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Abstract

Due to the increasing popularity of cloud computing and big data, there is
a growing need for data processing in distributed and parallel settings. Of
particular interest are the evaluations of queries in a single-round of commu-
nication where data is distributed over different servers according to some
distribution policy, after which each server evaluates the query over the lo-
cally available data. Based on this setting, Ameloot et al. [4] introduced a
correctness condition, called parallel-correctness, and studied this condition
as well as transferability of parallel-correctness while considering unions of
conjunctive queries under set semantics. In this thesis, we extend this study
toward bag semantics, as bag semantics are often used in practice and their
usage is inevitable for certain aggregation functions. We provide charac-
terizations for both parallel-correctness and transferability for conjunctive
queries with inequalities under bag semantics and use these characterizations
to study the complexity of these problems. The existing distributed evalu-
ation model is however quite restrictive on possible distribution policies for
certain conjunctive queries under bag semantics. We therefore propose a
slightly modified model based on ordered networks.
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Dutch summary
Nederlandse samenvatting

Inleiding

Vanwege de groeiende populariteit van cloud computing en big data is er
steeds meer nood aan het verwerken van zeer grote hoeveelheden data. Voor
deze toepassingen wordt typisch gebruik gemaakt van gedistribueerde syste-
men bestaande uit honderden tot zelfs duizenden servers waarbij elke server
een deel van de data toegewezen krijgt. Het MapReduce model [10], ont-
wikkeld door Google, vereenvoudigt het efficiënt verwerken van deze data
over een netwerk van servers door middel van abstractie. Een gebruiker
van het MapReduce model moet bijvoorbeeld niet zelf communicatie tussen
de verschillende servers implementeren of hardware storingen afhandelen,
aangezien het MapReduce model dit onderliggend reeds voorziet. Recente
technologieën zoals Spark [5] combineren dit MapReduce model met in-
memory systemen. Het voordeel van deze in-memory systemen is dat data
niet langer geladen moet worden vanuit extern geheugen zoals bijvoorbeeld
een harde schijf, waardoor de verwerking ervan sneller is. In tegenstelling
tot traditionele databases wordt de uitvoeringstijd nu niet langer bepaald
door het aantal IO-operaties, maar door de hoeveelheid netwerkcommuni-
catie tussen de verschillende servers.

Gebaseerd op deze gedistribueerde systemen introduceerden Koutris en
Suciu [14] een massively parallel communication (MPC) model bestaande uit
een netwerk van servers, nodes genaamd, gebruik makend van een shared-
nothing architectuur. In dit MPC model worden berekeningen uitgevoerd
door afwisselende fases van enerzijds globale synchronisatie en communicatie
en anderzijds berekeningen per node. Tijdens de communicatie fase kunnen
de verschillende nodes data uitwisselen, waarna elke node in de daaropvol-
gende fase berekeningen doet op de lokaal beschikbare data. Dit MPC model
maakt het mogelijk om de complexiteit van algoritmes in gedistribueerde
omgevingen te bestuderen en vergelijken. Zo onderzochten Beame, Koutris
en Suciu [6, 14] de complexiteit van het evalueren van conjunctieve queries
in dit MPC model.
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Een bijzonder geval van dit MPC model zijn single-round evaluaties van
queries. In dit geval wordt de data eerst gedistribueerd aan de hand van een
distribution policy, waarna elke node de query uitvoert op de lokale data.
Het uiteindelijke resultaat wordt bekomen door de unie te nemen over al
deze lokale resultaten. Een specifieke familie van distribution policies die
bruikbaar zijn bij de evaluatie van conjunctieve queries in het single-round
MPC model zijn Hypercube distributions [7]. Een Hypercube distribution
verdeelt de data over de nodes op basis van de structuur van de conjunctieve
query. Deze techniek is reeds terug te vinden in het werk van Ganguly,
Silberschatz en Tsur [11], en is door Afrati en Ullman [3] bestudeerd in de
context van MapReduce.

Ameloot et al. [4] beschreven een algemeen framework dat toelaat single-
round evaluaties van conjunctieve queries onder willekeurige distribution
policies te bestuderen. Meer bepaald introduceerden ze de volgende twee
eigenschappen voor queries en distribution policies:

• Parallel-correctness: Gegeven een query Q en een distribution policy
P , produceert de single-round gedistribueerde evaluatie van Q volgens
P steeds het correcte resultaat, onafhankelijk van de data waarover Q
geëvalueerd wordt?

• Parallel-correctness transfer: Gegeven twee queries Q en Q′, is Q′
parallel-correct onder elke distribution policy P waaronder Q parallel-
correct is?

Deze tweede eigenschap laat toe om meerdere queries achter elkaar uit te
voeren zonder de data opnieuw te distribueren. Deze eigenschap is daarom
voornamelijk nuttig in een setting met geautomatiseerde datadistributie
waarbij het doel is om de data optimaal te verdelen wanneer meerdere
queries geëvalueerd moeten worden. Ameloot et al. [4] onderzochten ver-
volgens deze eigenschappen in het kader van unies van conjunctieve queries
met ongelijkheden. Voor beide eigenschappen beschreven ze een karakteri-
sering die hen toeliet om de complexiteit van deze eigenschappen te bepalen.
Meer specifiek toonden ze aan dat parallel-correctness beslissen Πp

2-compleet
is, zelfs voor conjunctieve queries zonder unies en ongelijkheden. Parallel-
correctness transfer beslissen is daarentegen Πp

3-compleet.
De resultaten van Ameloot et al. [4] zijn gebaseerd op conjunctieve

queries onder set semantiek, wat inhoudt dat mogelijke duplicaten in het
resultaat genegeerd worden. In de praktijk worden queries echter vaak on-
der bag semantiek geëvalueerd, wat inhoudt dat mogelijke duplicaten niet
verwijderd worden uit het resultaat, tenzij expliciet aangegeven. De reden
hiervoor is dat het verwijderen van duplicaten mogelijk veel tijd inneemt
bij grotere datasets. Bovendien is het behoud van deze duplicaten essen-
tieel voor aggregatie functies waarbij bijvoorbeeld het aantal voorkomens
van elk resultaat geteld wordt. Chaudhuri en Vardi [8] definieerden reeds

vi



de evaluatie van conjunctieve queries onder bag semantiek en onderzochten
optimalisatie en containment in deze setting.

Vanwege het praktisch nut van evaluaties van queries onder bag se-
mantiek breiden we in deze thesis het werk van Ameloot et al. [4] uit
naar bag semantiek. We voorzien eerst alternatieve karakteriseringen voor
parallel-correctness en transferability onder bag semantiek, waarna we deze
karakteriseringen gebruiken om de complexiteit van beide eigenschappen te
bestuderen. Vervolgens wordt voor beide eigenschappen het verband tussen
set en bag semantiek bestudeerd. Aangezien parallel-correctness onder bag
semantiek zeer restrictief blijkt te zijn voor toegelaten distribution policies,
stellen we een alternatief gedistribueerd model voor gebaseerd op geordende
netwerken.

Terminologie

Deze sectie geeft een informele samenvatting van de gebruikte terminologie.
Voor de formele definities verwijzen we naar Chapter 2.

Een instance onder set semantiek is een verzameling van facts. Onder
bag semantiek is een instance een verzameling van annotated facts. Deze
annotated facts zijn combinaties van een fact en een multipliciteit, waarbij
deze multipliciteit intüıtief aangeeft hoeveel keer een bepaalde fact voorkomt
in een instance.

Een conjunctieve query met ongelijkheden Q is van de vorm

T (x)← R1(y1), . . . , Rm(ym), β1, . . . , βp

waarbij elke Ri de naam van een relatie is en elke yi een verzameling van
variabelen. We verwijzen naar de atomen Ri(yi) in Q als bodyQ en naar T (x)
als headQ. Bij deze laatste stelt x een verzameling van variabelen voor die
elk in een yi voorkomen. Elke βi stelt een ongelijkheid z 6= z′ voor waarbij
z en z′ variabelen zijn die ook in een yi voorkomen. We verwijzen naar de
verzameling van alle conjunctieve queries met ongelijkheden als CQ6= en
naar de verzameling van alle conjunctieve queries zonder ongelijkheden als
CQ. Merk op dat per definitie CQ ⊆ CQ6=.

Een valuatie V voor een conjunctieve query met ongelijkheden Q is een
totale functie die variabelen in Q afbeeldt op waarden uit een universum
U en die bovendien de ongelijkheden in Q respecteert. De facts V (bodyQ)
zijn de benodigde facts voor een valuatie V . Indien een instance I al deze
facts bevat, leidt V het fact V (headQ) af. Onder bag semantiek wordt dit
afgeleide fact bovendien gecombineerd met een multipliciteit die bepaald
wordt door de multipliciteiten van de benodigde facts voor V in I. Het
uiteindelijke resultaat Q(I) van een query Q op een instance I is de unie
van alle afgeleide facts door valuaties voor Q waarvoor de benodigde facts
in I aanwezig zijn.
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Een netwerk bestaat uit een verzameling van nodes. Facts worden over
deze nodes gedistribueerd aan de hand van een distribution policy P . We
gebruiken de notatie rfactsP (κ) om de verzameling van facts te beschrijven
die volgens P op een node κ gemapt worden. Merk in het bijzonder op dat
facts naar een willekeurig aantal nodes gemapt kunnen worden en dat de
voorafgaande verdeling van facts over verschillende nodes geen rol speelt in
de distributie van deze facts. De single-round evaluatie van een conjunctieve
query Q over een netwerk bestaat uit twee stappen. Eerst wordt Q op elke
node apart geëvalueerd, waarna het uiteindelijke resultaat bepaald wordt
door de unie van al deze lokale resultaten te nemen. We noteren de gedis-
tribueerde evaluatie van een query Q over een instance I aan de hand van
een distribution policy P als [Q,P ](I).

Parallel-correctness en transferability

Een query Q is parallel-correct onder een distribution policy P indien voor
alle instances I geldt dat Q(I) = [Q,P ](I). De gedistribueerde evaluatie
van Q volgens P moet met andere woorden steeds het correcte resultaat
opleveren. In deze thesis onderzoeken we deze eigenschap voor conjunc-
tieve queries met ongelijkheden onder bag semantiek. We tonen aan dat
een query Q ∈ CQ6= parallel-correct is onder een distribution policy P over
een netwerk N onder bag semantiek als en slechts als voor elke valuatie V
voor Q er exact één node κ in N bestaat zodat V (bodyQ) ⊆ rfactsP (κ). Met
andere woorden moet elke valuatie V die gebruikt wordt in de evaluatie van
Q(I) over een instance I ook in de gedistribueerde omgeving exact één keer
toegepast worden. Dit kan intüıtief ingezien worden door het feit dat het
ontbreken van valuaties leidt tot ontbrekende resultaten, terwijl het dubbel
gebruiken van valuaties leidt tot dubbele resultaten.

Aan de hand van deze karakterisering tonen we vervolgens aan dat het
bepalen of een query Q ∈ CQ6= parallel-correct is onder een distribution
policy P onder bag semantiek in Πp

2 zit. Deze bonvengrens kan echter ver-
beterd worden indien we ons beperken tot distribution policies waarbij de
toekenning van facts aan nodes beschreven kan worden aan de hand van een
deterministisch polynomiaal algoritme. In dat geval zit het beslissen van
parallel-correctness meer bepaald in coNP. We tonen bovendien aan dat dit
probleem coNP-compleet is. Deze bovengrens is met andere woorden ook on-
middellijk een ondergrens voor parallel-correctness van conjunctieve queries
onder bag semantiek. Het bewijs van deze ondergrens wordt geleverd via een
reductie van 3-SAT, een welbekend NP-compleet probleem [9, 13], naar het
complement van het parallel-correctness probleem.

Beschouw twee queries Q en Q′. We zeggen dat er parallel-correctness
transfer is van Q naar Q′ indien Q′ parallel-correct is onder elke distribution
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policy waaronderQ parallel-correct is. Zoals reeds aangehaald in de inleiding
is deze eigenschap zeer nuttig indien meerdere queries geëvalueerd moeten
worden, aangezien het toelaat meerdere queries uit te voeren zonder de data
opnieuw te moeten distribueren na elke query.

De bovenstaande karakterisering van parallel-correctness onder bag se-
mantiek impliceert onrechtstreeks dat, afhankelijk van de queryQ in kwestie,
de benodigde facts van bepaalde valuaties voor Q steeds samen gegroepeerd
moeten worden op een willekeurige node in het netwerk. Dit is een gevolg van
het feit dat de benodigde facts van elke valuatie slechts op één node mogen
samenkomen, gecombineerd met de observatie dat de benodigde facts van
bepaalde valuaties strikte subsets zijn van de benodigde facts van andere
valuaties. We gebruiken impFacts(V,Q) om deze verzameling van alle facts
te beschrijven die steeds voorkomen op een node waarop de benodigde facts
van een valuatie V voor Q voorkomen onder distribution policies waaron-
der Q parallel-correct is. In deze thesis wordt een verzameling van aflei-
dingsregels voor impFacts(V,Q) beschreven die bovendien compleet zijn in-
dien we werken onder een eindig domein van mogelijke waarden.

Onder bag semantiek is er parallel-correctness transfer van een query
Q ∈ CQ6= naar een query Q′ ∈ CQ6= als en slechts als voor elke valu-
atie V ′ voor Q′ er een valuatie V voor Q is zodat V (bodyQ) ⊆ V ′(bodyQ′) ⊆
impFacts(V,Q). Deze karakterisering leidt tot de observatie dat het beslissen
van transferability voor queries in CQ6= onder bag semantiek in EXPTIME
zit. Deze bovengrens wordt bepaald door de berekening van impFacts(V,Q)
voor elke valuatie V voor Q over een eindig domein. Daarom kan deze
bovengrens verlaagd worden tot Πp

2 indien we ons beperken tot conjunctieve
queries met ongelijkheden zonder self-joins. Voor deze conjunctieve queries
zonder self-joins geldt immers steeds dat impFacts(V,Q) = V (bodyQ).

Vergelijking tussen set en bag semantiek

Ameloot et al. [4] toonden reeds aan dat de karakteriseringen van parallel-
correctness en transferability voor conjunctieve queries onder set semantiek
gerelateerd zijn aan de notie van minimale valuaties. Deze minimale valuaties
zijn valuaties waarvoor er geen andere valuaties bestaan die hetzelfde fact
afleiden maar strikt minder facts vereisen. Onder bag semantiek is deze notie
niet langer van belang, aangezien elke valuatie van belang is om een correcte
multipliciteit te bepalen. Ondanks dit verschil blijken er toch nog bepaalde
relaties tussen set en bag semantiek te zijn.

Voor parallel-correctness blijkt meer bepaald dat een conjunctieve query
Q ∈ CQ6= steeds parallel-correct is onder een distribution policy P on-
der set semantiek indien deze query Q parallel-correct is onder P onder bag
semantiek. In de omgekeerde richting is dit helaas niet altijd het geval. Wan-
neer we ons echter beperken tot strongly minimal conjunctieve queries en
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nonreplicating distribution policies vallen parallel-correctness onder set en
bag semantiek samen. Deze strongly minimal queries zijn kort samengevat
queries waarbij elke valuatie minimaal is. Nonreplicating distribution poli-
cies zijn anderzijds distribution policies waarbij elk fact op hoogstens één
node gemapt wordt.

Voor transferability blijkt er helaas geen onmiddellijk verband te zijn in
het algemeen. In het bijzonder impliceert transferability onder bag semantiek
niet noodzakelijk transferability onder set semantiek, ondanks het feit dat
parallel-correctness onder bag semantiek wel steeds parallel-correctness on-
der set semantiek impliceert. Indien we ons opnieuw beperken tot strongly
minimal conjunctieve queries en nonreplicating distribution policies vallen
parallel-correctness transfer voor set en bag semantiek wel opnieuw samen.

Geordende netwerken

Hierboven werd reeds kort aangehaald dat de karakterisering van parallel-
correctness onder bag semantiek onrechtstreeks een bepaalde groepering
van facts op de verschillende nodes impliceert. Afhankelijk van de query
Q kan dit zelfs betekenen dat er geen distribution policy P bestaat zo-
dat Q parallel-correct is onder P en P de facts zodanig verspreid dat niet
alle valuaties op dezelfde node worden afgeleid. Voor dergelijke queries is de
beschreven gedistribueerde omgeving volgens het MPC model compleet nut-
teloos, aangezien bij deze queries niet efficiënt gebruik gemaakt kan worden
van de verschillende nodes om de data te verdelen.

Omwille van deze beperkingen stellen we een aanpassing aan het gedis-
tribueerd model voor die de karakterisering van parallel-correctness onder
bag semantiek minder strikt maakt. Deze aanpassing voegt meer bepaald
een totale orde toe over de nodes in het netwerk. Een node κ in het geor-
dend netwerk leidt enkel een fact af op basis van een bepaalde valuatie V
indien deze node alle benodigde facts bevat en er geen andere node κ′ in het
netwerk bestaat die ook al de benodigde facts voor V bezit en volgens de
orde vóór κ komt.

Merk op dat deze aanpassing het resultaat onder set semantiek niet aan-
past, waardoor de karakteriseringen voor parallel-correctness en transferabi-
lity onder set semantiek behouden blijven. Onder bag semantiek leiden deze
aanpassingen echter wel tot een aangepast resultaat. Geordende netwerken
laten in het bijzonder toe dat onder bag semantiek meerdere nodes de ben-
odigde facts voor een bepaalde valuatie mogen bevatten, aangezien van deze
nodes toch enkel de eerste deze valuatie effectief zal gebruiken om een fact
af te leiden. Met andere woorden wordt de karakterisering van parallel-
correctness onder bag semantiek onder geordende netwerken als volgt vereen-
voudigd: een query Q ∈ CQ6= is parallel-correct onder een distribution
policy P over een geordend netwerk N als en slechts als voor elke valu-
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atie V voor Q er een node κ ∈ N bestaat zodat V (bodyQ) ⊆ rfactsP (κ). De
bepaalde bovengrenzen op de complexiteit van parallel-correctness onder
bag semantiek blijven ongewijzigd onder deze aanpassing. De karakterise-
ring voor transferability vereenvoudigt aanzienlijk, waardoor de bovengrens
op de complexiteit verbeterd kan worden tot Πp

2.

Hypercube distributions

Hypercube distributions voor een conjunctieve query Q zijn distribution
policies die de data verdelen over de verschillende nodes op basis van de
structuur van Q. Meer bepaald organiseert een Hypercube distribution de
nodes in het netwerk volgens een hypercube met een dimensie per variabele
in Q.

Ameloot et al. [4] onderzochten reeds deze Hypercube distributions on-
der set semantiek en kwamen tot de conclusie dat een conjunctieve query Q
steeds parallel-correct is onder Hypercube distributions voor Q onder set se-
mantiek. Deze resultaten gelden helaas niet onder bag semantiek, aangezien
een Hypercube distribution alle benodigde facts van een valuatie voor Q
mogelijk toekent aan meerdere nodes.

Het aangepaste model op basis van geordende netwerken vermijdt echter
dit probleem waarbij een valuatie niet op meerdere nodes gebruikt mag wor-
den onder bag semantiek. Bovendien bëınvloedt het aangepaste model de re-
sultaten onder set semantiek niet, waardoor we kunnen besluiten dat onder
het aangepaste model conjunctieve queries parallel-correct zijn onder Hy-
percube distributions, zowel onder set semantiek als onder bag semantiek.
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Chapter 1

Introduction

Due to the increasing popularity of cloud computing and big data, there is
a growing need for data processing in distributed and parallel settings. Al-
though parallel and distributed data management systems have been around
for quite some time now, the current demand to execute complex queries in
function of large-scale data analytics poses new challenges. Furthermore,
distributed environments are nowadays no longer restricted to a couple of
servers, but may easily consist of thousands of servers.

In order to facilitate the processing of large amounts of data, Google
developed the MapReduce programming model [10]. This model allows de-
velopers to take advantage of a distributed environment while abstracting
away from some core difficulties related to distributed programming. For
example, the MapReduce framework takes care of scheduling the program’s
execution across the different servers, handles inter-server communication
and copes with machine failures. More specifically, A user only needs to de-
fine two functions, map and reduce. The MapReduce environment then par-
allelizes and executes these functions across the different servers. Hadoop [1],
an open-source software framework for storing and processing data in a dis-
tributed environment, provides with Hadoop MapReduce an open-source
implementation of the MapReduce programming model.

More high-level declarative languages were developed to further facili-
tate the implementation of programs handling large amounts of data in a
distributed environment. Popular languages include Pig [15], developed by
Yahoo! and Hive [17], developed by Facebook. Queries in these languages
are compiled into MapReduce jobs and executed on Hadoop MapReduce.

More recent systems like Spark [5] combine the MapReduce model with
in-memory systems. In contrast to traditional database systems where all the
data is managed on a single machine, the complexity of evaluating a query
on these modern massively distributed systems is no longer determined by
the number of IO requests to external memory. Instead, the complexity of
calculating a query over massive datasets distributed over a large amount
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of servers is dominated by the necessary amount of communication between
the different servers.

Based on these distributed systems, Koutris and Suciu [14] proposed a
massively parallel communication model (MPC), based on a cluster of nodes
(or servers) using a shared-nothing architecture. In this model, computation
is performed in alternating phases of global synchronization and communica-
tion between the different servers on the one hand and parallel computation
on each server on the other hand. During the latter phase, there is no com-
munication between the different servers, implying that each server performs
its computation on the locally available data only.

The MPC model is particularly useful to study the computational com-
plexity of algorithms in a massively distributed environment. Beame, Koutris
and Suciu [6, 14] studied the computational complexity of evaluating con-
junctive queries in this MPC model.

A special case of queries that can be evaluated in the MPC model are
those computable in a single round. These embarrassingly parallel MPC pro-
grams are characterized by a distribution phase, during which the data is
reshuffled across the different servers according to some distribution policy,
followed by a computation phase on each server without further communi-
cation between different servers. The final result is obtained by taking the
union of the local results on each server. A particular family of distribution
policies used to evaluate conjunctive queries in the single-round MPC model
are Hypercube distributions [7]. A Hypercube distribution for a conjunctive
query Q distributes the data based on the structure of Q. This technique
can be traced back to Ganguly, Silberschatz and Tsur [11] and is studied in
the context of MapReduce by Afrati and Ullman [3].

A general framework for reasoning about single-round evaluation algo-
rithms under arbitrary distribution policies is provided by Ameloot et al. [4].
They introduced the following correctness properties for queries and distri-
bution policies:

• Parallel-correctness: Given a query Q and a distribution policy P , is it
true that the single-round distributed evaluation of Q according to P
will always produce the correct result, independently from the instance
of data over which Q is evaluated?

• Parallel-correctness transfer: Given two queries Q and Q′, is it true
that Q′ is parallel-correct under every distribution policy under which
Q is parallel-correct?

The latter is especially useful in a setting of automatic data partitioning for a
workload of queries where the aim is to achieve overall optimal performance,
as it allows multiple queries to be evaluated without reshuffling the data after
each query.
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Ameloot et al. [4] then studied these correctness properties for unions of
conjunctive queries with inequalities. They described a characterization for
both properties, allowing them to provide matching upper and lower bounds
for deciding both parallel-correctness and transferability. They proved that
testing parallel-correctness is Πp

2-complete, even for conjunctive queries with-
out unions and inequalities. Deciding transferability on the other hand is
Πp

3-complete.
Geck et al. [12] extended these results by considering parallel-correctness

for (unions of) conjunctive queries with negations. They provided a matching
upper and lower bound, thereby proving that deciding parallel-correctness
for unions of conjunctive queries with negations is coNEXPTIME-complete.
This lower bound even holds for conjunctive queries with negations.

The results for the single-round evaluation of conjunctive queries men-
tioned above focus on set semantics, meaning that possible duplicates in the
result are ignored. In practice however, queries are often evaluated under bag
semantics, implying that duplicates are not removed from the result, unless
explicitly requested. Two reasons for this practical approach are as follows.
On the one hand, removing duplicates might be computationally expensive
over large datasets. On the other hand, these duplicates might be neces-
sary to correctly perform aggregate functions, like counting or averaging the
results. Chaudhuri and Vardi [8] provided a definition for the evaluation
of conjunctive queries under bag semantics and studied optimization and
containment of conjunctive queries under bag semantics.

In this thesis, we extend the work initiated by Ameloot et al. [4] toward
bag semantics. We study the problems of parallel-correctness and transfer-
ability for conjunctive queries with inequalities under bag semantics. The for-
mer is shown to be equivalent to deciding whether or not every valuation for
a given conjunctive query is satisfiable on exactly one node in the network.
Based on this characterization, we prove that deciding parallel-correctness
is in Πp

2. This upper bound can be lowered if the class of considered dis-
tribution policies is further restricted to deterministic or finite distribution
policies. We show that deciding parallel-correctness for this class of distri-
bution policies is coNP-complete by providing a matching upper and lower
bound.

The characterization for parallel-correctness indirectly implies that some
valuations for a conjunctive query Q will always be grouped together on the
same node, assuming Q is parallel-correct under the considered distribution
policy. We use this observation to provide a characterization for transfer-
ability. Based on these results, we show that deciding transferability is in
EXPTIME. This upper bound can be improved to Πp

2 if the considered con-
junctive queries are limited to conjunctive queries without self-joins.

The provided results under bag semantics are quite different from the
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results under set semantics, obtained by Ameloot et al. [4]. We therefore
study the relation between set and bag semantics while evaluating conjunc-
tive queries with inequalities. We show that parallel-correctness under bag
semantics always implies parallel-correctness under set semantics, but the
converse is not necessarily true. If we constrain the queries to strongly min-
imal conjunctive queries with inequalities and the distribution policies to
nonreplicating distribution policies, parallel-correctness under set and bag
semantics are equivalent. We also show that for transferability there is no
immediate relation between set and bag semantics in general. It follows from
our observations on parallel-correctness that transferability under set and
bag semantics coincide if the considered queries are restricted to strongly
minimal ones and the distribution policies are nonreplicating.

The characterization for parallel-correctness under bag semantics might
imply some severe restrictions on possible distribution policies. Depending
on the considered query Q, it might even be impossible to construct a distri-
bution policy for Q effectively using more than one node in the network. We
therefore present a slightly different distributed evaluation model. In this
modified model, a node only derives a fact according to a valuation if there
is no other node in the network that already satisfies this valuation. This
modified evaluation model is still executable in a single round, assuming each
node has some knowledge about the network and the applied distribution
policy.

Under this modified model, we study parallel-correctness and transfer-
ability under both set and bag semantics. We show that the characterizations
under set semantics remain unchanged under this modified model. Decid-
ing parallel-correctness under bag semantics on the other hand simplifies to
testing whether or not each valuation for the considered conjunctive query is
satisfiable on at least one node in the network. This simplification results in
a different characterization for transferability under bag semantics, allowing
us to improve the upper bound for deciding transferability in the general
case to Πp

2. In contrast to the original model, a conjunctive query Q is al-
ways parallel-correct under Hypercube distributions for Q when considering
bag semantics under this modified model.

Outline The necessary definitions and terminology are provided in Chap-
ter 2. In Chapter 3, we describe the notion of parallel-correctness and trans-
ferability, as well as a summary of the obtained results under set semantics.
We study parallel-correctness and transferability for conjunctive queries with
inequalities under bag semantics in Chapter 4. The relation of both parallel-
correctness and transferability between set and bag semantics is discussed
in Chapter 5. In Chapter 6, we provide a modified distributed evaluation
model and study the implications for parallel-correctness and transferability
under set and bag semantics. Chapter 7 describes Hypercube distributions
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and its relation to parallel-correctness under bag semantics. The obtained
results for parallel-correctness and transferability under bag semantics are
extended toward unions of conjunctive queries with inequalities in Chap-
ter 8. We conclude in Chapter 9.
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Chapter 2

Definitions

In this chapter we introduce the necessary definitions and terminology used
throughout this master thesis. The terminology related to (unions of) con-
junctive queries and (distributed) evaluations under set semantics is based
on the work by Ameloot et al. [4], whereas the terminology related to con-
junctive queries under bag semantics is based on the work by Chaudhuri
and Vardi [8]. Some adaptations were made to improve the consistency of
the terminology between both semantics.

