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Introduction

In this thesis, we consider planar dynamical systems. According to the dictionary,

a dynamical (from Greek dunamikos: powerful) system describes the physical and

moral forces that produce motion and changes in any field or system. In the math-

ematical setting we will study how a specific state, for example the position of a

particle subjected to the gravitational forces of planets, evolves over the course of

time. Often this time-dependence is expressed as a differential equation, a vector

field (continuous system, see Section 1.1) or a map (discrete system). One of the first

occurrences of dynamical systems is in Newtonian mechanics. Newton’s second law

states that inertia forces are proportional to mass times accelerations, which are time

derivatives of displacements due to motion in a system. This motion can then be

modelled by vector fields where the direction and speed of a moving particle is por-

trayed by a vector. The classical approach at that time to study the motions due to

external forces was to compute the solutions explicitly. Unfortunately, these systems

tended to have a complex behaviour and are not easily solvable and it is difficult to

predict the long-term behaviour.

Henri Poincaré (1854–1912) is often regarded as the founder of the theory of dynamical

systems. Some of his main contributions are the qualitative techniques developed for

planar vector fields, i.e. ordinary differential equations depending on two variables,

in his series of memoirs “Sur les courbes définies par une équation différentielle”

(see [43]). In particular, Poincaré showed that the long-term behaviour of a typical

bounded orbit in the plane are limit cycles, singularities or graphics, a result that

has no equivalent in higher dimensions. With an eye set on the three-body problem

in celestial mechanics he tackled questions of stability and behaviour of orbits near

periodic orbits in [45], [46], [47] and [48]. He also introduced the notion of bifurca-

tions and the study of families of dynamical systems depending on a parameter in the

notion of his study of planetary figures of equilibrium and rotating fluid masses ([44]).

A bifurcation occurs when a small change made to the parameter values of a system

causes a qualitative or topological change in its behaviour. Since many dynamical

systems describing real-life applications depend on parameters obtained from exper-
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imental data with some error margins, this is a very important subject to validate

the empirical results. In the footsteps of Poincaré, a lot of brilliant mathematicians

contributed to the domain of dynamical systems like Lyapunov, Birkhoff, van der

Pol, Andronov, Smale, etc., but providing a full history of the theory of dynamical

systems is beyond the scope of this thesis.

In 1900, at the International Congress of Mathematicians in Paris, David Hilbert

proposed a list of 23 challenging problems for the 20th century (see [26]) of which

the 16th problem is one of the most elusive. Whereas the first part of this problem

focuses on properties of algebraic curves, we will focus on the second part in terms

of dynamical systems. The question is as follows. Is the number of isolated periodic

solutions (limit cycles) of a planar polynomial vector field finite? We give a more

detailed description in Section 1.4. Due to the complexity of this problem, weakened

version of the Hilbert 16th problem, like the infinitesimal problem or Smale’s 13th

problem concerning Lienard’s equation, have been studied but the problem remains

unsolved.

One important contribution to the study of Hilbert’s 16th problem was made by

Robert Roussarie (see [51]). Instead of finding a global bound for the number of

limit cycles, he proposed to show that any limit periodic set appearing in an analytic

family of vector fields can only perturb to a finite number of limit cycles. This shows

the close relation of bifurcation theory to the study of Hilbert’s 16th problem. Limit

periodic sets include singular points, periodic orbits and polycycles or graphics which

are a connected finite union of singular points and obrits between them. The study

of bifurcations of singularities is already quite complex, as is illustrated by Bogdanov

and Takens in the study of singular points with non-zero nilpotent linear part (see

[4], [3] and [55]).

In this thesis, the main objective is to study the cyclicity of graphics consisting of a

curve with exactly one singularity. When the singularity is a hyperbolic saddle, one

can bound the cyclicity of this homoclinic saddle connection by transforming the vec-

tor field near the saddle to the Poincaré-Dulac normal form (see [52]). We elaborate

on these techniques in Section 1.3. The typical tool to obtain cyclicity results is the

Poincaré map. However, when passing near a singularity, the flow slows down drasti-

cally and different phenomena occur. Hence when the singularity is non-elementary,

we need advanced techniques to study the transition near the singularity.

A first method consists of transforming the vector field by means of a coordinate

change to a simpler form, called a normal form. Poincaré already discovered that the

obstacle to transform a vector field to its linear part are so-called resonances. By for-

mal transformations exploiting the linear part, Dulac showed that a vector field can
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be reduced to only these resonant terms [16], leading to the so-called Poincaré-Dulac

normal form. However, when the singularities are nilpotent or even more degenerate,

we need to use more information of the vector field than the linear part. Such results

using a similar procedure for instance exploit the (quasi-)homogeneous principle part

(see [35], [36] or [54]). These results are applicable in a neighbourhood of the singu-

larity and do not give a direct result in the computation of the transition near the

singularity.

Another approach is desingularizing the singularity using the blow-up technique in-

troduced by Takens in [56]. The singularity is then replaced by a circle depicting

the directions in which one can approach the singularity, called the blow-up locus.

It is shown by Dumortier in [17] that every non-elementary singularity satisfying a

 Lojasiewicz condition can be decomposed to a connection between (semi-)hyperbolic

singularities by means of a sequence of blow-ups. One can expect that semi-local

normal forms are needed, since they need to be applicable in the vicinity of (a part

of) the blow-up locus. Such semi-local normal forms are for instance obtained in [33]

near normally hyperbolic invariant manifolds. However in the setting under consid-

eration here, we lose normal hyperbolicity at some point indicating the need for new

techniques for semi-local normal forms.

The aim of this thesis is to provide techniques to study the dynamics of smooth planar

vector fields in the vicinity of a non-elementary singularity and to bound the cyclic-

ity of a graphic containing this singularity. In many situations a quasi-homogeneous

blow-up of the non-elementary singularity leads to two hyperbolic saddles having re-

ciprocal saddle quantities on the blow-up locus. In order to determine the transition

near the singularity, one needs to compute the transition near a saddle connection

having the aforementioned symmetry. The original objective was to give cyclicity

results for cuspidal loops as considered in [21]. However, as shown in the Bogdanov-

Takens bifurcation, a perturbation can lead to different kinds of singularities. As

a starting point, we only consider a part of the bifurcation diagram where the cusp

singularity is preserved as is done in [41]. In this way of thinking, it is quite natural to

fix some properties of the vector fields under consideration. We will not give cyclicity

results for the full bifurcation, but we believe that this work can be a starting point

to simplify computations as we will shortly discuss at the end of the thesis.

The vector fields appearing in the blow-up phase space are of the formẋ = (1− x2)
(
q
2

+ O
(
1− x2

))
+ O

(
y
)
,

ẏ =
(
px+ O

(
1− x2

))
y + O

(
y2
)
,

where y denotes the radial direction of the blow-up and x takes on the role of the

angular variable. The values p and q are directly related to the spectrum of the
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hyperbolic saddles situated at (±1, 0). Keeping the application to the blow-up of

non-elementary singularities in mind, these eigenvalues will be considered to be fixed,

since we only consider bifurcations preserving the nature of the singularity. We also

assume that the separatrix connection is fixed, since in applications, we will often

encounter the connection on the blow-up locus or at the boundary of a Poincaré disk.

According to the discussion in [24], having a connection between saddles with recip-

rocal saddle quantities is the most degenerate case in the study of 2-saddle cycles.

Besides possible local resonances there is a supplementary resonance between the two

saddles. Cyclicity results for these kinds of hyperbolic 2-polycycles with resonant sad-

dles have already been proven in [23] however when studying specific cases one loses

information near the fixed connection. The regular transition inbetween the saddles

can be of importance, even more than the non-smooth transition close to the saddles

themselves. For instance in [41], it can be seen that the regular transition will add

a non-smooth contribution to the transition map which is dominant in the transition

map. More non-degenerate cases consider connections between non-resonant saddles,

i.e. where p/q /∈ Q, or situations where the anti-symmetry is dropped and therefore

has no additional resonance between the saddles. Cyclicity results for these cases can

be found in [38]. The thesis is constructed as follows.

Since we are interested in the transition map when passing near the saddle connec-

tion, we need to simplify the vector field in a neighbourhood of this connection in a

smooth way. A topological conjugation of planar saddle connections has already been

constructed in [57], however this will not be sufficient to obtain cyclicity results. In

Chapter 2 we construct a smooth semi-local normal form to which the original vector

field is smoothly equivalent. This equivalence is valid close to the connection. This

result can be seen as a generalization of the smooth conjugacy of saddle connections

in scalar vector fields obtained in [2]. We distinguish several cases depending on the

local resonance of the saddles. This is done in a similar way as the Poincaré-Dulac

normalization. First, a formal conjugacy is constructed near the separatrix. This

inductive procedure provides either resonant terms, which also appear in the local

normal forms, or connecting terms. The latter is necessary for gluing both local nor-

mal forms together in a smooth way. Then, a smooth change of coordinates is realized

by applying a generalized version of Borel’s Theorem (see Section 1.2). Using the ho-

motopic method as explained in [18] and [32], one can locally remove the flat terms.

We generalize these results to be applicable in a neighbourhood of the connection,

which is not straightforward since the connection is not normally hyperbolic.

In [7], the authors show how to linearize the vector field in a neighbourhood of a res-

onant saddle using logarithmic expressions. This provides a straightforward method
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to compute the transition map near the saddle. Similarly in Chapter 3, we normally

linearise the obtained normal forms. By this we mean that we eliminate the terms

that are not linear in terms of y, which is the direction normal to the separatrix con-

nection. Doing so, we lose smoothness of the transformation. However we can express

this transformation as a smooth function of some finitely smooth tags of logarithmic

form and terms with fractional powers. Since the normally linearized systems admits

a straightforward first integral, we can define a constant of motion of the vector field

in normal form. This invariant, in turn, leads to a method in computing the transi-

tion map through the saddle connection.

As can be seen in applications (Section 5.2), the ratio of eigenvalues can be param-

eter dependent whereas the symmetry is preserved. We generalize the techniques of

Chapter 2 and Chapter 3 to also include these bifurcations in Chapter 4. Similar as

in the case of a family of hyperbolic saddles (Section 1.3.2 and Section 1.3.3), we can

only obtain finitely smooth normal forms and need to introduce compensators. The

results presented here are not yet complete but demonstrate the difficulty of allowing

perturbations in the eigenvalues of the saddles.

Eventually we apply these results to some examples, i.e. the cusp and the fake saddle.

Cyclicity results for the cuspidal loop when the nature of the singularity is preserved

have been obtained in [41]. In contrast to the complex analytic methods used in this

paper, we get similar results using real techniques which should be generalizable to

higher dimensions. The latter singularity has been studied in [13]. First the vector

fields need to be adapted to be suitable for the blow-up procedure and the following

normalization. We make use of the typical blow-up charts for a (quasi-) homoge-

neous blow-up as well construct a parabolic blow-up in order to fit both singularities

in one chart. Here, the parametrization of the blow-up circle (except for one point)

is induced by the parametrization of a parabola via stereographic projection. By

applying the previous results, we obtain the transition maps near the singularities

under investigation and acquire partial cyclicity results for graphics containing only

one singularity, having the form under consideration. This will be done in Chapter 5.
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Chapter 1

Preliminaries: Basic notions of

Dynamical Systems and Analysis

In this chapter we introduce the terminology which will be used throughout this thesis.

Some basic results from analysis will be presented and generalized to the situation in

which we are interested. Finally we describe the well-known Poincaré-Dulac normal

form theory and discuss the progress of research concerning Hilbert’s 16th problem.

1.1 Dynamical Systems

In this section we introduce the basic notions of dynamical systems and key properties

for their qualitative analysis. Since the main focus of this thesis is on planar vector

fields, we restrict the definitions to the Euclidean plane R2. However this terminology

can easily be generalized to a higher-dimensional setting. For a complete view on this

subject, we refer to [18], [27] or [42].

1.1.1 Vector fields, flows and equivalences

We start by defining smooth vector fields in the plane. Essentially we assign to each

point in a domain of definition U ⊂ R2 a vector v ∈ R2 which can be interpreted

as the velocity (speed and direction) of the movement of a particle subjected to this

vector field.

Definition 1.1.1. Let X : U → R2 be a Ck, respectively analytic map on an open

set U ⊂ R2, where k ∈ N∗ ∪ {∞}. A Ck, respectively analytic vector field X on U

is defined by a map

X : U → U × R2 : (x, y) 7→ ((x, y), X(x, y)) .

1



2 CHAPTER 1. PRELIMINARIES

Typically, we will refer to the map X as the vector field. Vector fields on an arbitrary

smooth manifold M can be defined in a similar way, with the extra condition that

the vector X(p) in a point p ∈ M should lie in the tangent space TpM . Most of the

vector fields encountered in this thesis will be at least C∞ unless stated otherwise

and will be called smooth.

Let F : I × U → R2 : (t, x, y) 7→ (f(t, x, y), g(t, x, y)) be a smooth function where

I ⊂ R and U ⊂ R2 are open. Consider the system of differential equations given byẋ = f(t, x, y),

ẏ = g(t, x, y),
(1.1.1)

where ẋ denotes the derivative dx
dt

with respect to time. We have the following

theorem.

Theorem 1.1.2. (Picard-Lindelöf Theorem) Consider the system (1.1.1) together

with the initial values t0 ∈ I and (x0, y0) ∈ U . If F is Lipschitz continuous in the

(x, y)-variable, i.e. ∃L ≥ 0 :

‖F (t, x1, y1)− F (t, x2, y2)‖ ≤ L ‖(x1, y1)− (x2, y2)‖ , (x1, y1), (x2, y2) ∈ U, t ∈ I,

then (1.1.1) locally has a unique solution (x(t), y(t)) of the same smoothness as F in

the (x, y)-variables with (x(t0), y(t0)) = (x0, y0).

Remark that the Lipschitz condition is satisfied when the first derivative of F with

respect to (x, y) is bounded on U . For instance, when F is C1 and I is a bounded

interval, the function F is locally Lipschitz in the x-variable. If F is smooth, the

solutions also depend smoothly on the initial values (t0, x0, y0). An example of a

vector field and some solutions is given in Figure 1.1. In this visualization we consider

the smooth vector field ẋ = y,

ẏ = − sin(x)− y
10
.

(1.1.2)

Each solution can be extended to a maximal solution , i.e. where its domain

M(t0,x0,y0) is maximal.

Definition 1.1.3. Consider the smooth set of differential equations given by (1.1.1).

If F is a vector field and thus independent of t, we will call this system autonomous.

Let

ϕ : M(t0,x0,y0) × I × U → R2 : (t, t0, x0, y0) 7→ ϕ(t, t0, x0, y0),

denote the unique solution of (1.1.1) with ϕ(t0, t0, x0, y0) = (x0, y0) and M(t0,x0,y0)

the maximal domain of existence for the initial values (t0, x0, y0). The smooth map

ϕ will be called the flow of the system.
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Figure 1.1: Solutions of (1.1.2) through (0, 2) (red) and
(
0, 5

2

)
(blue)

It is an easy exercise to check the so-called translation property of the flow, i.e.

ϕ (t, ϕ(s, t0, x0, y0)) = ϕ(t+ s, t0, x0, y0), for t, s, t+ s ∈M(t0,x0,y0).

This allows us to consider (1.1.1) in a dynamic way. We shall assume that all systems

are autonomous from now on.

Definition 1.1.4. A smooth (continuous) dynamical system on R2 is a smooth

function ϕ : R× R2 → R2 where ϕ(t, p) = ϕt(p) satisfies

(1) ϕ0 : R2 → R2 is the identity function, i.e. ϕ0(p) = p;

(2) ϕt ◦ ϕs = ϕt+s for each t, s ∈ R.

Typically we assume t0 = 0, hence we omit the t0-dependence from the notation of

the flow. Discrete dynamical systems are defined in a similar fashion where we restrict

t to N or Z. The orbit γ(p0) of a point p0 = (x0, y0) is defined as

γ(p0) = {ϕ(t, x0, y0) | t ∈M(x0,y0)}.

Since this definition is independent of the parametrization, different vector fields can

have the same set of orbits. The trajectory or integral curve of p0 should then be

understood as the solution (t, ϕ(t, x0, y0)) for all t ∈M(x0,y0) parametrized by t.

Theorem 1.1.5. Let ϕ be the flow associated to (1.1.1) and let p0 = (x0, y0) ∈ R2.

Then one of the following statements holds

(1) ϕ(·, p0) : M → R2 is a bijection onto its image.

(2) ϕ(·, p0) is constant and defined on R, i.e. γ(p0) is a point.
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(3) ϕ(·, p0) is periodic and defined on R with minimal period T > 0.

Points having a constant orbit, as in case (2) of the previous theorem, can have a rich

dynamic around them and are interesting to study. We call them singularities.

Definition 1.1.6. Consider a smooth autonomous dynamical system (1.1.1). If the

orbit of some p ∈ R2 is a point, then we call this point an equilibrium or a singular

point of the system. Other points are called regular.

The collection of all orbits, oriented in positive direction, is called the phase portrait

of the vector field. When we apply a diffeomorphism on R2, we get a different phase

portrait but the dynamics are essentially the same. For this purpose, we introduce

the notions of equivalence and conjugacy of vector fields.

Definition 1.1.7. Let F1 : U1 → R2 and F2 : U2 → R2 be two vector fields defined on

open subsets of the plane and k ∈ N∪{∞}. We say that F1 and F2 are Ck-equivalent

if there exists a Ck-diffeomorphism H : U1 → U2 sending orbits of F1 to orbits of F2

preserving the orientation.

As mentioned before, equivalent vector fields have essentially the same phase portrait

however the time needed to pass from one point to another subjected to F1 can be

different than for the corresponding points following the flow of F2. Even more the

transition time may depend in a non-continuous manner on the position. If we don’t

allow time-rescaling, we can impose a stronger condition:

Definition 1.1.8. Let ϕ1 : Ω1 → R2 and ϕ2 : Ω2 → R2 be the respective flows of

vector fields F1 : U1 → R2 and F2 : U2 → R2 and k ∈ N ∪ {∞}. The vector fields F1

and F2 are said to be Ck-conjugate if there exists a Ck-diffeomorphism H : U1 → U2

such that

H(ϕ1(t, p)) = ϕ2(t,H(p)), for every (t, p) ∈ Ω1.

Observe that an equivalence maps singular points to singular points and periodic

orbits to periodic orbits. A conjugacy also preserves the minimal period of a periodic

orbit. One can check that a necessary and sufficient condition for H to be a conjugacy

is given by

DHpF1(p) = F2(H(p)), for every p ∈ U1.

A typical example of C0-conjugate vector fields is given in Figure 1.2.

1.1.2 Singularities and invariant sets

When considering a singularity p, i.e. ϕ(t, p) ≡ p for all t, one typically looks at the

linearized system of (1.1.1) associated to p, i.e.

Ẋ = JX, (1.1.3)
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(a) Spiral Sink (b) Diagonal Sink

Figure 1.2: Example of topological conjugation

where J = DF (p) denotes the Jacobian of F evaluated at p. One can distinguish

different types of behaviour depending on the spectrum of J .

