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Chapter 1
Overview of the Dissertation

Biomarkers play a key role in medical research, guiding diagnosis and when the physician

should intervene. However, several biomarkers are subject to a high degree of measurement

error and fluctuation, which raises concerns about the validity of basing clinical decisions

on a single measurement. Studies have found that the diagnostic accuracy of consecutive

biomarkers performed better than the usage of a single elevated value. Several studies

have applied persistence criteria, designating the outcome as the time to the occurrence

of two consecutive measurements less than (or greater than) the threshold (Amornkul

et al., 2013; Zhang, 2015).

In Chapter 2 we introduce four studies where time to threshold estimation is of key

interest, emanating from the fields of HIV/AIDS research, cardiology and psychiatry. In

Chapter 3 we discuss the basics of longitudinal data analysis, with a particular emphasis

on random effects models. This material serves as the key building block for the novel

approach to time to threshold estimation that is proposed in Chapter 4.

In Chapter 4 we propose a method for estimation of the time to threshold in the

presence of persistence criteria, using a two-stage approach. In the first stage, a linear

mixed model is fitted to the longitudinal measurements, resulting in patient-specific pre-

dicted values that are a function of the fixed-effects and empirical Bayes estimates. In the

second stage, the probability of experiencing two consecutive measurements less than a

relevant threshold k at each time point is computed and substituted into the expression
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for the expected time to threshold. Through identification of a recursive relationship of

the continuation probabilities at each time point, we show that the computation of the

expected times is simple, efficient, and can be implemented using existing software pack-

ages. We apply this approach to two studies and conduct sensitivity analysis to determine

whether the methodology is robust to deviations from the assumptions made. A possible

shortcoming of the approach presented is that it is confined to situations where, condi-

tional on random effects, the residuals are independent (i.e., the assumption of conditional

independence).

In Chapter 5 we extend the methodology proposed in Chapter 4 so that serial correla-

tion can be accommodated. Assuming that the Markov property holds, and applying the

chain rule of probabilities we prove that the probability of progression at each timepoint

can be expressed simply as the product of conditional probabilities. The methodology is

applied to a cohort of HIV positive individuals, where the time to reach a CD4 count

threshold is estimated. To gauge the impact of erroneously ignoring serial correlation,

we compare the estimates from the approach of Chapter 4 to that of the extended ap-

proach and find that incorrectly modeling the correlation structure can result in substantial

overestimation of the time to threshold.

In Chapter 6 we consider biomarkers that are subject to limits of detection or censoring,

and extend the methodology previously developed. After incorporation of the censoring

into the likelihood function, we find that the methodology proposed in Chapter 4 can

therafter be applied. In this chapter we apply the methodology to viral load measurements

from patients enrolled in the ACTG 315 study, and estimate the time to treatment success.

In Chapters 4, 5 and 6 the methodology was developed for continuous biomarkers

which is somewhat restrictive. It may be the case that health status is measured as

an ordinal variable. as is frequently observed in the field of psychiatry. In Chapter 7

we propose a method, based on the material presented in Chapter 4, to estimate the

time to threshold of an ordinal ‘biomarker’. This methodology is applied to data from a

schizophrenia trial, where time to remission was of interest.

The methodology for time to threshold estimation that was proposed in Chapters 4,

5, 6, and 7, rely on the assumption that the missing data mechanism is ignorable. In

Chapter 8 we assess the sensitivity of estimated times to threshold to deviation from the
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missing at random assumption.

We conclude by summarizing the key developments in each chapter and discuss areas

of further work.





Part I

Preliminary Materials

5





Chapter 2
Motivating Examples

In this chapter we introduce four longitudinal studies that will be analyzed in various

chapters of this thesis. The Sinithemba study (Section 2.1.2) was a study that enrolled

HIV positive individuals in South Africa to explore factors that affect HIV progression in

individuals that have not been exposed to antiretroviral (ARV) treatment. The ACTG 315

trial (Section 2.1.3), also in the field of HIV, examined individuals’ responses to ARV ther-

apy in the first year of treatment initiation. The third study, introduced in Section 2.2.2,

is from the field of cardiology and studies the progression of Abdominal Aortic Aneursyms

(AAAs) in a cohort of individuals from the Netherlands. The fourth study that will be

analysed is a randomized clinical trial that sought to evaluate the efficacy of Risperidone

in treating individuals with chronic schizophrenia (Section 2.3.2). A unifying characteris-

tic of the four studies is that in each study a biomarker threshold is of key interest, as it

is this threshold upon which decisions regarding therapeutic or surgical interventions are

often based. Each study poses a unique challenge, and motivates the various extensions

of the standard methodology that follow in subsequent chapters.

The Sinikithemba cohort study (Section 2.1.2) presents several analytical challenges:

Firstly, the date of HIV infection is unknown and individuals present at varying stages of

the disease, as evidenced by the distribution of CD4 counts at enrolment. Hence careful

consideration needs to be given to the timescale on which the data are modelled. Further,

in analyses involving time to reach a relevant CD4 count threshold, sufficient thought has

7
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to be given to how to analyse patients who may have already entered the study with a CD4

count below the threshold of interest. This dataset is analyzed again in Chapter 5, where

the standard methodology is extended to accommodate serial correlation. The AAA study

(Section 2.2.2) is analyzed in Chapter 4 where prediction of time to threshold, based on

baseline covariates, was of interest. This study was also characterized by a high degree of

dropout, and serves as the case study for sensitivity analysis in Chapter 8. In the second

HIV study (Section 2.1.3), the outcome of interest (viral load) is subject to a lower limit

of detection, which motivated the extension of the methodology in Chapter 6. Finally,

the ordinal outcome in the schizophrenia study (Section 2.3.2) motivated the extension

of the methodology from continuous to categorical outcomes that follows in Chapter 7.

2.1 HIV/AIDS

2.1.1 Background

At the end of 2015 it was estimated that 36.7 million people were living with HIV/AIDS

globally, 1.8 million of whom were children. The most affected is Sub-Saharan Africa,

which accounts for 70% of the global burden of HIV. Surrogate markers for clinical events

are particularly useful in the study of HIV progression due to the long natural history

of the disease. Peto (1996) lists the key surrogate markers of HIV progression as CD4

count, CD8 count, beta 2 microglobulin, neopterin, plasma HIV RNA load (viral load) and

clinical symptoms. CD4 cells, which are responsible for immune response to infections are

the primary target of the virus. The CD4 count is cited as the most significant predictor

of AIDS related illness and death (Langford et al., 2007). Viral load, which quantifies the

level of HIV in blood, is the most widely used surrogate for treatment efficacy. During

the acute phase of infection HIV replicates and CD4 cells deplete rapidly after which a

steady increase and decrease in viral load and CD4 count, respectively, is observed. The

evolution of CD4 count and viral load post HIV infection is presented in Figure 2.1 which

was adapted from Fauci et al (1996). Both CD4 count and viral load measurements are

subject to a high degree of within-patient variability (Hughes et al., 1994), raising doubt

regarding the validity of basing clinical decisions on a single value. A study of variability
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Figure 2.1: The time course of HIV infection.

of CD4 count in patients revealed that measurements taken eight weeks apart differed by

more than 20 percent (Hughes et al., 1994). Malone et al. (1990) and Crowe et al. (1996)

attribute this variability in HIV biomarkers to several factors including diurnal variation,

measurement error, psychological and physical stress, diet and the menstrual cycle. This is

the motivation behind recent studies on HIV progression defining progression based on two

consecutive CD4 counts less than 350 cells/mm3 (Amornkul et al., 2013; Zhang, 2015),

and WHO guidelines defining treatment success as the attainment of two consecutive viral

load measurements less than 1000 copies/ml (WHO, 2015). In this thesis we examine two

datasets from the area of HIV/AIDS. The first dataset (Section 2.1.2) emanates from a

cohort study of ARV näıve HIV positive individuals where the outcome of interest was CD4

count measurements. The second study is a clinical study that followed up individuals

from the date of treatment initiation, where the outcome of interest was viral load.

2.1.2 Sinikithemba Cohort Study

The Sinikithemba cohort comprises 450 HIV-1 subtype C chronically infected adults en-

rolled at the McCord Hospital (Durban, South Africa) between August 2003 and 2008.

Sociodemographic characteristics, plasma viral load and CD4 count measurements were

obtained at baseline. The CD4 count and viral load were measured every 3 and 6 months,

respectively, from enrollment. Viral loads were determined using the automated CobasAm-

plicor HIV-1 Monitor test (version 1.5; Roche Diagnostics). CD4 cells were enumerated
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using the Multitest kit (CD4/CD3/CD8/CD45) on a FACSCalibur flow cytometer (Becton

Dickinson). In accordance with the national HIV treatment guidelines implemented during

the study period, patients were recommended to start ART upon reaching a CD4 count

less than 200 cells/mm3 or WHO stage 3 or 4 symptoms (DOH, 2010). For the purposes

of this particular application, 114 patients who had not returned for a subsequent CD4

count measurement after enrolment or who were not confirmed ARV näıve at study entry

were excluded from the analysis, resulting in a cohort of 336 patients. The median CD4

count at enrollment was 357 (Inter-quartile range: 259-509) cells/mm3 and the mean

viral load was 4.7 log copies/ml. The overall mean age at enrolment was 33 years and

80% of the patients were female. A variance stabilizing square root transformation was

applied to the CD4 count responses. The observed CD4 count trajectories for 8 selected

patients is presented in Figure 2.2.

Figure 2.2: Sinikithemba CD4 Study: Longitudinal CD4 count measurements for 8 subjects on

the square root scale.

2.1.3 ACTG 315 Trial

The ACTG 315 study, conducted by the Aids Clinical Trials Group (ACTG) was designed

to evaluate the treatment combination of ritonavir, 3TC and AZT (Wu, 1999). A total of
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53 HIV positive patients were treated with the regimen. Viral load was measured on days

0, 2, 7, 10, 14, 21, and 28, and weeks 8, 12, 24, and 48 after initiation of the treatment.

The Nucleic Acid Sequence-Based Amplification assay (NASBA) was used to quantify

viral load and was subject to a lower detection limit of 100 copies/ml. The viral load

trajectories on the log scale for 10 randomly selected patients is presented in Figure 2.3.

For exploratory purposes, viral load measurements less than 100 copies/ml were imputed

by half the limit of detection i.e. 50 copies/ml≈1.70 log copies/ml. It is clear that the

response to treatment is biphasic or possibly triphasic, with the most rapid decline in viral

load occurring within the first 14 days of treatment.

Figure 2.3: ACTG 315 Study: Longitudinal viral load measurements for 10 randomly selected

patients.

2.2 Abdominal Aortic Aneursyms

2.2.1 Background

An abdominal aortic aneurysm (AAA) is an enlarged area in the lower part of the aorta,

which is the vessel that supplies blood to the body, such that the diameter of the aorta is
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greater than 30 mm or more than 50% larger than a normal diameter. As the size of the

aneurysm increases, so too does the risk of aortic rupture. Since the aorta is the body’s

key supplier of blood, a ruptured abdominal aortic aneurysm can cause life-threatening

bleeding. In abdominal aortic aneurysm (AAA) screening studies, surgery is recommended

to patients when the diameter of the aneurysm exceeds 55 mm (Sweeting and Thompson,

2012). The factors that are known to have an effect on AAA diameter include age,

smoking status, gender, and weight.

2.2.2 AAA Screening Study

In 2006, Maastricht University Medical Center (MUMC) started a follow-up study in

patients with an abdominal aortic aneurysms. Between January 2006 and January 2009,

all patients admitted with AAA to the department of Vascular Surgery of the MUMC

were invited to participate in the study. Patients that had an aneursym exceeding 55 mm

or symptoms of imminent AAA rupture and patients with either an inflammatory or a

mycotic aneurysm were excluded from the follow-up study. Patients with an aneurysm

diameter between 30 and 55 mm (n = 110) were invited to participate in an imaging

surveillance program. A total of 100 patients formally entered the follow-up program, and

were seen every six months.The median age of patients was 71 years (Interquartile range

65-77) and 80% of the patients were male. Using the CDC classification patients were

classified as being normal weight, overweight or obese based on their BMI (body mass

index). This resulted in a total of 31, 49 and 20 patients in the categories normal weight,

overweight and obese, respectively. The AAA diameter profiles for a random sample of

patients are presented in Figure 2.4.

2.3 Schizophrenia

2.3.1 Background

Schizophrenia is a severe mental disorder characterized by abnormal social behavior and

affects more than 21 million people worldwide. The disease is characterized by distortions

in thinking, perception, emotions, language, sense of self and behaviour. In schizophrenia
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Figure 2.4: AAA Study: Longitudinal abdominal aneursysm measurements.

and other mental disorders, the Positive and Negative Syndrome Scale (PANSS), the Brief

Psychiatric Rating Scale (BPRS) and the Clinical Global Impression (CGI) are often used

as a marker of the patient’s condition. For the purposes of this thesis we focus on the

CGI score. The CGI-S is the component of the CGI scale that measures severity ranging

from 1(not at all ill) to 7(extremely ill).

2.3.2 Schizophrenia clinical trial

A multicentre double-blind trial was conducted to evaluate the efficacy of the drug Risperi-

done compared to Haloperidol in treating patients with chronic schizophrenia. A total of

1632 patients were randomly assigned to risperidone 1, 4, 8, 12 or 16 mg or haloperidol

10 mg daily for 8 weeks (Peuskens, 1995). We restrict our analysis to the patients who

received haloperidol 10 mg or risperidone in doses ranging from 4 to 6 mg, as this is known

to be the effective dose in most countries. This resulted in a total of 453 patients being

included. PANSS, BPRS and CGI-S measurements were taken at baseline and 1, 2, 4, 6
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and 8 weeks post randomization. The median CGI-S score at baseline was 5 (Interquartile

range 4-6). The CGI-S scores for a random sample of patients are presented in Figure

2.5.

Figure 2.5: Schizophrenia trial: Longitudinal CGI-S measurements.



Chapter 3
Longitudinal Data Analysis

In Chapter 2 we introduced four studies, all of which were longitudinal i.e. there were

repeated measurements taken on each individual. The exploratory analysis presented

illustrated that patients tend to display different evolutions, and that observations within

an individual tend to be correlated with fluctuation present. These artifacts can be formally

defined as between-subject variability and within-subject variability, respectively. To ensure

that valid inference is drawn it is crucial that all sources of variability are taken into

account. Mixed effects models have been widely applied in the longitudinal data setting,

and form a key ‘building block’ in the methodology that follows in Chapters 4 to 7. In

Section 3.1 we discuss linear mixed models and Section 3.2 we discuss generalized linear

mixed models for categorical data. Naturally, an issue that arises in follow-up studies is

that patients may have incomplete data possibility due to dropout. In Section 3.3 we

briefly discuss models for incomplete data.

3.1 Linear Mixed Models

Letting Yij denote the outcome observed on individual i at time point j, i = 1, . . . , N,

and j = 1, . . . , ni , and letting Yi denote the vector of all measurements for subject i,

15
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such that Yi = (Yi1, Yi2, . . . , Yini
) the general form of the linear mixed model is:

Yi = Xiβ + Zibi + εi, (3.1)

bi ∼ N(0, D).

The within-patient variation εi can be expressed as a sum of measurement error and serial

variation, which will be denoted by εi(1) and εi(2), respectively.

εi(1) ∼ N(0, σ2Ini
),

εi(2) ∼ N(0, τ2Hi),

where b1, . . . , bN , ε1(1), . . . , εN(1), ε1(2), . . . , εN(2) are independent (Verbeke and Molen-

berghs, 2009). β and bi represent the fixed and random effects respectively. The (j, k)th

element of Hi is ρ(|tij− tik|), which is the correlation between εij(2) and εik(2). It follows

that

Yi|bi ∼ N(Xiβ + Zibi,Σi = σ2Ini
+ τ2Hi). (3.2)

The marginal distribution is obtained by integrating over the random effects f(yi) =∫
f(yi|bi)f(bi)dbi, with f(yi|bi) the density function of Yi conditional on bi, and f(bi)

the density function of bi. As a result the marginal distribution of Yi is given by the

density of the ni-dimensional normal distribution N(Xiβ, ZiDZ
′

i + Σi).

When Σi = σ2Ini the model specified in (3.2) is called the conditional independence

model, since it implies that conditional on the random effects bi the measurements on

individual i are independent. The parameters that form Vi = ZiDZ
′

i + Σi are often

grouped in a vector α of variance-covariance parameters, such that θ
′

= (β
′
,α
′
) denotes

the vector of all parameters in the marginal model for Yi. The following marginal likelihood

function then needs to be maximized with respect to θ:

L(θ) =

N∏
i=1

(2π)−
ni
2 |Vi(α)|− 1

2 × exp[−1

2
(Yi −Xiβ)

′
V −1i (α)(Yi −Xiβ)].

When subject-specific prediction is of key interest, estimates for the random effects bi are

required. In Bayesian terminology, the distribution of bi is called the prior distribution

since it does not depend on the observed data Yi. The posterior distribution of bi, given
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the data Yi is given by

f(bi|yi) ≡ f(bi|Yi = yi) =
f(yi|bi)f(bi)∫
f(yi|bi)f(bi)dbi

.

A point estimator for bi is given by the posterior mean of this posterior density function:

b̂i(θ) = E[bi|Yi = yi]

=

∫
bif(bi|yi)dbi

= DZ
′

iV
−1
i (α)(Yi −Xiβ).

The empirical Bayes (EB) estimates (b̂i) are obtained by replacing the parameters in θ by

their maximum likelihood estimates. Further details on exploratory analysis for longitudinal

data, model building strategies and types of covariance structures can be found in Verbeke

and Molenberghs (2009) and Diggle (2013).

