basis of the results of this research, it can be concluded that it is possible
to use Wi-Fi fingerprinting for indoor positioning to obtain a state-of-the-art accuracy.

Keywords: Indoor Positioning, Wi-Fi, fingerprinting, WKNN, Spearman
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1
Introduction

This chapter provides a short introduction of the purpose of this thesis. The objectives
of this thesis are then formulated based on the given problem statement. To the end
of this chapter the materials and methods to achieve these objectives and the research
approach are introduced. The last section provides an outline of the chapters to come.

1.1 Problem statement and Motivation
Current developments in mobile device technology ensure that users can use

these devices for navigation. In fact, for users it is a matter of course to use their
mobile device for this application. However, indoor localization technology for indoor
navigation is not obvious and it is a difficult task to improve the reliability and
accuracy of the systems. The technology has already been examined for several years
in research projects and many solutions have been proposed in literature.

Up until this day, the need for high accuracy indoor smartphone localization is
still big and booming. The main areas of application are to help users navigate inside
large, open and complex indoor environments (e.g. airport, train station, shopping
mall). The technology could also provide an understanding of the patterns and the
customers visit for stores and businesses.

For indoor environments it is quite difficult to make use of the well-known
GPS. Positioning with GPS can only be achieved by receiving signals from at least
three to four GPS satellites at the same time. This is usually not available inside a
building and makes the GPS useless and inefficient. To overcome these limitations,
a Dead Reckoning solution is useful, in particular Pedestrian Dead Reckoning
(PDR) algorithms [?] are very suitable for indoor positioning. PDR systems take
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Introduction

advantage of the mobile measurement unit e.g. provided in mobile devices. These
systems calculate the current location of a moving person on the basis of the
starting point, the orientation, the number of steps and the step length of the
pedestrian. Nevertheless, PDR systems often result in cumulative errors because the
basic drift of the system will accumulate as time goes by. Handling different
carrying scenarios and movements of the mobile device makes dead reckoning
systems fairly complicated. Because of this, the goal of this thesis is to investigate
the implementation of an IPS. This system could then be used as an additional
technology to liquidate the basic drift of the PDR system [1,2].

Therefore this research concerns the development of a Wi-Fi fingerprinting
technique for indoor positioning. Although various studies have currently dealt with
WiFi fingerprinting for indoor positioning, the novelty of this research is that it will
endeavor to obtain better accuracy resulting from a novel implementation
methodology. The widely used K-Nearest-Neighbors (KNN) algorithm will be
adjusted with a prior SRCC calculation. The algorithm also takes the reliability of
the measurements into account. The prototype could be used to navigate from one
place in a building, to another place in the building in the future.

1.2 Objectives
In this thesis the focus lies on the development of a WiFi-based fingerprint

indoor positioning system. To achieve this goal it is necessary to accomplish the
following individual objectives:

1. Explain why WiFi is chosen for the indoor positioning system.

2. Obtain information (e.g. Basic Service Set Identifier (BSSID) and RSS) from
nearby access points with mobile device via WiFi scan.

3. Create a radiomap of each access point in the building.

4. Search and implementation of the best location algorithm for fingerprinting.

5. The application will have to be tested and demonstrated on a mobile device, to
check if the positioning accuracy is acceptable.

2
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1.3 Summary of Contributions
The contributions of the work in this thesis are as follows:

• Development of a modified WKNN algorithm in Erlang

• Development of a Spearman’s rank correlation coefficient algorithm in Erlang

• Development of a smartphone application capable for Indoor Positioning in C#

• Achieving reasonable accuracy with an average positioning error of
approximately 0.8m with the overall positioning system

1.4 Material and methods
To achieve the objectives discussed in the previous section there are several

approaches available. First the choice of the mobile device needs to be made. The
project implements the positioning system on an Android smartphone. Development
for iOS is currently not possible; Apple does not provide a public API to scan for
nearby access points. Because of this, it is not possible to obtain the RSSI values of
each access point.

The project will develop a Xamarin [3] application instead of a native Android
application. The Xamarin platform allows the developer to create applications that
are cross-platform. With the same code-base, written in C#, an application for iOS,
Android and Windows can be developed. Xamarin Studio will be used as the IDE
software. Because of this, one may decide later to build the Xamarin application for
the iOS operating system from the moment Apple provides the public API for WiFI
scanning.

The following hardware is used for the development and implementation of this
project with the following specifications, as shown in Table 1.1.

1.5 Research Approach
The initial phase of this project mainly focuses on the research for the current

state of the technology based on state-of-the-art. After this, the application is being
developed, and successively optimized to a good working prototype. Ultimately, the
results of the project are analyzed and reported.

The project is carried out in the Laoshengyi (⽼⽣仪) building at Zhejiang

3
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Specification Laptop Smartphone

Name MacBook Pro (Retina, 15-
inch, Late 2013)

Nexus 5

Brand Apple Inc. LG

Operation System macOS 10.12.3 Android 4.4.4

Processor 2 GHz Intel Core i7 Quad-core 2.3 GHz
Krait 400 CPU

RAM-memory 8 GB 1600 MHz DDR3 2 GB

Table 1.1: Overview of used hardware.

University (Yuquan Campus) in Hangzhou, China. In particularly, the fifth floor will
be used to carry out the experiments, to determine the position of the mobile device
in two dimensions and to make sure the prototype will work in a relative small area.
The system could also be used in different floors or public spaces if there are fixed
access points available.

1.6 Outline
This thesis is divided in two main parts. Firstly the current techniques and

technologies used for indoor positioning (chapter 2) are discussed. Then it focuses
more on WiFi indoor positioning and the current developments in this area in
chapter 3.

For the second part this thesis focuses on the implementation, development
and the obtained results of the developed WiFi indoor positioning system. In the last
chapter an overview of further improvements is proposed.
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2
Indoor Positioning Systems

An IPS is a system to track an object or person situated within a building where the
GPS is inadequate. An IPS is often implemented by the use of a portable, sometimes
wearable, device.

2.1 Previous Developments
There are several non-radio [1, 2, 4–10] and wireless [11–18] technologies that

have been studied in the last few years that could be used for positioning. Current
and ongoing research focuses mostly on wireless indoor positioning techniques. Most
of these approaches uses Wi-Fi or Bluetooth signals, taking advantage of existing
wireless infrastructures already deployed inside the building.

2.1.1 Non-radio technologies

Infrared Signals One of the first indoor positioning systems is the active
badge system introduced by R. Want et al. in 1992 [4]. In this study, they developed
a wearable badge, similar to a name badge, that emits infrared signals. Receivers are
placed at specific places in the building which make it possible to locate persons.
There are obviously a lot of limitations. First of all, the receivers and the badge
needs to be in the line-of-sight of one another. Another limitation is that infrared is
a short-range transmission signal, therefore a lot of receivers are required, bringing
the costs upward, even though the accuracy of the location depends on the number
of receivers [4].

Magnetic Positioning Magnetic positioning is a commonly applied
method. It is based on the iron structure of the building. Dedicated chips inside e.g.
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a smartphone can sense these magnetic variations in the Earth’s magnetic field.
These variations are used to map the building and provide localization [5, 6].

Acoustic/Sound Positioning Another non-radio technology for indoor
positioning is the use of acoustic or sound signals [19, 20]. Guoguo [20] is an indoor
positioning system that achieves centimeter-level localization accuracy in several
indoor environments. The system utilizes therefore an anchor network of low-cost
devices spread over the space. Each node transmits modulated localization beacon
signals using high-bandwidth acoustic signals. A smartphone application processes
these signals and using a backend server the localization can be determined.

Inertial Measurements The tracked object or person carries a device with
a Inertial Measurement Unit (IMU), this method is mostly applied in pedestrian
dead reckoning systems [1, 2, 7]. These systems benefits from the availability of
sensors in modern smartphones. With the proper algorithms on the sensor data,
tracking the movement of an object or person is possible [1]. Recent research [?]
focuses on a pedestrian tracking system using dead reckoning on a commercial
off-the-shelf smartphone. The tracking system utilizes the smartphone’s built-in
Inertial Measurement Unit. The system even identifies three typical carrying modes
of the smartphone during walking. This feature is used to optimise the tracking
accuracy. The smartphone’s user is able to localize itself in the environment
assuming that the initial position is known based on step detection, step length and
the holding mode of the smartphone. The PDR system is robust and accurate for
people of different gender, height and walking speed. A sub-meter error accuracy is
achieved, when walking a path with distance of 28m, for real-time tracking and
localization of the smartphone user.

Visual Positioning There are two directions within visual positioning. First
of all, it is possible to determine the position of an object or user by using a camera-
enabled mobile device. Most methods implement visual markers in the environment.
By locating and decoding these visual markers and measuring the angle from the
device to the marker, it is possible to estimate the location of the device. Secondly,
there are also visual positioning systems that use a database of images. The mobile
device will estimate its location using interpolation on this image database.

A common implementation of visual positioning is Simultaneous Localization
and Mapping (SLAM) [8, 9]. SLAM is concerned with the problem of building a
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map of an unknown environment by a mobile robot while at the same time
navigating the environment using the map. SLAM approaches are employed in
self-driving cars, unmanned aerial vehicles, autonomous underwater vehicles,
planetary rovers, etc. SLAM will always use several different types of sensors, as
well as optical sensors, named Visual Simultaneous Localization and Mapping
(vSLAM) [10]. vSLAM algorithms are mostly vision- and odometry-based. These
systems enable low-cost navigation in cluttered and populated environments.
Because no initial map is required, a vSLAM robot possesses the ability to explore
its environment without user-intervention. Because of this the robot is capable of
building a reliable map and localize itself in the map [10].

2.1.2 Wireless technologies

One of the most common techniques for indoor localization is the use of
radio-frequency signals. These systems most commonly use the concept of RSS, an
indication of the received signal’s power level measured by the receiver, for
positioning. The inverse-square law applies to radio waves propagation, therefore
distance determination is possible based on the relationship between transmitted
and received signal strength. This makes radio-frequency signals particularly useful
for localization, usually Bluetooth [11–13] or Wi-Fi based positioning systems
[14, 15] are used.