Definition 1.1.9. Consider a smooth autonomous dynamical system (1.1.1) with a

singularity p. Let λ1, λ2 ∈ C denote the eigenvalues of the linearized system (1.1.3) at

p. If both λ1 and λ2 have a non-zero real part, we call p a hyperbolic singularity.

We distinguish different cases

1. Re (λ1) < 0,Re (λ2) < 0: p is called a sink (see Figure 1.2);

2. Re (λ1) > 0,Re (λ2) > 0: p is called a source;

3. Re (λ1) ·Re (λ2) < 0: p is called a saddle (see Figure 1.3), the value −λ1/λ2 is

called the saddle quantity.

If there is exactly one zero eigenvalue, p is said to be semi-hyperbolic. If both

eigenvalues are zero but J 6= 0, we will call p a nilpotent singularity. In general,

singularities that are not hyperbolic nor semi-hyperbolic will be referred to as non-

elementary singular points.

Eigenvalues λ with non-zero real part and their corresponding eigenvectors are called

stable if Re (λ) < 0 and unstable if Re (λ) > 0. Observe that the linearized system

(1.1.3) is attracting in the directions of the stable eigenvectors and repelling in the

directions of the unstable eigenvectors.

Suppose that the flow for p ∈ R2 is defined for all t ∈ R. We define

ω(p) = {Y ∈ R2 | ∃(tn)n∈N ⊂ R : lim
n→∞

tn =∞, lim
n→∞

ϕ(tn, p) = Y },

and

α(p) = {Y ∈ R2 | ∃(tn)n∈N ⊂ R : lim
n→∞

tn = −∞, lim
n→∞

ϕ(tn, p) = Y }.
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Figure 1.3: Hyperbolic saddle

Definition 1.1.10. The sets ω(p) and α(p) are called the ω-limit set, respectively

α-limit set of p.

Observe that for equilibria and periodic solutions we have

α(p) = ω(p) = γ(p).

Denote by γ+(p) = {ϕ(t, p) | t ≥ 0} the orbit of p in positive direction. If γ+(p) is

contained in a compact subset of R2, one can show that ω(p) is a non-empty compact

connected subset of R2. Moreover it has the property that it is an invariant set.

Similar properties can be obtained for γ−(p) = {ϕ(t, p) | t ≤ 0} and α(p).

Definition 1.1.11. A subset K ⊂ R2 is called invariant for (1.1.3) if the orbit γ(p)

is contained in K for every p ∈ K. We call K positively invariant, respectively

negatively invariant, if γ+(p) ⊂ K, respectively γ−(p) ⊂ K, for every p ∈ K.

The following result only holds for R2.

Theorem 1.1.12. (Poincaré-Bendixson Theorem) Let p ∈ R2 and γ+(p) be

its positive orbit associated to (1.1.3). Assume that γ+(p) is contained in a compact

subset K of the plane and that the vector field has only a finite number of singularities

in K, then one of the following holds

(1) If ω(p) contains only regular points, then ω(p) is a periodic orbit.

(2) If ω(p) does not contain regular points, then ω(p) is a singular point.

(3) If ω(p) contains both regular and singular points, then it consists of a finite num-

ber of singularities P1, . . . , Pn and a finite number of orbits γ1, . . . , γn such that

α(γi) = Pi, ω(γi) = Pi+1 for i = 1, . . . , n − 1 and α(γn) = Pn, ω(γn) = P1.

Possible, some of the singular points Pi can coincide.
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This third type of limit set is also known as a graphic. Some examples are given in

Figure 1.4.

(a) Cuspidal loop (b) 2-saddle cycle

Figure 1.4: Example of graphics

We can also construct other invariant sets using the attracting part of a hyperbolic

point. Without loss of generality we can assume that the hyperbolic point coincides

with the origin.

Theorem 1.1.13. (Stable manifold Theorem) Let U ⊂ R2 be an open neighbour-

hood of the origin and F : U → R2 a smooth vector field with flow ϕ. Suppose that the

origin is a hyperbolic saddle. Then there exists a smooth one-dimensional manifold

Ms, respectively Mu, tangent to the stable, respectively unstable, eigenvector at 0 such

that Ms, respectively Mu is positively invariant, respectively negatively invariant, and

for all p ∈Ms, respectively q ∈Mu we have

lim
t→∞

ϕ(t, p) = 0, respectively lim
t→−∞

ϕ(t, q) = 0.

Definition 1.1.14. The manifolds Ms and Mu of Theorem 1.1.13 are respectively

called the local stable and unstable manifold of the saddle. The global (un)stable

manifold is obtained by propagating the local manifolds using the flow in both time-

directions.

The existence of these manifolds depends completely on the presence of a stable or

an unstable eigenvector. It is still applicable to the (un)stable direction when the

singularity is only semi-hyperbolic and therefore implying the existence of a stable or

unstable one-dimensional manifold at the semi-hyperbolic singularity.
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1.1.3 Periodic orbits and bifurcations

Let γ = {ϕ(t, p0) | t ∈ R} be a periodic orbit of a smooth vector field X : U → R2

with period T > 0. We are interested in the behaviour of the orbits close to γ. For

this, we introduce the following terminology.

Definition 1.1.15. Let I ⊂ R be an interval. A Ck-map f : I → U is called a

transverse local section of X if for every x ∈ I the vectors f ′(x) and X(f(x)) are

linearly independent. We call Σ = f(I) a transverse section of X.

Let Σ be a transverse section of X at p0 (see Figure 1.5). Since γ is compact and the

flow depends continuously on the initial value, there exists a neighbourhood V ⊂ Σ

of p0 such that

∀p1 ∈ V, ∃T1 > 0, ϕ(T1, p1) ∈ Σ.

We define a function P : V → Σ : p1 → P (p1) such that there is a T1 > 0 where

P (p1) = ϕ(T1, p1) and ϕ(t, p1) /∈ Σ for t ∈ (0, T1). This has the property that

P (p0) = p0.

Definition 1.1.16. The map P : V → Σ giving the first return map of the flow on

Σ is called a Poincaré map (see Figure 1.5).

Figure 1.5: A limit cycle and a Poincaré map at a transverse section

A Poincaré map is also referred to as a first return map or the holonomy onto the

section Σ. The map P reflects the asymptotic behaviour of the orbits of X close to

γ. Other periodic orbits close to γ are represented by fixed points of the Poincaré

map. If we parametrize the section Σ by x ∈ I, then these fixed points correspond to

zeroes of the function

∆ : I0 → I : x 7→ P (x)− x,
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where I0 corresponds to V . We will call this map the displacement map. If p0

corresponds to an isolated zero of ∆, we have the following:

Definition 1.1.17. A periodic orbit γ is called a limit cycle if there exists a neigh-

bourhood W of γ such that there are no singularities or periodic orbits other than Γ

in W .

The asymptotic properties near a limit cycle γ can be categorized in three cases

depending on the behaviour on a neighbourhood W of γ:

(1) γ is stable if ω(p1) = γ for every p1 ∈W (see Figure 1.5);

(2) γ is unstable if α(p1) = γ for every p1 ∈W ;

(3) γ is semi-stable if ω(p1) = γ for some p1 ∈W and α(p2) = γ for some p2 ∈W .

In fact, it is an easy exercise to verify that (1-3) hold thanks to the Poincaré-Bendixson

Theorem (Theorem 1.1.12). In case (3), the orbit splits the tubular neighbourhood W

into 2 connected components: one converging towards the limit cycle and the other

where points are repelled from the limit cycle. Stable and unstable periodic orbits

are also referred to as hyperbolic limit cycles.

Typically one studies the first derivative of the Poincaré map to classify the limit

cycle, for instance when P ′(p0) < 1, respectively P ′(p0) > 1, then γ is stable, respec-

tively unstable. In more degenerate cases, for instance when P (X0) = 1, we look at

the sign of the displacement map. Remark that the derivative of the Poincaré map is

always positive due to the Jordan curve Theorem (remember we are working in the

plane which is orientable) and uniqueness of solution. Orbits in the bounded region

with boundary γ stay in the bounded region.

Consider families of vector fields (Xλ) of the formẋ = f(x, y, λ),

ẏ = g(x, y, λ),
(1.1.4)

where λ typically lies in a compact space Λ ⊂ Rk for some k ≥ 1. If the functions f

and g depend smoothly on the parameters, then so does the flow. We are interested

in changes of the phase portrait depending on the parameters. For this we need the

notion of structurally stable vector fields. Consider the unit sphere S2 ⊂ R3 which is

the Alexandroff one-point compactification of the Euclidean plane R2 and denote by

χ(S2) the space of smooth vector fields on S2.

Definition 1.1.18. A vector field X ∈ χ(S2) is Cs-structurally stable for 1 ≤ s if

and only if there exists a neighbourhood U of X in χ(S2) for the Cs-topology, such

that any Y ∈ U is topologically equivalent to X.
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We define a generic class of vector fields as follows:

Definition 1.1.19. A vector field X ∈ χ(S2) is Morse-Smale if and only if

1. All singular points and periodic orbits are hyperbolic.

2. There are no heteroclinic nor homoclinic saddle connections, i.e. orbits with

either two different saddles as α- and ω-limit set, respectively the same saddle

as α- and ω-limit set.

These vector fields are stable when we perturb in a Cs-way, i.e.

Theorem 1.1.20. (Andronov-Pontryagin, Peixoto) A vector field X ∈ χ(S2) is

Cs structurally stable if and only if it is Morse-Smale. Moreover the set of Morse-

Smale vector fields is open and dense in χ(S2).

As a result, we know that the subset of Λ where Xλ is structurally stable is an open,

dense set U(Xλ). On each connected component, the phase portrait is topologically

constant. However on its complement Σ(Xλ), the phase portrait will change.

Definition 1.1.21. We call Σ(Xλ) the bifurcation set of the family (Xλ). If the

parameter crosses the bifurcation set, we say that the vector field undergoes a bifur-

cation.

Typical phenomena that can occur are for example the collision of two singularities

which disappear (e.g. saddle-node bifurcation) or changes in the stability of a singu-

larity (e.g. Hopf bifurcation). We are interested in the number of limit cycles that

can originate from these bifurcations. This is done by looking at special invariant

sets as we will explain below.

Definition 1.1.22. A limit periodic set for (Xλ) is a compact non-empty invariant

subset Γ of Xλ∗ such that there exists a sequence (λn)n∈N → λ∗ in Λ where Xλn has

a limit cycle γλn for every n satisfying:

γλn → Γ, for n→∞,

where this convergence is defined in the Hausdorff topology.

A similar result as Theorem 1.1.12 holds for limit periodic sets Γ, i.e. Γ is either a

singularity, a periodic orbit or a graphic. The maximal number of limit cycles that

can bifurcate from a limit periodic set is called its cyclicity.

Definition 1.1.23. Let Γ be a limit periodic set of a smooth family Xλ at some

value λ∗ ∈ Λ. We say that Γ has cyclicity ≤ n if there exist neighbourhoods U ⊂ R2,

respectively V ⊂ Λ of Γ, respectively λ∗ such that for every λ ∈ V , the vector field

Xλ has at most n limit cycles in U . The minimal n for which this is true is called

the cyclicity of Γ if it exists. Otherwise it is said to be infinite.
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One wants to bound the cyclicity of every limit periodic set that can occur in a family

of smooth vector fields. In this way, we can show the finiteness of the number of limit

cycles in this family, which is the objective of Hilbert’s 16th problem (see Section 1.4).

Theorem 1.1.24. (see [51]) Let (Xλ) be a C1 family of vector fields defined on a

compact surface K of genus 0 with a compact set of parameters Λ. Then there exists

a uniform bound for the number of limit cycles of each vector field Xλ if and only if

each limit periodic set Γ of (Xλ) has a finite cyclicity in (Xλ).

The method of bounding the cyclicity of a particular graphic is typically done by a

two-step procedure.

First one chooses a local transverse section f : I = (−ε, ε) → R2 for some ε > 0

near a regular point p of the graphic such that f(0) = p. Since the vector field

depends smoothly on the parameters, this remains a transverse section for small

perturbations in the vector field. Then one computes a parameter-dependent Poincaré

map P : V ⊂ Σ = f(I) → Σ. Depending on where a first return map exists, the

interval V will be of the form f ((−δ, δ)) or f([0, δ)) for some δ > 0. Computing

P explicitly is not a straightforward task, since the vector field slows down near

singularities. For instance, the transition near a saddle point, called a Dulac map

D (see Figure 1.6), has a transition time that will diverge to infinity when the initial

value approaches the stable manifold. In order to compute D, one simplifies the

vector field locally by putting it in local normal form. This can be done by smooth

equivalences since a time-reparametrization doesn’t influence the Poincaré-map.

Figure 1.6: Poincaré map of homoclinic saddle connection as composition of the Dulac

map D and a regular map R

Once the Poincaré map P is obtained, one studies the displacement map ∆ = P − Id.
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By using for instance a division-derivation algorithm, one can put a bound on the

cyclicity as an application to Rolle’s Theorem.

We present some of the analytic tools that we will need in the rest of the thesis in

Section 1.2. Then we will illustrate this method of computing the Poincaré map for

a hyperbolic saddle in Section 1.3.

1.2 Basic analytic tools and generalizations

In this section we briefly recollect some basic results in analysis. We state a general-

ization of Borel’s Theorem to a closed interval as has already been done by Whitney.

In order to make the text self-contained, we present a different version of the proof

without imposing compatibility conditions. We end by listing the definitions and

some properties of the Γ function and the hypergeometric function which will appear

in applications (see Chapter 5).

1.2.1 Bounding cyclicity using Rolle’s Theorem

As discussed in Section 1.1.3, we wish to bound the number of limit cycles that can

bifurcate from a limit periodic set Γ. This is done by looking at the displacement

map

∆ : (−ε, ε)× Λ→ R : (x, λ) 7→ ∆(x, λ),

on a transversal section Σ for some compact set Λ and some ε > 0 (see Figure 1.6

where ∆ = R ◦D − Id). If the limit set occurs at λ∗, we assume that ∆(0, λ∗) = 0

corresponds to the point on the graphic Γ. Hence the goal is to limit the number of

zeroes of ∆ for a neighbourhood of λ∗ in Λ. A useful tool is Rolle’s Theorem.

Theorem 1.2.1. (Rolle’s Theorem) If f : U ⊂ R→ R is continuous on [a, b] ⊂ U
and differentiable on (a, b) and f(a) = f(b), then there exists at least one c in the

open interval (a, b) such that f ′(c) = 0.

We can reverse the statement. If f ′ has at most n zeroes and f is smooth on its

domain, then f can’t have more than n + 1 zeroes. By inductively applying Theo-

rem 1.2.1, we have the following corollary.

Corollary 1.2.2. Let f : U ⊂ R → R be smooth on U . If there is a c ∈ U such

that f (n)(c) 6= 0 for some n ≥ 1, then there exists an open neighbourhood V ⊂ U

containing c such that f has at most n+ 1 zeroes in V .

1.2.2 Smooth realizations of formal transformations

When constructing normal forms, this is typically done in a formal way. By an

induction procedure, one applies an infinite amount of near-identity transformations
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on the original system, which generically diverges. In order to deal with this problem,

one can use the Borel Theorem to get smooth results. This result was first stated in

[9]. An elegant proof can be found in [39].

Theorem 1.2.3. (Borel Theorem) Let n ≥ 1 and suppose we are given cα ∈ R for

every n-tuple α = (α1, . . . , αn) ∈ Nn. Then there exists a smooth function f : Rn → R
such that

1

α!
Dαf(0) = cα,

for every α. Hence the Taylor series of f is given by

j∞f(0) =
∑
α∈Nn

cαx
α.

The formulation of this theorem uses the multi-index notation, i.e.

α! = (α1 + . . .+ αn)!, Dα =
∂α1+...+αn

∂α1x1 · · · ∂αnxn
.

We will use jkf(0) for k = 1, . . . ,∞ throughout this thesis and we shall therefore

shortly explain the notation. Consider two smooth functions f and g defined in

a neighbourhood of the origin. The germs of f and g at the origin are called k-

jet equivalent for some k ≥ 0 if they have the same value at 0 and all of their

partial derivatives in 0 agree up to order k. The induced set of equivalence classes in

C∞ (Rn,R) is called the k-jet space Jk0 (Rn,R). The k-jet jkf(0) of a function f at 0

then refers to the equivalence class of f in Jk0 (Rn,R). As representative, one typically

fixes a coordinate system and chooses the k-th Taylor polynomial of the function f

at 0 which will therefore also be referred to as jkf(0).

There exist several generalizations of the Borel Theorem, most known is Whitney’s

extension Theorem (see [58]). Consider a closed subset A ⊂ Rn. Let f(x) be defined

in A and let m ≥ 1 be an arbitrary but fixed integer. For every multi-index α =

(α1, . . . , αn), denote

σα = α1 + · · ·+ αn.

The function f(x) = f0(x) is of class Cm in A in terms of some functions fα(x)

(α ∈ Rn, σα ≤ m) if the functions fα(x) are defined in A and

fα(y) =
∑

σα+σβ≤m

fα+β(x)

β!
(y − x)β +Rα(y, x), (1.2.1)

for each fα(x), where Rα(y, x) has the following property. Given any point x0 of A

and any ε > 0, there is a δ > 0 such that if x and y are any two points of A with

‖x− x0‖ < δ and ‖y − x0‖ < δ, then

|Rα(y, x)| ≤ ‖x− y‖m−σα ε.

Observe that this property is trivially satisfied at every isolated point of A.
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Theorem 1.2.4. (Whitney extension Theorem, [58]) Let A be a closed subset of

Rn and let f(x) = f0(x) be of class Cm in A in terms of the fα(x) (σα ≤ m) in the

sense of (1.2.1). Then there is a function F (x) of class Cm in Rn in the ordinary

sense, such that

1. F (x) = f(x) in A,

2. DαF (x) = fα(x) in A (σα ≤ m),

3. F (x) is analytic in Rn\A.

Proof: A proof can be found in [58] or [39].

Since we are interested in a very specific situation, we do not want to impose the

compatibility conditions (1.2.1). We provide a proof for the generalization of Borel’s

Theorem based upon a proof of [34], where a similar result is constructed for Banach

spaces admitting smooth bump functions. It is similar to the proof of Borel in one

dimension, but instead of constants we choose a sequence in the space Ck([−1, 1]) for

some k = 1, . . . ,∞.

Theorem 1.2.5. Let fn(x) ∈ Ck([−1, 1]) for n ≥ 0 be a sequence of functions with

0 ≤ k ≤ ∞. Then there exists a function f(x, y) such that ∂ix∂
j
yf(x, y) is continuous

on [−1, 1]× R for every 0 ≤ i ≤ k and j ≥ 0 satisfying

∂ny f(x, 0) = n!fn(x),

for every n ≥ 0 and thus

j∞f(x, 0) =
∑
n≥0

fn(x)yn.

Proof: Let ρ : R→ R be a C∞ bump function around zero, for instance satisfying

ρ : u 7→

1 |u| ≤ 1
4
,

0 |u| ≥ 1
2
.

