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Preface 
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my experience in image and point cloud processing and widen my knowledge in C++. 
Given that I had no experience in image and point cloud processing and C++. I spent 
time in gathering information before I could start programming an algorithm. Since I 
had less than four months to complete this project I am satisfied with the results. But 
I know I would do better when more time was given. Besides the project took place in 
two university’s communication was very important during this project. 
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my English and learning to live on my own. I also met great people during this 
exchange program and I am grateful I took this opportunity. This experience would 
never be possible without the opportunity I had from IR. G. Raymaekers and IR. W. 
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Abstract 
This research project aims to develop a 3D indoor scanning and map building 
application (algorithm) at the Hanoi University of Science and Technology 
(HUST). 3D technology is often applied in: transport, navigation, robots, 3D 
object scanning and more. This project focuses on gathering more information 
from the environment with a real-time cycle time for indoor environments. The 
goal is to create a 3D map on a computer, with all the obstacles that are in the 
environment. 
A major part of this master’s thesis was the programming of an algorithm that 
makes use of PCL (Point cloud library) software and a RGD-D hardware. The 
algorithm creates a point cloud with the depth image received from the RGB-D 
camera. This point cloud correlates to everything that is in the camera’s field of 
view. Every point cloud is taken from a specific view-point in the real world. 
The algorithm combines these point clouds of the scene to one point cloud 
(registration). 
The algorithm can combine two point clouds in ±450 ms and needs ±700 ms to 
update the 3D map. The scene is represented well but still contains small errors, 
especially relating to the alignment of the small objects in the scene. 



 

 
 

  



 

 
 

Abstract in Dutch 
Dit onderzoek richt zich op het ontwerpen van een 3D indoor scanning en map 
building applicatie (algoritme) ontwikkeld aan de Hanoi University of Science 
and Technology (HUST). 3D technology is toegepast in verscheidende 
onderdelen zoals: transport, navigatie, 3D object scanners en meer. Het doel van 
het project is het scannen van indoor omgevingen met een real time cyclus tijd. 
De scan wordt geconverteerd naar een 3D map op de computer, met alle 
obstakels die in de omgeving aanwezig zijn. 
Een belangrijk onderdeel van dit project was het ontwerpen van een algoritme 
dat gebruikt maakt van PCL (Point cloub library) software en een RGB-D 
camera. Het algoritme genereert een puntenwolk met de diepte afbeeldingen van 
de RGB-D-camera. Deze puntenwolken bevatten alle obstakels die in het 
gezichtsveld van de camera aanwezig zijn. Elke puntenwolk is genomen op een 
andere locatie en bezit dus een specifiek deel van de scene. De puntenwolken 
worden aan elkaar gehecht tot één puntenwolk die de hele scene toont. 
Het algoritme is instaat om twee puntenwolken aan elkaar te hechten in 450 ms 
en 700 voor een update van de 3D map. De scene is in grote lijnen uitgelijnd. 
Het algoritme bezit nog een kleine fout wie zich vooral manifesteert bij de 
uitlijning van de kleinere objecten in de scene. 
 



 

 
 

  



 

 
 

1 Introduction 
1.1 Context 
The master project takes place at the Hanoi University of Science and Technology 
(HUST) in Hanoi, Vietnam. HUST was established in 1956 as the first 
multidisciplinary technical university in Vietnam. HUST is the also an industrial 
training center for building and developing processes. The mission of HUST is to 
develop human resources, and to provide high quality workforce training and, to 
support the country in scientific research and technological innovation. HUST aims to 
becoming one of the leading research universities in techniques and technology 
(Hanoi University of Science and Technology, 1985). 
 

 
Figure 1:1 HUST logo (Hanoi University of Science and Technology, 1985) 

 
The future view for this projects lies with automated self-driving robots. When an 
object has to go from point A (objects starting position) to point B (objects target 
position), there are obstacles in the objects path which the object doesn’t know. By 
making use of PCL (Point cloud library) and a RGD-D scanner a 3D map is built with 
all the objects that are in the environment. After the mapping process, the object will 
try to find position A and B in the map. When this information is known, the object 
generates the most optimal path from point A to point B, by using the A* path 
planning algorithm. The generated path avoids all the obstacles. During the path 
execution, the 3D map is continuously updated and the objects path is adjusted if 
needed. More info about the A* algorithm can be find in:    A* algorithm. 

1.2 Problem statement 
The research discusses a solution to recreate the environment of an automated 
system on a computer in 3D. It is likely machines will work more and more closer 
together with humans than ever before (e.g. a human and a robot that are working 
together next to a conveyor belt). Systems even take over human tasks such as 
driving a car. To make sure all these processes are safe and reliable. The systems 
must be aware of their surrounding environment. The more complex and responsible 
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these systems become the more important it will be for these machines to capture 
the environment in a high resolution and with real-time updates. Figure 1:2 shows an 
example of a 3D map. 

 
Figure 1:2 3D map example (Fleming, 2011) 

 
Therefore, 3D mapping is a big research topic the last years. Every detail and 
dimension of the scene must be represented in the map. The color of the scene can 
also be captured and added to the 3D map. On the basis of 3D scanning CAD 
models of objects can be reconstructed quickly and more easily when using other 
methods. Since it is impossible to capture one scene from different viewpoints in one 
frame, shot or image, different frames must be taken from the scene and later 
combined to one part. Instead of taking 2D images, 3D images are captured with a 
special camera. 
 
These 3D images are called point clouds. After the point clouds are taken, all the 
point clouds are combined to one point cloud. This process is called registration and 
is the main topic during this research. After the registration is done the aligned point 
clouds are represented in a 3D viewer for the user. All the processes will be executed 
in a certain time (< 100 ms) for a real-time application. 

1.3 Goals / requirements 
The main goal of the project is to create a computer algorithm that is capable of 
capturing point clouds from a camera. Next the algorithm needs to analyze the data 
of these clouds. When the analyzing is completed, the point clouds are aligned to 
one point cloud and shown in a 3D viewer. 
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Certain hardware is used to capture the environment. This hardware needs to be 
capable of capturing 3D data from the scene that is visible in the field of view of the 
camera. Capturing color data is not a must in this project, but requirements are that 
the hardware needs to be: low cost, user friendly and suitable for indoor 
environments. 
 
The algorithm needs to work as efficiently as possible and as fast as possible to 
achieve real-time application speed. Apart from the speed, also the accuracy of the 
analyzing and registration will also play a big role in selecting methods and program 
flows. Speed and accuracy are almost in conflict with each other in every aspect. 
Hence the right ratio between speed and accuracy needs to be determined during 
the developing. 
 
The efficiency of the algorithm will also be determined based on its user friendliness. 
First, the program may not crash while it is executing. Secondly, program needs to 
be Platform friendly, which means the algorithm should be executable across 
different devices. Finally, the code should be coded organized orderly with 
commenting so different programmers can understand the code and fast 
maintenance on the code can be performed. These conditions make sure the project 
is easily continued when it is paused for a certain time. 

1.4 Method 
To meet the conditions of the hardware a RGB-D scanner that is compatible with 
OpenNI is used. The market provides allot of different low cost RGB-D scanners. 
One of the most popular is the Microsoft Kinect or one of the Prime Sense devices. 
RGB-D cameras are already available for 99$. The camera that is used during this 
project is the Asus Xtion Pro Live. Both cameras are compatible with OpenNI. To 
make sure the algorithm can run on different devices the algorithm is coded in C++. 
The compiler that is used is Microsoft Visual Studio 2015. 
 
To know what the algorithm main functions must be, some research must be done 
before starting coding. PCL and OpenCV provides basic information about image 
and point cloud processing. Both organizations are open source and contain image 
and point cloud algorithms that can be used in C++. 
 
When the learning material is studied, a first step is to get familiar with the open 
source libraries. To code the first proto type, examples and papers about point cloud 
registration will be used. The algorithm will be tested in different environments. As a 
final step, it is examined on how it can be improved. When the core of the project is 
finished. The studied lecture and methods are documented and presented. 
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1.5 Structure of the book 
The book starts with an introduction about the principle of point cloud registration and 
describes in short the two main types of point cloud registration. The next chapter 
describes in detail what a point cloud is and how it is created. Followed by chapters 
that explain different filter techniques and feature extractions used in 3D image 
processing. This is followed by the used methods for point cloud registration 
algorithms. The last chapters contain the practical implementation and setup that is 
used. The final chapters discuss the conclusions associated with the current 
unsolved problems and their possible solution. The main information sources of the 
book are: (Rusu, 2011) and (Dirk Holz, 2015). 
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2 Point cloud registration 
Point cloud registration is another word for aligning two point clouds to one point 
cloud. When there are two point clouds A and B that represent the same environment 
/ object. The main difference between the two clouds is that they are taken at a 
different location (viewpoint) in the real world. This means that the camera was at two 
different positons X and Y. between the two positions X and Y a transformation can 
be computed which means that X = T(Y) where T is the transformation matrix. 
 
If the transformation matrix is found the two point clouds are combined to one big 
point cloud by transforming one of the two point clouds. After the transformation, the 
object / environment is visible from different aspects. By repeating this process, a 
point world that is a combination of all the point clouds can be created. The 
registration algorithm tries to find this transformation by making use of the data given 
by the two point clouds. 
 