Radio-Frequency Identification (RFID) tags are also used for
implementing indoor positioning systems, e.g. the mTag project [16]. Fixed RFID
readers are placed in the building and a passive RFID tag attached to e.g. a mobile
phone or name badge. The location is determined by passing a RFID reader with
this tag, resulting in an estimation of the user’s location. The implementation of
this system requires, of course, a close passage to prevent it from walking out of
range of the reader.

The operation principle for positioning systems using Bluetooth or Wi-Fi
techniques are similar. They are both a wireless technology that is already very well
established in modern smartphones. Choi and Jang report up to 86% accuracy
using fingerprinting in combination with Bluetooth technology [13]. The main
advantage of Wi-Fi over Bluetooth systems is that the network infrastructure is
already present (e.g. hotspots, etc.) and several access points are located in fixed
positions. So it will not require an investment in specialized hardware. Wi-Fi based
positioning systems are further discussed in the next chapter.
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Another upcoming technology is Ultra-Wideband (UWB). It is an RF
technology that allows millimeter accurate positioning, consuming low power
[17, 18]. But most current consumer type mobile devices are not yet equipped with
this technology. Given the appropriate driving applications, it is to be expected that
this technology will also be embedded in future smart phones and mobile devices.

2.2 Approach for Indoor Positioning
From the literature on indoor positioning a classification can be made: on the

one hand, the quantities that are measured (the technology), and on the other
hand, the manner in which these quantities are used to calculate a specific location
(the techniques) [21]. Table 2.1 depicts an overview of this classification. The most
important techniques are fingerprinting, signposting and trilateration. Received
Signal Strength (RSS), Time of Arrival (TOA) and Angle of Arrival (AOA) are
some technologies that can be used for indoor positioning. The possible positioning
techniques can not only differ in the technology that is used, but also in the way in
which the data are processed. Thus, another classification can be made between
centralized and decentralized methods. Localisation is centrally calculated or
distributed on each mobile device respectively [22].

Techniques Technologies Localization
Fingerprinting RSS Central

Signposting RSS Central or distributed
Trilateration RSS, TOA, AOA Central or distributed

Table 2.1: Overview of technologies and techniques.

The following sections explain the operation of the most important technologies
and techniques for indoor positioning.

2.2.1 Technologies

RSS [23] defines received signal strength as the measurement of the power
present in a received radio signal. This received power is mostly dependent on the
distance between transmitter and receiver and is determined based on a large number
of sample measurements of the received signal. Sampling will be taken over disjoint
time intervals. RSS is most commonly shown as the power ratio in decibels (dB) of
the measured power. The unit is therefore dBm.
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Most hardware is equipped to measure the Received Signal Strength Indication
(RSSI) of the received power. The advantage is that it consumes no extra bandwidth.
With RSS, the distance is calculated either at the mobile station or the base station.

The drawback of the use of RSS signals is that it is heavily influenced by the
structures in a building: walls, doors, floors, concrete, steel, furniture, machines, etc.
as well as reflections, multi-path by these structures.

TOA Position determination by TOA technology, is measuring the time that
it takes for a signal to propagate from the mobile station to the base station, by
using the finite velocity of propagation, approx. the speed of light (300 meters per
microsecond)1. The time it takes for a signal to propagate from a transmitter to a
receiver is in fact related to the distance traveled by the signal. A first drawback is the
need of clocks with a very fine resolution. It also requires complete synchronization
to obtain an accurate distance measurement, e.g. a time measurement error as small
as 100 nanoseconds can result in a localization error of 30 meters [24].

UWB is a technology that implements time of arrival in a cost effective and
accurate way.

A variant of TOA is Time Difference of Arrival (TDOA). TDOA bypasses the
need for synchronization between transmitter and receiver. The localization is based
on the difference in time of arrival at the receiving nodes. Because of this it requires
a minimum of three nodes for basic operation (transmitter node and minimum two
receiver nodes). The receiver nodes must no longer be synchronized with the
transmitter. The difference in arrival time at the receiving nodes is in fact
independent of the time base of the transmitter. Obviously, the receiving nodes
should still be synchronized.

Figure 2.1 depicts a final disadvantage of TOA. For correct distance
measurements a Line-Of-Sight (LOS) is needed, thus equivalent to the direct path
(t1) between transmitter and receiver. If there is no LOS component received

Non-Line-Of-Sight (NLOS), t2 will be chosen for the shortest arrival time. This will lead to
an erroneous calculation of the distance. Such reflections of course also influence the
accuracy of RSSI based methods.

AOA In a node network with nodes equipped with directive reception

1In vacuum, c = 299792458m/s. For simplicity, c = 3 ∗ 108m/s = 300m/µs is used
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Figure 2.1: LOS/NLOS drawback of TOA [21]

Figure 2.2: AOA visualization [21]

antennas, AOA technology could be used for localization, by making use of the
reception angle of the signal.

As is shown in Figure 2.2, two reference nodes suffice to determine an
unambiguous location area (p) at the receiving area. As the receiving antenna can
distinguish smaller angles, the location area (p) becomes smaller.

It is possible to use AOA in combination with RSS or TOA to do fairly precise
positioning. Keep in mind that this technology also gives incorrect results if there is
no LOS between the nodes.

2.2.2 Techniques

Fingerprinting One of the most common indoor localization techniques is
fingerprinting [6, 13, 25, 26]. This technique makes use of a database of signal values
of each node in the network (mostly RSS values) measured on several specific
locations. Therefore it is possible to build a radio map of the building for each
node’s measurements.

In order to determine the position of a blind node inside the building, one
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Figure 2.3: Fingerprinting workflow of training and online phase [30]

compares the received signal with the values stored in the database. The best match
(with all reference nodes) provides the position. From the best similarity (with all
reference nodes), the position of the blind node can be calculated.

The method consists of two phases, a training (or set-up phase) and an online
phase (or localization phase). Figure 2.3 shows these two phases for WiFi
fingerprinting. In the training phase, the area is scanned for surrounding Access
Point (AP) from the Mobile Unit (MU). After that, the fingerprint from each AP is
stored together with its (x,y)-location in the database. This phase uses the so-called
war-driving [27,28] method. In the online phase a positioning algorithm is used that
compares the current online measurements of the mobile unit to the fingerprints
stored in the database. The best possible match is the mobile units (x,y)-location
[29].

The size of the database used is directly related to the accuracy of the
positioning and the number of reference nodes. The main disadvantage of the
technique is the training phase. Building a radio map for each node in the building
is very labor-intensive and time-cosuming for large spaces. Furthermore, these radio
maps are a snapshot of the signal strengths of the moment of measurement causing
into erroneous calculations at the time the signal strenghts change or one of the
nodes become faulty.
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With fingerprinting the localization is performed centrally, all data is
processed at a central location (e.g. remote server with database), contrary to
distributed positioning.

Signpost Positioning Signpost positioning is the simplest indoor positioning
technique, moreover also the least accurate. This is, in other words, a highly simplified
form of fingerprinting. One such application of the signpost algorithm is used by [31].
The exact location of all the access points needs to be known before using the signpost
algorithm. It is also common to use a symbolic name for the acces point, e.g.: the
name of a specific room or desk. The location of the blind node is linked with the
symbolic name of the reference node that is received best. Therefore, the signpost
algorithm makes it possible to predict in which room the blind node is situated.

The advantage of this technique is that there is no need for much calculations.
The disadvantage is the low precision of the positioning (mostly room location
estimation). The need to obtain a more precise location will result in an increase of
the number of reference nodes. This added infrastructure will lead to additional
costs to implement the signpost positioning technique.

By using signpost positioning the localization is performed centrally or
distributed. Like fingerprinting, signpost positioning can also use a central database.
It is also possible that the blind node determines its own location due to the limited
computing power necessary.

Trilateration One of the most traditional ways of localization, is the use of
trilateration. The measurement technologies for trilateration are: RSSI, TOA and
AOA. Trilateration uses measurement of distances for determing locations using
circles, spheres or triangles. In contrast to triangulation, trilateration does not use
measurement of angles.

In a two-dimensional plane, the position of a blind node can be determined with
the aid of the signal strengths of at least two reference nodes, converted to distances.
It is known that the blind node then lies on two circles with their two radii equal to
these distances. The position can be determined because the centers of these circles
form a triangle together with the blind node.

In a three-dimensional plane, at least three reference nodes are needed. The
position of the blind node can be determined via conventional geometric methods.
The centers of the three circles or spheres together with their radii are sufficient
information to determine a localization area (also shown in Figure 2.4). Since these
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Figure 2.4: Geometric interpretation of TOA for indoor positioning [32]

calculations rarely provide an unambiguous location, the most probable position is
often determined via interpolation techniques, such as the least squares method [32].

The Global Positioning System relies on this technique, except that GPS is in
three dimensions. So spheres are needed instead of circles to calculate the distances
from the location to the satellites. After the geometric triangulation with the three
spheres two points of possible locations are determined. One of the points is not
on the surface of the earth, so it can be eliminated, finding the current location.
So if it is desired to use three-dimensional trilateration or multilateration for indoor
positioning, one needs at least four reference nodes.

2.2.3 Comparison

Table 2.2 summarizes a comparison between these technologies and techniques
by [33]. As can be seen from the table, it is very clear that fingerprinting is the most
suitable method for the proposed indoor positioning system. Note that when using
the other methods one needs to specify the location of the antennas. This is a major
drawback in comparison to fingerprinting.
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Method Indoor
accuracy

Coverage
LOS or
NLOS

Affected
by

multipath
Cost

Signpost (RSS) Low Good Both No Low

AOA Medium Good LOS Yes High

TOA High Good LOS Yes High

Fingerprinting High Good Both No Low

Table 2.2: Comparison of indoor position methods. [33]
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3
WiFi Fingerprinting

This chapter focuses on WiFi IPS with in particular the fingerprinting method. First
there is a short introduction about why this method is implemented. After that some
problems with WiFi signals are explained. Next there is a report of the explored
related work that is most important for this thesis. At the end of this chapter a closer
look will be given to the proposed system architecture for this thesis.

