2015•2016

master in de revalidatiewetenschappen en de kinesitherapie

Masterproef deel 1

Effect of High-Intensity Interval Training on Mitochondrial Density in Skeletal Muscles of MS Patients

Promotor : Prof. dr. Bert OP 'T EIJNDE

Ferdy Wijckmans, Tobias Severijns Eerste deel van het scriptie ingediend tot het behalen van de graad van master in de revalidatiewetenschappen en de kinesitherapie

Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek

FACULTEIT GENEESKUNDE EN LEVENSWETENSCHAPPEN

Copromotor : dr. Inez WENS

2015•2016 FACULTEIT GENEESKUNDE EN LEVENSWETENSCHAPPEN

master in de revalidatiewetenschappen en de kinesitherapie

Masterproef deel 1

Effect of High-Intensity Interval Training on Mitochondrial Density in Skeletal Muscles of MS Patients

Promotor : Prof. dr. Bert OP 'T EIJNDE

Copromotor : dr. Inez WENS

Ferdy Wijckmans, Tobias Severijns Eerste deel van het scriptie ingediend tot het behalen van de graad van master in de revalidatiewetenschappen en de kinesitherapie

Universiteit hasselt KNOWLEDGE IN ACTION

MP 1: Effect of High-Intensity Interval Training on Mitochondrial Density in Skeletal Muscles of MS Patients

<u>Research question</u>: What is the effect of high-intensity interval training (HIIT) on mitochondrial density in skeletal muscles of MS patients (pwMS)?

Highlights:

- Multiple sclerosis patients have reduced skeletal muscle oxidative capacity and see a decline in skeletal muscle mitochondrial content and biogenesis.
- High-intensity interval training improves muscle oxidative capacity, mitochondrial content and mitochondrial biogenesis in healthy individuals.
- Key factors concerning mitochondrial biogenesis are peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), adenosine monophosphate-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (p38-MAPK)
- The impact of HIIT on mitochondrial biogenesis and mitochondrial density in pwMS has yet to be investigated.

Students: Severijns Tobias, Wijckmans Ferdy

Promotor: Prof.dr. Op 't Eijnde Bert

Co-promotor: Dr. Wens Inez

Research Framework

This literature study fits in the research domain of cardiorespiratory and internal diseases as well as the neurological subdomain of the rehabilitation sciences and physiotherapy department of Hasselt University and is constructed according to the central format.

The effect of high-intensity interval training (HIIT) on biomarkers of mitochondrial biogenesis and mitochondrial density in skeletal muscles of patients with multiple sclerosis (pwMS) was studied through a literature review. Outcome measures are: peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), p38 mitogen-activated protein kinase (p38-MAPK), adenosine monophosphate-activated protein kinase (AMPK), adenosine triphosphate (ATP), cytochrome c oxidase (COX) and citrate synthase (CS).

HIIT was the intervention of choice because of the small effect size of low to moderate intensity exercise. Here, higher intensity exercise might improve therapy outcomes, due to the major advantages of intense bursts of activity interspersed with fixed periods of less-intense activity, or even complete rest. Exercise duration of HIIT is short in comparison with endurance exercise. This makes it an interesting exercise modality for pwMS who often have a reduced exercise capacity. In the second part of this study, a research protocol is described.

The research topic was provided by our promotor prof. dr. Bert Op 't Eijnde and co-promotor dr. Inez Wens. The final research question, literature study and research protocol were specified and completed by master students Tobias Severijns and Ferdy Wijckmans in co-operation with the promotor and co-promotor.

Part two of this thesis will be done in Diepenbeek at the research centre REVAL of UHasselt.

This thesis is a duo-thesis and every part individually accomplished by both master students is clearly described in table 11.

Content

PART 1: LITERATURE SEARCH

1.	Ab	Abstract 1					
2.	. Introduction						
3. Method							
	3.1	Rese	arch question	5			
	3.2 Literature search						
3.3 Selection criteria				6			
3.4 Quality assessment				6			
	3.5	Data	extraction	6			
4. Results							
	4.1	Resu	Its study selection	7			
	4.2	Resu	Its quality assessment	7			
	4.3	Resu	Its data extraction	8			
		4.3.1	The effect of exercise on PGC-1α	9			
		4.3.2	The effect of exercise on AMPK	9			
		4.3.3	The effect of exercise on p38-MAPK	10			
		4.3.4	The effect of exercise on CS	11			
		4.3.5	The effect of exercise on COX	11			
		4.3.6	The effect of exercise on ATP	12			
5	Dis	scussion		15			
	5.1	Refle	ction of the quality assessment	15			
5.2 Reflection on findings related to the research question				15			
The effect of exercise on PGC-1α							
The effect of exercise on AMPK							
The effect of exercise on p38-MAPK							
The effect of exercise on CS							
The effect of exercise on COX The effect of exercise on ATP							
							5.3
	5.4	Reco	mmendations for future research				
6	Conclusion						
7	Ref	Reference list					

PART 2: RESEARCH PROTOCOL

1.	Intr	roduction	25				
2. Research Goal							
	2.1	Research Question	27				
2	2.2	Hypothesis	27				
3.	Me	<i>I</i> ethod					
3	3.1	Design	29				
3	3.2	Participants					
3	3.3	Medical Ethics	29				
3	3.4	Study Protocol					
	3.	.4.1 Pre-intervention measurements					
	3.	.4.2 Intervention program					
	3.	.4.3 Post- intervention measurements					
	3.4	.4.4 Measurements					
3	3.5	Outcomes					
3	3.6	Materials and methods					
3	3.7	Data Analysis					
4.	Ref	eference list	35				
Tab	ble 1	I: List of search terms used in PubMed.	41				
Tab	ole 2	2: List of search terms used in Web of Science (WoS)	45				
Fig	ure 1	1: Flowchart illustrating the literature search of this study focussing on pwMS	47				
Figure 2: Flowchart illustrating the literature search of this study focussing on healthy subjects and							
pat	holo	ogies similar to MS	47				
Tab	ble 3	B: Reasons of exclusion for excluded articles concerning pwMS	49				
Table 4: Reasons of exclusion for excluded articles concerning healthy subjects and pathologies similar to MS.							
Tab	ole 5	5: Quality assessment: Cochrane checklist for randomized controlled trials	63				
Tab	ole 6	S: Quality assessment standard for a cross-over study	65				
Tab (ba	ole 7 sed (7: Quality assessment: quasi experimental studies without control group: Self on Downs and Black checklist 1998)	-made checklist 75				
Table 8: STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies							
Table 9.1: Overview included articles - type of article, subjects, used techniques and conclusion 101							
Tab	Table 9.2: Overview included articles – population, aims and interventions 113						

Table 9.3: Overview included articles – outcome measures and results	125
Table 10: list of abbreviations	139
Table 11: individual accomplishments	141
Table 12: Progress form	143

1. Abstract

Background: Recent research, concerning skeletal muscle characteristics in patients with Multiple Sclerosis (pwMS), suggest that lower physical activity levels correlate with a reduction in skeletal muscle oxidative capacity and changes in muscle signalling cascades for mitochondrial and myofibrillar biogenesis. Therefore, exercise is a safe and efficient way in improving these deteriorations. The effect size of low to moderate intensity exercise, however, is small. Here, and similar to healthy controls and other disease populations, higher intensity (HIT) exercise might improve therapy outcome. Due to its short exercise duration, high-intensity interval training (HIIT) is an interesting exercise modality for pwMS, who often have a reduced exercise capacity.

Methods: PubMed and Web of Science (WoS) databases were scanned for literature on Multiple Sclerosis (MS), mitochondrial biogenesis and the effect of exercise training on both frameworks. Research was based on a wide array of MeSH-terms and general terms, which were selected following previous analysis concerning this subject-matter.

Results: HIIT protocols seem to improve muscle oxidative capacity, maximal activity of mitochondrial enzymes in skeletal muscle, mitochondrial content and also govern the activation of mitochondrial biogenesis in healthy individuals.

Discussion and conclusion: Exercise training has beneficial effects on biomarkers of mitochondrial biogenesis in healthy subjects. Furthermore, an increase in mitochondrial content is present. Namely low-volume HIIT programs seem to have a positive impact on these markers. Further research is needed to address the impact of HIIT on biomarkers of mitochondrial biogenesis and mitochondrial density in pwMS.

Operationalization: MS patients will be randomized in a sedentary control group and a high-intensity interval training group and will complete a six-week low-volume HIIT protocol. Pre- and post-measurements will consist of strength measurements of the quadriceps muscle, a body composition measurement, a cardiopulmonary exercise test, the physical activity scale for individuals with physical disabilities and muscle biopsies from the middle part of the vastus lateralis muscle of the weakest leg. Primary outcome measures will be: peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) protein expression, adenosine monophosphate-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38-MAPK) and mitochondrial density.

Keywords: AMPK, ATP, COX, CS, High-intensity interval training, Multiple sclerosis, Mitochondrial biogenesis, Mitochondrial density, PGC-1α, p38MAPK

2. Introduction

Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system, affecting approximately 2 300 000 people worldwide. The early course of MS is marked by episodes of neurological dysfunction that generally recover. However, as the disease progresses, pathological changes become dominant and neurological degeneration is present. A wide range of heterogeneous neurological and peripheral symptoms characterizes MS. Most common symptoms being fatigue and muscle weakness, which, amongst others, lead to a decrease in functional capacity as well as a reduction in health related quality of life (HRQOL). Neurologically, metabolic changes within axons and demyelination of the central nervous system are present. Although MS primarily remains a neurological disease, it is evident that there are significant changes present within the musculoskeletal system. Evident is a downgrade in mean muscle fibre cross sectional area (CSA), muscle strength, muscle mass, a smaller type 1 and 2 skeletal muscle fibre diameter and complex-1 deficiency in skeletal muscle mitochondria.¹⁻⁷ However, the role of skeletal muscle mitochondria has only been sparsely investigated amongst pwMS.^{5; 8-10} Thus, in conjunction with neurological deterioration, muscular adaptations are present, which need to be further investigated on cellular level.

Recent research, concerning skeletal muscle characteristics in pwMS, suggest that lower physical activity levels correlate with a reduction in skeletal muscle oxidative capacity and changes in muscle signalling cascades for mitochondrial and myofibrillar biogenesis.^{1; 2} Mitochondrial biogenesis can be seen as the growth and division of pre-existing mitochondria and is influenced by environmental stress such as exercise.¹¹⁻¹³ Consequently, increasing physical activity is an interesting tool that safely and efficiently improves physical deconditioning in MS. Indeed, low-to moderate endurance training is well tolerated in pwMS and improves maximum aerobic capacity and HRQOL.^{5; 14} The effect size of low to moderate intensity exercise, however, is small. Here and similar to healthy controls and other disease populations, higher intensity (HIT) exercise might improve therapy outcome.

To date, it is clear that HIT improves skeletal muscle oxidative capacity, maximal activity of mitochondrial enzymes in skeletal muscle, increases mitochondrial content and governs activation of mitochondrial biogenesis in healthy subjects. Which functionally lead to higher exercise performance rates, and an increase in HRQOL.¹⁵⁻²³ However, the impact of these HIT programs on mitochondrial biogenesis and mitochondrial density in pwMS has yet to be investigated.^{6; 14}

Key factors, concerning mitochondrial biogenesis, investigated in this literature study are peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), which stimulates mitochondrial biogenesis in skeletal muscle, adenosine monophosphate-activated protein kinase (AMPK), which regulates intracellular energy metabolism as a response to an acute energy crisis and p38 mitogen-activated protein kinase (p38-MAPK), regulating exercise-induced mitochondrial biogenesis which leads to an increase in transcriptional activity of PGC-1α. Other key mitochondrial biomarkers are citrate synthase (CS) activity and the activity of cytochrome c oxidase (COX). CS activity is a validated biomarker for mitochondrial density in skeletal muscle, as well as a biochemical marker for skeletal

muscle oxidative adaptation to an exercise intervention. COX or complex IV is seen as a key regulation site for oxidative phosphorylation and catalyses the final step in the mitochondrial electron transfer chain. Further, an essential adaptation to endurance exercise is an increased capacity to supply adenosine triphosphate (ATP) through oxidative phosphorylation, marked by an increase in mitochondrial content and associated with enhanced exercise capacity. In conjunction with enzyme activity, mitochondrial density, consisting of mitochondrial number and fractional area, increases as well in response to endurance exercise.^{11; 13; 15; 24-27}

The purpose of this literature study was to investigate the effect of HIIT on mitochondrial biogenesis and density in skeletal muscles of pwMS.

3. Method

3.1 <u>Research question</u>

What is the effect of high-intensity interval training on mitochondrial density in skeletal muscles of patients with multiple sclerosis?

3.2 Literature search

PubMed and Web of Science (WoS) databases were scanned for literature on this topic. A comprehensive study on MS, mitochondrial biogenesis and the effect of exercise training on both frameworks was executed. Based on this, a wide array of MeSH-terms was selected. Following MeSH-terms were used in PubMed: multiple sclerosis, demyelinating disease, immune system disease, neurodegenerative disease, mitochondria, mitochondria muscle, mitochondrial density, mitochondrial myopathies, mitochondria muscle/metabolism, mitochondria/enzymology, citrate (si)mitochondrial ADP ATP translocases, exercise therapy, svnthase. exercise. muscle skeletal/metabolism, muscle skeletal/pathology, muscle skeletal/physiopathology, muscle skeletal, AMP-activated protein kinases and p38 mitogen-activated protein kinases. In absence of MeSH-terms, general terms were selected based on previous research concerning this subject-matter, others were based on the research question. Following general terms were used: high intensity training, high intensity exercise, mitochondrial density and pgc-1 alpha mitochondrial. All these terms were combined with each other using "AND" or "OR" (Table 1). In case of more than 250 hits, the search term was specified, further combining them with other eligible terms. The titles of all hits were screened for relevance. Potential relevant articles were extracted by selecting them and sending them to EndNote X7 for further screening. However, few studies investigated the effect of exercise training on mitochondrial density in skeletal muscles of pwMS. The decision was made to include trials on healthy subjects. After completion of the literature search based on title screening, abstracts were assessed for usefulness. Non-eligible studies were excluded. In WoS, topic-related terms were used: multiple sclerosis, demyelinating disease, immune system disease, neurodegenerative disease, mitochondria, mitochondria muscle, mitochondrial density, mitochondrial myopathies, citrate synthase, mitochondrial ADP ATP translocases, exercise therapy, exercise high intensity exercise, high intensity training, muscle skeletal, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, AMPactivated protein kinases and p38 mitogen-activated protein kinases (Table 2). Methods used for further examination were comparable with methods used in PubMed. Furthermore, for all articles, cited references were checked as well as the articles which cited them.

3.3 Selection criteria

Criteria for inclusion:	Criteria for exclusion
Humans	Animal studies
Multiple sclerosis	Review
Healthy subjects	Studies in languages other than Dutch,
Exercise training	English and French
Effect of exercise on muscle	No relevant population
metabolism	No relevant intervention
Mitochondria (skeletal muscle)	No relevant outcome
	Mitochondria (axonal)

3.4 Quality assessment

To assess the quality of all included articles, following checklists were used: the Cochrane checklist for RCT, the quality assessment standard for cross-over studies, a self-made checklist based on Downs and Black checklist (1998) and the STROBE statement checklist. The quality assessment was done by one author and controlled by the other.

- The Cochrane checklist for randomized controlled trials (RCT) reviewed three studies on 10 criteria with a maximal score of 10 (Table 5).
- The Quality assessment standard for a cross-over study examined three studies on nine items (Table 6).
- The self made checklist, based on Downs and Black checklist (1998) for quasi experimental studies without control group, evaluated 13 studies on 20 criteria with a maximal score of 20 (Table 7).
- The STROBE Statement Checklist for cross-sectional studies assessed seven studies on 22 criteria (Table 8).

3.5 Data extraction

Subsequently to completion of the literature search and quality assessment, 25 studies were included and used for data extraction. All eligible studies were processed and data was elaborated into three different tables (Table 9.1, 9.2 and 9.3). This study focusses on mitochondrial density in skeletal muscles of pwMS following exercise training. However, considering the low amount of research on this subject, articles in healthy subjects were included. Based on multiple reviews, concerning mitochondrial biogenesis, various parameters were admitted. The key parameter to be investigated being PGC-1 α . Other important investigated parameters are p38-MAPK, AMPK, COX, CS and ATP.

4. Results

4.1 <u>Results study selection</u>

Due to the fairly recent nature of research regarding the effect of HIIT on mitochondrial density in skeletal muscles of pwMS, the study selection did not solely aim on articles concerning MS. Eligible trials on healthy subjects were included. Out of the 1000 hits on PubMed and WOS, concerning MS, we eventually excluded 939 articles (Figure 1). Out of the 2487 hits on PubMed and WOS, related to healthy subjects, we discarded 2469 articles (Figure 2). The most common reasons for exclusion were no relevant outcomes, intervention or population (Table 3, 4). Furthermore, for all articles, cited references were checked as well as the articles which cited them.

Thirteen articles, most of them being reviews, were included in the reference list for background purposes concerning multiple sclerosis, exercise, mitochondrial density, mitochondrial biogenesis and PGC-1 α . These articles weren't used for the results of the data extraction.^{5; 8; 10-14; 28-33}.

Ultimately 25 articles were used for data extraction. Three randomized controlled trials, two randomized crossover designs, 13 quasi-experimental studies without control group, six cross sectional studies and one combination of a randomized crossover design and a cross sectional study design were included.

4.2 Results quality assessment

The quality assessment of all 25 included articles was completed with four different checklists. The lowest scores found in all checklists were 4/10 and 8/21. After discussion between both authors, the decision was made to not exclude articles with lower quality, because of the scarcity of eligible studies. Quality assessment of randomized controlled trials^{6; 15; 34} varied from 4/10 to 6/10 (table 5). The Strobe checklist was used to assess the quality of studies with a cross sectional design^{1; 2; 4; 7; 9; 25} (table 8). Most included studies used a quasi-experimental design without control group. For the assessment of these articles a self-made checklist was used, based on Downs and Black checklist (1998). Scores of these studies ranged between 8/20 and 16/20^{16-20; 22; 23; 26; 35-39} (Table 7). Quality assessment standard for cross-over studies was used for three articles^{21; 24; 25} (table 6).

In general, quality ranged between low and moderate and after consideration no studies were excluded.

4.3 <u>Results data extraction</u>

Twenty-five articles were included and used for data extraction. Various parameters were introduced based on multiple reviews regarding mitochondrial biogenesis, in agreement with the promotor of this study.^{11; 13; 30}

The most important parameter to be investigated according to these reviews was peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 α). A protein that induces and coordinates gene expression, which stimulates mitochondrial biogenesis in skeletal muscle through specific interaction with a variety of transcription factors.^{11; 13; 15; 16; 19; 21-26; 29; 33; 35}

Another important regulator of mitochondrial biogenesis is adenosine monophosphate-activated protein kinase (AMPK), which regulates intracellular energy metabolism as a response to an acute energy crisis.^{11;13;26}

P38 mitogen-activated protein kinase (p38-MAPK) is one more key regulator of exercise-induced mitochondrial biogenesis, which leads to an increase in transcriptional activity of PGC-1α.^{11; 13; 24-26; 33}

Further, an essential adaptation to endurance exercise is an increased capacity to supply adenosine triphosphate (ATP) through oxidative phosphorylation, marked by an increase in mitochondrial content and associated with enhanced exercise capacity.^{15; 26; 30; 36-38}

Other commonly used markers of mitochondrial content are citrate synthase (CS) activity and the activity of cytochrome c oxidase (COX). CS activity is a validated biomarker for mitochondrial density in skeletal muscle, as well as a biochemical marker for skeletal muscle oxidative adaptation to an exercise intervention. COX or complex IV is seen as a key regulation site for oxidative phosphorylation.^{16; 22; 30; 34; 38}

Table 9.1 gives an overview of types of articles, subjects, used techniques and conclusion.Table 9.2 gives an overview of patient populations, aims of the study and intervention.Table 9.3 gives an overview of outcome measures and results.

4.3.1 The effect of exercise on PGC-1α

The outcomes of exercise on PGC-1 α have been discussed in multiple studies amongst healthy participants. All of these studies took muscle biopsies from the vastus lateralis muscle pre- and post-exercise, with some taking additional biopsies two, three, 24, 48, 52 and/or 72 hours post-exercise. Western blotting was used to determine PGC-1 α protein expression and PGC-1 α mRNA.

Seven articles examined post-exercise PGC-1 α mRNA in vastus lateralis muscle and found a significant increase compared to pre-exercise PGC-1 α mRNA. With a rise of 400%^{24; 25}, 200%²⁶, 750%¹⁹ and Stepto et al.²² reporting a rise of 430% three hours post-training. One study found a 200-300% increase in PGC-1 α mRNA immediately post-exercise, which further rose to 620% two hours post-training.²¹ Edgett et al.³⁵ reported a difference between three different intensities, with the greatest increase in PGC-1 α mRNA (790%) at a workrate of 100% of the peak rate of oxygen consumption (VO2_{peak}). After 24 hours of recovery PGC-1 α mRNA returned to basal levels.^{19; 21}

Nine articles discussed PGC-1 α protein content after high intensity interval training. Five articles concluded there was no significant change in protein content three hours post-exercise.^{19; 20; 23; 24; 26} However, one of these articles stated that there was a 57% increase at 24 hours of recovery noticeable.¹⁹ The other four articles declared there was a significant increase in PGC-1 α protein content after training.^{15; 16; 21; 22}

To our knowledge, no research has been done into the effect of HIIT on PGC-1 α in pwMS.

4.3.2 The effect of exercise on AMPK

The outcomes of exercise on AMPK have been discussed in multiple studies using healthy participants and in one study amongst pwMS. All of these studies took muscle biopsies from the vastus lateralis muscle pre- and post-exercise, with some taking additional biopsies three, 24 and/or 72 hours post-exercise. Western blotting was used to determine AMPK phosphorylation, phospho-AMPKα and acetyl-coenzyme A carboxylase (ACC) phosphorylation, which is a marker of AMPK activation.

Two studies examined the effect of exercise on AMPK phosphorylation. Bartlett et al.²⁴ investigated the difference between matched HIIT and CONT exercise protocols. Both training modalities produced a 1.5-fold increase of post-exercise AMPK phosphorylation, with no difference between conditions. AMPK phosphorylation returned to basal levels at three hours post-exercise. Gibala et al.²⁶ measured the effect of a low-volume, high intensity interval training protocol on AMPK phosphorylation after four 30 seconds "all out" exercise bouts, interspersed with four minutes of rest. A rise in phosphorylation of AMPK after bout four, compared with all other time points, was evident.

Hansen et al.² researched the effect of exercise on phospho-AMPK α in pwMS compared to healthy controls.

- Basal muscle phospho-AMPKα was significantly different between groups (1.46 ± 0.24 VS 1.09 ± 0.26 mg/mL in pwMS VS healthy subjects, respectively, observed statistical power α = 0.76).
- After endurance exercise, muscle phospho-AMPK α was significantly different between groups (1.66 ± 0.51 VS 1.12 ± 0.23 mg/mL in pwMS VS healthy subjects, respectively, observed statistical power α = 0.96).
- Within pwMS and healthy subjects muscle phospho-AMPKα did not significantly change.
 Relative change in muscle phospho-AMPKα (+19 ± 53% VS +4 ± 13% in pwMS VS healthy subjects, respectively) after endurance exercise was comparable between groups.

Three studies discussed ACC phosphorylation after exercise training. Two studies^{19; 26} used a low-volume HIIT protocol to investigate the effect on ACC phosphorylation. HIIT resulted in an increase of ACC phosphorylation after bout one and four compared with the other bouts.²⁶ Little et al.¹⁹ reported an immediate increase of cytosolic ACC phosphorylation.

One remaining article²⁵ studied the effect of both INT and CONT exercise. Both protocols elicited similar 2.5-fold increases of ACC serine-79.

4.3.3 The effect of exercise on p38-MAPK

Phosphorylation of p38-MAPK was studied in four articles^{19; 24-26} amidst healthy subjects. All these articles discuss the acute effects of different HIIT protocols on skeletal muscle p38-MAPK phosphorylation.

In two studies^{19; 26} the participants performed four 30 seconds maximal intensity exercise bouts on an ergometer cycle, interspersed with four minutes of rest. Outcomes were a significant increase in p38-MAPK phosphorylation immediately after exercise, specific numbers were not mentioned. The research of Little et al.¹⁹ indicated that p38-MAPK phosphorylation returned to basal levels after three hours of recovery, and once more significantly elevated after 24 hours of recovery (P = 0.004).

The other two articles compared a HIIT to a CONT protocol. J.D. Bartlett (2012)²⁴ compared a HIIT running protocol to CONT running and found no significant difference between these two protocols, which were matched for intensity, duration and distance. However, p38-MAPK phosphorylation increased 1.9 and 1.5 fold immediately following exercise for HIIT and CONT respectively. Cochran et al.²⁵ compared intermittent (HIIT) and continuous (CONT) high-intensity exercise to each other, performed on a cycle ergometer. There was an immediate increase of p38-MAPK phosphorylation after exercise by 300%, and no difference noticeable between treatments.