2.1 Queries and instances

We assume an infinite set dom of data values that are representable by
strings over a fixed alphabet. A database schema D is a finite set of relation
names R where every R has arity ar(R). A fact R(d1, . . . , dk) is over a
database schema D and a universe U ⊆ dom where R ∈ D, k = ar(R)
and d1, . . . , dk ∈ U . We use facts(D, U) to denote the set of all facts over
database schema D and universe U ⊆ dom.

An annotated fact fa is a tuple (f,m) with f a fact and m ∈ N0 the
multiplicity of f . A bag of facts F is a set of annotated facts. Every fact f
may appear at most once as an annotated fact in B. That is, (f,m) ∈ B
and (f ′,m′) ∈ B implies that f 6= f ′. Intuitively, the multiplicity m of a
fact f indicates the number of times f appears in the bag. We denote the
set of facts appearing in F by facts(F ) and the multiplicity of a fact f in
the bag F by mul(f, F ). For convenience, we assume mul(f, F ) = 0 when
f /∈ facts(F ).

When considering two bags of facts F and G, the bag union H, denoted
F∪BG, is defined as follows: facts(H) = facts(F )∪facts(G) and mul(f,H) =
mul(f, F ) + mul(f,G) for each fact f ∈ facts(H).

A bag of facts F is a subset of or equal to a bag of facts G, denoted
F ⊆ G, if for each fact f ∈ facts(F ) it holds that mul(f, F ) ≤ mul(f,G).

Under set semantics, a (database) instance I over D is a finite set of

7



facts of D. Under bag semantics, a (database) instance I over a database
schema D is a bag of facts, with facts(I) ⊆ facts(D). Under both set and
bag semantics, we use adom(I) to denote the set of data values occurring in
I.

A query Q over input schema D1 and output schema D2 is a generic
mapping from instances over D1 to instances over D2.

2.2 Conjunctive queries

Assume an infinite set of variables var, disjoint from dom. An atom over a
database schema D is of the form R(x), with R ∈ D and x = (x1, . . . , xk) a
tuple of variables in var with k = ar(R).

Conjunctive queries A conjunctive query Q over input schema D is an
expression of the form

T (x)← R1(y1), . . . , Rm(ym)

where every Ri(yi) is an atom over D and T (x), the head atom, is an atom
with T 6∈ D. Every variable x ∈ x needs to appear in at least one yi. We
refer to T (x) as headQ, to the set {R1(y1), . . . , Rm(ym)} as bodyQ and to
the set of all variables occurring in Q as vars(Q). The set of all conjunctive
queries is denoted by CQ.

A conjunctive query is without self-joins if all of its atoms have distinct
relation names. A conjunctive query Q is full if every variable occurring in
Q appears in the head atom.

Conjunctive queries with inequalities Conjunctive queries can be ex-
tended with inequalities. More formally, a conjunctive query Q with inequal-
ities over input schema D is an expression of the form

T (x)← R1(y1), . . . , Rm(ym), β1, . . . , βp

where every βi is an equality of the form z 6= z′. For every such inequality,
we require that z and z′ are distinct variables occurring in at least one yi.
We refer to this set of inequalities {β1, . . . , βp} as ineqQ. The terminology
and constraints mentioned above for conjunctive queries are trivially appli-
cable to conjunctive queries with inequalities as well. Specifically notice that
bodyQ = {R1(y1), . . . , Rm(ym)}, so the inequalities in Q are not a part of
bodyQ. We use CQ6= to refer to the set of conjunctive queries with inequali-
ties. Notice that CQ ( CQ6=, as a query with no inequalities is just a special
case of the broader class of conjunctive queries with inequalities.

A conjunctive query with inequalities is without self-joins if all of its
atoms have distinct relation names. A conjunctive query with inequalities
Q is full if every variable occurring in Q appears in the head atom.
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Unions of conjunctive queries A union of conjunctive queries Q is the
union over a finite set of conjunctive queries. More formally, Q = ∪ni=1Qi
with Qi ∈ CQ6= for every Qi ∈ Q. It is required that every subquery Qi uses
the same relation name in its head atom. For convenience, we require that no
two subqueries of Q use the same variable. That is, vars(Qi)∩vars(Qj) = ∅
for every i 6= j. We use varmax(Q) to denote the maximum number of
variables in any subquery Qi of Q.

The set of all unions of conjunctive queries with inequalities is denoted by
UCQ6=. Furthermore, we use UCQ to denote the set of unions of conjunctive
queries without inequalities. A union of conjunctive queries Q is without
inequalities if all of its subqueries are without inequalities or, more formally,
if Qi ∈ CQ for every Qi ∈ Q.

2.3 Evaluation of conjunctive queries

A pre-valuation for a conjunctive query Q ∈ CQ6= is a total function V :
vars(Q) → dom, which naturally extends to atoms and sets of atoms. We
say that a pre-valuation V is consistent for a query Q ∈ CQ6= if for every
inequality z 6= z′ in Q it holds that V (z) 6= V (z′). A consistent pre-valuation
V for a conjunctive query Q ∈ CQ6= is called a valuation. In this case, we
refer to V (bodyQ) as the facts required by V . A function V is a valuation
for a query Q ∈ UCQ6= if it is a valuation for a subquery Qi ∈ Q.

When comparing two valuations V1 and V2 for a conjunctive query Q ∈
CQ6= with V1(headQ) = V2(headQ), we use V1 ≤Q V2 to denote the fact
that V1(bodyQ) ⊆ V2(bodyQ). Analogously, we use V1 <Q V2 to denote
the fact that V1(bodyQ) ( V2(bodyQ). This notation is also used while
comparing valuations for a query Q ∈ UCQ6=. Let V1 and V2 be valua-
tions for respectively Q1 and Q2 with Q1,Q2 ∈ Q. We write V1 ≤Q V2 if
V1(headQ1) = V2(headQ2) and V1(bodyQ1) ⊆ V2(bodyQ2). Analogously, we
write V1 <Q V2 if V1(headQ1) = V2(headQ2) and V1(bodyQ1) ( V2(bodyQ2).

Valuations under set semantics Under set semantics, a valuation V
satisfies a conjunctive query Q ∈ CQ6= on an instance I if all facts required
by V are in I. In that case, V derives the fact V (headQ). We define the
result of a query Q ∈ CQ6= on instance I, denoted Qset(I), as the set of
facts that can be derived by satisfying valuations for Q on I. The result
Qset(I) of a query Q ∈ UCQ6= is defined as the set union of the results of
all the subqueries of Q on I.1

Definition 2.1. A query Q is monotone under set semantics if for every
pair of instances I and I ′ with I ′ ⊆ I it holds that Qset(I

′) ⊆ Qset(I).

1We write Q(I) instead of Qset(I) if it is clear that we are working under set semantics.
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As negated atoms aren’t allowed, all conjunctive queries Q ∈ UCQ 6=

under set semantics are trivially monotone.

Valuations under bag semantics Under bag semantics, a valuation V
satisfies a conjunctive queryQ ∈ CQ6= on instance I if V (bodyQ) ⊆ facts(I).
In that case, V derives the annotated fact fa = (V (headQ),m), with

m =
∏

a∈bodyQ

mul(V (a), I).

For convenience, we also say that V derives the fact f = V (headQ) if V
satisfies Q on I. The result of V on an instance I, denoted [Q, V ]bag(I), is
the bag of annotated facts derived by V on instance I. This bag is empty
when V doesn’t satisfy Q on I. The result Qbag(I) of a conjunctive query
Q ∈ CQ6= on I is defined as the bag union over all results of satisfying
valuations for Q on I:

Qbag(I) =
⋃

B
V ∈V

[Q, V ]bag(I)

with V the set containing all valuations satisfying Q on I. The result Qbag(I)
of a query Q ∈ UCQ6= is defined as the bag union of the results of all the
subqueries of Q on I.2

Definition 2.2. A query Q is monotone under bag semantics if for every
pair of instances I and I ′ with I ′ ⊆ I it holds that Qbag(I

′) ⊆ Qbag(I).

Proposition 2.3. Conjunctive queries in CQ6= are monotone under bag
semantics.

Proof. Let Q ∈ CQ6= be a conjunctive query. Let further I and I ′ be two
instances with I ′ ⊆ I. To prove that Qbag(I

′) ⊆ Qbag(I), we show the
following for each fact f ∈ facts(Qbag(I

′)): (i) f ∈ facts(Qbag(I)) and (ii)
mul(f,Qbag(I

′)) ≤ mul(f,Qbag(I)). To this end, let f be a fact appearing
in facts(Qbag(I

′)). Since f ∈ facts(Qbag(I
′)), there exists a valuation V

for Q with V (bodyQ) ⊆ I ′ and f = V (headQ). As I ′ ⊆ I, it holds that
V (bodyQ) ⊆ I. As a result, V satisfies Q on I as well, so f ∈ facts(Qbag(I)).

Note that the multiplicity mul(f,Qbag(I
′)) of a fact f in the result

Qbag(I
′) is by definition the sum of the multiplicities of the annotated facts

derived by satisfying valuations V for Q on I ′ having f = V (headQ):

mul(f,Qbag(I
′)) =

∑
V ∈V ′

mul(f, [Q, V ]bag(I
′))

2We write Q(I) and [Q, V ](I) instead of respectively Qbag(I) and [Q, V ]bag(I) if it is
clear that we are working under bag semantics.
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with V ′ the set of valuations V satisfying Q on I ′ having f = V (headQ).
The calculation of mul(f,Qbag(I)) is analogue:

mul(f,Qbag(I)) =
∑
V ∈V

mul(f, [Q, V ]bag(I))

with V the set of valuations V satisfying Q on I having f = V (headQ).
So, in order to prove that mul(f,Qbag(I

′)) ≤ mul(f,Qbag(I)), it suffices
to show that V ′ ⊆ V and mul(f, [Q, V ]bag(I

′)) ≤ mul(f, [Q, V ]bag(I)) for
each valuation V ∈ V ′.3 We already proved that each valuation V with
f = V (headQ) satisfying Q on I ′ also satisfies Q on I. Thus, V ′ ⊆ V.

Observe that, by adding facts to I ′, the multiplicity of each fact ap-
pearing in I ′ can never go down. As a result, mul(f, [Q, V ]bag(I

′)) can only
become larger while adding facts to I ′, because the multiplicity of the fact de-
rived by V is defined as the product of the multiplicities of the facts required
for V .4 Clearly, I can be constructed from I ′ by adding the missing facts to
I ′, so we conclude that mul(f, [Q, V ]bag(I

′)) ≤ mul(f, [Q, V ]bag(I)).

2.4 Networks, data distribution and policies

A network N is a nonempty finite set of values from dom, called nodes.
A distribution policy P = (U, rfactsP ) for a database schema D and

a network N consists of both a universe U and a total function rfactsP :
N → P(facts(D, U)) that maps each node κ ∈ N onto a set of facts from
facts(D, U). A node κ ∈ N is responsible for a fact f ∈ facts(D, U) under
P if f ∈ rfactsP (κ).

Local instances under set semantics Assume a policy P and an in-
stance I for a schema D. The function loc-inst set,P ,I maps each node κ ∈ N
onto the set of facts it is responsible for. More formally, this set of facts is
defined as I ∩ rfactsP (κ). In this case, we refer to I as the global instance
and to loc-inst set,P ,I(κ) as the local instance at node κ.

Local instances under bag semantics Assume a policy P and an in-
stance I for a schema D. The function loc-instbag,P ,I intuitively maps each
node κ ∈ N onto the bag of facts it is responsible for. More formally,
facts(loc-instbag,P ,I(κ)) = facts(I) ∩ rfactsP (κ) and for every fact f ap-
pearing in facts(loc-instbag,P ,I(κ)) the multiplicity mul(f, loc-instbag,P ,I(κ))
equals mul(f, I). Analogously to the terminology used under set semantics,

3It is important to note that this condition is only valid when the sum does not contain
negative values. But since we are using multiplicities in the sum, negative values are
impossible.

4Again, we are using the property that the multiplicity is never negative, as a negative
factor could actually make the product negative and thus smaller.
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we refer to I as the global instance and to loc-instbag,P ,I(κ) as the local
instance at node κ.

Distributed evaluation under set semantics For a distribution policy
P over a network N , the result [Q,P ]set(I) of the distributed evaluation
under set semantics of a query Q on an instance I in one round is defined
as

[Q,P ]set(I) =
⋃
κ∈N
Qset(loc-inst set,P ,I(κ)).

Intuitively, Q is evaluated at each node κ separately, after which the set
union of all results is constructed.

Distributed evaluation under bag semantics Given a distribution
policy P defined over a network N , the result [Q,P ]bag(I) of the distributed
evaluation under bag semantics of a query Q on an instance I in one round
is defined as follows:

[Q,P ]bag(I) =
⋃

B
κ∈N

Qbag(loc-instbag,P ,I(κ)).

This definition closely resembles the definition under set semantics, although
we are now working under bag semantics instead of set semantics.

Notice that, by definition of the distribution policy P = (U, rfactsP ),
mul(f, I) and mul(f, loc-instbag,P ,I(κ)) are equal for every node κ and ev-
ery fact f if f ∈ rfactsP (κ). In other words, a distribution policy can
only decide whether or not a fact is assigned to a node. It cannot change
the multiplicity of f on this node. It follows that mul(f, [Q,V ]bag(I)) =
mul(f, [Q,V ]bag(loc-instbag,P ,I(κ))) for each valuation V that is satisfied on
the node κ.

2.5 Classes of distribution policies

In order to reason about the complexity of problems with a distribution
policy as a part of the input, we need some bound n on the length of strings
representing node names and data values. Apart from the classes Pfin and
Pnondet, both introduced by Ameloot et al. [4], we describe another class
of distribution policies Pdet. The latter is closely related to the notion of
PTIME-testable classes of distribution policies [4].

We first consider a class of distribution policies over finite universes, de-
noted Pfin. A policy P = (U, rfactsP ) belongs to Pfin if it can be specified
by an explicit enumeration of the data values in U and an explicit enumer-
ation of all pairs (κ, f) where f ∈ rfactsP (κ).

Instead of an explicit enumeration of pairs (κ, f), we could use a “test
algorithm” to describe rfactsP . On an input (κ, f), with κ a node and f a
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fact, this “test algorithm” decides whether f ∈ rfactsP (κ) with time bound
lk, where l = |(κ, f)| is the length of the input and k is a constant. A policy
P = (U, rfactsP ) over a network N is in Pknondet if it can be specified by a
a pair (n,AP ), with n a natural number in unary representation and AP a
non-deterministic algorithm. The value n is used to give an upper bound to
the length of data values in the universe U and the names of the nodes in N .
More specifically, the universe U consists of all the data values representable
by a string of length at most n and the network N consists of all the nodes
representable by strings of length at most n. A fact f is in rfactsP (κ) for a
given node κ if AP has an accepting run of at most |(κ, f)|k steps on input
(κ, f). We define Pnondet as the set {Pknondet | k ≥ 2}. Note that each policy
in Pfin can be described in P2

nondet.
Analogously to Pnondet, we also define a class of distribution policies

Pdet. A policy P = (U, rfactsP ) is in Pkdet if it can be specified by a tuple
(N , n,AP ) where N is an explicit enumeration of the nodes in the network,
n is a natural number in unary representation and AP is a deterministic
algorithm. The universe U of P is the set of values representable by strings
of length at most n. Given a fact f and a node κ, algorithm AP decides in
at most |(f, κ)|k steps whether f ∈ rfactsP (κ). We define Pdet as the set of
policies {Pkdet | k ≥ 2}. Notice that, in contrast to Pnondet, the description of
a policy in Pdet contains an explicit enumeration of the nodes in the network.
This explicit enumeration combined with the deterministic test algorithm
will prove useful when constructing an improved upper bound for the time
complexity of parallel-correctness under bag semantics.
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Chapter 3

Literature study

This chapter first introduces the main topics of this master thesis: parallel-
correctness and transferability. After that we summarize the results related
to unions of conjunctive queries with inequalities under set semantics, ob-
tained by Ameloot et al. [4].

3.1 Parallel-correctness and transferability

Intuitively, the notion of parallel-correctness relates to whether or not the
distributed execution of a query with relation to a specific distribution policy
produces the correct result. That is, the result should be the same as if the
query was executed on the same instance of facts on a single node.

Definition 3.1 ([4]). A query Q is parallel-correct on instance I under
distribution policy P if Q(I) = [Q,P ](I).

Alternatively, we could define parallel-correctness as a combination of
parallel-soundness and parallel-completeness. A query Q is parallel-sound
on instance I under distribution policy P if [Q,P ](I) ⊆ Q(I). Analogously,
a query Q is parallel-complete on instance I under distribution policy P if
Q(I) ⊆ [Q,P ](I).

We now lift the previous definition to all instances:

Definition 3.2 ([4]). A query Q is parallel-correct under distribution policy
P if Q is parallel-correct on all instances I under P .

The focus of parallel-correctness is on a single distribution policy P and
query Q. If multiple queries need to be evaluated, it might be interesting to
study whether or not the property of being parallel-correct is carried over
from one query to another. This characteristic might for example be useful
in a setting of automatic data partitioning where the aim is to optimize the
evaluation of a bunch of queries, as it allows multiple queries to be evaluated
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without reshuffling the data after each query evaluation. Informally, parallel-
correctness transfer from a query Q to a query Q′ guarantees that Q′ will be
parallel-correct under every distribution policy P under which Q is parallel-
correct.

Definition 3.3 ([4]). For two queries Q and Q′ over the same input schema,
parallel-correctness transfers from Q to Q′ if Q′ is parallel-correct under
every distribution policy for which Q is parallel-correct. In this case, we
write Q pc−→ Q′.

Parallel-correctness and transferability are defined over queries in gen-
eral. In this thesis we focus on parallel-correctness and transferability for
conjunctive queries and unions of conjunctive queries.

3.2 Parallel-correctness under set semantics

3.2.1 Characterization

When considering queries in UCQ6=, the following condition clearly is a
sufficient condition for parallel-correctness:

Condition 3.4 ([4]). Let Q ∈ UCQ6= be a query and P = (U, rfactsP ) a
distribution policy over a network N . For every valuation V for Q over U ,
there is a node κ ∈ N such that V (bodyQ) ⊆ rfactsP (κ).

It is however not a necessary condition for parallel-correctness, as the
following example will show:

Example 3.5 ([4]). Consider the following conjunctive query Q,

T (x, z)← R(x, y), R(y, z), R(x, x),

and the universe U = {a, b}. Let P = (U, rfactsP ) be a distribution policy
over the network N = {κ1, κ2}, distributing every fact except R(a, b) onto
κ1 and every fact except R(b, a) onto κ2.

Notice that Condition 3.4 isn’t satisfied, as the required facts for the
valuation V = {x 7→ a, y 7→ b, z 7→ a} do not meet on at least one of the
nodes in N .

The query Q however is parallel-correct under P . First, notice that ev-
ery fact f derived by a valuation V not requiring both R(a, b) and R(b, a)
is trivially satisfied on one of the nodes (or even both nodes, if neither of
both facts is required). Therefore, we only need to focus on the valuations
requiring both R(a, b) and R(b, a). Clearly, there are only two such valu-
ations: V1 = {x 7→ a, y 7→ b, z 7→ a} and V2 = {x 7→ b, y 7→ a, z 7→ b}.
The fact T (a, a) derived by V1 is however derivable by another valuation
V ′ = {x 7→ a, y 7→ a, z 7→ a}, requiring only R(a, a). Therefore, T (a, a) is
derivable on both nodes. The reasoning for the fact T (b, b) derived by V2 is
analogous. We conclude that Q is indeed parallel-correct under P . �
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The previous example illustrates that not every valuation V needs to be
satisfied, as long as there is another valuation V ′ deriving the same fact and
requiring only a strict subset of the facts required by V . This observation
leads to the definition of minimal valuations.

Definition 3.6 ([4]). Let Q = ∪ni=1Qi be a query in UCQ 6= with subqueries
Q1, . . . ,Qn ∈ CQ6=. A valuation Vi for Qi is minimal for Q if there is no
valuation Wj for some Qj such that Wj <Q Vi.

This definition intuitively states that a valuation Vi is minimal if there is
no other valuation Wj deriving the same fact as Vi and requiring only a strict
subset of the facts required by Vi. In this context, we say that subquery Qi
witnesses minimality of Vi for Q.

Based on this notion of minimal valuations, we next present a necessary
and sufficient condition for parallel-correctness under set semantics:

Condition 3.7 ([4]). Let Q ∈ UCQ6= be a query and P = (U, rfactsP ) a
distribution policy over a network N . For every minimal valuation V for Q
over U , there is a node κ ∈ N such that V (bodyQ) ⊆ rfactsP (κ).

Proposition 3.8 ([4]). A query Q ∈ UCQ 6= is parallel-correct under dis-
tribution policy P = (U, rfactsP ) if and only if Condition 3.7 is satisfied.

Let P be a distribution policy and let Q be a query in UCQ6=. We say
that P saturates Q if Condition 3.7 is satisfied. We say furthermore that P
strongly saturates Q if Condition 3.4 is satisfied.

3.2.2 Complexity

We now study the complexity of parallel-correctness under set semantics,
focusing on both parallel-correctness on a specific instance (Definition 3.1)
as well as the more general form of parallel-correctness lifted to all instances
(Definition 3.2). We consider multiple classes of queries and distribution
policies. A formal description of both problems is as follows:

PCI(C,P)

Input: Query Q ∈ C,
distribution policy P ∈ P,

instance I

Question: Is Q parallel-correct on I under P ?

PC(C,P)

Input: Query Q ∈ C,
distribution policy P ∈ P

Question: Is Q parallel-correct under P ?
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In these formal descriptions, C denotes a query class and P denotes a
class of distribution policies.

Proposition 3.9 ([4]). Problems PCI(C,P) and PC(C,P) are Πp
2-complete

for every query class C ∈ {CQ,CQ6=,UCQ,UCQ6=} and for every policy
class P ∈ {Pfin ∪Pnondet}.

We provide the lower bound proof for Proposition 3.9, as it contains a
technique that can be used to provide a lower bound for deciding parallel-
correctness under bag semantics. The proof is based on a reduction using a
well-known Πp

2-complete problem. We first define this problem before pro-
viding the lower bound proof. Given some truth assignment β for a propo-
sitional formula ψ, we use β � ψ to denote the fact that ψ evaluates to true
under β.

Π2-QBF

Input: Formula ϕ = ∀x∃y ψ(x,y) where ψ is a propositional

formula in 3-CNF over variables x = (x1, . . . , xm)

and y = (y1, . . . , yn)

Question: Does, for every truth assignment βx on x, exist a

truth assignment βy on y with (βx ∪ βy) � ψ?

It is well-known that Π2-QBF is Πp
2-complete [16].

Proposition 3.10 ([4]). PCI(CQ,Pfin) is Πp
2-hard, even for distribution

policies over only two nodes.

Proof. We construct a polynomial reduction from the problem Π2-QBF to
PCI(CQ,Pfin). Since Π2-QBF is Πp

2-complete, this construction proves that
the problem PCI(CQ,Pfin) is Πp

2-hard.
Let ϕ = ∀x∃y ψ(x,y) be an input for Π2-QBF over variables x =

(x1, . . . , xm) and y = (y1, . . . , yn). We use C1, . . . , Ck to denote the dis-
junctive clauses of ψ with Cj = (`j1 ∨ `

j
2 ∨ `

j
3) for each j. Each literal `jk

occurring in a clause Cj represents either a variable z or a negated variable
¬z, with z ∈ x ∪ y.

Based on this propositional formula ψ, we next construct a query Q ∈
CQ, a distribution policy P ∈ Pfin and an instance I serving as the corre-
sponding input for PCI(CQ,Pfin).

The query Q is constructed over the variables w0, w1 and xi, xi, yj , yj
for i ∈ {1, . . .m} and j ∈ {1, . . . n}. Intuitively, w0 and w1 represent the
Boolean values true and false, whereas xi, yj and xi, yj respectively represent
the variables xi ∈ x, yj ∈ y and its negation ¬xi,¬yj . For convenience, we

overload the notation of a literal `jk as follows: if `jk represents a negated

variable ¬z, then `jk denotes the variable z as well.
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We define W as the set of all triples over {w0, w1}. Let furthermore
W+ = W \ {(w0, w0, w0)}. The construction of the conjunctive query Q is
as follows: headQ = H(x1, . . . , xm) and bodyQ = Asat ∪ Aψ, with

Asat = {True(w1),False(w0),Neg(w0, w1),Neg(w1, w0)}
∪ {Cj(w) | j ∈ {1, . . . , k},w ∈W+},

and

Aψ = {Neg(xi, xi) | i ∈ {1, . . . ,m}} ∪ {Neg(yj , yj) | j ∈ {1, . . . , n}}

∪ {Cj(`
j
1, `

j
2, `

j
3) | j ∈ {1, . . . , k}}.

The atoms in Asat intuitively are consistency atoms, representing valid com-
binations of opposing values for Neg-facts, as well as satisfying combinations
of values for Cj-facts. The atoms in Aψ on the other hand represent the logi-
cal structure of ψ by relating each variable with its negation and by relating
literals occurring in the same clause with each other.

Analogously to W and W+, we define B as the set of all triples over {0, 1}
and B+ = B \ {(0, 0, 0)}. Let U = {0, 1} be a binary universe. The instance
I over U is constructed as follows,

I = {True(1),False(0),Neg(1, 0),Neg(0, 1)}
∪ {Cj(b) | j ∈ {1, . . . , k},b ∈ B}.

We define I− as {Cj(0, 0, 0) | j ∈ {1, . . . , k}} and I+ as I \ I−. Let
N = {κ+, κ−} be a network over two nodes. The finite distribution policy
P = (U, rfactsP ) over N is constructed as follows: rfactsP (κ+) = I+ and
rfactsP (κ−) = I−.

The query Q, instance I and finite policy P are obviously computable
in time polynomial in the size of ψ. We next prove that the proposed con-
struction is indeed a reduction. That is, 〈Q,P , I〉 ∈ PCI(CQ,Pfin) if and
only if ϕ ∈ Π2-QBF.

(if) Assume ϕ ∈ Π2-QBF. We prove that 〈Q,P , I〉 ∈ PCI(CQ,Pfin)
by showing that each fact f in Q(I) is in [Q,P ](I) as well. To this end, let
f = H(a1, . . . , am) be an arbitrary fact in Q(I). We show that f is derived
on κ+, thereby indicating that f ∈ [Q,P ](I).

Let βx be a truth assignment over all the variables in x defined by
βx(xi) = ai for each i ∈ {1, . . . ,m}. Since we are working under a binary
universe U = {0, 1}, it can easily be seen that this truth assignment βx is
well-defined. By assumption, there is truth assignment βy for the variables
in y such that (βx ∪ βy) � ψ. We refer to this truth assignment βx ∪ βy as
β.