For λ > 0, we can easily shrink the support of this function by dilating the variable x

ρ(λu) =

1 |u| ≤ 1
4λ
,

0 |u| ≥ 1
2λ
.

Let F denote the functions on [−1, 1] × R which are at least continuous and have a

compact support. We define a norm ‖·‖ on F by

‖f‖ = sup{|f(x, y)| | (x, y) ∈ [−1, 1]× R}.

We define a sequence of positive numbers 1 ≤ λ0 < λ1 < . . ., as follows:

λ0 = max{2 ‖f0‖ , 1}, (1.2.2)
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and

λn = 2 max{λn−1,

∥∥∥∥ ∂l+mgn∂xl∂ym

∥∥∥∥
1

n−m−l

| l +m < n, l ≤ k}. (1.2.3)

Observe that limn→∞ λn =∞. Denote

gn(x, y) = fn(x)ρ(y)yn.

We show that the required function f is given by

f(x, y) =
∑
n≥0

1

λnn
gn(x, λny) =

∑
n≥0

fn(x)ρ(λny)yn. (1.2.4)

Since the sequence (λn)n∈N is strictly increasing and approaching infinity, we can

easily see that f consists of a finite summation of functions having the required

smoothness for every y > 0. Therefore it is sufficient to show the smoothness in the

neighbourhood of y = 0, where f is given by f(x, 0) = f0(x).

First we show that differentiation of this function in a neighbourhood of y = 0 cor-

responds to term by term differentiation of the series (1.2.4). Therefore we have to

show that for every 0 ≤ i ≤ k and j ∈ N, the series

f i,j(x, y) =
∑
n≥0

1

λnn

∂i+j (gn(x, λny))

∂xi∂yj
, (1.2.5)

converges uniformly for λn satisfying (1.2.2) and (1.2.3). A straightforward compu-

tation shows that due to (1.2.2) and (1.2.3) we have

1

λn−m−ln

∥∥∥∥ ∂l+mgn∂xl∂ym

∥∥∥∥ ≤ 1

2n−m−l
, for every n ≥ m+ l. (1.2.6)

Due to the general Leibniz rule, we have

∂l+mgn
∂xl∂ym

(x, y) =

m∑
p=0

(
m

p

)(
∂l

∂xl
fn(x)

)(
∂p

∂yp
yn
)(

∂m−p

∂ym−p
ρ(y)

)
,

=

min{m,n+1}∑
p=0

(
m

p

)(
∂l

∂xl
fn(x)

) (
∂m−p

∂ym−p
ρ(y)

)
(n)py

n−p,

where (n)0 = 1 and (n)p = n(n − 1) · · · (n − p + 1) for 1 ≤ p ≤ n. Since n is fixed,

this is also a finite sum and if we confine ourselves to the open set |y| < 1, we get∥∥∥∥ ∂l+mgn∂xl∂ym

∥∥∥∥ ≤ min{m,n+1}∑
p=0

(
m

p

)
(n)p

∥∥∥∥∂lfn∂xl

∥∥∥∥∥∥∥∥∂m−pρ∂ym−p

∥∥∥∥ .
These are all bounded since these are continuous functions with a compact support.

Observe that

f i,j(x, y) =
∑
n≥0

λjn
λnn

∂i+jgn
∂xi∂yj

(x, λny).
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Thus

∑
n≥0

∥∥∥∥ 1

λnn

∂i+j (gn(x, λny))

∂xi∂yj

∥∥∥∥ ≤
i+j−1∑

n=0

+
∑
n≥i+j

 1

λn−jn

∥∥∥∥ ∂i+jgn∂xi∂yj

∥∥∥∥
λn≥1

≤
i+j−1∑
n=0

1

λn−jn

∥∥∥∥ ∂i+jgn∂xi∂yj

∥∥∥∥+
∑
n≥i+j

1

λn−j−in

∥∥∥∥ ∂i+jgn∂xi∂yj

∥∥∥∥
(1.2.6)

≤
i+j−1∑
n=0

1

λn−jn

∥∥∥∥ ∂i+jgn∂xi∂yj

∥∥∥∥+
∑
n≥i+j

1

2n−j−i

=

i+j−1∑
n=0

1

λn−jn

∥∥∥∥ ∂i+jgn∂xi∂yj

∥∥∥∥+
∑
n≥0

1

2n
,

which is a convergent series since the first summation is finite and the second a

geometric series. Therefore we showed the uniform convergence of (1.2.5).

Hence we have constructed a function f(x, y) of the required smoothness, such that

for i ≤ k, j ∈ N and |y| < 1 we have

∂i+jf

∂xi∂yj
(x, y) = f i,j(x, y),

and thus
∂nf

∂yn
(x, 0) = f0,n(x, 0) = n!fn(x)ρ(n)(0) = n!fn(x).

When we apply Theorem 1.2.3 or 1.2.5 to obtain smooth realizations of the con-

structed formal transformation, typically flat functions arise.

Definition 1.2.6. A function f : Rn × Rk → R : (x, y) 7→ f(x, y) will be called

(infinitely) flat in x at a ∈ Rn if the Taylor-series of f at x0 seen as a function of

x with parameters y vanishes, i.e.

j∞f(x0, y) ≡ 0.

A typical example of a flat function in R at 0 (see Figure 1.7) is given by

χ0 : R→ R : x 7→

e
− 1
x2 if x > 0,

0 if x ≤ 0.
(1.2.7)

1.2.3 The Gamma function and the Hypergeometric function

In this section we list some properties of the Gamma function Γ(·) and the hypergeo-

metric function Hypergeom ([·, ·] , [·] , ·). These will naturally occur when dealing with

the normal forms and their applications. These definitions and more can be found in
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Figure 1.7: Graph of flat function χ0(x) in [−1, 1]

[25].

The Gamma function Γ can be seen as an extension of the factorial function to

all complex numbers except for the negative integers. In this thesis the Gamma func-

tion will only occur for positive real numbers, where it is defined via a convergent

improper integral.

Definition 1.2.7. The Gamma function Γ(z) is defined for z > 0 by

Γ(z) =

∫ ∞
0

e−ttz−1 dt.

Some easy results can be shown.

Lemma 1.2.8. The function Γ(z) has the following properties

1. Γ(z + 1) = zΓ(z) for z > 0;

2. Γ(n) = (n− 1)! for n ∈ N∗.

For a > 0, define

(a)n =
Γ(a+ n)

Γ(a)
,

which corresponds to

(a)0 = 1, (a)n = a(a+ 1) · · · (a+ n− 1) for n = 1, 2, . . . .

The hypergeometric function is seen as a solution of the differential equation

z(1− z)d
2u

dz2
+ (c− (a+ b+ 1)z)

du

dz
− abu = 0.
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We will denote this solution as

Hypergeom ([a, b] , [c] , z) = 2F1(a, b; c; z).

One can then check that the following is a solution of the differential equation

Hypergeom ([a, b] , [c] , z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn, (1.2.8)

where we impose that −c /∈ N.

This series is absolute convergent for |z| < 1. If moreover Re(a+ b− c) < 0, there is

even absolute convergence for |z| = 1.

We can rewrite this function in an integral representation. If Re c > 0 and Re

b > 0, then we have Euler’s formula

Hypergeom ([a, b] , [c] , z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt. (1.2.9)

1.3 Dulac map and cyclicity of a homoclinic saddle connec-

tions

In this section we illustrate the well-known techniques in local normal form theory

which we want to consider in a semi-local setting in the next chapters. First we

describe the Poincaré-Dulac normalization in the special case of a resonant saddle

as can be found in [18] in Section 1.3.1. This method of work will be generalized in

Chapter 2 in a semi-local context. In Section 1.3.2, we construct a similar normal

form when we consider perturbations of a resonant saddle. Then we use the Poincaré-

Dulac normal form to construct an asymptotic expansion of the Dulac map near a

resonant saddle, considered as an unperturbed vector field as well as part of a smooth

family of vector fields in Section 1.3.3. This and further details can also be found

in [49] or [50]. Even in the unperturbed system, computing the displacement map

will prove to be a lot more complicated when dealing with a non-local displacement

near a saddle connection as will be shown in Chapter 3. The unfoldings of saddle

connections will then be considered in Chapter 4.

1.3.1 Poincaré-Dulac Normal Form

We display the typical Poincaré-Dulac normalization near a singularity. This method

exploits the linear part of the vector field, which is interesting when we consider a

hyperbolic or semi-hyperbolic singularity, as can be found in [18] and [32]. For non-

elementary singularities, one typically resorts to other normalization methods.
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First we prepare the linear part of the vector field. Suppose we have an autonomous

system (1.1.1) with a saddle-singularity in the origin. A saddle is resonant if the

associated saddle quantity is given by

λ =
p

q
, with p, q ∈ N∗, gcd(p, q) = 1.

Without loss of generality we can assume, up to a time-reparametrization, that the

eigenvalues are exactly given by −p and q. The definition of resonance can be gener-

alized to arbitrary singularities.

Definition 1.3.1. Let n ≥ 2. Consider a system Ẋ = F (X) in Rn with a singularity

P ∈ Rn having {λ1, . . . , λn} as the set of eigenvalues of the matrix DF (P ). The

singularity is called

a) resonant if there exist relations among the numbers λj of the form λj =
∑n
i=1 ki,jλi,

where ki,j ∈ N, i, j ∈ {1, . . . , n} and
∑n
i=1 ki,j ≥ 2.

b) non-resonant if there exist no such relations.

c) strongly one-resonant if all the non-trivial resonance relations λj =
∑n
i=1 ki,jλi

are generated by a single one
∑n
i=1 k

∗
i λi = 0, i.e. ki,j = m (k∗i − δij) for some

m ∈ N0, where δij denotes the Kronecker delta function.

It is easily seen that a resonant saddle is strongly one-resonant. If we display all the

points (k∗1 , k
∗
2) in the grid N2 for which we have an integral relation, then these will all

lie on a line through the origin where the slope depends only on the saddle quantity

(see Figure 1.8). As we will show below, these resonant points denote the exponents

of monomials that occur in the normal form.

Figure 1.8: Resonant terms when (λ1, λ2) = (1,−1) (red) and (λ1, λ2) = (1,−2)

(green)
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If we transform the eigenvectors to the standard basis of R2 by means of a conjugation,

then the linearized system Ẋ = AX is given byẋ = qx,

ẏ = −py.

The total system can thus be written asẋ = qx+ f(x, y),

ẏ = −py + g(x, y),
(1.3.1)

where f and g are both O
(
‖(x, y)‖2

)
. Now we can apply an induction procedure

given by the adjoint action of the linear part A of the vector field. This is a map

admA : Hm(R2)→ Hm(R2) : X 7→ [A,X],

where [A,X] = A ◦X −X ◦A is seen as a differential operator and Hm(R2) denotes

the set of polynomial vector fields on Rn of homogeneous degree m.

Theorem 1.3.2. (Poincaré-Dulac Formal Normal Form) Let X be a smooth

vector field in a neighbourhood of the origin where X(0) = 0, DX(0) = A. Then

there is an analytic change of coordinates Φ : R2 → R2 such that Y = Φ∗(X) is of

the form

Y (y) = Ay + g2(y) + . . .+ gr(y) + O
(
‖y‖r+1),

where r ≥ 1 and gm ∈ Gm for m = 2, . . . , r, where Gm is a complement for the image

Bm = admA(Hm(R2)) in Hm(R2).

The monomials in Gi are called the resonant terms. If we apply this theorem by

induction for r →∞, we get a formal transformation leaving only the resonant terms

which leaves us with the question of convergence of the transformation. If the convex

hull of the eigenvalues in C does not contain the origin, this form is even polynomial

and the reduction is real analytic when starting from an analytic vector field. The

transformation is also analytic when the eigenvalues λ1, λ2 satisfy the small divisors

condition for some C > 0, ν > 0:

|m1λ1 +m2λ2 − λi| ≥
C

(m1 +m2)ν
,

for all m1,m2 ∈ N satisfying m1 + m2 ≥ 2 for i = 1, 2. When this condition is

satisfied, Siegel’s Theorem states that the system can be analytically linearized.

We describe the technique used to prove Theorem 1.3.2 (see [18]), applied to the

resonant saddle case, by reducing (1.3.1) to its smooth orbital normal form, i.e. the

optimal form to which we can reduce (1.3.1) by smooth equivalence. As a consequence
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of Theorem 1.1.13, there exist smooth graphs y = ϕ(x) and x = ψ(y) representing

respectively the unstable and stable manifold of the saddle. By a transformation

ỹ = y − ϕ(x), we can assume that the unstable manifold is given by ỹ = 0. A sim-

ilar process can be done for the stable manifold. This is called straightening the

invariant manifolds. If we rewrite the new variables again as (x, y), we getẋ = qx(1 + f1(x, y)),

ẏ = −py(1 + g1(x, y)).

The factor 1 + f1(x, y) is locally positive, so by reparametrizing time we arrive atẋ = qx,

ẏ = y(−p+ g2(x, y)).
(1.3.2)

We consider g2 as a formal power series and apply the transformation

(x, y) = (X,Y + κXmY n+1), (1.3.3)

obtainingẊ = qX,

Ẏ = Y
(
−p+ g2(X,Y ) + κ(pn+ qm)XmY n + O

(
‖(X,Y )‖n+m+1)) .

By an adequate choice of κ we can eliminate the term of degree (m,n) in g2 if and

only if

pn+ qm 6= 0, or equivalently, n = qk, m = pk for some k ∈ N. (1.3.4)

Remark that this corresponds to a point on the resonant line in Figure 1.8. By

continuing by induction one can get a formal transformation

y = y∞

1 +
∑

m+n≥2

κm,nx
myn∞

 , (1.3.5)

transforming (1.3.2) toẋ = qx,

ẏ∞ = y∞
(
−p+

∑
n≥1 αnx

pnyqn∞

)
.

Theorem 1.2.3 states that the transformation (1.3.5) can be realized as the Taylor

series of a smooth function y = F (x, z), such that in the new coordinatesẋ = qx,

ż = z (p+ h(xpzq)) + zF (x, z),
(1.3.6)

for some smooth function h with h(0) = 0 and where F is flat at the origin. These

flat terms can be removed by a smooth transformation using a theorem by Chen (see

[10]).
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Theorem 1.3.3. Let X =
∑
ai(x)∂/∂xi and Y =

∑
bi(x)∂/∂xi be two C∞ vec-

tor fields in Rn having 0 as a hyperbolic singular point. Denote by âi(x) and b̂i(x)

the respective Taylor expansions of ai(x) and bi(x) in x. Then there exists a C∞

transformation about 0 which carries X to Y if and only if there exists a formal

transformation which carries the formal vector field
∑
âi(x)∂/∂xi to

∑
b̂i(x)∂/∂xi.

This is a generalization of a linearization theorem by Sternberg (see [53]).

Theorem 1.3.4. If X is a smooth vector field with a hyperbolic equilibrium where

there are no resonances, then it is smoothly equivalent to its linear part in the neigh-

bourhood of the singularity.

Following [49], we construct the transformation from Theorem 1.3.3 explicitly. The

key element is the normal hyperbolicity of both invariant manifolds. First we de-

compose the flat terms such that they are flat in the normal direction of one of the

invariant manifolds.

Lemma 1.3.5. Let f : R2 → R be a smooth functions in a neighbourhood V of

the origin which is flat, i.e. j∞f(0, 0) = 0. Then there is a smooth decomposition

f = g + h such that

j∞g(x, 0) = 0, and j∞h(0, y) = 0, (x, 0), (0, y) ∈ V.

These can separately be removed. For example, let X and Y be smooth vector fields

such that j∞(Y )(x, 0) = 0. Instead of directly constructing a smooth diffeomorphism

ϕ with j∞(ϕ − Id)(x, 0) = 0 that conjugates X and X + Y , one finds a path of

transformations

ϕ : [0, 1]→ Diff∞(R2) : τ 7→ ϕτ

which conjugate X and X + τY . Denote ϕ(x, y, τ) = ϕτ (x, y).

Lemma 1.3.6. Let Zτ be a τ -dependent vector field with j∞(Zτ )(x, 0) = 0 such that

[X + τY, Zτ ] = Y. (1.3.7)

Then ϕτ determined by ϕ0 = Id and

∂ϕ

∂τ
(x, y, τ) = Zτ (ϕ(x, y, τ))

is a smooth diffeomorphism, conjugating X and X + τY with j∞(ϕτ − Id)(x, 0) = 0.

The vector field from Lemma 1.3.6 can be constructed as follows. Define

Zτ (x, y) = −
∫ ∞

0

(F (γ(x, y, τ, t)))−1(Y (γ(x, y, τ, t)))dt for y 6= 0, (1.3.8)

Zτ (x, y) = 0 for y = 0,
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where F (γ(x, y, τ, t)) is the fundamental matrix solution along an orbit of the varia-

tional equation

d

dt
F (γ(x, y, τ, t)) = [D(x,y)(X + τY )(γ(z, τ, t))]F (γ(x, y, τ, t)),

F (γ(x, y, τ, 0)) = I.

It is easy to verify that this vector field Zτ satisfies (1.3.7). The smoothness and

convergence is assured due to the following proposition.

Proposition 1.3.7. Consider the differential systemẋ = f(x, y) + τY1,

ẏ = y (g(x, y) + τY2) ,

on some ε-neighbourhood V of M = {y = 0}, where f, g, Y1 and Y2 are C∞ functions

satisfying j∞Y1(x, 0) = j∞Y2(x, 0) = 0. Suppose there is a compact C ⊂ M such

that f is supported in C × R and that g(x, y) + τY2 < −λ for some λ > 0, τ ∈ [0, 1]

and (x, y) ∈ V . Then there exists a smooth vector field Zτ satisfying (1.3.7) and with

j∞(Zτ )(x, 0) = 0 for every x.

Applying these previous results we have shown the existence of a smooth equivalence

between (1.3.1) and ẋ = qx,

ẏ = y(−p+ h(xpyq)),
(1.3.9)

for some smooth function h, h(0) = 0.

1.3.2 Normal form of a family of hyperbolic vector fields

When we perturb a vector field having a resonant saddle, we can do a similar process

as in the previous section. However, since the saddle quantity becomes parameter

dependent, we need to be careful since more resonant terms can occur. These results

can also be found in [32].

Consider a C∞ family of vector fields Xε given byẋ = f(x, y, ε),

ẏ = g(x, y, ε),

where ε ∈ Rk is considered in some neighbourhood V of the origin. Suppose that the

origin is a resonant saddle for X0 with p : q resonance as in (1.3.2). By virtue of the

implicit function Theorem, we can assume that Xε has a singularity at the origin for ε

in some neighbourhood of the origin. Indeed, due to the hyperbolicity the singularity

persists and smoothly depends on the parameter. By a translation, this can be located
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in the origin. Then we want to prepare the linear part of the system for all parameter

values such that we can repeat the Poincaré-Dulac normalization. This is possible

since the transformation to Jordan normal form of the linear part depends smoothly

on the parameters which is an immediate consequence of the following propositions.