To our knowledge, no research has been done into the effect of HIIT on p38-MAPK in pwMS.

4.3.4 The effect of exercise on CS

The effect of CS in healthy subjects has been discussed in several studies. Nine studies demonstrated a significant increase of maximal CS activity following exercise training, although different exercise protocols were used. One study investigated the effect of low-volume "sprint" interval training (SIT) and endurance training (ET) on maximal activity of CS and marked an increase of 25% with no difference between interventions.¹⁵ Fernstrom et al. assessed the difference between acute exercise and endurance training in a six-week training program, which showed an increase of CS maximal activity of 43% and 47% respectively³⁴. Seven studies displayed a significant increase of CS maximal activity following HIIT, while different protocols of HIIT were used.

Following studies applied a low-volume HIIT protocol of one session¹⁹, two weeks^{20; 23} and six weeks^{16; 18; 38}, showing a significant increase of CS maximal activity in healthy subjects of 14%, 16%, 43%, 28%, 36%, and 26% respectively. One remaining study³⁹ marked an improvement of CS maximal activity of 30% following two weeks of training, four additional weeks of training resulted in further increases of 20%. Only one article²⁵, using a six week CONT exercise training protocol of 60 minutes at 65% of VO2_{peak}, displayed no significant difference in maximal activity of CS after training compared with pre-training.

In addition, CS protein content significantly increased by 30% 24 hours post-exercise¹⁹ and 20%²⁰ after respectively one session or two weeks of low-volume high-intensity exercise training.

Furthermore, Stepto et al.²² evaluated the effect of acute exercise or exercise training on CS mRNA, which remained unaltered after intervention.

To our knowledge, no research has been done into the effect of HIIT on CS in pwMS.

4.3.5 The effect of exercise on COX

The effect of exercise on maximal activity of COX was analysed in three studies.^{17; 19; 20} All but one¹⁹ concluded a significant increase of COX maximal activity. After one single session COX activity increased by 19% but did not reach statistical significance.

Two studies used a two week high-intensity low-volume interval training protocol, and found a significant improvement of COX maximal activity of 29%²⁰ no percentages were given in Jacobs et al.¹⁷.

COX IV content was investigated in seven studies^{16; 19; 20; 22; 25; 38; 39}, all but one²² found a significant increase. After one session¹⁹, two weeks²⁰ and six weeks^{16; 38; 39} of HIIT there was a significant increase of respectively 43% at three hours recovery and 30% at 24 hours of recovery¹⁹, 38%²⁰, 36¹⁶, 18%³⁸ and 30% following two weeks with a further increase of 20% after an additional four weeks of training.³⁹ Cochran et al.²⁵ used a CONT protocol consisting of six weeks of exercise training and demonstrated a significant increase of 20% in COX IV content.

The study of Stepto et al.²² demonstrated a 1.6 fold rise of COX IV mRNA and a 1.5 fold increase of COX IV protein expression by training, however COX IV protein expression showed a 20% decrease by acute exercise pre- and post-training.

COX II protein content was assessed in two articles.^{19; 20} In one after one session¹⁹ and in the other study after two weeks²⁰ of high-intensity, low-volume interval training in healthy subjects. Respectively, an increase of 29% and 35% at 24 hours recovery was illustrated.

To our knowledge, no research had been done into the effect of HIIT on COX in pwMS.

4.3.6 The effect of exercise on ATP

The rates of ATP following HIIT has been investigated in five articles amongst healthy individuals.^{15; 26;} ³⁶⁻³⁸

One of these studies²⁶ explored the effects of a brief intense interval exercise into human skeletal muscle. The training protocol consisted of four-30 seconds exercise bouts (maximum intensity), interspersed with four minutes of rest. The protocol was completed by six healthy young men. Muscle ATP was only lowered ($P \le 0.05$) after bout four.

Burgomaster et al.¹⁵ compared metabolic adaptations during exercise after low volume sprint interval and traditional endurance training, following a six weeks training programme. Endurance training (ET) consisted of 40 to 60 minutes of continuous cycling on a workload of 65% VO2_{peak}, five days a week. Sprint interval training (SIT) consisted of four to six repetitions of a 30 seconds Wingate test, interspersed with 4.5 minutes recovery between bouts, three days a week. Muscle ATP remained unchanged by acute exercise, but reduced (P<0.05) after six weeks of SIT compared to ET.

The other three articles used three different high intensity interval protocols. One³⁸ where eight untrained men performed six sessions of HIT in a two week period. Training consisted of four to six 30 seconds maximum intensity cycling bouts with four minutes of recovery between bouts. A second³⁷ where ten overweight untrained healthy subjects followed a six week (three times a week) exercise program consisting of five 60 seconds exercise bouts (at approximately 128% of the maximum load), interspersed by 90 seconds of active rest. The last study³⁶ where five males and three females attended a six week (three times a week) exercise program with ten four minute intervals at 90% VO2_{peak} interspersed with two minutes of passive rest between intervals. The first and third article found no change in the unidirectional rate of ATP synthesis, as well as no change in the content of ATP in vastus lateralis muscle.^{36; 38} The second study concluded that ATP production by each pathway was unchanged after the first session. Total ATP synthesis increased during a 24 seconds maximum voluntary contraction (P< 0.001), but remained the same across the three testing sessions (P = 0.62). Oxidative ATP synthesis (ATP_{ox}) increased with training (P<0.001). ATP provision from net

breakdown of phosphocreatine (ATPCK) and glycolysis (ATP_{GLY}) remained similar across the three testing sessions (P session ≥ 0.45).³⁷

To our knowledge, no research has been done into the effect of HIIT on ATP in pwMS.

5 Discussion

5.1 <u>Reflection of the quality assessment</u>

The quality assessment of all 25 included articles was completed using four checklists due to different study designs. Of all included articles the highest level of evidence used in this literature search is randomized controlled trial. Three randomized controlled trials were admitted, two randomized crossover designs, six cross sectional studies, 13 quasi-experimental studies without control group and one combination of a randomized crossover design and a randomized controlled trial. For quality assessment of studies using a quasi-experimental study design without control group, a self-made checklist was used, based on the Downs and Black checklist (1998).

Further, nine reviews were included in the reference list for background purposes, these articles weren't used for the results of the data extraction. Quality of all articles used for data extraction ranged between low and moderate and after consideration no studies were excluded.

5.2 Reflection on findings related to the research question

The effect of exercise on PGC-1 α

Since PGC-1α is one of the most important regulators of mitochondrial biogenesis, this metabolic regulator has been investigated in several studies. Seven articles examined the effect of exercise on PGC-1α mRNA and conclude a significant increase between 200%-750% regardless of exercise protocol modality.^{19; 21; 22; 24-26; 35}

Bartlett et al.²⁴ and Cochran et al.²⁵ demonstrate a comparable increase of PGC-1α mRNA content in human skeletal muscle following both HIIT protocols and CONT running protocols. Previous research (Edgett, 2013) demonstrated a greater increase in PGC-1α mRNA following maximal (100%) compared to submaximal exercise (73%). The effect of supramaximal exercise (133%) was similar to that observed following submaximal exercise, so no further increase was seen after supramaximal exercise intensity.

Gibala et al.²⁶ demonstrates that a surprisingly small dose of very high intensity exercise (two minutes of all out cycling) is sufficient to increase PGC-1α mRNA.

Nine articles investigated the effect of PGC-1 α after HIIT. The results described in these articles are contradictory. Five of these studies^{19; 20; 23; 24; 26} concluded there was no significant increase in protein content following HIIT three hours post-exercise, while the four other articles declared a significant increase of PGC-1 α following exercise training at high intensity.^{15; 16; 21; 22}

Multiple studies describe that PGC-1 α does not appear to increase as a reaction to an acute exercise stimulus, while in the contrary PGC-1 α mRNA shows a rapid increase.^{19; 20; 26}

All of these articles describe the effect of exercise training in a healthy population, no research has been done in pwMS.

The effect of exercise on AMPK

Five studies investigated the effect of exercise training on AMPK- and ACC-phosphorylation, which is a marker of AMPK activation, while AMPK is one of the proteins linked to PGC-1 α and the regulation of mitochondrial biogenesis in skeletal muscle.

Two articles^{24; 26} describe the effect of exercise on AMPK-phosphorylation, one study demonstrate that both HIIT and CONT exercise induce comparable increase in AMPK-phosphorylation²⁴. Gibala et al.²⁶ also describes an increase of signalling through AMPK, following a low-volume, high intensity interval training protocol.

Three studies^{19; 25; 26} investigate the effect of exercise training on ACC-phosphorylation and all show an increase in ACC phosphorylation regardless to the exercise protocol used, as well as Bartlet et al.²⁴ previously described an increase of AMPK-phosphorylation in both CONT and HIT protocols.

One single study² looked in to the effect of exercise training in pwMS. The basal muscle phospho-AMPKα was significantly higher in pwMS in comparison with healthy subjects, after endurance exercise there was no significant difference between both groups.

The effect of exercise on p38-MAPK

Phosphorylation of p38-MAPK, which is an important signalling cascade linked to PGC-1α and the regulation of mitochondrial biogenesis in skeletal muscle²⁶, had been investigated in four studies. p38-MAPK and AMPK are both activated in response to metabolic stress.¹⁹ Studies investigating HIIT protocols^{19; 24-26} conclude a significant increase following exercise regardless of the exercise volume. Gibala et al.²⁶ and Little et al.¹⁹ both report a significant increase after one single session, following Little et al.¹⁹, values returned to basal levels at three hours recovery and again a significant increase is shown after 24 hours recovery. Two studies^{24; 25} investigated the difference between HIIT and CONT exercise protocols, a significant increase is seen with no difference between intervention protocols. Following Cochran et al.²⁵ the measurement of the gross phosphorylation of p38-MAPK in whole muscle may be less sensitive than the examination of subcellular localization of the same molecule. All articles describe the effect of exercise training in a healthy population, to our knowledge no research has been done in pwMS.

The effect of exercise on CS

Nine out of ten studies^{15; 16; 18-20; 23; 34; 38; 39} describe a significant increase in maximal activity of CS following exercise training in healthy subjects. Only Cochran et al.²⁵ reported unchanged results using a six-week CONT exercise training protocol. Two studies show an increase of CS protein content after one single session¹⁹ and two weeks²⁰ of low-volume high-intensity interval training. All studies using a high-intensity interval protocol conclude significant increased results of both maximal activity as well as protein content of CS. The increase is probably regardless the volume of exercise because it is seen after one single session¹⁹ as well as after two^{20; 23} and six weeks^{16; 18; 38; 39} of exercise training. This could be explained by a rapid increase of CS activity, even after one single session.

The effect of six weeks low-volume "sprint" interval training was compared with endurance exercise with both an increase of CS max activity with no difference between groups.¹⁵

Fernström et al.³⁴ investigated the difference between one single bout of acute exercise and six weeks of endurance exercise resulting both in a significant increase. The increase after one single session could be linked to the probable rapid increase of CS activity following exercise.

These findings suggest a high-intensity interval training protocol is a potential and time-efficient method to induce mitochondrial biogenesis in healthy subjects, even at low-volume exercise. No research has been done in pwMS.

The effect of exercise on COX

Only three studies investigated the effect of HIIT on the maximal activity of Cytochrome C Oxidase (COX). Their findings suggest a higher increase after high volume of HIIT, compared to low-volume. Two articles conclude a significant increase after two weeks of HIIT^{17; 20} While one study¹⁹ researched the effect of one single bout of HIIT and concluded a not significant increase of 19%.

The effect of HIIT on COX IV- and COX II-protein content was investigated in respectively seven^{16; 19; 20; 22; 25; 38; 39} and two studies^{19; 20}. HIIT induces an overall increase in both COX IV- and COX II protein content. Only one article²² reported a 20% decrease in COX IV protein expression by acute exercise pre- and post-training.

Amongst previous research HIIT is an appropriate intervention for the improvement of COX maximal activity as well as the protein content. Previous research suggests a faster increase in COX IV than COX II following exercise buth further research is required.¹⁹

All articles report results of healthy subjects, no research has been done in patients with MS.

The effect of exercise on ATP

The effect of exercise on adenosine triphosphate (ATP) has been investigated in five articles. Endurance exercise leads to an increased capacity ATP supply through oxidative phosphorylation. Marked by an increase in mitochondrial content and associated with enhanced exercise capacity.^{15; 26; 36-38} Three studies report a reduction of ATP content at rest following low-volume HIIT^{15; 36} and SIT³⁷. The lowered ATP content after exercise training was possibly due to the stress of chronic training or the acute residual effects of the last exercise performance (72 hours before muscle biopsy). Lowered concentration of ATP directly after exercise is due to high rates of ATP turnover which lead to higher concentration of adenosine monophosphate (AMP).

One article³⁸ described the effect of a high-volume HIIT protocol on resting ATP content with no significant difference following exercise. No research has been done in pwMS.

5.3 Reflection on strengths and weaknesses of literature search

PubMed and Web Of Science (WOS) databases were used for this literature search. In both databases a comprehensive study on MS, mitochondrial biogenesis and the effect of exercise on both

was executed thoroughly. All relevant MeSH-terms for this research question were used and in absence of MeSH-terms, general terms were selected based on previous research concerning this subject-matter and some were based on the research question. The use of this strategy delivered over thousand hits, In case of more than 250 hits, the search term was specified, further combining them with other eligible terms. However, few studies investigated the effect of exercise training on mitochondrial density in skeletal muscles of pwMS. The decision was made to include trials on healthy subjects. Furthermore, for all articles, cited references were checked as well as the articles which cited them. This broad search strategy is a strength of this study however no studies were excluded on basis of quality assessment which was kept in mind during data extraction and interpretation of results.

5.4 <u>Recommendations for future research</u>

After an extensive literature search as previously described, research regarding the effect of highintensity interval training on mitochondrial density in pwMS, proved to be scarce. Further research in pwMS is required to evaluate the effect of this type of intervention on mitochondrial density and biogenesis. Momentarily conclusions can only be drawn from studies including healthy subjects. More studies addressing this subject are also needed to investigate the influence of different exercise protocols of HIIT and to conclude which type of exercise protocol is most effective in this particular population.

6 Conclusion

Exercise training of various modalities has beneficial effects on biomarkers of mitochondrial biogenesis such as PGC-1α, p38-MAPK and AMPK. Furthermore, an increase in mitochondrial content, as marked by CS enzyme activity, maximal COX activity and an increased rate of ATP synthesis, is present. Namely low-volume HIIT programs seem to have a positive impact on these markers. Further research is needed to address the impact of HIIT on biomarkers of mitochondrial biogenesis and mitochondrial density in pwMS.

7 Reference list

- (*) 1. Hansen, D., Wens, I., Kosten, L., Verboven, K., & Eijnde, B. O. (2013). Slowed Exercise-Onset Vo(2) Kinetics During Submaximal Endurance Exercise in Subjects With Multiple Sclerosis. *Neurorehabil Neural Repair, 27*(1), 87-95. doi:10.1177/1545968312451916
- (*) 2. Hansen, D., Wens, I., Vandenabeele, F., Verboven, K., & Eijnde, B. O. (2015). Altered signaling for mitochondrial and myofibrillar biogenesis in skeletal muscles of patients with multiple sclerosis. *Transl Res*, *166*(1), 70-79. doi:10.1016/j.trsl.2015.01.006
- (*) 3. Kent-Braun, J. A., Ng, A. V., Castro, M., Weiner, M. W., Gelinas, D., Dudley, G. A., & Miller, R. G. (1997). Strength, skeletal muscle composition, and enzyme activity in multiple sclerosis. *J Appl Physiol (1985), 83*(6), 1998-2004.
- (*) 4. Kumleh, H. H., Riazi, G. H., Houshmand, M., Sanati, M. H., Gharagozli, K., & Shafa, M. (2006). Complex I deficiency in Persian multiple sclerosis patients. *J Neurol Sci, 243*(1-2), 65-69. doi:10.1016/j.jns.2005.11.030
- Motl, R. W., & Gosney, J. L. (2008). Effect of exercise training on quality of life in multiple sclerosis: a meta-analysis. *Mult Scler, 14*(1), 129-135. doi:10.1177/1352458507080464
- (*) 6. Wens, I., Dalgas, U., Vandenabeele, F., Grevendonk, L., Verboven, K., Hansen, D., & Eijnde, B.
 O. (2015). High Intensity Exercise in Multiple Sclerosis: Effects on Muscle Contractile Characteristics and Exercise Capacity, a Randomised Controlled Trial. *PLoS One, 10*(9). doi:10.1371/journal.pone.0133697
- (*) 7. Wens, I., Dalgas, U., Vandenabeele, F., Krekels, M., Grevendonk, L., & Eijnde, B. O. (2014). Multiple sclerosis affects skeletal muscle characteristics. *PLoS One, 9*(9), e108158. doi:10.1371/journal.pone.0108158
- Compston, A., & Coles, A. Multiple sclerosis. *The Lancet*, 372(9648), 1502-1517. doi:10.1016/S0140-6736(08)61620-7
- (*) 9. Campbell, G. R., Reeve, A. K., Ziabreva, I., Reynolds, R., Turnbull, D. M., & Mahad, D. J. (2013). No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis. *Mult Scler, 19*(14), 1858-1866. doi:10.1177/1352458513490547
- Carroll, C. C., Gallagher, P. M., Seidle, M. E., & Trappe, S. W. (2005). Skeletal muscle characteristics of people with multiple sclerosis. *Arch Phys Med Rehabil, 86*(2), 224-229. doi:10.1016/j.apmr.2004.03.035
- Jornayvaz, F. R., & Shulman, G. I. (2010). Regulation of mitochondrial biogenesis. *Essays Biochem*, 47, 69-84. doi:10.1042/bse0470069
- Lundby, C., & Jacobs, R. A. (2016). Adaptations of skeletal muscle mitochondria to exercise training. *Exp Physiol*, 101(1), 17-22. doi:10.1113/EP085319
- Puigserver, P., & Spiegelman, B. M. (2003). Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. *Endocr Rev, 24*(1), 78-90. doi:10.1210/er.2002-0012
- Dalgas, U., Ingemann-Hansen, T., & Stenager, E. (2009). Physical Exercise and MS Recommendations. Int MS J, 16(1), 5-11.

- (*) 15. Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. *J Physiol*, 586(Pt 1), 151-160. doi:10.1113/jphysiol.2007.142109
- (*) 16. Gurd, B. J., Perry, C. G. R., Heigenhauser, G. J. F., Spriet, L. L., & Bonen, A. (2010). Highintensity interval training increases SIRT1 activity in human skeletal muscle. *Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 35*(3), 350-357. doi:10.1139/h10-030
- (*) 17. Jacobs, R. A., Fluck, D., Bonne, T. C., Burgi, S., Christensen, P. M., Toigo, M., & Lundby, C. (2013). Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. *J Appl Physiol (1985), 115*(6), 785-793. doi:10.1152/japplphysiol.00445.2013
- Larsen, S., Danielsen, J. H., Sondergard, S. D., Sogaard, D., Vigelsoe, A., Dybboe, R., . . . Helge, J. W. (2015). The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. *Scand J Med Sci Sports*, *25*(1), e59-69. doi:10.1111/sms.12252
- (*) 19. Little, J. P., Safdar, A., Bishop, D., Tarnopolsky, M. A., & Gibala, M. J. (2011). An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. *Am J Physiol Regul Integr Comp Physiol,* 300(6), R1303-1310. doi:10.1152/ajpregu.00538.2010
- (*) 20. Little, J. P., Safdar, A., Wilkin, G. P., Tarnopolsky, M. A., & Gibala, M. J. (2010). A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. *Journal of Physiology-London, 588*(6), 1011-1022. doi:10.1113/jphysiol.2009.181743
- (*) 21. Mathai, A. S., Bonen, A., Benton, C. R., Robinson, D. L., & Graham, T. E. (2008). Rapid exercise-induced changes in PGC-1alpha mRNA and protein in human skeletal muscle. J Appl Physiol (1985), 105(4), 1098-1105. doi:10.1152/japplphysiol.00847.2007
- (*) 22. Stepto, N. K., Benziane, B., Wadley, G. D., Chibalin, A. V., Canny, B. J., Eynon, N., & McConell, G. K. (2012). Short-term intensified cycle training alters acute and chronic responses of PGC1alpha and Cytochrome C oxidase IV to exercise in human skeletal muscle. *PLoS One, 7*(12), e53080. doi:10.1371/journal.pone.0053080
- (*) 23. Vincent, G., Lamon, S., Gant, N., Vincent, P. J., MacDonald, J. R., Markworth, J. E., ... Hickey, A. J. R. (2015). Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training. *Frontiers in Physiology*, 6. doi:10.3389/fphys.2015.00051
- (*) 24. Bartlett, J. D., Joo, C. H., Jeong, T.-S., Louhelainen, J., Cochran, A. J., Gibala, M. J., . . . Morton, J. P. (2012). Matched work high-intensity interval and continuous running induce similar increases in PGC-1 alpha mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. *Journal of Applied Physiology*, *112*(7), 1135-1143. doi:10.1152/japplphysiol.01040.2011

- (*) 25. Cochran, A. J., Percival, M. E., Tricarico, S., Little, J. P., Cermak, N., Gillen, J. B., . . . Gibala, M. J. (2014). Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. *Exp Physiol, 99*(5), 782-791. doi:10.1113/expphysiol.2013.077453
- (*) 26. Gibala, M. J., McGee, S. L., Garnham, A. P., Howlett, K. F., Snow, R. J., & Hargreaves, M. (2009). Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1 alpha in human skeletal muscle. *Journal of Applied Physiology*, 106(3), 929-934. doi:10.1152/japplphysiol.90880.2008
- Gosker, H. R., Hesselink, M. K., Duimel, H., Ward, K. A., & Schols, A. M. (2007). Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD. *Eur Respir J*, 30(1), 73-79. doi:10.1183/09031936.00146906
- Camera, D. M., Smiles, W. J., & Hawley, J. A. (2016). Exercise-induced skeletal muscle signaling pathways and human athletic performance. *Free Radic Biol Med.* doi:10.1016/j.freeradbiomed.2016.02.007
- 29. Chan, M. C., & Arany, Z. (2014). The many roles of PGC-1alpha in muscle--recent developments. *Metabolism, 63*(4), 441-451. doi:10.1016/j.metabol.2014.01.006
- Irrcher, I., Adhihetty, P. J., Joseph, A. M., Ljubicic, V., & Hood, D. A. (2003). Regulation of mitochondrial biogenesis in muscle by endurance exercise. *Sports Med*, 33(11), 783-793.
- Kelly, N. A., Ford, M. P., Standaert, D. G., Watts, R. L., Bickel, C. S., Moellering, D. R., . . . Bamman, M. M. (2014). Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson's disease. *J Appl Physiol* (1985), 116(5), 582-592. doi:10.1152/japplphysiol.01277.2013
- (*) 32. Larsen, S., Nielsen, J., Hansen, C. N., Nielsen, L. B., Wibrand, F., Stride, N., . . . Hey-Mogensen, M. (2012). Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. *J Physiol*, *590*(14), 3349-3360. doi:10.1113/jphysiol.2012.230185
- Little, J. P., Safdar, A., Benton, C. R., & Wright, D. C. (2011). Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis. *Appl Physiol Nutr Metab*, 36(5), 598-607. doi:10.1139/h11-076
- (*) 34. Fernstrom, M., Tonkonogi, M., & Sahlin, K. (2004). Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. *J Physiol*, *554*(Pt 3), 755-763. doi:10.1113/jphysiol.2003.055202
- (*) 35. Edgett, B. A., Foster, W. S., Hankinson, P. B., Simpson, C. A., Little, J. P., Graham, R. B., & Gurd, B. J. (2013). Dissociation of Increases in PGC-1 alpha and Its Regulators from Exercise Intensity and Muscle Activation Following Acute Exercise. *PLoS One, 8*(8). doi:10.1371/journal.pone.0071623
- (*) 36. Larsen, R. G., Befroy, D. E., & Kent-Braun, J. A. (2013). High-intensity interval training increases in vivo oxidative capacity with no effect on P(i)-->ATP rate in resting human muscle. *Am J Physiol Regul Integr Comp Physiol, 304*(5), R333-342. doi:10.1152/ajpregu.00409.2012

- (*) 37. Larsen, R. G., Maynard, L., & Kent, J. A. (2014). High-intensity interval training alters ATP pathway flux during maximal muscle contractions in humans. *Acta Physiologica*, *211*(1), 147-160. doi:10.1111/apha.12275
- (*) 38. Perry, C. G. R., Heigenhauser, G. J. F., Bonen, A., & Spriet, L. L. (2008). High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. *Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 33*(6), 1112-1123. doi:10.1139/h08-097
- (*) 39. Talanian, J. L., Holloway, G. P., Snook, L. A., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2010). Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. *Am J Physiol Endocrinol Metab, 299*(2), E180-188. doi:10.1152/ajpendo.00073.2010

1. Introduction

Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system, affecting approximately 2 300 000 people worldwide. It is characterised by a wide range of heterogeneous neurological and peripheral symptoms, such as fatigue and muscle weakness, which, amongst others, lead to a decrease in functional capacity as well as a reduction in health related quality of life (HRQOL). Neurologically, metabolic changes within axons and demyelination of the central nervous system are present. Increasing evidence indicates a role for mitochondria in the dysfunction and degeneration of neurons. Although MS remains primarily a neurological disease, it is evident that there are significant changes present within the musculoskeletal system. However, the role of skeletal muscle mitochondria has only been sparsely investigated amongst pwMS.^{5; 8-10} Thus, in conjunction with neurological deterioration, muscular adaptations are present, which need to be further investigated on cellular level.