Next, consider the valuation V for Q with V (w1) = 1, V (w0) = 0 and
V (z) = β(z), V (z) = β(z) for every variable z ∈ x ∪ y. Since β � ψ,
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every clause in ψ is satisfied under β. In other words, β � Cj for every
j ∈ {1, . . . , k}. Therefore, for every j ∈ {1, . . . , k} there is a b ∈ B+ such
that V (Cj(`

j
1, `

j
2, `

j
3)) = Cj(b). We conclude that all facts in V (bodyQ) are

contained in I+, implying that V (bodyQ) ⊆ rfactsP (κ+). It immediately
follows that f = V (headQ) is derived on κ+.

(only if) The proof is by contraposition. Assume ϕ 6∈ Π2-QBF. We prove
that 〈Q,P , I〉 6∈ PCI(CQ,Pfin). By assumption, there is a truth assignment
βx over the variables in x such that there is no truth assignment βy over
the variables in y with (βx ∪ βy) � ψ.

Let f = H(βx(x1), . . . , βx(xm)) and let βy be a truth assignment over the
variables in y with βy(yj) = 0 for every variable yj ∈ y. Next, consider the
truth assignment β = βx ∪ βy. This truth assignment β induces a valuation
V for Q over U as follows: V (w1) = 1, V (w0) = 0 and V (z) = β(z), V (z) =
β(z) for every variable z ∈ x∪y. By construction, this valuation V satisfies
Q on instance I, thus f ∈ Q(I).

Notice that it is impossible to derive a fact on κ−, as rfactsP (κ−) does
not contain any Neg-facts. On the other hand, f cannot be derived on κ+

either. Indeed, assume there is a valuation V for Q over U deriving f on
κ+ and let βy be the truth assignment over variables in y induced by V .
By assumption, V (bodyQ) ⊆ rfactsP (κ+), so V should map all Cj-atoms
occurring in Aψ onto facts in I+. But this implies that (βx ∪ βy) � ψ,
contradicting our original assumption.

We conclude that f 6∈ [Q,P ](I), so Q is not parallel-correct under dis-
tribution policy P on instance I.

3.3 Transferability under set semantics

3.3.1 Characterization

Based on the notion of minimal valuations, we now introduce query covering:

Definition 3.11 ([4]). For two queries Q = ∪mh=1Qh and Q′ = ∪ni=1Q′i from
UCQ6=, we say that Q covers Q′ if for every minimal valuation V ′ for Q′
(witnessed byQ′i for some i), there is a minimal valuation V forQ (witnessed
by Qh for some h) such that V ′(bodyQ′

i
) ⊆ V (bodyQh).

This property proves useful for describing a necessary and sufficient con-
dition for parallel-correctness transfer under set semantics:

Proposition 3.12 ([4]). For queries Q,Q′ ∈ UCQ6=, parallel-correctness
transfers from Q to Q′ if and only if Q covers Q′.

Notice that for unions of conjunctive queries minimal valuations are de-
fined over the query itself, not over each subquery separately. In particular,
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for a query Q covering a query Q′, it is not a necessary requirement that
each subquery of Q′ is covered by a subquery of Q.

Example 3.13 ([4]). To illustrate the fact that a query Q might cover a
query Q′ even if there is a subquery of Q′ not being covered by a subquery
of Q, consider the unions of conjunctive queries Q = Q1 and Q′ = Q1 ∪Q2,
with

Q1 : H()← R(),

Q2 : H()← R(), S().

It can easily be seen that Q2 is semantically contained in Q1, implying that
Q and Q′ are equivalent. It clearly follows that parallel-correctness transfers
from Q to Q′. According to Proposition 3.12, Q therefore covers Q′.

Notice however that not every subquery of Q′ is covered by Q. Indeed,
Q2 is not covered by Q1, as parallel-correctness doesn’t transfer from Q1

to Q2. The latter can easily be verified by considering a distribution policy
P = (U, rfactsP ) over a network N = {κR, κS} with rfactsP (κR) = {R()}
and rfactsP (κS) = {S()}. �

3.3.2 Complexity

We next consider the complexity of transferability under set semantics for
various query classes C:

PC-Trans(C)
Input: Queries Q,Q′ ∈ C
Question: Does parallel-correctness transfer from Q to Q′?

Proposition 3.12 can be used to test whether parallel-correctness trans-
fers from Q to Q′, although a direct application is not feasible. In order
to apply Proposition 3.12 directly, we should check a possibly infinite num-
ber of valuations over an infinite domain dom. However, Ameloot et al. [4]
proved the following proposition:

Proposition 3.14 ([4]). Let Q = ∪mi=1Qi and Q′ = ∪nj=1Q′j be two queries

in UCQ6= and let the domain domk = {1, . . . , k} be a finite subset of the
infinite domain dom where k = max(varmax(Q), varmax(Q′)). The fol-
lowing two conditions are equivalent:

1. For every minimal valuation W ′ for Q′ over dom (witnessed by Q′j for
some j), there is a minimal valuation W for Q over dom (witnessed
by Qi for some i) such that W ′(bodyQ′

j
) ⊆W (bodyQi).

2. For every minimal valuation V ′ for Q′ over domk (witnessed by Q′j for
some j), there is a minimal valuation V for Q over domk (witnessed
by Qi for some i) such that V ′(bodyQ′

j
) ⊆ V (bodyQi).
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In other words, we only need to check Proposition 3.12 for a finite number
of valuations over a finite domain domk. This observation leads to a bound
on the complexity of transferability under set semantics:

Proposition 3.15 ([4]). Both PC-Trans(UCQ 6=) and PC-Trans(CQ)
are Πp

3-complete.

3.4 Strongly minimal queries

3.4.1 Definition

The notion of minimal valuations leads to a special class of conjunctive
queries for which every valuation is minimal.

Definition 3.16 ([4]). A conjunctive query Q ∈ CQ6= is strongly minimal
if all its valuations are minimal.

This definition of strong minimality extends to conjunctive queries with
inequalities and unions of conjunctive queries with inequalities in a natural
way.

Definition 3.17 ([4]). A query Q = ∪nj=1Qj in UCQ6= is strongly minimal
if there are no valuations Vi and Vj , witnessed by subqueries Qi,Qj ∈ Q,
with Vi <Q Vj .

We use C[sm] to denote the set of all queries in C which are strongly
minimal with C ∈ {CQ,CQ6=,UCQ,UCQ6=}.

For queries in CQ, it can easily be seen that full queries and queries
without self-joins are always strongly minimal queries. However, this is not
a necessary condition.

Example 3.18 ([4]). As a counterexample, consider the following conjunc-
tive query Q,

H(x, y)← R(x, z), R(y, z), S(z, y).

This conjunctive query Q is strongly minimal, although it is not full and
contains a self-join. �

Ameloot et al. [4] proved that deciding whether a conjunctive query
Q ∈ CQ is strongly minimal is coNP-complete. They described a sufficient
condition for strong minimality:

Condition 3.19 ([4]). Let Q ∈ CQ be a conjunctive query. Every non-head
variable x occurs in some R-atom at some position i and there is no other
variable that occurs at position i of any R-atom.

Condition 3.19 is not necessary for strongly minimal conjunctive queries:
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Example 3.20 ([4]). As a counterexample, consider the following conjunc-
tive query Q,

H()← R(x, y), R(y, x).

This conjunctive query Q does not satisfy Condition 3.19. However, Q is
strongly minimal. Indeed, every valuation V for Q over a universe U either
maps x and y onto the same value a or onto two different values a and b
in U . In the former case, the required fact is of the form R(a, a), whereas
in the latter case the two required facts are of the form R(a, b) and R(b, a)
with a 6= b. It immediately follows that there cannot exist two valuations V1
and V2 for Q with V1 <Q V2. Therefore, every valuation for Q is minimal,
implying that Q is strongly minimal. �

The notion of strongly minimal queries proves useful to lower the com-
plexity of problems related to parallel-correctness. Recall for example Con-
dition 3.4, a sufficient condition for parallel-correctness under set semantics.
The only difference between this condition and the necessary and sufficient
condition for parallel-correctness under set semantics (Proposition 3.8) is
the usage of minimal valuations. Therefore, it can easily be seen that Condi-
tion 3.4 becomes a necessary and sufficient condition for parallel-correctness
under set semantics. This observation leads to the following improved com-
plexity result:

Proposition 3.21 ([4]). For each class P of PTIME-testable distribution
policies, problems PCI(CQ[sm],P) and PC(CQ[sm],P) are in coNP.

Analogously, the complexity of problems related to transferability is low-
ered as well for strongly minimal queries. We briefly summarize the results
obtained by Ameloot et al. [4]:

Proposition 3.22 ([4]).

1. PC-Trans(CQ[sm],CQ) is NP-complete.

2. PC-Trans(UCQ[sm],UCQ) is NP-complete.

3. PC-Trans(UCQ 6=[sm],UCQ6=) is in Πp
2.

4. PC-Trans(CQ6=[sm],CQ) and PC-Trans(CQ[sm],CQ6=) are Πp
2-

hard.

3.4.2 Relation with minimal queries

The notions of minimal valuations and strongly minimal conjunctive queries
are closely related to the classical notion of minimal conjunctive queries [2].
Recall that a conjunctive query Q ∈ CQ is minimal if there is no other
conjunctive query Q′ ∈ CQ equivalent with Q having strictly less atoms in
its body.
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Proposition 3.23 ([4]). Let Q be a conjunctive query. For every injective
valuation V for Q, the valuation V is minimal if and only if Q is minimal.

It can easily be seen that every strongly minimal conjunctive query is a
minimal conjunctive query as well. On the other hand, not every minimal
conjunctive query is a strongly minimal.

Example 3.24 ([4]). As an example of such a minimal conjunctive query
Q that is not strongly minimal, consider the conjunctive query Q described
in Example 3.5,

T (x, z)← R(x, y), R(y, z), R(x, x).

This conjunctive query Q is minimal, as we cannot remove one of the atoms
in bodyQ to obtain an equivalent query with strictly less atoms. Next, con-
sider the valuations V1 = {x 7→ a, y 7→ b, z 7→ a} and V2 = {x 7→ a, y 7→
a, z 7→ a}. The required facts for V1 are R(a, b), R(b, a) and R(a, a), whereas
the only required fact for V2 is R(a, a). Since they both derive the same fact
T (a, a), the valuation V1 is not a minimal valuation for Q. We conclude that
Q is not strongly minimal. �
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Chapter 4

Parallel-correctness and
transferability under bag
semantics

In this chapter, parallel-correctness and transferability are studied in the
context of conjunctive queries with inequalities under bag semantics. For
both concepts, we describe a characterization that allows to provide an upper
bound on the time complexity of deciding parallel-correctness and transfer-
ability for conjunctive queries with inequalities under bag semantics. These
upper bounds are further improved by considering possible restrictions on
both conjunctive queries and distribution policies.

4.1 Parallel-correctness

Condition 3.4 is a sufficient condition for parallel-correctness under set se-
mantics when evaluating unions of conjunctive queries with inequalities. A
slight reformulation of this condition limited to conjunctive queries with
inequalities is as follows:

Condition 4.1. Let Q ∈ CQ6= be a conjunctive query with inequalities and
P = (U, rfactsP ) a distribution policy over a network N . For every valuation
V for Q over U , there is a node κ ∈ N such that V (bodyQ) ⊆ rfactsP (κ).

Unfortunately, Condition 4.1 is not sufficient for parallel-correctness un-
der bag semantics.

Example 4.2. For an example showing that Condition 4.1 is not sufficient
for parallel-correctness under bag semantics, consider the following conjunc-
tive query Q,

T (x, z)← R(x, y), R(y, z),
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and the network N = {κ1, κ2}. Let P be a distribution policy over N
that distributes each fact onto every node in N . This distribution policy P
clearly satisfies Condition 4.1, as each node is responsible for all facts. Let
instance I = {(R(a, b), 1), (R(b, c), 1)}. The result [Q,P ](I) = {(T (a, c), 2)}
is different from Q(I) = {(T (a, c), 1)}. We thus conclude that Q is not
parallel-correct under P . �

As shown by the example, there are unwanted duplicates in the dis-
tributed result when the same valuation is satisfied on multiple nodes. We
therefore modify Condition 4.1 in the following way:

Condition 4.3. Let Q ∈ CQ6= be a conjunctive query with inequalities and
P = (U, rfactsP ) a distribution policy over a network N . For every valuation
V for Q over U , there is exactly one node κ ∈ N such that V (bodyQ) ⊆
rfactsP (κ).

In this context, we refer to this particular node κ as the node responsible
for V .

Condition 4.3 is necessary and sufficient for parallel-correctness. Before
proving this proposition, we consider two lemmas first. These two lemmas
state that Q cannot be parallel-correct under a policy P if there is a val-
uation V for Q with respectively more than one node or no node in the
network on which V is satisfiable.

Lemma 4.4. Let P = (U, rfactsP ) be a distribution policy over a network
N . A query Q ∈ CQ6= is not parallel-correct under P if there exists a valu-
ation V for Q and more than one node κ ∈ N with V (bodyQ) ⊆ rfactsP (κ).

Proof. The proof idea is as follows: A valuation V satisfiable on more than
one node would derive the same fact f = V (headQ) multiple times. This
would lead to a multiplicity of f that is too high, unless there is some kind
of compensation. We show that such a compensation is impossible, thereby
proving that Q cannot be parallel-correct under P .

Let Q be a query in CQ6= and let P = (U, rfactsP ) be a distribution
policy over a network N . Assume there is a valuation V for Q and multiple
nodes κ ∈ N with V (bodyQ) ⊆ rfactsP (κ). Let κ1 and κ2 be two such nodes.
We prove by contradiction that Q is not parallel-correct under P . To this
end, assume that Q is parallel-correct under P . Furthermore, let I be an
instance with facts(I) = V (bodyQ) and f = V (headQ).

Recall that by definition

mul(f,Q(I)) =
∑
S∈V

mul(f, [Q, S](I)) (1)

with V the set of satisfying valuations for Q on I deriving f . Furthermore,

mul(f, [Q,P ](I)) =
∑
κ∈N

∑
T∈Vκ

mul(f, [Q, T ](loc-instP ,I(κ))) (2)

26



with Vκ the set of satisfying valuations for Q on loc-instP ,I(κ) deriving f .
Intuitively, there is some relation between the terms in the first equation
on the one hand and the terms in the second equation on the other hand.
We describe this relation by a function µ mapping terms occurring in the
second equation onto terms occurring in the first equation.

Let µ be a function that maps each term mul(f, [Q, T ](loc-instP ,I(κ)))
in equation 2 onto a term mul(f, [Q, S](I)) in equation 1 in such a way
that T = S. Observe that µ is a total function. Indeed, a valuation T sat-
isfying Q on loc-instP ,I(κ) also satisfies Q on I, since Q is monotone and
loc-instP ,I(κ) ⊆ I. As a result, each term mul(f, [Q, T ](loc-instP ,I(κ))) in
equation 2 is mapped onto a term mul(f, [Q, T ](I)) in equation 1. Recall
that mul(f, [Q, T ](I)) = mul(f, [Q, T ](loc-instP ,I(κ))), assuming T is a sat-
isfiable valuation for Q on loc-instP ,I(κ). Thus, µ actually maps terms of
equation 2 onto terms of equation 1 with the same value.

Since V (bodyQ) ⊆ rfactsP (κ1) and V (bodyQ) ⊆ rfactsP (κ2) and since
facts(I) = V (bodyQ), all facts in I are mapped on both κ1 and κ2. In
other words, I = loc-instP ,I(κ1) = loc-instP ,I(κ2). So, V is satisfied on
both κ1 and κ2. This means that equation 2 contains two terms m1 and m2

with m1 being equal to mul(f, [Q, V ](loc-instP ,I(κ1))) and m2 being equal
to mul(f, [Q, V ](loc-instP ,I(κ2))). The function µ projects these two terms
both onto the same term m = mul(f, [Q, V ](I)) in equation 1.

Observe that, as µ is a total function and as m1 and m2 are mapped
onto the same term m, the terms in equation 1 are a strict subset of those
in equation 2, unless there is a term m′ in equation 1 that is not a part
of the image of µ. However, the terms in equation 1 cannot be a subset
of equation 2, as this would imply that mul(f,Q(I)) < mul(f, [Q,P ](I)),
clearly contradicting our assumption that Q is parallel-correct under P . We
conclude that such a term m′ in equation 1 that is not a part of the image
of µ must exist.

Let V ′ be the valuation used in this term m′, meaning that m′ =
mul(f, [Q, V ′](I)). By definition of µ, this valuation V ′ cannot be satisfied
on a node κ. Indeed, if V ′ would be satisfiable on a node κ, then the term
mul(f, [Q, V ′](loc-instP ,I(κ))) would appear in equation 2. But this term
would be mapped onto m′ by µ, thereby contradicting our assumption that
m′ is not a part of the image of µ.

Since m′ = mul(f, [Q, V ′](I)) is a term appearing in equation 1, the
valuation V ′ satisfies Q on I. We conclude that V ′(bodyQ) ⊆ facts(I), and
thus V ′(bodyQ) ⊆ facts(loc-instP ,I(κ1)).

1 But this implies that V ′ satisfies
Q on loc-instP ,I(κ1) as well, contradicting our observation that V ′ cannot
be satisfied on a node κ. We conclude that Q cannot be parallel-correct
under P .

1Analogously, We could conclude that V ′(bodyQ) ⊆ facts(loc-instP ,I(κ2)), but this is
not important during the rest of the proof.

27



Lemma 4.5. Let P = (U, rfactsP ) be a distribution policy over a network
N . A query Q ∈ CQ6= is not parallel-correct under P if there exists a
valuation V for Q with no node κ ∈ N with V (bodyQ) ⊆ rfactsP (κ).

Proof. Analogous to the proof idea of Lemma 4.4, this proof idea is based
on the observation that the multiplicity of f = V (headQ) will be too low if
there is no node responsible for V , unless there is some kind of compensation.
During the proof, we show that the only possible compensation is another
valuation V ′ deriving the same fact f on more than one node. According to
Lemma 4.4 however, Q cannot be parallel-correct under P in this case.

The proof is by contradiction. Let Q be a query in CQ6= and let P =
(U, rfactsP ) be a distribution policy over a network N such that there is a
valuation V for Q over U for which there is no node κ ∈ N with V (bodyQ) ⊆
rfactsP (κ). Assume Q is parallel-correct under P . Let I be an instance with
facts(I) = V (bodyQ) and let f = V (headQ). Trivially, f ∈ facts(Q(I)) since
V satisfies Q on I.

Analogous to the proof of Lemma 4.4, we base our reasoning on the
equations calculating the multiplicity of f :

mul(f,Q(I)) =
∑
S∈V

mul(f, [Q, S](I)) (1)

with V the set of satisfying valuations for Q on I deriving f , and

mul(f, [Q,P ](I)) =
∑
κ∈N

∑
T∈Vκ

mul(f, [Q, T ](loc-instP ,I(κ))) (2)

with Vκ the set of satisfying valuations for Q on loc-instP ,I(κ) deriving
f . Since Q is parallel-correct under P , the multiplicity mul(f,Q(I)) of f
in Q(I) needs to be the same as the multiplicity mul(f, [Q,P ](I)) of f in
[Q,P ](I). In other words, both sums need to give the same result.

We reuse the function µ defined in the proof of Lemma 4.4. Recall
from the previous proof that µ is a total function, mapping each term
mul(f, [Q, T ](loc-instP ,I(κ))) in equation 2 onto a term mul(f, [Q, T ](I)) in
equation 1. Furthermore remember that, as a result, each term in equation 2
is actually mapped onto a term in equation 1 with the same value.

Since there is no node κ in the network where V is satisfied, there is
no term mul(f, [Q, V ](loc-instP ,I(κ))) for some node κ in equation 2. So,
equation 1 contains a term mul(f, [Q,V ](I)) that is not a part of the image
of µ.

We state that at least two terms in equation 2 are mapped by µ onto
the same term in equation 1. Indeed, if µ would map each term in equa-
tion 2 onto a different term in equation 1, then the terms in equation 2
would simply be a strict subset of the terms in equation 1, meaning that
mul(f, [Q,P ](I)) < mul(f,Q(I)). This would contradict our assumption
that Q is parallel-correct under P .
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Let m1 and m2 be two such terms in equation 2 that map onto the same
term m in equation 1. By the definition of µ, all three terms m1, m2 and
m thus use the same valuation V ′. This means that m1 and m2 are using
two different nodes κ1 and κ2, because the same valuation V ′ cannot occur
multiple times in equation 2 in terms using the same node. As a result, we
see that V ′(bodyQ) ⊆ rfactsP (κ1) and V ′(bodyQ) ⊆ rfactsP (κ2).

However, according to Lemma 4.4, the existence of such a valuation V ′

that is satisfiable on more than one node poses a contradiction with our
assumption that Q is parallel-correct under P . We conclude that Q cannot
be parallel-correct under P .

Lemma 4.5 closely resembles Condition 3.4, a sufficient condition for
parallel-correctness under set semantics. We mention without proof that
Qbag(I) 6= [Q,P ]bag(I) if Qset(I) 6= [Q,P ]set(I) for every query Q ∈ CQ6=,
distribution policy P and instance I.2 One might think that these two ob-
servations would suffice to prove Lemma 4.5 directly. Unfortunately, this is
not the case, as Condition 3.4 is not required for parallel-correctness under
set semantics. To this end, assume a query Q ∈ CQ6= that is parallel-correct
under a distribution policy P . According to Proposition 3.8, there might ex-
ist a valuation V for Q for which there is no node in the network responsible
for all the required facts for V , as long as this valuation V is not a minimal
valuation for Q.

Based on these lemmas, we now prove that Condition 4.3 is necessary
and sufficient for parallel-correctness.

Proposition 4.6. Let P = (U, rfactsP ) be a distribution policy over a net-
work N . A query Q ∈ CQ6= is parallel-correct under P if and only if Con-
dition 4.3 is satisfied.

Proof. (if) Assume that for every valuation V for Q there is exactly one
node κ ∈ N that satisfies the facts required by V . Trivially, Q is parallel-
correct under P , as each valuation V that satisfies Q on a given instance I
is also satisfied on exactly one node κ when I is distributed according to P .

(only if) The proof is by contraposition. Let V be a valuation for Q such
that there are zero or multiple nodes κ ∈ N having V (bodyQ) ⊆ rfactsP (κ).
It directly follows from Lemma 4.4 and Lemma 4.5 that Q is not parallel-
correct under P .

2The relation of parallel-correctness between set and bag semantics is studied in
more detail in Chapter 5. More specifically, Proposition 5.1 says that parallel-correctness
under bag semantics implies parallel-correctness under set semantics. The contraposi-
tion of this proposition trivially leads to our claim that Qbag(I) 6= [Q,P ]bag(I) if
Qset(I) 6= [Q,P ]set(I).
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4.2 Parallel-correctness complexity

In this section, we consider the complexity of parallel-correctness for various
classes of conjunctive queries and distribution policies. We study the com-
plexity of the problem PC(C,P), with C a class of queries and P a class of
distribution policies.

PC(C,P)

Input: Query Q ∈ C,
distribution policy P ∈ P

Question: Is Q parallel-correct under P ?

Proposition 4.7. The problem PC(C,P) is in Πp
2 for every query class

C ∈ {CQ,CQ6=} and every distribution policy class P ∈ {Pfin} ∪Pnondet.

Proof. Let k be fixed and let 〈Q,P 〉 be an input for PC(CQ6=,Pknondet), with
Q ∈ CQ6= and P = (U, rfactsP ) represented by a tuple (n,AP ). According
to Proposition 4.6, it suffices to show that there is a Πp

2-algorithm that checks
whether for each valuation V for Q over U there is exactly one node κ such
that V (bodyQ) ⊆ rfactsP (κ). This condition can be reformulated as follows:

For every valuation V for Q over U and every pair of nodes κ1 and κ2
there is a node κ such that:

• V (bodyQ) ⊆ rfactsP (κ) and

• V (bodyQ) 6⊆ rfactsP (κ1) or V (bodyQ) 6⊆ rfactsP (κ2) or κ1 = κ2.

Intuitively, the first part of this reformulation states that the facts required
for each valuation V should meet at at least one node κ, while the second
part ensures that these facts don’t meet at more than one node.

Since f ∈ rfactsP (κ) can be tested nondeterministically by AP in time
O(nk) for each of the polynomially many facts f ∈ V (bodyQ), deciding
whether V (bodyQ) ⊆ rfactsP (κ) is in NP. This implies the existence of
a verifier M that decides in polynomial time on an input 〈V (bodyQ), κ〉
whether V (bodyQ) ⊆ rfactsP (κ). In other words, if V (bodyQ) ⊆ rfactsP (κ),
there exists a certificate c such that M accepts on input 〈V (bodyQ), κ〉. On
the other hand, if V (bodyQ) 6⊆ rfactsP (κ), such a certificate c does not
exist.3

Using the reformulated conditions and the verifier M , we are able to
construct a Πp

2-algorithm deciding PC(CQ6=,Pknondet):
3Note that we only need to consider certificates with a polynomial length relative to

the input. Indeed, the verifier M cannot process longer certificates, as it needs to do so in
polynomial time.
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For every valuation V for Q over U , for every pair of nodes κ1 and κ2
and for every pair of certificates c1 and c2, there is a node κ and a certificate
c such that:

• The verifier M accepts on input 〈V (bodyQ), κ〉 with certificate c and

• The verifier M rejects on input 〈V (bodyQ), κ1〉 with certificate c1 or
M rejects on input 〈V (bodyQ), κ2〉 with certificate c2 or κ1 = κ2.

Note that this result also holds for query class CQ and policy class Pfin,
since CQ ⊆ CQ6= and Pfin ⊆ P2

nondet.

Observe that the resulting upper bound given by Proposition 4.7 is par-
tially due to the existential quantifier over the nodes in the network N and
the certificates for the verifier M . Therefore, we could improve the upper
bound if we could drop this existential quantifier. A possible approach is to
limit ourselves to networks containing only a polynomial number of nodes on
the one hand and deterministic algorithms to decide whether f ⊆ rfactsP (κ)
for a given fact f and node κ on the other hand. The distribution classes in
Pdet satisfy these conditions, resulting in the following upper bound:

Proposition 4.8. The problem PC(C,P) is in coNP for every query class
C ∈ {CQ,CQ6=} and every distribution policy class P ∈ Pdet ∪ {Pfin}.

Proof. It suffices to show that the complement of the problem PC(C,P),
denoted PC(C,P), is in NP for every query class C ∈ {CQ,CQ6=} and
every distribution policy class P ∈ Pdet ∪ {Pfin}.

PC(C,P)

Input: Query Q ∈ C,
distribution policy P ∈ P

Question: Is Q not parallel-correct under P ?

Let k be fixed. We construct a nondeterministic algorithm that decides

PC(CQ6=,Pk
det) on input 〈Q,P 〉 withQ ∈ CQ6= and where P is represented

by a tuple (N , n,AP ). According to Proposition 4.6, Q is not parallel-correct
under P if and only if there is a valuation V for Q over U such that the total
number of nodes κ having V (bodyQ) ⊆ rfactsP (κ) is zero or at least two.
We use this property to construct the nondeterministic algorithm as follows:
Guess a valuation V and count the number of nodes κ having V (bodyQ) ⊆
rfactsP (κ). The algorithm rejects if this count equals one. Otherwise, it
accepts.

Since valuations are mappings of variables appearing in Q to values in
U and since values in U can be represented by a string of length n or less,
it is possible to guess a valuation V in polynomial time. Furthermore, the
number of nodes κ having V (bodyQ) ⊆ rfactsP (κ) can also be determined in
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polynomial time, as the nodes are an explicit part of the input and AP can
be used to decide V (bodyQ) ⊆ rfactsP (κ) in polynomial time for each node
κ. Thus, The nondeterministic algorithm described above runs in polynomial
time.