 
Figure 2:1 Point cloud registration example (Pascal Willy Theiler, 2012) 

 
There are two main types of point cloud registration. Feature based registration and 
iterative registration algorithms. Feature based registration will use 3D point 
descriptors to describe points in the cloud. Next, the common features in cloud A and 
B are searched and a transformation matrix is calculated. Iterative registration 
algorithms don’t use any feature descriptors. They will make use of finding a 
transformation to align the closed point pairs (least Euclidian distance) as good as 
possible in an iterative way. 
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2.1 Finding the transformation matrix 
When the two point clouds are perfectly aligned with each other. The distance 
between all the possible pair-points of cloud A and B is the smallest. The 
transformation matrix makes sure that the two point clouds are aligned to each other 
as best as possible. To find the transformation matrix an iterative method is applied 
that calculates the local minimum Euclidean distance of each possible pair-point of 
cloud B and T(A). T(A) is the transformed cloud A to align with cloud B. In formulas, 
we can note it in the following way: 
 
ܣ =  ܣ ݀ݑ݋݈ܿ
ܤ =  ܤ ݀ݑ݋݈ܿ
(ܣ)ܶ =  ܤ ݀ݑ݋݈ܿ ℎݐ݅ݓ ݈݊݃݅ܽ ݋ݐ ܣ ݀ݑ݋݈ܿ ݀݁݉ݎ݋݂ݏ݊ܽݎݐ ℎ݁ݐ
,ܣ)ܶ (ߠ =  ݎ݁ݐ݁݉ܽݎܽ݌ ݊݋݅ݐܽݏ݅݉݅ݐ݌݋ ݊ܽ ݎ݋݂ ݏ݀݊ܽݐݏ ߠ ݁ݎℎ݁ݓ (ܣ)ܶ
 ݊݋݅ݐܽ݉ݎ݋݂ݏ݊ܽݎݐ ݀݁ݐܽ݉݅ݐݏ݁ ݊ܽ ݎ݋ ݏ݊݋݅ݏ݊݁݉݅݀ ݏݐ݊݅݋݌ ݂݋ ݎܾ݁݉ݑ݊ ℎ݁ݐ ݊݋ ݀݁ݏܾܽ 
 
As told the smallest Euclidean distance is searched between each possible pair-point 
of B and T(A): 
 

,(ܣ)ܶ)ݐݏ݅݀ (ܤ =  ෍ ෍(݉௜ − ௤)ଶݏ
௡

௤ୀଵ௦∈஻

௡

௜ୀଵ௠∈்(஺)
 

Dist: the function that will calculate the sum of the Euclidian distance of each pair-
point in cloud T(A) and B. 
 
The minimum distance that is required is always be set by the user since reaching 
zero is impossible there will always be an error. This error is caused to the noisy data 
and outlier points. To make the registration more robust: Key points, sub sampling, 
filters, correspondence estimation and correspondence rejection is used during 
calculating the transformation matrix. These methods are discussed later. There are 
2 main types of transformations rigid transformations and non-rigid transformations. 
A rigid transformation consists of a rotation and a translation while a non-rigid 
registration consists of a non-linear transformation. Since the most famous point set 
registration method ICP (iterative closed point) uses a rigid transformation. This will 
mainly be discussed. 

2.2 ICP 
Every registration algorithm is computably expensive. This is caused by the high 
number of points in a cloud and the high number of possible outcomes. The ICP 
algorithm calculates the best possible transformation matrix to fit the point clouds A 
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and B. This by using an iterative method by always adjusting the transformation 
matrix. The transformation matrix starts with a default value and is then adjusted 
each loop to find the least square transformation matrix. The ICP algorithm has many 
variants based on the basics of the ICP algorithm. The standard ICP algorithm works 
as follows: 
 
ߠ ∶=  ைߠ 
ܹℎ݈݅݁ ݊݀݁ݎݐݏ݅݃݁ݎ ݐ݋ 
ܺ ≔  ߠ
௜݉ ݎ݋݂  ∈ ,ܣ)ܶ  (ߠ
௝ݏ ∶=  ௜݉ ݋ݐ ܤ ݊݅ ݐ݊݅݋݌ ݀݁ݏ݋݈ܥ
ܺ ≔ ܺ +  ൻݏ௝ห݉௜ൿ 
ߠ ≔  (ܺ) ݁ݎܽݑݍݏ ݐݏܽ݁ܮ
  ݊ݎݑݐ݁ݎ
 
While the algorithm is working, it tries to align all the correspondences as best as 
possible in an iterative way. The algorithm keeps looping until a converged criterion 
is met. To receive a good result, it is required that the two point clouds contains a 
decent overlap. If the overlap is not large enough the alignment is wrong. The speed 
of the algorithm depends on the number of points that are used and the number of 
iterations needed to align the two point clouds (François Pomerleau, 2015 May). 
  



 

24 
 

2.3 Registration pipeline 
Figure 2:2 shows an example how a full registration pipeline looks like. There are 
many ways for setting up a registration pipeline and this process usually depends on 
the: scene, quality, sensor type and speed that is required. In the next chapters, 
every part of the flowchart will be discussed in detail. 
 

 

 
Figure 2:2 Standard registration pipeline 
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3 Point cloud 
A point cloud is a list of data points in a coordinate system. In the project the point 
cloud consists of 3D data points X, Y and Z coordinates. All these points represent 
the environment that is registered by the 3D scanner. Sometimes each point can 
contain more information than just its location in the cloud such as: RGB data, normal 
vector values and more. Point clouds usually contains a high amount of points for 
example, a raw RGB-D image with a resolution of 640 by 480 contains 307 200 
points. Point clouds can be subdivided into two main types.  

3.1 Organized Point clouds 
In this type of cloud the data points are stored in structure way. The cloud resembles 
an organized image (matrix) as showed in Figure 3:1. The data is subdivided in rows 
and columns and this causes much faster calculations in the cloud. For example, the 
nearest neighbor of a point is find by just shift one column and / or row in the wanted 
direction. This type of clouds can be received from stereo camera's or time of flight 
sensors. RGB-D images / depth images will deliver an organized point cloud. 
 

 
Figure 3:1 organized point cloud  

 

3.2 Unorganized point clouds 
The points of these clouds are structured in a random way. All the points are stored 
in one list. To find the nearest neighbor(s) it needs to iterate through the whole list. 
This extends the computation time since point clouds can contain many points. It is 
recommended that an unorganized point cloud always is converted to an organized 
point cloud. Since the nearest neighbor(s) method is executed more than once. 
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3.3 Transform a point cloud 
A common request with point clouds is to move the point cloud in a digital space / 
world. Figure 3:2 shows a representation of a point cloud transformation. A 
transformation can be acquired by a homogenous transformation applied to each 
point in the point cloud. This homogenous transformation is split in a rotation and a 
translation. The rotation will rotate the point cloud over the X, Y and Z axis while the 
translation shifts the point cloud over the X, Y and Z directions. This homogenous 
translation is presented by a four by four matrix. 
 

3D rotation + translation: ൞
ଵଵݎ ଵଶݎ ଵଷݎ ௫ܶݎଶଵ ଶଶݎ ଶଷݎ ௬ܶݎଷଵ0

ଷଶ0ݎ ଷଷݎ ௭ܶ0 1
ൢ 

 
Rotation around X, Y and Z (also known as the XYZ Euler transformation):  

൝1 0 00 cos ߠ −sin 0ߠ sin ߠ cos ߠ
ൡ*൝

cos ߚ  0 sin 0ߚ 1 0− sin ߚ 0 cos ൡߚ ∗ ൝cos ߙ − sin ߙ 0sin ߙ cos ߙ 00 0 1
ൡ 

 
=
൝

cos ߙ ∗ cos ߚ − sin ߙ ∗ cos ߚ sin ߚ
cos ߙ ∗ sin ߚ ∗ sin ߠ + sin ߙ ∗ cos ߠ cos ߙ ∗ cos ߠ − sin ߙ ∗ sin ߚ ∗ sin ߠ − cos ߚ ∗ sin ߠ
sin ߙ ∗ sin ߠ − cos ߙ ∗ sin ߚ ∗ cos ߠ cos ߙ ∗ sin ߠ + sin ߙ ∗ sin ߚ ∗ cos ߠ cos ߚ ∗ cos ߠ ൡ =

൝
ଵଵݎ ଵଶݎ ଶଵݎଵଷݎ ଶଶݎ ଷଵݎଶଷݎ ଷଶݎ ଷଷݎ

ൡ  
 
This 4 by 4 transformation matrix will be applied to each point in the cloud to 
generate the same cloud in another position and orientation in the digital world. 
 

൞
ܺ௧௡

௧ܻ௡ܼ௧௡0
ൢ = ൞

ଵଵݎ ଵଶݎ ଵଷݎ ௫ܶݎଶଵ ଶଶݎ ଶଷݎ ௬ܶݎଷଵ0
ଷଶ0ݎ ଷଷݎ ௭ܶ0 1

ൢ ∗ ൞
ܺ௡

௡ܻܼ௡0
ൢ 

 
With t, the transformed point  
With n, the point number in the cloud 
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Figure 3:2 Transforming a point cloud (Rusu, 2011) 
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3.4 KD-Tree Storing a point cloud 
As already mentioned a point cloud can contain many points. It is recommended to 
store the points in an intelligent way. The Kd-tree structure is a very efficient to store 
the point clouds and find the neighbor(s) of a point in the point cloud. The Kd-tree is a 
k dimensional tree that organizes the points. Point clouds mostly contains 3D data so 
the kd-tree that is used is 3 dimensional. The following example shows how a 2D kd-
tree works for simplicity: 
 
Given a set of random points: 
 
(2,3), (5,4), (9,6), (4,7), (8,1), (7,2). 
 
The first step is to find the median of the points of a chosen axis. In this case, the X-
axis is chosen. The median of the X values is 7 so the starting coordinate is (7,2) 
 
The next step is to split the data based on the axis where the median was calculated 
on. In this case, we will split the points where the values are higher and lower then 7. 
 