Recent research, concerning skeletal muscle characteristics in pwMS, suggest that lower physical activity levels correlate with a reduction in skeletal muscle oxidative capacity and changes in muscle signalling cascades for mitochondrial and myofibrillar biogenesis.^{1; 2} Consequently, increasing physical activity is an interesting tool that safely and efficiently improves physical deconditioning in MS. Indeed, low-to moderate endurance training is well tolerated in pwMS and improves maximum aerobic capacity and HRQOL.^{5; 14} The effect size of low to moderate intensity exercise, however, is small. Here and similar to healthy controls and other disease populations, higher intensity (HIT) exercise might improve therapy outcome.

To date, it is clear that HIT improves skeletal muscle oxidative capacity, maximal activity of mitochondrial enzymes in skeletal muscle, increases mitochondrial content and governs activation of mitochondrial biogenesis in healthy subjects. Which functionally lead to higher exercise performance rates, and an increase in HRQOL.¹⁵⁻²³ However, the impact of these HIT programs on mitochondrial biogenesis and mitochondrial density in pwMS has yet to be investigated.^{6; 14} Key factors concerning mitochondrial biogenesis are peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), which stimulates mitochondrial biogenesis in skeletal muscle, adenosine monophosphate-activated protein kinase (AMPK), which regulates intracellular energy metabolism as a response to an acute energy crisis and p38 mitogen-activated protein kinase (p38-MAPK), regulating exercise-induced mitochondrial biogenesis which leads to an increase in transcriptional activity of PGC-1α. In conjunction with enzyme activity, mitochondrial density, consisting of mitochondrial number and fractional area, increases as well in response to endurance exercise.^{11; 13; 15; 24-27}

In accordance with the above line of reasoning, we hypothesize that HIIT has beneficial effects on skeletal muscle characteristics of healthy subjects and pwMS. Specifically enhancing biomarkers of mitochondrial biogenesis such as PGC-1a protein expression, AMPK, p38-MAPK, as well as increasing mitochondrial density in skeletal muscle.
2. Research Goal

2.1 Research Question

What is the effect of high-intensity interval training on mitochondrial density in skeletal muscles of MS patients?

2.2 <u>Hypothesis</u>

We hypothesize that HIIT enhances biomarkers of mitochondrial biogenesis such as PGC-1α protein expression, AMPK, p38-MAPK as well as mitochondrial density in skeletal muscle in MS.

3. Method

3.1 Design

This research will be a randomized controlled trial consisting of pwMS randomized in a sedentary control group (SED, n=20) and an intervention group (HIIT, n=20) participating in a six week HIIT exercise intervention program.

3.2 Participants

A minimum of 40 MS patients with relapsing-remitting MS, diagnosed according to McDonald criteria (EDSS range 1-5), will be included in this study following a written informed consent. Subjects will be excluded when they have other disorders (cardiovascular, pulmonary, neurological, renal and/or cancer), are pregnant, are athletes or physically active adults, aren't able to perform high-intensity exercise, have had an acute MS exacerbation within six months prior to this study, are participating in another study and/or have any contra-indications to perform physical exercise. Inclusion criteria are: patients with relapsing-remitting MS, aged between 30-50 years. The participants are recruited from the MS clinic Overpelt (Belgium).

3.3 Medical Ethics

The study will be approved by the ethical committee of Jessa Hospital Hasselt (s1 protocol) and Hasselt University. All tests will be performed in accordance with the Declaration of Helsinki and public health.

3.4 Study Protocol

3.4.1 Pre-intervention measurements

Following study inclusion, baseline measurements will be performed. They include isometric muscle strength measurements of the quadriceps muscle (F_{quad}), a body composition measurement (BCM), a cardiopulmonary exercise test (CPET), the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD) and muscle biopsies (Bergström needle technique) from the middle part of the vastus lateralis muscle of the weakest leg, according to isometric muscle strength measurements.

3.4.2 Intervention program

Hereafter, participants will be randomly assigned to a sedentary control group (SED) or an exercise intervention group (HIIT). Whereas SED subjects remain physically inactive during the study course, HIIT subjects will perform a six-week training program. Neither the researchers, nor the patients participating in this study will be blinded to group allocation.

HIIT = High Intensity Interval Training program

Subjects will engage in a six-week low-volume HIIT exercise program. Based on the literature search, six weeks of HIIT was chosen, being the most common intervention length in healthy subjects.^{15; 16; 18; 25; 34; 38; 39} Multiple HIIT modalities are present. Most common used HIIT programs, to define progress in mitochondrial biogenesis, are low-volume HIIT protocols^{15; 17-20; 23; 25; 26; 36; 37}. Particularly the Wingate

test, as a training protocol, is most often used. This is an anaerobic test performed on a cycle ergometer. Modified by means of a training program, it consists of four to six repeats of a 30 seconds Wingate test, interspersed with 4.5 minutes recoverytime (cycling at low cadence < 50 rpm against a light resistance of 30W) to decrease the onset of venous pooling and to reduce the change for a sudden blood pressure drop, nausea and light-headedness. Participants will perform these sessions five days per week (Monday-Friday) for six consecutive weeks. The first two weeks consist of four repeated Wingate tests, the next two weeks of five bouts, and the last two weeks of six bouts.

3.4.3 Post- intervention measurements

Following HIIT exercise therapy or SED, post-intervention measurements will be performed identical to pre-intervention measurements.

Study design overview

Table 1: Study design overview of the HIIT protocol including pre- and post-intervention measurements.

Day 1	• Fquad
	BCM
	PASIPD
Day 3	• CPET
Day 7	 First biopsy taken from the vastus lateralis muscle at rest
	 65% VO2peak cycling for 60 minutes
	 Second muscle biopsy taken immediately after exercise
	 Third muscle biopsy taken 3 hours post-exercise
Week 1 and 2	Start HIIT protocol
	 4 repeats of a 30s 'all out' Wingate test interspersed by 4.5min recovery
Week 3 and 4	• 5 repeats of a 30s 'all out' Wingate test interspersed by 4.5min recovery
Week 5 and 6	 6 repeats of a 30s 'all out' Wingate test interspersed by 4.5min recovery
Week 6 + 1 day	• Fquad
	• BCM
Week 6 + 3	CPET
days	
Week 6 + 7	 First biopsy taken from the vastus lateralis muscle at rest
days	 65% VO2_{peak} cycling for 60 minutes
	 Second muscle biopsy taken immediately after exercise
	Third muscle biopsy taken 3 hours post-exercise
	PASIPD

Figure 1. Graphical illustration of the study design overview of the HIIT protocol including pre- and post-intervention measurements.

3.4.4 Measurements

Muscle biopsy

To assess mitochondrial density in skeletal muscles of pwMS, muscle biopsies will be taken from the middle part of the vastus lateralis muscle (Bergström needle technique) of the weakest leg according to isometric muscle strength measurements, pre-exercise, directly post-exercise and three hours after exercise. During the three hour period between post-exercise measurements, subjects will remain seated, will refrain from physical exercise and will only perform light physical activities such as working on a computer, reading or watching television. During the biopsy an incision will be made under a local anaesthetic (2% lidocaine), then two small incisions will be made in the skin and overlying fascia. All muscle samples will be immediately frozen in liquid nitrogen and stored at minus 80 degrees for further analyses.

Mitochondrial density

For electron microscopy, specimens will be rinsed in 0.1 M phosphate buffer and post-fixed in the fixation buffer supplemented with 1% osmiumtetroxide for one hour, dehydrated through a graded ethanol series and embedded in epoxy resin. Appropriate locations and fibre longitudinal orientation will be evaluated in toluidine blue-stained semi-thin sections from the central region of each biopsy. Ultra-thin sections from the selected areas will be contrasted with uranyl acetate and lead citrate and viewed with an electron microscope. Using this staining protocol, mitochondria will appear as spherical round-shaped electron dense (dark grey or black) objects. Mitochondrial analysis will be based on the basic standards. Micrographs of randomly selected areas of central parts of muscle fibres will be obtained. Mitochondria will be identified based on their electron dense (dark grey or black) appearance, shape and subcellular location. These digitised micrographs will be analysed with an interactive image analysis system. Mitochondria will be outlined in an overlaying bitmap, which will be used to compute least diameter, perimeter and size (area). Subsequently, mitochondrial number will

be computed as the quantity of mitochondria in a given muscle fibre area. Mitochondrial fractional area will be computed as the percentile mitochondrial area fraction of total fibre area.^{27; 40; 41}

PGC-1 α protein expression, AMPK and P38-MAPK

PGC-1a protein expression will be investigated through immunoblotting. A 40- to 50-mg piece of frozen muscle will be added to 10 volumes of homogenizing buffer with 2 µl of protease inhibitor cocktail and homogenized on ice. The sample will be centrifuged at 13,000 rpm for five minutes, and the supernatant will be collected. The protein content of the supernatant will be determined using a bicinchoninic acid, and all samples will be subsequently diluted to a standard concentration using homogenizing buffer. Samples will be further diluted with 4µl Laemmli buffer and heated at 100°C for 5 min. For each blot, a standard and an internal control will be loaded along with 40 µl of each sample onto a 5% polyacrylamide stacking gel and will be separated using a 10% polyacrylamide separating gel of 1.5-mm thickness at 180 V with a running time of 45 minutes in Tris-glycine electrophoresis buffer. The gels will be electroblotted onto nitrocellulose membranes in transfer buffer for 90 min at 90 V at 4°C. Membranes will be incubated in Tris-buffered saline. Membranes will be incubated overnight at 4°C with primary antibodies. After incubation, the membranes will be washed and exposed to appropriate dilutions of anti-species horseradish peroxidase- conjugated secondary antibodies for one hour at room temperature. Membranes will then be rewashed before being exposed to a chemiluminescent liquid for two minutes. Membranes will be exposed using a Bio-Rad Chemi- Doc system, and band densities will be determined using image-analysis software.^{19; 26}

Body composition

Body composition will be assessed by a Dual Energy X-ray Absorptiometry scan (GE Hologic Series Delphi-A, Vilvoorde, Belgium). Fat mass, lean tissue mass and bone density will be obtained for the whole body, as well as specific regions covering the legs. Fat mass of the limbs will be calculated. Measurements will be taken at baseline and after completion of the training program at the same time of day.

CPET

Subjects will perform a cardiopulmonary exercise test on an electronically braked cycle ergometer. They will be advised to refrain from any exercise one day in advance as well as the testing day itself, and to eat only a light meal two hours prior to testing. The participants will commence cycling at 60 - 90 r.p.m. for two minutes with an intensity of 40W. Hereafter workload will gradually increase by 20W/min using a ramp protocol (1W/3 sec) until volitional exhaustion (r.p.m. < 50), RER > 1.1 and/or a plateau in VO2 despite an increase in workload. During the cardiopulmonary exercise test respiratory exchange rate will be measured. This is the ratio of carbon dioxide output/oxygen uptake (Vco2/Vo2), measured by gas exchange at the mouth.

Isometric muscle strength of the quadriceps

Consecutive to a five minutes-warming-up period and after habituation, maximal voluntary isometric muscle strength of the knee extensors (45° and 90°) will be measured using an isokinetic

dynamometer (system 3, Biodex ENRAF-NONIUS, New York, USA) in all MS patients and healthy controls. Subjects will perform two maximal isometric extensions (four seconds), separated by 30 seconds of rest. The highest isometric extension peak torque (Nm) will be selected as the maximal isometric strength. The muscle strength of the weakest leg will be reported.

Blood Pressure

Blood pressure will be measured in rest, after the DEXA scan protocol at baseline and after six weeks following training.

Physical activity level

Before and after the HIIT program, subjects will report their physical activity level by using the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD). Patients will be asked to report the amount of days and average hours in a day spent participating in 13 activities over the last seven days. Frequency responses range from 1 (never) to 4 (often), and duration responses range from 1 (less than one hour) to 4 (more than four hours). Total scores will be calculated as the product of the average hours spent in an activity daily and the metabolic equivalents (MET) summed over each item. Scores range from 0 (no activity) to over 100 MET*h/week (very high). At baseline all patients will need to be physical inactive, to be included in the study. Physical inactivity will be defined as < 30 MET*h/week.

3.5 Outcomes

Primary outcomes: PGC-1α protein expression, AMPK, p38-MAPK and mitochondrial density. Secondary outcomes: VO2_{peak}, RER, body composition, isometric muscle strength of the quadriceps muscle, blood pressure and physical activity level.

3.6 <u>Materials and methods</u>

Muscle biopsies will be obtained from the middle part of the vastus lateralis muscle of the weakest leg (dynamometry test) using the Bergström needle technique. The collected muscle tissue will be freed from connective tissue and immediately embedded in Tissue-Tek, frozen in isopentane cooled with liquid nitrogen, and stored at minus 80 degrees until analysis

3.7 Data Analysis

The data analysis will be conducted using IBM SPSS statistics 23, whereas power analysis will be performed using G*Power (80% power set, 0,5 effect size). This indicated a sample size of 20 subjects per group. Between group differences will be investigated using a two-way repeated measures ANOVA.

4. Reference list

- (*) 1. Hansen, D., Wens, I., Kosten, L., Verboven, K., & Eijnde, B. O. (2013). Slowed Exercise-Onset Vo(2) Kinetics During Submaximal Endurance Exercise in Subjects With Multiple Sclerosis. *Neurorehabil Neural Repair, 27*(1), 87-95. doi:10.1177/1545968312451916
- (*) 2. Hansen, D., Wens, I., Vandenabeele, F., Verboven, K., & Eijnde, B. O. (2015). Altered signaling for mitochondrial and myofibrillar biogenesis in skeletal muscles of patients with multiple sclerosis. *Transl Res*, *166*(1), 70-79. doi:10.1016/j.trsl.2015.01.006
- (*) 3. Kent-Braun, J. A., Ng, A. V., Castro, M., Weiner, M. W., Gelinas, D., Dudley, G. A., & Miller, R. G. (1997). Strength, skeletal muscle composition, and enzyme activity in multiple sclerosis. *J Appl Physiol (1985), 83*(6), 1998-2004.
- (*) 4. Kumleh, H. H., Riazi, G. H., Houshmand, M., Sanati, M. H., Gharagozli, K., & Shafa, M. (2006).
 Complex I deficiency in Persian multiple sclerosis patients. *J Neurol Sci, 243*(1-2), 65-69.
 doi:10.1016/j.jns.2005.11.030
- Motl, R. W., & Gosney, J. L. (2008). Effect of exercise training on quality of life in multiple sclerosis: a meta-analysis. *Mult Scler, 14*(1), 129-135. doi:10.1177/1352458507080464
- (*) 6. Wens, I., Dalgas, U., Vandenabeele, F., Grevendonk, L., Verboven, K., Hansen, D., & Eijnde, B.
 O. (2015). High Intensity Exercise in Multiple Sclerosis: Effects on Muscle Contractile Characteristics and Exercise Capacity, a Randomised Controlled Trial. *PLoS One, 10*(9). doi:10.1371/journal.pone.0133697
- (*) 7. Wens, I., Dalgas, U., Vandenabeele, F., Krekels, M., Grevendonk, L., & Eijnde, B. O. (2014). Multiple sclerosis affects skeletal muscle characteristics. *PLoS One, 9*(9), e108158. doi:10.1371/journal.pone.0108158
- Compston, A., & Coles, A. Multiple sclerosis. *The Lancet*, 372(9648), 1502-1517. doi:10.1016/S0140-6736(08)61620-7
- (*) 9. Campbell, G. R., Reeve, A. K., Ziabreva, I., Reynolds, R., Turnbull, D. M., & Mahad, D. J. (2013). No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis. *Mult Scler, 19*(14), 1858-1866. doi:10.1177/1352458513490547
- Carroll, C. C., Gallagher, P. M., Seidle, M. E., & Trappe, S. W. (2005). Skeletal muscle characteristics of people with multiple sclerosis. *Arch Phys Med Rehabil, 86*(2), 224-229. doi:10.1016/j.apmr.2004.03.035
- Jornayvaz, F. R., & Shulman, G. I. (2010). Regulation of mitochondrial biogenesis. *Essays Biochem*, 47, 69-84. doi:10.1042/bse0470069
- Lundby, C., & Jacobs, R. A. (2016). Adaptations of skeletal muscle mitochondria to exercise training. *Exp Physiol*, 101(1), 17-22. doi:10.1113/EP085319
- Puigserver, P., & Spiegelman, B. M. (2003). Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. *Endocr Rev, 24*(1), 78-90. doi:10.1210/er.2002-0012
- Dalgas, U., Ingemann-Hansen, T., & Stenager, E. (2009). Physical Exercise and MS Recommendations. Int MS J, 16(1), 5-11.

- (*) 15. Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. *J Physiol*, 586(Pt 1), 151-160. doi:10.1113/jphysiol.2007.142109
- (*) 16. Gurd, B. J., Perry, C. G. R., Heigenhauser, G. J. F., Spriet, L. L., & Bonen, A. (2010). Highintensity interval training increases SIRT1 activity in human skeletal muscle. *Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 35*(3), 350-357. doi:10.1139/h10-030
- (*) 17. Jacobs, R. A., Fluck, D., Bonne, T. C., Burgi, S., Christensen, P. M., Toigo, M., & Lundby, C. (2013). Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. *J Appl Physiol (1985), 115*(6), 785-793. doi:10.1152/japplphysiol.00445.2013
- (*) 18. Larsen, S., Danielsen, J. H., Sondergard, S. D., Sogaard, D., Vigelsoe, A., Dybboe, R., ... Helge, J. W. (2015). The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. *Scand J Med Sci Sports*, *25*(1), e59-69. doi:10.1111/sms.12252
- (*) 19. Little, J. P., Safdar, A., Bishop, D., Tarnopolsky, M. A., & Gibala, M. J. (2011). An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. *Am J Physiol Regul Integr Comp Physiol,* 300(6), R1303-1310. doi:10.1152/ajpregu.00538.2010
- (*) 20. Little, J. P., Safdar, A., Wilkin, G. P., Tarnopolsky, M. A., & Gibala, M. J. (2010). A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. *Journal of Physiology-London, 588*(6), 1011-1022. doi:10.1113/jphysiol.2009.181743
- (*) 21. Mathai, A. S., Bonen, A., Benton, C. R., Robinson, D. L., & Graham, T. E. (2008). Rapid exercise-induced changes in PGC-1alpha mRNA and protein in human skeletal muscle. J Appl Physiol (1985), 105(4), 1098-1105. doi:10.1152/japplphysiol.00847.2007
- (*) 22. Stepto, N. K., Benziane, B., Wadley, G. D., Chibalin, A. V., Canny, B. J., Eynon, N., & McConell, G. K. (2012). Short-term intensified cycle training alters acute and chronic responses of PGC1alpha and Cytochrome C oxidase IV to exercise in human skeletal muscle. *PLoS One, 7*(12), e53080. doi:10.1371/journal.pone.0053080
- (*) 23. Vincent, G., Lamon, S., Gant, N., Vincent, P. J., MacDonald, J. R., Markworth, J. E., ... Hickey, A. J. R. (2015). Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training. *Frontiers in Physiology*, 6. doi:10.3389/fphys.2015.00051
- (*) 24. Bartlett, J. D., Joo, C. H., Jeong, T.-S., Louhelainen, J., Cochran, A. J., Gibala, M. J., . . . Morton, J. P. (2012). Matched work high-intensity interval and continuous running induce similar increases in PGC-1 alpha mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. *Journal of Applied Physiology*, *112*(7), 1135-1143. doi:10.1152/japplphysiol.01040.2011

- (*) 25. Cochran, A. J., Percival, M. E., Tricarico, S., Little, J. P., Cermak, N., Gillen, J. B., . . . Gibala, M. J. (2014). Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. *Exp Physiol, 99*(5), 782-791. doi:10.1113/expphysiol.2013.077453
- (*) 26. Gibala, M. J., McGee, S. L., Garnham, A. P., Howlett, K. F., Snow, R. J., & Hargreaves, M. (2009). Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1 alpha in human skeletal muscle. *Journal of Applied Physiology*, 106(3), 929-934. doi:10.1152/japplphysiol.90880.2008
- Gosker, H. R., Hesselink, M. K., Duimel, H., Ward, K. A., & Schols, A. M. (2007). Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD. *Eur Respir J*, 30(1), 73-79. doi:10.1183/09031936.00146906
- Camera, D. M., Smiles, W. J., & Hawley, J. A. (2016). Exercise-induced skeletal muscle signaling pathways and human athletic performance. *Free Radic Biol Med.* doi:10.1016/j.freeradbiomed.2016.02.007
- 29. Chan, M. C., & Arany, Z. (2014). The many roles of PGC-1alpha in muscle--recent developments. *Metabolism, 63*(4), 441-451. doi:10.1016/j.metabol.2014.01.006
- Irrcher, I., Adhihetty, P. J., Joseph, A. M., Ljubicic, V., & Hood, D. A. (2003). Regulation of mitochondrial biogenesis in muscle by endurance exercise. *Sports Med*, 33(11), 783-793.
- Kelly, N. A., Ford, M. P., Standaert, D. G., Watts, R. L., Bickel, C. S., Moellering, D. R., . . . Bamman, M. M. (2014). Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson's disease. *J Appl Physiol* (1985), 116(5), 582-592. doi:10.1152/japplphysiol.01277.2013
- Larsen, S., Nielsen, J., Hansen, C. N., Nielsen, L. B., Wibrand, F., Stride, N., . . . Hey-Mogensen, M. (2012). Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. *J Physiol*, *590*(14), 3349-3360. doi:10.1113/jphysiol.2012.230185
- Little, J. P., Safdar, A., Benton, C. R., & Wright, D. C. (2011). Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis. *Appl Physiol Nutr Metab*, 36(5), 598-607. doi:10.1139/h11-076
- (*) 34. Fernstrom, M., Tonkonogi, M., & Sahlin, K. (2004). Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. *J Physiol*, *554*(Pt 3), 755-763. doi:10.1113/jphysiol.2003.055202
- (*) 35. Edgett, B. A., Foster, W. S., Hankinson, P. B., Simpson, C. A., Little, J. P., Graham, R. B., & Gurd, B. J. (2013). Dissociation of Increases in PGC-1 alpha and Its Regulators from Exercise Intensity and Muscle Activation Following Acute Exercise. *PLoS One, 8*(8). doi:10.1371/journal.pone.0071623
- (*) 36. Larsen, R. G., Befroy, D. E., & Kent-Braun, J. A. (2013). High-intensity interval training increases in vivo oxidative capacity with no effect on P(i)-->ATP rate in resting human muscle. *Am J Physiol Regul Integr Comp Physiol, 304*(5), R333-342. doi:10.1152/ajpregu.00409.2012

- (*) 37. Larsen, R. G., Maynard, L., & Kent, J. A. (2014). High-intensity interval training alters ATP pathway flux during maximal muscle contractions in humans. *Acta Physiologica*, *211*(1), 147-160. doi:10.1111/apha.12275
- (*) 38. Perry, C. G. R., Heigenhauser, G. J. F., Bonen, A., & Spriet, L. L. (2008). High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. *Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 33*(6), 1112-1123. doi:10.1139/h08-097
- (*) 39. Talanian, J. L., Holloway, G. P., Snook, L. A., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2010). Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. *Am J Physiol Endocrinol Metab, 299*(2), E180-188. doi:10.1152/ajpendo.00073.2010
- Elander, A., Sjostrom, M., Lundgren, F., Schersten, T., & Bylund-Fellenius, A. C. (1985). Biochemical and morphometric properties of mitochondrial populations in human muscle fibres. *Clin Sci (Lond), 69*(2), 153-164.
- Toth, M. J., Miller, M. S., Ward, K. A., & Ades, P. A. (2012). Skeletal muscle mitochondrial density, gene expression, and enzyme activities in human heart failure: minimal effects of the disease and resistance training. *J Appl Physiol (1985), 112*(11), 1864-1874. doi:10.1152/japplphysiol.01591.2011

APPENDICES

- Table 1: List of search terms used in PubMed Table 2: List of search terms used in Web of Science (WoS) Figure 1: Flowchart in- and excluded articles of pwMS Figure 2: Flowchart in- and excluded articles of healthy subjects and pathologies similar to MS Table 3: Reasons of exclusion concerning pwMS Table 4: Reasons of exclusion concerning healthy subjects and pathologies similar to MS Table 5: Cochrane checklist for randomized controlled trials Table 6: Quality assessment standard for a cross-over study Table 7: Self-made checklist for quasi experimental studies without control group Table 8: Checklist for cross-sectional studies Table 9.1: Overview included articles - type of article, subjects, used techniques and conclusion Table 9.2: Overview included articles - outcome measures and results
- Table 10: List of abbreviations
- Table 11: Individual accomplishments
- Table 12: Progress form

Table 1: List of search terms used in PubMed.