Notice that this reasoning holds for conjunctive queries in CQ as well,
since CQ ⊆ CQ6=.

We conclude this section by providing a lower bound for the problem
PC(CQ,Pfin). This lower bound immediately infers a lower bound on every
problem PC(C,P) with query class C ∈ {CQ,CQ6=} and distribution policy
class P ∈ {Pfin}∪Pnondet∪Pdet. The construction of this lower bound proof
resembles the construction used in the proof of Proposition 3.10.

Before describing this lower bound proof, we first briefly mention the
problem 3-SAT, as it is used in a reduction during our proof.

3-SAT

Input: Propositional formula ψ in 3-CNF over

variables x = (x1, . . . , xn)

Question: Does a truth assignment βx on x exist

with βx � ψ?

It is well-known that 3-SAT is NP-complete [9, 13].

Proposition 4.9. The problem PC(CQ,Pfin) is coNP-complete, even over
networks with only two nodes.

Proof. Proposition 4.8 already states that PC(CQ,Pfin) is in coNP, so we
only need to prove that PC(CQ,Pfin) is coNP-hard.

We construct a polynomial reduction from 3-SAT to PC(CQ,Pfin).

Since 3-SAT is NP-complete, this construction proves that PC(CQ,Pfin)
is NP-hard. It immediately follows that PC(CQ,Pfin) is coNP-hard.

Let ψ be an input for 3-SAT over variables x = (x1, . . . , xn). We use
C1, . . . , Ck to denote the disjunctive clauses of ψ with Cj = (`j1 ∨ `

j
2 ∨ `

j
3) for

each j. Each literal `jk occurring in a clause Cj represents either a variable
xi or a negated variable ¬xi, with xi ∈ x.

Based on this propositional formula ψ, we next construct a query Q ∈
CQ and distribution policy P ∈ Pfin serving as the corresponding input for

PC(CQ,Pfin).
The query Q is constructed over the variables xi, xi for i ∈ {1, . . . n}.

Intuitively, xi and xi respectively represent the variable xi ∈ x and its
negation ¬xi. For convenience, we overload the notation of a literal `jk as

follows: if `jk represents a negated variable ¬xi, then `jk denotes the variable
xi as well.
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The construction of the conjunctive query Q is as follows: headQ = H()
and

bodyQ = {Neg(xi, xi) | i ∈ {1, . . . , n}} ∪ {Cj(`
j
1, `

j
2, `

j
3) | j ∈ {1, . . . , k}}.

Unlike the proof of Proposition 3.10, the variables used in the head atom
are not important during the rest of this proof. Therefore, we do not include
any variables in headQ. The atoms in bodyQ intuitively represent the logical
structure of ψ by relating each variable with its negation and by relating
literals occurring in the same clause with each other.

We define B as the set of all triples over {0, 1} and B+ = B \ {(0, 0, 0)}.
Let N = {κ1, κ2} be a network over two nodes and let U = {0, 1} be a
binary universe. The finite distribution policy P = (U, rfactsP ) over N is
constructed as follows: each fact over Neg and each fact over a Cj is assigned
to κ1 and

rfactsP (κ2) = {Neg(0, 1),Neg(1, 0)} ∪ {Cj(b) | j ∈ {1, . . . , k},b ∈ B+}.

The intuition behind this construction is that the required facts for every
valuation V for Q over U are assigned to κ1, whereas κ2 only contains all
the required facts for valuations that can be related to truth assignments on
x satisfying ψ.

The query Q and finite policy P are obviously computable in time poly-
nomial in the size of ψ. We next prove that ψ ∈ 3-SAT if and only if
〈Q,P 〉 ∈ PC(CQ,Pfin).

(if) The proof is by contraposition. Assuming ψ 6∈ 3-SAT, we show that
Q is parallel-correct under P . According to Proposition 4.6, this is the case
if for every valuation V for Q there exists exactly one node κ ∈ N with
V (bodyQ) ⊆ rfactsP (κ). For every valuation V for Q it clearly holds that
V (bodyQ) ⊆ rfactsP (κ1). We therefore only need to show that there is no
valuation V for Q with V (bodyQ) ⊆ rfactsP (κ2).

To this end, assume that there is a valuation V for Q over U with
V (bodyQ) ⊆ rfactsP (κ2). Now consider the truth assignment βx on x having
βx(xi) = V (xi) for every variable xi ∈ x. It can easily be seen that this truth
assignments is well-defined since U is a binary universe, thereby implying
that V maps each variable xi onto either 0 or 1.

Since the only facts over Neg are Neg(0, 1) and Neg(1, 0), and since
bodyQ contains the atom Neg(xi, xi) for every variable xi, we conclude that
V (xi) = 1 if and only if V (xi) = 0, and vice versa. It immediately follows
that βx(¬xi) equals V (xi). In other words, this valuation V correctly assigns
the negated value of a variable xi to the variable xi representing the negated
literal ¬xi.

We now show that this truth assignment βx satisfies ψ. To this end, con-
sider an arbitrary clause Cj = (`j1∨ `

j
2∨ `

j
3) in ψ. Since Cj(`

j
1, `

j
2, `

j
3) ∈ bodyQ
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and since Cj(0, 0, 0) 6∈ rfactsP (κ2), the valuation V should map at least one

literal `jk to 1. By construction of βx, it directly follows that βx(`jk) = 1.
Thus, this clause Cj is satisfied under βx. We conclude that βx indeed sat-
isfies ψ, as this reasoning is clearly applicable to every clause Cj appearing
in ψ.

However, this truth assignment βx satisfying ψ poses a contradiction
because we initially assumed that ψ is not satisfiable. Therefore, we conclude
that there is no valuation V for Q over U with V (bodyQ) ⊆ rfactsP (κ2).

(only if) Assume ψ ∈ 3-SAT. We prove that Q is not parallel-correct
under P by providing a valuation V for Q over U that is satisfiable on both
nodes in N .

Let βx be truth assignment over x satisfying ψ (this truth assignment
exists by assumption). Based on this truth assignment βx, we define the
valuation V for Q over U as follows: V (xi) = βx(xi) for every variable xi
and V (xi) = βx(¬xi) for every variable xi.

We next show that V (bodyQ) ⊆ rfactsP (κ2). The first part of bodyQ
requires the fact V (Neg(xi, xi)) for each variable xi and its negated variable
xi. By definition of V , it can easily be seen that V (xi) = 1 if and only if
V (xi) = 0, and vice versa. The only possible required facts for V therefore
are Neg(0, 1) and Neg(1, 0), and these facts are indeed mapped onto κ2.

The second part of bodyQ requires the fact V (Cj(`
j
1, `

j
2, `

j
3)) for every

clause Cj . Since βx satisfies ψ, we know that there is at least one literal

`jk appearing in Cj with βx(`jk) = 1. By construction of V , it follows that

V (`jk) = 1. In other words, at least one of the three values appearing in

the fact V (Cj(`
j
1, `

j
2, `

j
3)) has to be 1. We conclude that V (Cj(`

j
1, `

j
2, `

j
3)) ∈

{Cj(b) | b ∈ B+}, and the node κ2 is by construction indeed responsible for
this fact.

We conclude that all the required facts for this valuation V are available
on κ2. These required facts are obviously available on κ1 as well because
every fact is by construction of P assigned to this node κ1. Since V is
satisfiable on both nodes, it immediately follows from Proposition 4.6 that
Q is not parallel-correct under P .

4.3 Parallel-correctness transfer

4.3.1 Conditions for parallel-correctness transfer

According to proposition 4.6, a query Q ∈ CQ6= is parallel-correct under
a distribution policy P if and only if the required facts for each valuation
V meet at exactly one node. We use this property to formulate a sufficient
condition for parallel-correctness transferring from Q ∈ CQ6= to Q′ ∈ CQ6=:
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Condition 4.10. Let Q and Q′ be queries in CQ6=. For each valuation V ′

for Q′ over a universe U , there is a valuation V for Q over U such that
V ′(bodyQ′) = V (bodyQ).

Proposition 4.11. Let Q and Q′ be queries in CQ6=. If Condition 4.10
satisfies then parallel-correctness transfers from Q to Q′.

Proof. Let Q and Q′ be queries in CQ6= and assume Condition 4.10 holds.
We prove that parallel-correctness transfers from Q to Q′. To this end,
assume a distribution policy P = (U, rfactsP ) over some universe U under
which Q is parallel-correct. We need to show that Q′ is parallel-correct under
P as well.

Let V ′ be a valuation for Q′ over U . According to Condition 4.10, there
is a valuation V for Q over U such that V ′(bodyQ′) = V (bodyQ). Since
Q is parallel-correct, there is exactly one node κ such that V (bodyQ) ⊆
rfactsP (κ) as stated by Proposition 4.6. Furthermore, since V ′(bodyQ′) =
V (bodyQ), it also holds that κ is the only node such that V ′(bodyQ′) ⊆
rfactsP (κ). This argumentation holds for each valuation V ′ for Q′ over U .
In other words, for each valuation V ′ for Q′ over U , there is exactly one
node κ such that V ′(bodyQ′) ⊆ rfactsP (κ). By Proposition 4.6, we conclude
that Q′ is parallel-correct under P as well.

Note that it is not sufficient to require V ′(bodyQ′) ⊆ V (bodyQ) instead
of V ′(bodyQ′) = V (bodyQ), as this would only guarantee that the facts in
V ′(bodyQ′) would meet at at least one node. For parallel-correctness under
bag-semantics we require however that these facts meet at exactly one node.

Although Condition 4.10 is sufficient for parallel-correctness transfer, it
is not a necessary condition, as the following example shows:

Example 4.12. Consider the following two conjunctive queries Q and Q′:

Q : H(x, y)← R(x, x), R(x, y), R(y, x).

Q′ : H(x, y)← R(x, x), R(x, y).

Let V ′ = {x 7→ a, y 7→ b} be a valuation for Q′. This valuation requires the
following facts V ′(bodyQ′) = {R(a, a), R(a, b)}. Since there is no valuation
V for Q with V (bodyQ) = {R(a, a), R(a, b)}, Condition 4.10 is not satisfied.

However, parallel-correctness transfers from Q to Q′. We show that Q′
is parallel-correct under every distribution policy for which Q is parallel-
correct. To this end, let P be such a policy for which Q is parallel-correct.
We need to prove that the required facts V ′(bodyQ′) for each valuation V ′

over Q′ meet at exactly one node κ under P . Let V ′ = {x 7→ a, y 7→ b} be
such a valuation for Q′. Consider the valuations V1 = {x 7→ a, y 7→ a} and
V2 = {x 7→ a, y 7→ b} for Q. Since Q is parallel-correct under P , The facts in
V1(bodyQ) = {R(a, a)} and V2(bodyQ) = {R(a, a), R(a, b), R(b, a)} meet at

35



exactly one node κ.4 As V1(bodyQ) ⊆ V ′(bodyQ′) ⊆ V2(bodyQ), we conclude
that the facts in V ′(bodyQ′) also meet at only this node κ. Observe that this
argumentation still holds when both variables x and y are mapped onto the
same value a. In this case, V ′(bodyQ′) would furthermore equal V1(bodyQ),
which also trivially leads to the conclusion that the facts in V ′(bodyQ′) meet
at exactly one node κ. �

In the previous example, it is shown that Condition 4.10 is too strict
to be a necessary condition. We now propose a more general condition for
parallel-correctness transfer based on Example 4.12:

Condition 4.13. Let Q and Q′ be two queries in CQ6=. For each valuation
V ′ for Q′ over some universe U , there exist two valuations V1 and V2 for Q
over U such that V1(bodyQ) ⊆ V ′(bodyQ′) and V ′(bodyQ′) ⊆ V2(bodyQ).

Proposition 4.14. Let Q and Q′ be queries in CQ6=. If Condition 4.13
satisfies then parallel-correctness transfers from Q to Q′.

Proof. Let Q and Q′ be two queries in CQ6=. Assume for each valuation
V ′ for Q′ over some universe U there exist two valuations V1 and V2 for
Q over U such that V1(bodyQ) ⊆ V ′(bodyQ′) and V ′(bodyQ′) ⊆ V2(bodyQ).
We prove that parallel-correctness transfers from Q to Q′. To this end, Let
P = (U, rfactsP ) be a distribution policy over a universe U under which Q
is parallel-correct. We need to show that Q′ is parallel-correct under P as
well.

Let V ′ be a valuation for Q′ over U and let V1 and V2 be the two val-
uations for Q over U such that V1(bodyQ) ⊆ V ′(bodyQ′) and V ′(bodyQ′) ⊆
V2(bodyQ). By Proposition 4.6, the required facts for both V1 and V2 meet
at exactly one node. Furthermore, since both V1(bodyQ) ⊆ V ′(bodyQ′) and
V ′(bodyQ′) ⊆ V2(bodyQ), it trivially follows that V1(bodyQ) ⊆ V2(bodyQ).
This implies that the node κ responsible for V1 is the same as the node
responsible for V2. Since V ′(bodyQ′) ⊆ V2(bodyQ), the required facts for V ′

meet at this node κ.
Also note that there cannot be another node κ′ different from κ such that

V ′(bodyQ′) ⊆ rfactsP (κ′). Indeed, if such a node κ′ would exist, it would be
responsible for the required facts for V1 as well, as V1(bodyQ) ⊆ V ′(bodyQ′).
This would imply that the required facts for V1 meet at more than one node,
contradicting our initial assumption that Q is parallel-correct.

Since this argumentation holds for each valuation V ′ for Q′ over U , we
conclude that for each valuation V ′ for Q′ there is exactly one node κ such
that V ′(bodyQ′) ⊆ rfactsP (κ). Thus, according to Proposition 4.6, Q′ is
parallel-correct under P as well.

4Notice that, since V1(bodyQ) ⊆ V2(bodyQ), the facts in V1(bodyQ) cannot meet at
another node than the node where the facts in V2(bodyQ) meet. Otherwise, the facts in
V1(bodyQ) would meet at multiple nodes.
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Condition 4.10 clearly is a special case of Condition 4.13, as assuming
V1 = V2 = V in Condition 4.13 trivially leads to Condition 4.10. However,
Condition 4.13 is still not a necessary condition for parallel-correctness trans-
fer, as the following example will show:

Example 4.15. Let Q and Q′ be the following conjunctive queries:

Q : H(x, z)← R(x, y), R(y, z).

Q′ : H(w, z)← R(w, x), R(x, y), R(y, z).

Let V ′ = {w 7→ a, x 7→ b, y 7→ c, z 7→ d} be a valuation for Q′. Triv-
ially there is no valuation V2 for Q such that V ′(bodyQ′) ⊆ V2(bodyQ), as
V2(bodyQ) can contain at most two facts, while V ′(bodyQ′) contains three
facts.

We’ll show that parallel-correctness transfers from Q to Q′, thereby
showing that Condition 4.13 is not a necessary condition for transferabil-
ity. To this end, assume a distribution policy P = (U, rfactsP ) under which
Q is parallel-correct. We’ll prove that Q′ is parallel-correct under P as well.

First, note that for each valuation V ′ for Q′ there clearly is a valuation
V1 for Q such that V1(bodyQ) ⊆ V ′(bodyQ′). As stated earlier in the proof of
Proposition 4.14, this implies that the required facts for V ′ can never meet
at multiple nodes. Thus, it further suffices to show that the required facts
for each valuation V ′ for Q′ meet at at least one node under P in order to
conclude that the required facts for each valuation V ′ for Q′ meet at exactly
one node, thereby implying that Q′ is parallel-correct under P .

We now consider how P might distribute facts over the different nodes,
assuming we’re working under a random universe U . Let a ∈ U be a random
value. Clearly, the fact R(a, a) needs to be mapped onto exactly one node
κ, since H(a, a) can be derived by Q when using only R(a, a). Mapping
R(a, a) on multiple nodes or no node at all would therefore make Q no
longer parallel-correct under P .

Let now b ∈ U be another random value. Trivially, there exists a val-
uation for Q requiring the facts R(a, a) and R(a, b) and another valuation
for Q requiring R(a, a) and R(b, a). Since R(a, a) is only assigned to κ, we’ll
need to assign both R(a, b) and R(b, a) to κ as well. In other words, assigning
the fact R(a, a) onto the node κ implies that all other facts using the value
a will be assigned to κ as well.

Now consider the fact R(b, b). We can trivially apply the argumentation
for R(a, a) to R(b, b) as well. Thus, we know that R(b, b) is assigned to
exactly one node κ′, and that all facts using the value b are assigned to this
node κ′ as well.

Note that the facts R(a, b) and R(b, a) are assigned to both κ and κ′.
Furthermore, the valuation W = {x 7→ a, y 7→ b, z 7→ a} for Q would require
exactly these two facts. We conclude that κ = κ′, since the existence of a
valuation W that is satisfiable onto more than one node would contradict our
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assumption that Q is parallel-correct under P . This argumentation holds for
each pair of values a and b in the universe U , and thus we conclude that all
facts of the form R(a, a), with a ∈ U , are assigned onto the same node κ. We
already argued that a fact of the form R(a, a) mapped onto a node κ implies
that all other facts using a are mapped onto this node κ as well. Thus, each
fact using a value from the universe U is mapped onto this node κ. Since
each fact effectively uses two values from the universe U , we conclude that
all facts are assigned to the same node κ.5

Since Q requires P to assign all facts onto a node κ, it trivially follows
that the required facts for each valuation V ′ for Q′ meet at at least one node
under P . �

The previous example shows that Condition 4.13 is not a necessary condi-
tion for parallel-correctness transfer by constructing a counterexample hav-
ing a valuation V ′ for Q′ such that there is no valuation V2 for Q with
V ′(bodyQ′) ⊆ V2(bodyQ). The other part of Condition 4.13, requiring a valu-
ation V1 forQ for each valuation V ′ forQ′ such that V1(bodyQ) ⊆ V ′(bodyQ′),
is still satisfied in the example. One might ask if it would also be possible to
construct a counterexample having a valuation V ′ for Q′ such that there is
no valuation V1 for Q with V1(bodyQ) ⊆ V ′(bodyQ′). The answer turns out
to be no, as we will prove next.

Condition 4.16. Let Q and Q′ be two queries in CQ6=. For each valuation
V ′ for Q′ over a universe U , there exists a valuation V for Q over U such
that V (bodyQ) ⊆ V ′(bodyQ′).

Proposition 4.17. Let Q and Q′ be two queries in CQ6=. Condition 4.16
is a necessary condition for parallel-correctness transferring from Q to Q′.

Proof. Let Q and Q′ be two queries in CQ6=. Assume Condition 4.16 does
not hold. That is, there exists a valuation V ′ for Q′ over a universe U such
that there is no valuation V for Q over U with V (bodyQ) ⊆ V ′(bodyQ′). We
show that parallel-correctness cannot transfer from Q to Q′ by constructing
a distribution policy P = (U, rfactsP ) over a network N with two nodes κ1
and κ2 under which Q is parallel-correct, but Q′ is not.

This distribution policy P maps each fact f over U onto κ1. Further-
more, it also maps each fact f ∈ V ′(bodyQ′) onto κ2. Since V ′(bodyQ′) ⊆
rfactsP (κ1) and V ′(bodyQ′) = rfactsP (κ2), valuation V ′ can be satisfied on
both nodes. According to Proposition 4.6, Q′ is not parallel-correct under
P .

5Notice that this doesn’t imply that all other nodes have no facts assigned to them. For
example, the fact R(a, b) could be assigned to a node κ′ different from κ as well. However,
these extra nodes will always produce the empty result when Q is evaluated over them.
Indeed, a nonempty result would imply the existence of a valuation that is satisfiable on
both κ and κ′, contradicting the assumption that Q is parallel-correct under P .
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All valuations V for Q can trivially be satisfied on κ1. A valuation V
for Q can however never be satisfied on κ2, as this requires V (bodyQ) ⊆
rfactsP (κ2). This requirement cannot be satisfied, as it would trivially imply
V (bodyQ) ⊆ V ′(bodyQ′), thereby contradicting our assumption that there is
no valuation V for Q with V (bodyQ) ⊆ V ′(bodyQ′). We conclude that Q is
parallel-correct under P .

Let Q and Q′ be two queries in CQ6= and let P = (U, rfactsP ) be
a distribution policy under which Q is parallel-correct. If Condition 4.16
is satisfied, we know for sure that there is at most one node κ for every
valuation V ′ for Q′ such that V ′(bodyQ′) ⊆ rfactsP (κ). Indeed, if two or
more such nodes would exist, there would be a valuation V for Q that would
be satisfiable on these nodes as well, thereby contradicting our assumption
that Q is parallel-correct under P .

Condition 4.16 is however not a sufficient condition for transferability,
as it only enforces that there is at most one node κ for every valuation
V ′ for Q′ such that V ′(bodyQ′) ⊆ rfactsP (κ), while parallel-correctness re-
quires that every valuation V ′ for Q′ is satisfiable on exactly one node. In
other words, we still need to make sure that every valuation V ′ for Q′ is
satisfiable on at least one node κ. Condition 4.13 enforces this requirement
by demanding a valuation V2 for Q for each valuation V ′ for Q′ such that
V ′(bodyQ′) ⊆ V2(bodyQ). Example 4.15 however shows that Condition 4.13
is not a necessary condition. This example indicates that some valuations
for a conjunctive query Q are guaranteed to be satisfiable on the same node
under every distribution policy P under which Q is parallel-correct.

4.3.2 The set impFacts

In the previous section we observed that, depending on the conjunctive query
Q, the characterization for parallel-correctness described in Proposition 4.6
implicitly requires that certain valuations for Q are grouped onto the same
node. In other words, there always is a single node in the network responsible
for all these valuations. It immediately follows that for every valuation V
for Q over a universe U , some facts over U will always appear on this node
responsible for V as well.

Definition 4.18. Let V be a valuation for a queryQ ∈ CQ6= over a universe
U . A fact f over U is in impFacts(V,Q) if and only if for every distribution
policy P = (U, rfactsP ) over a network N under which Q is parallel-correct
and for every node κ ∈ N , if V (bodyQ) ⊆ rfactsP (κ), then f ∈ rfactsP (κ).

Intuitively, we define impFacts(V,Q) as the set of facts over U that ap-
pear on the node responsible for V under every distribution policy P over
U under which Q is parallel-correct. Notice that by definition it trivially
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follows that V (bodyQ) ⊆ impFacts(V,Q) for every valuation V for a con-
junctive query Q.

Next, we describe some interesting properties of the set impFacts(V,Q).
These properties will prove useful to formulate a set of inference rules for
impFacts(V,Q).

Proposition 4.19. Let V1 and V2 be valuations for a query Q ∈ CQ6= over
a universe U . If V1(bodyQ) ⊆ impFacts(V2,Q), then impFacts(V1,Q) =
impFacts(V2,Q).

Proof. Assume valuations V1 and V2 as in the proposition. We prove that
impFacts(V1,Q) equals impFacts(V2,Q) by showing that (i) for every fact
f ∈ impFacts(V1,Q), it holds that f ∈ impFacts(V2,Q) and (ii) for every
fact f ∈ impFacts(V2,Q), it holds that f ∈ impFacts(V1,Q).

(i) Let f be a fact in impFacts(V1,Q). For every distribution policy
P = (U, rfactsP ) over a network N under which Q is parallel-correct it
holds by definition that:

1. for every node κ ∈ N , if V1(bodyQ) ⊆ rfactsP (κ), then f ∈ rfactsP (κ),
since f ∈ impFacts(V1,Q), and

2. for every node κ ∈ N , if V2(bodyQ) ⊆ rfactsP (κ), then V1(bodyQ) ⊆
rfactsP (κ), since V1(bodyQ) ⊆ impFacts(V2,Q).

By combining these two statements, we get that for every node κ ∈ N ,
if V2(bodyQ) ⊆ rfactsP (κ), then f ∈ rfactsP (κ). We conclude that f ∈
impFacts(V2,Q).

(ii) Let f be a fact in impFacts(V2,Q). By definition, for every distribu-
tion policy P = (U, rfactsP ) over a network N under which Q is parallel-
correct it holds that:

1. for every node κ ∈ N , if V2(bodyQ) ⊆ rfactsP (κ), then f ∈ rfactsP (κ),
since f ∈ impFacts(V2,Q), and

2. for every node κ ∈ N , if V2(bodyQ) ⊆ rfactsP (κ), then V1(bodyQ) ⊆
rfactsP (κ), since V1(bodyQ) ⊆ impFacts(V2,Q).

By Proposition 4.6, there is exactly one node κ2 responsible for V2. By
applying the two previous statements, we get that f ∈ rfactsP (κ2) and
V1(bodyQ) ⊆ rfactsP (κ2). Since V1(bodyQ) ⊆ rfactsP (κ2), there is further-
more no node κ′ ∈ N different from κ2 with V1(bodyQ) ⊆ rfactsP (κ′), as this
would contradict our assumption that Q is parallel-correct under P . Since
f ∈ rfactsP (κ2), we conclude that for every node κ ∈ N , if V1(bodyQ) ⊆
rfactsP (κ), then f ∈ rfactsP (κ). As a result, f ∈ impFacts(V1,Q).
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Proposition 4.20. Let V1 and V2 be valuations for a query Q ∈ CQ6=

over a universe U . impFacts(V1,Q) = impFacts(V2,Q) if and only if there
exists a valuation V for Q over U with V (bodyQ) ⊆ impFacts(V1,Q) and
V (bodyQ) ⊆ impFacts(V2,Q).

Proof. (if) Assume there is a valuation V for Q over U with V (bodyQ) ⊆
impFacts(V1,Q) and V (bodyQ) ⊆ impFacts(V2,Q). By Proposition 4.19,
it follows that impFacts(V,Q) = impFacts(V1,Q) and impFacts(V,Q) =
impFacts(V2,Q). We conclude that impFacts(V1,Q) = impFacts(V2,Q).

(only if) Assume impFacts(V1,Q) = impFacts(V2,Q). Notice that by
definition V1(bodyQ) ⊆ impFacts(V1,Q). It clearly follows that V1(bodyQ) ⊆
impFacts(V2,Q). We conclude that there is a valuation V for Q over U with
V (bodyQ) ⊆ impFacts(V1,Q) and V (bodyQ) ⊆ impFacts(V2,Q).

We next present the following rules of inference deriving impFacts(V,Q)
given a valuation V for a conjunctive query with inequalities Q over a uni-
verse U :

Definition 4.21. Let V be a valuation for a queryQ ∈ CQ6= over a universe
U . The rules of inference for impFacts(V,Q) are:

1. If f is a fact in V (bodyQ), then f ∈ impFacts(V,Q).

2. Let f be a fact over U . If there are two valuations V1 and V2 for Q over
U such that f ∈ impFacts(V1,Q) and V2(bodyQ) ⊆ impFacts(V1,Q)
and V2(bodyQ) ⊆ impFacts(V,Q), then f ∈ impFacts(V,Q).

Notice that the second rule intuitively merges two sets impFacts(V1,Q)
and impFacts(V,Q) from as soon as they have the required facts for a val-
uation V2 in common. This construction closely resembles Proposition 4.20,
stating that impFacts(V1,Q) and impFacts(V,Q) are the same if they have
the required facts for a valuation V2 in common.

Based on these rules of inference, we formulate an iterative approach to
compute impFacts(V,Q) for every valuation V for a given conjunctive query
with inequalities Q. Let impF i(V,Q) denote the computed set of facts in
impFacts(V,Q) after iteration i with i ≥ 0. Let ∆impF i(V,Q) denote the
set of facts that were added to impF i(V,Q) in iteration i.