Table 1 Kd-tree example first split 

(7,2) 
X < 7 X > 7 
(2,3) (9,6) 
(5,4) (8,1) 
(4,7)  

 
Next, the next dimension is chosen (y-axis) and the median is determined again on 
the two given columns from the previous split. 
Medians: 4 and 6  
coordinates: (5,4) and (9,6) 
Again, we will split the coordinates where y < 4 and y > 4 and where y < 6 and y > 6  
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Table 2 Kd-tree example result 

(7,2) 
X < 7 X > 7 

(2,3) (9,6) 
(5,4) (8,1) 
(4,7)  
  

(5,4) (9,6) 
Y < 4 Y > 4 

(2,3) (4,7) 
 

Y < 6 Y > 6 
(8,1) none 

 

 
All the points are now sorted in a kd-tree. The following images shows a graphical 
interpretation of the kd-tree of the given points. 
 

 
Figure 3:3 Kd-tree 
graphical interpretation 
(K-d tree, 2017) 

 
 

Figure 3:4 Kd-tree 
graphical interpretation 
(K-d tree, 2017) 
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The pseudo code of a kd-tree can be noted as follows: 
 

function kdtree (list of points pointList, int depth) 
{ 
    // Select axis based on depth so that axis cycles through 
all valid values 
    var int axis := depth mod k; 
         
    // Sort point list and choose median as pivot element 
    select median by axis from pointList; 
         
    // Create node and construct subtree 
    node.location := median; 
    node.leftChild := kdtree(points in pointList before 
median, depth+1); 
    node.rightChild := kdtree(points in pointList after 
median, depth+1); 
    return node; 
} 
 
3.4.1 Adding a new point to the tree 
This topic is explained by an example. Adding points to the tree is similar as building 
the tree. For example, the coordinate (3,2) is added to the tree represented in Figure 
3:5 
 

 
Figure 3:5 Kd-tree adding a new point (K-d tree, 2017)  
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When adding a new point to the tree the function always starts at the top. Based on 
which axis the data is split. In this case the x-axis, the function determines if the input 
coordinate (3,2) has an x value lower or higher than the current x value of the starting 
node. If lower, then we go left if higher then we go right. In this case, we will go right 
(3<7) to point (5,4). Based on the y values of the points (5,4) and (3,2) there will be a 
new leave created with point (3,2). The result is displayed in Figure 3:6: 
 

 
Figure 3:6 Kd-tree adding a new point (K-d tree, 2017) 

 
Adding too many new points to the tree can make the tree unstable. When the tree is 
unstable the search techniques in the tree perform slower and the tree is not optimal 
anymore. Refreshing the tree (or a part of the tree) can be a solution for this problem 
or using another kd-tree structure that has an adaptive function like: divided k-d tree, 
pseudo k-d tree, k-d B-tree, hB-tree and Bkd-tree. 
3.4.2 Removing a point from the tree 
When removing a point from the tree while still retaining the tree structure. The rest 
of the tree that is under the deleted point is recreated again. Another solution is to 
find a point that can replace the deleted point. 
3.4.3 Comparing with organized point clouds 
KD-trees are still not organized point clouds. The structure of an organized point 
cloud (integral image) is always faster than a KD-tree. In general, it is recommended 
to use organized point clouds whenever possible. 
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4 Filters 
Due every point cloud contains: noise, outliers, false data or data that is not 
interested, filtering is applied to the point cloud process. Filtering makes the point 
cloud processing more stable and faster. Manny types of filters are available for point 
cloud processing. 

4.1 Pass Through Filter 
This filter removes points from a point cloud that are out of the specified XYZ 
dimensions. For example, we only want the points that are in a specified region of the 
cloud. A simple filter example would look like this: 
 
foreach(Point point in pointcloud.Points) 
{ 
    bool remove = false; 
    if(point.x > upper_x || point.x < lower_x) 
    { 
        remove = true; 
    } 
 
    if(point.y > upper_y || point.y < lower_y) 
    { 
        remove = true; 
    } 
 
    if(point.z > upper_z || point.z < lower_z) 
    { 
        remove = true; 
    } 
 
    if(remove) 
    { 
        pointcloud.removePoint(point); 
    } 
} 
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4.2 Voxel grid filter 
A voxel grid filter down samples the point cloud. The number of points in the point 
cloud is reduced while still representing the input cloud. This down sampling will 
make calculations like: normal estimation and feature detection must faster. One 
voxel can be represented as a 3D rectangle with given dimensions. Next, the spatial 
average is taken from all the points that lays in one voxel. All these points are now 
represented by one voxel (bigger point). This is done for each point in the point 
cloud. The resolution from the point cloud is decreased but calculations are much 
faster which is always wanted with real time applications. Figure 4:1 shows a point 
cloud before voxel grid filtering and Figure 4:2 shows the same point cloud after the 
filtering. 
 

Figure 4:1 point cloud 
(Libpointmatcher, 2006) 

Figure 4:2 voxel 
filtered point cloud 
(Libpointmatcher, 
2006) 

 

4.3 Statistical outlier removal filter 
Every point cloud contains errors. Some errors are outliers these outliers can create 
big errors on point cloud registration and normal estimation. These outliers can be 
removed by statistical outlier analyzes on every point in comparison with the k-
neighborhood points. The k-neighborhood points who doesn’t recommend the 
specified criteria are removed from the point cloud. For each point in the point cloud 
the mean distance from all the k-neighborhood points is calculated. Assumed that the 
result is a Gaussian distribution with a mean and a standard deviation. Where the 
mean distance of the points is outside of the interval, these points are removed as 
showed in Figure 4:3 
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Figure 4:3 6.1.3 Statistical outlier removal filter (Rusu, 2011) 

 

4.4 Radius outlier removal filter 
This filter will create a 3D sphere around each point in the point cloud. The next step 
is to find all the points that are in the 3D sphere. If the number of points that are in 
the 3D sphere is too low, then this point will be removed. Since we can see it as a 
lonely point in space that probably is: an outlier, noise or measurement error. Figure 
4:4 shows a simple implementation of this filter. 
 

 
Figure 4:4 6.1.4 Radius outlier removal filter (Rusu, 2011) 
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4.5 Bilateral filter 
Bilateral filters are very useful to remove the noise while keeping the edges sharp 
also called smoothening / blurring. The filter works with a weighted distribution. Each 
weight of the pixel is determined by the intensity value of that pixel and its neighbors. 
Assumed that the values are disturbed by a Gaussian distribution. When this filter is 
applied to an image, a cartoonish effect is the output. In point clouds this weight is 
calculated by the depth values (Z distance) of every pixel. The bilateral filter is 
demonstrated on a 2D image in Figure 4:4Figure 4:5 
 

 
Figure 4:5 Bilateral filter (Farzana, 2011) 

 

4.6 Conditional removal filter 
This filter can vary in many ways. The user gives some conditions that every point 
needs to require. If the point doesn’t meet the requirements, then it is removed from 
the point cloud. 
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5 Key points detection & subsets 
Due the high number of points in the clouds, processing can become quite 
computationally expensive. The point clouds needs to be down sampled. A way for 
doing this is finding the key points in the cloud. And do further calculations with these 
key points instead of using all the points in the cloud. Another way to reduce the 
number of points in the cloud. Is to take every n-th point in the cloud. Because point 
clouds mostly contain redundant data, this will have no influence on the quality of the 
process. Key points are interesting points in a (3D range) image. These points will 
mostly represent an object. Finding these points can be used for object recognition in 
a point cloud or registration of point clouds and many other applications There are 
still many 2D key point detectors used in 3D clouds such as Harris and Stiff. The 2D 
key point detectors are still reliable in finding the key points. A requirement is that 
one must have a RGB image of the scene. 3D key points detectors work with 
comparing the 3D surface. 2D key point detectors use the RGB or grey color values. 
A hybrid detector makes use of both. 
 

 
Figure 5:1 Key points example (Bashan, 2015) 

 

5.1 NARF Points (Normal aligned radial feature) 
NARF key points are extracted from depth images. A NARF point or interesting point 
has two common features. The points around a NARF point represent a stable 
surface and where there are big changes in the vicinity. Secondly, because we will 
see the objects from different viewpoints. We will focus on the outer borders of the 
objects, since these are unique in different viewpoints. A stable interest point must 
contain a significant change of the surface in the local neighborhood to be detected 
from different viewpoints. To find these stable interest points we must be able to find 
the borders of objects in the point cloud. This can be done by: 
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 Looking for great changes in distance in the 3D image between the 
neighborhood and an interesting point;  Determine a score about how much the neighborhood surface changes 
around a point;  Look for how stable the surface is of a point in the point cloud and how much 
the vicinity changes in the point cloud;  Perform a smoothing on all the interesting points;  Perform a non-maximum suppression to find the final interest points; 

 
Describing the features of a point makes it possible to compare different points with 
each other and perform actions based on the results of the comparison. The goal of a 
NARF feature detector is that it captures the key points in a depth image (Steder, 
Bogdan, Konolige, & Wolfram, 2010). 

5.2 Uniform sampling 
Uniform sampling is a way to down sample a cloud e.g. by taking every n-th point. 
The user can tell the filter an increment where every point must be taken. An 
advantage from this method instead of key points is that you keep information over 
the whole scene, instead of just from the key points. Another advantage is, when 
there are not so many objects in the scene. There will likely be too less key points to 
do calculations on the cloud, such as registration. This problem is already solved with 
uniform sampling. Also, uniform sampling is easier to implement and faster. 
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6 Point cloud features descriptor 
Each point cloud mostly contains features (key points). These features can represent 
objects in the real world or parts of these objects. These features can be used to 
detect objects in a point cloud or to combine two point clouds that where taken at a 
slightly different position. The two point clouds from Figure 6:1 have common 
features. Finding these features is one of the main things in combing the point 
clouds. Extra information can be used to detect the features such as the RGB values 
of each point, intensity and the surface normal of each point. To distinguish the 
different features and there surfaces the use of the surrounding neighbors of each 
feature point will be used. Good feature estimations are immune for: 
 

1. Rigid transformations: 3D rotation + translation; 
2. Noise; 
3. Varying sample density: sometimes the same feature will contain out of less 

samples if it is taken from a different viewpoint; 
 
The goal of a feature descriptor is that it captures the key points and occupied space 
around a point. In this way, objects and free space can described. Secondly, the 
feature descriptor need to be robust against noise. The last requirement is to attach a 
local coordinate frame to the point so that it can be used to compare with other 
features taking from different viewpoints. 
 