3.2 Generalized Linear Mixed Models

A key difference between LMMs and GLMMs is that in GLMMs the response variables

can come from distributions other than the Gaussian distribution. In addition, rather than

modeling the responses directly, a link function is often applied. Generalized linear mixed

models (GLMMs) are widely applied in the analysis of longitudinal categorical data. Using

the notation as introduced in the previous section, it is assumed that conditional on the

random effects, the elements of Yi are independent and belong to the exponential family

density

fi(yij |bi, φ) == exp{φ−1[yijθij − ψ(θij)] + c(yij , φ)}.

It follows that E(Yij |bi) = µij = η−1(x
′

ijβ+z
′

ijbi) where η(.) is a known link function.In

this formulation xij and zij are vectors containing covariate values, φ represents a scale

parameter and θij the natural or canonical parameter(Molenberghs and Verbeke, 2005).

As described for the LMM setting in Section 3.1, inference is based on the marginal model

for Yi which is obtained from integrating out the random effects. The likelihood can be
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expressed as

L(β, D, φ) =

N∏
i=1

f(yi|bi, D, φ)

=

N∏
i=1

∫ ni∏
j=1

f(yij |bi, D, φ)f(bi|D)dbi.

However, in contrast to the LMM setting, in the GLMM setting no analytic expressions

are available for the likelihood and numerical approximations are needed. Further details

regarding numerical approximation methods can be found in Molenberghs and Verbeke

(2005). In this thesis we have a specific interest in models for ordinal data and therefore

direct our attention to mixed models for ordinal outcomes for the remainder of the chapter.

Proportional odds models are commonly used to analyze ordinal data. The proportional

odds model expresses the ordinal responses in C categories in terms of C − 1 cumulative

category comparisons, specifically, C − 1 cumulative logits (i.e., log odds). The random

effects proportional odds model takes the form

logit[P (Yij ≤ k|Xi, Zi, bi)] = αc + x
′

ijβ + z
′

ijbi, (3.3)

where αc is the cutpoint-specific intercept and c = 1, 2, . . . , C − 1. Other models for

ordinal data include continuation ratio models and the multigroup logistic model.

3.3 Models for Incomplete Longitudinal Data

Allowing for the possibility of missing data, the full data Yi vector can be partitioned into

the observed (Y0i ) and missing (Ymi ) components, and the dropout indicator Di for the

occasion at which dropout occurs can be defined. The full-data density is then expressed

as

f(yi,di|θ,ψ), (3.4)

where θ and ψ are parameter vectors associated with the measurement process and the

missingness process, respectively. By factorizing this full data density, different modeling

frameworks for incomplete longitudinal data emerge. This results in selection, pattern-

mixture and shared-parameter models. The selection model framework is based on the
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factorization

f(yi,di|θ,ψ) = f(yi|θ)f(di|yi,ψ). (3.5)

In contrast, pattern-mixture models are based on the reverse factorization of the full-data

density:

f(yi,di|θ,ψ) = f(yi|di,θ)f(di|ψ). (3.6)

The pattern-mixture model, proposed by Little (1993) specifies a different measurement

model for each pattern of missing values, and the full-data density is obtained as the

mixture of the models weighted by the probability of each missing value pattern. Shared-

parameter models (Wu and Caroll, 1988) assume the existence of latent (unobserved)

variables, that are shared between both components of the full-data density. In this

setting conditional independence is often assumed, i.e., the measurement process and

missingness process are independent conditional on the latent variable.

A non-response process is said to be missing completely at random (MCAR) if missing-

ness is independent of both unobserved and observed data and missing at random (MAR)

if, conditional on the observed data, missingness is independent of the unobserved mea-

surements. A process that is neither MCAR nor MAR is termed non-random (MNAR).

When missingness is MAR and when θ and ψ are functionally distinct, the missing data

mechanism is said to be ignorable because it does not have to be modeled in order to

draw inferences about θ .

Multiple imputation (MI), which was formally introduced by Rubin (1978), is another

approach to handling missing data. In MI each missing value is replaced by a list of M

plausible values, generated by an imputation model which is estimated based on observed

data. Each imputed dataset is then analyzed separately using an analysis model, and

results are combined into a single measure using Rubin’s rules.
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Chapter 4
Estimation of the Time to Two

Consecutive Measurements Less

Than a Threshold

4.1 Introduction

Biomarkers play a key role in medical research, guiding diagnosis and when the physician

should intervene. However, several biomarkers are subject to a high degree of measurement

error and fluctuation, which raises concerns about the validity of the usage of a single

value to guide decisions. Studies have found that the diagnostic accuracy of consecutive

biomarkers performed better than the usage of a single elevated value. Due to the inherent

variability of HIV biomarkers, some authors have defined the endpoint in studies using

persistence criteria i.e., true decline has occurred when two consecutive measurements

below (or above) the threshold of interest are observed (Amornkul et al., 2013; Zhang,

2015). The application of persistence criteria to define true progression or recovery is

not limited to the field of HIV. In diabetes screening, diagnosis is only confirmed when

a second HbA1c measurement exceeding 6.5% is observed (NIH, 2014). Similarly, in the

field of prostate cancer, the diagnosis of treatment failure after radical prostatectomy is

23
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Less Than a Threshold

defined by two consecutive measurements of prostate-specific antigen (PSA) greater than

0.20 ng/ml (Heidenreich et al., 2014).

In Section 4.2 we review the standard and model-based methods that are currently used

to estimate time to threshold and briefly discuss the shortcomings of these approaches. In

Section 4.3 we introduce a novel approach to estimate the time to reach two consecutive

measurements less than (or greater than) a threshold. This approach, which was motivated

by time to threshold modelling in the HIV setting, is applied in Section 4.4.1 to the

Sinikithemba HIV cohort study. We also apply the methodology to the AAA study in

Section 4.5, and discuss prediction based on baseline covariates.

4.2 Brief Review of Time to Threshold Modeling

4.2.1 Standard Approach to Time to Threshold Modeling

The time taken for a biomarker to reach specific threshold has been analysed as an

outcome in several recent studies. The convention in such studies is to first extract

the time to the event, which is analysed in a second stage within the survival analysis

framework. Cardeal da Silva et al. (2013) analysed the time to first CD4 count less than

350 cells/mm3 as the primary outcome in their study, which compared the rate of HIV

progression pre and post the introduction of antiretroviral therapy (ART). Amornkul et al.

(2013) studied a cohort of recently infected individuals where the effect of HIV subtype

on HIV progression was examined. In this study, immunologic progression was defined

as time from seroconversion to the first of two consecutive CD4 cell counts less than or

equal to 350 cells/mm3. Imposing persistence criteria such as a ‘two consecutive’ rule is

an improvement on basing clinical decisions on a single CD4 count, but can be unreliable

when the time between visits is large. In addition, doubt arises in the classification of

patients who enter the study with a CD4 count already below the relevant threshold,

which is frequently observed in seroprevalent cohorts. Removing these patients from the

analysis results in left truncation and biased inferences.
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4.2.1.1 General Model-based Approaches

A criticism of the standard approach discussed above is that it ignores the inherent subject-

specific biomarker trajectory, and assumes that the event times are observed without error.

Model-based approaches to the time to threshold of a biomarker have recently emerged.

One such approach is inverse estimation or calibration. Sweeting and Thompson (2012)

examined the time for subjects enrolled in the ’Multicentre aneurysm screening study’

to reach an aneurysm diameter of 55 mm. The researchers used the method of inverse

estimation in linear and quadratic subject-specific curves from a Bayesian hierarchical

model. A limitation of the inverse prediction approach is that complex functions of time

cannot easily be included.

In cases where the interest lies in modeling the time to threshold of an ordinal variable,

continuous time Markov models have proven to be useful. This involves forming a distinct

set of states and computing the mean first hitting time to a particular state. Mandel (2010)

added to this methodology by studying the first hitting time to a state followed by a fixed

duration of stay in the state. This was applied to a study on multiple sclerosis where

sustained progression based on a disability scale was of interest. When the outcome

of interest is a continuous biomarker, the construction of discrete states is somewhat

arbitrary. Furthermore, due to the high degree of variability of the biomarker, reverse

transitions and transitions that skip intermediate states are often observed (Reddy et al.,

2011).

4.3 Methodology

In this section we propose an approach to time to threshold modelling that involves two

stages. In the first stage, a linear mixed model is fitted to the longitudinal measurements,

resulting in patient-specific predicted values that are a function of the fixed-effects and

empirical Bayes estimates. In the second stage, the probability of experiencing two con-

secutive measurements less than a relevant threshold k at each time point is computed

and substituted into the expression for the expected time to threshold.
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4.3.1 Expected Time to Attain a Threshold with Persistence Cri-

teria

For readability, we will refer to the attainment of two consecutive measurements less than

the threshold, as the event of interest. In the approach we propose, we consider the

individual ‘at risk’ for the event both prior to and post enrolment. Letting Yij denote the

outcome observed on individual i at time point j , the time to event Ti can be expressed

as:

Ti = min{j ≥ 2 : Yij−1 ≤ k, Yij ≤ k}. (4.1)

It follows that the expected time for individual i to attain two consecutive measurements

less than the threshold k can be expressed as follows:

E(Ti) = ti2P (Yi1 ≤ k, Yi2 ≤ k)

+ti3P (Yi1 > k, Yi2 ≤ k, Yi3 ≤ k)

+ti4

 P (Yi1 > k, Yi2 > k, Yi3 ≤ k, Yi4 ≤ k)

+P (Yi1 ≤ k, Yi2 > k, Yi3 ≤ k, Yi4 ≤ k)


+ . . .

=

∞∑
j=2

tijSij , (4.2)

where tij represents the time corresponding to the jth visit for individual i, and Sij

denotes the probability of individual i experiencing the event, or ‘stopping’, at tij . In

practice the infinite series may be truncated at a time point considered relevant to the

specific application at hand. Possible options for the time at which the series is truncated

are the expected lifetime of an individual, or the end of the incubation period of a particular

disease. We specify a linear mixed model, which satisfies

Y i = Xiβ + Zibi + εi, (4.3)

bi ∼ N(0, D),

εi ∼ N(0,Σi),
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where b1, . . . , bN , εi, . . . , εN are independent. β and bi represent the fixed and random

effects, respectively (Verbeke and Molenberghs, 2009). It follows that

Y i|bi ∼ N(Xiβ + Zibi,Σi).

As presented in (4.2), Sij is the sum of several joint probabilities, each of which represents

a distinct combination of the values of Yij that may yield the event at time point j.

Assuming conditional independence in (4.3) such that Σi = σ2Ini , the joint probabilities

that form Sij reduce to the product of the individual probabilities. Hence, Sij may be

simplified as follows:

Sij(Xi, Zi, bi,β) = Cij−3P (Yij−2 > k)P (Yij−1 ≤ k)P (Yij ≤ k)

= Cij−3[1− Φ̃ij−2(k)][Φ̃ij−1(k)][Φ̃ij(k)],

where Cij−3 denotes the ‘continuation probability’ at time tij−3 and Φ̃ij(k) is a cumulative

normal distribution with mean x′ijβ + z′ijbi and variance σ2. It follows that Φ̃ij(k) can

be expressed as a simple function of the standard univariate normal distribution:

Φ̃ij(k) = Φ

(
k − x′ijβ − z′ijbi

σ

)
. (4.4)

Therefore, the estimated individual probability Φ̃ij(k) is a function of the fixed-effects

estimates, empirical Bayes estimates, and measurement error. For a model with a strictly

decreasing trend in tij , at a fixed threshold k, one would expect the probability in (4.4)

to decrease with increasing j.

The continuation probability Cij can also be interpreted in the survival analysis frame-

work as the probability of individual i being at risk for the event after time tij . That is,

the probability that individual i has not experienced two consecutive low measurements

at, or prior to time point j. It should be evident that as j increases the computation

of Cij will become increasingly complex due to the number of combinations considered.

Careful examination of the pattern governing the number of combinations that result in

continuation at each time point, revealed the recursive relationship

Cij = Cj−2[1− Φij−1(k)][Φij(k)] + Cj−1[1− Φij(k)]. (4.5)

Further details regarding the proof of (4.5) and its computation can be found in Appendix

A.
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4.3.2 Estimation of Time to the First Measurement Less Than a

Threshold of Interest

For processes that have a relatively ‘smooth’ evolution or where treatment guidelines are

based on a single measurement, estimation of the time to reach a single measurement

below a threshold may be of interest. Here the time to event Ti can be expressed as:

Ti = min{j ≥ 1 : Yij ≤ k}. (4.6)

It follows that the expected time for individual i to attain a single measurement less than

the threshold k can be expressed as follows

E(Ti) = ti1P (Yi1 ≤ k) + ti2P (Yi1 > k, Yi2 ≤ k) + ti3P (Yi1 > k, Yi2 > k, Yi3 ≤ k)

+ti4P (Yi1 > k, Yi2 > k, Yi3 > k, Yi4 ≤ k)

+ . . .

=

∞∑
j=1

tijSij (4.7)

The computation in this setting is considerably simpler since there is only one possible

combination of events that may lead to the event at time tij . In the case of conditional

independence, Sij will simply be the product of cumulative univariate normal probabilities.

4.3.3 Estimation and Inference

It follows from Section 4.3.1 that E(Ti) is a function of the parameters β, bi, and

σ. Hence T̂i, the estimate of E(Ti), can be computed by substituting each unknown

parameter by its corresponding estimate. Further details on inference for fixed effects and

empirical Bayes prediction of the random effects in a linear mixed model can be found in

Verbeke and Molenberghs (2009). In principle, the Delta method may be used to compute

standard errors and 95% confidence intervals for T̂i. However, the bootstrap offers a more

feasible alternative. We propose a conditional version of the non-parametric bootstrap to

compute 95% confidence intervals for T̂i as follows:

Step 1. Individual i is removed from the full dataset resulting in N − 1 cases

Step 2. Sample N − 1 subjects with replacement from the dataset in Step 1
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Step 3. Append the data of individual i to the bootstrap sample

Step 4. Compute T̂i

This process is repeated 1000 times. The computation of T̂i, and the bootstrap confidence

interval can be achieved with relatively basic programming. The program to estimate

T̂i, incorporating the recursive formula for continuation probabilities, can be found in

Appendix A.2.

4.4 Application: Sinikithemba HIV Cohort Study

The time to CD4 threshold has been analysed as an outcome in several recent studies.

The convention in such studies is to first extract the time of the event, which is analysed

in a second stage within the survival analysis framework. Cardeal da Silva et al. (2013)

analysed the time to first CD4 count less than 350 cells/mm3 as the primary outcome in

their study, which compared the rate of HIV progression pre and post the introduction of

antiretroviral therapy (ART). Amornkul et al. (2013) studied a cohort of recently infected

individuals where the effect of HIV subtype on HIV progression was examined. In this

study, immunologic progression was defined as time from seroconversion to the first of

two consecutive CD4 cell counts less than or equal to 350 cells/mm3. In this section we

apply the methodology proposed in Section 4.3 to estimate the time for individuals to

reach two consecutive low CD4 counts. We considered two CD4 count thresholds of 200

and 350 cells/mm3.

4.4.1 Linear Mixed Model

To explore the relationship between baseline viral load and rate of CD4 decline, base-

line viral load (VL) was categorized into approximate tertiles as follows: VL ≤ 15, 000,

15, 000 < VL ≤ 100, 000, and VL > 100, 000 log copies/ml, which represent low, interme-

diate, and high viral load, respectively. In Figure 4.1 the fitted loess smooth curves clearly

depict that the CD4 count evolution is different between the viral load categories. There

were 92 (27%), 117 (35%), and 127 (38%) patients in the low, intermediate, and high

viral load categories, respectively. We applied the ‘General guidelines for model building’
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Figure 4.1: Sinikithemba CD4 Study: Trajectory of CD4 count in each viral load category

recommended in Verbeke and Molenberghs (2009), commencing with an elaborate mean

structure, which included age, gender, baseline viral load, and interaction terms as covari-

ates. Although the subject-specific plots and reduced AIC indicated that a quadratic or

cubic model may provide a better fit to the observed data than the linear model, these

models would result in implausible predicted trajectories outside of the observation pe-

riod. By comparing nested models using the likelihood ratio test, the inclusion of age and

gender did not significantly improve the model fit (p = 0.150). The reduced model was

of the form:

Yij =


β0,L + b0i + β1,Ltij + b1itij + εij if ‘low’ viral load,

β0,M + b0i + β1,M tij + b1itij + εij if ‘intermediate’ viral load,

β0,H + b0i + β1,Htij + b1itij + εij if ‘high’ viral load.

Since this is a seroprevalent cohort, the date of the last negative HIV test result is un-

known and hence the date of seroconversion cannot be estimated without the analysis

of additional patients with known dates of infection. For this particular analysis we have

examined two possible timescales: date of first contact as time zero and time on study,

which is expressed as the difference between the enrollment date and the date at which
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the study commenced (1 August 2003). As stated by Sweeting and Thompson (2012),

different timescales in hierarchical models can have a strong impact on the predicted ran-

dom effects due to the shrinkage effect. The REML estimates with standard errors for

each of the timescales are presented in Table 4.1. As expected, the model with the time

origin as 1 August 2003 resulted in a higher variance of the random intercepts. Through

comparison of the AIC and BIC for the two models it is clear that the model with time

since enrollment as the timescale provided a better fit to the data. All further analysis

was therefore conducted in this timescale, which also facilitates interpretation of the esti-

mated times as times relative to enrollment in the study. We found an overall significant

difference in intercepts and slopes between viral load categories (p < 0.0001 and 0.0053

respectively). Patients with high viral load displayed a significantly higher rate of decline

in CD4 count than patients with low viral load (p < 0.0001). More rapid decline in pa-

tients with high viral load compared to intermediate viral load was observed; this result

was not statistically significant (p = 0.115).