For each valuation V , the iteration scheme based on the rules of inference
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now looks as follows:

impF 0(V,Q) = V (bodyQ)

impF i+1(V,Q) = impF i(V,Q) ∪

 ⋃
V1∈V(V,i)

impF i(V1,Q)


∆impF 0(V,Q) = impF 0(V,Q)

∆impF i+1(V,Q) = impF i+1(V,Q) \ impF i(V,Q)

In this iteration scheme, V(V, i) is a shorthand notation for

{V1 | ∃V2 : V2(bodyQ) ⊆ impF i(V1,Q) ∧ V2(bodyQ) ⊆ impF i(V,Q)}.

Notice that the first rule of inference is applied to impF 0(V,Q), while the
second rule is applied in the computation of impF i+1(V,Q). We use this
iteration scheme to prove that the given rules of inference are both sound
and complete.

Proposition 4.22. For a given valuation V for a query Q ∈ CQ6= over a
universe U , the rules of inference for impFacts(V,Q) are sound.

Proof. The proof is by induction on the iteration scheme. For each iteration
i ≥ 0, we show that impF i(V,Q) ⊆ impFacts(V,Q).

(Base case) For i = 0, we get impF 0(V,Q) = V (bodyQ). As V (bodyQ) ⊆
impFacts(V,Q), it immediately follows that impF 0(V,Q) ⊆ impFacts(V,Q).

(Inductive step) Assume impF i(V,Q) ⊆ impFacts(V,Q) for every val-
uation V for Q with i ≥ 0. We prove that impF i+1(V,Q) ⊆ impFacts(V,Q).

The set impF i+1(V,Q) consists of all the facts in impF i(V,Q), as well
as the facts in impF i(V1,Q) for each valuation V1 for which there ex-
ists a valuation V2 such that V2(bodyQ) ⊆ impF i(V1,Q) and V2(bodyQ) ⊆
impF i(V,Q). We show that both (i) impF i(V,Q) ⊆ impFacts(V,Q) and
(ii) impF i(V1,Q) ⊆ impFacts(V,Q), thereby proving that impF i+1(V,Q) ⊆
impFacts(V,Q). Notice that (i) is trivial by assumption, so we only focus
on (ii) in the rest of this proof.

Let V1 and V2 be valuations for Q with V2(bodyQ) ⊆ impF i(V1,Q)
and V2(bodyQ) ⊆ impF i(V,Q). It follows by assumption that V2(bodyQ) ⊆
impFacts(V1,Q) and V2(bodyQ) ⊆ impFacts(V,Q). According to Proposi-
tion 4.20, we know that impFacts(V1,Q) equals impFacts(V,Q). Because
impF i(V1,Q) ⊆ impFacts(V1,Q) and impFacts(V1,Q) = impFacts(V,Q),
we conclude that impF i(V1,Q) ⊆ impFacts(V,Q).

Assume a finite set of data values domk ⊆ dom. Notice that for every
conjunctive query with inequalities Q over a database scheme D and for
every universe U ⊆ domk, both facts(D, U) and the number of valuations
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for Q over U are finite as well. Therefore, it can easily be seen that for every
conjunctive query Q ∈ CQ6= and universe U ⊆ domk, there has to be an
iteration i such that ∆impF i(V,Q) is empty for every valuation V for Q over
U . Notice furthermore that for every iteration j ≥ i the set ∆impF j(V,Q)
is empty as well, as the iteration scheme only uses facts from the previous
iteration to generate facts for the next iteration. Thus, if there was no change
during the previous iteration, there will certainly be no change in the next
iteration.

We conclude that for every conjunctive query Q over a database scheme
D and for every universe U ⊆ domk, the iteration scheme eventually reaches
a point where the computed set of facts impF i(V,Q) will no longer change for
every valuation V for Q over U . We refer to this set as impF (V,Q). Based on
this set impF (V,Q), we prove that the rules of inference are complete. To this
end, we first state the following lemma, closely related to Proposition 4.20.

Lemma 4.23. Let V1 and V2 be valuations for a query Q ∈ CQ6= over a
universe U ⊆ domk. impF (V1,Q) = impF (V2,Q) if and only if there exists
a valuation V for Q over U with V (bodyQ) ⊆ impF (V1,Q) and V (bodyQ) ⊆
impF (V2,Q).

Proof. (if) Let V be a valuation for Q over U with V (bodyQ) ⊆ impF (V1,Q)
and V (bodyQ) ⊆ impF (V2,Q). Assume impF (V1,Q) 6= impF (V2,Q). Let i
denote the iteration after which the iteration scheme remains the same.
Thus, impF i(V1,Q) = impF i+1(V1,Q) = impF (V1,Q) and analogously
impF i(V2,Q) = impF i+1(V2,Q) = impF (V2,Q).

Since impF i(V1,Q) 6= impF i(V2,Q), there exists a fact f with:

• f ∈ impF i(V1,Q) and f 6∈ impF i(V2,Q), or

• f 6∈ impF i(V1,Q) and f ∈ impF i(V2,Q).

Assume the first case is true (if instead the second case would be true, we
just need to swap V1 and V2). Since V (bodyQ) is a subset of or equal to
both impF i(V1,Q) and impF i(V2,Q), it immediately follows by definition
of impF i+1(V2,Q) that all the facts in impF i(V1,Q) are in impF i+1(V2,Q).
This implies that f ∈ impF i+1(V2,Q), thereby contradicting our earlier
statement that impF i(V2,Q) equals impF i+1(V2,Q). We conclude that our
initial assumption cannot hold, thus impF (V1,Q) = impF (V2,Q)

(only if) Assume impF (V1,Q) and impF (V2,Q) are equal. By definition
of impF 0(V1,Q), we know for sure that V1(bodyQ) ⊆ impF (V1,Q). As a
result, there surely exists a valuation V for Q over U with V (bodyQ) ⊆
impF (V1,Q) and V (bodyQ) ⊆ impF (V2,Q), namely V1.

By negating both parts of Lemma 4.23, we get the following corollary:

43



Corollary 4.24. Let V1 and V2 be valuations for a query Q ∈ CQ6= over a
universe U ⊆ domk. impF (V1,Q) 6= impF (V2,Q) if and only if there is no
valuation V for Q over U with V (bodyQ) ⊆ impF (V1,Q) ∩ impF (V2,Q).

The previous corollary will prove useful to show that the rules of inference
for impFacts(V,Q) are complete.

Proposition 4.25. For a given valuation V for a query Q ∈ CQ6= over a
universe U ⊆ domk, the rules of inference for impFacts(V,Q) are complete.

Proof. Let V be a valuation for a query Q over a universe U ⊆ domk. Based
on the iteration scheme, we show that the rules of inference are complete
by proving by contraposition that for every fact f ∈ impFacts(V,Q) it also
holds that f ∈ impF (V,Q).

To this end, assume a fact f 6∈ impF (V,Q). We show that f does
not appear in impFacts(V,Q) by constructing a distribution policy P =
(U, rfactsP ) over a network N under which Q is parallel-correct and for
which f 6∈ rfactsP (κ) if V (bodyQ) ⊆ rfactsP (κ) for every node κ ∈ N .

The construction of P = (U, rfactsP ) uses a total function map to map
each valuation V ′ for Q over U onto a node κ ∈ N . We require that for
every pair of valuations Vi and Vj for Q over U , map(Vi) = map(Vj) if and
only if impF (Vi,Q) = impF (Vj ,Q). Since the number of valuations is finite,
N is finite as well.6

For every valuation Vi for Q over U , we define rfactsP (map(Vi)) =
impF (Vi,Q). Notice that rfactsP is well-defined, even if multiple valuations
Vi and Vj are assigned to the same node κ, as in this case it is required that
impF (Vi,Q) = impF (Vj ,Q).

We now prove that Q is parallel-correct under the constructed policy P
by showing that for every valuation V ′ forQ over U , there is exactly one node
κ with V ′(bodyQ) ⊆ rfactsP (κ). Observe that there trivially is at least one
node κ with V ′(bodyQ) ⊆ rfactsP (κ), namely map(V ′). Therefore, it suffices
to show that there is no node κ 6= map(V ′) with V ′(bodyQ) ⊆ rfactsP (κ).

Assume there is a node κ 6= map(V ′) with V ′(bodyQ) ⊆ rfactsP (κ). By
construction, there is a valuation V ′′ with map(V ′′) = κ and V ′(bodyQ) ⊆
impF (V ′′,Q). Since map(V ′) 6= map(V ′′), we know that impF (V ′,Q) 6=
impF (V ′′,Q). According to Corollary 4.24, there is no valuation V with
V (bodyQ) ⊆ impF (V ′,Q) ∩ impF (V ′′,Q). But this is a contradiction, since
V ′(bodyQ) ⊆ impF (V ′,Q) ∩ impF (V ′′,Q). We conclude that there cannot
be a node κ 6= map(V ′) with V ′(bodyQ) ⊆ rfactsP (κ).

To conclude our proof, we need to show that for every node κ ∈ N
it holds that f 6∈ rfactsP (κ) if V (bodyQ) ⊆ rfactsP (κ). Notice that κV =
map(V ) is the only node with V (bodyQ) ⊆ rfactsP (κV ), so it suffices to show
that f 6∈ rfactsP (κV ). But this is trivial since rfactsP (κV ) = impF (V,Q)
and f 6∈ impF (V,Q).

6We implicitly assume that N contains no nodes that aren’t reachable by map.
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4.3.3 A characterization for parallel-correctness transfer

The notion of impFacts(V,Q) is used in the following condition, which is
both necessary and sufficient for transferability under bag semantics:

Condition 4.26. Let Q and Q′ be queries in CQ6=. For each valuation V ′

for Q′ over a universe U there exists a valuation V for Q over U such that
V (bodyQ) ⊆ V ′(bodyQ′) ⊆ impFacts(V,Q).

Before proving that Condition 4.26 is indeed necessary and sufficient for
transferability, we first consider a consequence when Condition 4.26 is not
satisfied, witnessed by some valuation V ′ for Q′. More specifically, we claim
that in this case there is no valuation V for Q with V (bodyQ) ⊆ V ′(bodyQ′)
or there is no valuation V for Q with V ′(bodyQ′) ⊆ impFacts(V,Q). Al-
though this claim might seem like a trivial consequence directly obtainable
by applying set logic, it is not.

Example 4.27. To show that our claim is not a direct result of set logic,
we construct a counterexample based on sets instead of valuations and an
arbitrary function f instead of impFacts.

Consider two sets of sets A and B with

A = {{a}, {b, c}},

and
B = {{a, b}}.

Furthermore, let f be a function having A as the domain with

f({a}) = {a, c},
f({b, c}) = {a, b, c}.

An analogous reformulation of Condition 4.26 based on these sets and
the function f is as follows: for every set B in B, there is a set A in A with
A ⊆ B ⊆ f(A). This condition clearly does not hold, since

{a} ⊆ {a, b} 6⊆ {a, c}, and

{b, c} 6⊆ {a, b} ⊆ {a, b, c}.

Let B = {a, b} be the set in B witnessing the failure of the condition.
A reformulation of our claim is now as follows: there is no set A in A with
A ⊆ B or there is no set A in A with B ⊆ f(A). It can easily be seen that
this claim does not hold in this example. We conclude that our claim does
not hold in general for arbitrary sets. �

Lemma 4.28. Let Q and Q′ be queries in CQ6=. Condition 4.26 isn’t satis-
fied, witnessed by some valuation V ′ for Q′ over a universe U , if and only if
there is no valuation V for Q over U with V (bodyQ) ⊆ V ′(bodyQ′) or there
is no valuation V for Q over U with V ′(bodyQ′) ⊆ impFacts(V,Q).
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Proof. (if) Let V ′ be a valuation as described in Lemma 4.28. For both cases,
it immediately follows that there cannot exist a valuation V for Q over U
With V (bodyQ) ⊆ V ′(bodyQ′) ⊆ impFacts(V,Q). Therefore, Condition 4.26
isn’t satisfied.

(only if) Assume Condition 4.26 isn’t satisfied, witnessed by some val-
uation V ′ for Q′ over U . By assumption, every valuation V for Q over U
satisfies one of the following three conditions:

1. V (bodyQ) ⊆ V ′(bodyQ′) 6⊆ impFacts(V,Q)

2. V (bodyQ) 6⊆ V ′(bodyQ′) ⊆ impFacts(V,Q)

3. V (bodyQ) 6⊆ V ′(bodyQ′) 6⊆ impFacts(V,Q)

Notice that condition 1 and condition 2 cannot occur together. Indeed, as-
sume there are two valuations V1 and V2 for Q over U satisfying respec-
tively condition 1 and condition 2. That is, V1(bodyQ) ⊆ V ′(bodyQ′) 6⊆
impFacts(V1,Q) and V2(bodyQ) 6⊆ V ′(bodyQ′) ⊆ impFacts(V2,Q). It im-
mediately follows that V1(bodyQ) ⊆ impFacts(V2,Q). According to Proposi-
tion 4.19, impFacts(V1,Q) = impFacts(V2,Q). But this creates a contradic-
tion, as V ′(bodyQ′) 6⊆ impFacts(V1,Q) and V ′(bodyQ′) ⊆ impFacts(V2,Q).

If every valuation V for Q over U satisfies condition 2 or condition 3,
there is no valuation V for Q over U with V (bodyQ) ⊆ V ′(bodyQ′). Analo-
gously, if every valuation V for Q over U satisfies condition 1 or condition 3,
there is no valuation V for Q over U with V ′(bodyQ′) ⊆ impFacts(V,Q).

We use Lemma 4.28 to prove that Condition 4.26 is necessary and suffi-
cient for transferability under bag semantics.

Proposition 4.29. Let Q and Q′ be queries in CQ6=. Parallel-correctness
transfers from Q to Q′ if and only if Condition 4.26 is satisfied.

Proof. (if) Assume Condition 4.26 is satisfied. Let P = (U, rfactsP ) be a
distribution policy under which Q is parallel-correct. We prove that Q′ is
parallel-correct under P as well. According to Proposition 4.6, it suffices to
show that for each valuation V ′ forQ′ over U there is exactly one node κ such
that V ′(bodyQ′) ⊆ rfactsP (κ). By assumption, there is a valuation V for Q
over U with V (bodyQ) ⊆ V ′(bodyQ′) ⊆ impFacts(V,Q). Since Q is parallel-
correct under P , there is exactly one node κ with V (bodyQ) ⊆ rfactsP (κ).

We show that κ is the only node responsible for V ′. To this end, we
separately prove that V ′(bodyQ′) ⊆ rfactsP (κ) and that there is no node κ′

different from κ with V ′(bodyQ′) ⊆ rfactsP (κ′).
Since Q is parallel-correct under P and since V (bodyQ) ⊆ rfactsP (κ),

the set of facts impFacts(V,Q) contains by definition only facts that are
guaranteed to be present on κ as well, or more formally impFacts(V,Q) ⊆
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rfactsP (κ). It now trivially follows from V ′(bodyQ′) ⊆ impFacts(V,Q) that
V ′(bodyQ′) ⊆ rfactsP (κ).

Since V (bodyQ) ⊆ V ′(bodyQ′), there cannot be a node κ′ different from
κ with V ′(bodyQ′) ⊆ rfactsP (κ′), as this would trivially imply V (bodyQ) ⊆
rfactsP (κ′), thereby contradicting our assumption that Q is parallel-correct
under P .

(only if) The proof is by contraposition. Assume Condition 4.26 isn’t
satisfied, witnessed by some valuation V ′ for Q′ over a universe U . We prove
that parallel-correctness doesn’t transfer from Q to Q′.

According to Lemma 4.28, there is no valuation V for Q over U with
V (bodyQ) ⊆ V ′(bodyQ′) or there is no valuation V for Q over U with
V ′(bodyQ′) ⊆ impFacts(V,Q). We next consider both cases separately. In
both cases, we construct a distribution policy P under which Q is parallel-
correct, but Q′ is not. This policy P implies that parallel-correctness doesn’t
transfer from Q to Q′.

First, consider the case where there is no valuation V for Q over U such
that V (bodyQ) ⊆ V ′(bodyQ′). In this case, P is constructed as follows over a
network with two nodes κ1 and κ2: all facts are assigned to κ1 and the facts
in V ′(bodyQ′) are assigned to κ2 as well. Notice that Q is parallel-correct
under P , as the required facts for each valuation V for Q only meet at κ1.
Indeed, if the required facts for a valuation V for Q would meet at κ2 then
this would imply that V (bodyQ) ⊆ V ′(bodyQ′), contradicting our assumption
that no such valuation V exists. The required facts for V ′ however trivially
meet at both nodes. By Proposition 4.6, Q′ is not parallel-correct under P .
We conclude that in this case parallel-correctness doesn’t transfer from Q
to Q′.

Next, consider the case where there is no valuation V for Q over U
with V ′(bodyQ′) ⊆ impFacts(V,Q). By definition of impFacts(V,Q), for each
valuation V for Q over U , there is a distribution policy P = (U, rfactsP )
under which Q is parallel-correct such that V ′(bodyQ′) 6⊆ rfactsP (κ), with
V (bodyQ) ⊆ rfactsP (κ). In other words, for each valuation V for Q, there is
a distribution policy P that does not map all the required facts for V ′ on
the same node as the required facts for V .

Furthermore, we can safely assume the existence of a valuation V1 for
Q over U with V1(bodyQ) ⊆ V ′(bodyQ). Indeed, if this valuation V1 would
not exist, these queries would be covered by the first case. By assumption,
V ′(bodyQ′) 6⊆ impFacts(V1,Q). Thus, there is a distribution policy P =
(U, rfactsP ) under which Q is parallel-correct and V ′(bodyQ′) 6⊆ rfactsP (κ),
with V1(bodyQ) ⊆ rfactsP (κ). It now suffices to show that Q′ is not parallel-
correct under this distribution policy P .

Assume Q′ is parallel-correct under P . since V ′(bodyQ′) 6⊆ rfactsP (κ),
there has to be another node κ′ different from κ such that V ′(bodyQ′) ⊆
rfactsP (κ′). However, since V1(bodyQ) ⊆ V ′(bodyQ), it immediately follows
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that V1(bodyQ) ⊆ rfactsP (κ′). But this would imply that V1 is satisfiable on
two different nodes κ and κ′. According to Proposition 4.6, Q is not parallel-
correct under P . This contradiction implies that Q′ is not parallel-correct
under P . We conclude that in this case, parallel-correctness doesn’t transfer
from Q to Q′.

4.4 Parallel-correctness transfer complexity

In this section, we focus on the complexity of parallel-correctness transfer.
More specifically, we study the complexity of the problem PC-Trans(C, C′),
with C and C′ a query class.

PC-Trans(C, C′)
Input: Query Q ∈ C,

query Q′ ∈ C′

Question: Does parallel-correctness transfer from Q to Q′?

4.4.1 Equivalence of the characterization over infinite and
finite domains

To determine the complexity of parallel-correctness for various query classes,
we use the characteristic described in Proposition 4.29. Direct use of this
characteristic is not feasible, as it would require checking an infinite number
of valuations over an infinite domain dom. It is however possible to limit
our domain to a finite domain domk, as long as the number of values in
this domain is at least as much as the number of values a valuation can use
for one of both input queries. This property is stated in more detail in the
following claim:

Claim 4.30. Let Q and Q′ be queries in CQ6= and let domk = {1, . . . , k}
be a finite subset of dom, where k = max(varmax(Q), varmax(Q′)). The
following conditions are equivalent:

(1) For each valuation V ′ for Q′ over a universe U ⊆ dom, there ex-
ists a valuation V for Q over U such that V (bodyQ) ⊆ V ′(bodyQ′) ⊆
impFacts(V,Q).

(2) For each valuation W ′ for Q′ over a universe Uk ⊆ domk, there exists
a valuation W for Q over Uk such that W (bodyQ) ⊆ W ′(bodyQ′) ⊆
impFacts(W,Q).

Proof. Condition (1) implies Condition (2): This implication is trivial, since
domk is a finite subset of dom. This implies that every universe Uk ⊆ domk

is a universe over dom as well.
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Condition (2) implies Condition (1): The proof is by contraposition. As-
sume Condition (1) does not hold. We prove that Condition (2) doesn’t hold.
Since Condition (1) doesn’t hold, there is a valuation V ′U for Q′ over a uni-
verse U such that there is no valuation VU for Q over U with VU (bodyQ) ⊆
V ′U (bodyQ′) ⊆ impFacts(VU ,Q). According to Lemma 4.28, there are two
possible cases: (1) For every valuation VU for Q over U , it holds that
VU (bodyQ) 6⊆ V ′U (bodyQ′), or (2) for every valuation VU for Q over U , it
holds that V ′U (bodyQ′) 6⊆ impFacts(VU ,Q).

Now consider the universe U ′
def
= adom(V ′U (bodyQ)). Observe that, by

definition of U ′, the valuation V ′U is a valid valuation for Q′ over U ′ as well,
denoted by V ′U ′ . Next, we prove that both cases remain true when considering
U ′ instead of U . The first case is trivial, as U ′ ⊆ U . If there is no valuation
VU for Q over U with VU (bodyQ) ⊆ V ′U (bodyQ′), then there will surely be no
valuation VU ′ for Q over U ′ such that VU ′(bodyQ) ⊆ V ′U ′(bodyQ′).

In order to prove the second case over U ′, consider a valuation VU ′ for
Q over U ′. We need to prove that V ′U ′(bodyQ′) 6⊆ impFacts(VU ′ ,Q). Since
U ′ is a subset of U , this valuation VU ′ is a valid valuation for Q over U as
well, denoted by VU . By assumption, V ′U (bodyQ′) 6⊆ impFacts(VU ,Q) when
valuated over U . This implies the existence of a distribution policy P over
U under which Q is parallel-correct. Furthermore, P does not map all the
required facts for V ′U on the same node as the required facts for VU . Based on
this distribution policy P over U , we can now easily construct a distribution
policy P ′ over U ′ in such a way that Q is parallel-correct under P ′ as well.
To construct P ′ from P , we only need to remove the facts using data values
that are not in U ′. All facts over U ′ thus are still mapped onto the same
nodes as in P . It can easily be seen that Q is parallel-correct under P ′,
as every valuation for Q over U ′ clearly is still mapped onto exactly one
node. Notice that, just like P , this distribution policy P ′ does not map all
the required facts for V ′U ′ on the same node as the required facts for VU ′ .
Consequently, V ′U ′(bodyQ′) 6⊆ impFacts(VU ′ ,Q) when using U ′ as a universe.

Since both cases remain true over U ′, we conclude that there is no valua-
tion VU ′ for Q over U ′ with VU ′(bodyQ) ⊆ V ′U ′(bodyQ′) ⊆ impFacts(VU ′ ,Q).

To conclude our proof, we now show that Condition (2) doesn’t hold.

Let π : dom → dom be an arbitrary bijection with Uk
def
= π(U ′) ⊆ domk.

Furthermore, let W ′
def
= π ◦ V ′U ′ be a valuation for Q′ over Uk. There cannot

be a valuation W for Q over Uk such that W (bodyQ) ⊆ W ′(bodyQ′) ⊆
impFacts(W,Q). Indeed, if this valuation W for Q over Uk would exist,

the valuation VU ′
def
= π−1 ◦ W would be a valuation for Q over U ′ with

VU ′(bodyQ) ⊆ V ′U ′(bodyQ′) ⊆ impFacts(VU ′ ,Q), thereby contradicting our
earlier conclusion that no such VU ′ exists.
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4.4.2 Conjunctive queries

Proposition 4.31. The problem PC-Trans(CQ6=,CQ6=) is in EXPTIME.

Proof. The proof is by construction of an EXPTIME algorithm deciding
PC-Trans(CQ6=,CQ6=) on input Q,Q′ ∈ CQ6=. Recall from Claim 4.30
that we only need to check transferability over a finite domain domk con-
taining k different values, where k = max(varmax(Q), varmax(Q′)).

In general, the algorithm iterates over every universe U ⊆ domk. For
every such universe U , the following two steps are performed:

1. The set impFacts(V,Q) is calculated for every valuation V for Q over
the universe U .

2. For every valuation V ′ forQ′ over U it is checked whether there is a val-
uation V for Q over U with V (bodyQ) ⊆ V ′(bodyQ′) ⊆ impFacts(V,Q).

If the check in the second step succeeds for every universe U and for ev-
ery valuation V ′ for Q′ over U , the algorithm returns true, indicating that
parallel-correctness transfers from Q to Q′. Otherwise, false is returned.

Let n denote the size of the input 〈Q,Q′〉. Observe that the size k of
domk is by definition linear in function of n. As a result, the number of
possible universes U ⊆ domk is exponential in function of the input size n.
Therefore, it is possible to enumerate all universes U ⊆ domk in exponential
time. We next focus on such a universe U ⊆ domk and show that both steps
described above can be executed in exponential time, thereby proving that
the algorithm is indeed in EXPTIME.

The computation of impFacts(V,Q) for every valuation V for Q over U is
based on the rules of inference defined in Definition 4.21. First, according to
the first rule, impFacts(V,Q) is initialized with V (bodyQ). The second rule is
applied as follows: for every triple of valuations V1, V2, V3 forQ over U , merge
impFacts(V1,Q) and impFacts(V2,Q) if V3(bodyQ) ⊆ impFacts(V1,Q) and
V3(bodyQ) ⊆ impFacts(V2,Q). This second step is repeated until no new
merges are possible.

Since the number of variables appearing in Q is linear in function of n
and since valuations for Q over U are defined as mappings from variables
appearing in Q onto values in U , we conclude that the total number of
different valuations for Q over U is exponential in function of n. Therefore,
iterating over all triples of valuations V1, V2, V3 for Q over U can be done in
exponential time. The number of possible merges is furthermore exponential
in function of n as well, leading to the conclusion that the computation of
impFacts(V,Q) for every valuation V for Q over U can be performed in
exponential time.

The second step is trivial: iterate over all the valuations V ′ for Q′ over
U and check for each such valuation V ′ if there exists a valuation V for Q
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over U with V (bodyQ) ⊆ V ′(bodyQ′) ⊆ impFacts(V,Q). Analogously to the
number of valuations for Q over U , the number of possible valuations for
Q′ over U is exponential in function of n. Therefore, this second step uses
exponential time as well.

4.4.3 Conjunctive queries without self-joins

The difficult part in applying the characterization for transferability is the
computation of the set impFacts(V,Q) for a given valuation V for a query Q
over a universe U . Determining whether a fact f is in impFacts(V,Q) can be
simplified if Q is further constrained. In this section, we focus on conjunctive
queries with inequalities without self-joins, denoted CQ6=¬sj. Consider a query

Q ∈ CQ6=¬sj with bodyQ = {R1(y1), . . . , Rm(ym)}. Since Q has no self-joins,
every atom in bodyQ has a different relation name. In other words, Ri 6= Rj
for 1 ≤ i < j ≤ m.

Proposition 4.32. Let Q be a query in CQ6=¬sj. For every valuation V for
Q over a universe U , impFacts(V,Q) = V (bodyQ).

Proof. Consider a valuation V over a universe U for a query Q ∈ CQ6=¬sj
with bodyQ = {R1(y1), . . . , Rm(ym)}. We prove that a fact f over U is in
impFacts(V,Q) if and only if f ∈ V (bodyQ).

(if) Assume f ∈ V (bodyQ). For every distribution policy P over U under
which Q is parallel-correct, f trivially appears on the same node as the facts
in V (bodyQ). Consequently, f ∈ impFacts(V,Q).

(only if) The proof is by contraposition. Assume f 6∈ V (bodyQ). We
show that f 6∈ impFacts(V,Q) by constructing a distribution policy P over
U such that Q is parallel-correct under P and f does not appear on the
node responsible for V .