 
Figure 6:1 Feature matching (Rusu, 2011) 
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6.1 Surface normal in a point cloud 
In a three dimensional space a normal on a 3D surface is a vector that is 
perpendicular to a point on the surface. The normal can represent a line, vector, 
surface or plane (Figure 6:2 & Figure 6:3). These will all be perpendicular to the point 
in the 3D surface. The normal are common used in 3D computer graphics to 
calculate the light and shadows based on the position and orientation of the camera 
that looks at the surface. The normal estimation is a very simple way to describe a 
feature of a point. The disadvantage of these ‘features’ is that there will be many 
duplicates. Although a normal of a point is also used to describe a 3D point in a 
higher dimensional space. 
 

Figure 6:2 Plane 
normal (Rusu, 2011) Figure 6:3 Vector normal 

(Rusu, 2011) 
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6.2 Defining a point cloud feature (PFH) 
To describe a point cloud feature, the surface normal and curvature around a point in 
the cloud is used. In other words, we will try to calculate the geometrical properties 
(mean curvature) around a point using its k-neighborhood. These geometrical 
properties are stored in a multi-dimensional histogram (point feature histogram PFH). 
This histogram describes the geometrical feature around a point and is invariant for 
6D movement. The neighbors of the point (k-neighbors) are used to calculate the 3D 
curvature. A common consequence is that scenes contain many points with very 
similar feature values. Filter techniques will occur that common feature values will be 
used. The PFH is calculated by using the estimated normal of the k-neighborhood 
points. Hence the quality of the feature point estimation dependents on the 
estimation of the normal values of the points in the cloud. 
 
To calculate the geometrical features. A point in the cloud is chosen. Then a 3D 
sphere is drawn around the point with a given radius R. All the k-neighborhoods 
points that are in the 3D sphere are used to calculate the geometrical feature around 
the point. The final PFH is computed by the relationships of all the pair-points in the 
3D sphere and thus this is computed with a complexity of: O(n*K²) with K the number 
of neighbors in the sphere. The Figure 6:4 below shows a representation of the 3D 
sphere with the k-neighborhood points. 
 

 
Figure 6:4 PFH K-neighbours (Rusu, 2011) 

 
The used data for each pair-point is a total of 12 values. The XYZ coordinates of PQ 
and PK (6 values) and the normal values of PQ and PK (6 values). By using a set of 
angular values the 12 values are stored in a quadruplet (4 values). By using the 
angular values, an UVW coordinate frame is attached to each point in the 3D sphere. 
In the following Figure 6:5, Ps  represents PQ and Pt  represents Pk. 
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Figure 6:5 PFH UVW coordinate frame (Rusu, 2011) 

 
The angles between the two points can be calculated in the following way: 
 

 
(Rusu, 2011) 

 
The fourth value is the Euclidian distance between the 2 points: 
 

 
(Rusu, 2011) 

The Euclidian distance is often not used especially when 2.5D images are used. 2.5 
D images are images where the distance between the pixels increases when the 
distance between the viewpoint and object increases. When the Euclidian distance is 
used, the quadruplet can be noted as: (ߙ, ߶, ,ߠ ݀). The final PFH represents all the 
quadruplets sets of the pair-points in the 3D sphere. When the d is not used, the 
quadruplet is transformed to a triplet as: (ߙ, ߶,  when triplets are used we will speak (ߠ
from a SPFH (simplified point feature histogram). 
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6.2.1.1 FPFH 
FPFH stands for fast point feature histogram. This method is used when real time 
point cloud feature implementation is needed. Due the faster calculation method 
some estimations are made and thus this method is less accurate. The method tries 
to reduce complexity from O(n*K²) to O(n*K). As described in the previous section a 
SPFH is used to describe each point. When the geometric feature around a point is 
calculated the k-neighbors will be determined around the point PQ. Next, the SPFH 
values of the neighbor points are used to determine the geometric feature around the 
point PQ. These geometric values are called FPFH. (fast point feature histogram). 
The following formula shows how the FPFH values of a point is calculated: 
 

 
(Rusu, 2011) 

 
Here is Wk a weighted value, it is the Euclidian distance between PK and PQ. Points 
that are further away from PQ have less influence on the FPFH values of PQ. To 
optimize the quality of the FPFH values, the neighbor of the neighbors are used to 
determine the final value. First all the neighbors of PQ are calculated these neighbors 
are PK. The next step is to find all the neighbors of the PK points and calculate the 
SPFH values of the PK points. Next the SPFH values of the PK points are used to 
calculate the FPFH value around PQ. Note that points in Figure 6:6 are used twice 
when finding the neighbors of the neighbors. These points are noted with thicker 
lines. 
 

 
Figure 6:6 FPFH (Rusu, 2011)  
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6.2.1.2 Difference between PFH and FPFH 
 

 All the neighbors of PQ are not fully used;  The FPFH method include points max 2*R away from PQ;  Some PK points will be used twice;  Faster and easier to compute; 
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7 Registration techniques 
Registration algorithms consists out of different steps. This chapter explains the basic 
steps in a registration algorithm. There are three main steps in a registration 
algorithm: matching, rejection and transformation estimation. These steps happen 
after the point cloud analyzing. In the analyzing step data from the point cloud is 
sampled to use in the registration algorithm. The information is collected from the 
paper (Dirk Holz, 2015). 

7.1 Matching (key) points  
In the matching process the corresponds between the two point clouds is estimated. 
Given two point clouds A and B. PA represent a point in cloud A, the goal is to find 
the approximated corresponding point of Pa in cloud B which is represented as Pb. 
The matching process is determined on which type of registration is applied. If it is a 
feature based registration the matching algorithm will search for the points that has 
the same feature descriptor values. When an Iterative registration is applied. The 
closed neighbor (Pb) in a 3D space of point Pa in the target cloud B will be searched. 
Instead of iterating through all the points in the target cloud a KD-tree or organized 
point cloud will be applied to find the closed neighbor of the point Pa faster. To make 
to matching process more robust. The user can define a minimum Euclidian distance 
that the point pairs must have. If the Euclidian distance is bigger the point pairs is 
filtered out. Figure 7:1 shows an example of correspondences matching. 
 

 
Figure 7:1 Matching corresponds example (Rusu, 2011) 
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7.2 Rejection correspondences 
Matching (key) points is a quick approximation. False correspondences have a 
negative effect on the registration outcome. Filtering out these false correspondences 
is done in this step. Multiple type of rejecters can be applied in series. But one must 
keep in mind that each step that is added in a registration process increases cycles 
time. If a real-time application is desired sometimes we must offer speed for quality. 
Next different rejecters will be discussed. 
7.2.1 Correspondences rejection based on distance 
When rejection based on distance is applied, the Euclidian distance between each 
point pair is calculated. When the Euclidian distance is larger than the threshold 
value, the point pair is removed from the correspondences list (Figure 7:2). There are 
two ways the distance can be configured. One way is to choose a fixed threshold 
value. A second way is to compute the median Euclidian distance of all the point 
pairs. The median value will be the threshold value to filter out the point pairs. The 
advantage of this method is that the median value will become smaller the next time 
the correspondences are filtered. Since this method will be used in a loop. The 
median rejection also doesn’t require any parameters. 
 

 
Figure 7:2 Correspondences rejection based on distance (Dirk Holz, 2015) 

 
7.2.2 Correspondences rejection based on duplicate matches 
While each point in the source cloud will be matched with a point in the target cloud, 
it is possible that a point in the source cloud will be assigned to multiple points in the 
target cloud. This can happen when multiple points are almost described in the same 
way. The best pair-point will be the pair-point with the smallest Euclidian distance. 
(Figure 7:2). 
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Figure 7:3 Correspondences rejection based on duplicate matches (Dirk Holz, 

2015) 
 
7.2.3 Correspondences rejection based on surface normal 
As already described in the previous sections the surface normal of each point can 
be computed. Another way and very effective to filter out the false pair-points is to 
compare the surface normal of the two points. If the surface normal pair is not 
aligned in the same direction (Figure 7:4), the pair-point is removed from the list. 
 

 
Figure 7:4 Correspondences rejection based on surface normal (Dirk Holz, 

2015) 
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7.2.4 RANSAC-based rejection 
RANSAC stands for random sample consensus, this method is used to detect the 
outlier pair-points in the correspondences list. This is done by picking two random 
pair point in the list and draw a line between these two points. Next, all the pair points 
that are in the threshold value around the drawn line are accepted. These points are 
called the inliers, all the pair-points that are outside this threshold value are called 
outliers. This calculation is executed several times and the line that contains most 
inliers is accepted. As demonstrated in Figure 7:5 the blue line is the line that contain 
most inliers (showed in blue) the outliers are showed in red. 
 