4.4.2 Expected Time to Threshold

We allow a 10-year window prior to enrollment where we consider an individual as having

the potential to have experienced the threshold. The rationale for this decision is based

on the estimated time from seroconversion to death in ART näıve patients which was

reported to be approximately 10 years in Sub-Saharan Africa (Van der Paal et al., 2007;

Todd et al., 2007). The discrete times that fall outside of the observation period were

created in accordance with the study design of three monthly visits. The series was

truncated at the visit at which the predicted CD4 count Ŷij dropped to zero. Similarly,

time ti1 was defined as the minimum time at which Ŷij < 1500 cells/mm3, which is

the upper limit of the CD4 count range for HIV infected individuals. We estimated the

time to obtain two consecutive measurements less than the threshold values 200 and

350 cells/mm3, respectively. For ease of presentation, we have chosen to draw attention

to the estimation for four specific patients (Figure 4.2). The estimated probabilities of

a single measurement being below the threshold are presented in Figure 4.3. Patient

A entered the study with a CD4 count substantially above the 200 and 350 cells/mm3
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Figure 4.2: Sinikithemba CD4 Study: Longitudinal CD4 count measurements with reference at

thresholds 200 and 350 cells/mm3.

(a) Probability of single CD4 count less

than 200 cells/mm3

(b) Probability of single CD4 count less

than 350 cells/mm3

Figure 4.3: Sinikithemba CD4 Study: Estimated probabilities of a single measurement being

below the relevant threshold.

thresholds and declined at a very slow rate. This is captured by the fitted probabilities

where the probability of Patient A obtaining a CD4 count less than 200 cells/mm3 is zero

throughout the period considered. The probability of Patient A experiencing a CD4 count

less than 350 cells/mm3 increases at five years. The estimated time to two consecutive



4.4. Application: Sinikithemba HIV Cohort Study 33

measurements less than the 200 and 350 cells/mm3 threshold is presented in Table 4.2.

Patient B, who entered the study with a CD4 count above the 350 cells/mm3 threshold,

exhibited a more rapid rate of CD4 count decline than Patient A. The estimated time

for Patient B to reach a threshold of 350 and 200 cells/mm3 was 2.3 and 4.3 years,

respectively. Patients C and D both entered the study with CD4 counts less than 350

but declined at different rates. This is captured by the predicted probabilities in Figure

4.3. Patient C was estimated to have reached the 200 cells/mm3 threshold 0.38 years

post enrollment, and the 350 threshold 3.26 years prior to enrollment. The confidence

intervals for the estimated times for patient C reveal that poorer precision is obtained

when analyzing individuals with few measurements. Caution should be exercised when

interpreting the estimated times for patients who start at a high CD4 count and exhibit

a very slow rate of decline. Probabilities of low CD4 count that are zero throughout the

period of observation do not pose a problem, but probabilities that increase to greater than

zero later in the period can result in estimated times which are sensitive to the frequency

and timing of unobserved measurements which are considered. This is discussed further

in Section 4.4.3.
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Table 4.1: Sinikithemba CD4 Study: Parameter estimates (standard errors) for the fitted models

on each timescale.

Effect Parameter Time-enrolment Time-calendar origin

Fixed effects estimates (s.e.)

Intercept β0,L 21.2405 (0.4708) 22.0000 (0.5513)

β0,M 19.4469 (0.4190) 20.6554 (0.4978)

β0,H 16.2821 (0.4057) 17.5021 (0.4909)

Time β1,L -0.5744 (0.1206) -0.5658 (0.1171)

β1,M -1.0160 (0.1137) -0.9454 (0.1102)

β1,H -1.3839 (0.1400) -1.1066 (0.1331)

Covariance parameter estimates (s.e.)

var(b0i) d11 19.5555 (1.6080) 25.5456(2.2716)

cov(b0i, b1i) d12 -0.4944 (0.3821) -2.1611 (0.4703)

var(b1i) d22 0.9941 (0.1421) 0.9438 (0.1303)

Measurement error σ2 3.1923 (0.0810) 3.2135 (0.0814)

Fit statistics

AIC 17185.3 17225.9

BIC 17200.5 17241.1

-2 REML log-likelihood 17177.3 17217.9
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Several possible analyses using the estimated times can be conducted. We have elected

to focus on the estimated probabilities and times themselves as they draw attention to

several current issues in the treatment and monitoring of HIV positive patients. There

were 30 individuals who had a zero probability of obtaining a single CD4 count less than

200 cells/mm3 throughout the period considered. These individuals are referred to as long

term non-progressors. This contributes additional evidence to the proposition that there

are individuals who, possibly due to genetics, are able to control the virus. In addition,

the estimated times draw attention to a serious public health concern, namely late pre-

sentation for HIV testing. Excluding the individuals who were long term non-progressors,

the percentiles of the estimated times were computed. 15% of these patients had already

attained a CD4 count less than 200 cells/mm3 more than six months prior to first pre-

sentation at the clinic. Hence, patients were choosing to have an HIV test when they

were already in the advanced stages of HIV. The ARV treatment guideline in effect during

the study recommended treatment initiation at a CD4 count less than 200 cells/mm3.

Therefore, an additional interpretation is that 15% of the patients deviated from the

recommended timing of treatment initiation by more than six months. After 2011, the

treatment initiation cutoff was raised to 350 cells/mm3. During our study period, we

found that 35% of patients had already attained two consecutive CD4 counts less than

350 cells/mm3 more than two years prior to enrollment. It is clear that, unless patients

present at the clinic earlier for testing, changing treatment guidelines may not have the

desired effect. It would be interesting to examine whether health seeking behaviour has

changed over time, by studying individuals who first presented at the clinic after 2011.

4.4.3 Sensitivity to Variation in Observation Frequency

In Section 4.4.2, we considered an individual to be at risk of experiencing a CD4 count

below the thresholds of interest, 10 years prior to and post enrolment, and generated

regular three monthly visits for the unobserved period. In this section, we assess the

sensitivity of the estimated time to threshold to truncation and the regularity and frequency

of visits by simulation.
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The following scenarios were considered:

Scenario 1. A period of 10 years prior to and post enrolment was considered, and visits

outside the observed period occurred at regular three monthly intervals.

Scenario 2. A period of 5 years prior to and post enrolment was considered. Visits outside

the observed period occurred at regular three monthly intervals.

Scenario 3. A period of 10 years prior to and post enrolment was considered and 10%

of visits outside the observation period occurred one month later than expected.

Scenario 4. A period of 10 years prior to and post enrolment was considered and 25%

of visits outside the observation period occurred one month later than expected.

Scenario 5. A period of 10 years prior to and post enrolment was considered and 10%

of visits outside the observation period were missed.

Scenario 6. A period of 10 years prior to and post enrolment was considered and 20%

of visits outside the observation period were missed.

Table 4.3: Sinikithemba CD4 Study-Sensitivity analysis: Estimated time to two consecutive

measurements less than 350 cells/mm3 under various scenarios.

Patient Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

A 3.1552 0.0050 3.0734 3.1271 3.0219 2.5941

B 2.3046 2.3046 2.2926 2.2926 2.2926 2.2926

C -3.2608 -3.2056 -3.2056 -3.2073 -3.2119 -2.9572

D -0.2043 -0.2043 -0.2030 -0.2097 -0.1432 0.0208

From Table 4.3, it is clear that the number of visits considered has an impact on the

estimated time to threshold for individuals who enter the study with a high CD4 count

and exhibit slow decline. Truncation of the series at 5 years results in an estimated time

to threshold of 0.005 years, whereas truncation at 10 years results in an estimated value

of 3.155 years for Patient A. Similarly, the number of visits considered outside the period
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of observation also has an effect for this type of patient. This is evident from the estimate

for Patient A under the assumption of 20% of visits being missed. We found that results

were far less sensitive for patients experiencing moderate to rapid decline in CD4 count.

As expected, in individuals who are likely to reach the threshold of interest during the

observed period, the estimated time is robust to truncation or variation in the time points

considered. In all patients studied, results were robust to variation in the timing of visits.

Hence, the estimated time to threshold is sensitive to the number of time points for

specific patients, but not to the actual values of those time points.

4.5 Application: Abdominal Aortic Aneurysm (AAA)

Study

In abdominal aortic aneurysm (AAA) screening studies, surgery is recommended to pa-

tients when the diameter of the aneurysm exceeds 55 mm (Sweeting and Thompson,

2012). Due to the high degree of within-patient variability in aortic diameter measure-

ments (Dapunt, 1994), it is of interest to examine the effect of applying persistence criteria

in this setting. Estimation of the expected time to threshold for each patient would enable

clinicians to identify patients who may be in need of surgery in the near future, and target

interventions accordingly. In this section we apply the proposed methodology to estimate

the time to reach AAA diameters exceeding 50 mm and 55 mm.

4.5.1 Linear Mixed Model

We examined the effect of various demographic and physiological factors on the aneurysm

diameter. We found that increasing age was associated with higher aneurysm diameter

at baseline. Baseline aneurysm diameters were also significantly higher in obese individ-

uals compared to normal and overweight individuals (p < 0.001). The patient’s weight

category at baseline had a significant effect on the rate of increase of the aneurysm di-

ameter. Following the guidelines for model building in Verbeke and Molenberghs (2009),

the final model, which provided the best fit to the data was a model with random slopes

and intercepts. The REML estimates with standard errors for the final model fitted are
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presented in Table 4.4.

4.5.2 Expected time to threshold

To facilitate prediction of future time to event for individuals who do not attain the

threshold of interest during the follow-up period, a maximum period of 15 years, where we

consider the individual to be ‘at risk’, was used. These discrete visits were equally spaced

at six monthly intervals, in accordance with the study design. An aneursym diameter

cutoff of 55 mm is of great importance since this is the time at which surgical intervention

is recommended. In this section, we also investigate the cutoff of 50 mm, which may prove

useful to guide patients and/or surgeons on earlier intervention if needed. 23% of patients

entered the study at an advanced stage with aneursym diameters exceeding 50 mm. In

order to back-calculate the time at which these individuals may have first reached a value

exceeding 50 mm, we created a five year period prior to enrolment. Patients dropped out

of the study at various points, either due to surgical intervention or for unknown reasons.

For the purposes of this analysis we assume ignorability and conduct likelihood-based

analysis.

The time taken for individuals to reach two consecutive aneurysm diameter measure-

ments greater than 50 mm, as well as the time to attain the first single measurement

greater than 55 mm are both of interest. The rationale behind the latter approach, is that

the recommendation of surgical intervention is currently based on a single measurement

exceeding the threshold. Table 4.5 presents the results for the estimated time to AAA

progression, defined as the time to two consecutive measurements exceeding 50 mm, and

the time to the first measurement exceeding 55 mm. Patient 1074, who was overweight,

entered the study with an aneursym diameter of 52 mm and exhibited a relatively flat

profile. The estimated time to attain the first diameter exceeding 55 mm is approximately

1 year, six months after the two consecutive measurements greater than 50 mm are ob-

served. Patient 1241, who had a BMI within the normal range, is expected to attain a

measurement greater than 55 mm more than a year after experiencing two consecutive

measurements exceeding 50 mm. The precision of the estimated times to threshold were

found to be less precise in individuals who had less than three follow-up measurements
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Figure 4.4: AAA Study: Longitudinal AAA measurements with reference at 50 mm and 55 mm

for selected patients.

after baseline. This is clear when examining the confidence intervals of the estimates for

Patient 1216, who exited the study after one year. The estimated probabilities of a mea-

surement exceeding 50 mm and 55 mm over the period considered is presented in Figure

4.5.
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Table 4.4: AAA Study: Parameter estimates (standard errors) for the fitted model , where NM,

OW and OB denote BMI categories normal, overweight and obese, respectively.

Effect Parameter Estimate

Fixed effects estimates (s.e.)

Age β0,age 0.2086 (0.0861)

Intercept β0,NM 27.7875 (6.3193)

β0,OW 27.4011 (6.1842)

β0,OB 30.0097 (6.0743)

Time β1,NM 2.0700 (0.3560)

β1,OW 2.5381 (0.3124)

β1,OB 2.2967 (0.5518)

Covariance parameter estimates (s.e.)

var(b0i) d11 41.3716 (6.1526)

cov(b0i, b1i) d12 4.0783 (1.6916)

var(b1i) d22 3.4379 (0.8078)

Measurement error σ2 1.9986 (0.1968)

Fit statistics

AIC 1915.4

BIC 1925.8

-2 REML log-likelihood 1907.4
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(a) Probability of single AAA diameter greater

than 50 cells/mm3

(b) Probability of single AAA diameter greater

than 55 cells/mm3

Figure 4.5: AAA Study: Estimated probabilities of a single measurement being above the relevant

threshold.

In light of the model results presented in Table 4.4, age and body mass index play

a crucial role in the trajectory of AAA diameter. In the following results, we focus on

the estimated time to surgery marginally for different values of age and BMI status.

Using the methods previously presented, and setting the random effects bi equal to zero

to represent a hypothetical ‘median’ patient, the estimated times to first AAA diameter

exceeding 55 mm was calculated (Table 4.6). It is clear that, at the same baseline age,

an obese individual will require surgery approximately 1.5 years earlier than an individual

of normal weight. It is also of interest that an individual ten years older than another

individual in the same weight category, will require surgery approximately one year earlier.

These findings are very useful to clinicians, as it enables them to quantify the effect

of obesity on AAA’s so that they may consequently encourage behavioural changes in

patients and plan follow-up visits earlier. Since the estimates produced in Table 4.6, are

based only on baseline covariate values and do not incorporate data on baseline or follow-

up aneurysm diameter, it is expected that confidence intervals will tend to be wider than

those presented previously, for subject-specific estimation.
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Table 4.6: AAA Study: Estimated time (years) to 55 mm for the hypothetical ‘median’ patient

at various ages and BMI categories.

Age Weight T̂i 95% CI

50 Normal 8.126 (5.277, 11.981)

50 Overweight 6.868 (4.815, 9.499)

50 Obese 6.405 (3.569, 11.283)

60 Normal 7.119 (4.906, 10.227)

60 Overweight 6.046 (4.46, 8.059)

60 Obese 5.497 (3.181, 10.501)

70 Normal 6.111 (4.495, 8.421)

70 Overweight 5.224 (4.005, 6.834)

70 Obese 4.589 (2.729, 8.513)

4.6 Discussion

In this chapter we have proposed and applied a novel approach to estimation of the time to

attain two consecutive measurements less than (or greater than) a relevant threshold. This

approach takes into account the estimated patient-specific trajectories and measurement

error. Through identification of a recursive relationship of the continuation probabilities at

each time point, we have displayed that the computation of the expected times is simple,

efficient, and can be implemented using existing software packages. The method we have

proposed can also accommodate complex functions of time, such as quadratic or cubic

terms, in contrast to the inverse estimation framework.

Sensitivity analysis revealed that the estimated times are sensitive to the number of

visits considered and the time at which the series is truncated, for patients who exhibit a

very slow decline. For other patients, however, we found that results were less sensitive
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to the number of visits considered and truncation. Hence, caution should be exercised

when interpreting the estimated times for patients who exhibit very slow rates of decline.

Another strong assumption that was made for the specific application presented, was that

visits prior to enrollment and post dropout occurred at regular, equally spaced time points.

In the sensitivity analysis conducted, we found that results were robust to deviation from

the regular observation times for all patients.

The proposed methodology rests on the assumption that the residual variability is pure

measurement error, which may be violated in certain settings. As discussed by Rizopoulos

(2012), extending a linear mixed model by including a more elaborate random effects

structure is computationally simpler to implement and can produce practically indistin-

guishable fits to the data when compared to a model that includes a serial correlation

term. However, in some cases, extensive knowledge of the true underlying process which

generates the data, may necessitate the inclusion of serial correlation in the model.





Chapter 5
Estimation of Time to

Threshold Taking Complex

Correlation Structures into

Account

5.1 Introduction

In Chapter 4 we proposed a method for estimation of the time to threshold in the presence

of persistence criteria, using a two-stage approach. This method, however, was confined

to situations where, conditional on random effects, the residuals are independent (i.e.,

the assumption of conditional independence). In some settings this assumption may be

unrealistically simplistic, and at least some part of an individual‘s profile is a response to

time-varying stochastic processes operating within that individual (Verbeke and Molen-

berghs, 2009). Furthermore, incorrectly modeling the covariance structure can impair

inference and estimation in the linear mixed model, as noted by Jacqmin-Gadda et al

(2007). In this chapter, we extend the methodology to accommodate serial correlation.

47
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The derivation of the methodology for time to threshold estimation is presented in Sec-

tion 5.2 and Appendix B. In Section 5.3 the extended methodology is applied to data

emanating from a cohort of HIV positive individuals in South Africa.

5.2 Methodology

5.2.1 Expected Time to Attain a Threshold with Persistence Cri-

teria

We return to the notation presented in Section 4.3 where the time to threshold is defined

as:

Ti = min{j ≥ 2 : Yij−1 ≤ k, Yij ≤ k},

and the expected time to threshold is expressed as the probability weighted sum of the

possible event times tij

E(Ti) = ti2P (Yi1 ≤ k, Yi2 ≤ k)

+ti3P (Yi1 > k, Yi2 ≤ k, Yi3 ≤ k)

+ti4

 P (Yi1 > k, Yi2 > k, Yi3 ≤ k, Yi4 ≤ k)

+P (Yi1 ≤ k, Yi2 > k, Yi3 ≤ k, Yi4 ≤ k)


+ . . .

=

∞∑
j=2

tijSij .

As described in Chapter 3 we specify a linear mixed model of the form

Y i = Xiβ + Zibi + εi1 + εi2

where εi(1) and εi(2) denote measurement error and serial variation, respectively. It follows

that:

Y i|bi ∼ N(Xiβ + Zibi, σ
2Ini + τ2Hi), (5.1)

where the (j, k)th element of Hi is ρ(|tij−tik|), which is the correlation between εij(2) and

εik(2). Assuming that the Markov property holds, and using the chain rule of probabilities,



5.2. Methodology 49

the joint probabilities that form Sij reduce to the product of conditional probabilities.