Proposition 1.3.8. Let Aε be a real 2 × 2 matrix where the coefficients are C∞

functions of a parameter ε ∈ B(0, r) such that the eigenvalues have multiplicity 1.

Then there exists an r̃ ∈ R+\{0} such that the eigenvalues of Aε are C∞ functions

of ε for all ε ∈ B(0, r̃).

The proof is essentially given by applying the implicit function Theorem to the charac-

teristic polynomial of the matrix (see [40]). Using the requirement that the eigenvalues

have multiplicity 1 we can also show:

Proposition 1.3.9. Under the same conditions of Proposition 1.3.8, we have that the

eigenvectors associated with the eigenvalues of Aε are C∞ functions of ε ∈ B(0, r̃).

Observe that a small perturbation of a hyperbolic saddle remains a hyperbolic saddle

due to Proposition 1.3.8. Following the transformation that puts the linear part in a

diagonal form, we can again straighten the local stable and unstable manifolds since

they depend smoothly on the parameters. Hence if we apply this to the case of a

perturbation of a p : q resonant saddle, we can assume that the family Xε is of the

form ẋ = qx(1 + f1(x, y, ε)),

ẏ = (−p+ α(ε))y + yg1(x, y, ε),
(1.3.10)

where α depends smoothly on ε and where f1 and g1 are O
(
‖(x, y)‖2

)
. For simplicity

we omit the parameter dependence of α. In fact we can embed these parameters in

a larger set such that α itself is considered as a parameter. By induction, we apply

similar transformations as (1.3.3) but where the coefficient is parameter-dependent.

However we have to take the small perturbance by α into account when we consider

the resonance relation. Instead of a resonant line as in Figure 1.8, we now obtain

a resonant sector as in Figure 1.9, where the angle of the sector reduces when α is

restricted to a smaller neighbourhood of the origin. In such a way, we can make sure

that no other resonant terms arise up to some homogeneous degree N . For example

in Figure 1.9, the sector contains no other resonant terms up to degree 6.

Hence for an arbitraryN > 1, we can assume that the vector field (1.3.10) is equivalent

to the following pre-normal formẋ = qx,

ẏ = y (−p+ α(ε) + Pε (xpyq) +Rε(x, y)) ,
(1.3.11)
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Figure 1.9: Resonant sector (green) when perturbing a 1− 1 resonant saddle (red)

where Rε(x, y) = O
(
‖(x, y)‖N+1) and Pε(u) is a polynomial in u where the coefficients

depend smoothly on ε. In [32] it is shown that by means of a Cn-conjugacy for some n,

we can eliminate the term Rε(x, y) if N is large enough, depending only on n, p, q. A

similar result can also be obtained for diffeomorphisms as has been done in [6] where

an explicit lower bound is given for N . Since there is a correspondence between

diffeomorphisms and vector fields by means of the time one map (see [19]), we can

translate this bound to the setting of vector fields. The method used in [32] is a

finitely smooth version of Lemma 1.3.6 and Proposition 1.3.7. In fact the conjugating

morphism is defined in the same way, but we loose smoothness since Y in (1.3.7) is

only finitely flat.

Lemma 1.3.10. (see [32]) Let Xε : ẋ = F (x, ε) and Yε : ẋ = F (x, ε) + w(x, ε) be

two local families of vector fields in R2+k. Assume that there is a Ck-smooth vector

field Zε,τ : ẋ = h(x, ε, τ) for τ ∈ [0, 1] such that

[F + τw, h] = w, (1.3.12)

is satisfied where h(0, ε, τ) = 0. The families Xε and Yε are then Ck-conjugate.

The solution of the homological equation is of the form (1.3.8) and this expression

converges for all derivatives up to order k + 1 since for a hyperbolic family we have

dist (Φt(x),M) ≤ Ce−λt dist(x,M), t > 0,

where M is the unstable manifold. One needs that the divergence of the vector field

F is bounded and since (1.3.8) is defined by an improper integral, we need to make

sure that the orbits are complete, i.e. exist for all t ∈ R. This can be acquired by

a partition of unity using bump functions, a procedure called globalization of the

vector field. We do not go in further details but refer to [32].
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Proposition 1.3.11. Let Xε be a smooth family of vector fields with a saddle at the

origin for ε ∈ W . There exists a function N(n) : N → N such that N(n) → ∞ for

n→∞, and such that if Yε is any germ of smooth family of vector fields along 0×W
with the property

jN(n)(Yε −Xε)(0) = 0,

then, the two family germs Xε and Yε are Cn-conjugate.

If we apply Proposition 1.3.11 to the pre-normal form (1.3.11) for some sufficiently

high order, we obtain the following result.

Theorem 1.3.12. Let Xε be a smooth deformation of a vector field X0 having a

resonant saddle singularity in the origin, where the saddle quantity is given by p/q,

gcd(p, q) = 1. Let n > 1. There exists a Cn-transformation and a N(n) depending on

p, q and n such that Xε is orbitally equivalent to the family
ẋ = qx,

ẏ = y

−p+ α(ε) +

N(n)∑
i=1

αi(ε)x
piyqi

 ,
(1.3.13)

where ε is confined to some neighbourhood of the origin.

Remark 1.3.13. The neighbourhood of ε obtained in Theorem 1.3.12 is dependent

on the choice of n. Even more, the diameter of this neighbourhood shrinks to 0 when

n grows to ∞.

1.3.3 Dulac map

The normal form (1.3.9) allows us to express the Dulac map in terms of the coefficients

of the resonant terms. Let u = xpyq denote the resonant monomial. This decouples

(1.3.9) in two independent differential equationsẋ = qx,

u̇ = quh(u) =
∑
i≥1 αiu

i+1.
(1.3.14)

The solution of the second equation can formally be obtained by substituting

u(t, u0) =

∞∑
i=1

gi(t)u
i
0,

where g1(0) = 1 and gi(0) = 0 for i ≥ 2. A direct computation shows that

g1(t) ≡ 1, gi+1(t) = αit+ Pi(t), for i ≥ 1,

where Pi is a polynomial of degree i and with lowest degree 2 having coefficients

which are monomials in α1, . . . , αi−1. Let us compute the Dulac map

D̃ : σ = [0, 1)× {1} → τ = {1} × (−1, 1) : (x0, 1) 7→ (1, D(x0)),
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Figure 1.10: Dulac map near a saddle

as in Figure 1.10. The transition time of (1.3.14) is given by T = − 1
q

ln(x0).

Therefore we can explicitly express the Dulac map.

Proposition 1.3.14. For any n ∈ N there exists a number N(n) such that

D(x0)q =

N(n)∑
i=1

gi

(
−1

q
log(x0)

)
xpi0 + ψn(x0),

where ψn(x0) is a Cnp function, np-flat at x0 = 0, i.e. jnpψn(0) = 0.

Cyclicity results can only be found when considering unfoldings of saddles, i.e. where

the eigenvalues can perturb as in Section 1.3.2. By virtue of Theorem 1.3.12, we can

assume that the unfolding of the saddle is given by (1.3.13). In order to compute the

Dulac map, we replace the logarithmic function by an adapted compensator known

as the Ecalle-Roussarie compensators

ω(x0, α0) =


x
−α0
0 −1

α0
if α0 6= 0,

− log(x0) if α0 = 0,
(1.3.15)

where α0 = qα(ε). Similar as in the unperturbed case, we can solve for an asymptotic

solution.

Theorem 1.3.15. The transition map D of (1.3.13) can be expanded as

(D(x0))q = xp0 + α0 [xp0ω + . . .] + α1(ε)
[
x2p

0 ω + . . .
]

+ · · · (1.3.16)

+ αN−1(ε)
[
xNp0 ω + . . .

]
+ ψn(x0, ε), (1.3.17)

for any n ∈ N and N = N(n) is defined in Proposition 1.3.11. The . . . contain terms

xi0ω
j (i ≥ j) of higher order and have coefficients which are polynomials in αi and

ψn is np-flat at x0 = 0.

The terms xi0ω
j are non-smooth, but have some important properties. First of all,

one defines an order on these monomials given by

xi0ω
j ≺ xk0ωl ⇔ (i < k) or (i = k and j > l).
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This defines an asymptotic scale, which is used to determine cyclicity.

Definition 1.3.16. An asymptotic scale of functions is a collection F = {fi}i∈N
of continuous functions fi : [0, ε) → R where ε > 0 such that f0 ≡ 1, f1 is strictly

monotonic on (0, ε), and fi+1(u)/fi(u)→ 0 as u→ 0+. We denote this by fi+1 � fi).

Secondly these monomials are of Mourtada type which has been introduced in [37].

Definition 1.3.17. A function f : [0, ε)× U → R is a Mourtada type function if

f is smooth for x > 0 and if for all integer k ≥ 0,

lim
x→0

xk
∂kf

∂xk
(x, y) = 0,

uniformly in y.

Exploiting this definition, we can rewrite Theorem 1.3.15 in a weaker form which is

easier to use in applications.

Theorem 1.3.18. The transition map D of (1.3.13) is given by

D(x0) = x
p+α(ε)

q

0 (A(ε) + F (x0, ε)) , (1.3.18)

where A(ε) is a C∞ positive function and F is of Mourtada type.

If the saddle has a homoclinic connection, i.e. the stable and unstable manifold

intersect, one can compute a Poincaré map near this graphic as displayed in Figure 1.6.

The dominant term in the Dulac map D is non-smooth, i.e. of the form xp/q, and

can never be compensated by the regular part R of the displacement map near the

connection unless p = q. Hence using Theorem 1.2.1 it is easy to show the following

result.

Proposition 1.3.19. (see [1]) Let Γ be a saddle connection with saddle quantity

different from 1, then

Cycl(Xλ,Γ) ≤ 1.

When the saddle quantity is one, the bound on the cyclicity will depend on the

parameters αi of the initial vector field Xλ0 . More precise a higher order of the Dulac

map in (1.3.16) or of the regular map R will be dominant. We refer to the literature

for these results.

1.4 Hilbert’s 16th Problem

At the International Congress of Mathematicians (Paris) in 1900, David Hilbert posed

a list of 23 challenging problems in mathematics (see [26]) of which we are interested

in the second part of his 16th problem:
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In connection with this purely algebraic problem, I wish to bring for-

ward a question which, it seems to me, may be attacked by the same method

of continuous variation of coefficients, and whose answer is of correspond-

ing value for the topology of families of curves defined by differential equa-

tions. This is the question as to the maximum number and position of

Poincaré’s limit cycles for a differential equation of the first order and

degree of the form
dy

dx
=
Y

X
,

where X and Y are rational integral functions of the n-th degree in x and

y. Written homogeneously, this is

X

(
y
dz

dt
− z dy

dt

)
+ Y

(
z
dx

dt
− xdz

dt

)
+ Z

(
x
dy

dt
− y dx

dt

)
= 0,

where X, Y , and Z are rational integral homogeneous functions of the

n-th degree in x, y, z, and the latter are to be determined as functions of

the parameter t. David Hilbert

We will give a brief overview of results concerning this problem. More details can be

found in [29]. In this problem we consider planar polynomial vector fieldsẋ = Pn(x, y),

ẏ = Qn(x, y),

of degree n. Typically the problem is split into three sub-problems, each of subse-

quently higher complexity:

1. Does a planar polynomial vector field have a finite number of limit cycles?

(Dulac problem)

2. Is the number of limit cycles in a planar polynomial vector field of degree n

bounded by a constant H(n) depending only on the degree n? (Existential

problem)

3. Obtain an explicit expression for H(n).

The number H(n) is known as the Hilbert number . It wasn’t until 1923 until there

was a first proof of the Dulac problem in its generality by Dulac himself ([16]). How-

ever in 1981 a huge gap was found in Dulac’s proof ([28], [30]). Ten years later,

Ilyashenko ([31]) and Écalle ([22]) provided simultaneously but independently an al-

ternative proof for the existential problem.

Concerning the other sub-problems, no global results have been obtained until now.

There exist a lot of results providing a lower bound on the cyclicity. For instance in
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[11] the authors construct polynomial vector fields of degree n with Cn2 log(n) limit

cycles for some constant C, leading to the lower bound H(n) ≥ Cn2 log(n). Another

important contribution to the study of Hilbert’s 16th problem is the program con-

nected to the finite cyclicity conjecture posed by Roussarie ([51]). If one can obtain

an upper bound of the cyclicity of any limit periodic set in an analytic family of vec-

tor fields on the Riemann sphere, then one can bound the number of limit cycles in

polynomial vector fields (see Theorem 1.1.24). For instance in [20] the authors reduce

the problem of finding a uniform bound on the number of limit cycles in quadratic

vector fields to the study of 121 graphics. This thesis can thus be situated as part

of this program, where we study graphics containing only one singularity which is

non-elementary.



Chapter 2

Semi-local Normal Form Theory near a

fixed symmetric saddle connection

In this chapter we study vector fields of the formẋ = (1− x2)
(
q
2

+ O
(
1− x2

))
+ O

(
y
)
,

ẏ =
(
px+ O

(
1− x2

))
y + O

(
y2
)
,

which contain a separatrix connection between hyperbolic saddles with symmetric

eigenvalues where the connection is fixed. Since we are mainly interested in the case

of resonant saddles, we shall denote the eigenvalues at the saddles by p and q. For

completeness, we state a result for non-resonant saddles where we shall not change

the notation for the sake of convenience but merely write p/q /∈ Q. Smooth semi-

local normal forms are provided in vicinity of the connection, both in the resonant

and non-resonant case. First, a formal conjugacy is constructed near the separatrix.

Then, a smooth change of coordinates is realized by generalizing known local results

near the hyperbolic points. The results presented here are as discussed in [59].

2.1 Normal forms near saddle connections

This chapter deals with normal forms of (families of) vector fields that are valid in a

local neighbourhood of a separatrix connection. The separatrix connection is assumed

to be persistent. We will assume furthermore that the eigenvalues of the linear part

at the saddle p1 are the opposite of those of the linear part at the saddle p2, see

Figure 2.1.

While both the persistence of a saddle connection and the opposite set of eigenvalues

are clearly non-generic properties that reduce the set of vector fields to which our re-

sults are applicable, both assumptions appear naturally in the qualitative treatment

31
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Figure 2.1: Orbits in the neighbourhood of a saddle connection

of planar vector fields. The semi-local situation that is described here is for example

quite often found after compactification of the phase space by means of a Poincaré

compactification; the separatrix connection is then typically a part of the circle at

infinity. Similarly, saddle connections appear in the local study of non-elementary sin-

gular points such as points with a nilpotent linear part by blowing up the singularity.

We refer to Chapter 5 for applications.

As a preliminary step, we can always smoothly straighten the saddle connection (joint

stable and unstable manifolds), and position the two saddles at chosen coordinates,

leading to the following smooth vector field that we use as main equation for which

a normal form is sought:ẋ =
(
q
2

+O(1− x2)
)

(1− x2) +O(y)

ẏ =
(
px+O(1− x2)

)
y +O(y2),

(2.1.1)

where we assume that (±1, 0) are the only singularities on the segment [−1, 1]× {0}
and that p > 0 and q > 0 are relatively prime.

Remark 2.1.1. The results presented here are applicable to families of vector fields

of the form (2.1.1) where the perturbations only occur in the O
(
1 − x2

)
,O
(
y
)

and

O
(
y2
)

terms. For simplicity we omit this parameter-dependence from the notation.

Perturbations where the spectrum at the saddles is perturbed in a symmetric way are

considered in Chapter 4.

The method of work follows the two-step procedure that is also employed in the study

of local normal forms near singularities (see Section 1.3.1): we first establish a “formal

normal form”, and later eliminate the flat terms after applying the generalized Borel

Theorem (Theorem 1.2.5). The normal forms that we envisage should be able to

encompass all resonance information coming from both saddles. We therefore use

semi-local resonant monomials of the form(
(1− x2)pyq

)n
and x

(
(1− x2)pyq

)n
. (2.1.2)
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Fixing n, a linear combination of both monomials

ωn := an
(
(1− x2)pyq

)n
+ bnx

(
(1− x2)pyq

)n
,

has the following asymptotic expansion about x = ±1:

ωn = 2pn(an + bn)(1− x)pnyqn(1 +O(1− x)), x→ 1

ωn = 2pn(an − bn)(1 + x)pnyqn(1 +O(1 + x)), x→ −1,

showing that any a priori arbitrary combination of resonant monomials in the saddle

p1 and the saddle p2 can be realised by choosing an and bn properly. We will show

the following theorem:

Theorem 2.1.2. Consider the vector field (2.1.1) with p ∈ N∗, q = 1 (and assuming

(±1, 0) are the only two singular points). Then there is a smooth coordinate transfor-

mation, defined on a neighbourhood of [−1, 1]× {0}, such that the system is orbitally

equivalent to ẋ = 1
2
(1− x2),

ẏ = y
[
px+ g0((1− x2)py) + xg1((1− x2)py)

]
,

(2.1.3)

for some smooth functions g0, g1 with g0(0) = g1(0) = 0.

The choice of resonant monomials in (2.1.2) is non-unique, and in fact it seems that

other candidates are sometimes more appropriate, we refer to Section 2.3.2 for al-

ternatives. Here, the function g1 could be seen as the symmetric resonant part, and

g0 as the asymmetric resonant part. This terminology follows from the fact that the

transformation (x, t) 7→ (−x,−t) leaves the symmetric terms unchanged, but changes

the asymmetric terms. Intuitively, this means that the asymmetric terms have a

dominant effect on the transition map through the connection as we will show in

Chapter 3. One of the benefits of using the above method is that the asymmetric

resonant monomials satisfy some semi-group property, implying that we can further

reduce the asymmetric part to

g0((1− x2)py) = ±
[
(1− x2)pnyn + α(1− x2)2pny2n] .

using techniques similar to those in the reduction of hyperbolic saddles (see [32] for

example). Here, the coefficient α is a formal invariant as well as the order of the

first non-zero non-linear term n. Linearity here should be considered as linear in the

direction normal to the connection, i.e. in the y-variable.

The asymmetric part of the normal form has extra integrability properties, just like

the Poincaré normal form of a single resonant saddle: writing w = (1−x2)py, equation
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(2.1.3) reduces to ẋ = 1
2
(1− x2),

ẇ = w(g0(w) + xg1(w)).
(2.1.4)

When g1 = 0, there is separation of variables.

When q 6= 1, the normal form contains so-called connecting terms besides the resonant

monomials. These terms are necessary to glue together the local normal form around

the two saddles to form a semi-local normal form along the separatrix connection.

Therefore we define the smooth symmetric bump function χ by

χ(x) = χ0(1− x2), (2.1.5)

where χ0 is defined in (1.2.7).

Theorem 2.1.3. Consider the vector field (2.1.1) with p, q ∈ N∗ and gcd(p, q) = 1,

q > 1 (and assuming (±1, 0) are the only two singular points). Then there is a smooth

coordinate transformation such that the system is orbitally equivalent toẋ = q
2
(1− x2),

ẏ = y
[
px+ g0((1− x2)pyq) + xg1((1− x2)pyq) + χ(x)g2(y)

]
,

(2.1.6)

for some smooth functions g0, g1, g2 with g0(0) = g1(0) = g2(0) = 0, where χ is given

by (2.1.5).