 
Figure 7:5 RANSAC-based rejection (Joe Ahuja, n.d.) 
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7.3 Transformation estimation 
After the point clouds are analyzed, the correspondences are searched and rejected, 
a transformation estimation will be calculated. This transformation T consist of a 
rotation R and a translation t. there are two main types of transformation estimations. 
Point to point and point to plane. 
7.3.1 Point to point 
With a point to point estimation the transformation with the least distance between all 
the point pairs is estimated: 

= ௣௢௜௡௧ ௧௢ ௣௢௜௡௧ܧ  ෍ ௞ݓ ∗ ‖ܶ ∗ ௞݌ − ௞‖ଶݍ
ே

௞ୀଵ
 

= ௣௢௜௡௧ ௧௢ ௣௢௜௡௧ܧ  ݏݐ݊݅݋݌ ℎ݁ݐ ݈݈ܽ ݂݋ ݎ݋ݎݎ݁ ݈ܽݐ݋ݐ ℎ݁ݐ
ܰ =  ݏݎ݅ܽ݌ ݐ݊݅݋݌ ݂݋ ݎܾ݁݉ݑ݊ ݈ܽݐ݋ݐ ℎ݁ݐ
ܭ =  ݎ݅ܽ݌ ݐ݊݅݋݌ ℎ݁ݐ ݊݅ ݔ݁݀݊݅ ℎ݁ݐ
௞ݓ =  .ݏݎ݅ܽ݌ ݐ݊݅݋݌ ℎ݁ݐ ݈݈ܽ ݋ݐ ݊݁ݒ݅݃ ܾ݁ ݊ܽܿ ݐℎܽݐ ݐℎ݃݅݁ݓ ܽ
ܶℎ݅ݐ ݂݋ ݊݋݅ݐݑܾ݅ݎݐݏ݅݀ ݊ܽ݅ݏݏݑܽ݃ ܽ ݕܾ ݀݁ݐ݈ܽݑ݈ܿܽܿ ܾ݁ ݊ܽܿ ݏℎ݁ ݀݅ݐ ݈݈ܽ ݂݋ ݏ݁ܿ݊ܽݐݏℎ݁ ݏݎ݅ܽ݌ ݐ݊݅݋݌ 
ܶ =  ݔ݅ݎݐܽ݉ ݊݋݅ݐܽ݉ݎ݋݂ݏ݊ܽݎݐ ℎ݁ݐ
௞݌ − =௞ݍ   ܳ ݀ݑ݋݈ܿ ݉݋ݎ݂ ݐ݊݅݋݌ ܽ ݏ݅ ௞ݍ ݀݊ܽ ܲ ݀ݑ݋݈ܿ ݉݋ݎ݂ ݐ݊݅݋݌ ܽ ݏ݅ ௞݌ ݁ݎℎ݁ݓ ݎ݅ܽ݌ ݐ݊݅݋݌ ܽ
The point to point estimation is used in the famous ICP algorithm and can only be 
used when the point clouds are already roughly aligned with each other 
7.3.2 Point to plane 
Point to plane has be showed to be more robust and faster than point to point 
estimations (Dirk Holz, 2015). 

= ௣௢௜௡௧ ௧௢ ௣௟௔௡௘ܧ  ෍ ௞ݓ ∗ ((ܶ ∗ ௞݌ − (௞ݍ ∗ ݊௤௞)²
ே

௞ୀଵ
 

= ௣௢௜௡௧ ௧௢ ௣௢௜௡௧ܧ  ݏݐ݊݅݋݌ ℎ݁ݐ ݈݈ܽ ݂݋ ݎ݋ݎݎ݁ ݈ܽݐ݋ݐ ℎ݁ݐ
ܰ =  ݏݎ݅ܽ݌ ݐ݊݅݋݌ ݂݋ ݎܾ݁݉ݑ݊ ݈ܽݐ݋ݐ ℎ݁ݐ
ܭ =  ݎ݅ܽ݌ ݐ݊݅݋݌ ℎ݁ݐ ݊݅ ݔ݁݀݊݅ ℎ݁ݐ
௞ݓ =  .ݏݎ݅ܽ݌ ݐ݊݅݋݌ ℎ݁ݐ ݈݈ܽ ݋ݐ ݊݁ݒ݅݃ ܾ݁ ݊ܽܿ ݐℎܽݐ ݐℎ݃݅݁ݓ ܽ
ܶℎ݅ݐ ݂݋ ݊݋݅ݐݑܾ݅ݎݐݏ݅݀ ݊ܽ݅ݏݏݑܽ݃ ܽ ݕܾ ݀݁ݐ݈ܽݑ݈ܿܽܿ ܾ݁ ݊ܽܿ ݏℎ݁ ݀݅ݐ ݈݈ܽ ݂݋ ݏ݁ܿ݊ܽݐݏℎ݁ ݏݎ݅ܽ݌ ݐ݊݅݋݌ 
ܶ =  ݔ݅ݎݐܽ݉ ݊݋݅ݐܽ݉ݎ݋݂ݏ݊ܽݎݐ ℎ݁ݐ
௞݌ − =௞ݍ   ܳ ݀ݑ݋݈ܿ ݉݋ݎ݂ ݐ݊݅݋݌ ܽ ݏ݅ ௞ݍ ݀݊ܽ ܲ ݀ݑ݋݈ܿ ݉݋ݎ݂ ݐ݊݅݋݌ ܽ ݏ݅ ௞݌ ݁ݎℎ݁ݓ ݎ݅ܽ݌ ݐ݊݅݋݌ ܽ
݊௤௞ =   ௞ݍ ݐ݊݅݋݌ ݂݋ ݈ܽ݉ݎ݋݊ ℎ݁ݐ
Point to plane estimation uses the distances between the transformed point p and the 
plane of point q. while point to plane estimation are non-linear. Linearization is done 
by sin(θ) =θ and cos(θ) = 1.  
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7.4 Transformation criteria 
The transformation is calculated in an iterative way after the estimated transformation 
is computed. If there are no criterions configured this iteration can be go forever. 
When a criterion is met, the iterative loop is exited. The following criterions can be 
configured with the most algorithms. 
7.4.1 Maximum number of iterations 
Simply set the maximum number of iterations that is allowed for computing the 
algorithm. The number of iterations that is needed mostly depends on how far the 
two point clouds are away from each other. 
7.4.2 Absolute transformation threshold 
Stops the loop when the computed transformation in the loop is too far away from the 
estimated transformation. This because the two point clouds should be in each 
range. If the computed transformation is greater than this range the loop is exited. 
7.4.3 Relative transformation threshold 
This is the difference between a transformation calculated in the loop and the next 
one. If the difference between these transformations is small. The algorithm has 
converted and the loop is exited 
7.4.4 Maximum number of similar transformations 
For allowing to reach the algorithm a global minimum, several similar transformations 
are allowed. If this criterion would not exist, the relative transformation threshold 
would end the algorithm too fast. With this criterion, smaller minimums can be 
reached. 
7.4.5 Relative mean square error 
This one computes the mean square error between the translation / rotation 
increment between two transformations. 
7.4.6 Absolute mean square error 
Stops the transformation when the transformed source cloud is in a given range of 
the target cloud 
7.4.7 Transformation validation 
A transformation validation will check if the transformation is succeeded. This can be 
done by checking the distance between the point pairs after the transformation and 
give it a score. Keep in mind that this transformation check only can be computed on 
the overlapping section of the two point clouds. 
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8 Practical implementation 
The practical implementation makes uses of the open source library PCL. This open 
source library is available for C++ and can work on any platform. A C++ compiler will 
be used to compile the code. A RGB-D camera is used to scan the environment. For 
fast processing a platform with CUDA is recommended. The used hardware is listed 
in Hardware. 

8.1 PCL 
The Point Cloud Library (or PCL) is a large scale, open project [1] for 2D/3D image 
and point cloud processing. The PCL framework contains numerous state-of-the art 
algorithms including filtering, feature estimation, surface reconstruction, registration, 
model fitting and segmentation. These algorithms can be used, for example, to filter 
outliers from noisy data, stitch 3D point clouds together, segment relevant parts of a 
scene, extract key points and compute descriptors to recognize objects in the world 
based on their geometric appearance, and create surfaces from point clouds and 
visualize them. (Rusu, 2011) 

8.2 RGB-D camera 
A RGB-D camera is a camera that consists out of an RGB camera and an infrared 
sensor (D= depth). With the RGB camera classical RGB images are captured. By 
making use of the infrared sensor an infrared image and depth image is captured. A 
depth image is an image where every pixel tells the distance between the 
corresponding objects captured in the scene and the viewpoint. By combining the 
data of the RGB image and the depth image a 3D colour point cloud can be 
constructed by using triangulation. A disadvantage of this type of camera is that 
transparent glass objects will not be detected by the infrared sensor. Figure 8:1 
shows an example of a RGB-D-camera. 
 

 
Figure 8:1 RGB-D camera sensors Construct the point cloud (Kinect for 

Windows Sensor Components and Specifications, n.d.) 
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Point cloud construction 
The point cloud is constructed by applying triangulation between: the focal length, the 
values of the depth image and the image plane coordinates. 

௪ܲ = ൝
௪ݖ௪ݕ௪ݔ

ൡ =  ܲ ݐ݊݅݋݌ ݂݋ ݏ݁ݐܽ݊݅݀ݎ݋݋ܿ ݈݀ݎ݋ݓ
 

௜ܲ = ൝
௜ݖ௜ݕ௜ݔ

ൡ =  ܲ ݐ݊݅݋݌ ݂݋ ݏ݁ݐܽ݊݅݀ݎ݋݋ܿ ݈݁݊ܽ݌ ݁݃ܽ݉݅
 ݉ܽ݁ݐݏℎݐ݌݁݀ ℎ݁ݐ ݂݋ ݁ݑ݈ܽݒ ݁ܿ݊ܽݐݏ݅݀ ℎ݁ݐ "௜ݖ" ℎݐܹ݅
ܨ =  ݐℎ݈݃݊݁ ݈ܽܿ݋݂
 
 
Figure 8:2 shows a point in the real world and an image plane. The goal is to get the 
position of the point in the real world oriented from the image plane. The following 
pictures shows the triangulation that can be applied to get the X and Y coordinates. 