3.1 Introduction
In this part of the thesis, some recent research work on WiFi localization with

a specific focus on fingerprinting-based localization techniques will be presented. Is
is clear from the criterea discussed in the previous chapter, to chose fingerprinting as
the technique for the proposed system.

3.2 Weaknesses of WiFi for indoor positioning
Using WiFi signals for indoor positioning is one of the most appropriate and

favorable solutions because of the presence of IEEE 802.11 b/g/n access points in
buildings. Besides this, WiFi also ensures some negative effects. Using WiFi for indoor
positioning is therefore not without drawback.

3.2.1 Body Effect

European radio regulations are standardized by the European Conference of
Postal and Telecommunications Administrations (CEPT). The European
Radiocommunications Office (ECO) develops regulations for CEPT and obliges
users of the 2.4 GHz frequency band to operate at low power. Therefore, devices
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Figure 3.1: Results of body effect experiment by [26]

operate at a maximum power of 1 watt or 30 dBm [34]. According to [35], signal
strength may drop 10-15 dBm due to the low penetration power. Note that this
power los accounts for 14-21% of the total effective signal strength.

Because of this power los, the signal will highly influence the positioning system.
Even when a user holds the mobile device in his hands, the path between the mobile
device and the access point can be obstructed by the user, hence the name: body
effect. The body of the user also acts as an additional antenna and disturbs the
directional propagation/receiving pattern.

The body effect has been studied by K. Kaemarungsi and P. Krishnamurthy
in [26]. They conducted an experiment to confirm this effect by measuring the signal
strength at about 7 m removed from the access point with NLOS. The experiment
took 2 hours, during the first hour, the user was present, while no user was present
in the second hour. Figure 3.1 depicts the result of their experiment. Note that
the presence of the user significantly changes the standard deviation of the signal
strengths from 0.68 to 3.00 dBm and the mean from -70.4 dBm to -71.6 dBm.

By keeping the body effect in mind, it is clear that when the radio map is built
for the IPS in the training phase, the user should be present, reflecting the online
phase environment. However, there can also be other people and objects present and
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moving, thereby changing the power transmitted between sender and receiver. This is
a major drawback for WiFi-based indoor positioning systems, especially in crowded
environments.

3.2.2 RSS variations

Not only the body influences the Wi-Fi signal, but also differences in the
environment e.g. physical objects contribute to the RSS variations in time. Due to
walls and other structures, which are in the environment of the proposed
positioning system, or by changes in the environment, multipath propagation
usually prevail, causing significant fluctuations in the RSS. This effect, called
fading, will be a disadvantage for the IPS when using a mobile device to observe the
RSS [36]. This issue is most commonly remedied by calculating the average RSS
value over a certain period. This should also be borne in mind in the proposed
architecture for this thesis.

Another problem causing variations in RSS values is interference. The frequency
band used by Wi-Fi radio signals is generally shared by other systems or devices
e.g. microwave, Bluetooth devices. Interference may decrease RSS considerably when
these devices are nearby and in operation.

RSS is thus greatly affected by the body effect, fading, and interference. Strong
RSS values would be largely affected by fading, while weak RSS values may be effected
by one or more of the three factors. Figure 3.2 depicts the results of an experiment
that has been conducted in the lab to observe the changing RSS values in time. The
Wi-Fi scanner from the Android smartphone collects the RSS values of a TP-Link
WR340G access point for about 15 minutes with a sample rate of 1 second. Both
the AP and the smartphone are situated in the lab environment with a distance of
1.5m from each other. The experiment has been conducted at a time when there was
a normal activity in the lab. As can be seen in the figure, the lowest observed RSS
value is -62 dBm and the maximum observed RSS value is -39 dBm: a difference of
23dBm. The average RSS value of the observations is -47.37 dBm and the median is
-47 dBm. Note that there is a dip in the received signal strengths in the first minute
of the experiment without an immediate explanation for this occurence.

3.2.3 Influence of the number of access points and reference points

The use of the number of access points is not directly related to the property
of the Wi-Fi signal but it is certainly important to mention this as it can also be
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Figure 3.2: Experiment on RSS variations in lab

a disadvantage of using Wi-Fi. The number of access points in the environment,
results in inaccurate fingerprint data, leading to poor performance. Placing additional
APs to optimize the fingerprint data may incur additional costs and installing new
APs can be time-consuming. [37] examines the relationship between the number of
APs and reference points (RPs) in the fingerprint database that results into optimal
localization results. An indoor space with dimensions of 11 x 23 m, should contain
around 5 APs and around 66 RPs for optimal localization [37]. In fact, increasing the
amount of APs or RPs barely influences the result [37].

3.2.4 Signal Aliasing

Another weakness that occurs with Wi-Fi signals is a phenomenon, called signal
aliasing. According to [38], signal aliasing refers to:

Two points that are far apart may be close together in signal space.
Such aliasing can happen because of the complex indoor propagation
environment. The signal strength at a point close to an AP may be
similar to that at another point that is far away simply because of an
obstruction (such as a wall) attenuating the signal received at the
former point while the latter point receives an unobstructed signal.

To solve this problem, a first solution is the optimal placement of APs in the building.
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Appropriate access point placement in the building layout is thus very essential in
solving this problem.

This phenomenom should also be taken into account in the proposed
architecture. The positioning algorithm should implement a solution for this. The
RADAR system by [29] solves this by continuous user tracking. If the system is able
to determine the location in an earlier position, it can chose between some
calculated positions to determine the real position of the mobile device.

3.3 Related Work
There is a vast literature on indoor positioning systems with Wi-Fi

fingerprinting [36, 39–45]. Most introduced systems achieve better accuracy by
obtaining fingerprints from sources different from RSS [40, 46]. Alternatively,
combining the Wi-Fi fingerprinting with IMU is also a common reasearch area [28].
This section elaborates on some of the most relevant systems useful for this thesis.

Xue W. et al. [36] present a positioning system with an improved Wi-Fi RSS
measurement algorithm. After an analysis of the spatial resolution of the signal
strength of Wi-Fi, they conclude that higher RSS values (good reception) produce
smaller differential distance (better spatial resolution). So they propose a new RSS
extraction algorithm where only high RSS values are employed for better
positioning accuracy. They also prove that the mean of the RSS values is not an
accurate reflection of the dynamic behavior of the RSS values. Instead, they first
select M maximum RSS values and average these values for better positioning
accuracy. The point of their system is to take a good value for M, this is determined
by the curve smoothness index denoted by S and is defined as:

S =
N−1∑
i=2

√
(RSSi −

RSSIi−1 +RSSIi +RSSIi+1

3
)2 (3.1)

where N is the number of position points and RSSIi is the mean of the M selected
maximum RSS values at the ith position point. The experiment concludes that there
is not any consistent variation trend over the range of values of number M for every
AP. Therefore one should make a sum of every smoothness index of every AP. Take
M where the sum of every smoothness index is lowest, because the smoother the
signal curve, the better quality of RSS value there is. The proposed algorithm is
considerably better than the mean algorithm. It provides a positioning accuracy of
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Figure 3.3: Comparison of location accuracy of proposed algorithm in [36] with three
other algorithms in terms of cumulative distribution function (CDF)

84% at 1.0m error threshold, an improvement of 14% with respect to a classic mean-
RSS algorithm, see also Figure 3.3. This picture shows the cumulative distribution
function (CDF) for the positioning error. The horizontal axis is the positioning error
in meters for the given probability functions. The vertical axis is the probability in
percent. So the CDF shows the probability for the positioning errors less than or
equal to a specific error. The algorithm has a lower computational complexity than
the Kalman filtering and the particle filter algorithm. Because of the stronger ability
of interference tolerance, the proposed algorithm has a better robustness than the
other algorithms. It is a good idea to implement this method for the proposed IPS.

Another interesting indoor positioning system is the DeepFi system [46].
Many existing IPS using fingerprinting obtain the fingerprints from RSS values due
to the simplicity and low hardware requirements. Because of the high variability
over time and the coarse information, RSS does not exploit the many subcarriers in
an orthogonal frequency-division multiplexing (OFDM) system for richer multipath
information. DeepFi therefore implements the use of channel state information
(CSI) from network interface cards (NICs). Compared with RSS, CSI is able to

20



WiFi Fingerprinting

provide more information of the channel. Thus, replacing the use of RSS with CSI
for indoor positioning systems results in a better ability to distinghuis locations.
Therefore, time-varying effects are able to be overcome, improving the performance
of the IPS. DeepFi only considers the amplitude of CSI, and the CSI phase
information is ignored, which is largely due to the randomness and unavailability of
the raw phase information [47]. CSI information for all the subcarriers and all the
antennas is collected through the device driver and analyzed with a deep network
with four hidden layers. About 60% of the used test points result in an error under
1m. Two experimental environments have been used, which result in a mean error of
1.2m in a living room scenario and 2.3m in a laboratory scenario. There exists
abundant multipath and shadowing effects in the laboratory scenario, resulting in a
larger mean error. Although DeepFi achieves good localization performances, the
system still requires to create a fingerprint database via war-driving [27, 28] in the
offline phase. An effective approach to reduce the burden of war-driving is
crowd-sourcing, where the load of fingerprinting is shared by multiple users [48].
This research direction is very impressive but inaccessible for this thesis. CSI is in
fact unavailable on most commercial WiFi devices and currently not available on
the Android platform. DeepFi obtains the CSI from the Intel WiFi Wireless Link
5300 NIC. This is possible after modification of the firmware and the wireless driver
[49].

As mentioned above, crowd-sourcing is a good way to reduce the cost of the
fingerprint calibration process. UnLoc [28] extracts identifiable indoor places as
landmarks of a building (e.g. an elevator imposes a distinct pattern on a
smartphone’s accelerometer, a corridor-corner may overhear a unique set of WiFi
access points, a specific spot can have an unusual magnetic fluctuation [28]). UnLoc
then applies dead-reckoning schemes to track users between these landmarks. New
landmarks in the building are discovered from analyzing sensor data from different
users in the building. This autonomous discovering can further help localization.
Some WiFi fingerprinting systems can even automate this training via
crowd-sourcing using mechanisms of increasing sophistication (e.g. Redpin [50], OIL
[51], WiFi-SLAM [52], Zee [53], RCILS [40], etc.).