Search terms, which yielded over 250 hits, were further specified and underlined in following table. The literature study was conducted primarily in January and secondary in May as means of control. Based on literature search of January 2016, two extra search terms were added in May (#23 and #24).

	MESH-terms and keywords in PubMed	# January 2016	# May 2016
#1	"Multiple Sclerosis"[Mesh]	43511	47524
#2	"Demyelinating Diseases"[Mesh]	81577	83150
#3	"Immune System Diseases"[Mesh]	1253799	1270302
#4	"Neurodegenerative Diseases"[Mesh]	225750	230146
#5	"Mitochondria"[Mesh]	134177	136089
#6	"Mitochondria, Muscle"[Mesh]	19955	20135
#7	Mitochondrial Density	9186	9301
#8	"Mitochondrial Myopathies"[Mesh]	4262	4314
#9	"Mitochondria, Muscle/metabolism"[Mesh]	13977	14163
#10	"Mitochondria/enzymology"[Mesh]	28561	28659
#11	"Citrate (si)-Synthase"[Mesh]	3198	3236
#12	"Mitochondrial ADP, ATP Translocases"[Mesh]	1507	1519
#13	"Membrane Potential, Mitochondrial"[Mesh]	7603	7994
#14	pgc-1 alpha mitochondrial	131	131
#15	"Exercise Therapy"[Mesh]	34503	35538
#16	"Exercise"[Mesh]	133309	136818
#17	High intensity exercise	8842	9145
#18	"Muscle, Skeletal/metabolism"[Mesh]	51602	52827
#19	"Muscle, Skeletal/pathology"[Mesh]	23453	24140
#20	"Muscle, Skeletal/physiopathology"[Mesh]	28488	29150
#21	"Muscle, Skeletal"[Mesh]	220567	223771
#22	High intensity training	7113	7454
#23	"AMP-Activated Protein Kinases"[Mesh]	/	2938
#24	"p38 Mitogen-Activated Protein Kinases"[Mesh]	/	10251
#25	#1 AND #5	113	119
#26	#1 AND #6	4	4
#27	#1 AND #7	10	10
#28	#1 AND #8	8	8
#29	#1 AND #9	1	1
#30	#1 AND #10	9	9
#31	#1 AND #11	1	1
#32	#1 AND #12	0	0
#33	#1 AND #13	6	6

#34	#1 AND #14	0	0
<u>#35</u>	<u>#1 AND #15</u>	<u>291</u>	<u>302</u>
<u>#36</u>	<u>#1 AND #16</u>	<u>575</u>	<u>600</u>
#37	#1 AND #17	9	9
#38	#1 AND #18	21	20
#39	#1 AND #19	28	27
#40	#1 AND #20	194	196
<u>#41</u>	<u>#1 AND #21</u>	<u>353</u>	<u>359</u>
#42	#1 AND #22	8	9
#43	#5 AND #17	66	67
#44	#5 AND #22	46	47
#45	#7 AND #17	30	31
#46	#7 AND #22	28	28
#47	#1 AND #5 AND #16	1	1
#48	#1 AND #20 AND #16	28	28
#49	#1 AND #21 AND #16	44	45
#50	#1 AND #21 AND #5	4	4
#51	#2 OR #3 OR #4 AND #12	27	27
#52	#2 OR #3 OR #4 AND #14	9	9
#53	#2 OR #3 OR #4 AND #11	72	73
#54	#2 OR #3 OR #4 AND #5 AND #22	1	1
#55	#2 OR #3 OR #4 AND #5 AND #15	2	3
#56	#2 OR #3 OR #4 AND #5 AND #16	18	20
#57	#2 OR #3 OR #4 AND #6 AND #22	1	1
#58	#2 OR #3 OR #4 AND #6 AND #15	2	2
#59	#2 OR #3 OR #4 AND #6 AND #16	9	10
#60	#2 OR #3 OR #4 AND #7 AND #16	0	0
#61	#2 OR #3 OR #4 AND #8 AND #16	6	6
#62	#2 OR #3 OR #4 AND #9 AND #16	3	4
#63	#2 OR #3 OR #4 AND #10 AND #16	0	0
#64	#2 OR #3 OR #4 AND #13 AND #16	0	0
#65	#2 OR #3 OR #4 AND #18 AND #16	51	51
#66	#2 OR #3 OR #4 AND #19 AND #16	30	30
#67	#2 OR #3 OR #4 AND #20 AND #22	6	7
#68	#2 OR #3 OR #4 AND #20 AND #15	63	64
#69	#2 OR #3 OR #4 AND #20 AND #16	122	123
#70	#2 OR #3 OR #4 AND #21 AND #22	11	12
#71	#2 OR #3 OR #4 AND #21 AND #15	108	110
#72	#2 OR #3 OR #4 AND #21 AND #16	239	243

#73	#2 OR #3 OR #4 AND #21 AND #17	13	15
#74	#23 AND #1	/	3
<u>#75</u>	<u>#23 AND #5</u>	<u>/</u>	<u>260</u>
#76	#23 AND #6	/	30
#77	#23 AND #16	/	153
#78	#24 AND #1	/	11
<u>#79</u>	<u>#24 AND #5</u>	<u>/</u>	<u>286</u>
#80	#24 AND #6	/	10
#81	#24 AND #16	/	40

Table 2: List of search terms used in Web of Science (WoS).

Search terms, which yielded over 250 hits, were further specified and underlined in following table The literature study was conducted primarily in January and secondary in May as means of control. Based on literature search of January 2016, two extra search terms were added in May (#17 and #18).

	Keywords in WoS	# January 2016	# May 2016
#1	TOPIC: (multiple sclerosis)	95487	96124
#2	TOPIC: (demyelinating diseases)	10411	10472
#3	TOPIC: (immune system diseases)	54844	55256
#4	TOPIC: (neurodegenerative diseases)	55338	55834
#5	TOPIC: (mitochondria)	124882	125475
#6	TOPIC: (mitochondria, muscle)	12962	13023
#7	TOPIC: (mitochondrial density)	4483	4548
#8	TOPIC: (mitochondrial myopathies)	1235	1237
#9	TOPIC: (citrate synthase)	5492	5506
#10	TOPIC: (mitochondrial ADP, ATP translocases)	45	45
#11	TOPIC: (exercise therapy)	29609	29858
#12	TOPIC: (exercise)	324100	326168
#13	TOPIC: (high intensity exercise)	14614	14749
#14	TOPIC: (high intensity training)	10684	10774
#15	TOPIC: (muscle, skeletal)	171583	172181
#16	TOPIC: (peroxisome proliferator-activated receptor	1626	1657
	gamma coactivator 1-alpha)		
#17	TOPIC: (AMP-Activated Protein Kinases)	/	7278
#18	TOPIC: (p38 Mitogen-Activated Protein Kinases)	/	16538
#19	#1 AND #11	213	220
<u>#20</u>	<u>#1 AND #12</u>	<u>1286</u>	<u>1342</u>
#21	#1 AND #13	30	28
#22	#1 AND #14	35	36
#23	#1 AND #16	6	6
#24	#5 AND #13	169	171
#25	#5 AND #14	90	92
#26	#7 AND #13	32	33
#27	#7 AND #14	26	26
#28	#16 AND #13	44	45
#29	#16 AND #14	30	31
#30	#1 AND #5 AND #12	5	3
#31	#1 AND #20 AND #12	0	0
#32	#1 AND #15 AND #12	71	72

#33	#1 AND #14 AND #5	17	18
<u>#34</u>	#2 OR #3 OR #4 AND #5	<u>3541</u>	<u>3622</u>
<u>#35</u>	<u>#2 OR #3 OR #4 AND #6</u>	<u>264</u>	<u>265</u>
#36	#2 OR #3 OR #4 AND #7	136	138
#37	#2 OR #3 OR #4 AND #8	48	48
#38	#2 OR #3 OR #4 AND #10	2	2
<u>#39</u>	#2 OR #3 OR #4 AND #14	<u>1056</u>	<u>1062</u>
#40	#2 OR #3 OR #4 AND #15	23	23
#41	#2 OR #3 OR #4 AND #11	172	174
<u>#42</u>	<u>#2 OR #3 OR #4 AND #12</u>	<u>875</u>	<u>883</u>
#43	#17 AND #1	/	25
#44	#17 AND #6	/	194
<u>#45</u>	<u>#17 AND #12</u>	<u>/</u>	<u>763</u>
#46	#17 AND #13	/	60
#47	#17 AND #14	/	21
#48	#18 AND #1	/	81
#49	#18 AND #6	/	40
#50	#18 AND #12	/	151
#51	#18 AND #13	/	12
#52	#18 AND #14	/	9

Figure 1: Flowchart illustrating the literature search of this study focussing on pwMS.

Figure 2: Flowchart illustrating the literature search of this study focussing on healthy subjects and pathologies similar to MS.

Source	Title	Reason of exclusion		
MULTIPLE SCLEROSIS				
Andrews, H.E., et al.	Mitochondrial dysfunction plays a key role	No relevant		
(2005)	in progressive axonal loss in Multiple	intervention/outcomes		
	Sclerosis			
Ban, M., et al. (2008)	Investigation of the role of mitochondrial	No relevant		
	DNA in multiple sclerosis susceptibility	intervention/outcomes		
Bet, L., et al. (1994)	Multiple sclerosis and mitochondrial	No relevant		
	myopathy: an unusual combination of	intervention/outcomes		
	diseases			
Blokhin, A., et al.	Lack of mitochondrial DNA deletions in	No relevant		
(2008)	lesions of multiple sclerosis	intervention/outcomes		
Bosnak-Guclu, M.	Comparison of functional exercise	No relevant intervention		
(2012)	capacity, pulmonary function and			
	respiratory muscle strength in patients with			
	multiple sclerosis with different disability			
	levels and healthy controls			
Campbell, G.R. and	Clonal Expansion of Mitochondrial DNA	No relevant		
D.J. Mahad (2012)	Deletions and the Progression of Multiple	intervention/outcomes		
	Sclerosis			
Campbell, G.R., et al.	Mitochondrial changes within axons in	No relevant		
(2012)	multiple sclerosis: an update	intervention/outcomes		
Campbell, G.R., J.T.	The central role of mitochondria in axonal	No relevant		
Worrall, and D.J.	degeneration in multiple sclerosis	intervention/outcomes		
Mahad (2014)				
Cantalloube, S., et al.	Strength, postural and gait changes	No relevant outcomes		
(2006)	following rehabilitation in multiple			
	sclerosis: a preliminary study			
Carter, A.M., et al.	Pragmatic exercise intervention in people	No relevant outcomes		
(2013)	with mild to moderate multiple sclerosis: a			
	randomised controlled feasibility study			
Castellano, V., D.I.	Cytokine responses to acute and chronic	No relevant outcomes		
Patel, and L.J. White	exercise in multiple sclerosis			
(2008)				
Castellano, V. and	Serum brain-derived neurotrophic factor	No relevant outcomes		
L.J. White (2008)	response to aerobic exercise in multiple			
	sclerosis			
Castro, M.J., et al.	Muscle fiber type-specific myofibrillar	No relevant intervention		

Table 3: Reasons of exclusion for excluded articles concerning pwMS.

(1998)	actomyosin Ca2+ ATPase activity in	
	multiple sclerosis	
Chetta, A., et al.	Cardiorespiratory response to walk in	No relevant outcomes
(2004)	multiple sclerosis patients	
Collet J. et al (2010)	Exercise for multiple sclerosis: a single-	No relevant outcomes
	blind randomized trial comparing three	
	exercise intensities	
Dalgas, U. (2011)	Multiple Sclerosis. Exercise and Chronic	No relevant
	Disease: An Evidence-Based Approach	intervention/outcomes
Dalgas U. et al (2010)	Muscle fibre size increases following	No relevant outcomes
	resistance training in multiple sclerosis	
Dalgas, U., et al.	Neural drive increases following resistance	No relevant outcomes
(2013)	training in patients with multiple sclerosis	
Dawes, H., et al.	Delayed recovery of leg fatigue symptoms	No relevant outcomes
(2014)	following a maximal exercise session in	
	people with multiple sclerosis	
De Riccardis, L., et al.	Bioenergetics profile of CD4(+) T cells in	No relevant
(2015)	relapsing remitting multiple sclerosis	intervention/outcomes
	subjects	
Dutta, R., et al. (2006)	Mitochondrial dysfunction as a cause of	No relevant
	axonal degeneration in multiple sclerosis	intervention/outcomes
	patients	
Fimland, M.S., et al.	Enhanced neural drive after maximal	No relevant outcomes
(2010)	strength training in multiple sclerosis	
	patients	
Finsterer, J., et al.	Mimicry between mitochondrial disorder	No relevant
(2012)	and multiple sclerosis	intervention/outcomes
Fukazawa, T., et al.	Serum carnitine and disabling fatigue in	No relevant intervention
(1996)	multiple sclerosis	
Geurts, J.J. and J.	The brake on neurodegeneration:	No relevant
van Horssen (2010)	Increased mitochondrial metabolism in the	intervention/outcomes
	injured MS spinal cord	
Ghafourifar, P., et al.	Mitochondria in multiple sclerosis	No relevant
(2008)		intervention/outcomes
Giovannoni, G., et al.	The potential role of nitric oxide in multiple	No relevant
(1998)	sclerosis	intervention/outcomes
Gironi, M., et al.	The peripheral network between oxidative	No relevant
(2014)	stress and inflammation in multiple	intervention/outcomes
	sclerosis	

Gironi, M., et al.	Oxidative Stress Is Differentially Present in	No relevant
(2014)	Multiple Sclerosis Courses, Early Evident,	intervention/outcomes
	and Unrelated to Treatment	
Haider, L., et al.	Oxidative damage in multiple sclerosis	No relevant
(2011)	lesions	intervention/outcomes
Hayes, H., et al.	Effects of a high-intensity resistance	No relevant outcomes
(2008)	training program on strength, mobility and	
	fatigue in moderately severe individuals	
	with multiple sclerosis	
Hayes, H., et al.	Safety and feasibility of a high-intensity	No relevant outcomes
(2008)	resistance training program for individuals	
	with multiple sclerosis	
Hayes, H.A., E.	Effects of high-intensity resistance training	No relevant outcomes
Gappmaier, and P.C.	on strength, mobility, balance, and fatigue	
LaStayo (2011)	in individuals with multiple sclerosis: a	
	randomized controlled trial	
Hogancamp, W.E., M.	Identification of multiple sclerosis-	No relevant
Rodriguez, and B.G.	associated genes	intervention/outcomes
Weinshenker (1997)		
Hu, J., et al. (2004)	Spectral pattern of total creatine and	No relevant
	trimethyl ammonium in multiple sclerosis	intervention/outcomes
Ickmans, K., et al.	Recovery of peripheral muscle function	No relevant
(2014)	from fatiguing exercise and daily physical	intervention/outcomes
	activity level in patients with multiple	
	sclerosis: a case-control study	
Iniguez, C., et al.	Mitochondrial respiratory chain deficiency	No relevant
(1998)	may present as multiple sclerosis	intervention/outcomes
Inarrea, P., et al.	Mitochondrial complex enzyme activities	No relevant intervention
(2014)	and cytochrome C expression changes in	
	multiple sclerosis	
Kalman, B. (2006)	Role of mitochondria in multiple sclerosis	No relevant
		intervention/outcomes
Kalman, B., K.	The involvement of mitochondria in the	No relevant
Laitinen, and S.	pathogenesis of multiple sclerosis	intervention/outcomes
Komoly (2007)		
Kalman, B. and T.P.	A mitochondrial component of	No relevant
Leist (2003)	neurodegeneration in multiple sclerosis	intervention/outcomes
Kalman, B., F.D.	Mitochondrial DNA mutations in multiple	No relevant
Lublin, and H. Alder	sclerosis	intervention/outcomes
(1995)		

Kentbraun, J.A., et al.	Postexercise phosphocreatine resynthesis	No relevant intervention
(1994)	is slowed in multiple sclerosis	
Kiktenko, A.I., et al.	Structure of peripheral blood platelets	No relevant
(2005)	surface in patients with amyotrophic lateral	intervention/outcomes
	sclerosis and multiple sclerosis	
Koseoglu, B.F., et al.	Cardiopulmonary and metabolic functions,	No relevant intervention
(2006)	aerobic capacity, fatigue and quality of life	
	in patients with multiple sclerosis	
Kostic, M.S., et al.	Multiple sclerosis and oxidative stress-a	No relevant
(2013)	clinical perspective	intervention/outcomes
Krupa, M., et al.	Increased platelet extracellular vesicle	No relevant
(2015)	release and platelet mitochondrial	intervention/outcomes
	bioenergetic changes in relapsing Multiple	
	Sclerosis (MS)	
Lambert, C.P., et al.	Influence of creatine monohydrate	No relevant outcomes
(2003)	ingestion on muscle metabolites and	
	intense exercise capacity in individuals	
	with multiple sclerosis	
Larson, R.D., et al.	Lower-limb performance disparities:	No relevant
(2014)	implications for exercise prescription in	intervention/outcomes
	multiple sclerosis	
Lassmann, H. (2013)	Pathology and disease mechanisms in	No relevant
	different stages of multiple sclerosis	intervention/outcomes
Lassmann, H., J. van	Progressive multiple sclerosis: pathology	No relevant
Horssen, and D.	and pathogenesis	intervention/outcomes
Mahad (2012)		
Latimer-Cheung, A. E,	Effects of Exercise Training on Fitness,	No relevant outcomes
et al. (2013)	Mobility, Fatigue, and Health-Related	
	Quality of Life Among Adults With Multiple	
	Sclerosis	
Lu, F., et al. (2000)	Oxidative damage to mitochondrial DNA	No relevant
	and activity of mitochondrial enzymes in	intervention/outcomes
	chronic active lesions of multiple sclerosis	
Mahad, D.J., et al.	Mitochondrial defects in acute multiple	No relevant
(2008)	sclerosis lesions	intervention/outcomes
Mahad, D.J., et al.	Mitochondrial changes within axons in	No relevant
(2009)	multiple sclerosis	intervention/outcomes
Malagoni, A.M., et al.	Muscle oxygen consumption by NIRS and	No relevant
(2013)	mobility in multiple sclerosis patients	intervention/outcomes
Malin, S.K., N.	Effect of creatine supplementation on	No relevant intervention

Cotugna, and C.S.	muscle capacity in individuals with multiple	
Fang (2008)	sclerosis	
Mao, P. and P.H.	Is multiple sclerosis a mitochondrial	No relevant
Reddy (2010)	disease?	intervention/outcomes
McLoughlin, J.V., et	Six minutes of walking leads to reduced	No relevant intervention
al. (2014)	lower limb strength and increased postural	
	sway in people with Multiple Sclerosis	
Medina-Perez, C., et	Effects of a resistance training program	No relevant outcomes
al. (2014)	and subsequent detraining on muscle	
	strength and muscle power in multiple	
	sclerosis patients	
Nedeljkovic, U., et al.	Endurance and resistance training in	No relevant outcomes
(2014)	rehabilitation of patients with multiple	
	sclerosis	
Newman, M.A., et al.	Can aerobic treadmill training reduce the	No relevant outcomes
(2007)	effort of walking and fatigue in people with	
	multiple sclerosis: a pilot study	
Ng, A.V., et al. (2004)	Functional relationships of central and	No relevant
	peripheral muscle alterations in multiple	intervention/outcomes
	sclerosis	
Otaegui, D., et al.	UCP2 and mitochondrial haplogroups as a	No relevant
Otaegui, D., et al. (2007)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor	No relevant intervention/outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al.	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill	No relevant intervention/outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of	No relevant intervention/outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot	No relevant intervention/outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study	No relevant intervention/outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi,	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations;	No relevant intervention/outcomes No relevant outcomes No relevant
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014) Rietberg, M.B., et al.	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis Do Patients With Multiple Sclerosis Show	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014) Rietberg, M.B., et al. (2014)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis Do Patients With Multiple Sclerosis Show Different Daily Physical Activity Patterns	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014) Rietberg, M.B., et al. (2014)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis Do Patients With Multiple Sclerosis Show Different Daily Physical Activity Patterns From Healthy Individuals?	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014) Rietberg, M.B., et al. (2014) Robineau, S., et al.	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis Do Patients With Multiple Sclerosis Show Different Daily Physical Activity Patterns From Healthy Individuals? Eccentric isokinetic strengthening in	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes No relevant outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014) Rietberg, M.B., et al. (2014) Robineau, S., et al. (2005)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis Do Patients With Multiple Sclerosis Show Different Daily Physical Activity Patterns From Healthy Individuals? Eccentric isokinetic strengthening in hamstrings of patients with multiple	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014) Rietberg, M.B., et al. (2014) Robineau, S., et al. (2005)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis Do Patients With Multiple Sclerosis Show Different Daily Physical Activity Patterns From Healthy Individuals? Eccentric isokinetic strengthening in hamstrings of patients with multiple sclerosis	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014) Rietberg, M.B., et al. (2014) Robineau, S., et al. (2005) Romberg, A., et al.	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis Do Patients With Multiple Sclerosis Show Different Daily Physical Activity Patterns From Healthy Individuals? Eccentric isokinetic strengthening in hamstrings of patients with multiple sclerosis Exercise capacity, disability and leisure	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes No relevant outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014) Rietberg, M.B., et al. (2014) Robineau, S., et al. (2005) Romberg, A., et al. (2004)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis Do Patients With Multiple Sclerosis Show Different Daily Physical Activity Patterns From Healthy Individuals? Eccentric isokinetic strengthening in hamstrings of patients with multiple sclerosis Exercise capacity, disability and leisure physical activity of subjects with multiple	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes No relevant outcomes No relevant outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014) Rietberg, M.B., et al. (2014) Robineau, S., et al. (2005) Romberg, A., et al. (2004)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis Do Patients With Multiple Sclerosis Show Different Daily Physical Activity Patterns From Healthy Individuals? Eccentric isokinetic strengthening in hamstrings of patients with multiple sclerosis Exercise capacity, disability and leisure physical activity of subjects with multiple sclerosis	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes No relevant outcomes No relevant outcomes No relevant intervention/outcomes
Otaegui, D., et al. (2007) Pilutti, L.A., et al. (2011) Poursadegh Zonouzi, A., et al. (2014) Rietberg, M.B., et al. (2014) Robineau, S., et al. (2005) Romberg, A., et al. (2004) Savci, S., et al. (2005)	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis Do Patients With Multiple Sclerosis Show Different Daily Physical Activity Patterns From Healthy Individuals? Eccentric isokinetic strengthening in hamstrings of patients with multiple sclerosis Exercise capacity, disability and leisure physical activity of subjects with multiple sclerosis	No relevant intervention/outcomes No relevant outcomes No relevant intervention/outcomes No relevant outcomes No relevant outcomes No relevant intervention/outcomes No relevant outcomes

	sclerosis	
Sawcer, S., P.N.	The genetic analysis of multiple sclerosis	No relevant
Goodfellow, and A.		intervention/outcomes
Compston (1997)		
Skjerbaek, A.G., et al.	Endurance training is feasible in severely	No relevant outcomes
(2014)	disabled patients with progressive multiple	
	sclerosis	
Slee, M., et al. (2011)	A novel mitochondrial DNA deletion	No relevant
	producing progressive external	intervention/outcomes
	ophthalmoplegia associated with multiple	
	sclerosis	
Straudi, S., et al.	A task-oriented circuit training in multiple	No relevant outcomes
(2014)	sclerosis: a feasibility study	
Su, K.G., et al. (2009)	Axonal degeneration in multiple sclerosis:	No relevant
	the mitochondrial hypothesis	intervention/outcomes
Szolnoki, Z. (2010)	Common genetic variants of the	No relevant
	mitochondrial trafficking system and	intervention/outcomes
	mitochondrial uncoupling proteins affect	
	the development of two slowly developing	
	demyelinating disorders, leukoaraiosis and	
	multiple sclerosis	
Szolnoki, Z., et al.	A homozygous genetic variant of	No relevant
(2009)	mitochondrial uncoupling protein 4 exerts	intervention/outcomes
	protection against the occurrence of	
	multiple sclerosis	
Taylor, R.W., et al.	A novel mitochondrial DNA point mutation	No relevant
(1998)	in the tRNA(IIe) gene: studies in a patient	intervention/outcomes
	presenting with chronic progressive	
	external ophthalmoplegia and multiple	
	sclerosis	
van Horssen, J., M.E.	The role of mitochondria in axonal	No relevant
Witte, and O.	degeneration and tissue repair in MS	intervention/outcomes
Ciccarelli (2012)		
Vyshkina, T., et al.	Genetic variants of Complex I in multiple	No relevant
(2005)	sclerosis	intervention/outcomes
Wens, I., et al. (2015)	High intensity training may reverse the	No full text available
	fibre type specific decline in myogenic	
	stem cells in multiple sclerosis patients	
Wens, I., et al., (2013)	Impact of high intensity exercise on	No full text available
	endurance capacity, muscle strength and	

	glucose tolerance in multiple sclerosis	
Witte, M.E., et al.	Mitochondrial dysfunction contributes to	No relevant
(2014)	neurodegeneration in multiple sclerosis	intervention/outcomes
Witte, M.E., et al.	Reduced expression of PGC-1alpha partly	No relevant
(2013)	underlies mitochondrial changes and	intervention/outcomes
	correlates with neuronal loss in multiple	
	sclerosis cortex	
Witte, M.E., et al.	Enhanced number and activity of	No relevant
(2009)	mitochondria in multiple sclerosis lesions	intervention/outcomes
Zambonin, J.L., et al.	Increased mitochondrial content in	No relevant
(2011)	remyelinated axons: implications for	intervention/outcomes
	multiple sclerosis	

Table 4: Reasons of exclusion for excluded articles concerning healthysubjects and pathologies similar to MS.