 
Figure 8:3 Image plane triangulation 

  

Figure 8:2 Image plane  
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Applying the triangulation from Figure 8:3: 
 

௪ܻ =  ூܻ ∗ ܼ௪
݂  

ܺ௪ =  ܺூ ∗ ܼ௪
݂  

(Collins, 2007) 
 
With these two formulas, all the world coordinates oriented from the camera 
viewpoint can be calculated. The next step is to add the RGB values to the world 
coordinates. The image planes from the depth image and RGB image are aligned 
with each other after calibration and have the same resolution. In this way, it is easy 
to know which RGB pixel value belongs to a certain depth pixel. After combining all 
the data, the point cloud is created. PCL has a function to creates these point clouds 
and delivers them as a structured point cloud. 

8.3 CUDA 
With CUDA applied to the algorithm it will result in faster cycles times (4 times and 
more). Which is wanted in a real-time application. The current hardware did not 
support CUDA, therefore this isn’t tested and no information is available to compare. 

  CUDA® is a parallel computing platform and programming model invented by 
NVIDIA. It enables dramatic increases in computing performance by 
harnessing the power of the graphics processing unit (GPU). With millions of 
CUDA-enabled GPUs sold to date, software developers, scientists and 
researchers are finding broad-ranging uses for GPU computing with CUDA. 
(CUDA, 2017) 
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9 Practical Pipeline 
Figure 9:1 shows the structure of the algorithm. Each part of the algorithm will be 
discussed in detail in the next paragraphs. 
 

 
Figure 9:1 Practical registration pipeline 

 

9.1 Init camera 
The init camera is the first step that happens when executing the program. This is the 
initialization step for the camera. The program will try to connect with the RGB-D 
camera by making use of OpenNI. OpenNI is an open source SDK that allows the 
user to connect with 3D camera’s. The next step is to initialize the 6D position of the 
camera in the digital point world. Since also to camera position will be kept in the 3D 
digital world. The initial camera position is zero in all values. 

9.2 Get cloud 
The get cloud step tells the algorithm which type of point cloud is requested. A 
colorless point cloud is used. Since no color is requested only the depth image is 
needed from the camera. Hence no calibration between the RGB image and depth 
image is needed. During the project, there were problems in receiving a RGB-point 
cloud in terms of speed. By asking for colorless point cloud half of the data is used. 
One RGB color point contains six data values (XYZ, RGB) while one colorless point 
only contains three data points (XYZ). The resolution that is used is 640*480 this will 
result in 307 200 points. Reducing half the data is an advantage with 307 200 points. 
By setting the receiving cloud to a colorless the max fps of the camera could be used 
(30 fps) for receiving data. When a RGB cloud was requested this resulted in 
receiving the clouds in no stable fps due too slow hardware, less than one fps. 
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9.3 Analyze cloud 
When the colorless point cloud is received, the data will be analyzed. in this step: 
filtering, normal estimation and uniform sampling will be applied. For filtering a 
Bilateral filter is used. PCL provides a fast-bilateral filter that only works with 
organized point clouds. But since an organized point cloud is received from the 
camera this is no problem. The filtering is done to make the normal estimation more 
robust. PCL also provides a faster normal estimation function for organized point 
clouds. This function is called ‘integral normal estimation’ which is also used in the 
algorithm. After calculating the normal on the point cloud down sampling will be 
applied via uniform sampling. After the down sampling a point cloud with ± 3000 point 
normals is received. A point normal is a 3D point which contains 6 data types the 
location in space XYZ and the normal vector (XYZ). There has been chosen for 
uniform sampling because the application must be fast. During the project a test was 
made with detecting features (narf, harris and stiff) and calculating the feature 
description (FPFH). This tended to be more than ten times slower. Feature extraction 
will give more accurate results but is slower. Faster hardware is needed to do more 
testing with the feature extraction. Figure 9:2 shows the used methods for the cloud 
analyzing. 
 

 
Figure 9:2 Analyse cloud flowchart 

 

9.4 Registration 
After analyzing the target cloud, the most important step of the algorithm is executed. 
In this step a transformation between the source and target cloud is estimated. The 
estimated transformation is a transformation to align the source cloud with the target 
cloud. The registration uses the down sampled clouds to make these calculations. 
Using a smaller number of points will reduce the cycles time. The flowchart is 
demonstrated in Figure 9:3. First the matching correspondences will be determined. 
After the correspondences are matched two rejection functions will take place. The 
first will reject all the correspondences based on the median distance. The resulting 
point pairs are filtered based on the surface normal angles. The transformation is 
estimated with filtered correspondences. At the end of the loop the converged criteria 
will check if one of the criteria’s is met. if true then the algorithm is finished. If not the 
source cloud will be transformed with the current estimated transformation and the 
loop is repeated until a criterion is met. 
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Figure 9:3 Registration flowchart 

 

9.5 Check registration 
After registration, a check will take place to determine a transformation score. The 
score is calculated based on the Euclidian distance of all the pair points after 
transformation. PCL has a function called ‘TransformationValidationEuclidean’. But 
the result of this function is not trustworthy due unknow reason for this moment. Even 
if two identic point clouds get judged the score is still too low. 

9.6 Inverse transformation 
Like already told the registration will align the source cloud to the target cloud. The 
map building starts with the initial cloud, the source cloud. Hence all the clouds need 
to be aligned to the source cloud. To do this the final transformation will be inversed. 
With the inversed transformation, the target cloud can be aligned to the source cloud. 

9.7 Transform target cloud 
In ‘transform target cloud’, two clouds will be transformed. The initial target cloud with 
307 200 points. This cloud will be later added to the 3D map (final cloud). The 
second cloud that needs to be transformed is target down sampled cloud with the 
normal vectors. This cloud is used as the source cloud for the next registration. 

9.8 Update camera pose 
The program keeps track of the camera’s position during the registration. Since the 
two point clouds have a certain overlap the camera will move in space. By multiplying 
the previous position of the camera with the final transformation, the current position 
of the camera is obtained (Figure 9:4). 
 

 
Figure 9:4 Update camera pose flowchart 
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9.9 Source = target 
Like the working of a shift register, at the end of the loop the data of the down 
sampled target cloud will be copied to the down sampled source point cloud. When 
the next target cloud will be loaded, it will always be orient to the previous one by 
making use of the shift register. By using the shift register only one cloud needs to be 
analyzed every loop instead of two clouds. Which results in faster calculation speeds. 

9.10 Add to map 
9.10.1 Voxel grid filter 
This process is showed in Figure 9:5 and works as followed. When a point cloud is 
analyzed and transformed to its relative position oriented from the previous cloud. It 
will be added to the final cloud which contains all the point clouds aligned with each 
other that are captured by the camera. Since there will always be an overlap between 
two point clouds. The redundant points must be removed from the final cloud to save 
data and creating a better visualization. A voxel grid filter is applied to the final cloud. 
The disadvantage of this method is that when more number of points are used, the 
filter will work longer. This problem can be solved by making the sure the final point 
cloud doesn’t get too large. When the final cloud contains ten point clouds the final 
cloud will be saved on the operating system. Next the final cloud will be emptied and 
the process will be repeated. Another disadvantage is that certain data is lost when 
the voxel grid is applied. When the scene is registered all the save files can be 
analyzed in a point cloud viewer such as MeshLab. 
 

 
Figure 9:5 Map building voxelgrid filter flowchart  

 
9.10.2 KD-Tree adding 
Another method to build the map is by making use of a pass-through filter and a kd-
tree. This method starts with calculating the minimum and maximum XYZ values of 
the transformed target cloud. After these values are calculated a pass-through filter is 
applied to the final cloud and the filtered data is stored in a temporary cloud. Next, a 
kd-tree is built from the temporary cloud. When the tree is build, a for loop will iterate 
through all the points in the transformed target cloud. In each iteration, a radius 
search in the kd-tree will be calculated on the iterated point. If no points are founded 
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in this radius search the point is added to the final cloud else the point is ignored and 
the next iteration will happen. 
Pseudo code: 
 
//get min and max point in transfomred target cloud 
point3DMin =  transfTgtCloud.minPoint(); 
point3DMax =  transfTgtCloud.maxPoint(); 
 
//apply passthroug filter 
tempcloud = passthroug(point3DMin,point3DMax,finalCloud); 
 
//create KD tree from temp cloud 
KdTree tree = new KdTree(tempcloud); 
 
//iterate through all the points in the transformed target cloud 
//do radius search in the tree on each iteration 
int newPoints =0; 
for(int i; i< transfTgtCloud.size(); i++){ 
    int points = kdTree.RadiusSearch(radius, transfTgtCloud[i]) 
 
    if(points = 0){ 
        finalCloud.addPoint(transfTgtCloud[i]); 
        newPoints++; 
    } 
} 
 
//estimate the overlap 
double EstOverlap = newPoints/ transfTgtCloud.size() * 100; 

 
This method provides a better visualization and no data is lost. A disadvantage is that 
this method is slower. The pass-through filter causes the kd-tree is built quicker, 
because less points are used to build the kd-tree. The overlap of the two point clouds 
can be estimated by the formula showed in the pseudo code. The calculation for the 
overlap highly depends on the accuracy of the transformation. If the transformation is 
computed wrong the estimated overlap is also computed wrong. 
  