We will refer to the terms χ(x)g2(y) as the connecting terms. Similar connecting

terms appear when the ratio of the eigenvalues at the saddles (in this notation given

by p/q) is irrational.

Theorem 2.1.4. Consider the vector field (2.1.1) with p/q ∈ R \ Q (and assuming

(±1, 0) are the only two singular points). Then there is a smooth coordinate transfor-

mation such that the system is orbitally equivalent toẋ = q
2
(1− x2),

ẏ = y (px+ χ(x)g(y)) ,
(2.1.7)

for some smooth function g with g(0) = 0, where χ is given by (2.1.5).

The kernel function χ(x) that is used to represent the connectivity is quite arbitrary;

in fact what is important is the symmetry with respect to x 7→ −x and flatness at

the saddles. Due to this symmetry we also expect these terms to have a significant

effect on the transition map. Alternatively, one could use a bump function that really

vanishes near x = ±1. The choice of this function χ will only affect the connecting

terms itself, without changing the resonant terms (if they are present). Other choices

of kernel function χ will be discussed in Section 2.3.3.



2.2. SCALAR VECTOR FIELDS 35

The chapter is composed as follows. First we describe some results on scalar vector

fields which are crucial for the normal form in 2.2. We provide a different but similar

proof than described in [2]. In Section 2.3 we elaborate on a formal inductive process

to achieve the normal form. Section 2.4 is devoted to removing the flat terms that

appear after using Borel’s Theorem (Theorem 1.2.5). We conclude by describing the

transformation to return to local normal form in Section 2.5.

2.2 Scalar vector fields

In this section, we are interested in the smooth conjugacy classes of vector fields in

R with the following properties. Let v : R → R be a C∞ complete vector field with

exactly two singular points x1, x2 (assume x1 < x2) such that

λ1 := v′(x1) > 0 and λ2 := v′(x2) < 0. (2.2.1)

The results in this section can be found in [2]. Two scalar vector fields v and w are

(locally) conjugate, if there is a smooth diffeomorphism Φ : U → V such that

w(x) = (Φ′(x))−1v(Φ(x)) for every x ∈ U.

A basic theorem in the theory of vector fields is the linearisation of hyperbolic points.

Theorem 2.2.1. A smooth vector field v in a neighbourhood of a hyperbolic singular

point x0 ∈ R is locally smoothly conjugate with the linear vector field ṽ(x) = α(x−x0)

where α = v′(x0).

If there is no other singularity than the hyperbolic point, it is globally attracting or

repelling. Thus we can pull back every point in its stable/unstable manifold to a

sufficiently small neighbourhood of the singular point. This leads to the following

global result.

Lemma 2.2.2. Let v : R→ R be a C∞ complete vector field with a unique hyperbolic

singular point x0 ∈ R. The smooth linearisation ϕ : U → V , obtained from Theorem

2.2.1, is then global, i.e. U = V = R.

Proof: Without loss of generality, we can suppose that x0 = 0 is a sink. The

proof for a source is similar and can be obtained from the proof for a sink by time

reversal. Let ϕ0 : U → V be the local linearisation from Theorem 2.2.1, where U, V

are neighbourhoods of the origin.

Denote by F (t, x), G(t, x) the flows associated to respectively the original vector field

v and the linearized vector field ṽ. By definition of conjugation, we have that

ϕ0(F (t, x)) = G(t, ϕ0(x)), when F (t, x), x ∈ U.
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We now extend ϕ0 to a function ϕ : R→ R as follows

ϕ(x) = G(−T, ϕ0(F (T, x))),

where T ≥ 0 is chosen such that F (T, x) ∈ U . First we prove that this is indeed a

conjugation. Then we prove that this definition is independent of the choice of T .

Let (t, x) ∈ R× R be arbitrary and let T ≥ 0 be chosen in such a way that

F (T, F (t, x)) = F (T + t, x) ∈ U, and F (T, x) ∈ U.

A straightforward computation shows

ϕ(F (t, x)) = G(−T, ϕ0(F (T + t, x)))

= G(−T,G(t, ϕ0(F (T, x))))

= G(t, G(−T, ϕ0(F (T, x)))) = G(t, ϕ(x)).

It remains to show that this definition is independent of the choice of T . Let x ∈ R
be arbitrary and T1, T2 ≥ 0 be such that F (T1, x) and F (T2, x) are in U . Suppose

that T2 ≥ T1 and let T̃ = T2 − T1. Using the properties of a flow, we see

G(−T2, ϕ0(F (T2, x))) = G(−T2, G(T̃ , ϕ0(F (T1, x)))) = G(−T1, ϕ0(F (T1, x))),

which concludes the proof.

By composing the global linearizations of the previous lemma, we can easily deduce

the following result.

Corollary 2.2.3. Let v, w : R → R be two complete smooth vector fields with a

unique hyperbolic point x1, respectively x2 such that v′(x1) = w′(x2). Then these

vector fields are globally smoothly conjugated.

Remark 2.2.4. These results remain valid for real analytic vector fields.

Now return to the complete vector field given in (2.2.1) with 2 singular points x1, x2.

Denote

U1 = (−∞, x2) and U2 = (x1,∞)

and let F t be the flow associated to v. From Lemma 2.2.2 we find orientation pre-

serving smooth diffeomorphisms Ψi : Ui → R as in Figure 2.2 mapping xi to 0 such

that

F t|Ui = Ψ−1
i ΛtiΨi for i = 1, 2,

where

Λti(x) = Λi(t, x) = eλitx.

Define the gluing morphism G := Ψ2 ◦Ψ−1
1 : R+ → R−. This satisfies
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Figure 2.2: Local conjugation to linear vector field

G(eλ1tx) = eλ2tG(x), t ∈ R, x ∈ R+.

If we differentiate this equality with respect to t and evaluate at x = 1, we get

G′(eλ1t)λ1e
λ1t = λ2e

λ2tG(1) = λ2G(eλ1t).

However, since t is arbitrary and the origin is hyperbolic, we have a bijection between

R+ and the image of Λ1(t, 1), hence

xG′(x) = µG(x), where µ =
λ2

λ1
for every x ∈ R+.

The general solution of this ODE is given by

G(x) = −Cxµ,

where C is an arbitrary constant. Since G is orientation preserving, it follows that

C > 0.

Denote by C0(λ1, λ2) the set of all smooth vector fields w on R with exactly two

singular points y1 < y2 such that

w′(yi) = λi for i = 1, 2.

Theorem 2.2.5. All complete vector fields v ∈ C0(λ1, λ2) are conjugate.

Proof: Let v and ṽ be complete vector fields in C0(λ1, λ2) and let F t and F̃ t be their

corresponding flows. Let G(x) = −cxµ, respectively G̃(x) = −c̃xµ, be the associated

gluing diffeomorphisms, where Ψi, respectively Ψ̃i are the corresponding linearising

transformations on Ui for i = 1, 2 obtained from Lemma 2.2.2. We choose numbers

d1, d2 > 0 such that d2 = c
c̃
dµ1 to define

Φ(x) =

Ψ−1
1 (d1Ψ̃1(x)) if x ∈ U1

Ψ−1
2 (d2Ψ̃2(x)) if x ∈ U2

.
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Observe that for x ∈ R+

d2G̃(x) = −cdµ1x
µ = G(d1x),

so the transformation Φ is well-defined. It is straightforward to see that Φ conjugates

F t and F̃ t, i.e. for x ∈ Ui we have

F t(Φ(x)) = Ψ−1
i ΛtiΨiΨ

−1
i (diΨ̃i(x))

= Ψ−1
i (diΛ

t
iΨ̃i(x))

= Φ(F̃ t(x)).

By Theorem 2.2.5, conjugacy between two complete scalar vector fields with exactly

two hyperbolic singularities is reduced to comparing the respective eigenvalues. Now

we want to find a representative in this class of conjugate vector fields. Therefore we

construct a vector field v, with exactly two singular points in −1 and 1, such that

v′(−1) = α, v′(1) = −β, where α, β > 0. (2.2.2)

We can consider the polynomial

P (x) =
1

8
(1− x2)

(
(β − α)(x+ 1)2 + 4α

)
.

This induces a complete vector field given by

vP (x) =
P (x)

1 + P 2(x)
. (2.2.3)

Thus every complete vector field v with exactly two singular points, satisfying equa-

tion (2.2.2), is conjugate with the vector field vP .

However, we are only interested in the conjugation in a neighbourhood of the con-

nection [x1, x2] of the hyperbolic singularities x1, x2 of a vector field v ∈ C0(λ1, λ2).

Therefore we will show in Theorem 2.2.8 that we can reduce to a vector field with a

simpler form which is not necessarily complete. Since completeness is an essential re-

quirement in Theorem 2.2.5, we construct a complete vector field in C0(λ1, λ2) which

coincides with some incomplete vector field having a similar connection between two

singular points. We make this more precise in the following lemma.

Lemma 2.2.6. Let v : R → R be a C∞ vector field such that there exist x1, x2 ∈ R
(x1 < x2) such that

v(x1) = v(x2) = 0, v′(x1) = λ1 > 0, v′(x2) = λ2 < 0,
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and where v−1 ({0}) ∩ (x1, x2) = ∅. Then there exists a connected neighbourhood U

of [x1, x2] and a complete C∞ vector field w : R→ R such that

v ≡ w on U, and w−1 ({0}) = {x1, x2}.

Proof: Let W be a connected neighbourhood of [x1, x2] such that

v−1 ({0}) ∩W = {x1, x2}.

This is possible since hyperbolic singularities are isolated. Now choose a connected

neighbourhood U ⊂ W of [x1, x2] such that U ⊂ W . Denote by ρ : R → [0, 1] a C∞

bump function such that

ρ ≡ 1 on U and ρ ≡ 0 on W c.

Define the vector field w by

w(x) = ρ(x)v(x) + z(x),

where the C∞ vector field z : R→ R is given by

z(x) =


λ1(x− x1)(1− ρ(x)) x < x1,

λ2(x− x2)(1− ρ(x)) x > x2,

0 elsewhere.

It is straightforward to see that w is a smooth vector field with only two equilibria

x1, x2 and v ≡ w on U . It remains to prove the completeness of w. Therefore let

x0 ∈ R be arbitrary and denote the flow of w by ϕ.

Suppose x0 ∈ {x1, x2}. In this case it is trivial to conclude that ϕ(·, x0) is defined for

all t ∈ R.

Suppose x0 ∈ (x1, x2). There exist neighbourhoods O1, O2 of respectively x1, x2 such

that w is conjugate to the associated linear vector field due to Theorem 2.2.1. Let

T2 > 0 be chosen such that y2 = ϕ(T2, x0) ∈ O2. By the existence of the local conju-

gacy in O2, we know that ϕ(·, y2) is defined for all t ∈ [0,∞). Due to the translation

property of a flow, this implies that ϕ(·, x0) is defined for all t ∈ [0,∞). Similarly

there exists a T1 < 0 such that y1 = ϕ(T1, x0) ∈ O1. Since ϕ(·, y1) is defined for all

t ∈ (−∞, 0], the same is true for ϕ(·, x0) and thus ϕ(·, x0) is defined for all t ∈ R.

Finally suppose x0 < x1. The case x0 > x2 can be treated similarly. As in the previ-

ous case there exists a T1 < 0 such that ϕ(T1, x0) ∈ O1 and analogously we have that

ϕ(·, x0) is defined for all t ∈ (−∞, 0]. Now let T > 0 be such that y = ϕ(T, x0) ∈W c.

This is possible since the singularity x1 is repelling on (−∞, x2). Since ϕ(t, y) < y

for all t > 0, we know that ϕ(t, y) ∈ W c for all positive t where ϕ(·, y) is defined. In
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WC , the flow is the solution of a linear vector field and therefore we know that ϕ(·, y)

is defined for all t ∈ [0,∞) and so is ϕ(·, x0). Hence ϕ(·, x0) is defined for all t ∈ R.

Remark 2.2.7. Observe that v and w in Lemma 2.2.6 are conjugate in neighbour-

hoods of [x1, x2].

Theorem 2.2.8. Let v : (a, b) → R be a smooth vector field with exactly 2 singular

points x1, x2 ∈ (a, b) such that

v′(x1) = α > 0 and v′(x2) = −β < 0.

Then there exist neighbourhoods U and V of respectively [x1, x2] and [−1, 1] and a

smooth transformation y = ϕ(x) : U → V such that the equation dx
dt

= v(x) is

transformed into
dy

dt
= (Ay +B)(1− y2), (2.2.4)

where A = β−α
4

and B = β+α
4

.

Proof: The vector field given by (2.2.4) only has singularities at y = ±1 in [−1, 1].

Indeed, the only other singularity that can occur is y = −B
A

if A 6= 0 and this is not

an element of [−1, 1] since α > 0 and β > 0. The result then follows directly from

Theorem 2.2.5 and Lemma 2.2.6.

When β = α in Theorem 2.2.8, equation (2.2.4) reduces to

dy

dt
=
α

2
(1− y2).

Remark 2.2.9. In [2], an analogue of Theorem 2.2.5 has been obtained for any finite

number of hyperbolic points.

2.3 Formal transformation

In this section we construct by an induction procedure the formal normal forms

leading to Theorems 2.1.2, 2.1.3 and 2.1.4.

2.3.1 Preliminary reduction and the induction procedure

Similar as in Section 1.3.1, we need to prepare the linear part before we can apply an

induction procedure. This is summarized in the following lemma.

Lemma 2.3.1. Consider the smooth vector field (2.1.1) (and assume (±1, 0) are the

only two singular points). Then there are neighbourhoods U, V of [−1, 1] × {0} and



2.3. FORMAL TRANSFORMATION 41

a smooth coordinate transformation Φ : U → V such that under this transformation,

the system is transformed to a system of the formẋ = (1− x2)
(
q
2

+ yf(x, y)
)
,

ẏ = y (px+ yg(x, y)) ,
(2.3.1)

where f and g are smooth functions of (x, y).

Proof: Following Belitskii’s result on normal forms of one-dimensional systems (see

Theorem 2.2.8), we can normalize the system reduced to the invariant line {y = 0}
to ẋ = q

2
(1− x2). It allows to write (2.1.1) asẋ = q

2
(1− x2) + yf(x, y),

ẏ = yg(x, y).

Since the eigenvalues of the two saddles have not changed, we have g0(−1) = −p and

g0(1) = p where g(x, y) = g0(x) +O(y). It means that we can write

g0(x) = px+ (1− x2)h(x),

for some smooth function h(x).

By the invariant manifold Theorem, the stable manifold of (−1, 0) can locally be

seen as the graph of x = ϕ1(y). Similarly, the unstable manifold of (1, 0) is given

locally by the graph of x = ϕ2(y). These smooth functions ϕ1, ϕ2 are defined in a

neighbourhood of y = 0 and can be approximated by

ϕ1(y) = −1 + O
(
y
)

and ϕ2(y) = 1 + O
(
y
)
.

By applying the transformation

(x, y) =

(
1

2
((1− x̄)ϕ1(ȳ) + (1 + x̄)ϕ2(ȳ)) , ȳ

)
,

we have a 1-1 correspondence between points of the form (ϕ1(y), y), respectively

(ϕ2(y), y), and (−1, ȳ), respectively (1, ȳ). Also remark that this is a well-defined

transformation, since the old first coordinate is of the form x̄ + O
(
ȳ
)

and this is a

near-identity transformation near ȳ = 0. So by now, we have arrived at the following

vector field ẋ = (1− x2)
(
q
2

+ yf(x, y)
)
,

ẏ = pxy + (1− x2)h(x)y + y2g(x, y).
(2.3.2)

For the sake of convenience, we omitted the bars after applying the transformation.

In order to get the form (2.3.1), we still have to eliminate the function h(x). Applying

the transformation

(x, y) = (x̄, ȳ + l(x̄)ȳ)
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for some smooth l(x) defined on a neighbourhood of [−1, 1], results to a vector field

of the formẋ = (1− x2)
(
q
2

+ yf(x, y) + O
(
y
))
,

ẏ = pxy + (1−x2)
(1+l(x))

[
− q

2
dl(x)
dx

+ h(x)(1 + l(x))
]
y + y2g(x, y) + O

(
y2
)
.

Again we have omitted the bars. If we denote by H(x) a primitive function of h(x),

we can take

l(x) = e
2H(x)
q − 1

in order to get the factor between square brackets zero. Notice that l(x) 6= −1 for

all values x so that, by the inverse function Theorem, we have indeed a well-defined

coordinate transformation in some neighbourhood of y = 0.

The form of (2.3.1) is stable upon performing additional changes of coordinates

(x, y) = (x̄+ (1− x̄2)ȳA(x̄, ȳ), ȳ + ȳ2B(x̄, ȳ)).

In particular, we will prove two lemmas below that form the basis for the next sub-

sections where a formal transformation

(x, y) =

(
x̄+ (1− x̄2)ȳ

∞∑
n=0

An(x̄)ȳn, ȳ + ȳ2
∞∑
n=0

Bn(x̄)ȳn
)

(2.3.3)

is defined, bringing the coefficients with yn in (2.3.1) in reduced form by induction

on n. Transformations like (2.3.3) are formal in the sense that they are formal power

series in ȳ; however the coefficient functions are typically smooth in x̄ on a neigh-

bourhood of [−1, 1].

Lemma 2.3.2. Given n ≥ 1. The effect of the near-identity transformation of the

form

(x, y) = (x̄, ȳ + hn(x̄)ȳn+1)

on (2.3.1) is that yf(x, y) is replaced by ȳf(x̄, ȳ) + O(ȳn+1) and that yg(x, y) is

replaced by

ȳg(x̄, ȳ) +
(−q

2
(1− x̄2)h′n(x̄)− pn x̄ hn(x̄)

)
ȳn +O(ȳn+1). (2.3.4)

Proof: Direct computation.

Lemma 2.3.3. Given n ≥ 1. The effect of the near-identity transformation of the

form

(x, y) = (x̄+ (1− x̄2)`n(x̄)ȳn, ȳ)

on (2.3.1) is that yg(x, y) is replaced by ȳg(x̄, ȳ)+O(ȳn) and that yf(x, y) is replaced

by

ȳf(x̄, ȳ) +
(
− q

2
(1− x̄2)`′n(x̄)− pn x̄ `n(x̄)

)
ȳn +O(ȳn+1). (2.3.5)
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Proof: Direct computation.

In contrast to the local normal form theory, we need to consider solutions of a differen-

tial equation instead of solving an algebraic equation. We should split in two separate

cases depending on whether n is divisible by q (Section 2.3.2) or not (Section 2.3.3).

Remark 2.3.4. Observe that the perturbations in the functions f and g in Lemma

2.3.2 and Lemma 2.3.3 only arise in terms of higher order which allows us to perform

an induction procedure.

2.3.2 Resonant Terms

The homological equation that we need to consider in order to define the transforma-

tions in Lemma 2.3.2 and Lemma 2.3.3 can be smoothly solved as described by the

following lemma.