Another crowd-sourcing system is the EZ [39] Localization algorithm. The
system’s users carry Wi-Fi-enabled devices traversing a space in normal course.
Even if the physical layout of the building or the placement of the APs is not known
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a priori, EZ can calculate an estimation of the user’s location. This is achieved by
mapping the relationship between RSS values and locations, with some occasional
location report or fix from GPS of the device at the entrance or near a window.
Other users are then located based on the RSS mapping scheme based on the
relative signal measurements. EZ defines the received signal strength sij at a
location with vector xj of a user given distance dij from the ith access point using
traditional path loss model:

sij = s0i − 10γi log dij + R (3.2)

dij =
√

(xj − ci)T (xj − ci) (3.3)

where s0i is the transmit power, the RSS from this ith access point at a distance
of one meter, γi, the path loss exponent, captures the rate of fall of RSS in the vicinity
of the ith AP and ci is the estimated location vector of AP i. R is a random variable
that hopes to capture the variations in the RSS.

When three true, non-collinear locations (either AP or mobile users) are known,
the equations of the system are uniquely solvable. All the other locations can be
calculated. Note that prior knowledge of the RF environment is not required but the
system occasionally needs GPS signals in order to obtain these three true locations.
Overall, the EZ system reduces the survey cost significantly. The researchers deploy
the system in two different buildings wich yields a median localization error of 2m in
a small building and 7m in a large building respectively.

RCILS [40], a Robust Crowd-sourcing-based Indoor Localization System, is
one of the most recent proposed IPS with crowd-sourcing. The system
automatically constructs a WiFi radio map of a building using data collected from
nearby smartphones. RCILS also reduces the influence of the variations of the RSS
values by implementing a sequence-base radio map. The system is based on two key
observations: the indoor map constrains people’s activities and trajectories in the
environment and the collected RSS vectors are continuous. RCILS matches the
coordinates of these trajectories with the RSS values and provides them with
location information. After their experiments they can conclude that the changing
trend of the same path at different times are similar, even when, due to the
environmental changes, the RSS values are different at different times. Another
conclusion is that the changing trends of the RSS values collected by different types
of smartphones are also similar. RCILS improves the robustness of
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crowd-sourcing-based indoor localization systems. The system has a median error of
approx. 1.6m inside a medium sized academic building (2750m2) [40].

Not only obtaining fingerprint data is important in a Wi-Fi fingerprinting
localization system, it is also important to update the database information in the
dynamically changing environment [41]. Due to various factors, discussed in Section
3.2, the current signal strengths may vary significantly compared to the signal
strengths saved in the database. Therefore, the database becomes outdated,
resulting in large estimation errors during localization. Because sporadically
conducting new site surveys is not cost-effective, recent research also focuses on
adapting the fingerprint database to these signal variations.

Recent research has two approaches to address this problem: one deploys
external infrastructures to monitor the signal variations (infrastructure-based
schemes) [42, 43] or uses algorithmic adaptation to fingerprint signal noise
(non-infrastructure-based schemes) [44,45].

[42] utilizes extra Wi-Fi monitor beacons (sniffers) for monitoring
environmental dynamics. This approach is feasible because most current beacons
(such as Wi-Fi and ZigBee stations) have both transmitting and receiving
capabilities. These beacons observe the RSS values from other beacons
(inter-beacon measurement). Because of this, gathered radio maps are calibrated on
the fly without the need for additional hardware.

[43] implements a modified Bayesian regression algorithm to estimate the
current RSS values probability distribution in the building space. These estimations
are based on the observations from APs in the online phase. The system assumes
Gaussian prior centered RSS values over a logarithmic pass loss mean. [43] expresses
the signal strength, sx at a location x as

sx = f(x) + ϵ (3.4)

where ϵ is an additive zero-mean Gaussian noise and f is the estimated process output
function for random values of x. Given N reference locations X and fingerprints
S, let the N -by-N matrix K be the covariance matrix between these samples. An
element k(xi,xj) in K is usually given by an exponential kernel. In Bayesian analysis,
instead of learning the weights like in neural networks [54], Gaussian Regression learns
the kernel (covariance of training data) [55]. Based on a Gaussian process [43] with
covariance σ2

nI, the predicted mean RSS values µx∗ at this location x* is given by

µx∗ = m(x∗) + k(x∗,X)(K + σ2
nI)

−1(S −m(X)) (3.5)
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where σn are the hyper-parameters of the Gaussian Process. The mean function
m(x∗), is given by either kernel regression (using Bayesian inference) or propagation
model regression. Training of these machine learning algorithms is usually
computationally expensive, but experiments of the proposed algorithm shows that
the dynamic radio map provides a 2-3m accuracy. This is comparable to results of
an up-to-date offline radio map [43]. The experiments also show the consistency of
the estimated location measured with the actual positioning location.

Instead of using sniffers for adapting the fingerprint database, [44] uses a
Manifold co-Regularization, which is a machine learning technique for building a
mapping function between data. Hereby it is assumed that RSS values from nearby
positions have more similar values than those far away. So observations from a
different time period should correspond to the same locations if no big changes do
occur in the environment. The mapping function between the signal space and the
physical location space is adapted dynamically by several labeled data from
reference points and a few unlabeled data in a new time period. However, the
system’s algorithm relies on the stored fingerprints and aims at approaching small
signal variation. Therefore, it cannot adapt to large environmental changes e.g.
when APs are changed in transmission power, removed or added.

To adapt the fingerprint database to these large environmental changes user
feedback or crowd-sourcing is needed [45], as already addressed in this section. In
some cases, it may be inconvenient to prompt users to upload their collected signal
data. Moreover, feedback from users is even not always reliable. So, error filtering is
probably needed before updating the database.

Next to construct and adapt the fingerprint database, it is also important to
keep in mind that users in the online phase are possibly using heterogeneous
smartphones, and thus also obtain fingerprint data with different network interface
cards. This will predominantly cause problems when RSS data is collected during
crowd-sourcing for optimizing the fingerprint database. [56] tries to find a solution
for these incorrect RSS values. They have evaluated the use of the difference in
uploaded RSS values by various devices. [56] conclude that their proposed algorithm
is more robust to device variations. Disregarding the amount of contributing
devices, the system preserves the localization accuracy.

Much research also focuses on the localization algorithm itself used in the
online phase. An interesting direction has been made by [57]. Their system
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implements an improved Spearman-distance-based K-Nearest-Neighbor (KNN)
scheme. It is assumed that the ranking of the received AP signals is more likely the
same or similar even if the absolute RSS values are quite different. The improved
Spearman-distance-based KNN algorithm results in a localization error under 2.7m
for 80% of the test samples.

Most reasearch implements a positioning algorithm that is either a
deterministic or a probabilistic algorithm. These algorithms use real-time matching
of RSS fingerprint data or the probability distribution of the signal strengths to
obtain a user’s location respectively.

Probabilistic Positioning describes the signal strengths with a probability
distribution function and use a Bayesian system, most commonly together with
clustering, to estimate the location of the user. Some examples of probabilistic
positioning systems are: [58] which implements a Bayesian hierarchical model for
positioning and [59] which utilizes the maximum likelihood function for positioning.

The most common techniques for deterministic positioning are data mining
and machine learning algorithms [29, 57, 60, 61] such as KNN, Support Vector
Machine (SVM) and artificial neural network. The KNN algorithm is an easy-to-use
machine learning algorithm and is widely applied in indoor positioning systems
because of its simplicity and high performance. The algorithm calculates the
position based on the distance between the reference fingerprint and the fingerprints
in the database. Various formulas can be used for distance calculation, e.g.:
Manhattan distance or Euclidean Distance. It finds the K best matching
fingerprints based on their mutual distance and calculates the position as the
average of the positions of these K fingerprints. The WKNN [60] is a variant of
KNN, this algorithm uses weights to calculate the position instead of just averaging
the positions of the best matching fingerprints.

A large number of artificial intelligence technologies can be used as an
approach for positioning algorithms and finding the best matching fingerprint from
the database. Thus, many researchers use artificial neural networks in their
positioning systems, as it is one of the most important methods in machine
learning. Recent research implements multilayer perceptron [62], multi-layer neural
networks [63] or regression neural networks [64] for their positioning algorithm.

Research also uses SVM [65,66] as the positioning algorithm. The SVM method
is also based on the theory of statistical learning and is commonly used for data
classification and regression. SVM classifies data by finding the optimal hyperplane,
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i.e. the plane with the largest margin between two classes, that separates all data
points of one class from another class. Therefore, optimal nearest neighbor fingerprints
can be obtained by SVM classification of the fingerprint database.

26



4
Proposed System Architecture

This chapter provides an overview of the implemented algorithm for the proposed
indoor Wi-Fi fingerprint positioning system.

4.1 Introduction
A global overview of the proposed system architecture is shown in Figure 4.1.

Obtaining the fingerprints is done through an Android application. Matching the
target fingerprint with the database of collected fingerprints is done remotely on a
webserver written in Erlang [67]. Erlang is a functional language with a declarative
style of function declaration. This allows the program implementation to be done in a
short time. Tuples are used to represented data structures and lists are very efficient
to manipulate data in Erlang. One tries to find the device’s location based on a best
match algorithm by sending a target fingerprint via a HTTP request to the server. In
the offline phase the database is built. The online phase is designed for localization.

Figure 4.1: Overview of System Architecture

Figure 4.2 depicts the view of the Android application, named WiFiFing. The
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(a) Dashboard screen (b) Offline Phase Activity

(c) Online Phase Activity (d) Settings Activity

Figure 4.2: View of WiFiFing application
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Figure 4.3: Offline phase flowchart

application is composed of 4 main parts: 4.2a the dashboard menu, 4.2b the offline
phase, 4.2c the online phase and 4.2d the settings page. Next sections focus on the
offline and online activity of the application that corresponds to the offline phase
and online phase of the Wi-Fi fingerprint system respectively. The purpose of the
dashboard and settings page in the application speaks for itself.