Let S = {S1, . . . , S2m} be the powerset of {R1, . . . , Rm}. We now con-
struct P over a network N = {κ1, . . . , κ2m} as follows: for every fact f over
a relation Rj with 1 ≤ j ≤ m and for every node κi with 1 ≤ i ≤ 2m, we
map f on κi if and only if one of the following two conditions is satisfied:

• f ∈ V (bodyQ) and Rj ∈ Si, or

• f 6∈ V (bodyQ) and Rj 6∈ Si.

Observe that by construction every combination of facts f1, . . . , fm with fj
a fact over Rj is present on exactly one node. Consequently, there is exactly
one node κ for every valuation V ′ for Q with V ′(bodyQ) ∈ rfactsP (κ). As a
result, Q is parallel-correct under P .

Notice furthermore that the required facts for V are mapped onto a node
κi with Si = {R1, . . . , Rm}. By construction, this node contains only facts
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in V (bodyQ). We conclude that a fact f 6∈ V (bodyQ) does not appear on the
same node as all the facts in V (bodyQ) and, as a result, f 6∈ impFacts(V,Q).

Notice that the property behind conjunctive queries without self-joins
causing impFacts(V,Q) to always equal V (bodyQ) is the fact that the re-
quired facts for a valuation are never a strict subset of the required facts
for another valuation. Therefore, it might be tempting to think that Propo-
sition 4.32 could be further extended to strongly minimal queries, as their
definition is based on the notion of containment of required facts for one
valuation in another valuation as well. Unfortunately, this is not true, since
strongly minimal queries only require that for every valuation V deriving an
arbitrary fact f there is no other valuation V ′ deriving the same fact f while
requiring strictly less facts. In other words, the required facts for a valuation
V might still be a strict subset of the required facts for a valuation V ′, as
long as V and V ′ do not derive the same fact.

Example 4.33. As a counterexample showing that for strongly minimal
conjunctive queries impFacts(V,Q) not necessarily equals V (bodyQ), con-
sider the following conjunctive query Q,

H(x, y, z)← R(x, y), R(y, z).

Since every variable appears in the head atom, Q is a full conjunctive query
and thus a strongly minimal conjunctive query as well. Notice that this
query Q closely resembles the conjunctive query Q of Example 4.15, except
the fact that variable y now appears in the head atom as well. The modi-
fication doesn’t alter the reasoning in Example 4.15 showing that a distri-
bution policy under which Q is parallel-correct has to map every fact onto
the same node. We therefore conclude that impFacts(V,Q) not necessarily
equals V (bodyQ). �

Proposition 4.32 allows us to reformulate Proposition 4.29 as follows:

Proposition 4.34. Let Q be a query in CQ6=¬sj and let Q′ be a query in

CQ6=. Parallel-correctness transfers from Q to Q′ if and only if for each
valuation V ′ for Q′ over a universe U , there exists a valuation V for Q over
U such that V (bodyQ) = V ′(bodyQ′).

Proof. Let Q and Q′ be as described in Proposition 4.34. According to
Proposition 4.29, parallel-correctness transfers from Q to Q′ if and only
if for each valuation V ′ for Q′ over a universe U , there exists a valuation V
for Q over U such that V (bodyQ) ⊆ V ′(bodyQ′) ⊆ impFacts(V,Q). Since Q is
a query without self-joins, by Proposition 4.32, impFacts(V,Q) = V (bodyQ).
Thus, parallel-correctness transfers fromQ toQ′ if and only if for each valua-
tion V ′ for Q′ over a universe U , there exists a valuation V for Q over U such
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that V (bodyQ) ⊆ V ′(bodyQ′) ⊆ V (bodyQ). But V (bodyQ) ⊆ V ′(bodyQ′) ⊆
V (bodyQ) if and only if V (bodyQ) = V ′(bodyQ′). Consequently, parallel-
correctness transfers from Q to Q′ if and only if for each valuation V ′ for
Q′ over a universe U , there exists a valuation V for Q over U such that
V (bodyQ) = V ′(bodyQ′).

We are now ready to give an improved upper bound on the time com-
plexity of PC-Trans(CQ6=¬sj,CQ6=).

Proposition 4.35. The problem PC-Trans(CQ6=¬sj,CQ6=) is in Πp
2.

Proof. Let Q and Q′ be the input queries for PC-Trans(CQ6=¬sj,CQ6=). Ac-

cording to Proposition 4.34, it suffices to show that there is a Πp
2-algorithm

that checks if for each valuation V ′ for Q′ over a universe U , there ex-
ists a valuation V for Q over U such that V (bodyQ) = V ′(bodyQ′). Since
V (bodyQ) = V ′(bodyQ′) can obviously be checked in polynomial time, the
construction of the Πp

2-algorithm is trivial.
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Chapter 5

Relation between set and
bag semantics

In this chapter, we focus on the relation between set and bag semantics when
considering parallel-correctness and transferability. To facilitate the distinc-
tion between set and bag semantics, we denote that the query Q is parallel-
correct under distribution policy P under set or bag semantics by respec-
tively PCset(P ,Q) and PCbag(P ,Q). Analogously, we use PCTset(Q,Q′) and
PCTbag(Q,Q′) to indicate that parallel-correctness transfers from a query
Q to a query Q′ under respectively set and bag semantics.

5.1 Parallel-correctness

The characterizations for parallel-correctness for conjunctive queries with
inequalities under set and bag semantics are quite different: while the former
only focuses on minimal valuations over a conjunctive query Q, the latter
considers all valuations over Q. Furthermore, the former requires that the
required facts for a considered valuation V are mapped onto at least one node
in the network, while the latter requires that these facts are mapped onto
exactly one node. Intuitively, these restrictions for queries in CQ6= under
set semantics are less strict than those under bag semantics. As a result,
parallel-correctness for queries in CQ6= under bag semantics implies parallel-
correctness for conjunctive queries under set semantics. This observation is
formalised in the following proposition:

Proposition 5.1. Let Q be a query in CQ6= and let P = (U, rfactsP ) be a
distribution policy. If PCbag(P ,Q), then PCset(P ,Q).

Proof. The proof is by contraposition. Assume PCset(P ,Q) does not hold
for a query Q ∈ CQ6= and a distribution policy P = (U, rfactsP ). We
prove that PCbag(P ,Q) doesn’t hold. By Proposition 3.8, there exists a
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minimal valuation V for Q over U for which there is no node κ ∈ N with
V (bodyQ) 6⊆ rfactsP (κ).

According to Proposition 4.6, This valuation V is an immediate coun-
terexample for PCbag(P ,Q). Consequently, PCbag(P ,Q) does not hold.

The converse of Proposition 5.1 does not hold true, as the next example
shows:

Example 5.2. For a counterexample showing that PCset(P ,Q) doesn’t nec-
essarily imply PCbag(P ,Q), consider the conjunctive query Q,

T (x)← R(x), R(y),

and the network N = {κ1, κ2}. Assume a universe U = {a, b}. Let P =
(U, rfactsP ) be a distribution policy over N with rfactsP (κ1) = {R(a)} and
rfactsP (κ2) = {R(b)}.

When focusing on the valuation V = {x 7→ a, y 7→ b}, we see that there is
no node κ ∈ N such that V (bodyQ) ⊆ rfactsP (κ). As a result, PCbag(P ,Q)
doesn’t hold. PCset(P ,Q) on the other hand does hold. Indeed, the required
facts for each minimal valuation are present on a node. For example, V
is not a minimal valuation, but the valuation V ′ = {x 7→ a, y 7→ a} is a
minimal valuation deriving the same fact as V , and V ′(bodyQ) = {R(a)} ⊆
rfactsP (κ1). �

Example 5.2 illustrates one of the key differences between set and bag
semantics. Under set semantics, nonminimal valuations don’t need to be sat-
isfied, as the related minimal valuation will derive the same fact with strictly
less required facts. However, these nonminimal valuations play an important
role under bag semantics because they influence the final multiplicity of the
derived fact.

One might think that constraining the considered conjunctive queries
to strongly minimal queries would be sufficient to let PCset(P ,Q) imply
PCbag(P ,Q). Although this constraint would solve the issue described in
Example 5.2, it is not sufficient to make the implication true. Furthermore,
the following example shows that it might be very hard to come up with a
restriction on the form of conjunctive queries alone to let parallel-correctness
coincide for set and bag semantics.

Example 5.3. Consider the conjunctive query Q,

T (x)← R(x),

and the network N = {κ1, κ2}. Let P = (U, rfactsP ) be a distribution
policy over N that distributes each fact onto every node in N . Since every
fact is present on both nodes, V (bodyQ) ⊆ rfactsP (κ1) and V (bodyQ) ⊆
rfactsP (κ2) for every valuation V for Q over U . Assuming U is not empty,
it trivially follows that PCset(P ,Q) holds, but PCbag(P ,Q) doesn’t. �
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The construction of P in Example 5.3 whereby the complete instance is
duplicated onto two nodes makes PCset(P ,Q) true and PCbag(P ,Q) false
for every query Q, assuming there is at least one valuation V for Q over
U . Since limiting ourself to only queries with no valuations is rather useless
from a practical point of view, we conclude that a constraint on the con-
sidered distribution policies will be necessary to make PCset(P ,Q) imply
PCbag(P ,Q).

We now consider the family of nonreplicating distribution policies Pnrep.
A distribution policy P = (U, rfactsP ) is in Pnrep if and only if it does
not replicate any fact over U onto multiple nodes. More formally, a distri-
bution policy P = (U, rfactsP ) over a network N is in Pnrep if and only
if rfactsP (κ1) ∩ rfactsP (κ2) = ∅ for every pair of nodes κ1, κ2 ∈ N with
κ1 6= κ2.

Observe that the distribution policy P used in Example 5.2 is a nonrepli-
cating distribution policy. This example already illustrates that nonreplicat-
ing distribution policies on itself aren’t sufficient to let PCset(P ,Q) imply
PCbag(P ,Q). This desired result is achievable if nonreplicating distribution
policies are combined with strongly minimal queries.

Proposition 5.4. Let Q ∈ CQ6=[sm] be a strongly minimal conjunctive
query with inequalities and let P ∈ Pnrep be a nonreplicating distribution
policy over a network N . PCset(P ,Q) holds if and only if PCbag(P ,Q) holds.

Proof. (if): This direction trivially follows from Proposition 5.1.
(only if): Let Q and P be as described in Proposition 5.4. Assume

PCset(P ,Q) holds. We prove that PCbag(P ,Q) holds as well.
Since PCset(P ,Q), there is a node κ ∈ N for every minimal valuation

V for Q over U such that V (bodyQ) ⊆ rfactsP (κ). Since Q is a strongly
minimal conjunctive query, every valuation V for Q is minimal. As a result,
there is at least one node κ ∈ N for every valuation V for Q over U such
that V (bodyQ) ⊆ rfactsP (κ).

Notice furthermore that at the same time there is at most one node
κ ∈ N for every valuation V for Q over U with this property. Indeed, if there
would be two different nodes κ1, κ2 ∈ N with V (bodyQ) ⊆ rfactsP (κ1) and
V (bodyQ) ⊆ rfactsP (κ2), then V (bodyQ) ⊆ rfactsP (κ1) ∩ rfactsP (κ2). But
this would contradict our assumption that rfactsP (κ1) ∩ rfactsP (κ2) = ∅,
since P is a nonreplicating policy.

We conclude that for every valuation V for Q over U there is exactly
one node κ ∈ N with V (bodyQ) ⊆ rfactsP (κ). Thus, according to Proposi-
tion 4.6, PCbag(P ,Q) holds.
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5.2 Transferability

When comparing the characterizations for transferability under set seman-
tics (Proposition 3.12) and transferability under bag semantics (Proposi-
tion 4.29), there does not seem to be an immediate relation. The former is
based on the covering of minimal valuations, whereas the latter is based on
the observation that some facts are guaranteed to be grouped together on
the same node. Furthermore, this notion of grouped facts is useless under
set semantics as we can always isolate the required facts for a valuation on
a separate node.

One might think that Proposition 5.1 would be sufficient to deduce the
fact that PCTbag(Q,Q′) implies PCTset(Q,Q′) for every pair of conjunc-
tive queries Q and Q′ in CQ. Unfortunately, this is not the case. In this
section we explain why we can’t directly derive from Proposition 5.1 that
PCTbag(Q,Q′) implies PCTset(Q,Q′). Furthermore, we prove by counterex-
ample that, in general, PCTset(Q,Q′) does not imply PCTbag(Q,Q′) and
vice versa. Lastly, we show that a restriction to strongly minimal queries
and nonreplicating distribution policies suffices to let PCTset(Q,Q′) and
PCTbag(Q,Q′) coincide.

We first focus on the direction from set semantics to bag semantics. Just
like parallel-correctness, transferability under set semantics does not imply
transferability under bag semantics when considering queries in CQ:

Example 5.5. For a counterexample showing that transferability under set
semantics does not imply transferability under bag semantics, consider the
following two conjunctive queries Q and Q′,

Q : H()← R(), S(),

Q′ : H()← R().

Since Q uses no variables, there is exactly one valuation V1 for Q which
requires the facts R() and S(). Analogously, there is exactly one valuation
V ′1 for Q′, requiring only R(). It immediately follows that every valuation V ′

for Q′ is covered by a valuation V for Q. Therefore, PCTset(Q,Q′) holds.
Let now P be a distribution policy over a network N = {κ1, κ2}, as-

signing both R() and S() to κ1 and only R() to κ2. PCbag(P ,Q) holds, as
the required facts for V1 only meet at κ1. However, PCbag(P ,Q′) doesn’t
hold because the required fact for V ′1 is present on both nodes. Therefore,
parallel-correctness doesn’t transfer from Q to Q′ under bag semantics. We
conclude that PCTset(Q,Q′) does not imply PCTbag(Q,Q′). �

Next, we focus on the direction from bag semantics to set semantics.
It might be tempting to believe that Proposition 5.1 combined with the
definition of transferability directly implies that transferability under bag
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semantics would imply transferability under set semantics. Unfortunately,
this is not correct. Indeed, assume two conjunctive queries Q and Q′ in CQ6=

such that PCTbag(Q,Q′). According to the definition of transferability and
Proposition 5.1, we know that the following three statements are true for
every distribution policy P :

1. PCbag(P ,Q) implies PCbag(P ,Q′),

2. PCbag(P ,Q) implies PCset(P ,Q), and

3. PCbag(P ,Q′) implies PCset(P ,Q′).

We cannot infer from these rules that PCset(P ,Q) implies PCset(P ,Q′),
as there might exist a distribution policy P ′ such that PCset(P

′,Q) holds
but PCset(P

′,Q′), PCbag(P
′,Q) and PCbag(P

′,Q′) do not. Notice that this
distribution policy P ′ is a counterexample of PCTbag(Q,Q′) while satisfying
all three conditions stated above.

Although the possible existence of such a distribution policy P ′ does not
interfere with Proposition 5.1 and the definition of transferability, we still
need to show that such a policy actually exists to prove that transferability
under bag semantics does not imply transferability under set semantics. In
the following counterexample, we construct such a policy for two conjunctive
queries Q and Q′ satisfying PCTbag(Q,Q′).

Example 5.6. Consider the following two conjunctive queries Q and Q′,

Q : H(x, y, z)← R(x, y), R(y, z).

Q′ : H(w, x, y, z)← R(w, x), R(x, y), R(y, z).

Notice that these queries are the same as in Example 4.15, apart from the
head atoms. In Example 4.15 we already motivated that every distribution
policy P should distribute the facts in such a way that every valuation is
only satisfiable on the same node κ. Furthermore, we showed that parallel-
correctness therefore transfers from Q to Q′. This reasoning is still applica-
ble, as the changed head atoms are not important during the reasoning. We
conclude that PCTbag(Q,Q′) holds.1

Next, we show that PCTset(Q,Q′) doesn’t hold. Let U = {1, . . . , k} be a
finite universe. Assume a distribution policy P = (U, rfactsP ) over a network
N , distributing every pair of facts over the relation R onto a different node
in N . Since U is finite, a finite number of nodes in N is sufficient for this
construction.

By construction of P there trivially is a node κ ∈ N for every valuation
V for Q over U with V (bodyQ) ⊆ rfactsP (κ). It immediately follows that
PCset(P ,Q). Therefore, it now suffices to show that PCset(P ,Q′) doesn’t

1Alternatively, we could have applied Proposition 4.29 to obtain the same result.
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hold to prove that parallel-correctness doesn’t transfer from Q to Q′ under
set semantics.

Since every variable in Q′ appears in the head atom, every valuation
for Q′ is a minimal valuation. Consider for example the valuation V ′ =
{w 7→ 0, x 7→ 1, y 7→ 2, z 7→ 3} for Q′ over U . This valuation V ′ derives
the fact V (headQ′) = H(0, 1, 2, 3), thereby requiring the facts V (bodyQ′) =
{R(0, 1), R(1, 2), R(2, 3)}. It can easily be seen that there is no other valu-
ation for Q′ over U deriving H(0, 1, 2, 3) and requiring only a strict sub-
set of the facts in V (bodyQ′), so V ′ is a minimal valuation for Q′. By
Proposition 3.8, PCset(P ,Q′) can only hold if there is a node κ ∈ N
with V (bodyQ) ⊆ rfactsP (κ). Notice however that V (bodyQ) contains three
facts, whereas every node in N contains by construction of P only two
facts. Therefore, PCset(P ,Q′) cannot hold, and we conclude that parallel-
correctness doesn’t transfer from Q to Q′ under set semantics.

Alternatively, we could apply Proposition 3.12 directly. This property
states that every minimal valuation for Q′ is covered by a valuation V for
Q if PCTbag(Q,Q′) holds. More specifically, since V ′ is a minimal valuation
for Q′, it should be covered by a valuation V for Q. However, this is not the
case, as every valuation V for Q clearly requires at most two facts, whereas
V ′ requires three facts. This alternative approach confirms that PCset(P ,Q′)
does not hold.

Since parallel-correctness transfers from Q to Q′ under bag semantics
but not under set semantics, these conjunctive queries Q and Q′ prove that
in general transferability under bag semantics does not imply transferability
under set semantics. �

Just as for parallel-correctness, a restriction on the considered queries
and distribution policies might be useful to let transferability under set and
bag semantics coincide. According to Definition 3.3, transferability is how-
ever defined over every distribution policy. We therefore provide a slightly
modified definition of transferability taking into account restricted sets of
distribution policies.

Definition 5.7. For two queries Q and Q′ over the same input schema,
parallel-correctness transfers from Q to Q′ relative to a set of distribution
policies P if Q′ is parallel-correct under every distribution policy in P for
which Q is parallel-correct.

We now describe a restriction on both conjunctive queries and distribu-
tion policies to let transferability under set semantics coincide with trans-
ferability under bag semantics.

Proposition 5.8. Let Q,Q′ ∈ CQ6=[sm] be strongly minimal conjunctive
queries with inequalities. PCTset(Q,Q′) relative to Pnrep holds if and only
if PCTbag(Q,Q′) relative to Pnrep holds.

60



Proof. (if) Assume PCTbag(Q,Q′) relative to Pnrep holds. We show that
PCTset(Q,Q′) relative to Pnrep holds. Towards a contradiction, assume
PCTset(Q,Q′) relative to Pnrep does not hold, witnessed by a distribution
policy P ∈ Pnrep. In other words, PCset(P ,Q) does hold, but PCset(P ,Q′)
does not. According to Proposition 5.4, the results under bag semantics
have to be the same. That is, PCbag(P ,Q) does hold and PCbag(P ,Q′)
does not. But this observation contradicts with our initial assumption that
PCTbag(Q,Q′) relative to Pnrep. We therefore conclude that PCTset(Q,Q′)
relative to Pnrep.

(only if) This part of the proof is analogous to the previous part. As-
sume PCTset(Q,Q′) relative to Pnrep while PCTbag(Q,Q′) relative to Pnrep
does not hold. There has to be a distribution policy P ∈ Pnrep such that
PCbag(P ,Q) holds, but PCbag(P ,Q′) doesn’t, meaning that PCset(P ,Q)
does hold, but PCset(P ,Q′) does not. The latter however contradicts our
initial assumption, indicating that PCTbag(Q,Q′) relative to Pnrep holds if
PCTset(Q,Q′) relative to Pnrep.

Notice that strongly minimal conjunctive queries and nonreplicating dis-
tribution policies aren’t a necessary condition to let transferability under set
and bag semantics coincide for a pair of conjunctive queries Q and Q′.

Example 5.9. To illustrate that transferability under bag and set semantics
might coincide for arbitrary queries in CQ6= and arbitrary distribution poli-
cies, consider the case where Q equals Q′. In this case, parallel-correctness
trivially transfers from Q to Q′ (and vice versa) under both set and bag
semantics, implying that PCTset(Q,Q′) and PCTbag(Q,Q′) coincide. �
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Chapter 6

Modifying the distributed
evaluation model

The characterization for parallel-correctness under bag semantics described
in Proposition 4.6 constrains the possible distribution policies for a given
conjunctive query. Depending on the conjunctive query Q, this condition
might even imply that every distribution policy for Q takes little to no
advantage of the distributed environment. We already saw an extreme case
of such a conjunctive query Q in Example 4.15. The conjunctive query Q
in this example required every valuation to be evaluated on the same node
in the network. It can easily be seen that such a policy has little practical
use, as it cannot utilize the different nodes in the network to distribute the
work.

In this chapter, we modify the definition of the distributed evaluation
model, allowing a relaxed condition for parallel-correctness under bag se-
mantics. This modification allows different nodes to be responsible for all
the facts required by some valuation V . If multiple such nodes for V exist,
exactly one node will eventually derive a fact based on V .

6.1 Definitions

Ordered networks An ordered network N is a nonempty finite ordered
sequence (κ1, . . . , κn) of nodes. Let κi and κj be two nodes in an ordered
network N . We say that κi precedes κj , denoted κi <N κj , if κi occurs in
N before κj .

Notice that an ordered network N can be seen as a conventional network
defined in Chapter 2 with the additional function <N defining a total order
over the nodes in N . Therefore, the definitions of distribution policies and
local instances mentioned in Chapter 2 are applicable to ordered networks
as well. Let P = (U, rfactsP ) be a distribution policy. A node κ ∈ N is
responsible for a valuation V for a query Q over U if V (bodyQ) ⊆ rfactsP (κ)
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and there is no node κ′ ∈ N with κ′ <N κ and V (bodyQ) ⊆ rfactsP (κ′).
Intuitively, the node responsible for a valuation V is the first node in the
ordered network satisfying the required facts for V .

Conventional distributed evaluation Let P = (U, rfactsP ) be a dis-
tribution policy over an ordered network N . This ordered network N can
be seen as a conventional network defined in Chapter 2 as well. Therefore,
the conventional definitions for the distributed evaluation of a query Q on
instance I under set and bag semantics, denoted respectively [Q,P ]set(I)
and [Q,P ]bag(I), are still applicable.

Distributed evaluation under set semantics Let P be a distribution
policy over an ordered network N . The result of the distributed evaluation
of a query Q on instance I on a node κ ∈ N under set semantics, denoted
[Q,P ,N ]set(I, κ), is defined as

[Q,P ,N ]set(I, κ) =
⋃
V ∈Vκ

[Q, V ]set(loc-instbag,P ,I(κ))

with Vκ the set of valuations for Q having κ as responsible node. The result
of the distributed evaluation of a query Q on instance I under set semantics,
denoted [Q,P ,N ]set(I) is defined as

[Q,P ,N ]set(I) =
⋃
κ∈N

[Q,P ,N ]set(I, κ).

Intuitively, each node in an ordered network only considers the valuations
it is responsible for while evaluating Q, after which the set union over all
these results is taken to produce the final result.

Distributed evaluation under bag semantics Let P be a distribution
policy over an ordered network N . The result of the distributed evaluation
of a query Q on instance I on a node κ ∈ N under bag semantics, denoted
[Q,P ,N ]bag(I, κ), is defined as

[Q,P ,N ]bag(I, κ) =
⋃

B
V ∈Vκ

[Q, V ]bag(loc-instbag,P ,I(κ))

with Vκ the set of valuations for Q having κ as responsible node. The result
of the distributed evaluation of a queryQ on instance I under bag semantics,
denoted [Q,P ,N ]bag(I) is defined as

[Q,P ,N ]bag(I) =
⋃

B
κ∈N

[Q,P ,N ]bag(I, κ).

Analogously to set semantics, each node in an ordered network intuitively
only considers the valuations it is responsible for while evaluating Q, after
which the bag union over all these results is taken to produce the final result.
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Parallel-correctness under ordered networks We slightly modify the
existing definitions of parallel-correctness (Definition 3.1 and Definition 3.2)
for these distributed evaluations over ordered networks.

A query Q is parallel-correct on an instance I under a distribution policy
P over an ordered network N ifQ(I) = [Q,P ,N ](I). When this definition is
lifted to all instances, we get the following definition for parallel-correctness
under ordered networks:

Definition 6.1. A query Q is parallel-correct under a distribution policy P
over an ordered network N if Q is parallel-correct on all instances I under
P over N .

6.2 The modified model as a single-round MPC
model

Under the modified model, a node only uses a valuation to derive a fact
if no preceding node in the ordered network uses this valuation. A naive
approach would be to let each node communicate with its preceding nodes
in the ordered network to check if they already applied the valuation. This
naive approach not only causes a massive communication overhead on larger
instances and networks, it does furthermore no longer fit in the single-round
MPC model as it requires a second round of communication.

These problems can be avoided if we assume that each node in the or-
dered network has knowledge of both the applied distribution policy and the
ordered network itself. With this knowledge, a node in the ordered network
can perform the necessary checks during the computation phase, since all the
necessary information is locally available. This approach no longer requires a
second communication round and consequently fits in the single-round MPC
model.

A second remark on the modified model is that it tends to skew the
number of produced results over the different nodes. Consider for example
the extreme case where every fact is distributed over every node. It can
easily be seen that in this case only the first node produces results because
it is the responsible node for every valuation. In practise, this is however
not necessarily a problem, as the aim of distribution policies is to distribute
the work over the different nodes instead of replicating it. In other words, a
practical distribution policy aims to distribute the data as much as possible,
giving each node only a small part of the global data. Consequently, most of
the valuations will only be satisfiable on one or a couple of nodes, meaning
that the amount of skew will often be relatively small in practical scenarios.
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6.3 The modified model under set semantics

Assume a query Q ∈ CQ6=, a distribution policy P = (U, rfactsP ) over
an ordered network N and an instance I. If we compare the definitions
of [Q,P ](I) and [Q,P ,N ](I), we can intuitively deduce that both defini-
tions produce the same result. The main difference is that the distributed
evaluation based on the modified model explicitly removes duplicates by
considering each valuation at most once, whereas the standard distributed
evaluation implicitly removes these duplicates while taking the set union
over the results on the different nodes.

Proposition 6.2. For each query Q ∈ CQ6=, for each distribution policy
P = (U, rfactsP ) over an ordered network N and for each instance I it holds
that [Q,P ](I) equals [Q,P ,N ](I).

Proof. Assume a query Q ∈ CQ6=, a distribution policy P = (U, rfactsP )
over an ordered network N and an instance I. We prove that f ∈ [Q,P ](I)
if and only if f ∈ [Q,P ,N ](I) for every fact f over U .

(if) Assume f ∈ [Q,P ,N ](I). By definition, there exist a valuation V
for Q over U and a node κ ∈ N responsible for V with V (headQ) = f and
V (bodyQ) ⊆ loc-inst set,P ,I(κ). Since there is a node κ in N containing all
the required facts for V , it clearly follows by definition of [Q,P ](I) that
f ∈ [Q,P ](I).