Lemma 2.3.5. Let k ≥ 1 be an integer and f an arbitrary smooth function. Then

for every 0 ≤ l ≤ k, there exist numbers α and β such that the ODE

−1

2
(1− x2)

dy(x)

dx
− kxy(x) + f(x) = αx(1− x2)k + β(1− x2)l

has a smooth solution in a neighbourhood of [−1, 1].

Before tackling the proof of Lemma 2.3.5, we need some auxiliary results. Smooth

functions f(x) on a neighbourhood of [−1, 1] can be decomposed as follows

f(x) =

N∑
n=0

(Anx+Bn)(1− x2)n + (1− x2)N+1F (x), (2.3.6)

for some constants An, Bn, where F is a smooth function. Indeed, for a smooth

function f , define

A0 =
f(1)− f(−1)

2
, B0 =

f(1) + f(−1)

2
,

and let F1 be the smooth solution satisfying

F1(x) =
f(x)− (A0x+B0)

1− x2
, for x 6= 1.

It is straightforward to see that

f(x) = A0x+B0 + (1− x2)F1(x).

By repeating this procedure on F1 we get (2.3.6) for N = 2. By induction we

can show (2.3.6) for arbitrary N . When solving the differential equation defined

in Lemma 2.3.5, the function f divided by (1−x2)k will appear as integrands. There-

fore we need a bit of information on the partial fraction decomposition that appears

at that point.
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Remark 2.3.6. When dealing with families of vector fields, we need a version of

(2.3.6) for a family of functions. From the construction it is clear that when f depends

smoothly on a parameter, we get the same result as (2.3.6), where An, Bn and F

depend smoothly on the parameter.

Lemma 2.3.7. Let n ≥ 1. Denote by λk, µk for k = 1, . . . , n the coefficients of the

partial fraction decomposition of (1− x2)−n, i.e.

1

(1− x2)n
=

λ1

(1− x)
+ . . .+

λn
(1− x)n

+
µ1

(1 + x)
+ . . .+

µn
(1 + x)n

.

Then we have the following

λ1 = µ1 =

(
2n− 2

n− 1

)
2−2n+1.

Proof: We will consider the function f(z) = (1 − z2)−n as a complex analytic

function. Denote the functions

g(z) = (1 + z)−n and h(z) = (1− z)−n.

Then we can write

f(z) =
g(z)

(1− z)n =
h(z)

(1 + z)n
.

This implies that both 1 and −1 are poles of order n since g and h are analytic near

respectively 1 and −1. We can look at the Laurent series expansions

∞∑
k=−n

ak(z − 1)k and

∞∑
k=−n

bk(z + 1)k

of f near respectively 1 and −1. It is easy to see that the first n terms in the partial

fraction decomposition of f cover the principal part of the Laurent series around 1

and the same holds for the last n terms and the series around −1. Therefore we have

λ1 = −a−1 = −Res(f, 1) and µ1 = b−1 = Res(f,−1).

Clearly,

Res(f, 1) = (−1)n
g(n−1)(1)

(n− 1)!
.

A simple induction argument shows that

g(n−1)(z) = (−1)n−1 (2n− 2)!

(n− 1)!
(z + 1)−2n+1,

which gives us the expression of λ1 as in the lemma. Similarly one can find the ex-

pression for µ1.

Now we are able to give a constructive proof of Lemma 2.3.5.
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Proof: (proof of Lemma 2.3.5) Variation of constants predicts a solution of the

form

y(x) = C(x)(1− x2)k, (2.3.7)

where
dC(x)

dx
=

2

(1− x2)k+1

(
f(x)− αx(1− x2)k − β(1− x2)l

)
.

We smoothly decompose f as

f(x) =

k∑
n=0

(Anx+Bn)(1− x2)n + (1− x2)k+1f̃(x).

This leads to

1

2

dC(x)

dx
=

k∑
n=0

Anx+Bn
(1− x2)k+1−n −

αx

1− x2
− β

(1− x2)k+1−l + f̃(x). (2.3.8)

The f̃ -term is of course smoothly integrable, so we only focus on the first terms. In

order to find a primitive function of this term, we have to decompose this rational

function in partial fractions. The process of partial fractions is linear, so we first focus

on the partial fraction decomposition of the summation in (2.3.8): Suppose this is

given by
γ1

1− x + . . .+
γk+1

(1− x)k+1
+

δ1
1 + x

+ . . .+
δk+1

(1 + x)k+1
. (2.3.9)

The integration of terms 1/(1 + x)n for 1 < n ≤ k + 1 contributes, up to a constant,

to a term 1/(1 + x)n−1 in C(x). This corresponds, by equation (2.3.7), to a term

(x− 1)k(x+ 1)k+1−n

in y(x) and this will clearly be a smooth function on a neighbourhood of [−1, 1].

However the terms 1/(1+x) and 1/(1−x) will produce a logarithm which is not defined

on a neighbourhood of [−1, 1]. We therefore aim at compensating the contribution of

δ1 and γ1 by choosing α and β adequately. Indeed it suffices to show that the partial

fraction decomposition of the terms

1

(1− x2)k+1

(
αx(1− x2)k + β(1− x2)l

)
can generate any combination of coefficients in the terms 1/(1 + x) and 1/(1 − x),

upon varying α and β. First we see that

αx(1− x2)k

(1− x2)k+1
=
α

2

(
1

1− x −
1

1 + x

)
.

Therefore it suffices to show that in the decomposition

β(1− x2)l

(1− x2)k+1
=

λ1

1− x + . . .+
λk+1−l

(1− x)k+1−l +
µ1

1 + x
+ . . .+

µk+1−l

(1 + x)k+1−l
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we have λ1 6= −µ1. This follows from Lemma 2.3.7.

Now we are able to describe an induction process, putting (2.3.1) into formal normal

form when q divides pk for any k ∈ N, i.e. q = 1.

Theorem 2.3.8. Given (2.3.1) with q = 1 and p ∈ N∗, there exists a formal change

of coordinates of the form (2.3.3), formally bringing (2.3.1) in the formẋ = (1− x2)
[

1
2

+ (f0((1− x2)py) + xf1((1− x2)py)
]
,

ẏ = y
[
px+ g0((1− x2)py) + xg1((1− x2)py)

]
,

(2.3.10)

for some formal series f0, f1, g0, g1 with f0(0) = f1(0) = g0(0) = g1(0) = 0.

Proof: We assume by induction that the vector field (2.3.1) is such that

yf(x, y) = f0((1− x2)py) + xf1((1− x2)py) +O(yn),

yg(x, y) = g0((1− x2)py) + xg1((1− x2)py) +O(yn),

for some polynomials f0, f1, g0, g1 that vanish at the origin. The original vector field

satisfies this claim trivially for n = 1, so it suffices to prove the induction step. We

first apply Lemma 2.3.3 to replace yf(x, y) by the function in (2.3.5), and keeping

yg(x, y) as stated in the induction hypothesis. The term in ȳn of (2.3.5) is given by

fn(x̄) +

(
−1

2
(1− x̄2)`′n(x̄)− pn x̄ `n(x̄)

)
,

where fn(x) is the term with order yn of yf(x, y). We claim that a well-chosen

function `n(x̄) reduces this term to (cn + dnx̄)(1− x̄2)pn. In fact, this is the topic of

Lemma 2.3.5. This normalizes the function yf(x, y) up to O(yn+1).

For the next step, we forget about the bars in the variables and may assume that

yf(x, y) = f0((1− x2)py) + xf1((1− x2)py) +O(yn+1),

yg(x, y) = g0((1− x2)py) + xg1((1− x2)py) +O(yn),

for some series f0, f1, g0, g1 that vanish at the origin. We then apply Lemma 2.3.2 to

keep yf(x, y) according to the above hypothesis and to replace yg(x, y) by the formula

presented in (2.3.4). An identical application of Lemma 2.3.5 shows that we may as-

sume that the coefficient with order yn in yg(x, y) is of the form (an+bnx)(1− x̄2)pn.

This proves the theorem.

As Lemma 2.3.5 indicates, there is a certain degree of freedom when solving the

homological equation at degree yn. To illustrate this, we prove the following:
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Figure 2.3: Smooth partition of unity and the functions χL, χM , χR.

Theorem 2.3.9. Given (2.3.1) with q = 1 and p ∈ N∗, there exists a formal change

of coordinates of the form (2.3.3), formally bringing (2.3.1) in the formẋ = (1− x2)
[

1
2

+ f0(y) + xf1((1− x2)py)
]
,

ẏ = y
[
px+ g0(y) + xg1((1− x2)py)

]
,

(2.3.11)

for some formal power series f0, f1, g0, g1 that vanish at the origin.

Proof: The proof is completely analogous to that of Theorem 2.3.8, this time re-

placing the coefficients with yn of yf(x, y) and yg(x, y) in the induction step by a

linear combination of x(1 − x2)pn and (1 − x2)0 = 1 (instead of x(1 − x2)pn and

(1 − x2)pn). Solving the homological equation at this level is possible, as has been

explained in Lemma 2.3.5.

We believe that in some cases it could be beneficial that the semi-local normal form

around the saddle separatrix reduces to the Poincaré normal form of the individual

saddles if one restricts to a neighbourhood. This can be achieved using bump functions

and a partition of unity. Denote by χ0 : R → R the flat function defined in (1.2.7).

This function allows us to construct a smooth function which is locally zero near 1

and locally 1 near −1, and vice-versa, i.e.

χL : R→ R : x 7→
χ0

(
− 1

4
− x
)

χ0

(
− 1

4
− x
)

+ χ0

(
x+ 3

4

) , χR(x) = χL(−x). (2.3.12)

The partition of unity is completed by defining χM (x) = 1−χL(x)−χR(x), which is

a function that vanishes near the saddles, see Fig. 2.3.

Theorem 2.3.10. Given (2.3.1) with q = 1 and p ∈ N∗, there exists a formal change
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of coordinates of the form (2.3.3), formally bringing (2.3.1) in the formẋ = (1− x2)
[

1
2

+ f0((1 + x)py)χL(x) + f1((1− x)py)χR(x)
]
,

ẏ = y [px+ g0((1 + x)py)χL(x) + g1((1− x)py)χR(x)] ,
(2.3.13)

for some formal power series f0, f1, g0, g1 that vanish at the origin and where χL,

χR are defined in (2.3.12).

As the proof follows the same guidelines as before, we do not give details here; we

only present the lemma that replaces Lemma 2.3.5 for this choice of normal form,

allowing to inductively solve the homological equation as before:

Lemma 2.3.11. Let k ≥ 1 be an integer, and f an arbitrary smooth function. Then

there exist constants α and β such that there exists a smooth solution of

−1

2
(1− x2)

dy(x)

dx
− kxy(x) + f(x) = α(1 + x)kχL(x) + β(1− x)kχR(x)

in a neighbourhood of [−1, 1].

Proof: As before, we can decompose

f(x) =

k∑
n=0

(Anx+Bn)(1− x2)n + (1− x2)k+1f̃(x),

where f̃ is a smooth function. As in the proof of Lemma 2.3.5, we can reduce to

finding a smooth solution of

−1

2
(1− x2)

dy(x)

dx
− kxy(x) +

k∑
n=0

(Anx+Bn)(1− x2)n =α(1 + x)kχL(x)

+ β(1− x)kχR(x),

since the term involving f̃(x) automatically gives a smooth contribution. For the

remaining part, we have to cancel the non-smooth “resonant” terms in

dC(x)

dx
=

k∑
n=0

Anx+Bn
(1− x2)k+1−n −

α(1 + x)kχL(x)

(1− x2)k+1
− β(1− x)kχR(x)

(1− x2)k+1
.

Again we rewrite the first term in a partial fraction decomposition

γ1

1− x + . . .+
γk+1

(1− x)k+1
+

δ1
1 + x

+ . . .+
δk+1

(1 + x)k+1
.

We can show now that there exists an α such that

δ1
1 + x

− α (1 + x)k

(1− x2)k+1
χL(x) =

δ1
1 + x

− α 1

(1 + x)(1− x)k+1
χL(x)

has a smooth integral. First we need a certain partial fraction decomposition. Denote

In =
1

(1 + x)(1− x)n
.



2.3. FORMAL TRANSFORMATION 49

We can find the following recurrence relation

In =
1

(1− x2)(1− x)n−1

=
1

2

(
1

(1− x)
+

1

(1 + x)

)
1

(1− x)n−1

=
1

2

1

(1− x)n
+

1

2
In−1.

An easy calculation shows

In =

(
1

2

)n
1

(1 + x)
+

n∑
l=1

(
1

2

)n−l+1
1

(1− x)l
.

On the other hand, if we rewrite

δ1
1 + x

=
δ1χL(x)

1 + x
+
δ1χM (x)

1 + x
+
δ1χR(x)

1 + x

we see that the last two terms are smooth functions and thus have smooth integrals.

However if we take α = 2k+1δ1, we see that this first term will be cancelled by

−α 1

(1 + x)(1− x)k+1
χL(x) = −δ1χL(x)

1 + x
− αχL(x)

k+1∑
l=1

(
1

2

)k−l+2
1

(1− x)l
.

Again these last terms will have a smooth integral, since χL is locally zero at x = 1.

A similar construction can be made for β to cancel the non-smooth part of γ1
1−x .

It immediately follows that the coefficients of the formal normal form of f0 and g0,

respectively f1 and g1 in Theorem 2.3.10 correspond to the coefficients of the resonant

monomials of the local normal form in respectively the saddle at (−1, 0) and (1, 0).

However for the normal form (2.3.10) it is not clear how to obtain the local normal

form coefficients coefficients from f0, f1, g0, g1. We will describe shortly how to return

to the local normal forms in Section 2.5.

2.3.3 Connecting Terms

Contrary to what may be thought, the general q : −p case of (2.3.1) with q 6= 1 is

not a simple generalization of the q = 1 case; its treatment contains an additional

difficulty, namely the presence of connecting terms. This is due to a possible lack of

compatibility between the Poincaré normal forms at both saddles. We capture these

connecting terms by using a smooth symmetric bump function χ as defined in (2.1.5).

Theorem 2.3.12. Given (2.3.1) with p, q ∈ N0, gcd(p, q) = 1, q > 1. There exists

a formal change of coordinates of the form (2.3.3), formally bringing (2.3.1) in the

formẋ = (1− x2)
[
q
2

+ f0

(
(1− x2)pyq

)
+ xf1

(
(1− x2)pyq

)
+ χ(x)f2(y)

]
,

ẏ = y
[
px+ g0

(
(1− x2)pyq

)
+ xg1((1− x2)pyq) + χ(x)g2(y)

]
,

(2.3.14)
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for some formal power series f0, f1, f2, g0, g1, g2 that vanish at the origin and where

χ is defined in (2.1.5).

As we can see, the resonant terms will be contained in f0, f1 and g0, g1. In order

to smoothly connect the local normal forms, which are encompassed in the resonant

terms, we need to allow some extra terms f2, g2, but only in the degrees of y where

there is no resonance. These terms will be called the connecting terms. We devote

the rest of this section to prove this theorem.

A direct generalization of the method used in the q = 1 case leads us to consider

again an induction method, iteratively applying Lemma 2.3.2 and 2.3.3, where we

need to examine the following differential equation in each step:

−q
2

dh(x)

dx
(1− x2)− pkxh(x) + F (x) = G(x), (2.3.15)

where F (x) is a function coming from the initial vector field that we ideally want to

replace by a simple function G(x). Variation of constants for this equation suggests

solutions of the form

h(x) = C(x)(1− x2)
pk
q ,

which potentially have limited smoothness (in contrast to the suggested solutions that

appear in the proof of Lemma 2.3.5 for the q = 1 case). We can however safely state

that Lemma 2.3.5 generalizes directly to the case where q|pk.

So, suppose there is a natural number ` such that k = `q. If we divide (2.3.15) by q,

we get a differential equation as in Lemma 2.3.5. Therefore we can take G to be

G(x) = (Ax+B)(1− x2)`p, (2.3.16)

(or G can take any of the other forms from the formulation of that lemma.)

If on the other hand q does not divide k, there may not always be a smooth solution

of the requested form; it is to reduce such coefficients that connecting terms are

included. We will prove the following

Lemma 2.3.13. Let p, k, q ∈ N0 such that p and q are relatively prime and suppose

that q does not divide k. Then, for every smooth function F defined on a neighbour-

hood of [−1, 1], there exists a number C ∈ R such that the differential equation

−q
2

dh(x)

dx
(1− x2)− pkxh(x) + F (x) = −Cχ(x) (2.3.17)

has a smooth solution.

Proof: If there is a smooth solution, then its graph y = h(x) will be tangent to the

vector field ẋ = q
2
(1− x2),

ẏ = −pkxy + F (x) + Cχ(x).
(2.3.18)
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This vector field has two singular points, namely Q1 =
(
−1,−F (−1)

pk

)
and Q2 =(

1, F (1)
pk

)
. It is easy to verify that both these points are nodes, with respective

eigenvalues (q, pk) and (−q,−pk). Recall that a node is resonant if and only if the

ratio of eigenvalues belongs to N ∪ N−1. Therefore, due to the conditions of the

theorem, these nodes are non-resonant except for the case p = 1 and q = nk for

some n ∈ N. In this case, the Poincaré-Dulac normal form at −1 or 1 admits only

one resonant term of the form ynk ∂
∂x

. However, since the first equation of (2.3.18) is

independent of y, this resonant term will not appear and therefore (2.3.18) is locally

smoothly linearizable (as is also the case if the ratio of eigenvalues does not belong

to N ∪ N−1). The curve y = 0 is a smooth separatrix of the linearized system and

induces the local existence of a smooth separatrix of (2.3.18). Hence we can locally

find smooth functions ϕ̃C(x), ψ̃C(x) near respectivelyQ1, Q2 whose graphs correspond

to the invariant manifolds associated to the eigenvalues q and −q.

Figure 2.4: Possible phase portrait of (2.3.18)

Observe that ẋ > 0 for x ∈ (−1, 1). This implies that we can extend ϕ̃C and ψ̃C to

smooth functions

ϕC : (−1− δ, 1)→ R and ψC : (−1, 1 + δ)→ R,

for some δ > 0 with graphs tangent to the vector field (2.3.18) as in Figure 2.4.

Indeed, on any interval x ∈ [−1 + ε, 1 − ε] where 0 < ε << 1, we can bound the

derivative ∣∣∣∣dydx
∣∣∣∣ =

∣∣∣∣ ẏẋ
∣∣∣∣ ≤ Ay +B,

for some constants A and B. By applying the Lemma of Gronwall on this interval,

we see that y remains bounded as a function of x. Another way of seeing this, is by
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examining the line y∞ = 0 at infinity, where y = 1
y∞

. In this case we get the systemẋ = q
2
(1− x2),

ẏ∞ = pkxy∞ − (F (x) + Cχ(x))y2
∞,

which has a saddle connection formed by x = ±1 and z = 0. Therefore no other

solutions of (2.3.18) than the invariant curves x = ±1 can escape to infinity.