4.2 Offline Phase

4.2.1 Initialization

Figure 4.3 depicts the backend workflow when the user makes a fingerprint
in the offline phase. This is initiated by pressing on the provided button in the
application after the current location is set. The current location is determined by
the user by pressing on the location in the map or by typing the location in meters
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Figure 4.4: Cartesian coordinate system on experiment floor map with a marked
location at (14m, 10m)

in the textviews. A Cartesian coordinate system is used with the origin at the top
left corner of the map, with inverted y-axis, as is shown in Figure 4.4.

4.2.2 Obtaining fingerprint

After initialization, the first scan results are provided by the Android
WifiManager class. At this moment the total scan takes T milliseconds with a
sample rate of D milliseconds, T and D can be set in the settings of the application.
After every scan, the dictionary containing the scan results is updated. The scanner
only saves the acces points (APs) with the SSID equal to the provided SSID from
the settings page by the user. The user can hereby select the fixed APs in the
environment. From the moment that the total scan time is reached, all the
fingerprint data are retrieved. The value for every BSSID key in the dictionary is
reduced to the average of the X maximum values observed during the scan, based
on the algorithm using the average of a number (X) of selected maximum RSSI
observations [36]. Before taking the average of X RSS values from the obtained RSS
vector, the received RSS values are sorted by descending order. Because of this the
occasional poor sampled RSS values are removed before saving the fingerprint in the
database. RSS vectors whose amount of RSS values is less then X, are ignored when
building the fingerprint, the observed BSSID is not included in the final fingerprint.
This also reduces the fingerprint size, saves storage in the database and also
indirectly ensures faster response time from the server. The final fingerprint saved
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1 {

2 "x" : 550,

3 "y" : 400,

4 " rssvals ":[

5 {"BSSID":"80: f6:2e:14: b5 :90/ ZJUWLAN ","RSSI":-64},

6 {"BSSID":"80: f6:2e:14: b5 :30/ ZJUWLAN ","RSSI":-74},

7 {"BSSID":"80: f6:2e:14: b4:f0/ ZJUWLAN ","RSSI":-78},

8 ...

9 {"BSSID":"80: f6:2e:14: fc:f0/ ZJUWLAN ","RSSI":-81}

10 ]

11 }

Figure 4.5: Encoded JSON example

in the database consist of the location of the reference point and every obtained
RSS value in dBm together with the BSSID of the signal at that point.

4.2.3 Saving fingerprint

Next, the dictionary is formatted to a JavaScript Object Notation (JSON)
string and sent with a HTTP request to the server on the host. The host address
is set in the settings activity of the application. Figure 4.5 shows an example of a
possible JSON string send by the application to the server.

The server will listen to incoming requests. When a fingerprint HTTP POST
request is received, the received JSON is decoded and the fingerprint is saved in the
database. The server implements a Mnesia database [68]. Mnesia is a distributed, soft
real-time database management system written in the Erlang programming language.
If the fingerprint is succesfully saved, the server sends a HTTP 200 status-code [69]
back to the application. From the moment that the Android application receives this
message, the fingerprinting process is finished.

4.3 Location determination

4.3.1 Initialization

As is shown in Figure 4.6, the initialization for the online phase is very similar
to that of the offline phase. In fact, making the fingerprint is completely handled by
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Figure 4.6: Online phase flowchart

the same code as in the offline phase. Ofcourse, the HTTP POST request doesn’t
contain a value for the x and y location.

The server responds with a HTTP 200 status-code containing a message and
the calculated location, if found by the matching algorithm. The application displays
the calculated location on the map or displays an unsuccessful message for the user,
the localization process is finished.

4.3.2 Obtaining location

To match the target fingerprint with the fingerprints in the mnesia database,
a best match algorithm, the modified WKNN [60] algorithm, is implemented on
the server. By using Erlang as the programming language, this modified WKNN
algorithm is implemented based on the Spearman Distance, the Euclidean distance,
omitted RSS values and their mutual ranking.

4.3.2.1 Spearman Distance
First the database is filtered based on the best Spearman distance [57], resulting

in fingerprints with the same ranking as the target fingerprint. Even if the absolute
RSSI values of the discovered APs might be quite different, their ranking is more likely
to be similar. This is based on the assumption that the RSSI values monotonically
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decrease when the distance between the source and APs increases. The received signal
strengths are ranked based on their value. If two of more signals share the same
signal strenght, they areăeach assignedăfractional ranksăequal to the average of their
positions in the ascending order of the values.

To evaluate this ranking, the Spearman rank correlation coefficient [70] is
utilized which is a measure of statistical dependence between two variables. This
Spearman’s coefficient evaluates how well the relationship between two variables
can be described using a monotonic function and is appropriate for both continuous
and discrete variables, including ordinal variables.

The Spearman’s Distance can be calculated with the following formula [57]:

ρ = 1− 6 ∗ (
∑

d2i + c)

n ∗ (n2 − 1)
(4.1)

where
∑

d2i is the sum of the d-squared values for the fingerprint with d the difference
between target (T ) and reference (R) in ranking for the ith record in the fingerprint:

di = rTi − rRi (4.2)

with rTi and rRi the ranking value of the the ith target and reference record in
the fingerprint respectively. n is the number of records in the fingerprint and c is a
correction factor to be summed with the sum because the fingerprint can contain tied
rankings. Tied ranks occur where two items in a column have the same rank because
they share the same value. c can be calculated with the following formula [70]:

c =
ties∑ m ∗ (m2 − 1)

12
(4.3)

where m is the size of the tied rank.

Example The following example makes it clear how the ranking is evaluated
and how the Spearman distance is calculate in the proposed algorithm. Looking
at Table 4.1, the target fingerprint and the reference fingerprint can be seen. The
reference fingerprint is a fingerprint obtained from the database. Notice that not
every BSSID from the target is included in the reference fingerprint, and vice versa.

Thus, the first step is to sort and filter the 2 lists based on their BSSID value
so that they match each other, as is shown in resulting Table 4.2. The algorithm also
keeps track of how many times a signal is ommited from the reference fingerprint and
from the target fingerprint. This number, called the dropped value, is used later to
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Target Reference

BSSID RSS (dBm) BSSID RSS (dBm)

80:f6:2e:14:b5:30 / 80:f6:2e:14:b5:90 -55

80:f6:2e:14:b5:90 -50 80:f6:2e:14:fe:10 /

80:f6:2e:14:b5:70 -73 80:f6:2e:14:b5:30 -64

80:f6:2e:14:b4:d0 -63 80:f6:2e:14:b5:70 -70

80:f6:2e:14:b4:f0 -79 80:f6:2e:14:5f:50 -87

80:f6:2e:14:b5:20 -63 80:f6:2e:14:b4:f0 /

80:f6:2e:14:b5:80 -55 80:f6:2e:14:b5:80 -52

80:f6:2e:14:fe:10 -79 80:f6:2e:14:b4:d0 -64

80:f6:2e:14:5f:50 -86 80:f6:2e:14:b5:20 -63

Table 4.1: Example of target and reference fingerprint data. Non-received signals are
indicated by /.

determine the best fingerprint results. Then, the next step is to give each record its
ranking. For the ranking the target fingerprint’s RSS values, a tied rank can be seen.
One can not know wich record should get the 3rd or 4rd rank. Therefore both records
get as rank the mean of the tied ranks. The last 2 columns of Table 4.2 calculate the
difference of the ranking values and their squared values respectively.

The sum of the d-squared values is calculated:∑
d2i = 1 + 0 + 0.25 + 0.25 + 1 + 0 = 2.5 (4.4)

There is only 1 tied rank with size 2, so c is calculated:

c =
2 ∗ (22 − 1)

12
= 0.5 (4.5)

Now the Spearman Rank Correlation is calculated:

ρ = 1− 6 ∗ (
∑

d2i + c)

n ∗ (n2 − 1)
= 1− 6 ∗ (2.5 + 0.5)

6 ∗ (62 − 1)
= 0.8571428571 (4.6)
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BSSID
Target
(dBm)

Reference
(dBm)

rTi rRi d d2

80:f6:2e:14:b5:90 -50 -55 1 2 -1 1

80:f6:2e:14:b5:70 -73 -70 5 5 0 0

80:f6:2e:14:b4:d0 -63 -64 3.5 4 -0.5 0.25

80:f6:2e:14:b5:20 -63 -63 3.5 3 0.5 0.25

80:f6:2e:14:b5:80 -55 -52 2 1 1 1

80:f6:2e:14:5f:50 -86 -87 6 6 0 0

Table 4.2: Target and reference after match and sort

The Spearman Rank Correlation for this set of fingerprints is thus 0.8571428571,
which is not a very good correlation for the ranking. In the best case the Spearman
Rank Correlation is 1 or at least greater than 0.9.

The algorithm is provided in pseudo-code, see Algorithm 1. Based on a given
threshold (e.g. 0.9), the algorithm returns a list of all the fingerprints with a
Spearman’s Distance value above or equal to the threshold. The Spearman
Distances for all fingerprints is sorted in descending order.

4.3.2.2 Euclidean Distance
After the calculation of the Spearman Distance, the Euclidean Distance is

calculated between the target and the fingerprints with a good Spearman Distance
value. In mathematics, the Euclidean distance or Euclidean metric is the ordinary
distance between two points that one would measure with a ruler, and is given by
the Pythagorean formula [71].

In Cartesian coordinates, if p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) represent
two points in a plane, then the distance from p to q is given by the following equation:

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (4.7)

The algorithm is provided in pseudo-code, see Algorithm 2. Based on a given
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threshold (e.g. 5), the euclidean procedure returns a list of all the fingerprints with
a Euclidean Distance value below or equal to the threshold, in ascending order.