Hence, Sij may be simplified as follows:

Sij |Xi, Zi, bi,β = Cij−3,0

 P (Yij−2 > k|Yij−3 > k)P (Yij−1 ≤ k|Yij−2 > k)

×P (Yij ≤ k|Yij−1 ≤ k)


+Cij−3,1

P (Yij−2 > k|Yij−3 ≤ k)P (Yij−1 ≤ k|Yij−2 > k)

× P (Yij ≤ k|Yij−1 ≤ k)


=

 Cij−3,0P (Yij−2 > k|Yij−3 > k)

+Cij−3,1P (Yij−2 > k|Yij−3 ≤ k)


×P (Yij−1 ≤ k|Yij−2 > k)P (Yij ≤ k|Yij−1 ≤ k), (5.2)

where Cij−3,0 + Cij−3,1 denotes the total ‘continuation probability’ at time tij−3, and

Cij−3,0 and Cij−3,1 denote continuation sequences ending with Yij−3 > k and Yij−3 ≤ k,

respectively. The continuation probability can also be interpreted in the survival analysis

framework as the probability of individual i being at risk for the event after time tij .

That is, the probability that individual i has not experienced two consecutive low (or

high) measurements at, or prior to time point j. It should be evident that as j increases

the computation of Cij,0 and Cij,1 will become increasingly complex due to the number

of combinations considered. Careful examination of the continuation sequences revealed

that fortunately the following recursive relationships exist:

Cij,0 = Cij−1,0P (Yij > k|Yij−1 > k) + Cij−1,1P (Yij−1 > k|Yij−1 ≤ k), (5.3)

Cij,1 = Cij−1,0P (Yij ≤ k|Yij−1 > k). (5.4)

Further details regarding the proof of (5.3) and (5.4) can be found in Appendix B.1.

Using Bayes’ theorem, each conditional probability that forms Sij can be expressed as a

function of bivariate and univariate normal probability densities such that

P (Yi` ≤ k|Yi`−1 > k) =
P (Yil ≤ k, Yi`−1 > k)

P (Yi`−1 > k)
.

Computation of the cumulative bivariate probabilities can be done by integration of the

bivariate normal probability density functions. Suppressing i for notational convenience,

and denoting the correlation between Y`−1 and Y` by ρ`−1,` the following expressions
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exist:

P (Y` ≤ k, Y`−1 ≤ k)

= Φ̃`−1,`(k, k; ρ`−1,`) (5.5)

=
1

2π
√

1− ρ2`−1,`

∫ k

−∞

∫ k

−∞
exp

(
−
ỹ2`−1 − 2ρ`−1,`ỹ`−1ỹj + ỹ2`

2(1− ρ`−1,`)

)
dỹ`dỹ`−1

where ỹ` =
yi` − x′i`β − z′i`bi√

σ2 + τ2
and ỹ`−1 =

yi`−1 − x′i`−1β − z′i`−1bi√
σ2 + τ2

represent the stan-

dardized normal transformation of Yi` and Yi`−1 respectively. The three other combina-

tions of probabilities can be expressed as a function of (5.5) and the univariate cumulative

distribution of Y` and Y`−1 as follows:

P (Yi`−1 ≤ k, Yi` > k) = Φ̃`−1(k)− Φ̃`−1,`(k, k; ρ`−1,`),

P (Yi`−1 > k, Yi` ≤ k) = Φ̃`(k)− Φ̃`−1,`(k, k; ρ`−1,`),

P (Yi`−1 > k, Yi` > k) = 1− Φ̃`(k)− Φ̃`−1(k) + Φ̃`−1,`(k, k; ρ`−1,`).

5.2.2 Estimation and Inference

In certain settings the bootstrap sampling distribution may not be symmetric, raising

doubt regarding the validity of using percentiles of the distribution as the endpoints for

the confidence interval. As noted by previous authors, the coverage error can be substantial

if the distribution of the estimate is not symmetric (Carpenter and Bithell, 2000). In such

cases, the bias corrected and accelerated (BCa) method (Efron and Tibshirani, 1994),

which allows for the lack of symmetry and skewness to vary with changes in the parameter

value, offers a more fruitful alternative. Returning to the four steps for bootstrap sampling

that were discussed in Section 4.3.3, we follow the same process but for 5000 rather than

1000 iterations. The estimated bias parameter is computed from the resulting distribution.

The acceleration parameter, which is a function of the jackknife estimate, is computed

using case jacknife resampling where each individual is systematically omitted from the

dataset. The endpoints of the confidence intervals are then calculated using the bias

and acceleration parameters. Further details regarding the formula for calculating BCa

confidence intervals are presented in Appendix B.3. The SAS program to estimate T̂i and

can be found in Appendix B.2.



5.3. Application: Sinikithemba HIV Cohort Study 51

5.3 Application: Sinikithemba HIV Cohort Study

In this section we apply the extended methodology proposed in Section 5.2 to the

Sinikithemba cohort that was previously analyzed in Chapter 4 assuming that the within-

patient variability was purely measurement error and that residuals were uncorrelated. A

tool to describe the variance for an irregularly observed process, is the variogram (Diggle,

2013):

γ(u) =
1

2
E[(Y (t)− Y (t− u))2], u ≥ 0, (5.6)

which is estimated using the squared differences between residuals vijk = 1
2 (rij − rik)2

and the corresponding time difference or lag, uijk = tij − tik.The empirical variogram for

CD4 measurements is presented in Figure 5.1. From the variogram it is clear that the dom-

inating source of variance is the between-patient variability. There is also strong presence

of serial correlation, evidenced by the increase in v(u) with increasing lag. The behavior

of the variogram close to zero lag also indicates the presence of measurement error. To

ensure that valid estimation and inferences are drawn it is important to take all three

sources of variability into account, that is between-subject variability, serial correlation

and measurement error.

5.3.1 Linear Mixed Model

As recommended by Verbeke and Molenberghs (2009), several covariance functions were

compared using the fixed- and random-effects structure that were fitted to the dataset in

Section 4.4. According to information criteria, the structure which provided the best fit

was of the first-order autoregressive (AR(1)) type. We draw attention to the following

three models below:

Model 1. No serial correlation

Model 2. Common AR(1) correlation for all patients, measurement error

Model 3. Different AR(1) correlation for each viral load category, measurement error.

The number of covariance parameters and fit statistics for each of the models above is

presented in Table 5.1.
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Figure 5.1: Sinikithemba CD4 Study: Sample variogram of CD4 count residuals

Table 5.1: Sinikithemba CD4 Study: Fit Statistics for the three models fitted

fit statistic

Model #cov par -2logL AIC BIC

1 4 17194.948 17202.9 17218.2

2 6 17194.866 17206.9 17229.8

3 10 17143.852 17163.9 17202.0

Comparing nested models using the likelihood ratio test, the model which included a

viral-load-specific serial correlation component (Model 3) resulted in a significantly better

fit than Model 1 and Model 2. This is consistent with the findings of Boscardin et al.

(1998) and Diggle (2013) who studied the evolution of CD4 counts. As evidenced by the

AIC and BIC, a model with a viral-load-specific autoregressive serial correlation function

provided the best fit to the data. The REML estimates with standard errors for the model
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Table 5.2: Sinikithemba CD4 Study: Parameter estimates (standard errors) for Model 1 and

Model 3

Effect Parameter Model 1 Model 3

Fixed effects estimates (s.e.)

Intercept β0,L 21.2406 (0.4707) 21.2412 (0.4223)

β0,M 19.4453 (0.4189) 19.4392 (0.3755)

β0,H 16.2826 (0.4056) 16.3238 (0.4753)

Time β1,L -0.0481 (0.0100) -0.0481 (0.0094)

β1,M -0.0848 (0.0094) -0.0833 (0.0088)

β1,H -0.1157 (0.0116) -0.1137 (0.0137)

Covariance parameter estimates (s.e.)

var(b0i) d11 19.5442 (1.6072) 15.5415 (1.6287)

cov(b0i, b1i) d12 -0.0404 (0.03175) -0.0388 (0.0275)

var(b1i) d22 0.0068 (0.0009) 0.0059 (0.0009)

Measurement error σ2 3.1976 (0.0811) 2.0463 (0.2193)

Serial variation

Variance τ2L 1.2909 (0.2576)

τ2M 1.0778 (0.2532)

τ2H 12.0392 (3.9736)

Serial parameter ρL -0.0460 (0.3547)

ρM -0.0812 (0.2187)

ρH 0.9873 (0.0055)

with no serial component (Model 1) and the model with viral load specific autoregressive

serial correlation (Model 3) are presented in Table 5.2. We found an overall significant
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difference in intercepts and slopes between viral load categories (p < 0.0001 and 0.001,

respectively). In addition, patients with high viral load displayed a significantly higher rate

of decline in CD4 count than patients with low and intermediate viral load (p < 0.0001).

In the low and intermediate viral load groups, random intercepts contributed the most

to the overall variance, followed by serial correlation and measurement error. The high

viral load group contributed the highest variance of the serial correlation component, and

the serial correlation in between observations tends to decay at a slower rate compared to

those with medium or low viral loads. This is evidenced by the magnitude of the parameter

ρH .

5.3.2 Expected Time to Threshold

We estimated the time to obtain two consecutive measurements less than the threshold

350 cells/mm3. For ease of presentation, we have chosen to draw attention to the es-

timation for five specific patients (Figure 5.2), who entered the study at different CD4

count levels. In Figure 5.3, four estimated probabilities of interest, emanating from the

final model (Model 3), are presented for the selected patients.

Figure 5.2: Sinikithemba CD4 Study: Longitudinal CD4 count measurements with reference at

350 cells/mm3
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Examination of the bootstrap sampling distributions of the time to threshold, revealed

the presence of left skewness and outliers. This is in contrast to the bootstrap sampling

distribution which was calculated for the model with uncorrelated residuals. The distri-

butions for the expected time to threshold for individual B are presented in Figure 5.4.

In view of the non-normality of the bootstrap distribution for the model with AR(1) se-

Figure 5.4: Sinikithemba CD4 Study: Bootstrap sampling distribution of E(Ti) for the indepen-

dence and AR(1) models

rial correlation, bias corrected accelerated (BCa) confidence intervals were presented for

expected time to threshold emanating from these models. The estimated bias correction

(b) and acceleration (a) statistics for individual B, were 0.2106 and 0.0866, respectively.

As described in Efron and Tibshirani (1994), the endpoints of the BCa confidence interval

can be expressed as a function of these parameters. The resulting 95% BCa interval for

individual B was (19.5734, 20.5537). The estimated time to reach consecutive measure-

ments less than 350 cells/mm3 for all five selected individuals is presented in Table 5.3.

To examine the impact of incorrectly assuming that the residuals are independent, we

have presented the estimates for both the models that were presented in Table 5.2. It

is not unexpected that, after taking into account serial correlation, an individual may be

expected to reach the threshold of interest at an earlier time point. The median difference

in estimated times between the serial correlation and independence model was -14.3, 0.01



5.4. Discussion 57

and -0.09 months for the high, medium and low viral load groups, respectively. Hence,

in cases where strong serial correlation is present, ignoring this in the model fitting stage

can have a large impact on the estimated times to threshold.

Table 5.3: Sinikithemba CD4 Study: Estimated time to threshold for patients A, B, C, D and E

Conditional independence AR(1) serial correlation

Patient VL Baseline CD4 T̂i 95% CI T̂i 95% CI

A Low 649 39.6915 (39.1433, 40.1951) 39.4019 (38.8722, 40.2760)

B Medium 516 20.2437 (19.7295, 20.5117) 20.1297 (19.5734, 20.5537)

C Low 404 1.4861 (-5.3512, 5.1979) 0.4621 (-8.2944, 5.3382)

D High 254 -15.4749 (-22.2979, -11.0988) -31.3803 (-48.9055, -18.1455)

E Medium 292 -14.0174 (-25.6776, -8.5061) -15.7942 (-27.3032, -8.5299)

5.4 Discussion

In this Chapter, we extended the methodology so that correlated residuals can be accom-

modated. This adds to the flexibility of the approach, which was previously found to be

computationally efficient and robust to changes in observation times. In the application

of the extended methodology, it was revealed that the simple percentile confidence inter-

vals previously applied, no longer sufficed due to the skew distribution of expected times

to threshold. This added a degree of computational complexity in the form of jackknife

estimation, and a larger number of bootstrap replications required. It was observed that

erroneously ignoring the residual correlation when it is strong, may result in substantial

overestimation of the time to threshold. It is therefore crucial that careful consideration

is given to structure of the linear mixed model fitted in the first stage of our proposed

approach.





Chapter 6
Estimation of Time to

Threshold for Biomarkers with

Limits of Detection

6.1 Introduction

In Chapters 4 and 5 we presented a flexible framework for time to threshold estimation

where the biomarker of interest was a continuous, normally distributed variable. The

first stage of the approach involved the fitting of a linear mixed model. In the study of

biomarkers, particularly in the field of HIV, data can be subject to a lower or upper limit

of detection (LOD). A limit of detection can be formally defined as a certain threshold

value, below or above which the measurements are not quantifiable. In these cases the

crude approach is to impute the ‘undetectable’ value by half or exactly the limit of detec-

tion or to analyze the outcome on the binary scale by simply categorizing a measurement

as detectable or not detectable. Studies have shown that simple imputation of the limit

of the detection can bias parameter and standard error estimates (Rose, 2015). Ideally,

one should incorporate the partial information provided by the censored values, into the

likelihood function. In this chapter, we discuss estimation of parameters in random ef-

59
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fects models, taking into account censoring, and apply the methodology of Chapter 4 to

estimate times to threshold. The methodology is applied in Section 6.3 to the viral load

data from the ACTG 315 trial.

6.2 Methodology

In the presence of left censoring, the observed value of the response Yij can be written

as (Y ∗ij , Cij), where Y ∗ij is the observed value and Cij is the censoring indicator such that

Yij is observed if Cij = 0 and is left censored if Cij = 1. Hence

Yij

 = Y ∗ij if Cij = 0

≤ d if Cij = 1.

(6.1)

where d is the lower limit of detection of the assay. As defined previously f(yi|bi) denotes

the density function of a mixed effects model, given random effects bi, we assume that

conditional on the random effects, the observations Yi1, Yi2, . . . , Yini are independent then

we can define the likelihood for the observed data (Y i∗,Cj) as

L(θ) =

N∏
i=1

∫ 
ni∏
j=1

(f(yij |bi))1−Cij (F (d|bi))Cij

× f(bi)dbi. (6.2)

That is, conditioning of the random effects, an undetectable measurement contributes the

cumulative normal density,

F (d|bi) ≡ P (Yij < d|bi)

to the likelihood function. Unlike the likelihood for the standard linear mixed model

discussed in Section 3.1 the expression in (6.2) does not have a closed form expression

and numerical integration is necessary. After estimating the parameters for the model, the

same methodology that assumes conditional independence (Chapter 4) can be applied to

estimate the probabilities of interest and the expected time to threshold:

Sij(Xi, Zi, bi,β) = Cij−3P (Yij−2 > k)P (Yij−1 ≤ k)P (Yij ≤ k)

= Cij−3[1− Φ̃ij−2(k)][Φ̃ij−1(k)][Φ̃ij(k)],
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where Cij−3 denotes the ‘continuation probability’ at time tij−3 and Φ̃ij(k) is a cumulative

normal distribution with mean x′ijβ + z′ijbi and variance σ2. The recursive relationship

of continuation probabilities, derived in Appendix A also holds in this framework:

Cij = Cj−2[1− Φij−1(k)][Φij(k)] + Cj−1[1− Φij(k)].

6.3 Application: ACTG 315 Study

In this section, we apply the methodology presented above, in conjunction with the time to

threshold methodology discussed in Chapter 4, to estimate the time to treatment success

in HIV positive individuals on ARV therapy. We analyse the viral load data described in

Section 2.1.3 from the 46 patients in the ACTG 315 study. For the purpose of exploratory

analysis the censored observations were imputed by half the limit of detection (i.e. 1.69

on the log scale). The distribution of viral load response over time is depicted in Figure

6.1. Examining Figure 6.1 and the individual profiles of patients that were presented in

Section 2.1.3, it is clear that the most rapid decline in viral load occurs in the first two

weeks after initiation of treatment, after which the viral load continues to decay at a

slower rate until two months. Approximately two months after treatment initiation the

viral load remains relatively stable with a tendency to slightly increase. It is clear that the

conventional linear model with a single slope would not fit the empirical data at hand.

6.3.1 Mixed-effects model

We propose a piecewise linear mixed model with a different slope prior to, and after the

critical time points of 14 and 60 days post treatment initiation, such that

Yij =


β0 + b0i + β1tij + b1itij + εij if tij ≤ 14,

β0 + b0i + (β1 + β2)tij + (b1i + b2i)tij + εij if 14 < tij ≤ 60,

β0 + b0i + (β1 + β2 + β3)tij + (b1i + b2i + b3i)tij + εij if tij > 60.

To inform the decision regarding the random effects and covariance structure in the model

that incorporates left censoring into the likelihood, initial model building was performed

using the standard mixed model on the data with imputed values. The fit statistics for
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Figure 6.1: ACTG 315 Study: Viral load measurements over time with lowess smooth curve

four models with different random effects and residual correlation structure is presented

in Table 6.1. The timescale considered for modeling purposes was expressed as years post

ARV treatment initiation.

Model 1. Random effects b0i, b1i, b2i, b3i and uncorrelated residuals

Model 2. Random effects b0i, b2i, b3i and uncorrelated residuals

Model 3. Random effects b0i, b2i, b3i and AR(1) correlation structure

Model 4. Random effects b0i, b2i, b3i and compound symmetry correlation structure

A comparison of the fit statistics for Models 1 and 2 indicated that a the random effect

corresponding to the first slope was not necessary in the model. In Models 3 and 4

we incorporated correlation into the residuals, and compared the fit statistics to that of

Model 2. Using the likelihood ratio test, and comparing the BIC values it is clear that the

random effects parameters and the correlation structure of the random effects sufficiently

capture the correlation between responses. Using the likelihood presented in (6.2) and

fitting a model with the random effects structure of Model 2, the model parameters

were estimated. Adaptive Gaussian quadrature with 10 points was used to integrate over
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Table 6.1: ACTG 315 Study: Fit Statistics for the four models fitted

fit statistic

Model #cov par -2logL AIC BIC

1 11 545.5 567.5 587.6

2 7 551.8 565.8 578.6

3 8 549.4 565.4 580.8

4 8 551.8 567.8 582.5

random effects. The SAS NLMIXED code for fitting the model, as well as the code

for time to threshold estimation is presented in Appendix C. These results, as well as

those emanating from the mixed model with imputed values are presented in Table 6.2.