Source	Title	Reason of exclusion	
Healthy subjects			
Barsukova, A.G., D.	Mitochondrial calcium and its regulation in	No relevant	
Bourdette, and M.	neurodegeneration induced by oxidative	intervention/outcomes	
Forte (2011)	stress		
Bartlett, J.D., et al.	High-intensity interval running is perceived to	No relevant outcomes	
(2011)	be more enjoyable than moderate-intensity		
	continuous exercise: Implications for exercise		
	adherence		
Bengtsson, J., et al.	Mitochondrial transcription factor A and	No relevant outcomes	
(2001)	respiratory complex IV increase in response to		
	exercise training in humans		
Bilberg, A., M.	Moderately intensive exercise in a temperate	No relevant	
Ahlmen, and K.	pool for patients with rheumatoid arthritis: a	outcomes/population	
Mannerkorpi (2005)	randomized controlled study		
Bishop, D.J., C.	Can we optimise the exercise training	No relevant	
Granata, and N.	prescription to maximise improvements in	intervention/outcomes	
Eynon (2014)	mitochondria function and content?		
Campbell, G.R. and	Mitochondrial changes associated with	No relevant	
D.J. Mahad (2012)	demyelination: consequences for axonal	intervention/outcomes	
	integrity		
Cettolo, V., et al.	Mitochondrial coupling in humans:	No relevant	
(2007)	assessment of the P/O2 ratio at the onset of	intervention/outcomes	
	calf exercise		
Chiu, S.Y. (2001)	Matching Mitochondria to Metabolic Needs at	No relevant	
	Nodes of Ranvier	intervention/outcomes	
Ciolac, E.G. (2012)	High-intensity interval training and	No relevant outcomes	
	hypertension: maximizing the benefits of		
	exercise?		
Ciolac, E.G., et al.	Effects of high-intensity aerobic interval	No relevant outcomes	
(2010)	training vs. moderate exercise on		
	hemodynamic, metabolic and neuro-humoral		
	abnormalities of young normotensive women		
	at high familial risk for hypertension		
Cobley, J. N.,	PGC-1alpha transcriptional response and	No relevant outcomes	
Bartlett, J. D., et al.	mitochondrial adaptation to acute exercise is		
(2012).	maintained in skeletal muscle of sedentary		

	elderly males	
Da Cruz, S., et al.	Elevated PGC-1 alpha Activity Sustains	No relevant population
(2012)	Mitochondrial Biogenesis and Muscle	
	Function without Extending Survival in a	
	Mouse Model of Inherited ALS	
Daussin, F.N., et al.	Training at high exercise intensity promotes	No relevant outcomes
(2008)	qualitative adaptations of mitochondrial	
	function in human skeletal muscle	
Dibble, L.E., et al.	High-intensity resistance training amplifies	No relevant outcomes
(2006)	muscle hypertrophy and functional gains in	
	persons with Parkinson's disease	
Edge, J., et al.	Altering the rest interval during high-intensity	No relevant outcomes
(2013)	interval training does not affect muscle or	
	performance adaptations	
Egan, B., et al.	Exercise intensity-dependent regulation of	No relevant intervention
(2010)	peroxisome proliferator-activated receptor.	
	coactivator-1 alpha mRNA abundance is	
	associated with differential activation of	
	upstream signalling kinases in human skeletal	
	muscle	
Errea, O., et al.	The disruption of mitochondrial axonal	No relevant
(2015)	transport is an early event in	intervention/outcomes
(2015)	transport is an early event in neuroinflammation	intervention/outcomes
(2015) Fang, C., D.	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport:	intervention/outcomes No relevant
(2015) Fang, C., D. Bourdette, and G.	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases	intervention/outcomes No relevant intervention/outcomes
(2015) Fang, C., D. Bourdette, and G. Banker (2012)	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases	intervention/outcomes No relevant intervention/outcomes
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M.	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training	intervention/outcomes No relevant intervention/outcomes No relevant outcomes
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A.	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics	intervention/outcomes No relevant intervention/outcomes No relevant outcomes
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A. Meyer (2008)	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in	intervention/outcomes No relevant intervention/outcomes No relevant outcomes
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A. Meyer (2008)	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans	intervention/outcomes No relevant intervention/outcomes No relevant outcomes
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A. Meyer (2008) Gerhart-Hines, Z., et	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans Metabolic control of muscle mitochondrial	intervention/outcomes No relevant intervention/outcomes No relevant outcomes No relevant intervention
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A. Meyer (2008) Gerhart-Hines, Z., et al. (2007)	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans Metabolic control of muscle mitochondrial function and fatty acid oxidation through	intervention/outcomes No relevant intervention/outcomes No relevant outcomes No relevant intervention
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A. Meyer (2008) Gerhart-Hines, Z., et al. (2007)	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha	intervention/outcomes No relevant intervention/outcomes No relevant outcomes No relevant intervention
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A. Meyer (2008) Gerhart-Hines, Z., et al. (2007) Ghiasi, P., et al.	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha Mitochondrial complex I deficiency and	intervention/outcomes No relevant intervention/outcomes No relevant outcomes No relevant intervention No relevant population
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A. Meyer (2008) Gerhart-Hines, Z., et al. (2007) Ghiasi, P., et al. (2012)	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic	intervention/outcomes No relevant intervention/outcomes No relevant outcomes No relevant intervention No relevant population
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A. Meyer (2008) Gerhart-Hines, Z., et al. (2007) Ghiasi, P., et al. (2012)	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients	intervention/outcomes No relevant intervention/outcomes No relevant outcomes No relevant intervention No relevant population
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A. Meyer (2008) Gerhart-Hines, Z., et al. (2007) Ghiasi, P., et al. (2012) Gibala, M. (2009)	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients Molecular responses to high-intensity interval	intervention/outcomes No relevant intervention/outcomes No relevant outcomes No relevant intervention No relevant population No relevant outcomes
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A. Meyer (2008) Gerhart-Hines, Z., et al. (2007) Ghiasi, P., et al. (2012) Gibala, M. (2009)	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients Molecular responses to high-intensity interval exercise	intervention/outcomes No relevant intervention/outcomes No relevant outcomes No relevant intervention No relevant population No relevant outcomes
(2015) Fang, C., D. Bourdette, and G. Banker (2012) Forbes, S.C., J.M. Slade, and R.A. Meyer (2008) Gerhart-Hines, Z., et al. (2007) Ghiasi, P., et al. (2012) Gibala, M. (2009) Gibala, M.J. and	transport is an early event in neuroinflammation Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients Molecular responses to high-intensity interval exercise Metabolic adaptations to short-term high-	intervention/outcomes No relevant intervention/outcomes No relevant outcomes No relevant intervention No relevant population No relevant outcomes No relevant outcomes

	of gain?	
Granata, C., et al.	Training intensity modulates changes in PGC-	Full text unavailable
(2016)	1 alpha and p53 protein content and	
	mitochondrial respiration, but not markers of	
	mitochondrial content in human skeletal	
	muscle	
Harmer, A.R., et al.	Sprint training increases muscle oxidative	No relevant population
(2008)	metabolism during high-intensity exercise in	
	patients with type 1 diabetes	
Harmer, A.R., et al.	Effects of type 1 diabetes, sprint training and	No relevant population
(2014)	sex on skeletal muscle sarcoplasmic reticulum	
	Ca2+ uptake and Ca2+-ATPase activity	
Hogan, V., et al.	Increase in Mitochondrial Density Within	No relevant population
(2009)	Axons and Supporting Cells in Response to	
	Demyelination in the Plp1 Mouse Model	
Hood, M. S., et al.	Low-volume interval training improves muscle	Full text unavailable
(2011)	oxidative capacity in sedentary adults	
Jacobs, R. A., et al.	Improvements in exercise performance with	No relevant outcomes
(2013). J Appl	high-intensity interval training coincide with an	
Physiol (1985)	increase in skeletal muscle mitochondrial	
	content and function	
Kelly, N.A., et al.	Novel, high-intensity exercise prescription	No relevant population
(2014)	improves muscle mass, mitochondrial	
	function, and physical capacity in individuals	
	with Parkinson's disease	
Kilpatrick, M.W., et	Impact of High-Intensity Interval Duration on	No relevant outcomes
al. (2015)	Perceived Exertion. Medicine and Science in	
	Sports and Exercise	
Kiryu-Seo, S., et al.	Demyelination Increases Axonal Stationary	No relevant
(2010)	Mitochondrial Size and the Speed of Axonal	intervention/outcomes
	Mitochondrial Transport	
Larsen, S., et al.	Biomarkers of mitochondrial content in	No relevant intervention
(2012)	skeletal muscle of healthy young human	
	subjects	
Lemmey, A.B., et al.	Effects of high-intensity resistance training in	No relevant population
(2009)	patients with rheumatoid arthritis: a	
	randomized controlled trial	
Lemmey, A.B., et al.	Are the benefits of a high-intensity progressive	No relevant population
(2012)	resistance training program sustained in	
	rheumatoid arthritis patients? A 3-year	

	followup study	
Little, J.P., et al.	Low-volume high-intensity interval training	No relevant population
(2011)	reduces hyperglycemia and increases muscle	
	mitochondrial capacity in patients with type 2	
	diabetes	
MacKenzie, J.A.	Mitochondrial protein import and human	No relevant intervention
and R.M. Payne	health and disease	
(2007)		
Marques-Aleixo, I.,	Physical exercise as a possible strategy for	No relevant
et al. (2012)	brain protection: evidence from mitochondrial-	intervention/outcomes
	mediated mechanisms	
Morris, G. and M.	The many roads to mitochondrial dysfunction	No relevant
Berk (2015)	in neuroimmune and neuropsychiatric	intervention/outcomes
	disorders	
Ohno, N., et al.	Mitochondrial immobilization mediated by	No relevant
(2014)	syntaphilin facilitates survival of demyelinated	intervention/outcomes
	axons	
Palomo, G.M. and	Exploring new pathways of neurodegeneration	No relevant
G. Manfredi (2015)	in ALS: The role of mitochondria quality	intervention/outcomes/populati
	control	on
Picard, M., R.T.	Mitochondrial functional specialization in	No relevant
Hepple, and Y.	glycolytic and oxidative muscle fibers: tailoring	intervention/outcomes
Burelle (2012)	the organelle for optimal function	
Psilander, N., et al.	Mitochondrial gene expression in elite cyclists:	No relevant population
(2010)	effects of high-intensity interval exercise	
Rasmussen, U.F., et	The effect of high-intensity exhaustive	No relevant outcomes
al. (2001)	exercise studied in isolated mitochondria from	
	human skeletal muscle	
Rezaee, A.R., et al.	Mitochondrial and nuclear genes as the cause	No relevant
(2013)	of complex I deficiency	intervention/outcomes
Rose, M.H., et al.	Effects of training and weight support on	No relevant
(2013)	muscle activation in Parkinson's disease	outcomes/population
Ryan, T.E., J.T.	A comparison of exercise type and intensity	No relevant outcomes
Brizendine, and K.K.	on the noninvasive assessment of skeletal	
McCully (2013)	muscle mitochondrial function using near-	
	infrared spectroscopy	
Safdar, A., et al.	Exercise Increases Mitochondrial PGC-1	No relevant intervention
(2011)	alpha Content and Promotes Nuclear-	
	Mitochondrial Cross-talk to Coordinate	
	Mitochondrial Biogenesis	

Saft, C., et al.	Mitochondrial impairment in patients and	No relevant population
(2005)	asymptomatic mutation carriers of	
	Huntington's disease	
Sahlin, K., et al.	The potential for mitochondrial fat oxidation in	No relevant outcomes
(2007)	human skeletal muscle influences whole body	
	fat oxidation during low-intensity exercise	
Sahlin, K., et al.	Ultraendurance exercise increases the	No relevant outcomes
(2010)	production of reactive oxygen species in	
	isolated mitochondria from human skeletal	
	muscle	
Schoenfeld, R., et	Oligodendroglial differentiation induces	No relevant
al. (2010)	mitochondrial genes and inhibition of	intervention/outcomes
	mitochondrial function represses	
	oligodendroglial differentiation	
Simoneau, J.A., et	Human skeletal muscle fiber type alteration	No relevant outcomes
al. (1985)	with high-intensity intermittent training	
Tadaishi, M., et al.	Skeletal muscle-specific expression of PGC-	No relevant intervention
(2011)	1alpha-b, an exercise-responsive isoform,	
	increases exercise capacity and peak oxygen	
	uptake	
Toledo, F.G. and	The role of weight loss and exercise in	No relevant
B.H. Goodpaster	correcting skeletal muscle mitochondrial	intervention/population
(2013)	abnormalities in obesity, diabetes and aging	
Tollback, A., et al.	Effects of high resistance training in patients	No relevant
(1999)	with myotonic dystrophy	intervention/outcomes/
		population
Tonkonogi, M., et al.	Mitochondrial function and antioxidative	No relevant outcomes
(2000)	defence in human muscle: effects of	
	endurance training and oxidative stress	
Tonkonogi, M., et al.	Mitochondrial function in human skeletal	No relevant outcomes
(1999)	muscle is not impaired by high intensity	
	exercise	
Tuan, T.C., et al.	Deleterious effects of short-term, high-	No relevant outcomes
(2008)	intensity exercise on immune function:	
	evidence from leucocyte mitochondrial	
	alterations and apoptosis	
Tucker, W.J. (2015)	Physiological responses to high-intensity	No relevant outcomes
	interval exercise differing in interval duration	
Vielhaber, S., et al.	Mitochondrial DNA abnormalities in skeletal	No relevant
(2000)	muscle of patients with sporadic amyotrophic	intervention/population
	lateral sclerosis	
-------------------------	--	--------------------------
Walsh, B., et al.	The role of phosphorylcreatine and creatine in	No relevant intervention
(2001)	the regulation of mitochondrial respiration in	
	human skeletal muscle	
Wright, D.C., et al.	Exercise-induced mitochondrial biogenesis	No relevant intervention
(2007	begins before the increase in muscle PGC-1	
	alpha expression	
Yan, Z., et al. (2011)	Regulation of exercise-induced fiber type	No relevant intervention
	transformation, mitochondrial biogenesis, and	
	angiogenesis in skeletal muscle	
Zambonin, J., et al.	Identification and investigation of mitochondria	No relevant intervention
(2010)	lacking cytochrome c oxidase activity in axons	
Zhang, C.L., et al.	Activity-Dependent Regulation of	No relevant
(2010)	Mitochondrial Motility by Calcium and Na/K-	intervention/outcomes
	ATPase at Nodes of Ranvier of Myelinated	
	Nerves	
Zoll, J., et al. (2002)	Physical activity changes the regulation of	No relevant
	mitochondrial respiration in human skeletal	intervention/outcomes
	muscle	

Table 5: Quality assessment: Cochrane checklist for randomized controlled trials

Criteria:

- 1. Random allocation? (selection bias)
- 2. Allocation concealment? (selection bias)
- 3. Blinding of participants (performance bias)
- 4. Blinding of personnel (performance bias)
- 5. Blinding of outcome assessment (detection bias) (patient-reported outcomes)
- 6. Baseline characteristics different between groups? (selection bias)
- 7. Sufficient proportion of follow up of participants (attrition bias)
- 8. All participants analysed in the allocated group? (attrition bias)
- 9. All groups are treated the same despite the intervention?
- 10. Conclusion: are results valid and applicable?

Author	Criterion 1	Criterion 2	Criterion 3	Criterion 4	Criterion 5	Criterion 6	Criterion 7	Criterion 8	Criterion 9	Criterion 10	Score
Burgomaster , K. A., et al. (2008)	No	No	No	No	?	No	Yes	Yes	Yes	Yes	4/10
Fernstrom, M., et al. (2004)	?	?	No	No	?	No	Yes	Yes	Yes	Yes	5/10
Wens I., et al. (2015)	Yes	Yes	No	No	?	No	Yes	Yes	Yes and No	Yes	5-6/10

Yes and No: one sedentary control group with no intervention and 2 groups with 2 different interventions

Table 6: Quality assessment standard for a cross-over study

Matched work high-intensity interval and continuous running induce similar increases in PGC-1 α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle

JD. Bartlett, CH. Joo, T-S. Jeong, J Louhelainen, AJ. Cochran, MJ. Gibala, W Gregson, GL. Close, B Drust, JP. Morton

Item	Description	Scoring	score
1. Appropriate cross-over design	Three points are considered: (1) the condition of the patients should be chronic and stable; (2) the intervention should not provide permanent change, but rather temporary relief; (3) the effect of the first intervention should not last into the second treatment period.	Low: all the three points are absolutely correct; Unclear: it hard to judge because some information was missing or ambiguous; High: one or more points are incorrect.	UNCLEAR
2. Randomized treatment order	The order of receiving treatments should be randomized adequately.	Low: the method is appropriate and clearly described; Unclear: it is described as "randomized", but it is hard to judge whether the implementation was adequate because some information (method, etc.) was not provided; High: the method is inappropriate, or no randomization is applied.	UNCLEAR
3. Carry-over effect	The authors should evaluate the carry- over effect and provide relevant information clearly.	Low: carry-over effect was evaluated and the results showed no carry-over effect; Unclear: carry-over effect was not evaluated, and it is hard for evaluators to judge;	UNCLEAR

4. Unbiased data	That only first-period data are available is considered a risk of bias.	High: carry-over effect was evaluated and the results showed apparent carry-over effect, or indicated evidently from some other provided information. Low: data for every period are provided; Unclear: data are unavailable for part of outcomes, or only analytical	т
		judge whether the results are 66nalysed based only on data from the first-period or every period. High: only first-period data are available.	Ŧ
5. Allocation concealment	The study should apply appropriate approaches to ensure the allocation sequence is concealed.	Low: allocation sequence was concealed adequately by appropriate methods; Unclear: concealment approaches were not described, or relevant information was ambiguous; High: no approaches to allocation concealment were used, or concealed inadequately.	UNCLEAR
6. Blinding	The study should apply a proper blinding method to prevent performance and detection bias. Those involved in blinding (participants, doctors, measurers, or analysts) depends on the particularity of the	Low: appropriate blinding method was applied; No blinding, but the outcome and the outcome measurement are not likely to be influenced by lack of blinding; Unclear: relevant information was not provided;	ΓΟΜ

7	studies.	High: no blinding method was applied, or applied incorrectly, or ineffectively, which very likely affected the outcome.	
7. Incomplete outcome data	rne authors should provide relevant information about the completeness of outcome data, including the level of incompleteness, reasons, and analytic method to tooldo theore	Low: no missing outcome data, or the reason is acceptable, or missing outcome data were appropriate 67nalysed; Unclear: it is hard to judge because some information was not provided;	NOT
	data shortcomings, etc.	High: missing outcome data existed and the reasons were unacceptable, and the analytic method was inappropriate.	
8. Selective outcome reporting	The authors should report all the outcomes fully. Selective reporting of part of outcomes or data for an outcome or subsets of the data or analyses using the same data and etc. should be avoided.	Low: fully reported; Unclear: it is hard to judge due to the unavailability of some original information; High: the reports of the study suggest a high risk of selective outcome reporting.	MOT
9. Other bias	Any other potential risk of bias that may affect the quality of cross-over studies.	Low: the study is apparently free of other problems; Unclear: whether certain problems existed and led to a risk of bias is uncertain; High: high risk of bias existed due to evident problems.	UNCLEAR

NOTE: the standard was summarized from the Cochrane Collaboration's tool for assessing risk of bias and the Cochrane handbook's suggestions for assessing risk of bias in cross-over studies. The assessment of some items, especially items 5–8, are almost the same as that described in Cochrane Collaboration's tool for assessing the risk of bias.

Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations (study 1: acute investigation)

AJ.R. Cochran, ME. Percival, S Tricarico, JP. Little, N Cermak, JB. Gillen, MA. Tarnopolsky, MJ. Gibala

Item	Description	Scoring	score
1. Appropriate cross-over design	Three points are considered: (1) the condition of the patients should be chronic and stable; (2) the intervention should not provide permanent change, but rather temporary relief; (3) the effect of the first intervention should not last into the second treatment period	Low: all the three points are absolutely correct; Unclear: it hard to judge because some information was missing or ambiguous; High: one or more points are incorrect.	HIGH
2. Randomized treatment order	The order of receiving treatments should be randomized adequately.	Low: the method is appropriate and clearly described; Unclear: it is described as "randomized", but it is hard to judge whether the implementation was adequate because some information (method, etc.) was not provided; High: the method is inappropriate, or no randomization is applied.	HIGH
3. Carry-over effect	The authors should evaluate the carry- over effect and provide relevant information clearly.	Low: carry-over effect was evaluated and the results showed no carry-over effect; Unclear: carry-over effect was not evaluated, and it is hard for evaluators to judge; High: carry-over effect was evaluated and the results showed	UNCLEAR

		apparent carry-over effect, or indicated evidently from some other provided information.	
4. Unbiased data	That only first-period data are available is considered a risk of bias.	Low: data for every period are provided; Unclear: data are unavailable for part of outcomes, or only analytical results are provided and it is hard to judge whether the results are 69nalysed based only on data from the first-period or every period. High: only first-period data are available.	ΓΟΜ
5. Allocation concealment	The study should apply appropriate approaches to ensure the allocation sequence is concealed.	Low: allocation sequence was concealed adequately by appropriate methods; Unclear: concealment approaches were not described, or relevant information was ambiguous; High: no approaches to allocation concealment were used, or	НСН
6. Blinding	The study should apply a proper blinding method to prevent performance and detection bias. Those involved in blinding (participants, doctors, measurers, or analysts) depends on the particularity of the studies.	Low: appropriate blinding method was applied; No blinding, but the outcome and the outcome measurement are not likely to be influenced by lack of blinding; Unclear: relevant information was not provided; High: no blinding method was applied, or applied incorrectly, or ineffectively, which very likely affected the outcome.	ΓOW

7. Incomplete outcome data	The authors should provide relevant information about the completeness of outcome data, including the level of incompleteness, reasons, and analytic method to tackle these data shortcomings, etc.	Low: no missing outcome data, or the reason is acceptable, or missing outcome data were appropriate 70nalysed; Unclear: it is hard to judge because some information was not provided; High: missing outcome data existed and the reasons were unacceptable, and the analytic method was inappropriate.	LOW
8. Selective outcome reporting	The authors should report all the outcomes fully. Selective reporting of part of outcomes or data for an outcome or subsets of the data or analyses using the same data and etc. should be avoided.	Low: fully reported; Unclear: it is hard to judge due to the unavailability of some original information; High: the reports of the study suggest a high risk of selective outcome reporting.	LOW
9. Other bias	Any other potential risk of bias that may affect the quality of cross-over studies.	Low: the study is apparently free of other problems; Unclear: whether certain problems existed and led to a risk of bias is uncertain; High: high risk of bias existed due to evident problems.	UNCLEAR

Rapid exercise-induced changes in PGC-1α mRNA and protein in human skeletal muscle *Anila S. Mathai, Arend Bonen, Carley R. Benton, D. L. Robinson, and Terry E. Graham*

Item	Description	Scoring	score
1. Appropriate cross-over design	Three points are considered: (1) the condition of the patients should be chronic and stable; (2) the intervention should not provide permanent change, but rather temporary relief; (3)	Low: all the three points are absolutely correct; Unclear: it hard to judge because some information was missing or ambiguous;	POW
	the effect of the first intervention should not last into the second treatment period	incorrect.	
2. Randomized treatment order	The order of receiving treatments should be randomized adequately.	Low: the method is appropriate and clearly described; Unclear: it is described as "randomized", but it is hard to judge whether the implementation was adequate because some information (method, etc.) was not provided; High: the method is inappropriate, or no randomization is applied.	row
3. Carry-over effect	The authors should evaluate the carry- over effect and provide relevant information clearly.	Low: carry-over effect was evaluated and the results showed no carry-over effect; Unclear: carry-over effect was not evaluated, and it is hard for evaluators to judge; High: carry-over effect was evaluated and the results showed apparent carry-over effect, or indicated evidently from some other	UNCLEAR

		provided information.		
4. Unbiased data	That only first-period data are available is considered a risk of	Low: data for every period are provided;		
	bias.	Unclear: data are unavailable for		
		part of outcomes, or only analytical		
		results are provided and it is hard to	MO	
		judge whether the results are		
		72nalysed based only on data from		
		the first-period or every period.		
		High: only first-period data are		
	T	available.		
5. Allocation concealment	The study should apply appropriate approaches to ensure	Low: allocation sequence was concealed adequately by appropriate methods;		
	sequence is	Unclear: concealment approaches	CLEAR	
	concealed.	were not described, or relevant		
		information was ambiguous;	NN	
		High: no approaches to allocation		
		concealment were used, or		
		concealed inadequately.		
6. Blinding	The study should	Low: appropriate blinding method		
	method to prevent	was applied; No blinding, but the		
	performance and	outcome and the outcome		
	detection bias. Those	measurement are not likely to be		
	involved in blinding	influenced by lack of blinding;	AR	
	(participants, doctors,	Unclear: relevant information was	ICLE	
r á	measurers, or	not provided;	۲ ۲	
	analysts) depends on	High: no blinding method was		
	studies	applied, or applied incorrectly, or		
		ineffectively, which very likely		
		affected the outcome.		