4.3.2.3 Best matching fingerprint
Before calculating the estimated location, the K nearest neighbors of the target

needs to be found. Therefore, the fingerprints are ranked based on the resulting rank
of the Spearman Distance Si, the amount of dropped signals Di and the Euclidean
Distance Ei. The total ranking Ri for each fingerprint can be calculated as:

Ri = wS ∗ Si + wD ∗ Di + wE ∗ Ei (4.8)

wS, wD and wE can be considered as tuning parameters in the algorithm. Best results
are currently obtained with wS = 0.30, wD = 0.25 and wE = 0.45.

Based on this final ranking, the best results are the K best ranked fingerprints.
Ofcourse the choice of K is also very critical. If there are n fingerprints found that
closely matches the target fingerprint, then is K [72]:

K =
√
n (4.9)

Instead of just averaging the K best ranked fingerprints, the algorithm will
give each K best ranked fingerprints their weight based on the Euclidean distance
calculated in the previous step. This follows the formula:

(x̂, ŷ) =
K∑
i=1

wi(xi, yi)

K∑
i=1

wi = 1

(4.10)

where (x̂, ŷ) is the estimated location and (xi, yi) represents the i-th reference location.
In the formula above, wi is the weight of the i-th nearest neighbor point and can be
calculated by the following formula:

wi =

1
d2i

K∑
j=1

1

d2j

(4.11)

with di the Euclidean distance between the i-th reference fingerprint and the target
fingerprint. When using formula (4.11), smaller Euclidean distances will result in
larger values for the weight. The final estimation for the location can be calculated
using formula (4.10). After the calculation, this location is returned by the localization
API.
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Algorithm 1 Calculate the correlation between the target fingerprint and the
reference fingerprint based on their ranking

1: procedure spearman(Target, References, Distance)
2: BestMatchRanking = new empty list
3: for each fingerprint FP in References do
4: SpearmanDistance = spearman_correlation(Target, FP )

5: if SpearmanDistance >= Distance then
6: add FP.Location to BestMatchRanking

7: end if
8: end for
9: return BestMatchRanking sorted descending on spearman distance

10: end procedure
11: procedure spearman_correlation(Target, Reference)
12: Match Target and Reference to each other (same size and order)
13: Give Target and Reference ranking values
14: Sum = 0

15: Length = size(Target)

16: for each rank value RT in Target and corresponding RR in Reference do
17: Difference = (RT −RR)2

18: Sum = Sum+Difference

19: end for
20: for each tied rank in the ranking of Target or Reference do
21: M = number of ties in specific rank
22: Sum = Sum+M ∗ (M2 − 1)/12

23: end for
24: return 1− 6 ∗ Sum/(Length ∗ (Length2 − 1))

25: end procedure
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Algorithm 2 Calculate best Euclidean distances between target fingerprint and
list of fingerprints, received after the Spearman distance calculation, based on given
distance threshold for the euclidean distance

1: procedure euclidean(Target, References, Distance)
2: BestMatch = new empty list
3: for each fingerprint FP in References do
4: EuclideanDistance = euclidean_distance(Target, FP )

5: if EuclideanDistance <= Distance then
6: add FP.Location to BestMatch

7: end if
8: end for
9: return BestMatch sorted ascending on euclidean distance

10: end procedure
11: procedure euclidean_distance(Target, Reference)
12: Sum = 0

13: for each access point AP in Target do
14: Key = AP.BSSID

15: if Key exists in Reference then
16: TargetLevel = AP.Level

17: ReferenceLevel = Reference[Key].Level

18: Sum = Sum+ (TargetLevel −ReferenceLevel)2

19: end if
20: end for
21: return sqrt(Sum)

22: end procedure

38



5
Experimental Results

In this chapter the results of the experiments conducted to obtain the final goal of this
thesis will be discussed. The effect of different parameters in the system is analyzed.
These parameters are:

• the interval time between AP scans (D),

• the total scanning time (T),

• the amount of (maximum) values (X) for calculating the average RSS value.

Then, the positioning accuracy of the proposed system is examined on the basis
of some experiments. Finally the positioning accuracy is compared with the results
from recent state-of-the art Wi-Fi fingerprint-based positioning systems.

5.1 Analysing effect of various parameters
This section discusses the effects of various parameters in the system. Based

on the next conclusions, the experimental settings for the rest of this chapter are
determined.

5.1.1 Effect of D, the interval time between AP scans, on fingerprint

An optimal situation is when the interval time between AP scans (sample time)
is as small as possible, to obtain the most RSS information of the nearby APs. This
should result in a more accurate fingerprint. However, the proposed system is for
this case limited by the operating principle of the Android WifiManager class [73].
This class provides the primary API for managing all aspects of Wi-Fi connectivity,
including scanning for nearby Wi-Fi signals.
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When a new AP scan is initiated, a new worker thread is started by the API. However,
the results of the scan are of course not immediately available, but are made available
after the API throws an asynchronous event. Receiving this event shows that the scan
is complete and results are available.
This means that the system is limited when choosing a good value for the interval
time. It is possible to start hundreds of AP scans in 20 seconds, but it is more likely
that only 15-20 scans will complete in 20 seconds. So a compromise must be found
for D to avoid creating unnecessary worker threads in the Android application.
An experiment has been conducted to examine the effect of the interval time on the
fingerprint. For this experiment the total scanning time (T) is set to 15s, the amount
of (maximum) values (X) before averaging is equal to 10 and various values for D
are alternated for 3 measurements each time. Results of this experiment are shown
in Table 5.3 to 5.7 for D = 100ms, D = 500ms, D = 1000ms, D = 1500ms and D
= 2000ms respectively. The variance Var(X) of the RSS values is calculated for the
AP’s RSS values that are received in every measurement with the following formula:

Var(X) =
1

3

3∑
i=1

(RSSi − µ)2 (5.1)

where RSSi is the received signal strength of the ith measurement and average µ =
1
3

∑3
i=1RSSi. If some signals are not detected by all of the three measurements, the

variance is not calculated. Based on the variances, it is clear that D = 1500ms also
has the smallest average variance value (0.4928), as is shown in Table 5.1. 1500ms is
thus a good value for the interval time of the system (D). It results in a scan with
more similar discovered APs.

5.1.2 Effect of T, the total scanning time, on fingerprint

For the total scanning time T, a similar experiment has been performed. In this
case the system is not limited by the Android API. However, it is not wise to choose
a high value for T, resulting in a long scanning time. A long waiting time to obtain
the fingerprint would definitely not be user-friendly for the user who wants to know
his location, as well as for the person(s) creating the database in the offline phase.
Therefore, a trade-off between the system’s ease of use and performance needs to be
made. A maximum waiting time for the user of 20 seconds is still doable. Therefore,
the experiment examines the effect of T for the following values: T = 2s, T = 5s, T
= 10s, T = 15s and T = 20s. In this part of the experiments, D is set to 1500ms and
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D = 100 D = 500 D = 1000 D = 1500 D = 2000
BSSID 1 1.127 2.074 4.153 0.452 0.276
BSSID 2 0.469 0.363 0.265 0.667 -
BSSID 3 4.259 - 6.79 0.889 4.12
BSSID 4 2.735 - - 0.222 3.389
BSSID 5 - - - 0.234 1.102
BSSID 6 - 0.222 - - -
BSSID 7 - - - - -
BSSID 8 - 0.222 - - -
BSSID 9 - - - - -
BSSID 10 - - - - -

Average 2.1475 0.72025 3.736 0.4928 2.22175

Table 5.1: Variances of the equal received AP RSS values with varying value of the
interval time (D)

X is equal to 10. Results of this experiment is shown in Table 5.10 to 5.14 for the
above-mentioned values for T.

As in the previous experiment, the variances of the received RSS values which
have been received by each measurement can be calculated to obtain a better
understanding of the results. From Table 5.8 it is clear that the system does not
benefit from a short scanning time. A total scanning time of 2 seconds (T = 2000)
results in unstable fingerprints. There are only 2 APs that are received by each
measurement and moreover it results in a large variance for one of these two APs.
The other values for T overall result in at least 4 measurments without obmitted
signals, with the exception of a total scanning time of 20s, resulting in 6
measurements of equal received APs. A total scanning time of 10s and 20s are a
good choice for the system based on the results of this experiment. In fact, the
difference in average variance is liquidated by the difference in the amount of equal
received signals in this case, making a total scanning time of 20s the choice for the
system. This is also confirmed in Figure 5.1 that shows the RSS value for each
measurement of the 80:f6:2e:14:b5:90/ZJUWLAN signal. This signal results on the
place of the experiment as the best received signal strength in comparison with the
other signals, therefore it should be the most stable signal. According to this figure,
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# BSSID/SSID
BSSID 1 80:f6:2e:14:b5:90/ZJUWLAN
BSSID 2 80:f6:2e:14:b4:d0/ZJUWLAN
BSSID 3 80:f6:2e:14:b5:30/ZJUWLAN
BSSID 4 80:f6:2e:14:b5:80/ZJUWLAN
BSSID 5 80:f6:2e:14:b5:70/ZJUWLAN
BSSID 6 80:f6:2e:14:b5:20/ZJUWLAN
BSSID 7 80:f6:2e:14:b4:f0/ZJUWLAN
BSSID 8 80:f6:2e:14:b4:c0/ZJUWLAN
BSSID 9 80:f6:2e:14:b4:f0/ZJUWLAN
BSSID 10 80:f6:2e:14:fc:f0/ZJUWLAN

Table 5.2: BSSID/SSID Legend

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -61.2 -61.3 -59
BSSID 2 -72 -71.33 -70.33
BSSID 3 -65 -66.86 -70
BSSID 4 -66 -66.86 -63
BSSID 5 -74.56 - -73
BSSID 6 - -68.33 -69.33
BSSID 7 - - -74.6
BSSID 8 - - -
BSSID 9 - - -
BSSID 10 - - -

Table 5.3: D = 100 ms with 3 RSS
measurements.

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -58.7 -62 -61.43
BSSID 2 -71.17 -70 -69.8
BSSID 3 -67 - -68.5
BSSID 4 - -70 -
BSSID 5 -73.29 -73.14 -
BSSID 6 -72 -71 -71
BSSID 7 - - -
BSSID 8 -75 -74 -74
BSSID 9 - - -74
BSSID 10 -75 - -

Table 5.4: D = 500 ms with 3 RSS
measurements.