The magnitude of fixed effects estimates β1, β2 draw attention to the rapid response to

treatment in the first two weeks after treatment, and the subsequent rapid rebound of

viral load six weeks later. After 8 weeks on treatment the viral load exhibits a stabler trend

with a tendency to slightly increase. The highest variance was observed in the random

slope parameter (d44) that captures the trajectory after 8 weeks on treatment. Significant

negative correlation was observed between the two random slopes cov(b2i, b3i), confirming

that individuals who experience more stable viral loads between week 2 and 8 are more

likely to experience virological rebound after 8 weeks. We observe substantial differences

in covariance parameter estimates between the standard model with imputed values and

the model that incorporates censoring into the likelihood. This concurs with the results

from the simulation study conducted by Thiébaut (2004). Subject-specific prediction was

performed using the fixed-effects and random-effects estimates from the final model. The

observed and fitted profiles for 6 selected individuals are presented in Figure 6.2.

6.3.2 Expected Time to Threshold

In this section, we estimate the time to confirmed treatment success, defined as two con-

secutive viral load measurements less than 1000 copies/ml. The maximum duration of
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Figure 6.2: ACTG 315 Study: Observed and fitted profiles

follow-up in the ACTG 315 study was 6 months. To facilitate prediction of treatment suc-

cess that may have occurred after the six month period, we allow a maximum period of 15

months where we consider the individual to have the potential for treatment success. The

visits outside of the observation period were created at monthly intervals, in accordance

with the study design. For illustrative purposes the estimates are presented for same six

selected patients presented in Figure 6.2. Figure 6.3 depicts the observed profiles of these

patients, with reference line at 1000 copies/ml. Patient 1 entered the study with a viral

load load of 4.36 on the log scale, which declined for the duration of follow-up. Patient 3,

in contrast, entered the study with a high viral load of 4.8 and experienced a rapid decline

in the first month post treatment, but exhibited an increasing viral load thereafter, indica-

tive of treatment failure. A similar trend was observed for Patients 15 and 20. Patient

12, similar to patient 1, was able to maintain a low viral load for the period considered.

In Figure 6.4 we present predicted probability of single measurement being less than 1000

copies/ml. These predicted probabilities adequately capture the features of the observed

profiles. Patient 1, as expected, had the highest probability of reaching a low viral load

in the first month of treatment. Patient 12 had a high probability of experiencing a low
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Figure 6.3: ACTG 315 Study: Viral load profiles for six selected patients

viral load after approximately 4 months. Patient 15 had a zero probability of experiencing

a measurement less than 1000 throughout the period considered. The estimated time

Figure 6.4: ACTG 315 Study: Estimated probability of single viral load being less than 1000 log

copies/ml
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to confirmed treatment success, with 95% confidence intervals is presented for the six

patients in Table 6.3. Overall, the precision of the time to threshold estimates were high,

with narrow confidence observed in patients who had more than three months of follow-

up. The confidence interval for T̂i for Patient 25, who was under follow-up until day 84

and contributed 6 viral load measurements, is considerably wider. This is understandable,

considering the form of the model fitted, where a separate slope is fitted for the period

tij > 60 days. In the sensitivity analysis that was conducted in Section 4.4.3 we noted

that estimated times to threshold should not be interpreted in the absence of the pre-

dicted probabilities for individuals who exhibit a consistently ‘high’ flat profile. This is

observed for Patient 20 who maintained a high viral load for the duration of follow-up.

Although this individual had a probability less than 0.20 of reaching a threshold less than

1000 copies/ml for the entire period considered (Figure 6.4), the estimated threshold is

not exactly zero (T̂i=0.071). We therefore recommend that all estimated times less than

0.50 years be examined in conjunction with the predicted probabilities. The distribution

of the estimated time to confirmed treatment success is presented in Figure 6.5. Out of

the 46 patients, 5 patients were ‘treatment resistant’ and had predicted times to threshold

of 0 years. Approximately 80% of patients were expected to have experienced treatment

success before 3 months.

Figure 6.5: ACTG 315 Study: Distribution of estimated time to confirmed treatment success
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Table 6.2: ACTG 315 Study: Parameter estimates (standard errors) for the standard model with

imputed values and direct likelihood model

Effect Parameter Likelihood with imputed values Direct likelihood

Fixed effects estimates (s.e.)

Intercept β0 5.073 (0.087) 5.071 (0.085)

Time (years) β1 -47.065 (1.517) -46.773 (1.478)

β2 42.5615 (1.943) 41.709 (1.99)

β3 6.491 (1.558) 5.157 (2.124)

Covariance parameter estimates (s.e.)

Measurement error σ2 0.106 (0.010) 0.099 (0.010)

var(b0i) d11 0.283 (0.064) 0.525 (0.059)

var(b2i) d33 28.017 (7.361) 5.997 (0.861)

var(b3i) d44 75.516 (23.810) 10.882 (2.144)

cov(b0i, b2i) d13 -0.698 (0.494) -0.407 (0.583)

cov(b0i, b3i) d14 1.105 (0.873) 1.006 (1.267)

cov(b2i, b3i) d34 -37.216 (12.096) -39.989 (16.878)

Fit statistics

-2 REML log-likelihood 551.8 507.9

AIC 565.8 529.9

BIC 578.6 550



68 Chapter 6. Estimation of Time to Threshold for Biomarkers with Limits of Detection

Table 6.3: ACTG 315 Study: Estimated time to threshold for the six selected patients

Patient Baseline viral load T̂i 95% CI

1 4.362 1.309 (1.207, 1.413)

3 4.771 1.474 (1.251, 1.675)

12 5.785 4.516 (4.268, 4.628)

15 5.255 7.95× 10−8 (2.57× 10−9, 1.46× 10−5)

20 5.447 0.071 (0.031,0.118)

25 5.204 2.624 (0.974, 4.571)
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6.4 Discussion

In this Chapter, we discussed parameter estimation in a mixed model for a continuous

biomarker subject to left censoring. The previously proposed methodology of Chapter 4

was adapted and applied to the ACTG 315 study. Unlike the models with a single slope

that were sufficient for the AAA and Sinikithemba cohort study, the ACTG 315 study

warranted that a model with a more complex piecewise-linear structure, with three random

effects, was applied. We observed that even in this extended setting with censoring, our

methodology proved to be computationally efficient. A drawback of fitting the model

with separate slopes was that individuals who may have dropped out prematurely may not

have sufficient data after the last critical point to accurately predict time to threshold.

In this application we focused on estimating the time to confirmed treatment success.

Similarly, further analysis can be done to estimate the time to treatment failure as defined

by the WHO WHO (2015) as two consecutive viral loads exceeding 1000 after 3 months

on treatment. Unfortunately, the ACTG 315 study would not be suitable for this purpose

since the most intensive period of follow-up was in the first three months of treatment,

with 83% of the observations falling into that time frame.





Chapter 7
Estimation of Time to

Threshold for Ordinal

Biomarkers

7.1 Introduction

In the preceeding chapters, the methodology that was proposed was developed for the

analysis of a continuous biomarker. In the field of psychiatry, established scales are often

used to categorize a patient’s health status, and it is these scales that are often used as

the endpoints in clinical trials. Studies have found that applying a continuous model to

ordinal data can yield correlated residuals as the continuous model would not take into

account the ceiling and floor effects of an ordinal outcome. This can result in biased

estimates of coefficients. Secondly, for the purposes of time to threshold modeling, where

prediction is of key interest, a continuous model can yield predicted values outside of

the range of the ordinal variable. Hence, in order to accurately estimate the time to

threshold of an ordinal outcome it is crucial that a model for ordinal responses is fitted.

In Section 7.2 we extend the approach presented in Chapter 4 to handle ordinal outcomes

and propose new expressions for the functions Sij and Cij that were previously introduced.

71
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This methodology is applied to the data from the Schizophrenia trial in Section 7.3, where

time to threshold estimates and confidence intervals are presented for selected patients.

7.2 Methodology

7.2.1 Expected Time to Attain a Threshold with Persistence Cri-

teria

Letting Yij denote the ordinal response on individual i and timepoint j, and c = 1, 2, . . . , C

denote the response categories, the time to threshold can be expressed as:

Ti = min{j ≥ 2 : Yij−1 ≤ c, Yij ≤ c}. (7.1)

It follows that the expected time for individual i to attain two consecutive measurements

less than the threshold c can be expressed as follows:

E(Ti) = ti2P (Yi1 ≤ c, Yi2 ≤ c)

+ti3P (Yi1 > c, Yi2 ≤ c, Yi3 ≤ c)

+ti4

 P (Yi1 > c, Yi2 > c, Yi3 ≤ c, Yi4 ≤ c)

+P (Yi1 ≤ c, Yi2 > c, Yi3 ≤ c, Yi4 ≤ c)


+ . . .

=

∞∑
j=2

tijSij , (7.2)

Following the notation presented in Section 3.2, we specify a mixed-effects proportional

odds logistic regression model which satisfies

λij,c = logit[P (Yij ≤ c|Xi, Zi)]

= αc + x
′

ijβ + z
′

ijbi.

It follows that

P (Yij ≤ c|Xi, Zi, bi) =
1

1 + exp(−λij,c)
for C − 1 strictly increasing model thresholds αc. Since conditional independence is

assumed in the mixed effects ordinal regression, it follows that the relationships that were
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derived in Section 4.3 and Appendix A, hold true in this setting, the stopping probability

Sij , conditional on the fixed and random-effects, can be expressed as

Sij |Xi, Zi, bi,β) = Cij−3P (Yij−2 > c)P (Yij−1 ≤ c)P (Yij ≤ c)

= Cij−3

(
exp(−λij−2,c)

1 + exp(−λij−2,c)

)
×
(

1

1 + exp(−λij−1,c)

)(
1

1 + exp(−λij,c)

)
,

where Cij−3 denotes the ‘continuation probability’ at time tij−3. The continuation prob-

ability Cij can also be expressed as a function of it’s predesessors Cij−1 and Cij−2 such

that

Cij = Cij−2P (Yij−1 > c)P (Yij < c) + Cij−1P (Yij > c)

= Cij−2

(
exp(−λij−1,c)

1 + exp(−λij−1,c)

)(
1

1 + exp(−λij,c)

)
+Cij−1

(
exp(−λij,c)

1 + exp(−λij,c)

)

7.2.2 Estimation and Inference

It follows from Section 7.2 that E(Ti) is a function of the parameters β, bi, and αc. Hence

T̂i, the estimate of E(Ti), can be computed by substituting each unknown parameter by

its corresponding estimate. We again propose a conditional version of the non-parametric

bootstrap to compute 95% confidence intervals for T̂i as follows:

Step 1. Individual i is removed from the full dataset resulting in N − 1 cases

Step 2. Sample N − 1 subjects with replacement from the dataset in Step 1

Step 3. Append the data of individual i to the bootstrap sample

Step 4. Compute T̂i

This process is repeated 1000 times. The computation of T̂i, and the bootstrap confidence

interval can be achieved with relatively basic programming following the estimation of the

model parameters using PROC GLIMMIX or PROC NLMIXED. The program to estimate

T̂i, incorporating the recursive formula for continuation probabilities is the same as that

presented in Appendix A.2 with the exception of the first stage of model fitting.
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7.3 Application: Schizophrenia Trial

In Section 2.3.2 we discussed the CGI-S (Clinical Global Impressions Severity) scale which

is measured on a 7 point ordinal scale:

CGI-S =



1 Normal

2 Borderline ill

3 Mildly ill

4 Moderately ill

5 Markedly ill

6 Severely ill

7 Extremely ill

In a study conducted by (Dunayevich, 2006), remission was defined as consecutive Clinical

Global Impressions-Severity (CGI-S) scores ≤ 3. In this section we apply this definition of

remission to the Schizophrenia trial to gain insight into the time to remission of patients

in the study.

7.3.1 Mixed-effects Model

We considered a model of the form

logit[P (Yij ≤ c|Xi, Zi)] =

 αc + b0i + β1,Htij + b1itij if treated with Haloperidol,

αc + b0i + β1,Rtij + b1itij if treated with Risperidone.

The parameter estimates and fit statistics for the model with random intercept only (RI)

and random intercept and slope (RI, RS) are presented in Table 7.1. It is clear that

random intercepts contribute the highest variance but also that the model that includes

random slope provides a significantly better fit to the data. There was a significant effect

of treatment, with patients on Risperidone having a higher chance of experiencing lower

CGI-S scores over time, than patients on the active control Haloperidol.
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Table 7.1: Schizophrenia Trial: Parameter estimates (standard errors) for the random intercept

(RI) and the random intercept and random slope (RI,RS) mixed effects proportion odds model.

Effect Parameter Model with RI Model with RI and RS

Fixed effects estimates (s.e.)

Intercept α1 -10.955 (0.465) -11.579 (0.522)

α2 -6.913 (0.252) -7.242 (0.258)

α3 -3.833 (0.208) -3.682 (0.171)

α4 -0.301 (0.188) -0.076 (0.143)

α5 2.57 (0.201) 2.828 (0.168)

α6 8.138 (0.38) 10.359 (0.623)

Time β1,H 0.313 (0.023) 0.368 (0.046)

β1,R 0.350 (0.023) 0.412 (0.045)

Covariance parameter estimates (s.e.)

var(b0i) d11 12.539 (1.104) 5.934 (0.42)

cov(b0i, b1i) d12 0.170 (0.068)

var(b1i) d22 0.268 (0.049)

Fit statistics

-2 log-likelihood 5568.76 5492.17

AIC 5586.76 5514.17

BIC 5623.8 5559.44

7.3.2 Expected Time to Threshold

In the Schizophrenia trial patients were followed up for a maximum of 8 weeks. To allow

a window for estimation of times to thresholds that may be reached after 8 weeks, we

created additional visits up to a maximum of 20 weeks. We now, using the parameter
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estimates from the random intercepts and slope model, predict the probability of an

individual experiencing CGI-S≤ 3 at every time point. The longitudinal profiles for six

selected patients is presented in Figure 7.1. The predicted probabilities P (Yij ≤ 3),

for these selected patients are presented in Figure 7.2. We observed high precision in

Figure 7.1: Schizophrenia Trial: Longitudinal CGI-S measurements for selected patients.

Figure 7.2: Schizophrenia Trial: Estimated probabilities, P (Yij ≤ 3), for selected patients.

nearly all estimates, since 94% of patients in the study had at least three measurements
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recorded. The estimated time to two consecutive CGI-S≤ 3 is presented in Table 7.2. The

rapid decline in CGI-S observed for patient F is clearly captured by both the predicted

probabilities P (Yij ≤ 3) and the estimated time to remission of 3.16 weeks. Patient A,

who had a baseline CGI-S score of 4, is only expected to reach remission after 10 weeks.

We now draw attention to patient E who had a zero probability of reaching a low CGI-S

score for the entire period. Unlike in the three other datasets, this type of patient is not an

anomaly in the Schizophrenia trial. We observed that 114 of the total 453 patients were

expected to never reach remission. In Figure 7.3 we present the predicted probabilities for

Table 7.2: Schizophrenia Trial: Estimated time to threshold for six patients.

Patient Baseline CGI-S Treatment T̂i 95% CI

A 4 Risperidone 10.3456 (10.1283, 10.5934)

B 3 Haloperidol 2.4768 (2.2095, 2.7629)

C 5 Haloperidol 8.2966 (8.0889 8.5333)

D 6 Haloperidol 7.4633 (7.2484, 7.6866)

E 7 Risperidone 0.0005 (0.0001, 0.0025)

F 5 Risperidone 3.1601 (4.4503, 5.1372)

all these patients and the observed profiles for a selected group in Figure 7.4. For ease of

inspection the observed profile curves are presented on separate axes and not overlayed

on the same graph. This observation does raise doubt regarding the validity of using an

absolute cutoff value to determine remission in patients with schizophrenia, and suggests

that ‘change’ scores like the CGI-I, which measures relative improvement since baseline,

may be more appropriate.



78 Chapter 7. Estimation of Time to Threshold for Ordinal Biomarkers

Figure 7.3: Schizophrenia Trial: Estimated probabilities for ‘treatment resistant’ patients.

Figure 7.4: Schizophrenia Trial: Longitudinal CGI-S measurements for ‘treatment resistant’

patients.
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7.4 Discussion

In this chapter, we extended the methodology, that was developed for time to threshold

estimation for a continuous biomarker, so that time to threshold may also be estimated

for ordinal outcomes. Through the observation that the recursive relationships still hold

in this setting, a high degree of computational efficiency was once again achieved. The

methodology was applied to the Schizophrenia dataset and was able to draw attention

to the low rate of remission in the 8 week period that was observed. As further work

the same methodology can be applied to analyse the CGI-I (Clinical Global Impression

Improvement) scale, designating a value 2 (Much improved) as the endpoint of interest.

The model we fitted assumed that the proportional odds assumption holds, but it would

be possible to fit alternate models that relax this assumption. As a starting point separate

intercepts can be modelled for each treatment and implemented in PROC NLMIXED.





Chapter 8
Sensitivity Analysis: Missing

Data

8.1 Introduction

The methodology for time to threshold estimation that was proposed in Chapters 4, 5,

6, and 7, rely on the assumption that the missing data mechanism is ignorable. That

is, data were missing at random (MAR) and the parameters governing the missing data

mechanism were distinct from the parameters in the models that were estimated. The

MAR assumption implies that individuals who dropout would have similar outcomes to

individuals who continue in the study, given their observed data prior to dropout. To

explore the impact of deviations from the missing at random (MAR) assumption on the

estimated time to threshold, it is advisable to conduct a sensitivity analysis, within which

missing not at random (MNAR) models play a major role (Molenberghs and Kenward,

2007).