(only if) Assume f ∈ [Q,P ](I). By definition, there exist a valuation
V for Q over U and a node κV in N with V (headQ) = f and V (bodyQ) ⊆
loc-inst set,P ,I(κV ). Let N ⊆ N denote the subset of nodes κ in N having
V (bodyQ) ⊆ rfactsP (κ). By definition of an ordered network, there is a
node κ ∈ N preceding all the other nodes in N . This node κ is responsible
for V . It can easily be seen by definition of rfactsP and loc-inst set,P ,I that
V (bodyQ) ⊆ loc-inst set,P ,I(κ) if V (bodyQ) ⊆ loc-inst set,P ,I(κV ).

Since all the required facts for V are in the local instance on κ and since
κ is responsible for V , this node κ will derive the fact f = V (headQ). We
conclude that f ∈ [Q,P ,N ](I).

Since the result under the conventional distributed evaluation and the
result under the distributed evaluation over an ordered network are always
the same, we conclude that a characterization for the conventional definition
parallel-correctness under set semantics is a characterization for parallel-
correctness under an ordered network as well. We slightly modify Condi-
tion 3.7 and Proposition 3.8 to include ordered networks:

Condition 6.3. Let Q ∈ CQ6= be a query and P = (U, rfactsP ) a distribu-
tion policy over a ordered network N . For every minimal valuation V for Q
over U , there is a node κ ∈ N such that V (bodyQ) ⊆ rfactsP (κ).
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Proposition 6.4. Under set semantics, a query Q ∈ CQ6= is parallel-
correct under distribution policy P = (U, rfactsP ) over an ordered network
N if and only if Condition 6.3 is satisfied.

Since the characterization for parallel-correctness didn’t change under
this modified model, the characterization for transferability, described in
Proposition 3.12, is applicable to ordered networks as well.

Proposition 6.5. For queries Q,Q′ ∈ CQ6=, parallel-correctness over or-
dered networks transfers from Q to Q′ if and only if Q covers Q′.

Recall from Definition 3.11 that a query Q ∈ CQ6= covers a query Q′ ∈
CQ6= if and only if for every minimal valuation V ′ for Q′ there is a minimal
valuation V for Q with V ′(bodyQ′) ⊆ V (bodyQ).

6.4 Parallel-correctness under bag semantics

Unlike set semantics, The result [Q,P ,N ](I) of a distributed evaluation
based on an ordered network under bag semantics is not always the same as
the result [Q,P ](I) based on the conventional approach. Assume for example
a valuation V for Q for which there are multiple nodes in N responsible for
all the required facts of V . If the required facts for V are in the considered
instance I, the fact f = V (headQ) will be derived multiple times in the
conventional model, whereas it will only be derived by the node responsible
for V in our modified model. Therefore, the multiplicity of f will be strictly
higher in [Q,P ](I) than in [Q,P ,N ](I).

Proposition 6.6. Let Q ∈ CQ6= be a query and let P = (U, rfactsP )
be a distribution policy over an ordered network N . For every instance I
over U , it holds that [Q,P ,N ](I) ⊆ [Q,P ](I) and facts([Q,P ,N ](I)) =
facts([Q,P ](I)).

Proof. Assume a query Q, distribution policy P , ordered network N and
instance I as in Proposition 6.6. It trivially follows from Proposition 6.2
that facts([Q,P ,N ](I)) equals facts([Q,P ](I)). It now suffices to show
that mul(f, [Q,P ,N ](I)) ≤ mul(f, [Q,P ](I)) for every fact f appearing
in facts([Q,P ,N ](I)) to prove that [Q,P ,N ](I) ⊆ [Q,P ](I).

To this end, let f be a fact in facts([Q,P ,N ](I)). By definition, the mul-
tiplicity of f in [Q,P ,N ](I) is determined by all the valuations V deriving
f on the node responsible for V . The multiplicity of f in [Q,P ](I) on the
other hand is determined by all the valuations V deriving f on some node
(even if this node is not the node responsible for V in the ordered network).
We can easily see that every valuation V on a node κ contributing to the
multiplicity of f in [Q,P ,N ](I) equally contributes to the multiplicity of
f in [Q,P ](I), but the converse is not true in general. We conclude that
mul(f, [Q,P ,N ](I)) ≤ mul(f, [Q,P ](I)).
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There is another interesting difference between the conventional model
and the modified model: Under the modified model, a conjunctive query
Q ∈ CQ6= is always parallel-sound under a distribution policy P over an
ordered network N . Recall that a query Q is parallel-sound under a distri-
bution policy P over an ordered network N if [Q,P ,N ](I) ⊆ Q(I) for every
instance I.

Proposition 6.7. Let Q ∈ CQ6= be a query and let P = (U, rfactsP ) be a
distribution policy over an ordered network N . For every instance I over U ,
it holds that [Q,P ,N ](I) ⊆ Q(I).

Proof. Assume a query Q, distribution policy P , ordered network N and
instance I. We prove that mul(f, [Q,P ,N ](I)) ≤ mul(f,Q(I)) for every
fact f ∈ facts([Q,P ,N ](I)).

Recall that by definition

mul(f,Q(I)) =
∑
S∈V

mul(f, [Q, S](I)) (1)

with V the set of satisfying valuations for Q on I deriving f . Furthermore,

mul(f, [Q,P ,N ](I)) =
∑
κ∈N

∑
T∈Vκ

mul(f, [Q, T ](loc-instP ,I(κ))) (2)

with Vκ the set of satisfying valuations for Q on loc-instP ,I(κ) deriving f
and having κ as responsible node.

Since every term appearing in the second equation is based on a satisfied
valuation T when evaluated over a local instance, this valuation T is satisfied
on the global instance I as well. Therefore, this term based on T will appear
in the first equation as well. Notice furthermore that every valuation V
used in the first equation can appear at most once in a term in the second
valuation. Indeed, if V would appear in two different terms, V would derive
f on multiple nodes. But this contradicts with our definition stating that
every valuation V only derives facts on the single node responsible for it.

We conclude that for every term appearing in the second equation, there
is an equivalent term in the first equation. The opposite is however not
necessarily true, implying that mul(f, [Q,P ,N ](I)) ≤ mul(f,Q(I)).

Notice that, in general, a conjunctive query Q ∈ CQ6= is not parallel-
complete under a distribution policy P over an ordered network N . In other
words, Q(I) ⊆ [Q,P ,N ](I) does not necessarily hold. A trivial counterex-
ample is a distribution policy that does not assign facts to nodes, thereby
always producing the empty result.

These differences between the modified and the conventional distributed
evaluation model intuitively lead to a more relaxed condition for parallel-
correctness under bag semantics.
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Recall that Condition 4.3 is both necessary and sufficient for parallel-
correctness under bag semantics when we are considering the conventional
distributed evaluation model. This condition states that every valuation for
a query Q ∈ CQ6= has to be satisfiable on exactly one node in the network.
During the proof of Lemma 4.4 we show that the required facts for a valua-
tion V cannot meet at more than one node, as the resulting multiplicity of
the derived fact would be too high in the result.

Under the modified distributed evaluation model, however, the multiplic-
ity of a fact cannot be too high, as a query in CQ6= is always parallel-sound
under every distribution policy according to Proposition 6.7. Therefore, the
required facts for a valuation can meet at more than one node, implying
that Condition 4.3 is no longer necessary for parallel-correctness under bag
semantics.

Based on these observations, we formulate a condition closely related to
Condition 4.3 that is both necessary and sufficient for parallel-correctness
over ordered networks under bag semantics.

Condition 6.8. Let Q ∈ CQ6= be a conjunctive query with inequalities
and P = (U, rfactsP ) a distribution policy over an ordered network N . For
every valuation V for Q over U , there is at least one node κ ∈ N such that
V (bodyQ) ⊆ rfactsP (κ).

Before proving that Condition 6.8 is a necessary and sufficient condition
for parallel-correctness over ordered networks, we first consider the following
lemma, closely related to Lemma 4.5.

Lemma 6.9. A query Q ∈ CQ6= is not parallel-correct under a distribution
policy P = (U, rfactsP ) over an ordered network N if there exists a valuation
V for Q with no node κ ∈ N with V (bodyQ) ⊆ rfactsP (κ).

Proof sketch. The proof is analogous to the proof of Lemma 4.5. If there is
a valuation V that derives a fact f on the global instance I, but not on the
local instance of a node in the network, the multiplicity of f will be lower
in [Q,P ,N ](I) than in Q(I), unless there is some kind of compensation.

During the proof of Lemma 4.5, it is shown that the only possible com-
pensation is another valuation V ′ that derives f on multiple nodes. Under
the modified distributed evaluation model, this construction is by definition
impossible because V ′ only derives f on the node κ ∈ N that is responsible
for V ′. We conclude that it is impossible to compensate for the multiplicity
of f being too low. Therefore, Q is not parallel-correct under P over the
ordered network N .

We are now ready to prove that Condition 6.8 is both necessary and
sufficient for parallel-correctness under the modified distributed evaluation
model.
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Proposition 6.10. Under bag semantics, a query Q ∈ CQ6= is parallel-
correct under distribution policy P = (U, rfactsP ) over an ordered network
N if and only if Condition 6.8 is satisfied.

Proof. (if) Assume Condition 6.8 is satisfied. We prove that Q is parallel-
correct under P over N . According to Proposition 6.7, parallel-soundness
is already guaranteed, so we only need to prove parallel-completeness. In
other words, mul(f,Q(I)) ≤ mul(f, [Q,P ,N ](I)) has to hold for every fact
f ∈ facts(Q(I)).

By definition, the multiplicity of f in Q(I) is determined by the set of
valuations V deriving f on instance I. Since the required facts for every valu-
ation V ∈ V meet on at least one node in the network by assumption, we con-
clude that every valuation V ∈ V contributing to the final multiplicity of f
in Q(I) contributes an equal amount to the multiplicity of f in [Q,P ,N ](I).
It immediately follows that mul(f,Q(I)) ≤ mul(f, [Q,P ,N ](I)).

(only if) The proof is by contraposition. Assume Condition 6.8 is not
satisfied. In other words, there exists a valuation V forQ with no node κ ∈ N
with V (bodyQ) ⊆ rfactsP (κ). It immediately follows from Lemma 6.9 that
Q is not parallel-correct under P over N .

6.5 Complexity of parallel-correctness under bag
semantics

Although the characterization for parallel-correctness under bag semantics
over an ordered network is less strict, there is no immediate change in the up-
per bounds for deciding parallel-correctness. We first reformulate the prob-
lem to include ordered networks.

PCord(C,P)

Input: Query Q ∈ C,
distribution policy P ∈ P

Question: Is Q parallel-correct under P over

an ordered network?

Proposition 6.11. The problem PCord(C,P) is in Πp
2 for every query class

C ∈ {CQ,CQ6=} and every distribution policy class P ∈ {Pfin} ∪Pnondet.

Proof. Let k be fixed and let 〈Q,P 〉 be an input for PCord(CQ6=,Pknondet),
with Q ∈ CQ6= and P = (U, rfactsP ) represented by a tuple (n,AP ). Ac-
cording to Proposition 6.10, it suffices to show that there is a Πp

2-algorithm
that checks whether for each valuation V for Q over U there is a node κ
such that V (bodyQ) ⊆ rfactsP (κ).
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As explained in the proof of Proposition 4.7, there exists a verifier M
deciding whether V (bodyQ) ⊆ rfactsP (κ) in polynomial time on V (bodyQ)
and κ as input. We use this verifier M to construct a Πp

2-algorithm deciding
PCord(CQ6=,Pknondet).

The algorithm accepts if and only if for every valuation V for Q over
U , there is a node κ and a certificate c such that the verifier M accepts on
input 〈V (bodyQ), κ〉 with certificate c. Since deciding whether the verifier
M accepts on input 〈V (bodyQ), κ〉 with certificate c is obviously possible in
polynomial time, it can easily be seen that this algorithm is indeed in Πp

2.
Note that this result also holds for query class CQ and policy class Pfin,

since CQ ⊆ CQ6= and Pfin ⊆ P2
nondet.

Again, we can lower this upper bound by restricting ourselves to distri-
bution policies in Pdet, thereby dropping the used existential quantifier.

Proposition 6.12. The problem PCord(C,P) is in coNP for every query
class C ∈ {CQ,CQ6=} and every distribution policy class P ∈ Pdet∪{Pfin}.

Proof. It suffices to show that the complement of the problem PCord(C,P),
denoted PCord(C,P), is in NP for every query class C ∈ {CQ,CQ6=} and
every distribution policy class P ∈ Pdet ∪ {Pfin}.

PCord(C,P)

Input: Query Q ∈ C,
distribution policy P ∈ P

Question: Is Q not parallel-correct under P

over an ordered network?

Let k be fixed. We construct a nondeterministic algorithm deciding

PCord(CQ6=,Pkdet) on input 〈Q,P 〉 with Q ∈ CQ6= and P ∈ Pkdet. By
assumption, P is representable by a tuple (N , n,AP ). According to Propo-
sition 6.10,Q is not parallel-correct under P if and only if there is a valuation
V for Q over U such that there is no node κ with V (bodyQ) ⊆ rfactsP (κ).
We use this property to construct the nondeterministic algorithm as fol-
lows: Guess a valuation V and check if there is a node κ ∈ N having
V (bodyQ) ⊆ rfactsP (κ). The algorithm rejects if this is true. Otherwise,
it accepts.

Since valuations are mappings of variables appearing in Q to values in U
and since values in U can be represented by a string of length n or less, it is
possible to guess a valuation V in polynomial time. Furthermore, checking
whether there is a node κ ∈ N with V (bodyQ) ⊆ rfactsP (κ) is also possible
in polynomial time, as the nodes are an explicit part of the input and AP
can be used to decide V (bodyQ) ⊆ rfactsP (κ) in polynomial time for each
node κ ∈ N . Thus, the nondeterministic algorithm described above runs in
polynomial time.
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Notice that this reasoning holds for conjunctive queries in CQ as well,
since CQ ⊆ CQ6=.

Unfortunately, the construction in the lower bound proof of Proposi-
tion 4.9 isn’t directly applicable to parallel-correctness under ordered net-
works, as it uses the fact that a query isn’t parallel-correct under a dis-
tribution policy over a regular network if a valuation is satisfiable on two
nodes.

6.6 Transferability under bag semantics

The characterization for transferability under bag semantics when consid-
ering regular networks, described in Proposition 4.29, is based on the ob-
servation that some facts always group together on the same node. Under
the modified model however, this notion of impFacts is no longer useful, as
this grouping of facts is no longer required. Indeed, a distribution policy
under which a conjunctive query Q is parallel-correct can always map the
required facts for each valuation for Q onto a different node, implying that
impFacts(V,Q) would always equal V (bodyQ) under this modified model.

Condition 6.13. Let Q and Q′ be queries in CQ6=. For each valuation V ′

for Q′ over a universe U , there is a valuation V for Q over U such that
V ′(bodyQ′) ⊆ V (bodyQ).

Condition 6.13 intuitively is a sufficient condition for parallel-correctness
transferring from Q to Q′ over ordered networks. We show furthermore that
Condition 6.13 is a necessary condition as well.

Proposition 6.14. Let Q and Q′ be queries in CQ6=. Parallel-correctness
over ordered networks transfers from Q to Q′ if and only if Condition 6.13
is satisfied.

Proof. (if) Assume Condition 6.13 is satisfied. Consider an arbitrary distri-
bution policy P = (U, rfactsP ) over an ordered network N under which Q is
parallel-correct. We show that Q′ is parallel-correct under P as well by prov-
ing that for each valuation V ′ for Q′ there is a node κ ∈ N with V ′(bodyQ′) ⊆
rfactsP (κ). To this end, consider an arbitrary valuation V ′ for Q′. By as-
sumption, there is a valuation V for Q such that V ′(bodyQ′) ⊆ V (bodyQ).
According to Proposition 6.10, there exists a node κ ∈ N with V (bodyQ) ⊆
rfactsP (κ). It immediately follows that V ′(bodyQ′) ⊆ rfactsP (κ). We con-
clude that Q′ is parallel-correct under P over the ordered network N .

(only if) The proof is by contraposition. Assume Condition 6.13 isn’t
satisfied. We show that parallel-correctness under ordered networks doesn’t
transfer fromQ toQ′ by constructing a distribution policy P over an ordered
network N under which Q is parallel-correct, but Q′ isn’t.
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By assumption, there is a valuation V ′ for Q′ over a universe U such that
there is no valuation V for Q over U with V ′(bodyQ′) ⊆ V (bodyQ). Let D
be a schema containing all relations used in Q and Q′ and let V ′(bodyQ′) =
{f1, . . . , fn}. The construction of a distribution policy P = (U, rfactsP ) over
an ordered network N = (κ1, . . . , κn) is as follows. For each node κi ∈ N ,
we define rfactsP (κi) = facts(D, U) \ {fi}.

Notice that there is no node κ ∈ N , with V ′(bodyQ′) ∈ rfactsP (κ).
Therefore, according to Proposition 6.10, Q′ isn’t parallel-correct under P
over the ordered networkN . It next suffices to show thatQ is parallel-correct
under P over the ordered network N to conclude that parallel-correctness
over ordered networks doesn’t transfer fromQ toQ′. To this end, consider an
arbitrary valuation V for Q over U . By assumption, V ′(bodyQ′) 6⊆ V (bodyQ).
Therefore, there exists a fact fi ∈ V ′(bodyQ′) with fi 6∈ V (bodyQ). By con-
struction of P , it now follows that V (bodyQ) ⊆ rfactsP (κi). We conclude
that each valuation V for Q is satisfiable on at least one node κ ∈ N . The
query Q therefore satisfies Condition 6.8, implying that Q is parallel-correct
under P over the ordered network N .

6.7 Complexity of transferability under bag se-
mantics

The high upper bound on the complexity of deciding transferability over
regular networks given in Proposition 4.31 is mainly a consequence of the
computation of impFacts. Over ordered networks, this computation is no
longer necessary, resulting in an improved upper bound.

Before describing this upper bound, we first reformulate the problem of
transferability to include ordered networks.

PC-Transord(C, C′)
Input: Query Q ∈ C,

query Q′ ∈ C′

Question: Does parallel-correctness over ordered networks

transfer from Q to Q′?

Proposition 6.15. The problem PC-Transord(C, C′) is in Πp
2 for every

query class C ∈ {CQ,CQ6=} and every query class C′ ∈ {CQ,CQ6=}.

Proof. Let 〈Q,Q′〉 be an input for PC-Transord(CQ6=,CQ6=). We construct
an algorithm deciding transferability by returning true if and only if for every
valuation V ′ forQ′ there is a valuation V forQ with V ′(bodyQ′) ⊆ V (bodyQ).
Notice that this algorithm clearly is correct as it is a direct application of
Condition 6.13.
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Since deciding whether V ′(bodyQ′) ⊆ V (bodyQ) is obviously possible
in polynomial time, the described algorithm is a Πp

2-algorithm deciding
PC-Transord(CQ6=,CQ6=). This result holds for queries in CQ as well,
as CQ ⊆ CQ6=.

6.8 Relation between set and bag semantics

Chapter 5 describes the relation of parallel-correctness and transferabil-
ity between set and bag semantics. In this section we study this relation
while considering ordered networks instead of regular networks. To facilitate
our reasoning, we continue using our notations PCset(P ,Q), PCbag(P ,Q),
PCTset(Q,Q′) and PCTbag(Q,Q′) to indicate parallel-correctness and trans-
ferability under set and bag semantics over regular networks. We furthermore
use PCord,set(P ,Q) and PCord,bag(P ,Q) to denote the fact that the query Q
is parallel-correct under distribution policy P over an ordered network under
respectively set and bag semantics. Analogously, we use PCTord,set(Q,Q′)
and PCTord,bag(Q,Q′) to indicate that parallel-correctness over ordered net-
works transfers from a query Q to a query Q′ under respectively set and bag
semantics.

6.8.1 Parallel-Correctness

Recall from Proposition 5.1 that PCbag(P ,Q) always implies PCset(P ,Q)
for a query Q ∈ CQ6=. This remains the case under our modified model.

Proposition 6.16. Let Q be a query in CQ6= and let P = (U, rfactsP ) be
a distribution policy over an ordered network N . If PCord,bag(P ,Q), then
PCord,set(P ,Q).

Proof. Let the query Q, policy P and ordered network N be as described
in the proposition. Assume PCord,bag(P ,Q) holds. By Proposition 6.10, for
every valuation V for Q over U , there is a node κ ∈ N with V (bodyQ) ⊆
rfactsP (κ). It clearly follows that Condition 6.3 is satisfied, implying that
PCord,set(P ,Q) holds.

On the other hand, parallel-correctness under set semantics doesn’t nec-
essarily imply parallel-correctness under bag semantics while considering
ordered networks.

Example 6.17. Based on Example 5.2, Consider the conjunctive query Q,

T (x)← R(x), R(y)

and the ordered network N = (κ1, κ2). Assume a binary universe U = {a, b}.
Let P = (U, rfactsP ) be a distribution policy over N with rfactsP (κ1) =
{R(a)} and rfactsP (κ2) = {R(b)}.
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As already explained in Example 5.2, the required facts for each minimal
valuation meet on a node in the network, implying PCord,set(P ,Q). There
exists however a valuation V = {x 7→ a, y 7→ b} for which there is no node
κ ∈ N with V (bodyQ) ⊆ rfactsP (κ). Consequently, PCord,bag(P ,Q) doesn’t
hold. �

Restricting ourselves to strongly minimal queries solves the issue de-
scribed in Example 6.17. Recall from Chapter 5 that we combined strongly
minimal queries with nonreplicating distribution policies to let PCbag(P ,Q)
coincide with PCset(P ,Q). Over ordered networks, the latter restriction is
however no longer necessary.

Proposition 6.18. Let Q ∈ CQ6=[sm] be a strongly minimal conjunctive
query with inequalities and let P be a distribution policy over an ordered
network N . PCord,set(P ,Q) holds if and only if PCord,bag(P ,Q) holds.

Proof. (if) This direction is a trivial consequence of Proposition 6.16.

(only if) Assume PCord,set(P ,Q) holds. In other words, for every minimal
valuation V for Q, there is a node κ ∈ N having V (bodyQ) ⊆ rfactsP (κ).
Since Q is strongly minimal, every valuation V for Q is minimal. Con-
sequently, for every valuation V for Q, there is a node κ ∈ N having
V (bodyQ) ⊆ rfactsP (κ). We conclude that PCord,bag(P ,Q) holds as well.

Notice that for a policy P and a query Q ∈ CQ6=, PCord,set(P ,Q) might
coincide with PCord,bag(P ,Q), even if Q is not strongly minimal. This is for
example the case if P maps all the facts to the same node.

6.8.2 Transferability

When comparing the characterizations for transferability over ordered net-
works under set and bag semantics, described in respectively Proposition 6.5
and Proposition 6.14, it can easily be seen that the only significant dif-
ference between them is the notion of minimal valuations under set se-
mantics. As one might expect, PCTord,set(Q,Q′) doesn’t necessarily imply
PCTord,bag(Q,Q′).

Example 6.19. As an example showing that PCTord,set(Q,Q′) not nec-
essarily implies PCTord,bag(Q,Q′), consider the conjunctive queries Q and
Q′,

Q : H(x)← R(x),

Q′ : H(x)← R(x), R(y).

Obviously, a minimal valuation for Q′ always maps the variables x and y
onto the same value. Therefore, every minimal valuation V ′ for Q′ requires
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exactly one fact. It can easily be seen that there is a minimal valuation V for
Q requiring this fact as well. Therefore, Q covers Q′, so PCTord,set(Q,Q′)
holds.

Next, consider the valuation V ′ = {x 7→ a, y 7→ b} for Q′, with a 6= b.
Since V ′(bodyQ′) requires two different facts, there clearly is no valuation V
for Q with V ′(bodyQ′) ⊆ V (bodyQ) as bodyQ has only one atom. We conclude
that PCTord,bag(Q,Q′) cannot hold. �

In Section 5.2 we explained why PCbag(P ,Q) implying PCset(P ,Q) isn’t
sufficient to conclude that PCTbag(Q,Q′) implies PCTset(Q,Q′). This rea-
soning is applicable over ordered networks as well. In fact, if the condition
for transferability over ordered networks under bag semantics is satisfied,
it doesn’t immediately follow that the condition for transferability over or-
dered networks under set semantics is satisfied. Indeed, if the former con-
dition is satisfied, we know that for every valuation V ′ for Q′ there has to
be a valuation V for Q with V ′(bodyQ′) ⊆ V (bodyQ). Consequently, for ev-
ery minimal valuation V ′min for Q′ there is a valuation V for Q such that
V ′min(bodyQ′) ⊆ V (bodyQ). Unfortunately, this doesn’t necessarily imply that
for every minimal valuation V ′min for Q′ there is a minimal valuation Vmin

for Q with V ′min(bodyQ′) ⊆ Vmin(bodyQ).

Example 6.20. As an example showing that PCTord,bag(Q,Q′) not neces-
sarily implies PCTord,set(Q,Q′), consider the following conjunctive queries
Q and Q′,

Q : H(x)← R(x), R(y),

Q′ : H(x, y)← R(x), R(y).

Since bodyQ = bodyQ′ , it immediately follows that for every valuation
V ′ for Q′ there is a valuation V for Q with V ′(bodyQ′) ⊆ V (bodyQ). We
conclude that PCTord,bag(Q,Q′) holds.

Now consider the valuation V ′ = {x 7→ a, y 7→ b} for Q′. Since V ′ is a
minimal valuation for Q′, there has to be a minimal valuation V for Q with
V ′(bodyQ′) ⊆ V (bodyQ) for PCTord,set(Q,Q′) to hold. In this case, the only
possible valuations for Q are V1 = {x 7→ a, y 7→ b} and V2 = {x 7→ b, y 7→ a}.
Notice that these valuations V1 and V2 aren’t minimal. Indeed, by assigning
the same value as x to y, we get in both cases a valuation for Q deriving
the same fact while requiring only one fact. We conclude that there is no
minimal valuation V for Q with V ′(bodyQ′) ⊆ V (bodyQ). Consequently,
PCTord,set(Q,Q′) doesn’t hold. �

Notice that the only difference between bag and set semantics are min-
imal valuations. Therefore, it is possible to let transferability over ordered
networks under set and bag semantics coincide by restricting ourselves to
strongly minimal conjunctive queries.
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Proposition 6.21. Let Q and Q′ be strongly minimal queries in CQ6=[sm].
PCTord,set(Q,Q′) holds if and only if PCTord,bag(Q,Q′) holds.

Proof. (if) Assume PCTord,bag(Q,Q′). By assumption, for every valuation
V ′ for Q′ there is a valuation V for Q with V ′(bodyQ′) ⊆ V (bodyQ). Since Q
and Q′ are strongly minimal, it follows that for every minimal valuation V ′

for Q′ there is a minimal valuation V for Q with V ′(bodyQ′) ⊆ V (bodyQ).
Thus, PCTord,set(Q,Q′) holds.

(only if) Assume PCTord,set(Q,Q′). By assumption, for every minimal
valuation V ′ for Q′ there is a minimal valuation V for Q with V ′(bodyQ′) ⊆
V (bodyQ). Since Q and Q′ are strongly minimal, every valuation is minimal.
Therefore, for every valuation V ′ for Q′ there is a valuation V for Q with
V ′(bodyQ′) ⊆ V (bodyQ). We conclude that PCTord,bag(Q,Q′) holds.

Notice that it is not required for Q and Q′ to be strongly minimal to
let PCTord,set(Q,Q′) and PCTord,bag(Q,Q′) be the same. As a trivial coun-
terexample, consider the case where Q and Q′ are arbitrary queries in CQ6=

with Q = Q′. In this case, parallel-correctness clearly transfers from Q to
Q′ (and vice versa), both under set and bag semantics.