 

60 
 

  



 

61 
 

10 Results and speed 
If the overlap between the two point clouds is large enough a successful registration 
is obtained. When the objects are close to the camera, the camera can move more 
through space instead of when the objects are further away. This Is due to that there 
always needs to be a certain overlap between the two pictures. The speed of the 
program depends on three main factors: 
 

 System hardware  Number of max iterations  Number of points that are used during the registration algorithm 
 
The test scene represents an apartment kitchen and the RGB picture is showed in 
Figure 10:1. The scene is registered in 10 different point clouds. Each point cloud is 
taken from a different viewpoint the single color point cloud is represented in Figure 
10:2. For better understanding of the registration process each eight point clouds in a 
row gets a unique color (Figure 10:3). Different settings where used to test the 
algorithm and differ in: 
 

 Max number of iterations  Points used during registration algorithm 
 

 
Figure 10:1 RGB image Kitchen scene 
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Figure 10:2 Point cloud kitchen scene 

 

 
Figure 10:3 Color point cloud kitchen scene  
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10.1 Dataset 1 
The number of the maximum iterations is set to 300. The radius search for down 
sampling the cloud is 50 mm. The radius has an influence on the number of points 
that are used during the registration. If the radius is smaller more points are used. 
The data can be found in Dataset 1 
 
Conclusion 
The functions to analyses the point cloud stay relative consistent over all the 
registrations (Figure 13:3). Figure 13:4 shows that these functions take more than 
50% of the total cycles time. Keep in mind that the function “Calculate overlap” will 
not be used for the real practical implementation. This function is only used to 
analyse the data. The “get cloud” function is slow because it reads a point cloud file 
stored on the computer and not directly from the camera. This is done to use the 
same clouds for each test. When the file is directly received from the camera, the 
average speed to get the cloud is 5 ms. The map building time showed here is with 
the KD-tree map building time without a pass-through filter. Implementing the pass-
through filter brings the map building time to 700 ms. This one is slower than the 
voxel grid filter but gives a better visual representation of the data and no data is lost. 
Following conclusions can be made for Figure 13:5: 
 

 The number of registrations and time does not depend on the overlap of the 
clouds  The registration time has the same progression as the number of iterations. 
Hence there is concluded that the time of registration mainly depends on the 
number of iterations 

 
The number of points sampled from the point clouds is very consistent over each 
registration. Sometimes the algorithm finds more correspondences then points that 
are sampled from the point cloud. This is caused by duplicate correspondences. After 
rejection around 60% of the points are kept (Figure 13:6). 
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10.2 Dataset 2 
The number of the maximum iterations is set to 50. The radius search for down 
sampling the cloud is 50 mm. The radius has an influence on the number of points 
that are used during the registration. If the radius is smaller more points are used. 
The data can be found in Dataset 2 
 
Conclusion 
The same conclusions from dataset 1 can be made. One big difference between the 
two data sets is the ICP time (registration time). In dataset 2 the average time from 
Table 4 is more than the half of the time in the first dataset. This is due to the smaller 
number of max iterations. The disadvantage of this setting is that the registration will 
happen less accurate. This can be seen in the alignment of the point clouds. Dataset 
3 shows the different alignments with different settings. 

10.3 Dataset 3 
Dataset 3 compares the average time and quality from 10 registrations where the 
number of max iterations and the number of points used for registration are different. 
The larger the radius search the less points are used during the registration. Another 
aspect that is researched in this dataset is the quality of the registration. This is done 
by comparing the final point clouds in a visual way. This by checking the alignment of 
the walls and one object out of the scene. The object that is focused is in Figure 10:4. 
All the data and illustrations can be found in Dataset 3. 
 

 
Figure 10:4 Object kitchen scene 
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11 Conclusion 
The cycle time mainly depends on the (maximum) number of iterations and the 
number of points that is used in the algorithm. Where the number of iterations have 
more impact than number the points that is used. By making use of the top view and 
front view, the walls are well aligned in every test. Either details in the scene and 
small objects represent different in every outcome. By looking at the different 
registrations of the test object, there is concluded that no registration is perfectly 
aligned with zero error. Looking at the images, test 2 gives the best results for this 
scene. By comparing test 4 with test 2. There is concluded that with uniform sampling 
a certain number of points must be available to receive a fine registration. Test 4 and 
test 7 shows that at least 100 iterations are needed to reduce the error to a relative 
minimum. The shift register requires that every point cloud must be aligned perfectly. 
If cloud X is badly aligned with cloud Y all the following clouds are also aligned wrong 
oriented from cloud Y even if they are perfectly aligned with cloud X. Working with 
feature detection and the related feature describers could solve this problem. 
Workshop test shows a registration of a workshop in the school HUST. This test 
shows that the alignment error has more influence when more point clouds are used. 
During this test the algorithm crashed sometimes because it couldn’t find any 
correspondences. The point clouds showed are the best results that are obtained 
with the algorithm. The settings of the algorithm where the same as in dataset 1. The 
workshop test consists of 165 point clouds and took a total of ± 200 seconds for 
registration and map building. 

11.1 Cycles time 
The best results that were obtained are a cycle times of:  ±450 ms for the registration 
and ± 700 ms for the map building time. The total cycles time is still far from the real-
time speed 100 ms or less that is required. Upgrading the hardware with a faster 
GPU and making use of CUDA will have a positive impact on the cycles time. 
Another solution is using a multi-threading program. The multi-threading program will 
split up the current algorithm in four different programs or threads that will work 
parallel with each other. The following flowchart (Figure 11:1) shows a structural way 
for multi-threading. 
 

 
Figure 11:1 Multithreading flowchart 



 

66 
 

The multi-threading approach has as advantage that every function doesn’t need to 
wait for the previous function. The data needed for every function will always be 
ready in time. Since the cycle time for thread 1 < thread 2 and so on. 

11.2 Accuracy 
The current accuracy for the registrations is too low for analyzing small objects in the 
scene. The accuracy can be improved by making use of features. But as already 
mentioned the feature detection is too slow on the current hardware. The use of 
features only makes a change in the analyzing of the point clouds. The features 
descriptions provide a better set of correspondences that can be used for the 
registration. Figure 11:2 shows a flowchart how the analyzing would look for feature 
based registration. Using feature descriptions can also help in improving the 
accuracy of registration multiple point clouds. More information can be find in Shift 
register. 

 
Figure 11:2 Feature analysing 

A test with two build in registration algorithms in PCL (“IterativeClosestPoint” and 
“IterativeClosestPointWithNormals) has been tested to remove the error. The 
algorithms (Figure 11:3 & Figure 11:4) where tested in two different pipelines and all 
possible point clouds, the down sampled clouds and not down sampled clouds both 
with and without point normal, were used. 
Algorithm 1: 
 

Registration Converged criteria reached?Match correspondens Reject correspondences Transformation estimation

Yes

Source cloud x current transformation No

Transform point cloud ICP PCL Transformation
 

Figure 11:3 Improved accuracy algorithm 1 
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Algorithm 2: 
 

 
Figure 11:4 Improved accuracy algorithm 2 

 
Regardless no success was booked by making use of PCL’s ICP algorithm. The 
registration turned out to be even less accurate. The outcome was very similar for all 
possible combinations. In the algorithm 2 is showed by making use of the down 
sampled point normal clouds and “IterativeClosestPointWithNormals”.  shows the 
outcome of this test. 

11.3 Shift register 
The core function that’s making possible multiple point clouds can be registered is a 
shift register. The advantage of this sift register is that it is fast and easy to 
implement. A disadvantage is that zero errors are allowed during the registration. As 
already mentioned, if cloud X is badly aligned with cloud Y all the following clouds will 
also be registered wrongly, oriented from cloud Y, even if they are perfectly aligned 
with cloud X. A registration error can occur when the overlap between the two point 
clouds is too small or in other words when viewpoint 1 is too far away from viewpoint 
2 or the difference in orientation between the two viewpoints is too large. A false 
registration will occur. During the tests, it showed that each time when a false 
transformation was estimated. The estimated camera position was very far in space 
from the previous camera position. Hence by using the estimated camera position a 
bad registration can detected. By calculating the translation and rotation between the 
two camera positons a safety mechanism based on too much camera movement can 
be incorporated. When absolute values of the rotation and translation are greater 
than the threshold value. The cloud will not be added to the final cloud. When the 
rotation value and translation value are in range, the cloud will be added to the final 
cloud. This feature has been tested and resulted in a positive outcome. One 
disadvantage of this feature is to get the camera position back close enough to the 
previous position. Which is hard for a human but easy for a robot. 
 
Another implementation for aligning multiple point clouds is using features. During 
the registration, a list of all features and their position in the real world will be kept. 
With each new registration, the algorithm will search through this list and find 
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common features. If no features are found the camera moved too much and the 
algorithm will be “paused” until common features are found. The power of the feature 
list is that not only the last point cloud will be used to make the alignment but all the 
features that are within the range of the current viewpoint. A pass-through filter and a 
kd-tree can speed up the search through the feature list. Due too slow hardware, this 
second approach couldn’t be tested. Although the core code for this extension is 
provided. 

11.4 Decrease degrees of freedom 
Decreasing the degrees of freedom of the camera will result in better accuracy and 
speed. For example, to fix the camera’s Y position is an option that is used for room 
scanners this is showed in Figure 11:5. By fixing the camera’s Y position the 
estimation of the transformation will know that there will be no movement in Y. Due 
this fix the number of unknows is decreased to four. Since no rotation on the z-axis is 
also performed with this fix. 

 
Figure 11:5 Fixed Y position scan (Feifer, 2012) 

11.5 External sensors 
External sensors can be used to keep track of the camera’s position. The current 
IMU’s (Integrated motion unit) provide reliable measurements. The data of the IMU 
can be combined with the data of the estimated transformation by the registration 
algorithm. The next step is to implement a probabilistic method that estimate the 
current position of the camera. 
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Attachment A:   A* algorithm 
The A* algorithm is a path planning algorithm that is an extension of Esdger Dijkstra’s 
algorithm in 1995. The algorithm finds the most optimal path between two points if it 
exists. To use the algorithm a node map (grid map) must be available of the world. A 
node map is a map where the world is divided in nodes as shown in Figure 13:1 
Node map example (Patel, 2017). 
 