7. Incomplete outcome data	The authors should provide relevant information about the completeness of outcome data, including the level of incompleteness, reasons, and analytic method to tackle these data shortcomings, etc.	Low: no missing outcome data, or the reason is acceptable, or missing outcome data were appropriate 73nalysed; Unclear: it is hard to judge because some information was not provided; High: missing outcome data existed and the reasons were unacceptable, and the analytic method was inappropriate.	row
8. Selective outcome reporting	The authors should report all the outcomes fully. Selective reporting of part of outcomes or data for an outcome or subsets of the data or analyses using the same data and etc. should be avoided.	Low: fully reported; Unclear: it is hard to judge due to the unavailability of some original information; High: the reports of the study suggest a high risk of selective outcome reporting.	NOT
9. Other bias	Any other potential risk of bias that may affect the quality of cross-over studies.	Low: the study is apparently free of other problems; Unclear: whether certain problems existed and led to a risk of bias is uncertain; High: high risk of bias existed due to evident problems.	UNCLEAR

Table 7: Quality assessment: quasi experimental studies without controlgroup: Self-made checklist (based on Downs and Black checklist 1998)

Criteria:

- 1. Is the hypothesis/aim/objective of the study clearly described?
- 2. Are the main outcomes to be measured clearly described in the introduction or methods section?
- 3. Are the characteristics of the individuals included in the study clearly described?
- 4. Are the interventions of interest clearly described?
- 5. Are the distribution of principal confounders in each group of subjects to be compared clearly described?
- 6. Are the main findings of the study clearly described?
- 7. Does the study provide estimates of the random variability in the data for the main outcomes?
- 8. Have all important adverse events that may be a consequence of the intervention been reported?
- 9. Have the characteristics of patients lost to follow-up been described?
- 10. Have actual probability values been reported (e.g. 0.035 rather than <0.05) for the main outcomes except where the probability value is less than 0.001?
- 11. Were the subjects asked to participate in the study representative of the entire population from which they were recruited?
- 12. Were those subjects who were prepared to participate representative of the entire population from which they were recruited?
- 13. Were the staff, places, and facilities where the patients were treated, representative of the treatment the majority of patients receive?
- 14. Was an attempt made to blind study subjects to the intervention they have received?
- 15. Was an attempt made to blind those measuring the main outcomes of the intervention?
- 16. In trials and cohort studies, do the analyses adjust for different lengths of follow-up of patients, or in case-control studies, is the time period between the intervention and outcome the same for cases and controls?
- 17. Were the statistical tests used to assess the main outcomes appropriate?
- 18. Was compliance with the intervention/s reliable?
- 19. Were the main outcome measures used accurate (valid and reliable)?
- 20. Were losses of patients to follow-up taken into account?

Author	Criterion 1	Criterion 2	Criterion 3	Criterion 4	Criterion 5	Criterion 6	Criterion 7	Criterion 8	Criterion 9	Criterion 10	Criterion 11	Criterion 12	Criterion 13	Criterion 14	Criterion 15	Criterion 16	Criterion 17	Criterion 18	Criterion 19	Criterion 20	Score
Edgett B. A., et al. (2013)	Yes	UTD	UTD	No	No	No	UTD	No	No	Yes	Yes	Yes	Yes	UTD	11/20						
Gibala M. J., et al. (2009)	Yes	UTD	UTD	Yes	Yes	Yes	UTD	No	No	Yes	Yes	Yes	Yes	UTD	14/20						
Gurd B. J., et al. (2010)	Yes	UTD	No	No	No	Yes	UTD	No	UTD	Yes	Yes	Yes	Yes	UTD	12/20						
Jacobs R. A., et al. (2013)	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	UTD	UTD	UTD	No	No	Yes	Yes	Yes	Yes	UTD	11/20
Larsen S., et al. (2015)	Yes	No	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	UTD	16/20							
Larsen, R. G., (2013)	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	No	No	UTD	No	Yes	Yes	Yes	Yes	Yes	UTD	13/20
Larsen, R. G., (2014)	Yes	No	Yes	Yes	UTD	Yes	UTD	UTD	Yes	Yes	Yes	Yes	UTD	15/20							
Little J. P., et al. (2011)	Yes	No	No	Yes	Yes	UTD	Yes	UTD	UTD	Yes	Yes	UTD	Yes	UTD	13/20						
Little J. P., et al. (2010)	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	No	No	UTD	No	No	Yes	Yes	Yes	Yes	UTD	11/20

Perry C. G., et al. (2008)	Yes	No	No	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	15/20								
Stepto N. K., et al. (2012)	Yes	UTD	UTD	Yes	No	No	UTD	No	No	Yes	Yes	Yes	Yes	UTD	12/20						
Talanian, J. L. (2010)	Yes	Yes	Yes	Yes	No	Yes	No	No	No	No	No	No	UTD	No	No	Yes	Yes	UTD	Yes	No	8/21
Vincent G., et al. (2015)	Yes	UTD	No	No	No	No	UTD	No	No	Yes	Yes	Yes	Yes	UTD	11/20						

UTD: unable to determine/not described

Table 8: STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Multiple sclerosis affects skeletal muscle characteristics

I Wens, U Dalgas, F Vandenabeele, M Krekels, L Grevendonk, B O. Eijnde

Section/Topic	ltem #	Recommendation	Page No.	Yes/No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	Yes
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1	Yes
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	1	Yes
Objectives	3	State specific objectives, including any prespecified hypotheses	1	Yes
Methods				
Study design	4	Present key elements of study design early in the paper	1-2	Yes
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and	1-2	Yes
		data collection		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	1-2	Yes
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic	1-2	Yes
		criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement).	1-2	Yes
measurement		Describe comparability of assessment methods if there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias		No
Study size	10	Explain how the study size was arrived at		No
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were	2	Yes
variables		chosen and why		
	1			

Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	2	Yes
		(b) Describe any methods used to examine subgroups and interactions	2	Yes
		(c) Explain how missing data were addressed		No
		(d) If applicable, describe analytical methods taking account of sampling strategy		No
		(e) Describe any sensitivity analyses	2	Yes
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	2-3	Yes
		confirmed eligible, included in the study, completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage		/
		(c) Consider use of a flow diagram		No
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and	3	Yes
		potential confounders		
		(b) Indicate number of participants with missing data for each variable of interest		/
Outcome data	15*	Report numbers of outcome events or summary measures		No
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95%	2	Yes
		confidence interval). Make clear which confounders were adjusted for and why they were included		
		(b) Report category boundaries when continuous variables were categorized		No
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period		/
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	2-3	Yes
Discussion				
Key results	18	Summarise key results with reference to study objectives	3-4	Yes
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both	4	Yes

		direction and magnitude of any potential bias		
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results	3-4	Yes
		from similar studies, and other relevant evidence		
Generalisability	21	Discuss the generalisability (external validity) of the study results		No
Other information				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original	5	Yes
		study on which the present article is based		

Slowed exercise-onset VO2 kinetics during submaximal endurance exercise in subjects with multiple sclerosis D Hansen, I Wens, L Kosten, K Verboven, B O. Eijnde

Section/Topic	ltem #	Recommendation	Page No.	Yes/No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract		No
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	87	Yes
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	87	Yes
Objectives	3	State specific objectives, including any prespecified hypotheses	87	Yes
Methods				
Study design	4	Present key elements of study design early in the paper	88	Yes
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and	88-89	Yes
		data collection		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	88	Yes
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic	88-89	Yes
		criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement).	88-89	Yes
measurement		Describe comparability of assessment methods if there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias		No
Study size	10	Explain how the study size was arrived at		No
Quantitative	44			N I-
	11	Explain now quantitative variables were handled in the analyses. If applicable, describe which groupings were		NO
variables		chosen and why		

Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	89	Yes
		(b) Describe any methods used to examine subgroups and interactions	89	Yes
		(c) Explain how missing data were addressed		/
		(d) If applicable, describe analytical methods taking account of sampling strategy		/
		(e) Describe any sensitivity analyses		No
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,		/
		confirmed eligible, included in the study, completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage		/
		(c) Consider use of a flow diagram		/
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and	90	Yes
		potential confounders		
		(b) Indicate number of participants with missing data for each variable of interest		/
Outcome data	15*	Report numbers of outcome events or summary measures		/
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95%	90-91	Yes
		confidence interval). Make clear which confounders were adjusted for and why they were included		
		(b) Report category boundaries when continuous variables were categorized	90-91	Yes
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period		/
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	90-91	Yes
Discussion				
Key results	18	Summarise key results with reference to study objectives	93-94	Yes
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both		No

		direction and magnitude of any potential bias		
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results	93	Yes
		from similar studies, and other relevant evidence		
Generalisability	21	Discuss the generalisability (external validity) of the study results		No
Other information				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original	94	Yes
		study on which the present article is based		

Strength, skeletal muscle composition, and enzyme activity in multiple sclerosis. *Kent-Braun JA1, Ng AV, Castro M, Weiner MW, Gelinas D, Dudley GA, Miller RG.*

Section/Topic	ltem #	Recommendation	Page No.	Yes/No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract		No
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1998	Yes
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	1998	Yes
Objectives	3	State specific objectives, including any prespecified hypotheses	1998	Yes
Methods				
Study design	4	Present key elements of study design early in the paper		No
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and	1998-	Yes
		data collection	2000	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants		No
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic	1998-	Yes
		criteria, if applicable	2000	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement).	1998-	Yes
measurement		Describe comparability of assessment methods if there is more than one group	2000	
Bias	9	Describe any efforts to address potential sources of bias		No
Study size	10	Explain how the study size was arrived at		No
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were		No
variables		chosen and why		

Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	2000	Yes
		(b) Describe any methods used to examine subgroups and interactions	2000	Yes
		(c) Explain how missing data were addressed		/
		(d) If applicable, describe analytical methods taking account of sampling strategy		No
		(e) Describe any sensitivity analyses		/
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined for eligibility,	2000-	Yes
		confirmed eligible, included in the study, completing follow-up, and analysed	2002	
		(b) Give reasons for non-participation at each stage		No
		(c) Consider use of a flow diagram		No
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and	1998	Yes
		potential confounders		
		(b) Indicate number of participants with missing data for each variable of interest		No
Outcome data	15*	Report numbers of outcome events or summary measures	2000-	Yes
			2002	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95%	2000-	Yes
		confidence interval). Make clear which confounders were adjusted for and why they were included	2002	
		(b) Report category boundaries when continuous variables were categorized		/
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period		/
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	2001	Yes
Discussion				
Key results	18	Summarise key results with reference to study objectives	2002-	Yes

			2003	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both		No
		direction and magnitude of any potential bias		
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results		No
		from similar studies, and other relevant evidence		
Generalisability	21	Discuss the generalisability (external validity) of the study results		No
Other information				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original	2003-	Yes
		study on which the present article is based	2004	

Complex I deficiency in Persian multiple sclerosis patients HH. Kumleh, GH. Riazi, M Houshmand, MH. Sanati, K Gharagozli, M Shafa

Section/Topic	ltem #	Recommendation	Page No.	Yes/No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract		No
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	65	Yes
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	65-66	Yes
Objectives	3	State specific objectives, including any prespecified hypotheses		No
Methods				
Study design	4	Present key elements of study design early in the paper		No
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and		No
		data collection		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	66	Yes
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic	66	Yes
		criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement).	66	Yes
measurement		Describe comparability of assessment methods if there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias		No
Study size	10	Explain how the study size was arrived at		No
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were		No
variables		chosen and why		

Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	66	Yes
		(b) Describe any methods used to examine subgroups and interactions		No
		(c) Explain how missing data were addressed		/
		(d) If applicable, describe analytical methods taking account of sampling strategy		/
		(e) Describe any sensitivity analyses		/
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed		No
		(b) Give reasons for non-participation at each stage		No
		(c) Consider use of a flow diagram		/
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders		No
		(b) Indicate number of participants with missing data for each variable of interest		/
Outcome data	15*	Report numbers of outcome events or summary measures	67	Yes
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	67	Yes
		(b) Report category boundaries when continuous variables were categorized		No
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period		/
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses		/
Discussion				
Key results	18	Summarise key results with reference to study objectives	68	Yes
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both		No

		direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results	No
		from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	No
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original	No
		study on which the present article is based	

No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis *GR. Campbell, AK. Reeve, I Ziabreva, R Reynolds, DM. Turnbull, DJ. Mahad*

Section/Topic	ltem #	Recommendation	Page No.	Yes/No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract		No
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1858	Yes
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	1858	Yes
Objectives	3	State specific objectives, including any prespecified hypotheses		No
Methods		·		
Study design	4	Present key elements of study design early in the paper	1859	Yes
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and		No
		data collection		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	1859	Yes
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic	1859-	Yes
		criteria, if applicable	1860	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement).	1859-	Yes
measurement		Describe comparability of assessment methods if there is more than one group	1860	
Bias	9	Describe any efforts to address potential sources of bias		No
Study size	10	Explain how the study size was arrived at		No
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were	1859	Yes
variables		chosen and why		

Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	1861	Yes
		(b) Describe any methods used to examine subgroups and interactions	1861	Yes
		(c) Explain how missing data were addressed		/
		(d) If applicable, describe analytical methods taking account of sampling strategy		/
		(e) Describe any sensitivity analyses		/
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined for eligibility,		No
		confirmed eligible, included in the study, completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage		/
		(c) Consider use of a flow diagram		/
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and		No
		(b) Indicate number of participants with missing data for each variable of interest		/
Outcome data	15*	Report numbers of outcome events or summary measures		
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95%	1961-	Yes
		confidence interval). Make clear which confounders were adjusted for and why they were included	1862	
		(b) Report category boundaries when continuous variables were categorized		No
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period		/
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses		No
Discussion				
Key results	18	Summarise key results with reference to study objectives	1862-	Yes

			1865	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both		No
		direction and magnitude of any potential bias		
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results	1862-	Yes
		from similar studies, and other relevant evidence	1865	
Generalisability	21	Discuss the generalisability (external validity) of the study results		No
Other information				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original	1865	Yes
		study on which the present article is based		

Altered signalling for mitochondrial and myofibrillar biogenesis in skeletal muscles of patients with multiple sclerosis D Hansen, I Wens, F Vandenabeele, K Verboven, BO. Eijnde

Section/Topic	ltem #	Recommendation	Page No.	Yes/No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract		No
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	70	Yes
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	70-71	Yes
Objectives	3	State specific objectives, including any prespecified hypotheses	71	Yes
Methods				
Study design	4	Present key elements of study design early in the paper	71	Yes
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and	72	Yes
		data collection		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	72	Yes
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic	72-73	Yes
		criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement).	72-73	Yes
measurement		Describe comparability of assessment methods if there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias		No
Study size	10	Explain how the study size was arrived at		No
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were		No
variables		chosen and why		

Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	73	Yes
		(b) Describe any methods used to examine subgroups and interactions	73	Yes
		(c) Explain how missing data were addressed		/
		(d) If applicable, describe analytical methods taking account of sampling strategy		/
		(e) Describe any sensitivity analyses	73	Yes
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	73-75	Yes
		confirmed eligible, included in the study, completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage		/
		(c) Consider use of a flow diagram		/
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and	74	Yes
		potential confounders		
		(b) Indicate number of participants with missing data for each variable of interest		/
Outcome data	15*	Report numbers of outcome events or summary measures	73-75	Yes
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95%	73-75	Yes
		confidence interval). Make clear which confounders were adjusted for and why they were included		
		(b) Report category boundaries when continuous variables were categorized	73-75	Yes
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period		/
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	75	Yes
Discussion				
Key results	18	Summarise key results with reference to study objectives	75-77	Yes
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both	77	Yes
		direction and magnitude of any potential bias		

Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results	75-77	Yes
		from similar studies, and other relevant evidence		
Generalisability	21	Discuss the generalisability (external validity) of the study results		No
Other information				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original		No
		study on which the present article is based		

Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations (study part 2) *AJ.R. Cochran, ME. Percival, S Tricarico, JP. Little, N Cermak, JB. Gillen, MA. Tarnopolsky, MJ. Gibala*

Section/Topic	ltem #	Recommendation	Page No.	Yes/No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract		No
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	782	Yes
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	783	Yes
Objectives	3	State specific objectives, including any prespecified hypotheses	783	Yes
Methods				
Study design	4	Present key elements of study design early in the paper	784	Yes
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and	784-785	Yes
		data collection		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants		No
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic	785	Yes
		criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement).	785	Yes
measurement		Describe comparability of assessment methods if there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias		No
Study size	10	Evolain how the study size was arrived at		No
	10	LAplant now the study size was allived at		
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were		No
variables		chosen and why		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	786	Yes
---------------------	-----	--	---------	-----
		(b) Describe any methods used to examine subgroups and interactions		No
		(c) Explain how missing data were addressed		No
		(a) If applicable, describe analytical methods taking account of sampling strategy		/
		(e) Describe any sensitivity analyses		No
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined for eligibility,		No
		confirmed eligible, included in the study, completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage		/
		(c) Consider use of a flow diagram		/
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders		No
		(b) Indicate number of participants with missing data for each variable of interest		/
Outcome data	15*	Report numbers of outcome events or summary measures	787	Yes
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95%	787	Yes
		confidence interval). Make clear which confounders were adjusted for and why they were included		
		(b) Report category boundaries when continuous variables were categorized	787	Yes
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period		/
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses		No
Discussion				
Key results	18	Summarise key results with reference to study objectives	788-790	Yes
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both	788-790	Yes

		direction and magnitude of any potential bias		
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results	788-790	Yes
		from similar studies, and other relevant evidence		
Generalisability	21	Discuss the generalisability (external validity) of the study results		No
Other information				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original	791	Yes
		study on which the present article is based		

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Year	author	title	Type of article	subjects	Used techniques	conclusion
2012	Bartlett, J. D., et al.	Matched work high-	Randomized	10 active men	Test the hypothesis that	Acute HIIT and CONT running induces
		intensity interval and	crossover		acute high-intensity	similar activation of molecular
		continuous running	design		interval running induces	signalling pathways associated with
		induce similar			greater activation of	regulation of mitochondrial biogenesis.
		increases in PGC-1alfa			signalling pathways	
		mRNA, AMPK, p38 and			associated with	
		p53 phosphorylation in			mitochondrial biogenesis	
		human skeletal muscle			compared to moderate-	
					intensity continuous	
					running. Muscle biopsies	
					from vastus lateralis	
					muscle were used.	
2008	Burgomaster, K. A., et	Similar metabolic	Randomized	20 healthy	Two experimental trials,	These data suggest that high-intensity
	al.	adaptations during	controlled trial	men and	before and after a 6 week	interval training is a time-efficient
		exercise after low		women	exercise training	strategy to increase skeletal muscle
		volume sprint interval		(active but	programme.	oxidative capacity and induce specific
		and traditional		untrained)		metabolic adaptations during exercise
		endurance training in			Needle biopsy samples of	that are comparable to traditional ET.
		humans			vastus lateralis muscle at	
					rest and immediately after	
					exercise.	
					Heart rate	

Table 9.1: Overview included articles – type of article, subjects, used techniques and conclusion

					Expired gases were collected for the determination of VO2 ,VCO2 and respiratory exchange ratio (RER).	
2013	Campbell, G. R., et al.	No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis	RCT (cross sectional study)	17 progressive MS cases + 15 controls	Studied muscle (paraspinal) and explored mitochondria in single fibres. Histochemistry, immunohistochemistry, laser microdissection, real- time polymerase chain reaction (PCR), long-range PCR and sequencing were used to resolve the single muscle fibres.	The findings do not provide support to the existence of a diffuse mitochondrial abnormality involving multiple systems in MS. Understanding the cause(s) of the CNS mitochondrial dysfunction in progressive MS remains a research priority.
2014	Cochran, A. J., et al.	Intermittent and continuous high- intensity exercise training induce similar acute but different chronic muscle adaptations	<u>Study 1:</u> Randomized crossover design	<u>Study 1:</u> 8 men	<u>Study 1:</u> examined whether the activation of signalling cascades linked to mitochondrial biogenesis was dependent on the manner in which an acute high-intensity exercise stimulus was	The intermittent nature of the stimulus is important for maximizing skeletal muscle adaptations to low-volume, all- out HIIT. Despite the lack of skeletal muscle mitochondrial adaptation, our data show that a training programme based on a brief bout of high-intensity exercise, which lasted <10min per

					applied (INT or CONT)	accession 2x/W for 6W improved pook
					applied (INT OF CONT).	session, sxivi ioi ovi, improved peak
					→ AMPK, p38, PGC-1α	oxygen uptake in young healthy
					mRNA expression	subjects.
			Study 2: RC1			
			(cross sectional	<u>Study 2:</u> 5	Study 2: Investigated	
			study)	men and 4	whether six weeks of a	
				women	CONT protocol would	
				(voung and	increase skeletal muscle	
				healthy)	mitochondrial content to a	
				nealary)		
					similar extent as int.	
2013	Edgett, B. A., et al.	Dissociation of	Quasi	8 lean healthy	Muscle activation as well	Intensity-dependent increases in PGC-
		increases in PGC-1alfa	experimental	men	as changes in PGC-1α	1α mRNA following submaximal
		and its regulators from	study without		following high-intensity	exercise are largely due to increases in
		exercise intensity and	control group		interval exercise.	muscle recruitment. As well, the
		muscle activation				blunted response of PGC-1α mRNA
		following acute exercise				expression following supramaximal
						exercise may indicate that signalling
						mediated activation of PGC-1α may
						also be blunted. We also identify that
						increases in PDK4, SIRT1, and RIP40
						mRNA following acute exercise are
						dissociated from exercise intensity and
						muscle activation, while increases in
						EGR1 are augmented with
						supramaximal HIIE.
	i i i i i i i i i i i i i i i i i i i	1	1	1		

2003	Fernstrom, M., et al.	Effects of acute and	PCT	17 healthy	Subjects were investigated	UCP3 protein and UCR decrease after
		chronic endurance		subjects	with muscle biopsies	endurance training when related to
		exercise on			before and after acute	mitochondrial volume. These changes
		mitochondrial			exercise (75 min of cycling	may prevent excessive basal
		uncoupling in human			at 70% of [·] VO2peak) or 6	thermogenesis. Acute exercise
		skeletal muscle			weeks endurance training.	enhances mitochondrial resistance to
					Mitochondria were isolated	Ca2+ overload but does not influence
					and respiration measured	UCR or protein expression of UCP3
					in the absence (UCR or	and ANT. The increased Ca2+
					state 4) and presence of	resistance may prevent mitochondrial
					ADP (coupled respiration	degradation and the mechanism needs
					or state 3). Protein	to be further explored.
					expression of UCP3 and	
					ANT was measured with	
					Western blotting.	
2008	Gibala, M. J., et al.	Brief intense interval	Quasi	6 healthy	We tested the hypothesis	Signalling through AMPK and p38
		exercise activates	experimental	active young	that an acute session of	MAPK to PGC-1 α may explain in part
		AMPK and p38 MAPK	study without	men	intense intermittent cycle	the metabolic remodelling induced by
		signalling and	control group		exercise would activate	low-volume intense interval exercise,
		increases the			signalling cascades linked	including mitochondrial biogenesis and
		expression of PGC-			to mitochondrial	an increased capacity for glucose and
		1alfa in human skeletal			biogenesis in human	fatty acid oxidation.
		muscle			skeletal muscle.	
					\rightarrow Muscle biopsies	

2010	Gurd, B. J., et al.	High-intensity interval	Quasi	9 subject (3	The effects of training on	Increased maximal activities of
		training increases	experimental	females, 6	SIRT1 activity and protein	mitochondrial enzymes in skeletal
		SIRT1 activity in human	study without	males)	in relationship to PGC-1 α	muscle and PGC-1α protein.
		skeletal muscle	control group		and mitochondrial content	Total muscle SIRT1 activity and
					were determined in human	activity per SIRT1 protein increased
					skeletal muscle after six	despite decreased SIRT1 protein.
					weeks of high-intensity	Exercise-induced mitochondrial
					interval training.	biogenesis is accompanied by
						elevated SIRT1 activity in human
						skeletal muscle.
2013	Hansen, D., et al.	Slowed exercise-onset	RCT	38 MS	Compared exercise-onset	Exercise-onset VO ₂ kinetics during
		VO ₂ kinetics during	(Cross sectional	patients and	and –offset VO ₂ kinetics,	submaximal endurance exercise are
		submaximal endurance	study)	16 healthy	blood lactate, heart rate,	significantly slowed in MS patients $ ightarrow$
		exercise in subjects		controls	expiratory volume and	lowered skeletal muscle oxidative
		with multiple sclerosis			Borg rate of perceived	capacity.
					exertion.	
					Exercise at constant low to	
					moderate intensity (below	
					anaerobic threshold).	
2015	Hansen, D., et al.	Altered signalling for	RCT	10 patients	Endurance exercise bout	Post-exercise skeletal muscle
		mitochondrial and	(cross sectional	with MS and	\rightarrow changes in muscle	phospho-AMPK α and phospho-mTOR
		myofibrillar biogenesis	study)	10 healthy	phospho-AMPKα and	are increased in MS, and this increase
		in skeletal muscles of		controls	phospho-mTOR, body	is related to lowered exercise tolerance
		patients with multiple		(9 PWMS + 7	composition, muscle	and greater level of disability.
		sclerosis		HC)	strength, exercise	

2013	Jacobs, R. A., et al.	Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function	Quasi experimental study without control group	16 untrained adult males	tolerance and muscle fibre type. HIIT 6 sessions high- intensity cycling Skeletal muscle respiratory capacity, mitochondrial content, skeletal muscle oxygenation, cardiac capacity, blood volumes and peripheral fatigue resistance assessed prior to and again following training.	Evidence indicating that an improved oxidative capacity of the skeletal muscle resulting from an increase in mitochondrial content may facilitate an improvement in tissue oxygenation, delayed peripheral fatigue, and explain the improvement in both maximal whole body exercise capacity as well as endurance performance following 6 sessions of HIT over a two week period in previously untrained adults.
1997	Kent-Braun, J. A., et al.	Strength, skeletal muscle composition, and enzyme activity in multiple sclerosis	RCT (cross sectional study)	17 subjects: *9 with MS (6 women, 3 men) → EDSS 2-6 (median 4) *8 healthy age-matched controls	Neurological evaluation before participation: EDSS, Ashworth scale of spasticity. Before collection of biopsy samples, symptomatic fatigue (Fatigue Severity Scale), muscle strength (dorsiflexor MVC) anterior compartment CSA (proton	The results of this study suggest that the inherent characteristics of skeletal muscle fibres per se and of skeletal muscle as a whole are altered in the direction of disuse in MS. They also suggest that changes in skeletal muscle in MS may significantly affect function.