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -62.71 -61.78 -58
BSSID 2 -68.17 -69.17 -68
BSSID 3 -63.71 -69.71 -68.6
BSSID 4 -66 - -66
BSSID 5 - - -
BSSID 6 - -72 -74
BSSID 7 -74.67 - -
BSSID 8 -74 - -
BSSID 9 - - -
BSSID 10 - - -

Table 5.5: D = 1000 ms with 3 RSS
measurements.

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -59.43 -58.5 -60.14
BSSID 2 -71 -70 -69
BSSID 3 -70 -68 -70
BSSID 4 -66 -67 -67
BSSID 5 -72.43 -73.4 -73.5
BSSID 6 - - -74
BSSID 7 -75.6 - -
BSSID 8 - - -
BSSID 9 - - -
BSSID 10 - - -

Table 5.6: D = 1500 ms with 3 RSS
measurements.

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -59.4 -59.2 -60.4
BSSID 2 -71 -70 -
BSSID 3 -69 -68.33 -64.4
BSSID 4 -67 -64.5 -69
BSSID 5 -73.4 -73 -71
BSSID 6 -74 -73 -
BSSID 7 - - -72
BSSID 8 - - -
BSSID 9 - - -
BSSID 10 - - -

Table 5.7: D = 2000 ms with 3 RSS
measurements.
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T = 2000 T = 5000 T = 10000 T = 15000 T = 20000
BSSID 1 2 7.58 0.168 0.62 0.107
BSSID 2 9.556 2.969 0.389 0.842 1.529
BSSID 3 - 6 - 0.691 0.809
BSSID 4 - 1.556 0.667 2.668 -
BSSID 5 - - - - 0
BSSID 6 - - - - 0.82
BSSID 7 - - 0 - 0.007

Average 5.778 4.5263 0.306 1.2052 0.5453

Table 5.8: Variances of the received AP RSS values that did not have obmitted values
with varying value of the total scanning time (T)

T = 10s and T = 20s is again the best choice, resulting in the most stable RSS
values over the three measurements.

Note that a calculation of the fingerprint in 20s is not the best choice when the
user is walking. A person’s steady walking pace is around 0.7m/s [74], this would
result in an update of the location every 14m at best. This is not ideal. The system
should detect if the person is walking or not and based on that use 10s or 20s for
walking and standing still modes respectively.

5.1.3 Effect of X, the amount of (maximum) values before averaging, on

fingerprint

As mentioned in Chapter 3, fading and shadowing creates negative fluctuations
in the RSS values due to walls, people and other structures in the indoor environment.
This leads to multipath propagation. Therefore, it is important to average the RSS
values over a certain period.

Table 5.21 shows the RSS values calculated by the system for just (a) one
measurement and (b) a complete measurement with D = 1.5s and T = 20s. Note
that the results are quite similar. This is due to the quiet environment during the
short experiment. However, at the time of the measurement there was just regular
movement and activity by other students in the lab. Therefore there are some
notable differences in the results, which would certainly lead to erroneous results in
the localization phase.
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# BSSID/SSID
BSSID 1 80:f6:2e:14:b5:90/ZJUWLAN
BSSID 2 80:f6:2e:14:b5:30/ZJUWLAN
BSSID 3 80:f6:2e:14:b4:d0/ZJUWLAN
BSSID 4 80:f6:2e:14:b5:80/ZJUWLAN
BSSID 5 80:f6:2e:14:b4:c0/ZJUWLAN
BSSID 6 80:f6:2e:14:b4:f0/ZJUWLAN
BSSID 7 80:f6:2e:14:b5:20/ZJUWLAN

Table 5.9: BSSID/SSID Legenda

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -61 -58 -58
BSSID 2 -73 -72 -66
BSSID 3 - -71 -72
BSSID 4 - - -73
BSSID 5 - - -
BSSID 6 - - -
BSSID 7 - - -

Table 5.10: T = 2000 ms with 3 RSS
measurements.

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -61 -55 -55.33
BSSID 2 -71.67 -69 -67.5
BSSID 3 -68 -74 -71
BSSID 4 -70 -72 -73
BSSID 5 - -73 -
BSSID 6 - -72 -
BSSID 7 - - -

Table 5.11: T = 5000 ms with 3 RSS
measurements.

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -58 -57.43 -57
BSSID 2 -68 -67.5 -66.5
BSSID 3 - -69.8 -
BSSID 4 -70 -71 -69
BSSID 5 - -75 -75
BSSID 6 - -74 -73
BSSID 7 -73 -73 -73

Table 5.12: T = 10000 ms with 3 RSS
measurements.

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -57.1 -55.3 -55.6
BSSID 2 -68 -68.9 -66.67
BSSID 3 -70 -68 -69.33
BSSID 4 -70.5 -70.43 -67
BSSID 5 -75 -75.67 -
BSSID 6 - - -70
BSSID 7 -73.25 - -

Table 5.13: T = 15000 ms with 3 RSS
measurements.

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -56.1 -55.7 -55.3
BSSID 2 -71 -68.2 -68.6
BSSID 3 -72 -71 -69.8
BSSID 4 -70.25 - -69.375
BSSID 5 -74 -74 -74
BSSID 6 -72 -69.9 -70.33
BSSID 7 -73.2 -73 -73.125

Table 5.14: T = 20000 ms with 3 RSS
measurements.
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Figure 5.1: RSS measurement for 80:f6:2e:14:b5:90/ZJUWLAN with T = 2s, T = 5s,
T = 10s, T = 15s and T = 20s

(a) (b)

80:f6:2e:14:b5:80/ZJUWLAN -73 -73.6

80:f6:2e:14:b5:30/ZJUWLAN -67 -65

80:f6:2e:14:b5:20/ZJUWLAN -73 -73

80:f6:2e:14:b5:90/ZJUWLAN -67 -70

80:f6:2e:14:b4:d0/ZJUWLAN -70 -70.8

Table 5.15: RSS value comparison between one measurement and measurement with
D = 1.5s and T = 20s.

Hence parameter X is introduced in the system’s design. Because T = 20s and D
= 1.5s are set, the system only receives a maximum of 13 values as a RSS vector after
the total scanning time of 20s. Table 5.17 to 5.20 depicts the fingerprints for various
values for X, e.g.: X = 4, X = 7, X = 10 and X = 13. Just like in the previous sections,
a conclusion is made after the calculation of the variances of the three-times received

45



Experimental Results

# BSSID/SSID
BSSID 1 00:21:27:36:e8:04/Simon@VLSI5
BSSID 2 bc:d1:77:c8:c3:e8/TP-LINK_142857
BSSID 3 bc:85:56:dc:f3:78/360_5M
BSSID 4 80:f6:2e:14:b5:90/ZJUWLAN
BSSID 5 80:f6:2e:14:b5:30/ZJUWLAN
BSSID 6 80:f6:2e:14:b5:80/ZJUWLAN
BSSID 7 80:f6:2e:14:b4:d0/ZJUWLAN
BSSID 8 80:f6:2e:14:b5:70/ZJUWLAN
BSSID 9 80:f6:2e:14:b4:c0/ZJUWLAN
BSSID 10 80:f6:2e:14:b5:20/ZJUWLAN
BSSID 11 80:f6:2e:14:b4:f0/ZJUWLAN

Table 5.16: BSSID/SSID Legenda

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -44.5 -44 -44
BSSID 2 -43.75 -44 -43.5
BSSID 3 -52.75 -50.25 -49.5
BSSID 4 -68.75 -63 -64.75
BSSID 5 -65.25 -64.25 -64.25
BSSID 6 -70.5 -70 -70.25
BSSID 7 -65 -67 -70
BSSID 8 -67.25 -68.5 -70.25
BSSID 9 -75 - -
BSSID 10 - - -
BSSID 11 - - -

Table 5.17: X = 4 with 3 RSS
measurements.

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -44.71 -44.71 -43
BSSID 2 -44.57 -45 -45.43
BSSID 3 -50.57 -51.71 -50.29
BSSID 4 -63.86 -64 -68.29
BSSID 5 -65 -65 -62.43
BSSID 6 -70 -72 -75
BSSID 7 -68.5 -67.67 -67
BSSID 8 -68 -68 -68.71
BSSID 9 -75 - -75
BSSID 10 -75 - -
BSSID 11 - - -

Table 5.18: X = 7 with 3 RSS
measurements.

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -43.5 -43.9 -43.8
BSSID 2 -48.3 -48.2 -48.5
BSSID 3 -52.2 -52.1 -51.6
BSSID 4 -66.6 -65.4 -67.3
BSSID 5 -64 -63.3 -65.6
BSSID 6 -71 -72.78 -70.5
BSSID 7 -68.78 -70.89 -67
BSSID 8 -69.2 -68.9 -69.6
BSSID 9 -74 -75.33 -
BSSID 10 - - -
BSSID 11 - - -

Table 5.19: X = 10 with 3 RSS
measurements.

1 (dBm) 2 (dBm) 3 (dBm)
BSSID 1 -43.31 -43.67 -44.23
BSSID 2 -49.23 -48.17 -48
BSSID 3 -53.46 -53 -54.08
BSSID 4 -71.38 -72.83 -72.46
BSSID 5 -71 -64.44 -65.38
BSSID 6 -69.83 -70 -68
BSSID 7 -66.9 -66.67 -66.14
BSSID 8 -68.73 -68.57 -69.58
BSSID 9 -74 - -75.14
BSSID 10 - - -
BSSID 11 - -73 -73.75

Table 5.20: X = 13 with 3 RSS
measurements.
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signals, as shown in Table 5.21. Resulting from this experiment, a good choice for X
is 10 values. X = 10 results in less variantion over the same fingerprint location.