We conclude our observation by considering the case where only Q is
a strongly minimal query. In this case, there is still an implication from
PCTord,bag(Q,Q′) to PCTord,set(Q,Q′).

Proposition 6.22. Let Q be a strongly minimal query in CQ6=[sm] and let
Q′ be a query in CQ6=. PCTord,set(Q,Q′) holds if PCTord,bag(Q,Q′) holds.

Proof. Assume PCTord,bag(Q,Q′). By assumption, for every valuation V ′

for Q′ there is a valuation V for Q with V ′(bodyQ′) ⊆ V (bodyQ). Since Q
is strongly minimal, it follows that for every valuation V ′ for Q′ there is a
minimal valuation V for Q with V ′(bodyQ′) ⊆ V (bodyQ). Clearly, this holds
for every minimal valuation V ′ for Q′ as well, so PCTord,set(Q,Q′) holds.

Observe that while only Q is strongly minimal, PCTord,set(Q,Q′) not
always follows from PCTord,bag(Q,Q′), as illustrated by Example 6.19.
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Chapter 7

Hypercube distributions

A Hypercube distribution for a given conjunctive query Q partitions the
data across the different nodes in an instance independent way based on the
structure of Q. This technique can be traced back to Ganguly, Silberschatz
and Tsur [11] and is studied in the context of map-reduce by Afrati and
Ullman [3]. Beame, Koutris and Suciu [7] referred to this technique as the
Hypercube algorithm and used it to provide an upper bound for the amount
of communication needed to compute a full conjunctive query without self-
joins in one communication round.

In this chapter, we first define Hypercube distributions for a conjunctive
query Q. Next, we briefly summarize the results obtained by Ameloot et
al. [4] related to Hypercube distributions under set semantics. We end this
chapter with a study on the parallel-correctness of Hypercube distributions
under bag semantics.

7.1 Definition

Let Q be a conjunctive query with bodyQ = {R1(x1), . . . , Rm(xm)} and
vars(Q) = {x1, . . . , xk}. Let p1, . . . , pk be strictly positive natural numbers
and let H = (h1, . . . , hk) be a collection of hash functions with each hash
function hi mapping values from dom to values in {1, . . . , pi}. Assume a
network N containing p = p1×· · ·×pk nodes. Each node in N is assigned a
unique address in {1, . . . , p1}× · · · × {1, . . . , pk}. Intuitively, these addresses
organize the nodes in N in a hypercube of k dimensions with each dimension
i having a size of pi.

This set H of hash functions determines a hypercube distribution PH
for Q over N as follows. For each valuation V for Q and for each atom
A = Ri(xi) in bodyQ, the fact f = V (A) is assigned to all the nodes in
N having an address of the form (b1, . . . , bk) with bj = hj(V (xj)) for all
variables xj ∈ xi. In other words, a fact f = R(a1, . . . , al) is assigned to a
node κ with address (b1, . . . , bk) if and only if f is mappable onto an atom A
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in bodyQ over the same relation R such that bi = hi(ar) if variable xi appears
in atom A on position r and bi ∈ img(hi) otherwise for every i ∈ {1, . . . , k}.

Example 7.1. Consider the following conjunctive query Q,

H(x1, x3)← R(x1, x2), R(x2, x3),

and let p1 = p2 = 2 and p3 = 1. Assume for convenience that we are working
under a binary universe U = (a, b). Let H = (h1, h2, h3) be a collection of
hash functions with h3(d) = 1 for each value d ∈ dom, h1(a) = h2(a) = 1
and h1(b) = h2(b) = 2.

Let N be a network over four nodes κ1,1,1, κ1,2,1, κ2,1,1 and κ2,2,1 having
respectively the addresses (1, 1, 1), (1, 2, 1), (2, 1, 1) and (2, 2, 1). The distri-
bution policy PH distributes the facts over relation R as follows over the
network N :

• The fact R(a,a) is assigned to κ1,1,1 because of the atom R(x1, x2) and
to both κ1,1,1 and κ2,1,1 because of atom R(x2, x3).

• The fact R(a,b) is assigned to κ1,2,1 because of the atom R(x1, x2) and
to both κ1,1,1 and κ2,1,1 because of atom R(x2, x3).

• The fact R(b,a) is assigned to κ2,1,1 because of the atom R(x1, x2) and
to both κ1,2,1 and κ2,2,1 because of atom R(x2, x3).

• The fact R(b,b) is assigned to κ2,2,1 because of the atom R(x1, x2) and
to both κ1,2,1 and κ2,2,1 because of atom R(x2, x3).

Notice that this distribution policy PH is not the only possible Hyper-
cube distribution for Q. It can easily be seen that a different collection of
hash functions H ′ = (h′1, h

′
2, h
′
3) might result in a different Hypercube dis-

tribution PH′ for Q. �

7.2 Hypercube under set semantics

Let PH be a hypercube distribution for a conjunctive query Q. Ameloot et
al. [4] proved that Q is parallel-correct under PH . This Hypercube distribu-
tion PH furthermore satisfies Condition 3.4. Indeed, a valuation V for Q is
by definition of Hypercube distributions satisfiable on the node κ ∈ N with
address (h1(V (x1)), . . . , hk(V (xk))).

Proposition 7.2 ([4]). Let PH be a hypercube distribution for a conjunctive
query Q ∈ CQ. Then PH strongly saturates Q.
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7.3 Hypercube under bag semantics

In contrast to set semantics, a conjunctive query Q is unfortunately not
necessarily parallel-correct under a Hypercube distribution PH for Q while
considering bag semantics. We already mentioned that a Hypercube distri-
bution PH for a conjunctive query Q always satisfies Condition 3.4. This
condition is however not sufficient for parallel-correctness under bag seman-
tics, as Proposition 4.6 requires that there is exactly one node in the network
responsible for each valuation V for Q. However, the definition of a Hyper-
cube distribution allows a valuation to be satisfiable on multiple nodes in
the network.

Example 7.3. As a counterexample showing that under bag semantics a
conjunctive query Q is not necessarily parallel-correct under every Hyper-
cube distribution PH for Q, reconsider from Example 7.1 the conjunctive
query Q,

H(x1, x3)← R(x1, x2), R(x2, x3),

and Hypercube distribution policy PH based on the collection of hash func-
tions H = (h1, h2, h3).

Let V = {x1 7→ a, x2 7→ a, x3 7→ a} be a valuation for Q over the binary
universe U = {a, b}. As explained in Example 7.1, the fact R(a, a) is mapped
onto both κ1,1,1 and κ2,1,1. But V (bodyQ) = {R(a, a)}, so it immediately
follows that V (bodyQ) ⊆ rfactsPH (κ1,1,1) and V (bodyQ) ⊆ rfactsPH (κ2,1,1).
According to Proposition 4.6, Q is not parallel-correct under PH under bag
semantics. �

We next consider the application of Hypercube distributions under the
modified distributed evaluation model, as described in Chapter 6. To this
end, assume there is an arbitrary total order on the nodes in the network.
We could, for example, sort the nodes in the network in a lexicographical
order based on the address of each node.

Recall from Proposition 6.10 that a conjunctive query Q is parallel-
correct under a distribution policy P over an ordered network N if and
only if for every valuation V for Q there is at least one node κ in N with
V (bodyQ) ⊆ rfactsP (κ). It can easily be seen that a Hypercube distribution
for Q satisfies this condition.

Proposition 7.4. Let PH be a Hypercube distribution for a conjunctive
query Q ∈ CQ over an ordered network N . Then Q is parallel-correct under
PH over the ordered network N under bag semantics.

Proof. Assume a Hypercube distribution PH for a conjunctive query Q ∈
CQ over an ordered network N . According to Proposition 7.2, PH strongly
saturates Q. In other words, Condition 3.4 is satisfied for Q and PH . It
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clearly follows that Condition 6.8 is satisfied as well. According to Proposi-
tion 6.10, Q is parallel-correct under PH over the ordered network N under
bag semantics.

Alternatively, we could prove directly that Condition 6.8 is satisfied to
conclude that Q is parallel-correct under PH over the ordered network N
under bag semantics. To this end, assume an arbitrary valuation V for Q.
Let vars(Q) = {x1, . . . , xk} and let H = (h1, . . . , hk). Now consider the
node κ ∈ N with address (h1(V (x1)), . . . , hk(V (xk))). By definition of the
Hypercube distribution PH , all the facts in V (bodyQ) are assigned to this
node κ. In other words, V (bodyQ) ⊆ rfactsPH (κ). This reasoning is clearly
valid for each valuation V for Q, directly implying that Condition 6.8 is
indeed satisfied for Q and PH .

In Chapter 6, we showed that the characterization for parallel-correctness
under set semantics doesn’t change while considering ordered networks in-
stead of regular networks. This implies in particular that under set semantics
a Hypercube distribution PH for a conjunctive query Q strongly saturates
Q under the modified model as well. In other words, Q is parallel-correct
under PH over an ordered network under set semantics. We therefore con-
clude that parallel-correctness under Hypercube distributions over ordered
networks coincides for set and bag semantics.
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Chapter 8

Unions of conjunctive queries

In this chapter we study the extension of our results related to parallel-
correctness and transferability under bag semantics toward unions of con-
junctive queries with inequalities.

8.1 Parallel-correctness

Recall from Chapter 4 that Condition 4.3 is both necessary and sufficient
for parallel-correctness in the context of conjunctive queries with inequal-
ities under bag semantics. We modify Condition 4.3 to include unions of
conjunctive queries with inequalities.

Condition 8.1. Let Q ∈ UCQ6= be a union of conjunctive queries with
inequalities and P = (U, rfactsP ) a distribution policy over a network N .
For every valuation Vi for Q over U , witnessed by some Qi ∈ Q, there is
exactly one node κ ∈ N such that Vi(bodyQi) ⊆ rfactsP (κ).

Before proving that Condition 8.1 is a necessary and sufficient condition
for parallel-correctness for unions of conjunctive queries with inequalities
under bag semantics, we first mention that Lemma 4.4 and Lemma 4.5 are
applicable for unions of conjunctive queries as well.

Lemma 8.2. Let P = (U, rfactsP ) be a distribution policy over a network
N . A query Q ∈ UCQ6= is not parallel-correct under P if there exists a
valuation Vi for Q, witnessed by some query Qi ∈ Q, and more than one
node κ ∈ N with Vi(bodyQi) ⊆ rfactsP (κ).

Proof sketch. The proof is analogous to the proof of Lemma 4.4. Assume
towards a contradiction that Q is parallel-correct under P . Let κ1 and κ2
be two different nodes in N with Vi(bodyQi) ⊆ rfactsP (κ1) and Vi(bodyQi) ⊆
rfactsP (κ2). Consider an instance I with facts(I) = Vi(bodyQi). It can easily
be seen that all the facts in I are mapped onto both κ1 and κ2, meaning
that all the results in Q(I) are derived on both nodes. In particular, the fact
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f = V (headQi) will be derived on both nodes, implying that the resulting
multiplicity of f in the distributed evaluation will be too high, unless there
is some kind of compensation. The only possible way to compensate is the
existence of a valuation Vj , witnessed by some Qj ∈ Q, contributing to the
multiplicity of f in Q(I), but not to the multiplicity of f in [Q,P ](I). This
is however impossible, as the required facts for Vj would clearly be available
on both κ1 and κ2.

Lemma 8.3. Let P = (U, rfactsP ) be a distribution policy over a network
N . A query Q ∈ UCQ6= is not parallel-correct under P if there exists a
valuation Vi for Q, witnessed by some query Qi ∈ Q, with no node κ ∈ N
with Vi(bodyQi) ⊆ rfactsP (κ).

Proof sketch. The proof is analogous to the proof of Lemma 4.5. Assume
towards a contradiction that Q is parallel-correct under P . Consider an
arbitrary instance I containing the required facts for Vi. Since no node in
the network contains all the required facts for Vi, it can easily be seen that
the multiplicity of the fact f derived by Vi will be too low in the distributed
result, unless there is some compensation in the form of a valuation Vj for
Q, witnessed by a query Qj ∈ Q, deriving f on multiple nodes. The latter
contradicts with Lemma 8.2, implying that Q cannot be parallel-correct
under P .

We use both lemmas to prove that Condition 8.1 is a necessary and
sufficient condition for parallel-correctness for queries in UCQ 6= under bag
semantics.

Proposition 8.4. Let P = (U, rfactsP ) be a distribution policy over a net-
work N . A query Q ∈ UCQ 6= is parallel-correct under P if and only if
Condition 8.1 is satisfied.

Proof sketch. (if) Assume Condition 8.1 holds. Clearly, every valuation for
Q is satisfiable on exactly one node, implying that Q(I) equals [Q,P ](I) for
every instance I.

(only if) The proof is by contraposition. Assume Condition 8.1 doesn’t
hold. It immediately follows from Lemma 8.2 and Lemma 8.3 that Q is not
parallel-correct under P .

Since the characterization for parallel-correctness didn’t change while
considering unions of conjunctive queries instead of conjunctive queries, the
complexity of deciding parallel-correctness under bag semantics remains the
same as well.

Proposition 8.5. The problem PC(UCQ 6=,P) is in Πp
2 for every distribu-

tion policy class P ∈ {Pfin} ∪Pnondet.
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Proof sketch. The construction of a Πp
2-algorithm is analogous to the algo-

rithm described in the proof of Proposition 4.7. The only difference is that
valuations for Q are now witnessed by some query Qi ∈ Q.

Proposition 8.6. The problem PC(UCQ6=,P) is in coNP for every dis-
tribution policy class P ∈ Pdet ∪ {Pfin}.

Proof sketch. Analogously to the proof of Proposition 4.8, we show that

PC(UCQ6=,Pk
det) is in NP. The construction of a nondeterministic polyno-

mial algorithm is as follows: guess a valuation V and check if the number of
nodes containing all the required facts for V is different from 1. The proof of
Proposition 4.8 already explained that this algorithm is indeed executable
in polynomial time.

Notice that the lower bound provided in Proposition 4.9 is a lower bound
for parallel-correctness under unions of conjunctive queries with inequalities
as well, since CQ ⊆ UCQ6=.

8.2 Parallel-correctness transfer

The definition of impFacts extends to unions of conjunctive queries with
inequalities in a natural way:

Definition 8.7. Let Vi be a valuation for a query Q ∈ UCQ6= over a uni-
verse U , witnessed by a query Qi ∈ Q. A fact f over U is in impFacts(Vi,Q)
if and only if for every distribution policy P = (U, rfactsP ) over a net-
work N under which Q is parallel-correct and for every node κ ∈ N , if
Vi(bodyQi) ⊆ rfactsP (κ), then f ∈ rfactsP (κ).

The properties and inference rules for impFacts described in Section 4.3.2
are furthermore applicable to unions of conjunctive queries with inequalities
as well. The only difference for queries in UCQ6= instead of CQ6= is that
a valuation V for a query Q ∈ UCQ6= is now witnessed by a query Qi ∈
Q. This difference however doesn’t influence the different proof ideas in
Section 4.3.2.

Next, we modify Condition 4.26 to include unions of conjunctive queries
with inequalities:

Condition 8.8. Let Q and Q′ be queries in UCQ6=. For each valuation
V ′ for Q′ over a universe U , witnessed by a query Q′j ∈ Q′, there ex-
ists a valuation V for Q over U , witnessed by a query Qi ∈ Q, such that
V (bodyQi) ⊆ V ′(bodyQ′

j
) ⊆ impFacts(V,Qi).

Condition 8.8 is a necessary and sufficient condition for transferability.
Before proving this proposition, we first reformulate Lemma 4.28, as it is
applicable to queries in UCQ 6= as well.
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Lemma 8.9. Let Q and Q′ be queries in UCQ6=. Condition 8.8 isn’t sat-
isfied, witnessed by some valuation V ′ for a query Q′j ∈ Q′ over a universe
U , if and only if there is no valuation V for Q over U , witnessed by a query
Qi ∈ Q with V (bodyQi) ⊆ V ′(bodyQ′

j
) or there is no valuation V for Q over

U , witnessed by a query Qi ∈ Q with V ′(bodyQ′
j
) ⊆ impFacts(V,Qi).

Proof sketch. (if) Let V ′ be a valuation as described in Lemma 4.28. For
both cases, it immediately follows that there cannot exist a valuation V for
Q over U , witnessed by a query Qi ∈ Q With V (bodyQi) ⊆ V ′(bodyQ′

j
) ⊆

impFacts(V,Qi). Therefore, Condition 4.26 isn’t satisfied.

(only if) Assume Condition 8.8 isn’t satisfied, witnessed by some val-
uation V ′ for a query Q′j ∈ Q′ over a universe U . By assumption, every
valuation V for a query Qi ∈ Q over U satisfies one of the following three
conditions:

1. V (bodyQi) ⊆ V ′(bodyQ′
j
) 6⊆ impFacts(V,Qi)

2. V (bodyQi) 6⊆ V ′(bodyQ′
j
) ⊆ impFacts(V,Qi)

3. V (bodyQi) 6⊆ V ′(bodyQ′
j
) 6⊆ impFacts(V,Qi)

As explained in the proof of Lemma 4.28, condition 1 and condition 3 cannot
occur together, thereby proving that there is no valuation V for Q over U ,
witnessed by a query Qi ∈ Q with V (bodyQi) ⊆ V ′(bodyQ′

j
) or there is no

valuation V for Q over U , witnessed by a query Qi ∈ Q with V ′(bodyQ′
j
) ⊆

impFacts(V,Qi).

Proposition 8.10. Let Q and Q′ be queries in UCQ6=. Parallel-correctness
transfers from Q to Q′ if and only if Condition 8.8 is satisfied.

Proof sketch. (if) Assume Condition 8.8 holds. Let P be an arbitrary distri-
bution policy under which Q is parallel-correct. We prove that Q′ is parallel-
correct under P as well. To this end, let V ′ be an arbitrary valuation for a
query Qj ∈ Q′. By assumption, there is a valuation V for Q, witnessed by
some query Qi ∈ Q, with V (bodyQi) ⊆ V ′(bodyQ′

j
) ⊆ impFacts(V,Qi). As

explained in the proof of Proposition 4.29, it follows that there is exactly one
node in the network containing all the required facts for V ′. We conclude
that Q′ is parallel-correct under P .

(only if) The proof is by contraposition. Assume Condition 8.8 doesn’t
hold. We show that parallel-correctness doesn’t transfer from Q to Q′ by
constructing distribution policies under which Q is parallel-correct, but Q′
is not. According to Lemma 8.9, there is no valuation V for Q over U ,
witnessed by a query Qi ∈ Q with V (bodyQi) ⊆ V ′(bodyQ′

j
) or there is no
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valuation V for Q over U , witnessed by a query Qi ∈ Q with V ′(bodyQ′
j
) ⊆

impFacts(V,Qi).
First, consider the case where there is no valuation V for Q over U ,

witnessed by a query Qi ∈ Q with V (bodyQi) ⊆ V ′(bodyQ′
j
). In this case,

we construct P over two nodes κ1 and κ2 by assigning each fact to κ1
and the required facts for V ′ to κ2 as well. As explained in the proof of
Proposition 4.29, Q is parallel-correct under this distribution policy, but Q′
clearly isn’t.

Next, consider the case where there is no valuation V for Q over U ,
witnessed by a query Qi ∈ Q with V ′(bodyQ′

j
) ⊆ impFacts(V,Qi). It is

furthermore safe to assume the existence of a valuation V1 for a query Qk ∈
Q with V1(bodyQk) ⊆ V ′(bodyQ′

j
), because Q and Q′ are already covered by

the first case if this valuation V1 doesn’t exist. By assumption, V ′(bodyQ′
j
) 6⊆

impFacts(V1,Q). This implies the existence of a distribution policy P under
which Q is parallel-correct and where the required facts for V ′ do not meet
on the same node as those for V1. We show in the proof of Proposition 4.29
that Q′ cannot be parallel-correct under this distribution policy P .

The complexity of deciding transferability under bag semantics doesn’t
alter when considering unions of conjunctive queries instead of conjunctive
queries.

Proposition 8.11. The problem PC-Trans(UCQ6=,UCQ 6=) is in EXP-
TIME.

Proof sketch. The construction of an EXPTIME-algorithm deciding trans-
ferability for queries in UCQ6= is analogous to the constructed algorithm in
the proof of Proposition 4.31. Instead of considering all possible valuations
V and V ′ for respectively queries Q,Q′ ∈ CQ6=, we now need to consider all
possible valuations Vi and V ′j for each subquery Qi ∈ Q and Q′j ∈ Q′, with

Q,Q′ ∈ UCQ6=.

Next, consider the class of unions of conjunctive queries with inequalities
without self-joins, denoted UCQ6=¬sj. A query Q ∈ UCQ6= is in UCQ 6=¬sj if

for every subquery Qi ∈ Q it holds that Qi ∈ CQ6=¬sj. Proposition 4.32 states

that for a query Q ∈ CQ6=¬sj, the set impFacts(V,Q) equals V (bodyQ) for
every valuation V for Q. Unfortunately, this result doesn’t necessarily hold
for queries in UCQ6=¬sj.

Example 8.12. As a counterexample showing that impFacts(V,Q) not nec-

essarily equals V (bodyQ) for every valuation V for a query Q ∈ UCQ 6=¬sj,
consider the query Q = Q1 ∪Q2, with

Q1 : H(x)← R(x),

Q2 : H(y)← R(y), S(y).
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Now consider the valuation V1 for Q1, mapping x to 1, and the valuation
V2 for Q2, mapping y to 1. Since V1(bodyQ1) = {R(1)} and V2(bodyQ2) =
{R(1), S(1)}, it follows that V1(bodyQ1) ⊆ V2(bodyQ2). Therefore, the re-
quired facts for V1 and V2 should always meet at the same node, since V1
would otherwise be satisfiable on both nodes. We conclude that S(1) ∈
impFacts(V1,Q), implying that impFacts(V1,Q) 6= V1(bodyQ1). �

We can achieve the desired result by adding an extra constraint on the
queries in UCQ6=¬sj. The construction in the previous example illustrated the
fact that the required facts for a valuations for one subquery can be a subset
of the required facts for a valuation for another subquery. We prevent this
possibility by furthermore requiring that each relation name is used at most
once in the query as a whole. Notice that for conjunctive queries without
self-joins this requirement is always fulfilled. We use UCQ6=¬dr to denote this
subset of UCQ6= satisfying the condition that every relation appears at most
once in the whole query1. It can easily be seen that UCQ 6=¬dr ⊆ UCQ6=¬sj.

Proposition 8.13. Let Q be a query in UCQ 6=¬dr. For every valuation V
for a query Qi ∈ Q over a universe U , impFacts(V,Q) = V (bodyQi).

Proof. Let Q be a query in UCQ6=¬dr. Consider an arbitrary valuation V for
a subquery Qi ∈ Q over a universe U . We prove that for every fact f over
U , it holds that f ∈ impFacts(V,Q) if and only if f ∈ V (bodyQi).

(if) Assume f ∈ V (bodyQi). For every distribution policy P over U
under which Q is parallel-correct, f trivially appears on the same node as
the facts in V (bodyQi). Consequently, f ∈ impFacts(V,Q).

(only if) The proof is by contraposition. Assume f 6∈ V (bodyQi). We
show that f 6∈ impFacts(V,Q) by constructing a distribution policy P over
U such that Q is parallel-correct under P and f does not appear on the
node responsible for V .

Since UCQ6=¬dr ⊆ UCQ 6=¬sj, it follows that Qi ∈ CQ6=¬sj. Therefore, we
can reuse the distribution policy constructed in the proof of Proposition 4.32.
This proof describes a construction for a distribution policy P that can be
used to isolate the facts in V (bodyQi) onto a separate node, while still making
sure that Qi is parallel-correct under P . We extend this construction with
an extra node κj to allow Q as a whole to be parallel-correct under P as
well. We simply assign all the facts over a relation not in Qi to this node
κj . Since a subquery Qj ∈ Q different from Qi cannot have a relation in
common with Qi, it clearly follows that each valuation for Qj over U is only
satisfiable on κj . valuations for Qi on the other hand can never be satisfied
on this node. Therefore, it can easily be seen that Q is parallel-correct under
P . We conclude that f 6∈ impFacts(V,Q).

1In this notation, dr stands for duplicate relations.
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Proposition 8.13 is useful to lower the complexity of transferability as
follows:

Proposition 8.14. The problem PC-Trans(UCQ6=¬dr,UCQ6=) is in Πp
2.

Proof. Let Q and Q′ be the input queries for PC-Trans(UCQ6=¬dr,UCQ6=).
According to Proposition 8.13, it suffices to show that there is a Πp

2-algorithm
that checks if for each valuation V ′ for a query Q′j ∈ Q′ over a universe U ,
there exists a valuation V for Q over U , witnessed by some query Qi ∈ Q,
such that V (bodyQi) = V ′(bodyQ′

j
). Since V (bodyQi) = V ′(bodyQ′

j
) can ob-

viously be checked in polynomial time, the construction of the Πp
2-algorithm

is trivial.
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Chapter 9

Conclusion

In this thesis, we studied the possibility to extend parallel-correctness and
transferability toward conjunctive queries under bag semantics. This ex-
tension is useful, as bag semantics is required to correctly perform certain
aggregation functions like counting or averaging the results.

We first provided two conditions based on valuations that are both neces-
sary and sufficient for parallel-correctness and transferability. Based on these
characterizations, we provided upper bounds for the time complexity of de-
ciding parallel-correctness and transferability for conjunctive queries with
inequalities under bag semantics. The upper bound for deciding parallel-
correctness is further improved by restricting the considered classes of dis-
tribution policies. For the latter case, we provided a matching lower bound
as well. The upper bound for deciding transferability on the other hand is
lowered by restricting the considered classes of conjunctive queries to queries
without self-joins.

We then studied the relation of parallel-correctness and transferability
between set and bag semantics. In particular, parallel-correctness under bag
semantics always implies parallel-correctness under set semantics, whereas
the converse is not necessarily true. We showed that parallel-correctness
under set and bag semantics coincide if we limit ourselves to strongly mini-
mal conjunctive queries and non-replicating distribution policies. Although
parallel-correctness under bag semantics implies parallel-correctness under
set semantics, transferability under bag semantics does not necessarily imply
transferability under set semantics or vice versa.

The characterization for parallel-correctness under bag semantics ap-
peared to be quite restrictive on possible distribution policies. Depending
on the given conjunctive query, it might even be impossible to parallelize
the evaluation of this query over more than one node in the network. We
therefore introduced a modified distributed evaluation model based on or-
dered networks. The main advantage of this approach is that each valua-
tion will derive a fact at most once, even if multiple nodes in the network
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contain the required facts for this valuation. This modification doesn’t al-
ter the result under set semantics, meaning that the characterizations for
parallel-correctness and transferability under set semantics still apply. The
characterization for parallel-correctness under bag semantics on the other
hand is simplified, as it is no longer required that each valuation for a given
conjunctive query is satisfiable on exactly one node in the network. This
simplification resulted in a different characterization for transferability un-
der bag semantics as well and therefore allowed us to provide an improved
upper bound on deciding transferability.

Next, we studied the application of Hypercube distributions for conjunc-
tive queries under bag semantics. Unlike set semantics, queries are not neces-
sarily parallel-correct under these Hypercube distributions while considering
bag semantics. We showed on the other hand that conjunctive queries are
indeed parallel-correct under their respective Hypercube distributions un-
der bag semantics if we use the modified distributed evaluation model over
ordered networks instead.

Lastly, we considered parallel-correctness and transferability under bag
semantics for unions of conjunctive queries with inequalities. We showed
that our obtained results can indeed be extended to this class of queries.
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