					MRI) basal muscle high-	
					energy phosphale status	
					(MRS) and level of	
					physical activity (three-	
					dimensional	
					accelerometer) were	
					assessed.	
					Muscle biopsies of tibialis	
					anterior muscle 1-2 weeks	
					after preceding studies.	
2005	Kumlah H H at al	Complex 1 deficiency in	PCT	10 MS		Piechomical defect in complex 1 activity
2005						Biochemical delect in complex factivity
		Persian multiple	(cross sectional	patients + 11	quadriceps by open biopsy	may be involved in pathogenesis of
		sclerosis patients	study)	control	under local anaesthesia.	MS.
				subjecs	Examine mitochondrial	
					respiratory chain complex	
					1 \rightarrow activity of it on	
					isolated mitochondria	
					derived from fresh skeletal	
					muscle	
2013	Larsen, R. G., et al.	High-intensity interval	Quasi	Eight healthy	V Pi→ATP and Vmax of	This novel analysis of resting and
		training increases in	experimental	young males	the vastus lateralis muscle	maximal high-energy phosphate
		vivo oxidative capacity	study without		were measured through	kinetics in vivo in response to HIT
		with no effect on P(i)	control group		phosphorus magnetic	provides evidence that distinct aspects
		>ATP rate in resting			resonance spectroscopy.	of human skeletal muscle metabolism

0011		human muscle			Measurements were obtained at baseline, 15 hours after the first training session, and 15 hours after completion of the sixth session.	respond differently to this type of training.
2014	Larsen, R. G., et al.	High-intensity interval training alters ATP pathway flux during maximal muscle contractions in humans	Quasi experimental study without control group	8 young healthy men	6 sessions of repeated, 30-s "all-out" sprints on a cycle ergometer. Measures of muscle energetics were obtained at baseline, and after the first and sixth sessions.	performed with increased support of oxidative ATP synthesis, and relatively less contribution from anaerobic ATP productions following training. 6 training sessions are sufficient to alter in vivo muscle energetics, which likely contributes to increased exercise capacity after short-term HIT.
2014	Larsen, S., et al.	The effect of high- intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue	Quasi experimental study without control group	10 overweight untrained subjects	Effect of HIT on mitochondrial fat oxidation in skeletal muscle and adipose tissue. Mitochondrial oxidative phosphorylation capacity, mitochondrial substrate sensitivity and mitochondrial content → before and after 6	Six weeks of HIT increased VO2peak. Mitochondrial oxidative phosphorylation capacity were increased in skeletal muscle, but not in adipose tissue. Furthermore, mitochondrial fat oxidation was not improved in either skeletal muscle or adipose tissue.

					weeks of HIT	
2011	Little, J. P., et al.	An acute bout of high-	Quasi	8 young men	Examine molecular	An acute bout of low-volume HIT
		intensity interval	experimental	(habitual	processes involved in	activates mitochondrial biogenesis
		training increases the	study without	active)	mitochondrial biogenesis	through a mechanism involving
		nuclear abundance of	control group		in human skeletal muscle	increased nuclear abundance of PGC-
		PGC-1alfa and			in response to an acute	1α.
		activates mitochondrial			bout of HIT.	
		biogenesis in human			\rightarrow muscle biopsies	
		skeletal muscle				
2010	Little, J. P., et al.	A practical model of	Quasi	7 healthy	Determine the	Demonstrates that a practical model of
		low-volume high-	experimental	young men	performance, metabolic	low volume HIT is a potent stimulus for
		intensity interval	study without		and molecular adaptations	increasing skeletal muscle
		training induces	control group		to a more practical model	mitochondrial capacity and improving
		mitochondrial			of low-volume HIT	exercise performance. Results suggest
		biogenesis in human			\rightarrow 6 sessions over 2	that increases in SIRT1, nuclear PGC-
		skeletal muscle:			weeks	1α and Tfam may be involved in
		potential mechanisms			\rightarrow muscle biopsy (CS,	coordinating mitochondrial adaptations
					COX, Tfam, PGC-1α,	in response to HIT in human skeletal
					GLUT4	muscle.
2007	Mathai, A. S., et al.	Rapid exercise-induced	Randomized	7 male	Exercise to exhaustion	PGC-1 α protein content increased in
		changes in PGC-1α	crossover	subjects	followed by ingestion of	prolonged exercise and remained
		mRNA and protein in	design		either a high-carbohydrate	upregulated for 24 hours, but this could
		human skeletal muscle			or low-carbohydrate diet	not have been predicted by the
					for 52 hours of recovery.	changes in mRNA.
2009	Perry, C. G., et al.	High-intensity aerobic	Quasi	8subjects (3	Six weeks of HIIT	Six weeks of this unique HIIIT protocol

		interval training	experimental	females, 5		increases whole body VO2peak, the
		increases fat and	study without	males)		maximal activities or protein content of
		carbohydrate metabolic	control group			five skeletal muscle mitochondrial
		capacities in human				enzymes, and the content of transport
		skeletal muscle				proteins for fatty acids, glucose and
						lactate as well as resting glycogen.
						HIIT increases the capacity for both fat
						and carbohydrate oxidation in muscle.
2012	Stepto, N. K., et al.	Short-term intensified	Quasi	9males	Investigated changes in	Short-term intensified training
		cycle training alters	experimental	(healthy and	mitochondrial gene	promotes increased mitochondrial
		acute and chronic	study without	untrained)	expression and protein	gene expression and protein
		responses of PGC1alfa	control group		abundance in response to	abundance. Furthermore, acute
		and cytochrome C			the same acute exercise	indicators of exercise-induced
		oxidase 4 to exercise in			before and after 10-days of	mitochondrial adaptation appear to be
		human skeletal muscle			intensive cycle training.	blunted in response to exercise at the
					\rightarrow muscle biopsies	same absolute intensity following
						short-term training.
2010	Talanian, J. L., et al.	Exercise training	Quasi	10untrained	Determined whether high-	Increases in skeletal muscle fatty acid
		increases sarcolemmal	experimental	females	intensity interval training	oxidation following training are related
		and mitochondrial fatty	study without		increased total skeletal	in part to changes in fatty acid
		acid transport proteins	control group		muscle, sacrolemmal, and	transport protein content and
		in human skeletal			mitochondrial membrane	localization.
		muscle			fatty acid transport protein	
					contents	
					\rightarrow muscle biopsies from	

					vastus lateralis (before	
					training, and following 2	
					and 6 weeks of HIIT)	
2015	Vincent, G., et al.	Changes in	Quasi	8males	Mitochondrial metabolism	Over only two weeks HIT significant
		mitochondrial function	experimental	(moderately	as well as mitochondrial-	increased mitochondrial function in
		and mitochondria	study without	acitve)	associated protein	skeletal muscle independently of
		associated protein	control group		expression were tested in	detectable changes in mitochondrial-
		expression in response			untrained participants	associated and mitogenic protein
		to 2-weeks of high			performing HIT over a 2-	expression.
		intensity interval			week period.	
		training				
2015	Wens, I., et al.	High intensity exercise	RCT	34MS	- sedentary control group	12 weeks of high intensity
		in multiple sclerosis:		patients	- 12 weeks of high	cardiovascular exercise in combination
		Effects on muscle			intensity interval and	with resistance training was safe, well
		contractile			resistance training	tolerated and improved muscle
		characteristics and			-12 weeks of high intensity	contractile characteristics and
		exercise capacity, a			continuous cardiovascular	endurance capacity, with interval
		randomised controlled			training + resistance	training seemingly superior to
		trial			training	continuous training.
2014	Wens, I., et al.	Multiple sclerosis	RCT	34MS	- Muscle biopsy (vastus	MS has a negative influence on
		affects skeletal muscle	(Cross sectional	patients and	lat.)	skeletal muscle fibre CSA, muscle
		characteristics	study)	18 healthy	- DEXA-scan	strength and mass of lower limbs $ ightarrow$
				controls	- Isokinetic dynamometer	Rehabilitation is needed for muscle
					(Biodex)	preservation of the lower limbs.

Table 9.2: Overview included articles -	- population,	aims a	nd interventions
---	---------------	--------	------------------

Authors & journal	population	Aims study	interventions
Bartlett, J. D., et al.	10 recreationally active men	Test the hypothesis that acute	HIT: 6x3min at 90% VO2max interspersed with 3min
		high-intensity interval running	recovery periods at 50%VO2max with 7min warm-up
. I Appl Physiol		induces greater activation of	and cool-down period at 70% VO ₂ max
		signalling pathways associated	
		with mitochondrial biogenesis	CONT: 50min continuous running at 70% VOrmax
		compared with moderate-intensity	
		continuous running matched for	
		work done.	
Burgomaster K. A., et	20 healthy men and women (active	Metabolic adaptations during	*6 weeks training programma
al.	but untrained)	exercise after traditional endurance	ET: 40-60 min continuous cycling on workload of 65%
		(ET) training and high-intensity	Vo2 peak, 5d/w
The Journal of Physiology		interval training (SIT).	 W1 - 2: 40 minutes W3 - 4: 50 minutes W5 - 6: 60 minutes
			SIT: 4-6 repeats of a 30s 'all out' Wingate test with
			4.5min recovery (cycling at low cadence <50rpm
			against a light resistance of 30w) between bouts, 3d/w
			 W1 - 2: 4 Wingate tests W3 - 4: 5 Wingate tests W5 - 6: 6 Wingate tests
Campbell, G. R., et al.	17 progressive MS cases and 15 age	Investigated single fibres in	Studied muscle (paraspinal) and explored
	matched controls	paraspinal muscles from	mitochondria in single fibres. Histochemistry,
Multiple Sclerosis		progressive MS cases, known to	immunohistochemistry, laser microdissection, real-

journal		harbour an excess of mtDNA	time polymerase chain reaction (PRC), long range
		deletions in the CNS, to determine	PCR and sequencing were used to resolve the single
		whether the respiratory enzyme	muscle fibres.
		deficiency and mtDNA deletions	
		were also present in excess of	
		age-related changes within muscle.	
Cochran, A. J., et al.	17 healthy subjects	Study 1: Examined whether the	Study 1: Four 30sec Wingate tests interspersed with 4
	(8 subjects in study 1, 9 subjects in	activation of signalling cascades	minutes of rest (INT) or a bout of continuous exercise
Experimental	study 2)	linked to mitochondrial biogenesis	(CONT) that was matched for total work and which
physiology		was dependent on the manner in	required ≈4min to complete as fast as possible.
p, e.e.e.gy		which an acute high-intensity	
		exercise stimulus was applied.	Study 2: 3 days per week for 6 weeks, for a total of 18
			sessions
		Study 2: Determined whether 6	Same as study 1
		weeks of the CONT protocol would	
		increase skeletal muscle	
		mitochondrial content to a similar	
		extent to what we have previously	
		reported after 6 weeks of INT	
Edgett, B. A., et al.	8 lean healthy men	Determine if increases in PGC-1 α	Three separate sessions of high-intensity interval
		induced by higher intensities of	exercise targeting 73, 100, 133% of their peak aerobic
PLoS One		submaximal exercise extend to	power. These intensities were chosen so that a
		supramaximal exercise by	matched amount of external work would be achieved
		comparing changes in gene	in 11, 8 and 6 intervals for each intensity, respectively.
		expression following three	

		intensities of matched volume	
		exercise.	
		Determine the impact of exercise	
		intensity on changes in gene	
		expression of regulators of PGC-1 α	
		activity.	
		Determine if greater increases in	
		PGC-1α gene expression at higher	
		intensities can be explained by	
		intensity-dependent increases in	
		muscle activation.	
Fernström M., et al.	17 healthy subjects	The purpose of this study was (i) to	Subjects were investigated with muscle biopsies
		investigate the effects of acute	before and after acute exercise (75 min of cycling at
J Physiol		exercise and training on the protein	70% of 'VO2peak) or 6 weeks endurance training.
		expression of UCP3 and ANT, (ii)	Mitochondria were isolated and respiration measured
		to investigate the effect of acute	in the absence (UCR or state 4) and presence of ADP
		exercise and training on UCR in	(coupled respiration or state 3). Protein expression of
		isolated mitochondria, and (iii) to	UCP3 and ANT was measured with Western blotting.
		investigate the effect of exercise on	
		the vulnerability of mitochondria to	
Gibala, M. J., et al.	6 healthy active young men	Tested the hypothesis that an	Four 30-sec "all out" exercise bouts interspersed with

		acute session of brief, intense	4 minutes of rest.
LAppl Physiol		interval exercise would activate	
		signalling cascades linked to PGC-	
		1α , the transcriptional coactivator	
		that functions as a regulator of	
		mitochondrial biogenesis.	
Gurd, B. J., et al.	9 healthy subjects: 3 females, 6	Examine the changes in SIRT1	High-intensity interval training
	males	activity and SIRT1 protein content	10x4min intervals at 90%VO2peak separated by 2
Applied Physiology		in human skeletal muscle after 6	minutes of rest, 3 days per week.
nutrition and		weeks of training and to compare	
metabolism		with alterations in PGC-1 α content	
		and mitochondrial proliferation.	
Hansen, D., et al.	38 pwMS and 16 healthy subjects	Examined exercise-onset and -	Exercise-onset and –offset VO ₂ kinetics were
		offset VO_2 kinetics in persons with	determined during two 6-minute submaximal bouts of
Neurorebabilitation		mild MS when executing two	exercise separated by a 6-minute recovery interval.
and Neural Repair		subsequent endurance exercise	
		bouts with similar intensity and	
		duration, and compares these data	
		with healthy subjects.	
Hansen, D., et al.	Part 1: 14 pwMS compared with 10	Studied skeletal muscle AMPK α	Part 1: Assessment of body composition, muscle
	healthy subjects	and mammalian target of	strength, exercise tolerance and muscle fibre type,
Translational		rapamycin phosphorylation	muscle phospho-AMPK α and phospho-mTOR.
Research	Part 2: 9 pwMS compared with 7	(phospho-mTOR) in pwMS to	
	healthy subjects	explore the aetiology for the	part 2: Endurance exercise bout executed with
		development of such muscle	assessment of changes in muscle phospho-AMPK α

		phenotype.	and phospho-mTOR.
Jacobs, R. A., et al.	16 untrained male adults	Perform a comprehensive	8-12 bouts at 100% peak power for 60sec, 75sec
		evaluation of the physiological	active rest between intervals, 2 weeks, 6 sessions.
J Appl Physiol		adaptations, ranging from	
e , ppi i injelet		cardiovascular to skeletal muscle	
		properties, following 6 sessions of	
		HIT in untrained young adults and	
		determine the mechanisms	
		explaining rapid improvements in	
		exercise performance.	
Kent-Braun, J. A., et	17 subjects:	This study examined functional,	Not applicable
al.	*9 with MS (6 women, 3 men) \rightarrow	biochemical, and morphological	
	EDSS 2-6 (median 4)	characteristics of skeletal muscle in	
J Appl Physiol	*8 healthy age-matched controls	nine multiple sclerosis (MS)	
		patients and eight healthy controls	
		in an effort to ascertain whether	
		intramuscular adaptations could	
		account for excessive fatigue in	
		this disease.	
Kumleh, H. H., et al.	10 patients with MS and 11 healthy	Because skeletal muscle and the	Kinetic analysis of mitochondrial respiratory chain
	controls	nervous system are among the	complex I enzyme was performed on intact
Journal of the		most energy-dependent tissues of	mitochondria isolated from fresh skeletal muscle.
Neurological Sciences		the body with variable ATP	mtDNA common deletion and deletions were also
		demands, the most common forms	tested in pwMS.
		of mitochondrial disorders are	

		encephalomyopathies.	
		Consequently mtDNA common	
		deletion and deletions in MS	
		patients was tested.	
Larsen, R. G., et al.	8 untrained men	High intensity interval training (HIT)	Eight untrained men performed six sessions of HIT in
		would increase ATP flux in resting	a 2 week period (4-6 x 30-s bouts of all-out cycling
Am J Physiol Regul		muscle (Vpi→ATP) in response to	with 4-min recovery).
Integr Comp Physiol		a single bout of exercise, whereas	
		changes in the capacity for	
		oxidative ATP production (Vmax)	
		would require repeated bouts.	
Larsen, R. G., et al.	8 young healthy men	Examine the effects of HIT on ATP	6 sessions of repeated, 30-s "all-out" sprints on a
Acta Physiol		synthesis from net PCr breakdown	cycle ergometer. Measures of muscle energetics were
		(ATP _{CK}), oxidative phosphorylation	obtained at baseline, and after the first and sixth
		(ATPox) and non-oxidative	sessions.
		glycolysis (ATP _{GLY}) in vivo in	
		vastus lateralis during a 24-s	
		maximal voluntary contraction.	
Larsen, S., et al.	Ten overweight untrained healthy	Investigate the capacity for lipid	5 x 60seconds exercise bouts (approximately 128% of
	subjecs (2 females, 8 males)	oxidation in mitochondria and	maximum load), 90 seconds active rest between
Scandinavian journal		mitochondrial substrate sensitivity	intervals, after 2 weeks of training the load was
of medicine and		for medium- and long-chain fatty	increased by 10%, 6weeks, 3 x/week .
science in sports		acids in skeletal muscle and	
		subcutaneous adipose tissue after	
		6 weeks of HIT.	

Little, J. P., et al.	Eight young, healthy and active man	Examine potential mechanisms	4 bouts of 30 seconds all out maximal intensity
		controlling the adaptive response	(0.075kg/kg body mass), 4 minutes of rest between
Am J Physiol Regul		to HIT by determining the effects of	intervals, 1 session.
Integr Comp Physiol		an acute bout of HIT on levels of	
mogi comp i nysioi		nuclear PGC-1α. Also obtain a	
		more comprehensive	
		characterization of the response to	
		an acute bout of HIT by examining	
		signalling pathways linked to PGC-	
		1α activation, as well as changes in	
		mRNA and protein expression of	
		mitochondrial genes at selected	
		time points throughout 24 hours of	
		recovery.	
Little, J. P., et al.	Seven healthy young men	Examine the exercise performance	8-12 bouts of 60sec at 100% of peak power output
		and muscle metabolic adaptations	separated by 75sec of active recovery, 6sessions, two
Journal physiology		to a more practical model of HIT	weeks.
		that is nonetheless still time	
		efficient.	
		Also examined the effect of low-	
		volume HIT on several proposed	
		mediators of mitochondrial	
		biogenesis and metabolic	
		adaptations in skeletal muscle.	

Mathai, A. S., et al.	7 recreationally active male subjects	Aim1: the effects of exhaustive	Prior to the experimental trials VO _{2max} tests on a
		exercise (2 hours)	stationary, electronically braked cycle ergometer
J Appl Physiol			
		Aim 2: the effects of altered	Experimental protocol:
		changes in muscle	2 trials separated by 2 weeks in which the
		glycogen repletion (0–52 h) after	CHO consumption during the recovery period was
		exhaustive exercise on	assigned by randomized crossover design.
		PGC-1 α mRNA as well as PGC-1 α	
		protein in skeletal muscle	Subjects cycled on a stationary cycle ergometer at
		or healthy men.	65% V O2max until voluntary exhaustion
			repeated on the second test day, and subjects were
			instructed to cycle for the same length of time on both
			days
			\rightarrow muscle biopsies vastus lateralis
Perry, C. G., et al.	8 untrained recreationally active	Investigate the ability of 6weeks of	10 x 4min intervals at 90% VO2peak, 2 minutes of
	individuals (5 males, 3 females)	HIIT to increase the capacity for	passive rest between intervals, 6 weeks, 3 days per
Appl Physiol Nutr		skeletal muscle and whole-body	week.
Metab		carbohydrate and fat oxidation in	
motab		recreationally active but untrained	
		subjects.	
Stepto, N. K., et al.	9 healthy untrained male volunteers	Firstly examine changes in	60 minutes bout of cycling exercise
		expression of mitochondrial genes	10 days of cycling training which included four high-
PLoS One		that are involved in the regulation	intensity interval training sessions (6x5min; 90-100%

		of mitochondrial biogenesis under	VO ₂ peak) and six prolongued moderate intensity
		exercise conditions that maximally	sessions (45-90min; 75% VO₂peak).
		highlighted training adaptions.	
		Secondly, to investigate changes in	
		protein abundance of mitochondrial	
		biogenesis regulators and	
		mitochondrial function including	
		PGC-1 α , RIP140 and the electron	
		transport system proteins.	
Talanian, J.L., et al.	10 untrained females (untrained, light	Determine whether HIIT increased	VO _{2peak} test: repeated at 2 and 6wk of HIIT
	recreational physical activity)	total skeletal muscle,	
Am J Physiol		sacrolemmal, and mitochondrial	60min Cycling trial at 65% VO _{2peak} : blood samples at
Endocrinol Metab		membrane fatty acid transport	rest, 15, 30, 45 and 60min. Repeated at 2 and 6wk of
		protein contents.	HIIT.
			Muscle biopsies vastus lateralis 48h following the
			60min cycling trails (PRE, 2, 6wk HIIT)
			6 weeks of high-intensity interval training (48h
			following muscle biopsies)
			3days/wk, 18sessions in 6wk
			ten 4-min cycling bouts at 90% VO_{2peak} separated by
			2min of rest.
Vincent, G., et al.	8 male, moderately active participants	Investigate the changes in	12 x 60s intervals at 120% of peak power with 90
		respiratory fluxes that underlie	seconds rest between intervals on cycle ergometer, 4
Frontiers in		exercise performance responses to	days/week, two weeks
Physiology		HIT using the permeabilized fibre	

		method, as well as the expression	
		levels of proteins associated with	
		mitochondrial function	
Wens, I., et al.	34 MS patients diagnosed according	Investigate the impact of high	5 sessions per 2 weeks, sessions were interspersed
	to McDonald criteria (EDSS range 1-	intensity interval or continuous	by at least one day of rest.
PLoS One	5) , aged >18years	cardiovascular exercise, both in	Each session started with endurance training,
		combination with resistance	followed by resistance training, interspersed by a
		training, on muscle contractile	short resting period.
		characteristics, in terms of muscle	- HπR program:
		fibre CSA/proportion, muscle	5 minutes warming-up on cycle ergometer
		strength and muscle mass and on	First 6 weeks duration gradually increased from 5 x1
		endurance capacity in MS.	minute to 5 x 2 minutes and 1 minute rest intervals.
			\rightarrow 100% of maximal workload
			Second 6W: 5 x 2 minutes
			\rightarrow 100-120% of max workload
			second part: moderate to high intensity resistance
			training.
			- H _{CT} R program: 1x6min/session \rightarrow 2x10min/session 80-90% HR _{max} second part: similar resistance training
Wens, I., et al.	34 MS patients diagnosed according	Investigate the effect of MS on	*Muscle biopsies from the middle part of the m.
	to the McDonald criteria (EDSS range	muscle fibre CSA and proportion,	Vastus lateralis (from MS + HC) → Bergström needle
PLoS One	0 ,5-6) and 18 matched healthy	muscle strength and body	technique
	controls, aged > 18years	composition in a larger group of	*Biopsies (MS) from weakest leg \rightarrow isometric muscle
		MS patients, compared with HC.	strength test

*DEXA scan 1-2 weeks before muscle biopsy
*Following 5 minutes warming-up on a cycle
ergometer and after habituation, the max voluntary
isometric muscle strength of knee extensors were
measured (45° and 90° knee angle) \rightarrow isokinetic
dynamometer. 2 max isometric extensions (4sec)
separated by 30sec rest interval.