We claim that there exists a C0 ∈ R such that ϕC0(x) = ψC0(x) for x ∈ (−1, 1). This

will prove the lemma, since the function

h : (−1− δ, 1 + δ)→ R : x 7→

ϕC0(x) x ∈ (−1− δ, 1)

ψC0(x) x ∈ (−1, 1 + δ).

will then be a smooth solution of (2.3.17). The connection of both separatrices is the

only possibility to obtain a smooth graph (as can be easily verified). By uniqueness

of solution in (−1, 1), it suffices to prove that there is a C0 such that ϕC0(0) = ψC0(0).

It remains to prove the claim. Let ∆C(x) = ϕC(x) − ψC(−x). This is a smooth

invariant curve of ẋ = q
2
(1− x2),

∆̇ = −pkx∆ + F (x) + F (−x) + 2Cχ(x),

which is defined on (−1 − δ, 1). Therefore ∆C(x) will correspond to the smooth

invariant manifold of the above vector field at (−1, F (−1)+F (1)
pk

). We see that ∆C

depends smoothly on C. Even more, we know that it depends on C in an affine way.

Indeed, by using the variational equations, we can see that

∂j∆C

∂Cj
= 0, for any j ≥ 2.

Indeed, z = ∂j∆C
∂Cj

(x) is a smooth separatrix of the systemẋ = q
2
(1− x2),

ż = −pkxz,

whereas this system only possess two smooth separatrices at x = ±1, namely y = 0

and x = ±1. Hence it suffices to show ∂∆
∂C

(0) 6= 0, leading to C = −∆0(0)/ ∂∆
∂C

(0). Let

w(x) = ∂∆
∂C

(x). Then, by the variational equation, this is a smooth invariant curve of

the vector field ẋ = q
2
(1− x2),

ẇ = −pkxw + 2χ(x).
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Since we are interested at the value at 0, we can restrict our attention to the interval

[−1, 0]. There we can apply the smooth transformation x = −
√

1− u. In this new

coordinate, we get that w(u) is an invariant curve ofu̇ = −qu,

ẇ = −pkw − 2
χ(−
√

1−u)√
1−u .

Let

w0 = w(u)|u=1 = w(x)|x=0 .

The general solution for an arbitrary initial value w0 is given by

w(u) = w0u
λ −

∫ 1

u

uλ

sλ
2χ
(
−
√

1− s
)

s
√

1− s
ds (2.3.19)

= uλ
(
w0 −

∫ 1

0

2χ
(
−
√

1− s
)

sλ+1
√

1− s
ds

)
︸ ︷︷ ︸

P1

+uλ
∫ u

0

2χ
(
−
√

1− s
)

sλ+1
√

1− s
ds︸ ︷︷ ︸

P2

,

where λ = pk
q

. Now we are interested for which w0 we get a smooth solution. First

notice that the integrand of P2 is a smooth function, which is flat at s = 0. Thus the

integral will still be a smooth function, flat at u = 0. This makes uλ P2 a smooth

function of u. Hence if P1 = 0 we have a smooth graph w(u) near 0. Therefore we

take the initial value to be

w0 =

∫ 1

0

2χ
(
−
√

1− s
)

sλ+1
√

1− s
ds.

Now remark that the integrand is a positive function, and w0 > 0 is a finite value

since ∫ 1

0

2χ
(
−
√

1− s
)

sλ+1
√

1− s
ds ≤ A

∫ 1

0

1√
1− s

ds = 2A,

with A = sups∈[0,1]

2χ(−
√

1−s)
sλ+1 which is finite since this is a smooth function on a

compact interval.

Remark 2.3.14. The lemma above remains valid if we substitute χ(x) by χM (x)

defined in Figure 2.3.

This lemma replaces Lemma 2.3.5 and finishes the proof of Theorem 2.3.12 (as well

as the theorem states below). As observed in the previous section, we have some

freedom in which form we choose for the right-hand side of (2.3.16). If we take for

the resonant terms solutions as in Lemma 2.3.11, we get the following normal form.
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Theorem 2.3.15. Given (2.3.1) with p, q ∈ N0, gcd(p, q) = 1, q > 1. There exists

a formal change of coordinates of the form (2.3.3), formally bringing (2.3.1) in the

formẋ = (1− x2)
[
q
2

+ f0 ((1 + x)pyq)χL(x) + f1 ((1− x)pyq)χR(x) + f2(y)χM (x)
]
,

ẏ = y [px+ g0 ((1 + x)pyq)χL(x) + g1 ((1− x)pyq)χR(x) + g2(y)χM (x)] ,

(2.3.20)

for some formal power series f0, f1, f2, g0, g1, g2 that vanish at the origin. Moreover,

when q = 1 we can assume f2 = g2 = 0.

Finally, we consider non-resonant saddles. This means that we assume that the ratio

p/q of eigenvalues is an irrational number. It should be clear that Lemma 2.3.13

applies for all k, directly showing the following theorem:

Theorem 2.3.16. Given (2.3.1) with p/q ∈ R \ Q. There exists a formal change of

coordinates of the form (2.3.3), formally bringing (2.3.1) in the formẋ = (1− x2)
(
q
2

+ χM (x)f(y)
)
,

ẏ = y (px+ χM (x)g(y)) ,

for some formal power series f , g that vanish at the origin.

Although the use of flat functions underlines that these connecting terms have no

influence on the local normal form, one may prefer to work with monomials such

that one gets a polynomial normal form. Replacing Lemma 2.3.13, we can show the

following lemma.

Lemma 2.3.17. Let p, k, q ∈ N0 such that p and q are relatively prime and suppose

that q does not divide k, i.e. λ = pk
q
/∈ N. For every smooth function f defined on

a neighbourhood of [−1, 1], there exists a number C ∈ R such that the differential

equation

−q
2

dh(x)

dx
(1− x2)− pkxh(x) + f(x) = −C(1− x2)N+1 (2.3.21)

has a smooth solution, where N = bλc.

Proof: If there is a smooth solution, then its graph y = h(x) will be tangent to the

vector field ẋ = q
2
(1− x2),

ẏ = −pkxy + f(x) + C(1− x2)N+1.
(2.3.22)

This vector field contains two nodes at (−1,− f(−1)
pk

) and (1, f(1)
pk

). Similar as in

the proof of Lemma 2.3.13, we consider the local smooth solutions y = ϕC(x) and

y = ψC(x) where their domains of definition contain (−1, 1).
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Consider ∆C(x) = ϕC(x) − ψC(−x) (in further calculations we omit the subscript

C). By uniqueness of solution, it suffices to prove that ∆(0) = 0 for some well-chosen

C such that the smooth solutions coincide on (−1, 1) and this gives the solution of

(2.3.21).

By equation (2.3.22), we know that ∆(x) is tangent to the vector fieldẋ = q
2
(1− x2),

∆̇ = −pkx∆ + f(x) + f(−x) + 2C(1− x2)N+1.
(2.3.23)

By use of the variational equations, we get that

∂m∆C

∂Cm
= 0,

for m ≥ 2 since ∆C smoothly depends on C. Again it suffices to show ∂∆
∂C

(0) 6= 0.

Let w(x) = ∂∆
∂C

(x). Applying the variational technique to (2.3.23) gives

ẋ = q
2
(1− x2),

ẇ = −pkxw + 2(1− x2)N+1.
(2.3.24)

By putting w(x) = (1−x2)Nz(x), we get that z = z(x) is a smooth graph tangent toẋ = 1
2
(1− x2),

ż = −αxz + 2
q
(1− x2),

(2.3.25)

where α = λ−N ∈ (0, 1). Since we want to investigate the smoothness of the solution

near x = −1, we apply the transformation

x = x1 − 1,

resulting in ẋ1 = x1 − x21
2
,

ż = αz − αx1z + 2
q
(2x1 − x2

1).
(2.3.26)

A straightforward calculation show that the associated differential equation has

z(x1) = xα1 (2− x1)αC(x1)

as solution, where C(x1) is a solution of

C′(x1) =
4

qxα1 (2− x1)α
. (2.3.27)
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By rewriting this, we get

C(x1) = D +
4

q

∫ x1

0

u−α(2− u)−αdu,

u=tx1= D +
4

q
x−α+1

1

∫ 1

0

t−α(2− tx1)−αdt,

= D +
22−α

q
x−α+1

1

∫ 1

0

t−α(1− tx1

2
)−αdt,

= D +
22−α

q(1− α)
x−α+1

1

Γ(2− α)

Γ(1− α)Γ(1)

∫ 1

0

t−α(1− tx1

2
)−αdt,

= D +
22−α

q(1− α)
x−α+1

1 Hypergeom
(

[α, 1− α] , [2− α] ,
x1

2

)
,

where the last equality follows from (1.2.9). In order to get a smooth function near

x1 = 0, we choose D = 0 such that

z(x1) =
22−α

q(1− α)
x1(2− x1)α Hypergeom

(
[α, 1− α] , [2− α] ,

x1

2

)
, (2.3.28)

which is smooth for |x1| < 2. In order to prove the lemma, it suffices to show that

w(x) |x=0= z(x1) |x1=1 6= 0.

By (2.4.18), this value corresponds with

22−α

q(1− α)
Hypergeom

(
[α, 1− α] , [2− α] ,

1

2

)
. (2.3.29)

Since

Hypergeom

(
[α, 1− α] , [2− α] ,

1

2

)
=

∞∑
n=0

(1− α)n(α)n
(2− α)nn!2n

,

where

(a)0 = 1, (a)n = a(a+ 1) · · · (a+ n− 1), for n = 1, 2, . . . ,

we see that (2.3.29) only contains positive terms and thus is different from zero.

The direct equivalent of Theorem 2.3.12 with polynomial connecting terms is given

by

Theorem 2.3.18. Given (2.3.1) with p, q ∈ N0, gcd(p, q) = 1, q > 1. There exists

a formal change of coordinates of the form (2.3.3), formally bringing (2.3.1) in the

form 
ẋ = (1− x2)

[
q
2

+ xf1((1− x2)pyq) +

∞∑
k=1

αk(1− x2)
d pk
q
e
yk
]
,

ẏ = y

[
px+ xg1((1− x2)pyq) +

∞∑
k=1

βk(1− x2)
d pk
q
e
yk
]
,

(2.3.30)

for some formal power series f1, g1 that vanish at the origin and some real coefficients

αk, βk
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Remark 2.3.19. The asymmetric resonant part is contained in the description of

the connecting terms in Theorem 2.3.18.

2.4 Smooth Realization

The formal transformations of Theorems 2.3.8, 2.3.9, 2.3.10, 2.3.12, 2.3.15, 2.3.16

and 2.3.18 can be realized as a smooth equivalence thanks to the generalized Borel

Theorem (Theorem 1.2.5). However, since it originates from an induction process on

the degree of y, flat terms in y come forward similar as in the local normal form (see

(1.3.6)). We can summarize these forms after the smooth transformation asẋ = (1− x2)
[
q
2

+R1(x, y) + F1(x, y)
]
,

ẏ = y [px+R2(x, y) + F2(x, y)] ,
(2.4.1)

where R1(x, y) and R2(x, y) contain the resonant and the connecting terms and

F1(x, y) and F2(x, y) denote the flat terms, i.e.

R1(x, 0) = R2(x, 0) = j∞F1(x, 0) = j∞F2(x, 0) = 0.

The topic of study is to eliminate the flat remainders F1 and F2. For the sake of

convenience, we reduce the question to a question on orbital equivalence of vector

fields, allowing us to reparametrize time, i.e. divide both equations by the strictly

positive function 1 + 2
q
(R1(x, y) + F1(x, y)), leading us to studyẋ = q

2
(1− x2),

ẏ = y [px+R(x, y) + F (x, y)] ,
(2.4.2)

where R(x, y) contains the resonant and the connecting terms and where F (x, y) is

infinitely flat with respect to y at y = 0. In applications, we shall apply a time

reparametrization to the system in pre-normal form (Lemma 2.3.1) to get the first

equation of (2.4.2) and then proceed to the formal normal form by relying only on the

transformations of Lemma 2.3.2. In this section we will prove Theorem 2.4.1, hence

finishing the proofs of the theorems announced in Section 2.1.

Theorem 2.4.1. Let (2.4.2) arise from applying one of the formal normal form

theorems (Theorem 2.3.8, 2.3.9, 2.3.10, 2.3.12, 2.3.15, 2.3.16,2.3.18).

Let k ≥ 1 be arbitrary. There exists a Ck-smooth equivalence Φ defined in a neigh-

bourhood of [−1, 1] between (2.4.2) andẋ = q
2
(1− x2),

ẏ = y [px+R(x, y)] ,
(2.4.3)

where R(x, y) is identical to the function in the original system (2.4.2).
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Proof: Here we give a cursory description of the proof. Details are provided

throughout the following sections. Section 2.4.1 establishes the required conjugacy

near (−1, 0) (and also separately near (+1, 0)). An argument is shown that the

conjugacy near (−1, 0) can be extended to a conjugacy valid along almost half of

the separatrix. This extension can even be extended arbitrarily close to the other

hyperbolic point as will be proven in Section 2.4.2. Let k ≥ 1 and x0 = 1− ε, where

ε is small enough such that x0 lies in the domain of the normalizing transformation

(2.4.11) near the hyperbolic saddle (+1, 0). By Lemma 2.4.2, there exist γ, κ > 0 and

smooth functions

Φ1 : (−1− γ, x0 + γ)× (−κ, κ)→ R, and Φ2 : (x0 − γ, 1 + γ)× (−κ, κ)→ R,

such that the transformations (x, y) = (x̃,Φi(x̃, ỹ)) remove the flat terms on their

domains for i = 1, 2. Consider ∆0 = Φ1 − Φ2, which is a smooth function defined at

the cut x = x0. We extend this to a Ck-function

∆ : (x0 − γ, 1)× (−κ, κ)→ R,

which is k-flat for x → 1 as proved in Lemma 2.4.5. Finally, the transformation

(x, y) = (x̃,Φ(x̃, ỹ)), where

Φ(x, y) =


Φ1(x, y) if x ∈ (−1− γ, x0),

Φ2(x, y) + ∆(x, y) if x ∈ (x0, 1),

Φ2(x, y) if x ∈ [1, 1 + γ),

(2.4.4)

provides the required equivalence.

2.4.1 Local results near the saddles

Following Chen (Theorem 1.3.3), system (2.4.2) is smoothly conjugate to (2.4.3) near

the saddle (−1, 0), since they are formally conjugate (they are even formally equal).

Despite the fact that ẋ in both equations are identical, it is not directly clear from

Chen’s method that the transformation leaves x invariant, i.e. is of the form

(x, y) 7→ (x, y + σ(x, y)), (2.4.5)

with σ flat at y = 0. (In fact, examining Chen’s method, it seems very unlikely that

their transformation is of the form (2.4.5).) To get a diffeomorphism that leaves x

invariant, we use the homotopic method from [18] as explained in Section 1.3.1.

The benefit of the homotopic method is that extra structure can be captured. If

we for example use the method to conjugate (2.4.2) to (2.4.3) whose ẋ-equations

are identical, then the ẋ-equation in the difference field Y is zero, implying from



2.4. SMOOTH REALIZATION 59

(1.3.7) that the ẋ-equation in Zτ is zero as well. Following the way ϕτ is defined in

Section 1.3.1, it is clear that the x-component of ϕ− Id should be zero, implying that

the obtained ϕτ is of the form (2.4.5).

Proposition 1.3.7 states that in order to remove the flat terms in (2.4.2), it suffices

to use bump functions to give the vector field compact support near the saddle at

(−1, 0) and to reduce to a neighbourhood where the hyperbolicity in the y-direction

is uniformly bounded away from 0. This is possible in any neighbourhood inside the

compact set

[−1− δ, 0− δ]× [0, δ′],

with δ and δ′ arbitrarily small. Similarly, we can remove the flat terms in any neigh-

bourhood in the compact set

[0 + δ, 1 + δ]× [0, δ′].

Clearly, this method cannot be used to present a normal form that is defined on

[−1, 1]× [0, δ′], because there is a change of stability along the separatrix connecting

both saddles.

2.4.2 Extending local conjugacies

In this section, we extend the domain of validity of the conjugacy defined near the

saddle at (−1, 0), to conjugate (2.4.2) to its counterpart without flat terms. As an

ansatz to conjugate (2.4.2) to (2.4.3) we propose a transformation

(x, y) = (u, ϕ(u, v)).

The unknown function ϕ satisfies the following PDE:

q

2
(1− u2)ϕu + v [pu+R(u, v)]ϕv = ϕ [pu+R(u, ϕ) + F (u, ϕ)] . (2.4.6)

Clearly, Section 2.4.1 explains the existence of a solution of the form

ϕ(u, v) = v + ψ(u, v) with j∞ψ(u, 0) = 0, (2.4.7)

near (u, v) = (−1, 0). The aim in this section is to extend the domain of the solution

ϕ to a section arbitrarily close to (+1, 0). The next section will then deal with the

local passage near the saddle at (+1, 0).

Lemma 2.4.2. The solution ϕ of (2.4.6) determining the local conjugacy between

(2.4.2) and (2.4.3) and defined in Section 2.4.1 near (−1, 0), can be extended to

[−1, Umax] × [0, δ′′], for any Umax < 1, provided δ′′ is taken small enough (Umax-

dependent). In the extended domain, ϕ(u, v)− v is still (uniformly) flat with respect

to v.
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Proof: Following the methods of characteristics, the function ϕ(u, v) corresponds

to a graph Ψ = ϕ(u, v) in (u, v,Ψ)-space that is tangent to the flow of the vector field
u̇ = q

2
(1− u2),

v̇ = v [pu+R(u, v)] ,

Ψ̇ = Ψ [pu+R(u,Ψ) + F (u,Ψ)] .

Following the results in Section 2.4.1, we are aware of the existence of such an invariant

graph for x < −δ and y < δ′. As a basis for using the method of characteristics, we

may hence use the following initial condition

us(0) = −2δ, vs(0) = s, Ψs(0) = ϕ(−2δ, s),

where we have used the solution obtained from the previous section on x = −2δ and

where s is a parameter. Since the solution is known to be identity + flat terms, it is

clear that also Ψs(0) = s+ flat in s. In particular, Ψ0(0) = 0. As a consequence, we

can integrate the characteristic corresponding to s = 0 explicitly:

u0(t) = tanh
(

arctanh(−2δ) +
q

2
t
)
, v0(t) = 0, Ψ0(t) = 0.

It is defined for all t ≥ 0. By semi-continuity of the maximal domain of existence of

orbits, given any T > 0, the orbit (us(t), vs(t),Ψs(t)) is defined for all s ≤ δ′, t ≤ T .

We can invert t 7→ u0(t) to a map τ(u), so that

us(τ(u)) ≡ u, ∀u ≤ Umax,

for any given Umax < 1 (since T is arbitrarily large). From the variational equation

and from ∂
∂s
vs(0) = 1, we know that C(t) := ∂

∂s
vs(t)|s=0 is uniformly bounded

away from 0 and strictly positive for all t ∈ [0, T ]. Therefore, vs(τ(u)) is strictly

monotonously increasing in s, and we can find a σ(u, v) such that

vσ(u,v)(τ(u)) = v,

for s sufficiently close to 0. As a consequence, the required invariant graph is given

by

ϕ(u, v) = Φσ(u,v)(τ(u)),

following the method of characteristics.