X = 4 X = 7 X = 10 X = 13
BSSID 1 0.055 0.653 0.0289 0.144
BSSID 2 0.042 0.122 0.015 0.3
BSSID 3 1.93 0.381 0.069 0.195
BSSID 4 5.792 4.222 0.616 0.377
BSSID 5 0.222 1.469 0.927 8.377
BSSID 6 4.167 4.222 0.955 0.821
BSSID 7 4.222 0.376 2.527 0.100
BSSID 8 1.514 0.113 0.082 0.198

Average 1.727 1.445 0.652 1.314

Table 5.21: Variances of the equal received AP RSS values with varying value of the
number of (maximum) values (X) before averaging.

5.2 Positioning Accuracy

5.2.1 Experiment Settings

In order to evaluate the performance of the proposed system, a test environment
has been prepared on the fifth floor of the Laoshengyi (⽼⽣仪) building at Zhejiang
University. Figure 5.2 shows the experimental site as a floorplan that is used for this
experiment. 32 reference points have been chosen in an area of approx. 115m2. These
points are chosen in accessible places for pedestrians. Tables 5.22 and 5.23 provides an
overview of the location coordinates of the used reference and test points respectively.
Following parameters are set during the experiment:

• T = 20s,

• D = 1.5s,

• X = 10.

At the time of the experiment, there was busy activity in the lab by other
students. Six test points for localization have been randomly chosen in the
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Figure 5.2: Overview of experimental site with marked reference and test points

experimental site, test point 6 is at the same location of a reference point. To build
the fingerprint database, at every reference point a fingerprint has been calculated
and saved in the database via the fingerprint server.

5.2.2 Results

At each test point the location is calculated every 30 seconds for five times.
Every time the server responds with an estimated position, the positioning error,
which is the distance between the true and estimated position, is noted. The
positioning error ϵ is the distance between the real location coordinates (x0, y0) and
the system’s estimated location coordinates (x, y):

ϵ =
√

(x− x0)2 + (y − y0)2 (5.2)

The results of this experiment with the average error in meters at each test point,
are shown in Table 5.24.

The proposed system results in a remarkably good accuracy with approximately
a 80 cm average positioning error. A good measure to show the accuracy of the
proposed system is the cumulative distribution function (CDF) of the positioning
errors obtained during the 30 measurements of the experiment. The CDF is shown
in Figure 5.3. The horizontal axis is the positioning error in meters for the given
probability function. The vertical axis is the probability in percent. So the CDF
shows the probability for the positioning errors less than or equal to a specific error.
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X(m) Y(m)

13.14 6.81

5.98 6.83

13.97 6.83

16.70 6.83

5.30 6.86

12.11 6.88

16.57 6.88

8.98 6.94

12.21 6.94

15.79 6.94

7.87 6.96

X(m) Y(m)

10.69 6.96

16.62 6.96

3.63 7.01

1.44 7.09

2.52 7.27

14.00 8.91

15.46 8.91

9.46 9.03

11.88 9.42

10.69 9.62

15.46 9.88

X(m) Y(m)

14.02 10.01

9.41 10.47

10.42 10.90

14.78 10.93

15.64 12.08

9.26 12.80

10.62 12.95

13.01 13.21

16.59 13.26

15.64 13.38

Table 5.22: List of the location coordinates of the used reference points.

TP X(m) Y(m)

TP1 5.22 6.91

TP2 12.18 6.81

TP3 14.75 6.86

TP4 9.68 8.83

TP5 10.64 10.92

TP6 14.80 9.34

Table 5.23: List of the location coordinates of the used test points.

As can be seen from this figure, 95% of the estimated locations had a positioning error
below 2m and 50% of the returned locations showed a positioning error below 1m.
Note that for around 6, 5% of the test points a perfectly correct location is obtained
from the positioning algorithm.
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Positioning Error (m) Avg. Error (m)

Test Point 1 0.9 1.4 0.7 1.4 1 0.811

Test Point 2 0.8 0 2 2 1 0.831

Test Point 3 1.8 1 1.4 1 0.9 0.808

Test Point 4 0.9 1.6 1.2 1.1 2.3 1.221

Test Point 5 0.9 1 0.8 0.9 0.6 0.623

Test Point 6 0.7 1.1 0.5 1.3 0.8 0.708

Table 5.24: Positioning errors in meters for every 5 measurements and average error
at each test point

Figure 5.3: Cummulative Distribution Function of Error

The day after the experiment, the experiment was repeated for a second time
to evaluate the robustness of the system, without making a new fingerprint database.
There was no change in the experimental settings or the access point setup, only
the activity of the neighboring students and arrangement of the student’s desks are
slightly different from the day before. However the system results in a higher average
positioning error of approx. 1,2m, it is still a reasonable error to deal with in indoor
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positioning. This means that the proposed algorithm has a strong ability of robustness
against minor changes in the environment and signal space.

Positioning Error (m) Avg. Error (m)

Test Point 1 1.3 1.2 1 2.8 2.7 1.285

Test Point 2 2.2 2.8 1.5 2.2 1 1.429

Test Point 3 0.5 4.2 1.5 1.5 0 1.288

Test Point 4 1.4 2.6 1.3 2.2 3 1.690

Test Point 5 0.7 1 1 1 1.2 0.742

Test Point 6 0.2 1 1.4 0.4 0.1 0.567

Table 5.25: Results of the later repeated experiment

5.3 Comparison of algorithms
It is very difficult to make a reliable comparison with other systems when these

measurements are not done in exactly the same circumstances. Although based on
published results from research papers, an approach of the accuracy comparison can
be made. [75] shows a nice overview of the average error of the different localization
techniques. Table 5.26 shows this overview, displaying the mean error for the classic
KNN algorithm, Pearson Correlation Coefficient (PCC), a combination of KNN and
PCC, a combination of KNN, PCC and Extented Kalman Filtering approach and the
proposed WiFiFing positioning algorithm. Their experiment involves localization at
60 unknown locations.

Localization methods KNN PCC KNN-PCC KNN-PCC-EKF WiFiFing

Mean error (m) 1.54 1.47 0.97 0.72 0.83

Table 5.26: Mean error comparison with different localization methods [75].

The proposed system certainly does not have a bad accuracy in comparison with
other positioning methods and algorithms. It can certainly be compared regarding to
the results of most state-of-the art Wi-Fi fingerprint-based positioning systems.
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6
Conclusion

This chapter provides a summary of the implementation and the performance of
the proposed Wi-Fi fingerprint-based indoor positioning system. Finally, a general
conclusion is drawn about the research and further suggestions are provided for future
adjustments and improvements.

6.1 Implementation and performance
This thesis explores the possibilities for indoor positioning based on a

literature study. From this research, it has been clear that Wi-Fi fingerprinting is a
technique that is used most frequently for this application. Despite the
disadvantages of the unstable Wi-Fi signals, recent research does not differ from
this method. The main causes of the unstable Wi-Fi signals are the body effect,
fading, multipath, obstructions and interference. Nevertheless, recent research has
succeeded in making highly accurate localization that is accurate enough for an
indoor environment. Because no additional infrastructure investment is needed for
Wi-Fi fingerprinting, the technology is extremely cost-effective, easy to apply and
quick to deploy.

An important key element of a Wi-Fi fingerprint-based indoor positioning
systems is the used positioning algorithm. This thesis implements the easiest-to-use
machine learning algorithm for this, the WKNN algorithm. In addition, this
algorithm has been modified for this thesis to achieve a more accurate result. The
WKNN algorithm is based on the calculation of the Spearman’s rank correlation
coefficient for each fingerprint in the database. As a result, the ranking of the
received signal strengths is also taken into account and not only the absolute
received signal strength values itself. The proposed positioning algorithm also takes
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into account the number of signals being omitted when searching for the best
matching fingerprints. This allows bad measurements to be filtered out of the
results. Fingerprints with a large omitting value weigh less on the final calculation
of the position. Then, the fingerprints are ranked on the Spearman’s Distance,
Euclidean Distance and the amount of omitted values. Based on this final ranking,
the position is estimated by giving the K best fingerprints different weights
according to the Euclidean distance between the reference fingerprint and this best
ranked fingerprint from the database. Finally, the location is calculated based on
these weights and sent back to the user.

By modifying the frequently-used KNN algorithm for the proposed
positioning system, the positioning precision and accuracy is improved. Moreover,
the proposed system achieves an exceptional accuracy with an average positioning
error of approximately 80 cm using an up-to-date fingerprint database. In fact, 95%
of the estimated locations resulted in a positioning error of less than 2m. Around
50% got a positioning error below or equal to 1m. As a result, the system is
associated with the higher-scoring indoor positioning systems based on Wi-Fi
fingerprinting proposed in other research. This all together means that the system is
a good working prototype for Wi-Fi fingerprint-based indoor positioning systems.

6.2 Further improvements
In this section some suggestions are made to optimize the proposed system

to obtain more accurate positioning estimations and make the overall speed of the
system faster.

Although the accuracy of the system is already quite good, it is always better to
do more research to obtain an even better accuracy. Research into other positioning
algorithms with other machine learning algorithms is a direction that can be explored
and examined. Although other machine learning algorithms will probably increase
the complexity of the system, it might be a good way to achieve higher accuracy.
Combining the proposed system with existing PDR systems, Bluetooth fingerprinting
or other techniques, could also improve the accuracy of the system.

Currently, the proposed system has a major disadvantage of speed. The speed is
largely imposed by the observations of the RSS values. In fact, measuring the nearest
signals takes currently around 20s (T). As a result, the system is at this moment
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not real-time and is therefore not suitable to navigate while walking. Obtaining RSS
fingerprints with a sliding-window technique could solve a part of this problem but
will also not make the system real-time. Further research may thus include obtaining
a smaller total scanning time and trying to make the system achieving real-time
responses.

The thesis did not investigate whether the system is robust against major
changes in the environment, e.g.: movement of large metal objects, influence by a
lot of people with high activity, etc. The system was only tested in a lab
environment and should also be tested in very large open spaces, e.g.: malls, library,
etc. Future research should investigate the influence of the placement of the AP, the
number of APs, the impact of changes in the environment, etc. on the accuracy. It
is also usefull to investigate the impact of the RP density on the accuracy of the
system. In addition, it can also be investigated to what extent the offline database
changes at different times of the day/week.
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