Authors & journal	Outcome measures	results
Bartlett, J. D., et al.	Heart rate, rate of perceived exertion	Significantly greater in HIT compared with CONT
	and blood lactate	
J Appl Physiol	Muscle glycogen	Decreased 30% in both conditions
	Plasma glucose concentration	Increased in both protocols
	Plasma NEFA and glycerol	Significantly greater in the CONT trial
	AMPK phosphorylation	Increased 1.5 fold post-exercise and returned to basal levels at 3h post-exercise
	P38MAPK phosphorylation	Increased 1.9 and 1.5 fold immediately following exercise for HIT and CONT respectively,
		no significant difference between both protocols
	PGC-1α mRNA	Increased fourfold at 3h following exercise
	PGC-1α protein content	Unchanged in both protocols
	P53 phosphorylation	Tended to increase immediately post-exercise but not significant, 3h following exercise
		increased 2.7 and 2.1 fold in HIT and CONT trials respectively
	HSP72 and MnSOD mRNA	3- to 4-fold increase immediately post-exercise but not significant
Burgomaster K. A., et	Vo2 peak	Increased, no difference between groups
al.	Peak power output	Increased, no difference between groups
	oxygen uptake	similar before and after training
The Journal of	mean heart rate and ventilation	decreased, no difference between groups
Physiology	mean RER	decreased, no difference between groups
	calculated rates of whole-body fat	increased, no difference between groups
	carbohydrate oxidation rates	decreased, no difference between groups
	CS	increased after training, no difference between groups
	b- HAD	increased after training, no difference between groups

Table 9.3: Overview included articles – outcome measures and results

	PGC-1a protein content	increased after training, no difference between groups
	Muscle glycogen content	higher at 60 min of exercise post-training compared to pretraining, no difference between
		groups
	Net muscle glycogenolysis	reduced after training, no difference between groups
	Muscle PCr content	Higher at 60 min of exercise post-training, no difference between groups
	Muscle ATP	Unchanged by acute exercise, but reduced after 6 weeks op SIT compared to ET
	Lactate accumulation	No significant effects
Campbell, G. R., et al.	Density of respiratory enzyme-deficient	Not significantly different in MS compared with controls
	fibres	
Multiple Sclerosis	mtDNA deletion level	Not significantly different in MS compared with controls
journal	percentage of muscle fibres harbouring	Not significantly different in MS compared with controls
	high levels of mtDNA deletions	
Cochran A. J. et al	Total work	
	Ratings of perceived evertion	
	Deek power output and mean power	Lister then the respective values coloulated for the CONT trial
Experimental		
physiology	output	
	Total exercise duration	In the CONT trial approximately double that of the INT trial
	Muscle glycogen content	Reduced 25%
	Muscle lactate content	Elevated 10-fold
	P38 MAPK phosphorylation	Increased immediately after exercise by 3-fold
	ACC serine-79	Increased immediately after exercise by 2.5-fold
	PGC-1α mRNA	Increased 4-fold from rest after 3h of recovery
	Max activity of CS	Unchanged
	Cytochrome c oxidase subunit IV	Increase of 20%

	GLUT4, MCT1 and MCT4	Unchanged
	VO ₂ peak	Increased 6%
Edgett, B. A., et al.	Peak EMG	Sign. Higher in the 100 and 133% conditions compared to the 73% condition
	PGC-1α mRNA	Elevated after all three conditions, with greater increase following 100% condition
PLOS One		Significant main affect of time with oversize, but no differences between intensity
	FDR4	
		conditions
	SIRT1mRNA	Elevated after all three conditions
	GCN5	Unchanged (negative regulator of PGC-1α activity)
	RIP140 mRNA	Significant main effect of time
Fernström M., et al.	VO2 peak + heart rate	Acute: 10% increase
		Endurance: 24% increase
J Physiol	Muscle CS activity	Acute: increase with 43% + elevated in recovery state
		Endurance: increase with 47%
	ADP-stimulated mitochondrial	Acute: coupled respiration (state 3) and UCR were unchanged
	respiration	Endurance: state 3 respiration remained unchanged, whereas state 4 respiration (UCR)
		decreased by 18%
	Mitochondrial proteins	Acute: UCP3 and ANT remained unchanged
		Endurance: ANT was increased, UCP3 was not significantly changed
Gibala, M. J., et al.	Peak power, mean power and total	Progressively decreased
	work	
J Appl Physiol	Muscle glycogen content	Lower after exercise and recovery compared with the rest
	Muscle lactate and creatine	Higher compared with the rest after bouts 1 and 4 but not different after recovery
	Muscle phosphocreatine	Lower after bouts 1 and 4 compared with the rest
	Muscle ATP	Only lower after bout 4

	Phosphorylation of AMPK	Higher after bout 4 compared with all other time points
	ACC phosphorylation	Higher after bouts 1 and 4 compared with the rest
	Phosphorylation of p38 MAPK	Higher after bout 4 compared with the rest
	CaMKII phosphorylation	Tended to be higher after bout 4 compared with the rest but not significant
	PGC-1α mRNA expression	Increased approximately twofold above rest after 3h of recovery
	PGC-1α protein content	unchanged
Gurd, B. J., et al.	VO ₂ peak	Increased 11%
	Citrate synthase max activity (CS)	Increased 28%
Applied Physiology	B-hydroxyacyl-coenzyme A	Increased 28%
nutrition and	dehydrogenase max activity (β-HAD)	
metabolism	COX-IV content	Increased 36%
	SIRT1 activity	Increased 31%
	SIRT1 protein content	Decreased 20%
	PGC-1α	Increased 16%
	Mitochondrial transcription factor A	No change
	(Tfam)	
Hansen, D., et al.	Total body mass%	Greater in MS
	Leg adipose tissue mass %	Greater in MS
Neurorehabilitation	Exercise cycling power output	Significantly higher in healthy subjects
and Neural Repair	HR, % of predicted max HR, expiratory	Similar between groups
	volume and blood lactate content	
	Borg RPEs	Significantly elevated during both exercise bouts in MS patients
	Exercise-onset mean response time	Significantly slower in MS

	Exercise-offset mean response time	Not different between groups or was independently related to having MS
Hansen, D., et al.	Subject characteristics	Between groups subjects were comparable except for type IIa muscle fibre CSA and
	(part 1)	VO _{2peak}
Translational	AMPK α and mTOR phosphorylation	Significantly higher in pwMS as opposed to healthy subjects
Research		
	Subject characteristics (part2)	Between groups body height, VO _{2peak} and fat mass were different
	W _{max}	Significantly higher in healthy controls
	Exercise intensity, ratings of perceived	Comparable between groups
	exertion and caloric expenditure	
	AMPKα and mTOR phosphorylation	Significantly different between groups before and after endurance exercise
		Increased in pwMS
Jacobs, R. A., et al.	VO ₂ peak	Increased 7,9%
	Peak power output	Increased 7%
J Appl Physiol	Time trial performance	Improved
	COX activity	Increased
Kent-Braun, J. A., et	Biopsies of the tibialis anterior muscle	*fewer type I fibres (66 +- 6 vs. 76 +- 6%) in MS but higher percent of type 2a fibres
al.		*fibres of all types were smaller (average <26%) in MS
		*lower succinic dehydrogenase (SDH average <40%) and SDH/a-glycerol-phosphate
J Appl Physiol		dehydrogenase (GPDH) in MS
	Maximal voluntary isometric force for	associated with both average fibre cross-sectional area ($r = 0.71$, $P = 0.005$) and muscle
	dorsiflexion	fat-free cross-sectional area by magnetic resonance imaging ($r = 50.80$, $P = 0.001$)
	Physical activity, assessed by	was associated with average fibre SDH/GPDH (r= 5 0.78,
	accelerometer,	P =0.008). There was a tendency for symptomatic fatigue to be inversely associated with
		average fibre SDH activity
		(r=20.57, P =0.068).

Kumleh, H. H., et al.	NADH-ferricyanide reductase activities	Significant lower in patients than in control subjects
Journal of the Neurological Sciences	Complex I activities	Significant reduced in patients compared with control
Larsen, R. G., et al	kPCr (rate of PCr recovery) and Vmax	* single session of HIT: unchanged
	(max. capacity for oxidative	* completion of six training sessions: 14% increase in muscle oxidative capacity
Am J Physiol Regul	phosphorylation)	
Integr Comp Physiol	VPi→ATP (estimation of unidirectional	* single session of HIT: unchanged
	rate of ATP synthesis)	* completion of six training sessions: unchanged
Larsen, R. G., et al.	VO _{2peak}	Increased 10%
Acta Physiol	Peak force	No main effects of short-term HIT
		[PCr] decreased and [Pi] increased during each contraction
		[PCr] was lower and [Pi] was higher during the 24-s contraction after training
	Concentration ADP	increased during the contraction with no effect of training
	Concentration ATP	[ATP] at the end of 24-s MVC was not different from [ATP] in resting muscle
		While ATP production by each pathway was unchanged after the first session, 6 sessions
		increased the relative contribution of ATPox, and lowered the relative contribution from
		both ATP_{CK} and ATP_{GLY} .
Larsen, S., et al.	VO ₂ peak	Increased
	Blood pressure	Unchanged
	HbA1c	Decreased

Scandinavian journal	CS activity	Increased 36%
of medicine and	HAD activity	Unchanged
science in sports	mtDNA	Unchanged
	Mitochondrial OXPHOS capacity	Unchanged
	Body weight	Tended to increase
	Fat %	Unchanged
	Lean body mass	Increased
	Fasting blood glucose concentration	Unchanged
	HSL concentration	Increased
	FABPm expression	Tended to increase
	CD36, DGAT, DGAT2, LPL, PLIN5,	Unchanged
	ATGL	
	Mitochondrial lipid OXPHOS capacity	Unchanged
	Complex I-linked OXPHOS capacity	Unchanged
	Complex I + II-linked OXPHOS	Increased
	capacity	
	COX flux	Increased
Little, J. P., et al.	Nuclear PGC-1α	Unchanged immediately after exercise, increased 66% at 3h recovery and not sign
		different from baseline at 24h recovery.
Am J Physiol Regul	Whole muscle PGC-1α	Unchanged immediately and 3h after exercise but increased by 57% at 24h of recovery
Integr Comp Physiol	PGC-1α mRNA	Unchanged immediately after exercise, increased 750% at 3h recovery and returned to
		basal levels at 24h
	CS protein content	Unchanged immediately and 3h after exercise but increased 30% at 24h
	COX II protein content	Unchanged immediately and 3h after exercise but increased 29% at 24h

	COX IV protein content	Increased 43% at 3h recovery and 30% at 24h
		Higher immediately after eversion returned to based levels at 2b receivery and again sign
		elevated at 24h recovery
	Cytosolic ACC phosphorylation	Increased immediately after exercise
	CS maximal activity	Increased 14% at 24h recovery
	COX maximal activity	Increased 19% at 24h recovery but did not reach statistical significance
Little, J. P., et al.	Time to complete time trials (50kJ and	Improved 11% and 9% respectively
	750kJ)	
Journal physiology	COX max activity	Increased 29%
	COX II protein content	Increased 35%
	COX IV protein content	Increased 38%
	CS max activity	Increased 16%
	CS protein content	Increased 20%
	PGC-1α in nuclear fractions	Increased 24%
	Whole muscle PGC-1α	Unchanged
	Total SIRT1 content	Increased 56%
	Tfam total protein content	Increased 37%
	NRF-1 protein content	Unchanged
	GLUT4 protein content	Increased 119%
	Resting muscle glycogen	Increased 17%
Mathai, A. S., et al.	Blood glucose concentration	Exercise resulted in similar concentrations during both trials. Ingestion of 1 g CHO/kg body
		wt at the start of recovery and again 1 h later resulted in significant increases in blood
J Appl Physiol		glucose and insulin concentrations (P < 0.05) within 30 min and throughout the first 2 h of
pp		recovery relative to Exh.

	Serum fatty free acids concentration	increased to similar concentrations during the two exercise sessions
	Plasma insuline concentration	Exercise resulted in similar concentrations during both trials. Ingestion of 1 g CHO/kg body
		wt at the start of recovery and again 1 h later resulted in significant increases in blood
		glucose and insulin concentrations (P < 0.05) within 30 min and throughout the first 2 h of
		recovery relative to Exh.
	PGC-1α mRNA	- Exhaustive exercise induced a two- to threefold increase in PGC-1_ mRNA
		relative to rest
		- PGC-1α mRNA abundance continued to increase to 6.2-fold by 2 h of recovery
		- By 24 h of recovery, PGC-1α mRNA abundance was repressed and corresponded
		to levels observed at rest
	PGC-1α protein concentration	- Increased significantly at the end of exhaustive exercise, and it remained elevated
		at 2 h of recovery, despite the large increase in mRNA at this time.
		- At 24 h after exercise, the PGC-1 α protein was still 16 ± 9% greater (P _ 0.05)
		than at rest
Perry, C. G., et al.	Mean power output	Increased 21%
	Body mass	Unchanged
Appl Physiol Nutr	VO ₂ peak	Increased 9%
Metab	Resting concentrations of Pcr, ATP,	Unchanged
	ADP _f and AMP _f	
	CS max activity	Increased 26%
	COX-IV protein content	Increased 18%
	B-HAD max activity	Increased 29%
	FAT/CD36	Increased 16%
	FABPpm	Increased 30%
	FATP4	Unchanged
	m-AspAT and PDHt max activities	Increased 26%
-----------------------	---------------------------------	--
	resting glycogen content	Increased 59%
	GLUT4	Increased 21%
	MCT1 protein content	Increased 14%
	MCT4 protein content	Increased 16%
	PHOSb	Unchanged
	Time to exhaustion	Improved 111%
	Muscle glycogenolysis	Decreased 32%
	Lactate accumulation	Lower
	Substrate phosphorylation	Reduced 20%
	Content ATP	Unchanged
	Muscle pH	Higher
	PDH activity	Unchanged
	lactate	decreased
Stepto, N. K., et al.	PGC-1α mRNA	Increased
	PGC-1β mRNA	Decreased
PLoS One	PRC mRNA	Increased
	Tfam mRNA	Tended to increase by 10% in response to exercise pre-training
	NRF2 mRNA	Unchanged
	Resting cytochrome C mRNA	Increased 26%
	CS mRNA	Unchanged
	COX IV mRNA	Only increased by exercise training
	B-HAD mRNA	Tended to decrease
	PGC-1a protein expression	Increased
	Co-repressor RIP140 expression	increased

	COX I expression	Decreased
	COX IV expression	Decreased
Talanian, J. L., et al.	Training power output	Increased every week throughout training
	VO _{2peak}	Increased significantly by 11 and 18% following 2 and 6wk, respectively
Am J Physiol	RER	Significant lower at all time points following both 2 and 6wk
Endocrinol Metab	Blood lactate concentrations	Increased during pre exercise trial, but not observed following 2, 6wk HIIT
	Whole muscle maximal activity	Significantly increased by 30% following 2wk of training, four additional weeks of training
	of CPT I	resulted of in further increases of 20%
	Whole muscle maximal activity of β-	Significantly increased by 30% following 2wk of training, four additional weeks of training
	HAD	resulted of in further increases of 20%
	Whole muscle maximal activity of CS	Significantly increased by 30% following 2wk of training, four additional weeks of training
		resulted of in further increases of 20%
	Whole muscle maximal activity of	Significantly increased by 30% following 2wk of training, four additional weeks of training
	mAspAT	resulted of in further increases of 20%
	COX-IV content	Significantly increased by 30% following 2wk of training, four additional weeks of training
		resulted of in further increases of 20%
	Whole muscle HSL content	Increased with training
	Total muscle and sarcolemmal GLUT4	Increased significantly following 2wk (30%) and increased further following 6wk (50%) of
		training.
	Whole body fat oxidation	Higher throughout training
	Whole body carbohydrate oxidation	20% decrease following training
Vincent, G., et al.	Peak power	Increased 22%
	Time to fatigue	Increased 33%
Frontiers in	VO ₂ peak	No significant increase
	CS activity	Increased 43%

Physiology	CYT-C	Increased 21%	
	PGC-1α protein expression	No significant effect	
Wens, I., et al.	Muscle fibre CSA and proportion	Unchanged in SED	
		Mean CSA increased in $H_{\pi}R$ and $H_{cT}R$	
PLoS One		Muscle fibre type I CSA increased in $H_{CT}R$ whereas muscle fibre type II and Iia increased	
		in HπR	
		Fibre type Iix CSA did not change	
		No changes in fibre type proportion observed	
	Isometric muscle strength	Remained stable in SED	
		Knee flexion and extension strength of the weakest leg improved in $H_{\Pi}R$ compared to SED	
		Only hamstring strength of the strongest leg improved with $H_{\!\Pi}R$	
		$H_{CT}R$ flexion and extension strength improved in weakest leg, unchanged in strongest leg	
	Endurance capacity	Unchanged in SED and H _{CT} R	
		$W_{\text{max}},$ test duration and $VO_{2\text{max}}$ significantly improved in $H_{IT}R$	
	Body composition	Body weight remained stable	
		Body fat % tended to decrease within $H_{\Pi}R$ and $H_{CT}R$	
		Lean tissue mass significantly increased within $H_{I\!T}R,~unchanged~in~H_{CT}R~and~SED$	
	Physical activity level	Compared to SED, PA level of $H_{TT}R$ and $H_{CT}R$ significantly increased	
		Unchanged in SED	

Wens, I., et al.	skeletal muscle fibre cross sectional	Compared to HC, mean muscle fibre CSA, as well as CSA of type I,II an IIa fibres were
	area and fibre type proportion	significantly smaller in MS patients (p<0.05), whereas muscle fibre CSA of type IIx was
PLoS One		comparable between both groups.
		Type II fibres experienced a larger atrophy, compared to type I fibres in MS (p<0.05).
		Compared to women, men had higher CSA for almost all fibre types in both HC and MS.
		Compared to HC, fibre type I proportion tended to be lower in MS (p=0.1), whereas type IIa
		proportion tended to be higher (p=0.1).
Body composition There were no differen		There were no differences between total body weight, adipose and lean tissue mass of MS
		and HC.
		Compared to HC, the lower limb, of which the muscle tissue was collected tended to have
		a higher fat percentage (p=0.1) and a lower lean mass (p=0.06) in MS.
	Isometric muscle strength of the	Compared to HC, MS patients showed reduced isometric muscle strength of the
	quadriceps	quadriceps of the biopsied leg (-22%, p<0.05).

ACC	acetyl-coenzyme A carboxylase
AMP	adenosine monophosphate
AMPK	adenosine monophosphate-activated protein
	kinase
ATP	adenosine triphosphate
CONT	continuous
COX	cytochrome c oxidase
CS	citrate synthase
CSA	cross sectional area
HIIT	High intensity interval training
HIT	High intensity training
HRQOL	health related quality of life
INT	interval
MS	Multiple sclerosis
р38-МАРК	p38 mitogen-activated protein kinase
PGC-1α	peroxisome proliferator-activated receptor
	gamma coactivator 1-alpha
Phospho-AMPKa	activated protein kinase phosphorylation
pwMS	Patients with multiple sclerosis
RCT	Randomized controlled trial
RER	Respiratory exchange ratio
VO2 _{peak}	peak rate of oxygen consumption
WOS	Web Of Science

Table 10: list of abbreviations

	Tobias Severijns	Ferdy Wijckmans
Period 1:	- Composing search strategy	- Composing search strategy
(21/09/2015 -	- Searching articles	- Searching articles
08/11/2015)		
Period 2:	- Composing search strategy	- Composing search strategy
(09/11/2015 -	- Searching articles	- Searching articles
03/01/2016)		
Period 3:	- Composing search strategy	- Composing search strategy
(04/01/2016 -	- Searching articles	- Searching articles
14/02/2016)	- Completion first search	- Completion first search
		- Start writing "Method"
Period 4:	/	1
(15/04/2016 -		
10/04/2016)		
Period 5:	- Start writing "Results"	- Repeat search strategy
(11/04/2016 -	- Double check method, tables (1, 2, 3,	- Finish writing "Method"
22/05/2016)	4) and figures (1, 2).	- Start writing "Introduction"
	- Table 5: Cochrane checklist for	- Table 1: List of search terms used in
	randomized controlled trials	PubMed
	- Table 6: Quality assessment standard	- Table 2: List of search terms used in
	for a cross-over study	Web of Knowledge (WOK)
	- Table 7: Self-made checklist for quasi	- Figure 1: Flowchart in- and excluded
	experimental studies without control	articles of pwMS
	group	- Figure 2: Flowchart in- and excluded
	- Table 8: Checklist for cross-sectional	articles of healthy subjects and
	studies	pathologies similar to MS
		- Table 3: Reasons of exclusion
		concerning pwMS
		- Table 4: Reasons of exclusion
		concerning healthy subjects and
		pathologies similar to MS
		- Double check tables (5, 6, 7, 8)
Period 6:	- Finish writing "Results". (50%)	- Finish writing "Results". (50%)
(23/05/2016 -	- Double check "Introduction"	- Finish writing "Introduction"
30/06/2016)	- Table 9.1 (75%): Overview included	- Start writing "Research protocol" (part
	articles - type of article, subjects, used	2)

Table 11: individual accomplishments

	techniques and conclusion	- Table 9.1 (25%): Overview included
	- Table 9.2 (75%): Overview included	articles - type of article, subjects, used
	articles - population, aims and	techniques and conclusion
	interventions	- Table 9.2 (25%): Overview included
	- Table 9.3 (75%): Overview included	articles - population, aims and
	articles - outcome measures and results	interventions
		- Table 9.3 (25%): Overview included
		articles - outcome measures and results
Period 7:	- Writing "Discussion"	- Double check "Discussion", "Abstract"
(01/07/2016 -	- Writing "Abstract"	and "Research framework"
24/07/2016)	- Writing "Research framework"	- Writing "Highlights"
	- Table 10: list of abbreviations	- References part 1 and 2
	- Double check "Research protocol"	- Finish writing "Research protocol" (part
	(part 2)	2)
		- Table 11: individual accomplishments

www.uhasselt.be/glw

postadres: Universiteit Hasselt | Martelarenlaan 42 | BE-3500 Hasselt bezoekadres: Universiteit Hasselt | Agoralaan, gebouw D | BE-3590 Diepenbeek T +32(0)11 26 85 36 | F +32(0)11 26 85 99 | E-mail: glw@uhasselt.be

Table 12: Progress form

DATUM	INHOUD OVERLEG	HANDTEKENINGEN
16/10/2015	* Kennismaking promotor	Promotor: Prof. Dr. Bert Op 't Eijnde
	* Afspraken omtrent masterproef met promotor	
	* Tekenen contract masterproef	Student(e): Ferdy Wijckmans
		Student(e): Tobias Severijns
03/11/2015	* Kennismaking copromotor	Copromotor: Dr. Wens Inez
	* Afspraken omtrent uitwerking masterproef met	
	copromotor	Student(e): Ferdy Wijckmans
		Student(e): Tobias Severijns
08/02/2016	* Presentatie literatuurstudie masterproef	Promotor: Prof. Dr. Bert Op 't Eijnde
	* Bespreking voortgang	
	* Vastleggen verdere afspraken	Copromotor: Dr. Wens Inez
		Student(e): Ferdy Wijckmans
		Student(e): Tobias Severijns
24/06/2016	* Bespreking voortgang	Promotor: Prof. Dr. Bert Op 't Eijnde
	* Laatste afspraken	
	* Vastleggen Deadlines	Copromotor: Dr. Wens Inez
		Student(e): Ferdy Wijckmans
		Student(e): Tobias Severijns

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling: Effect of High-Intensity Interval Training on Mitochondrial Density in Skeletal Muscles of MS Patients

Richting: master in de revalidatiewetenschappen en de kinesitherapie-revalidatiewetenschappen en kinesitherapie bij neurologische aandoeningen Jaar: 2016

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze overeenkomst.

Voor akkoord,

Wijckmans, Ferdy

Severijns, Tobias