In this Chapter we return to the AAA data that were introduced in Section 2.2.2 and

analyzed in Chapter 4, and examine the effect of departures from the MAR assumption

on the estimated time to threshold.

81
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8.2 Methodology

A straightforward sensitivity analysis for the MAR assumption in multiple imputation is

based on the pattern-mixture model approach that was discussed in Section 3.3. Molen-

berghs and Kenward (2017) outline the sequence of steps for pattern-mixture-based mul-

tiple imputation as follows:

Step 1. Fit a model to the pattern t-specific identifiable densities: ft(y1, . . . , yt),

Step 2. Select an identification method of choice (ACMV, CCMV or NCMV),

Step 3. Using the identification method in Step 2, determine the conditional distributions

of the unobserved outcomes, given the observed outcomes:

ft(yt+1, . . . , yT |y1, . . . , yt).

Step 4. Using MI methodology, draw M multiple imputations for the unobserved out-

comes, given the observed outcomes and the correct pattern-specific density,

Step 5. Analyze each of the M multiply-imputed datasets using the method of choice,

Step 6. Conduct inferences using Rubin’s rules.

It is also possible to modify the models in Step 3 or imputations in specific, explicit

ways that capture MNAR features. This is formally defined as ‘controlled imputation’. A

common feature that all controlled imputation methods have is the ability to construct

MNAR models using components from an MAR model, with the possible addition of

fixed, sensitivity parameters (Kenward, 2015). In imputation with delta adjustment, after

dropout in a given pattern, subjects may be made to shift with an amount δ, relative to

the MAR-based prediction. Other available methods include tipping point analysis and

control-based imputation.
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Table 8.1: AAA study: Patterns of missing data for AAA diameter.

Visit

Pattern Baseline 6 months 12 months 18 months 24 months 30 months 36 months Total patients

1 X X X X X X X 7

2 X X X X X X 12

3 X X X X X 27

4 X X X X 7

5 X X X 21

6 X X 16

7 X 10

8.3 Sensitivity Analysis: AAA Study

8.3.1 Missing Data in the AAA Study

In the AAA study, where the maximum duration of follow-up was 3 years, only 7( 7% )

patients had complete data for all 7 visits. The different patterns of missing data and

the number of patients in each of these patterns are presented in Table 8.1. The pattern

of missing data is clearly monotone, that is, if a particular observation is missing on an

individual, so too are all subsequent measurements. By the fourth visit, scheduled to occur

two years post enrolment, 53% of patients had already left the study. Departure from the

study could be due to several reasons, such as : the patient underwent aortic repair surgery,

the patient died, or that the patient was unable to attend further visits for reasons related

or unrelated to the study. In the data that we were provided, no information regarding the

reason for dropout was provided. Figure 8.1 presents the observed mean AAA diameter

at each of the timepoints for the participants who dropped out at the subsequent visit

and for those who did not drop out at the subsequent visit. There was no significant

difference in the mean diameter between patients who dropped out and those who did

not, at visits 1, 2, 3, 4 and 6. However, at visit 5, the mean diameter of patients who
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subsequently dropped out was significantly higher than the mean observed for those who

did not dropout (49.96 vs 43.73, p-value 0.008). The mean AAA trajectory over time, for

each dropout pattern described in Table 8.1, is presented in Figure 8.2.

Figure 8.1: AAA study: Comparison of mean AAA diameter between patients who did and did

not dropout at the subsequent visit.

8.3.2 Sensitivity Analysis: Linear Mixed Model Parameter Esti-

mates

Since the pattern of missing data in the AAA study is clearly monotone, we apply the

monotone regression method for imputation. In this method a regression model is fitted

for each variable with missing values, with the previous variables as covariates. Naturally

a problem arises if the number of covariates exceeds the number of observations for

a particular variable. In the AAA data, age, BMI and all 7 AAA measurements were

initially considered in the imputation model. Unfortunately, due to the limited number of

observations for the last visit (visit 7), we were unable to include this measurement in the

imputation model. Ten datasets were imputed under each of the following four MNAR
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Figure 8.2: AAA study: Mean AAA diameter for each pattern of dropout.

scenarios:

δ = −1: Missing values at visits 2 and 3 are shifted down by 1 mm,

δ = 1: Missing values at all visits are shifted up by 1 mm,

δ = 2: Missing values at all visits are shifted up by 2 mm,

δ = 3: Missing values at all visits are shifted up by 3 mm.

The rationale behind applying a negative shift only to earlier visits, is that a negative shift

at all visits would result in model with a negative slope since imputations are generated

sequentially. In the case of the evolution of AAA diameters over time, a negative slope

is implausible. The estimated parameters under the ignorable or direct likelihood (DL)

approach excluding the last measurement, and the four MNAR scenarios, are presented

in Table 8.2. Negligible differences were observed in parameter estimates under the DL

approach that included all measurements (Table 4.4), and the DL approach that excluded
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the last measurement. As expected, the model with a negative shift parameter, resulted

in lower values for all time-effects (β1,NM , β1,OW , β1,OB) , compared to the DL approach

and MNAR scenarios with positive shift parameters. Marked differences were also observed

in the estimated fixed intercepts under all scenarios. The SAS code for implementation

of the four MNAR based imputation scenarios is presented in Appendix E.1.
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8.3.3 Sensitivity Analysis: Expected Time to Threshold

In this section we estimate time taken for individuals to reach two consecutive aneurysm

diameter measurements greater than 50 mm. Under each of the MNAR scenarios, we

computed T̂i for all patients in each imputed dataset. The values for all 10 imputations

were thereafter averaged, resulting in a single T̂i value for each patient, under each

scenario. To quantify the difference in T̂i between the DL approach and the MNAR

scenarios, we calculated the percentage difference:

T̂iMNAR − T̂iDL
T̂iDL

× 100

These results are summarized in Table 8.3. The median differences observed were all less

than 10% in absolute value. As the value of δ increases, resulting in a steeper increase

in AAA diameter, the time taken to reach the threshold of 50 mm decreases. Differences

greater than 200% in absolute value were examined in detail. These large differences were

observed in patients with estimated times to threshold close to 0, that is, patients who

are expected to never reach the threshold 50 mm. The observed profiles for these patients

are presented in Figure 8.3. Unsurprisingly, all these patients entered the study with small

AAA diameters, and progressed at a very slow rate. In these cases, even a minor departure

from MAR can have a significant effect on the estimated time to threshold. In Table

Table 8.3: Sensitivity analysis for AAA study: Summary of percentage difference in T̂i for each

MNAR scenario.

MNAR scenario Median %Difference IQR %Difference Min %Difference Max % Difference

δ = −1 2.53 -29.18;13.05 -473.15 7.48×1011

δ = 1 -3.06 -21.08;8.01 -683.39 1.07×1012

δ = 2 -8.30 -31.67;11.59 -604.08 1.28×1012

δ = 3 -9.78 -38.97;15.20 -729.95 1.02×1012

8.4 the estimated time to threshold for 9 selected patients under the direct likelihood

approach and the four MNAR approaches are presented. The observed profiles for these
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Figure 8.3: Sensitivity analysis for AAA study: Profiles for patients with differences in T̂i ex-

ceeding 200%.

9 patients is in Figure 8.4. In patients with at least 4 observations, the estimated times

to threshold were robust to departures from the MAR assumption.
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Table 8.4: Sensitivity analysis for AAA study: T̂i for 9 selected patients under direct likelihood

(DL) and the four MNAR scenarios.

MNAR Imputation

Patient Total visits DL δ = −1 δ = 1 δ = 2 δ = 3

1027 5 2.171 2.390 2.283 2.214 2.163

1035 5 1.117 1.151 1.194 1.231 1.268

1038 6 5.877 6.494 5.977 5.748 5.630

1041 4 0.911 0.812 0.881 0.935 0.980

1074 5 0.513 0.529 0.605 0.668 0.734

1080 2 2.300 2.791 1.783 1.543 1.411

1145 6 7.720 8.249 7.484 7.158 6.965

1164 4 3.393 4.017 3.189 2.781 2.526

1216 3 8.229 5.153 5.924 6.160 4.710
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Figure 8.4: Sensitivity analysis for AAA study: Observed profiles for the 9 patients in Table 8.4.
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8.4 Discussion

In this Chapter, we applied multiple imputation with delta adjustment, to assess the ex-

tent to which conclusions may differ if data were missing not at random. We observed

that even minor shifts can have a substantial impact on the estimated time to thresh-

old for individuals with a relatively ‘flat’ profile or fewer than three measurements. This

concurs with our earlier findings in Section 4.4.3, when we assessed robustness of results

to variations in the observation frequency. In the ‘general’ patient, with an increasing or

decreasing profile and at least four measurements, results were relatively robust to devi-

ation from the MAR assumption, with the highest adjustment resulting in a maximum

change of 0.80 years. Multiple imputation under the MNAR assumption with delta ad-

justment has proven to be a powerful tool for conducting sensitivity analysis in the time to

threshold framework. The approach can also easily be applied to ordinal outcomes, such

as the CGI-S scores in the Schizophrenia data, by applying adjustments to the predicted

probabilities.



Chapter 9
Concluding Remarks and Future

Work

In this thesis we proposed and applied a novel approach to estimation of the time to attain

two consecutive measurements less than (or greater than) a relevant threshold. This

approach takes into account the estimated patient-specific trajectories and measurement

error. Through identification of a recursive relationship of the continuation probabilities

at each time point, we displayed that the computation of the expected times is simple,

efficient, and can be implemented using existing software packages. Sensitivity analysis

revealed that the estimated times are sensitive to the number of visits considered and

the time at which the series is truncated, for patients who exhibit a very slow decline.

For other patients, however, we found that results were less sensitive to the number of

visits considered and truncation. Hence, caution should be exercised when interpreting

the estimated times for patients who exhibit very slow rates of decline.

The proposed methodology was extended in Chapter 5 so that complex residual corre-

lation structures can be incorporated into the estimation of times to threshold. Through

the derivation of recursive relationships of the probabilities in this more complex setting,

computational efficiency was achieved. We observed that erroneously ignoring serial cor-

relation may bias estimated times to threshold and recommend that careful consideration
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is given to the model fitted in the first stage of the approach.

In Chapter 6, the methodology was extended to to accommodate outcomes that may

be subject to censoring due to limits of detection. After incorporating the censoring into

the likelihood for the model for the outcome, we found that our standard methodology

can easily be applied to estimate time to threshold. In Chapter 7 we shifted our focus

from continuous outcomes to ordinal outcomes and presented methodology for time to

threshold estimation for ordinal biomarkers.

The robustness of estimated times to threshold to deviations from the MAR assump-

tion, was assessed through pattern-mixture based multiple imputation under the MNAR

assumption. We observed that even minor deviations can have a substantial impact on

the estimated time to threshold for individuals with a relatively ‘flat’ profile or fewer than

three measurements. In the ‘general’ patient, with an increasing or decreasing profile

and at least four measurements, results were relatively robust to deviation from the MAR

assumption.

Although this thesis provided a flexible framework for time to threshold estimation, that

can accommodate complex features of biomarkers, further developments are necessary.

With particular reference to examining HIV treatment success, it would be interesting

to examine the performance of our approach when a mixed model with random change

points for the viral load trajectory is used. In certain settings clinical decisions are based

on cutoffs of more than one biomarker. It is therefore of interest to extend our approach to

multivariate outcomes. Persistence criteria may also be more restrictive, where decisions

are based on three consecutive measurements rather than two. It would be of value to

extend our methodology to the ‘three consecutive’ framework, and examine whether the

recursive relationships of probabilities continue to hold.
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Robustness of the linear mixed model to misspecified error distribution. Computational

Statistics & Data Analysis, 51, 5142–5154.
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Appendix: Chapter 4

A.1 Proof of Expressions for Cij and Sij

For ease of notation, the index i is suppressed in the equations that follow. We introduce

Ej which denotes the outcome indicator at time point j such that

Ej =

 0 if Yj > k

1 if Yj ≤ k.

Continuation after j visits can be defined in terms of the combination of outcomes ob-

served, such that the event of two consecutive low CD4 count outcomes {1, 1} has not

occurred at, or prior to the jth visit. The possible combinations which lead to contin-

uation after 2, 3, and 4 visits, respectively, are presented in Table A.1. There are 3, 5,

and 8 combinations of outcomes that lead to continuation after time points 2, 3, and 4,

respectively.

The number of combinations which result in continuation after each visit follows a

Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, . . .}, where each term is defined as the sum of its

two predecessors. Specifically, the number of outcome combinations that result in contin-

uation after a sequence of j visits is the j + 1th Fibonacci number, fj+1. Continuation

at visit j can be expressed as a function of continuation at visit j − 1 and j − 2. A con-

tinuation sequence should end in either (A): {0}, which is the union of {0,0} and {1,0}
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or (B): {0,1}. This implies that a continuation sequence of length j can be constructed

uniquely from (A): a continuation sequence of length j − 1, followed by {0} and (B): a

continuation sequence of length j−2, followed by {0, 1}. Letting Cj denote the continu-

ation probability at visit j, and assuming that the outcomes at each visit are independent,

this recursive relationship can be presented as follows:

Cj = Cj−2 × P (Ej−1 = 0)× P (Ej = 1) + Cj−1 × P (Ej = 0).

This relationship is illustrated in Table A.1 for j = 4. Assuming that the process ‘stops’

when two consecutive {1, 1} outcomes are observed for the first time, the number of

combinations which result in a ‘stop’ at sequence of j visits is fj−2. For a ‘stop’ to be

observed at any j ≥ 3, the last three outcomes in the sequence are confined to be of the

form {0, 1, 1}. Hence, the stopping probability Sj is

Sj = Cj−3 × P (Ej−2 = 0)× P (Ej−1 = 1)× P (Ej = 1).

A.2 SAS Program for Time to Threshold Estimation

*********** Stage 1 : Fit LMM *******************

ods output CovParms=covp;

proc mixed data=aaa method=reml covtest ;

class id bmicat;

model diam= bmicat bmicat*timeyears age/ noint outp=predlin solution;

random intercept timeyears/ type=un subject=id;

repeated / subject=id r;

run;

ods output close;

/*** Create dataset of predictions and residual variance****/

data covp2 (drop=CovParm estimate subject); set covp;

if CovParm='Residual' then residvar=estimate;

if residvar eq . then delete;

link=1;

run;

data preds;set predlin;link=1;run;

data predres;merge preds covp2;by link;run;
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/**************************************************/

******** Calculate cumulative probabilities and Cij and Sij ***/

data prob;set predres;p=cdf('NORMAL',k,pred,sqrt(residvar));

proc sort data=prob;by id timemonth;run;

data probc2 ;

set prob ;

by id day;

length visit c lagp lag2p q lagq lag2q lagc lag2c 8;

if first.id then call missing(of visit lag:);

visit+1;

q=1-p;

select (visit);

when (1) c=.;

when (2) c=lagp*p + lagq*p + lagp*q ;

when (3) c=lag2p*lagp*p

+ lag2q*lagp*p + lag2p*lagp*q + lag2q*lagp*q + lag2p*lagq*p;

otherwise c=lag2c*lagp*q + lagc*p ;

end;

output;

lag2p=lagp;

lagp=p;

lag2q=lagq;

lagq=q;

lag2c=lagc;

lagc=c;

retain lag: ;

run;

/******** Compute stopping probabilities Sij *************/

data forsij;set probc2;by id; lag3c=lag3(c);lag3p=lag3(p);lag3q=lag3(q);

if visit eq 2 then sij=(lagq*q);

if visit eq 3 then sij=(lag2p*lagq*q);

if visit eq 4 then sij=(lag3p*lag2p*lagq*q) + (lag3q*lag2p*lagq*q);

if visit gt 4 then sij=lag3c*lag2p*lagq*q;

t_ij_sij= timemonth*sij;if t_ij_sij eq . then t_ij_sij=0;

run;

/******** Compute expected time ************************/

data e_ti ;

set forsij ;

by id;

if first.id then

do;

e_ti = 0;

end;
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e_ti + t_ij_sij;

run;

/******************************************************/

/*********** Non-parametric case bootstrap sampling *****/

/******************************************************/

/*For example, if we require the 95% CI for patient 25:*/

data justid;set aaa.justid;if id eq 25 then delete;run;

data aaa_excl;set aaa;if id eq 25 then delete;run;

data aaa_pt1;set aaa;if id=25;BootID=2000;run;

options nonotes nosource nosource2 errors=0;

%boot(1000)

data test;set work.bootsum;where id eq 25;run;

proc univariate data=test;

var e_ti;

output out=forid25 pctlpre=P_ pctlpts= 2.5,97.5;run;

/***************************************************/

/**************** Macros ***************************/

%macro boot(B);

%do i=1 %to &B;

*** Select random sample from patient data frames ***;

%bootselect(justid,work.select1,&i*7,1000);

*** Merge random sample with longitudinal data ***;

%bootmerge(work.select1,work.aaa_excl,work.mergedboot,id);

/******** Add back that patient to the dataset*********/

proc append base=mergedboot data=aaa_apt1;run;

run;

%analyze(work.mergedboot,work.results);

%bootsave(work.results,work.bootsum);

%end;

%mend;

%macro bootselect(indata,outdata,seed,start);

data &outdata;

choice=ceil(ranuni(&seed)*n); * Creates Random Variable from 1 to n *;

set &indata point=choice nobs=n;

BootID=&start+_N_; * ID for future analysis *;

if _N_>n then stop;

*proc print data=work.select&bootno(obs=10);

*title "Frame &bootno with Seed &Seed";

run;

%mend;
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*** Merges data from &Bootdata with the longitudinal data &Longdata ***;

*** ID is the subject ID on the original datasets ***;

*** The merged dataset will have a new ID: BootID ***;

%macro bootmerge(bootdata,longdata,outdata,id);

proc sql;

create table &outdata

as select *

from &bootdata as l left join &longdata as r

on l.&id=r.&id

order by BootID;

quit;

%mend;

*** Saves the results from &Indata into &Outdata ***;

*** &Indata will ususally have one record ***;

%macro bootsave(indata,outdata);

%if &I=1 %then %do; * Saves results in &outdata *;

data &outdata;

set &indata;

run;

%end;

%else %do; * Appends results to &outdata *;

proc append base=&outdata new=&indata force;

run;

%end;

%mend;
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Table A.1: Possible combinations of outcomes which result in continuation after 2, 3, and 4

visits

E1 E2 E3 E4

j ≤ 2

1 0

0 1

0 0

j ≤ 3

1 0 1

1 0 0

0 1 0

0 0 1

0 0 0

j ≤ 4

1 0 0 1

0 1 0 1

0 0 0 1

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0
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B.1 Proof of Expressions for Cij,0, Cij,1, and Sij

Continuation after j visits can be defined in terms of the combination of outcomes ob-

served, such that the event of two consecutive low CD4 count outcomes {1, 1} has not

occurred at, or prior to the jth visit. There are 3, 5, and 8 combinations of outcomes

that lead to continuation after time points 2, 3, and 4, respectively.