 
Figure 13:1 Node map example 

When the node map is built. Each node receives three values: 
 G-cost: the cost from the current node to the start node (robot start position); 
 H-cost: the cost from the current node to the end node (goal); 
 F-cost: G cost + H cost; 

With  these three values the most optimal path is calculated. To determine which 
nodes the robot will travel, the algorithm chooses the node with the lowest F-cost. If 
there are multiple nodes with the lowest F-cost, the algorithm chooses the node with 
the lowest G cost. If there are multiple nodes with lowest F-cost and G-cost, it 
chooses the first one it finds in the list. The algorithm keeps track of all the nodes 
with two lists: 

 Closed list: Nodes that are evaluated 
 Open list: the surrounding nodes (neighbor nodes) of the nodes in the closed 

list; 
The distance between each node equals 10. This means that the costs for moving 
vertical and horizontal is 10. The cost to move diagonal is 14 (ඥ10ଶ + 10²). To test 
this algorithm a simulation is programmed in C# WPF. This simulation contains a 
second feature where a grid map is build where the A* algorithm will navigate in. The 
grid map and the A* algorithm contains a function where both can be updated during 
the path execution. This means that objects are added to the map during the path 



 

73 
 

execution also the path is adjusted if needed. The simulation delivered positive 
results and works well. 
 
A.1: Pseudo code 

  OPEN //Create the list for the set of nodes to be evaluated   CLOSED // Create the list for the set of nodes already evaluated   add the start node to OPEN   loop           current = node in OPEN with the lowest f_cost           remove current from OPEN           add current to CLOSED           if current is the target node //path has been found                   return           foreach neighbor of the current node                   if neighbor is not traversable or neighbor is in CLOSED                           skip to the next neighbor                   if new path to neighbor is shorter OR neighbor is not in OPEN                           set f_cost of neighbor                           set parent of neighbor to current                           if neighbor is not in OPEN                                   add neighbor to OPEN   
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A.2: Example 
1 

 

2 

 
3 

 

 

Figure 13:2 A* example (Lague, 2014) 
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Attachment B:Hardware 
 Platform 

o Windows 10 pro;  Computer 
o Windows surface pro; 

 64 bit; 
 Intel core I7-665O U CPU @ 2.20 Ghz up to 3.4 GHz, 4 MB cache 
 i7: Intel Iris 540 graphics; 
 16 GB DDR3 Ram memory; 
 SSD memory;  RGB-D camera 

o ASUS Xtion PRO LIVE; 
 Field of view;  58° Horizontal;  45° Vertical;  70° Diagonal; 
 RGB camera; 
 Infrared sensor (depth image);  VGA (640x480) : 30fps;  QVGA (320x240): 60fps;  Detection range: between 80cm and 3,5 m; 

o 2 microphones;  PCL 1.8; 
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Attachment C:Dataset 1 
Table 3 Functions overview 

 Registrations 
Function 1 2 3 4 5 6 7 8 9 10 

Read cloud [ms] 1730 1729 1677 1661 1651 1681 1558 1555 1548 1544 
Starting registration extraction 

program 0 0 0 0 0 0 0 0 0 0 
Convert xyzRGBa cloud to xyz cloud 

[ms] 2 2 3 2 2 2 3 3 2 2 
Fast bilateral filter [ms] 88 62 69 80 73 72 63 67 65 67 

Integral normal estimation [ms] 43 40 42 48 49 46 46 40 43 41 
Create point Normal cloud [ms] 5 7 7 6 6 7 6 5 7 6 

Number of points after down 
sampling 1034 1049 1080 1087 1095 1052 1083 1145 1153 1193 

Normal space sampling [ms] 16 15 17 15 18 15 16 14 14 15 
Number of 'all correspondences' 1037 1034 1049 1080 1087 1095 1052 1083 1145 1153 

Number of 'good correspondences' 695 702 586 662 679 661 663 667 667 706 
Registration iterations 300 74 300 300 300 174 24 19 300 300 

Registration ended with 1 2 1 1 1 4 2 2 1 1 
ICP [ms] 1257 284 1089 1204 1166 679 93 74 1086 1294 

Transformation score 0 0 0 0 0 0 0 0 0 0 
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Update map [ms] 2197 1825 1285 1554 1747 1655 1489 1510 1580 1525 
estimated Overlap [ % ] 99.52% 99.33% 67.74% 79.11% 92.61% 90.20% 93.38% 95.27% 94.79% 85.17% 

Calculate overlap [ms] 1991 1783 1219 1443 1576 1474 1469 1616 1507 1391 
Analyse & ICP [ms] 1410 410 1226 1354 1314 821 226 202 1217 1424 

Total calculation time [ms] 7327 5746 5407 6012 6288 5631 4742 4883 5851 5884 
Average analyse & ICP [ms] 960.2549          

Average total calculation time [ms] 5777.0893          
Legend Transformation ended with 

Time Analyze & ICP functions [ms] 0 CONVERGENCE_CRITERIA_NOT_CONVERGED  
Time other functions [ms] 1 CONVERGENCE_CRITERIA_ITERATIONS  

Total time [ms] 2 CONVERGENCE_CRITERIA_TRANSFORM  
Other information 3 CONVERGENCE_CRITERIA_ABS_MSE  

 4 CONVERGENCE_CRITERIA_REL_MSE  
 5 CONVERGENCE_CRITERIA_NO_CORRESPONDENCES 
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Figure 13:3 Analyze functions 

 
Figure 13:4 Other functions  
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Figure 13:5 ICP 

 

 
Figure 13:6 Correspondences 
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Attachment D:Dataset 2 
Table 4 Functions overview 

 Registrations 
Function 1 2 3 4 5 6 7 8 9 10 

Read cloud [ms] 2387 2268 1900 1675 1681 1689 1621 1556 1543 1502 
Starting registration extraction 

program 0 0 0 0 0 0 0 0 0 0 
Convert xyzRGBa cloud to xyz 

cloud [ms] 0 4 2 3 2 0 2 2 2 17 
Fast bilateral filter [ms] 139 73 71 88 69 85 82 72 79 70 

Integral normal estimation [ms] 65 40 46 50 44 45 45 27 42 39 
Create point Normal cloud [ms] 8 7 7 0 10 6 0 6 6 0 

Number of points after down 
sampling 1034 1049 1080 1087 1095 1052 1083 1145 1153 1193 

Normal space sampling [ms] 20 9 16 28 18 16 28 6 15 8 
Number of 'all correspondences' 1037 1034 1049 1080 1087 1095 1052 1083 1145 1153 

Number of 'good 
correspondences' 692 700 587 654 677 666 663 663 558 693 

Registration iterations 50 9 50 50 40 50 17 13 50 50 
Registration ended with 1 2 1 1 2 1 2 2 1 1 
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ICP [ms] 267 50 237 269 172 228 80 85 233 240 
Transformation score 0 0 0 0 0 0 0 0 0 0 

Update map [ms] 2310 1805 1274 2462 2077 1713 1608 1734 1711 1604 

estimated Overlap [ % ] 99.52% 
99.33

% 
61.76

% 
79.22

% 
93.07

% 
90.38

% 
93.38

% 
95.24

% 
70.24

% 
84.14

% 
Calculate overlap [ms] 2310 1733 1111 1558 1641 1401 1489 1576 1255 1310 

Analyse & ICP [ms] 499 183 379 438 314 379 237 197 375 373 
Total calculation time [ms] 7507 5988 4664 6132 5714 5181 4956 5062 4885 4790 
Average analyse & ICP [ms] 337.33          

Average total calculation time [ms] 
5487.9

1           
  



 

82 
 

 
Figure 13:7 Analyze functions 

 

 
Figure 13:8 Other functions 
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Figure 13:9 ICP 

 
Figure 13:10 Correspondences 
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Attachment E:Dataset 3 
Table 5 ICP 

test 
Max 

iterations 
Radius 
search 

Average analyze & 
ICP [ms] 

1 300 0.05 960.2549 
2 100 0.05 422.5422 
3 50 0.05 337.3303 
4 2000 0.1 2146.1284 
5 100 0.1 253.7892 
6 100 0.15 194.641 
7 50 0.15 186.2641 

 

 
Figure 13:11 ICP 
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E.1: Test 1 
Front view: 
 

 
Figure 13:12 Front view 

 
Top view: 
 

 
Figure 13:13 Top view 
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Object in scene: 
 

 
Figure 13:14 Object view  
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E.2: Test 2 
Front view: 
 

 
Figure 13:15 Front view 

 
Top view: 
 

 
Figure 13:16 Top view 
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Object in scene: 

 
Figure 13:17 Object view  
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E.3: Test 3: 
Front view: 
 

 
Figure 13:18 Front view 

 
Top view: 
 

 
Figure 13:19 Top view 
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Object in scene: 
 

 
Figure 13:20 Object view 
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E.4: Test 4 
Front view: 
 

 
Figure 13:21 Front view 

 
Top view: 
 

 
Figure 13:22 Top view 
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Object in scene: 

 
Figure 13:23 Object view  
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E.5: Test 5 
Front view: 
 

 
Figure 13:24 Front view 

Top view: 
 

 
Figure 13:25 Top view 
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Object in scene: 
 

 
Figure 13:26 Object view  
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E.6: Test 6 
Front view: 
 

 
Figure 13:27 Front view 

 
Top view: 
 

 
Figure 13:28 Top view 
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Object in scene: 

 
Figure 13:29 Object view  
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E.7: Test 7 
Front view: 
 

 
Figure 13:30 Front view 

 
Top view: 
 

 
Figure 13:31 Top view 
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Object in scene: 

 
Figure 13:32 Object view  
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Attachment F:Dataset 4 
Front view: 
 

 
Figure 13:33 Front view 

 
Top view: 
 

 
Figure 13:34 Top view 

  



 

100 
 

Object view: 
 

 
Figure 13:35 Object view  
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Attachment G:Workshop test 
 

 
Figure 13:36 Workshop RGB 

 
Figure 13:37 workshop point cloud 

 



 

102 
 

 
Figure 13:38 workshop point cloud 

 
Figure 13:39 workshop point cloud top view 
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