The number of combinations which result in continuation after each visit follows a

Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, . . .}, where each term is defined as the sum of its

two predecessors. Specifically, the number of outcome combinations that result in con-

tinuation after a sequence of j visits is the j + 1st Fibonacci number, fj+1. Continuation

at visit j can be expressed as a function of continuation at visit j − 1 and j − 2. A con-

tinuation sequence should can end in either 0 or 1. Letting Cj denote the continuation

probability at visit j, and assuming that the outcomes at each visit are independent, the

recursive relationship can be presented as follows:

Cj = Cj,0 + Cj,1, (B.1)

where Cj,0 denotes the continuation probability for sequences ending with outcome Ej =

0, and Cj,1 denotes the continuation probability for sequences ending with outcome Ej =

1.
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By the chain rule, the joint distribution of a set of random variables can be expressed

as a product of conditional probabilities. That is,

P (En, En−1 . . . E1) = P (En | En−1, . . . , E1)P (En−1, En−2 . . . E1).

Repeating this process yields the expression:

P (

n⋂
j=1

Ej) =

n∏
j=1

P (En |
n−1⋂
k=1

Ek).

By the Markov assumption

P (En |
n−1⋂
k=1

Ek) = P (En | En−1).

Assuming that the Markov assumption holds,

Cj,0 = Cj−1,0P (Ej = 0|Ej−1 = 0) + Cj−1,1P (Ej = 0|Ej−1 = 1),

Cj,1 = Cj−1,0P (Ej = 1|Ej−1 = 0).

All that is now needed is the specification of the initial continuation probabilities, C2,(0)

and C2,(1).

C2,(0) = P (E1 = 0)P (E2 = 0|E1 = 0) + P (E1 = 1)P (E2 = 0|E1 = 1)

= P (E2 = 0),

C1,(1) = P (E1 = 0)P (E2 = 1|E1 = 0)

= P (E1 = 0, E2 = 1).

Assuming that the process ‘stops’ when two consecutive {1, 1} outcomes are observed

for the first time, the number of combinations which result in a ‘stop’ at sequence of j

visits is fj−2. For a ‘stop’ to be observed at any j ≥ 3, the last three outcomes in the

sequence are confined to be of the form {0, 1, 1}. Hence, the stopping probability Sj is

Sj = Cj−3,0P (Ej−2 = 0|Ej−3 = 0)P (Ej−1 = 1|Ej−2 = 0)P (Ej = 1|Ej−1 = 1)

+Cj−3,1P (Ej−2 = 0|Ej−3 = 1)P (Ej−1 = 1|Ej−2 = 0)P (Ej = 1|Ej−1 = 1)

= [Cj−3,0P (Ej−2 = 0|Ej−3 = 0) + Cj−3,1P (Ej−2 = 0|Ej−3 = 1)]

×P (Ej−1 = 1|Ej−2 = 0)P (Ej = 1|Ej−1 = 1). (B.2)
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B.2 SAS Program for Time to Threshold Estimation for

a Model with Serial Correlation

proc sort data=sk2;by id timeyrs;run;

ods exclude all;

proc mixed data=sk2 method=reml covtest;

class id baselinevlcat timemonthcls;

model sqrtcd = baselinevlcat baselinevlcat*timemonth/ noint outpm=predlinspexp;

random intercept timemonth/ type=un subject=id solution;

repeated timemonthcls/type=AR(1) local group=baselinevlcat subject=id rcorr=1,14,10;

CONTRAST 'test equal slopes' baselinevlcat*timemonth 1 -1 0,

baselinevlcat*timemonth 0 1 -1 ;

ods output CovParms=covp;

ods output SolutionR=rand1;

run;

ods exclude none;

data rand1; set rand1;

keep id effect estimate;

run;

data rand12; set rand1; by id;

retain ranint ranslope;

if effect='Intercept' then ranint=estimate;

if effect='timemonth' then ranslope=estimate;

if last.id then do;

output; ranint=.; ranslope=.;

end;

drop effect estimate;

run;

proc sort data=rand12;by id;run;

proc sort data=predlinspexp;by id timemonth;run;

data allpred;merge rand12 predlinspexp;by id;run;

data allpred;set allpred;manpred=pred+ranint+(ranslope*timemonth);run;

data covp1; set covp;

if CovParm='Residual' then residvar=estimate;

if residvar=. then delete;

keep residvar;

run;

proc print data=covp;run;

data covp2 (keep=serialpar baselinevlcat); set covp;where CovParm='AR(1)';

if group='baselinevlcat 1' then baselinevlcat=1;

if group='baselinevlcat 2' then baselinevlcat=2;

if group='baselinevlcat 3' then baselinevlcat=3;
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rename estimate=serialpar;

run;

data covp3 (keep=estimate baselinevlcat); set covp;where CovParm='Variance';

if group='baselinevlcat 1' then baselinevlcat=1;

if group='baselinevlcat 2' then baselinevlcat=2;

if group='baselinevlcat 3' then baselinevlcat=3;

run;

data covp3;set covp3;rename estimate=serialvar;run;

data allcovpars;merge covp1 covp2 covp3;

lagresidvar=lag(residvar);

if lagresidvar=. then lagresidvar=lag(residvar);

if residvar=. then residvar=lagresidvar;

drop lagresidvar;

run;

proc sort data=allpred;by baselinevlcat id;run;

proc sort data=allcovpars;by baselinevlcat ;run;

data preds;set allpred;;if manpred<0 then delete;run;

data predres;merge preds allcovpars;by baselinevlcat;run;

/**************** Now to Calculate the probabilities ****************/

/**** Generate the lag times and correlations by patient ****/

proc sort data=predres;by id timemonth;run;

data predresx;set predres;

by id;

lagtime = lag(timemonth);

if first.id then lagtime = .;

currmean=manpred;

prevmean=lag(manpred);

if first.id then prevmean= .;

d_pc=abs(lagtime-timemonth);

p_pc=serialpar**d_pc;

corr=(serialvar*p_pc)/(serialvar+residvar);

currstd=(18.70-currmean)/(sqrt(residvar+serialvar));

prevstd= (18.70-prevmean)/(sqrt(residvar+serialvar));

run;

/** Calculate all the univariate,bivariate and conditional probabilities we need**/

data proby;set predresx;

lc=probnorm(currstd);

hc=1-lc;

lp=probnorm(prevstd);

hp=1-lp;

lclp=probbnrm(currstd,prevstd,corr);
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hclp=lp-lclp;

lchp=lc-lclp;

hchp=hc-(lp-lclp);

hc_hp=(hchp)/hp;

hc_lp=(hclp)/lp;

lc_hp=(lchp)/hp;

lc_lp=(lclp)/lp;

run;

/************** Calculate Cij using recursive relationship*****************/

data proby2;set proby;by id;if first.id then visit=1;else visit+1;run;

data probc2 ;

set proby2 ;

by id timemonth;

length lag3hc lag2hc lag3hc lag3lc lag2lc laglc lag2hc_lp laghc_lp lag2lc_hp laglc_hp

lag2lc_lp laglc_lp lag2hc_hp laghc_hp c0 c1 lag2c1 lag2c0 lagc1 lagc0 8;

if first.id then call missing(of lag:);

if visit eq 2 then c1= lchp;

if visit eq 2 then c0=hclp + hchp ;

if visit eq 3 then c0=(hc_hp*laghc_lp*lag2lc) + (hc_hp*laghc_hp*lag2hc)

+ (hc_lp*laglc_hp*lag2hc);

if visit eq 3 then c1=(lc_hp*laghc_lp*lag2lc) +(lc_hp*laghc_hp*lag2hc);

if visit eq 4 then c0=(hc_hp*laghc_hp*lag2hc_lp*lag3lc)

+(hc_hp*laghc_hp*lag2hc_hp*lag3hc)

+(hc_hp*laghc_lp*lag2lc_hp*lag3hc)

+(hc_lp*laglc_hp*lag2hc_lp*lag3lc)

+(hc_lp*laglc_hp*lag2hc_hp*lag3hc);

if visit eq 4 then c1=(lc_hp*laghc_hp*lag2hc_lp*lag3lc)

+(lc_hp*laghc_hp*lag2hc_hp*lag3hc)

+(lc_hp*laghc_lp*lag2lc_hp*lag3hc);

if visit gt 4 then c0=(lagc0*hc_hp) + (lagc1*hc_lp); lagc0 = lag(c0);

if visit gt 4 then c1=(lag2c0*lc_hp*laghc_hp)+(lag2c1*lc_hp*laghc_lp);

output;

lag3hc=lag2hc;

lag2hc=laghc;

laghc=hc;

lag3lc=lag2lc;

lag2lc=laglc;

laglc=lc;

lag2hc_lp= laghc_lp;

laghc_lp=hc_lp;

lag2lc_hp=laglc_hp;

laglc_hp= lc_hp;
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lag2hc_hp= laghc_hp;

laghc_hp=hc_hp;

lag2lc_lp= laglc_lp;

laglc_lp=lc_lp;

lag2c0= lagc0;

lagc0=c0;

lag2c1= lagc1;

lagc1=c1;

retain lag: ;

run;

data forsij;set probc2;by id; lag3c0=lag(lag2c0);

lag3c1=lag(lag2c1);

if first.id then lag3c1=.;

if visit eq 2 then sij=lclp;

if visit eq 3 then sij=lc_lp*laglc_hp*lag2hc;

if visit eq 4 then sij=(lc_lp*laglc_hp*lag2hc_hp*lag3hc)

+(lc_lp*laglc_hp*lag2hc_lp*lag3lc);

if visit gt 4 then sij=(lag3c0*lag2hc_hp*laglc_hp*lc_lp)

+ (lag3c1*lag2hc_lp*laglc_hp*lc_lp);

t_ij_sij= timemonth*sij;if t_ij_sij eq . then t_ij_sij=0;

run;

/******* Manually check Si5 **********/

data check;set forsij;by id;lag4lc=lag(lag3lc);lag4hc=lag(lag3hc);

if visit=5 then testsij=(lc_lp*laglc_hp*lag2hc_hp*lag3hc_lp*lag4lc)

+ (lc_lp*laglc_hp*lag2hc_hp*lag3hc_hp*lag4hc)

+ (lc_lp*laglc_hp*lag2hc_lp*lag3lc_hp*lag4hc);run;

data e_ti ;

set forsij ;

by id;

IF first.id THEN

DO;

e_ti = 0;

END;

e_ti + t_ij_sij;

run;
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/********************************************************************/

/******************** Estimate bias for ID 1 ************************/

data test;set work.bootsum;where id eq 1 and reason eq 'Convergence criteria met.';

sample = _N_; run;

data bootorig;

set sel_orig (in=a)

test;

if a then sample=0;

run;

data bias;set bootorig end=last;

retain orig;

if sample=0 then orig=e_ti;

if e_ti lt orig then lessthan=1;

else lessthan=0;

retain nless 0;

if sample ne 0 then nless=nless+lessthan;

propless=nless/sample;

bias=probit(propless);

if last then do;

output bias;

end;

run;

/**********************************************************/

/***************** Jacknife **********************************/

data justid;set paper1.justid;if id eq 1 then delete;drop patient;run;

data sk2_excl;set work.sk2;if id eq 1 then delete;run;

data sk2_pt1;set work.sk2;if id=1;run;

data origjack; /* create a new data set which contains observation */

set justid end=eof; /* numbers 1 to &nobs (no. obs in data set) */

obsnum=_n_;

if eof then call symput('nobs', put(obsnum, 2.));

run;

%macro jack(J);

%do i=1 %to &J;

*** Select random sample from patient data frames ***;

%jackselect(origjack,work.select1);

*** Merge with longitudinal data ***;

%jackmerge(work.select1,work.sk2_excl,work.mergedjack);

/******** Add back that patient to the dataset*********/

proc append base=mergedjack data=sk2_pt1;run;

%jackanalyze(work.mergedjack,work.results);

%jacksave(work.results,work.jacksum);

%end;
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%mend;

%jack(335);

*** Saves the results from &Indata into &Outdata ***;

*** &Indata will ususally have one record ***;

%macro jacksave(indata,outdata);

%if &I=1 %then %do; * Saves results in &outdata *;

data &outdata;

set &indata;

run;

%end;

%else %do; * Appends results to &outdata *;

proc append base=&outdata new=&indata force;

run;

%end;

%mend;

%macro jackselect(indata,outdata);

data &outdata;

set &indata;

where obsnum ne &i;

run;

%mend;

*** Merges data from &Bootdata with the longitudinal data &Longdata ***;

*** ID is the subject ID on the original datasets ***;

*** The merged dataset will have a new ID: BootID ***;

%macro jackmerge(jackdata,longdata,outdata);

proc sort data=&longdata;by id timeyrs;run;

proc sort data=&jackdata;by id;run;

data &outdata;merge &longdata &jackdata;by id;run;

data &outdata;set &outdata;where obsnum ne .;run;

%mend;

/*************** Calculate BCa interval **************/

proc sql

noprint;

select mean(e_ti) /* put mean of jackknifed values into macro variable */

into :meanjack

from jacksum;

quit;

data jacksum3;

set jacksum;

cubed=(&meanjack - e_ti)**3; /* create cubed value of difference */

squared=(&meanjack - e_ti)**2; /* create squared value of difference */
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run;

proc means

data=jacksum3

noprint;

output out=jacksum4

sum(cubed)=sumcube /* find sum of cubed values */

sum(squared)=sumsquar; /* find sum of squared values */

run;

data accel;

set jacksum4;

accel=sumcube / (6 * (sumsquar**1.5)); /* plug values into equation for */

keep accel; /* the acceleration statistic */

run;

data ciends;

merge accel

bias;

part1=(bias + probit(0.025)) / (1 - (accel*(bias + probit(0.025))));

part2=(bias + probit(0.975)) / (1 - (accel*(bias + probit(0.975))));

alpha1=probnorm(bias + part1);

alpha2=probnorm(bias + part2);

n1=alpha1*5000; /*this depends on how many we run*/

n2=alpha2*5000; /*this depends on how many we run*/

call symput('n1', put(floor(n1), 5.)); /* Create macro variables with values */

call symput('n2', put(ceil(n2), 5.)); /* of N1 and N2 for later use */

run;

proc sort

data=test;

by e_ti;

run;

data ci_bca;

set test end=eof;

retain conf_lo conf_hi;

if _n_=&n1 then conf_lo=e_ti; /* select values for upper and lower */

if _n_=&n2 then conf_hi=e_ti; /* limits using N1 and N2 values */

if eof then output;

keep conf_lo conf_hi;

run;
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B.3 Bias Corrected Accelerated (BCa) Bootstrap Con-

fidence Intervals

The estimation of BCa confidence intervals was first put forward by Efron and Tibshirani

(1994). Letting

T̂ = The actual estimate from original data

T̂ ∗(m) = The estimate from the mth bootstrap sample

B = The total number of bootstrap samples,

then the bias correction can be expressed as

b = Φ−1


B∑

m=1
I
T̂∗(m)<T̂

B

 .

Letting

T̂(i) = Estimate calculated on the jacknifed sample with the ith observation removed

N = The number of jacknifed samples

T̂(•) = The mean of the n jackknife samples,

the acceleration parameter can be expressed as

a =

N∑
i=1

(T̂(•) − T̂(i))3

6

{
N∑
i=1

(T̂(•) − T̂(i))2
} 3

2

.

The bias and acceleration parameters are then used to compute the endpoints (α1 ×

B,α2 ×B of the 100(1− 2α) confidence interval:

α1 = Φ̃

(
b+

b+ Φ̃−1(α)

1− a(b+ Φ̃−1(α))

)

α2 = Φ̃

(
b+

b+ Φ̃−1(1− α)

1− a(b+ Φ̃−1(1− α))

)
where Φ̃(x) is the standard normal cumulative distribution function.
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Table B.1: Possible combinations of outcomes which result in termination after 5, 6, and 7 visits

E1 E2 E3 E4 E5 E6 E7

S5

0 0 0 1 1

1 1 0 1 1

0 1 0 1 1

S6

0 0 0 0 1 1

1 0 0 0 1 1

0 1 0 0 1 1

0 0 1 0 1 1

1 0 1 0 1 1

S7

0 0 0 0 0 1 1

1 0 0 0 0 1 1

0 1 0 0 0 1 1

0 0 1 0 0 1 1

1 0 1 0 0 1 1

0 0 0 1 0 1 1

1 0 0 1 0 1 1

0 1 0 1 0 1 1
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C.1 SAS Program for Time to Threshold Estimation for

a Left Censored Outcome

/* Generate the censoring variable */

data vl;set paper3.wu_aids;logvl=lgcopy;if lgcopy eq 1.69897 then logvl=2;

/*The dataset previously imputed half the LOD*/

censor=0;if logvl eq 2 then censor=1;time=day;

run;

/* Fit LMM without censoring - using imputed value ***/

data spl;

set vl;

k1 = 14;

k2 = 60;

if time <= k1 then timespl2 = 0;

if time > k1 then timespl2 = time - k1;

if time <= k2 then timespl3 = 0;

if time > k2 then timespl3 = time - k1- k2;

timemonth=time/30.5;

timeyear=time/365;

timespl2year=timespl2/365;

timespl3year=timespl3/365;

run;

proc sort data=spl;by id day;run;

/*Now try to include censoring */

ods output ParameterEstimates=p1;
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proc nlmixed data=spl ;

parms a0=5.0709 t0=-46.7 t1=41.58 t2=4.8 sigsqe=0.098 sd_u1=0.52 sd_u3=6.6

sd_u4=10.5 g13=-0.3958 g14=1.0904 g34=-40;

/* Calculate pi, 3.1416...... */

pi=2*arsin(1);

/* Define the linear model with a random intercept (u1) and slopes (u3 and u4) */

mu = a0 + t0*timeyear + t1*timespl2year + t2*timespl3year + u1

+ u3*timespl2year + u4*timespl3year;

/* Define likelihood function for observations censored and not censored */

/* censor = 0 is just the PDF of the normal distribution for non-LOD values */

/* censor = 1 is for lower LOD censored values */

/* Note that mu is the predicted mean and logvl (log base 10 VL) is observed data */

if censor=0 then L=(1/(sqrt(2*pi*sigsqe)))*exp(-(logvl-mu)**2/(2*sigsqe));

if censor=1 then L=probnorm((logvl-mu)/sqrt(sigsqe));

/* Define the log(likelihood), model, and random effects */

LL=log(L);

model logvl ~ general(LL);

random u1 u3 u4~ N([0, 0, 0], [sd_u1*sd_u1, g13, sd_u3*sd_u3, g14, g34, sd_u4*sd_u4])

subject=id;

predict a0 + t0*timeyear + t1*timespl2year + t2*timespl3year + u1 + u3*timespl2year

+ u4*timespl3year out=preds;

run;

ods output close;

data covp2 (keep=link residvar); set p1;

if Parameter='sigsqe' then residvar=Estimate;

if residvar eq . then delete;

link=1;

run;

data preds;set preds;link=1;if pred<0 then delete;run; /*excludes implausible values****/

data predres;merge preds covp2;by link;run;

/***** Compute cumulative probabilities *******/

data prob;set predres;p=1-cdf('NORMAL',3,pred,sqrt(residvar));run;

/******** Need to calculate the Cn recursively but first manually do up to C5 *******/

/**** generate observation number**********/

proc sort data=prob;by id timemonth;run;

data probc2 ;

set prob ;

by id day;

length visit c lagp lag2p q lagq lag2q lagc lag2c 8;
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if first.id then call missing(of visit lag:);

visit+1;

q=1-p;

select (visit);

when (1) c=.;

when (2) c=lagp*p + lagq*p + lagp*q ;

when (3) c=lag2p*lagp*p + lag2q*lagp*p + lag2p*lagp*q + lag2q*lagp*q + lag2p*lagq*p;

otherwise c=lag2c*lagp*q + lagc*p ;

end;

output;

lag2p=lagp;

lagp=p;

lag2q=lagq;

lagq=q;

lag2c=lagc;

lagc=c;

retain lag: ;

run;

/******** Compute stopping probabilities Sij *************/

data forsij;set probc2;by id; lag3c=lag3(c);lag3p=lag3(p);lag3q=lag3(q);

if visit eq 2 then sij=(lagq*q);

if visit eq 3 then sij=(lag2p*lagq*q);

if visit eq 4 then sij=(lag3p*lag2p*lagq*q) + (lag3q*lag2p*lagq*q);

if visit gt 4 then sij=lag3c*lag2p*lagq*q;

t_ij_sij= timemonth*sij;if t_ij_sij eq . then t_ij_sij=0;

run;

/******** Compute expected time ************************/

data e_ti ;

set forsij ;

by id;

if first.id then

do;

e_ti = 0;

end;

e_ti + t_ij_sij;

run;
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D.1 SAS Program for Time to Threshold Estimation for

Ordinal Outcomes

proc glimmix data=pans pconv=1e-6 method=quad(qpoints=10);

class treat;

model cgi_sev = treat*xtime

/ dist=multinomial link=cumlogit;

random intercept xtime / subject=id type=un;

output out=modelpred pred=xb;

run;

data prob;set modelpred;p=1-(exp(xb) / (1+exp(xb)));where _LEVEL_ eq 3;run;

data probc2 ;

set prob ;

by id xtime;

length visit c lagp lag2p q lagq lag2q lagc lag2c 8;

if first.id then call missing(of visit lag:);

visit+1;

q=1-p;

select (visit);

when (1) c=.;

when (2) c=lagp*p + lagq*p + lagp*q ;

when (3) c=lag2p*lagp*p + lag2q*lagp*p + lag2p*lagp*q + lag2q*lagp*q + lag2p*lagq*p;

otherwise c=lag2c*lagp*q + lagc*p ;

end;

output;
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lag2p=lagp;

lagp=p;

lag2q=lagq;

lagq=q;

lag2c=lagc;

lagc=c;

retain lag: ;

run;

/******** Compute stopping probabilities Sij *************/

data forsij;set probc2;by id; lag3c=lag3(c);lag3p=lag3(p);lag3q=lag3(q);

if visit eq 2 then sij=(lagq*q);

if visit eq 3 then sij=(lag2p*lagq*q);

if visit eq 4 then sij=(lag3p*lag2p*lagq*q) + (lag3q*lag2p*lagq*q);

if visit gt 4 then sij=lag3c*lag2p*lagq*q;

t_ij_sij= xtime*sij;if t_ij_sij eq . then t_ij_sij=0;

run;

/******** Compute expected time ************************/

data e_ti ;

set forsij ;

by id;

IF first.id THEN

DO;

e_ti = 0;

END;

e_ti + t_ij_sij;

run;
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E.1 SAS Program for MNAR Imputation

/************ Scenario 2 ********************************/

proc sort data=paper2.aaasens2;by bmicat id;run;

proc mi data=paper2.aaasens2 seed=486048 out=aaami_shift1

nimpute=10;

title âĂŹShift multiple imputationâĂŹ;

class bmicat;

var age bmicat diam1 diam2 diam3 diam4 diam5 diam6;

monotone reg ;

mnar adjust (diam2 / shift=1);

mnar adjust (diam3 / shift=1);

mnar adjust (diam4 / shift=1);

mnar adjust (diam5 / shift=1);

mnar adjust (diam6 / shift=1);

run;

data aaami_shift1(drop=age bmi bmicat);set aaami_shift1;run;

proc transpose data=aaami_shift1 out=aaalong1;

by _Imputation_ id;

run;

data aaalong1;

set aaalong1 (rename=(col1=diam));

timep=input(substr(_name_, 5), 5.);

drop _name_;
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run;

/********* Merge with full data that has windows of prediction *****/

data aaa;set paper2.aaa;

age=leeftijd08;

diam=dmaxabdominaalmm;

id=patient;

timep=timepoint;

if bmi lt 25 & bmi ne . then bmicat=1;

if bmi ge 25 & bmi & bmi lt 30 then bmicat=2;

if bmi ge 30 & bmi ne . then bmicat=3;

run;

proc sort data=aaa;by id timep ;run;

data aaa_drop(drop=diam);set aaa;run;

%macro aaa(num);

%do i = 1 %to &num;

data aaa_&i;set aaa_drop;_Imputation_=&i;run;

%end;

data alldata;set aaa_1-aaa_&num;run;

%mend;

%aaa(10)

proc sort data=alldata;by _Imputation_ id timep;run;

proc sort data=aaalong1;by _Imputation_ id timep;run;

data impute_window;merge alldata aaalong1;by _Imputation_ id timep;run;

/*********** Stage 1 : Fit LMM ***************************/

proc sort data=impute_window;by _Imputation_ id timeyears;run;

ods output CovParms=covp;

proc mixed data=impute_window method=reml covtest asycov ;

class _Imputation_ id bmicat;

model diam= bmicat bmicat*timeyears age/ noint outp=predlin solution covb;

random intercept timeyears/ type=un subject=id;

repeated / subject=id r;

by _Imputation_;

ods output SolutionF=mixparms CovB=mixcovb AsyCov=covv;;

run;

ods output close;

data mixparms2;

set mixparms;

if bmicat=1 and effect='bmicat' then effect='bmicat1';

if bmicat=2 and effect='bmicat' then effect='bmicat2';

if bmicat=3 and effect='bmicat' then effect='bmicat3';
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if bmicat=1 and effect='timeyears*bmicat' then effect='timeyrs*bmicat1';

if bmicat=2 and effect='timeyears*bmicat' then effect='timeyrs*bmicat2';

if bmicat=3 and effect='timeyears*bmicat' then effect='timeyrs*bmicat3';

run;

data mixparms2;

set mixparms2 (drop=bmicat);

run;

data mixcovb2;

set mixcovb;

if bmicat=1 and effect='bmicat' then effect='bmicat1';

if bmicat=2 and effect='bmicat' then effect='bmicat2';

if bmicat=3 and effect='bmicat' then effect='bmicat3';

if bmicat=1 and effect='timeyears*bmicat' then effect='timeyrs*bmicat1';

if bmicat=2 and effect='timeyears*bmicat' then effect='timeyrs*bmicat2';

if bmicat=3 and effect='timeyears*bmicat' then effect='timeyrs*bmicat3';

run;

data mixcovb2;

set mixcovb2 (drop=bmicat);

run;

proc mianalyze parms=mixparms2

covb(effectvar=rowcol)=mixcovb2;

modeleffects age bmicat1 bmicat2 bmicat3 timeyrs*bmicat1 timeyrs*bmicat2 timeyrs*bmicat3;

run;

data covpx;set covp;if CovParm='UN(1,1)' then effect='d11';

if CovParm='UN(2,1)' then effect='d12';

if CovParm='UN(2,2)' then effect='d22';

if CovParm='Residual' then effect='sigma2';

run;

data covvx;set covv;if CovParm='UN(1,1)' then effect='d11';

if CovParm='UN(2,1)' then effect='d12';

if CovParm='UN(2,2)' then effect='d22';

if CovParm='Residual' then effect='sigma2';

Col1=CovP1;

Col2=CovP2;

Col3=CovP3;

Col4=CovP4;

run;

proc mianalyze parms=covpx covb(effectvar=rowcol)=covvx ;

modeleffects d11 d12 d22 sig;

run;

/*** Create dataset of predictions and residual variance******/
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data covp2 (drop=CovParm estimate subject); set covp;

if CovParm='Residual' then residvar=estimate;

if residvar eq . then delete;

link=1;

run;

data preds;set predlin;link=1;run;

data predres;merge preds covp2;by _Imputation_ link;run;

/****************************************************/

/******** Calculate cumulative probabilities and Cij and Sij *****/

data prob;set predres;p=cdf('NORMAL',50,pred,sqrt(residvar));

proc sort data=prob;by _Imputation_ id timeyears;run;

data probc2 ;

set prob ;

by _Imputation_ id timep;

length visit c lagp lag2p q lagq lag2q lagc lag2c 8;

if first.id then call missing(of visit lag:);

visit+1;

q=1-p;

select (visit);

when (1) c=.;

when (2) c=lagp*p + lagq*p + lagp*q ;

when (3) c=lag2p*lagp*p + lag2q*lagp*p + lag2p*lagp*q + lag2q*lagp*q + lag2p*lagq*p;

otherwise c=lag2c*lagp*q + lagc*p ;

end;

output;

lag2p=lagp;

lagp=p;

lag2q=lagq;

lagq=q;

lag2c=lagc;

lagc=c;

retain lag: ;

run;

/******** Compute stopping probabilities Sij *************/

data forsij;set probc2;by _Imputation_ id; lag3c=lag3(c);lag3p=lag3(p);lag3q=lag3(q);

if visit eq 2 then sij=(lagq*q);

if visit eq 3 then sij=(lag2p*lagq*q);

if visit eq 4 then sij=(lag3p*lag2p*lagq*q) + (lag3q*lag2p*lagq*q);

if visit gt 4 then sij=lag3c*lag2p*lagq*q;

t_ij_sij= timeyears*sij;if t_ij_sij eq . then t_ij_sij=0;

run;
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/******** Compute expected time ************************/

data e_ti ;

set forsij ;

by _Imputation_ id;

if first.id then

do;

e_ti = 0;

end;

e_ti + t_ij_sij;

run;

data e_ti2;set e_ti;by _Imputation_ id;

if last.id then lastrec = 1;run;

data e_ti3;set e_ti2;where lastrec=1; run;





Samenvatting

Biomerkers spelen een cruciale rol in het medisch onderzoek en helpen de arts om een dia-

gnose te stellen en in het bijzonder om te bepalen wanneer het tijd is om te interveniëren.

Jammer genoeg zijn nogal wat biomerkers onderhevig aan een grote mate van schomme-

lingen en belangrijke meetfouten. Uiteraard leidt dit tot bezorgdheid over de geldigheid

van medische beslissingen die op één enkele meting van een dergelijke merker gestoeld

zijn. Verscheidene studies hebben aangetoond dat beslissingen, genomen op basis van

verscheidene opeenvolgende metingen van eenzelfde merker, veel betrouwbaarder zijn. In

dat verband stellen onderzoekers zogenaamde persistentie-criteria voor, waarmee verwezen

wordt naar het twee (of meer) keer voorkomen van een verhoogde (of verlaagde) waarde

van dezelfde merker; hierbij is de grenswaarde natuurlijk van groot belang (Amornkul et

al., 2013; Zhang, 2015).

In Hoofdstuk 2 beschrijven we vier studies waar de tijd tot het overschrijden van een

bepaalde grenswaarde van groot belang is. De studies komen uit de volgende gebieden:

HIV/AIDS, cardiologie en psychiatrie. In Hoofdstuk 3 schetsen we de basisbeginselen van

de analyse van longitudinale gegevens, met bijzondere aandacht voor het random effect

model. Deze concepten vormen de bouwstenen voor de voorgestelde aanpak voor de

schatting van de tijd tot grenswaarde, die we uitwerken in Hoofdstuk 4.

In Hoofdstuk 4 stellen we dus een methode voor om de tijd tot het overschrijden van

een grenswaarde te schatten, op basis van persistentie-criteria. We maken daarbij gebruik

van een tweetraps methode. In eerste instantie passen we een lineair gemengd model aan
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de longitudinale metingen aan, waaruit dan voor de patiënt specifieke waarden volgen.

Die zijn een functie van zogenaamde vaste effecten en empirische Bayes schatters. Op

basis hiervan wordt de kans bepaald om twee opeenvolgende waarnemingen te hebben

die onder (of boven) een bepaalde grenswaarde liggen. Door dit te doen voor elk van de

geplande meetmomenten, kunnen we de verwachte overschrijdingstijd berekenen. Door

het afleiden van een recursieve relatie van de zogenaamde continueringskansen op elk mo-

ment, kunnen we aantonen dat de berekening van de verwachte tijd eenvoudig en efficiënt

is, en makkelijk gëımplementeerd kan worden met behulp van bestaande software. We

passen deze methodologie toe op twee studies en voeren een sensitiviteitsanalyse uit om

te achterhalen of ze robuust is tegen afwijkingen van de gemaakte veronderstellingen. Een

mogelijke tekortkoming is dat de methode, gegeven random effecten, onafhankelijkheid

veronderstelt van de residuen, de zogenaamde conditionele onafhankelijkheidsassumptie.

In Hoofdstuk 5 breiden we de methodologie, voorgesteld in Hoofstuk 4, zodanig uit

dat ook seriële correlatie kan meegenomen worden. Veronderstellend dat de zogenaamde

Markov eigenschap geldt, en met behulp van de kettingregel voor kansen, laten we zien

dat de continueringskans op elk moment kan uitgedrukt worden als het product van

conditionele kansen. We passen de methode toe op een cohort van HIV positieve personen,

waarbij we de tijd tot aan een CD4 grenswaarde schatten. Om de impact na te gaan

van het over het hoofd zien van seriële correlatie, vergelijken we de aanpak van vorig

hoofdstuk met de hier voorgestelde. We stellen vast dat het verkeerd modelleren van de

correlatiestructuur tot substantiële overschatting van de tijd tot grenswaarde kan leiden.

In Hoofdstuk 6 beschouwen we biomerkers die onderhevig zijn aan detectielimieten

en/of aan censurering. Onze methodologie wordt aan dergelijke situaties aangepast. We

stellen vast dat, mits het opnemen van censurering in de likelihood functie, de methode

uit Hoofdstuk 4 gewoon kan gebruikt worden. We passen ze dan toe op metingen van

virusdruk, gemeten in patiënten uit de ACTG 315 studie. Meer bepaald schatten we de

tijd tot behandelsucces.

In Hoofdstukken 4, 5 en 6 gingen we uit van continue biomerkers. Uiteraard vormt dit

een beperking. Immers, de gezondheidstoestand kan bijvoorbeeld ook gemeten worden

op een ordinale schaal, zoals we die vaak tegenkomen in de psychiatrie. In Hoofdstuk 7

stellen we daarom een variant voor van de methode uit Hoofdstuk 4, dus voor het geval
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van een ordinale merker. We passen de methode toe op gegevens van patiënten die be-

handeld worden voor schizofrenie, waarbij onze interesse uitgaat naar tijd tot remissie. De

methodologie voor tijd tot grenswaarde, voorgesteld in Hoofdstukken 4 t.e.m. 7, gaat uit

van de veronderstelling dat de ontbrekende gegevens ignorable zijn. Deze veronderstelling

wordt onderworpen aan een sensitiviteitsanalyse in Hoofdstuk 8. De thesis sluit af met een

samenvatting van de bijdragen, geleverd in de diverse hoofdstukken. Routes voor verder

onderzoek worden tot slot aangegeven.