Let us now explain the flatness of ϕ(u, v) − v. Then ∆ = ϕ̃(u, v), with ϕ̃(u, v) :=

ϕ(u, v)− v, is an invariant graph of

u̇ = q
2
(1− u2),

v̇ = v [pu+R(u, v)] ,

∆̇ = (∆ + v) [pu+R(u,∆ + v) + F (u,∆ + v)]− v [pu+R(u, v)] .

= vF (u, v) +O(∆).
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and we use

us(0) = −2δ, vs(0) = s, ∆s(0) = ϕ(−2δ, s)− s,

Since v0(t) = 0 for t ≤ T we have σ(u, 0) = 0 for all u implying that σ(u, v) = O(v)

uniformly for u ≤ Umax. This means that during the integration of the orbit, ∆̇ =

O(∆) + flat in s. Since the initial condition for ∆ is also flat in s, an application

of Gronwall’s Lemma shows that ∆s(t) is uniformly flat in s for all t ≤ T . As a

consequence, and keeping in mind that σ(u, v) = O(v),

ϕ̃(u, v) := ∆σ(u,v)(τ(u))

is flat in v, uniformly for u ≤ Umax.

2.4.3 Conjugacy near the second saddle

As observed before, the techniques of the previous subsection can not be applied in

a straightforward manner near the hyperbolic point at (+1, 0). However we can use

the local normal forms to overcome the problem of a displacement time that grows

to infinity.

Let ε > 0 be arbitrary but small. We will put some restraints on ε in the following

discussion.

By the results in the previous sections, we already have smooth solutions ϕ1 and

ϕ2 of (2.4.6), defined on neighbourhoods N1 and N2 of respectively [−1, 1 − ε
2
] and

[1− 3ε
2
, 1] as part of the x-axis.

Now we look at the difference of these transformations, more precise

∆(x, y) = ϕ1(x, y)− ϕ2(x, y).

We investigate how this difference, for instance at the transverse section x = 1 − ε,
propagates toward the second hyperbolic point. The aim is to show that this differ-

ence goes to zero in a finitely flat manner when it approaches the unstable manifold

of the hyperbolic point, where the order of flatness can be arbitrarily chosen.

Since both the transformations ϕ1 and ϕ2 are of the form (2.4.7), we see that at

the section the function

∆0(s) = ϕ1(1− ε, s)− ϕ2(1− ε, s),
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is infinitely flat near s = 0.

If we denote by

h(x, y) = y (R(x, y) + F (x, y)) ,

we see that ∆ needs to satisfy

q

2
(1− x2)∆x + y [px+R(x, y)] ∆y = ∆ [px+H(x, y,∆)] , (2.4.8)

in the neighbourhood N2, where

H(x, y,∆) =

∫ 1

0

∂h

∂y
(x, ϕ2(x, y) + z∆) dz.

By the method of characteristics, we examine the propagation of the difference satis-

fying (2.4.8). This satisfies the ODE
ẋ = q

2
(1− x2),

ẏ = y [px+R(x, y)] ,

∆̇ = ∆ [px+H(x, y,∆)] ,

(2.4.9)

with initial values

x(0) = 1− ε, y(0) = s, ∆(0) = ∆0(s),

which represents a parametrization of our transversal section.

Since we are interested about the dynamics near the second hyperbolic point, we

apply the translation

u = x− 1,

such that we get the new system
u̇ = u

(
−q − u

2

)
,

ẏ = y [p+ pu+R(u+ 1, y)] ,

∆̇ = ∆ [p+ pu+H(u+ 1, y,∆)] ,

(2.4.10)

with initial values

u(0) = −ε, y(0) = s, ∆(0) = ∆0(s).

The hyperbolic point is now situated in the origin. We can put this system in a

normal form by a smooth near-identity orientation-preserving transformation

(x1, y1,∆1) = (ψ(u), χ(u, y), ω(u, y,∆)), (2.4.11)
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such that we get 
ẋ1 = −qx1,

ẏ1 = y1 [p+ f(xp1y
q
1)] ,

∆̇1 = ∆1 [p+ g(xp1y
q
1 , x

p
1∆q

1)] ,

(2.4.12)

where f and g are some smooth functions representing the resonant terms near the

hyperbolic point. Now we can put a condition on ε since we like (−ε, s) to be in the

domain of the coordinate transformation (2.4.11). Hence it suffices to search for a

solution of (2.4.12) with initial values

x1(0) = ψ(−ε), y1(0) = χ(−ε, s) = s(1 + h.o.t.),

∆1(0) = ω(−ε, s,∆0(s)) = ∆0(s)(1 + h.o.t.).
(2.4.13)

Furthermore, if we introduce the new variable

z1 = xp1y
q
1

we get 
ẋ1 = −qx1,

ż1 = qz1 [f(z1)] ,

∆̇1 = ∆1 [p+ g(z1, x
p
1∆q

1)] ,

(2.4.14)

with new initial value z1(0) = ψ(−ε)pχ(−ε, s)q.

Suppose we wish to define ∆ at a point (1 − xE , yE) with 1 − ε < 1 − xE < 1

and yE small enough. In order to do this, it suffices to define ∆1 at the point

(x1,E , y1,E) = (ψ(−xE), χ(−xE , yE)).

Introduce the following parameters

µ = ψ(−ε) and λ = −1

q
ln

(
x1,E

µ

)
.

Remark that λ > 0 since ψ is orientation-preserving and thus µ < x1,E < 0. Therefore

we can do a time rescaling of the previous system (2.4.14) to get
ẋ1 = −qλx1,

ż1 = λqz1f(z1),

∆̇1 = λ∆1 [p+ g(z1, x
p
1∆q

1)] ,

(2.4.15)

where the initial values remain unchanged. It is a straightforward calculation that

the solution x1(t) reaches x1,E after t = 1. However it is still not clear for which

initial value y1(0) we reach yE at t = 1.

This obstacle can be overcome by looking at the same system, more precisely the first



64 CHAPTER 2. SEMI-LOCAL NORMAL FORMS

two equations of (2.4.15), but in reversed time, with initial values (x1,E , y1,E).

For this, represent the Taylor series of f as

xf(x) =
∑
i≥2

αix
i.

By results of the Dulac map obtained in Proposition 1.3.14, we can show that for an

arbitrary k ∈ N:

sq1,E := y1(0)q =
1

µp

[
xp1,Ey

q
1,E + α1 ln

(
x1,E

µ

)
x2p

1,Ey
2q
1,E + . . .

]

=
1

µp

N(k)∑
i=1

xpi1,Ey
qi
1,EPi

(
ln

(
x1,E

µ

))
+ ψk(xp1,Ey

q
1,E)


where Pi are polynomials of degree i − 1 with coefficients in the ideal generated by

〈α1, . . . , αi−1〉 and where ψk is Ck+1 and (k + 1)-flat. For further calculations, we

remark the following. We can rewrite the above expression as

sq1,E = xp1,Ey
q
1,E ·

1

µp

K(k)∑
i=1

x
p(i−1)
1,E y

q(i−1)
1,E Pi

(
ln

(
x1,E

µ

))
+

1

xp1,Ey
q
1,E

ψk(xp1,Ey
q
1,E)


= xp1,Ey

q
1,Eρk(x1,E ; y1,E ;x1,E ln(x1,E)),

(2.4.16)

where ρk is a Ck-function in its arguments, which goes to µ−p as x1,E goes to zero.

This implies that s1,E approaches zero in a continuous way for x1,E → 0 and thus

by applying the inverse transformation of (2.4.11) and using the fact that this is a

near-identity transformation, we see that the corresponding sE = y(0) goes to zero.

Let us return to system (2.4.15). It is easy to get smooth solutions

x1(t) = µe−qλt, (2.4.17)

and the solution of z1 can be represented as a series

z1(t) =
∑
i≥1

µpisqi1,EPi (qλt) ,

= xp1,Ey
q
1,E

∑
i≥1

µpix
p(i−1)
1,E y

q(i−1)
1,E ρik(x1,E ; y1,E ;x1,E ln(x1,E))Pi (qλt)

 ,

= x1,E z̃(x1,E ;x1,Eλt),

(2.4.18)

where the Pi are identical to those of (2.4.16) and z̃ is Ck. Since we are only interested

in the x1,E-dependence, we omit y1,E from the notation. Although Pi (qλt) blows up

when x1,E goes to zero, we see that the factor x
p(i−1)
1,E will compensate such that

x
p(i−1)
1,E Pi (qλt)→ 0 when x1,E → 0,
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for every t ∈ [0, 1]. Thus it remains to focus on the differential equation

∆̇1 = λ∆1 [p+ g(z1, x
p
1∆q

1)] ,

with initial value

∆1,0 := ∆1(0) = ω(−ε, sE ,∆0(sE)) = ∆0(sE) · (smooth function in sE). (2.4.19)

Using (2.4.17) and the notation

∆1(t) = ∆1,0e
pλtΓ(t),

we are focused on solving

Γ̇ = λΓ g
(
z1, µ

p∆q
1,0Γq

)
, with Γ(0) = 1. (2.4.20)

The desired expression ∆1(x1,E , y1,E) is then given by

∆1,0e
pλΓ(1) = ∆1,0Γ(1)

(
µ

x1,E

)p/q
. (2.4.21)

Now since ∆1,0 is a flat function of sE as in (2.4.19) it follows from (2.4.13) and

(2.4.16) that for every N ≥ 1, we can find a Ck-function ∆1,N (x1,E ; y1,E) which is

flat for x1,E → 0 such that

∆1,0 = xN1,E∆1,N (x1,E ; y1,E). (2.4.22)

So by using an appropriate N , we can see directly that (2.4.21) is k-flat if we can

prove the following lemma.

Lemma 2.4.3. Let k ≥ 1 be arbitrary. The Ck-function

Θk(x1,E , y1,E) = xk1,EΓ(1)

has bounded partial derivatives, with respect to x1,E up to order k for x1,E close to

zero.

Proof: First we look at the differential equation of Γ(t) given by (2.4.20). This can

be rewritten as

Γ̇ = λΓg
(
x1,E z̃(x1,E ;x1,Eλt), x

q
1,Eµ

p∆q
1,1Γq

)
.

Since g(0, 0) = 0, this is the same as

Γ̇ = x1,EλΓg̃(x1,E ;x1,E ln(x1,E); t),

= ΓG(x1,E ;x1,E ln(x1,E); t)

where g̃ and G are Ck-functions. Therefore this equation admits a unique Ck solution,

which is Ck dependent on the parameters x1,E and x1,E ln(x1,E). Denote this solution
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by Γ(x1,E ;x1,E ln(x1,E); t). By the chain rule, we can see that the partial derivatives

of

Θk(x1,E , y1,E) = xk1,EΓ(x1,E ;x1,E ln(x1,E); 1)

up to order k with respect to x1,E are smooth functions of x1,E and x1,E ln(x1,E) and

thus are bounded.

Remark 2.4.4. A similar observation as in (2.4.22) can be made for y1,E. Therefore

we see that expression (2.4.21) for ∆1(x1,E , y1,E) is infinitely flat for y1,E → 0 when

x1,E < 0.

These results hence lead to the following lemma.

Lemma 2.4.5. Let k ≥ 1 be arbitrary. There exists a Ck solution ∆(xE , yE) for

(2.4.8) which is k-flat for xE → 0.

Proof: It suffices to prove this for the normal form coordinates. In these coordinates

we know by (2.4.21), (2.4.22) and Lemma 2.4.3, that this can be expressed by

∆1(x1,E , y1,E) = ∆1,2k+N (x1,E , y1,E)Θk(x1,E , y1,E)µp/qx
k+N−p/q
1,E ,

where N > p
q
. Since ∆1,2k+N (x1,E , y1,E) is k-flat at x1,E = 0 and the derivatives of

the other functions with respect to x1,E up to order k remain bounded, the product

rule implies the desired result.

2.5 From semi-local to local normal form

Up to smooth equivalence, the vector field (2.1.1) for p, q ∈ N∗, gcd(p, q) = 1, can be

put in the orbital normal form given byẋ = q
2
(1− x2),

ẏ = y [px+ g0((1 + x)pyq)χL(x) + g1((1− x)pyq)χR(x) + χM (x)g2(y)] ,

(2.5.1)

where f0, f1, f2, g0, g1 and g2 are smooth functions with a zero in the origin and the

functions χR, χL and χM are as depicted in Figure 2.3. This semi-local normal form

is locally equal to the local normal form up to some low-order terms. For the normal

forms from Theorem 2.1.3 however, it is not straightforward to pass to the local nor-

mal forms. We show briefly how this can be done in a neighbourhood of the saddle

(−1, 0).

First observe that we can neglect the flat terms, since they can locally be removed
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due to a similar result as Proposition 1.3.7 for M = {x = 1}. This transformation is

of the form

(x, y) = (x̄, ȳ + F (x̄)ȳk + O
(
ȳk+1),

where k is the exponent of first non-zero connecting term, and F (x̄) is a locally smooth

function which is flat at x̄ = −1. Formally we consider
ẋ = q

2
(1− x2),

ẏ = y

px+
∑
n≥1

(Anx+Bn)(1− x2)pnyqn

 ,
(2.5.2)

where An and Bn denote the Taylor coefficients of respectively g1 and g0. After

applying

(x, y) =

(
u− 1

u+ 1
, (u+ 1)

2p
q z

)
,

the vector field (2.5.2) is transformed to
u̇ = qu,

ż = z

−p+
∑
n≥1

(
Dn + En

u

u+ 1

)
upnzqn

 ,
(2.5.3)

where Dn = 4pn(Bn − An) and En = 22pn+1An. We show that there is a smooth

change of coordinates putting (2.5.3) in the same form, but with En = 0 for all n.

The coefficients Dn remain unchanged and thus correspond to the coefficients of the

local normal form. This is shown by an induction principle followed by applying

Theorem 1.2.3.

Lemma 2.5.1. There exists a transformation of the form

z = y + g(u)yqk+1,

where g(u) is locally smooth, which putsu̇ = qu,

ż = −pz +
∑
n≥1 Dnu

pnzqn+1 +
∑
n≥k fn(u)upn+1zqn+1,

where the fn(u) are locally smooth functions, in the formu̇ = qu,

ẏ = −py +
∑
n≥1 Dnu

pnyqn+1 +
∑
n≥k+1 f̃n(u)upn+1yqn+1,

where the f̃n(u) are also locally smooth.
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Proof: Let g(u) be a smooth solution of

−qug′(u) + pqkg(u) + fk(u)upk+1 = 0,

i.e.

g(u) = C(u)upk, with C′(u) =
1

q
fk(u),

thus

g(u) =
1

q
upk

∫ u

0

fk(s)ds = upk+1h(u),

where h(u) is a locally smooth function. If we apply the transformation as defined in

the lemma, the second equation in the new variable y will be given by

ẏ = −py + λ
∑
n≥1

Dnu
pnyqn+1(1 + h(u)upk+1yqk)qn+1

+ λfk(u)upk+1yqk+1
qk+1∑
n=1

(
qk + 1

n

)
h(u)nu(pk+1)nyqkn

+ λ
∑

n≥k+1

fn(u)upn+1yqn+1(1 + h(u)upk+1yqk)qn+1.

By comparing the degrees of the u and y in each term, we can see that the only place

where a term with deg(u) ≤ pn can arise, is where the exponent of y is equal to qn+1

and these are the resonant terms Dnu
pn. Therefore this can be rewritten in the form

as described in the lemma.

If for example qk is the first degree of y where Ek is non-zero, it is a simple compu-

tation that this total transformation is of the form

z = y +
Ek
q
upk ln(u+ 1)yqk+1 + O

(
y2qk+1).

The local normal form at (−1, 0) of (2.5.2) is of the formẋ = qx,

ẏ = y
(
−p+

∑
n≥1 4pn(Bn −An)xpnyqn

)
.

Similarly the local normal formẋ = −qx,

ẏ = y
(
p+

∑
n≥1 4pn(Bn +An)xpnyqn

)
,

of (2.5.2) can be obtained near (1, 0). Observe that only the resonant terms of (2.1.6)

are of importance when we consider the dynamics close to the saddles. However the

transition in between the saddles is contained in the connecting terms and thus they

need to be considered in the full transition map as we will see in the next chapter.



Chapter 3

Transition map near symmetric saddle

connections using normal linearization

Using finitely smooth transformations, we normally linearize the normal form of Chap-

ter 2. Moreover, we find an expression as a C∞-function of some finitely smooth

functions called tags. As a consequence of this procedure, we define an invariant of

the system in terms of these tags and we can use this to obtain an expression for

the transition map through the saddle connection. These results are part of a paper

which is accepted for publication in Journal of Differential Equations ([12]).

3.1 Introduction

As before we consider C∞ vector fields in the plane with two hyperbolic saddles P1

and P2 having a heteroclinic connection with reciprocal saddle quantities p/q and

q/p. We do not consider unfoldings, i.e. here we do not consider families of vector

fields in which the parameters either break the saddle connection and/or perturb the

ratios of eigenvalues.

In Chapter 2 (Theorem 2.1.3) we established a C∞ normal form (up to time rescaling)

near the connection:ẋ = q
2
(1− x2),

ẏ = y (px+ wnf(w) + xwng(w) + χ(x)h(y))) ,
(3.1.1)

where w = (1− x2)pyq, |f(0)|+ |g(0)| 6= 0, and χ, defined in (2.1.5), is infinitely flat

at x = ±1, n ≥ 1 and all occurring functions are C∞. Here we highlight the first

non-zero resonant terms in contrast to (2.1.6). The expression xwng(w) represents

the part of the normal form where P2 behaves truly reversible with respect to P1; it

is the symmetric part. The expression wnf(w) represents the anti-symmetric part.

69
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The function χ(x)h(y) contains the connecting terms and is only present when q 6= 1.

We will see that these terms may have an effect that is distinguishably different from

the effect of the resonant terms on the dynamics near the connection.

The goal of this chapter is to establish a transition map along the connection. This

allows us to apply it to cyclicity problems, counting the number of limit cycles nearby

a given limit periodic set. Following the idea of linearizing individual saddles using

logarithmic expressions (see e.g. [7]), we show in Section 3.2 that we can normally

linearise (3.1.1) in terms of the y-variable in a similar way using the local logarithmic

expressions log(1− x) and log(1 + x). This is obtained by a near-identity coordinate

transformation (x, y) 7→ (x, z) = (x, z(1 + ψ(x, z))) which is C∞ in these logarithmic

expressions. The resulting normally linearized equation is given byẋ = q
2
(1− x2),

ż = pxz.
(3.1.2)

A precise statement is given in Theorem 3.2.1. Clearly, this model can be integrated

since (1 − x2)pzq is a first integral of the system. Moreover the map Σlin
in → Σlin

out is

trivially given by x0 7→ −x0, where

Σlin
in = ]−1,−1 + δ[× {z0},

Σlin
out = ]1− δ, 1[× {z0},

for any given z0 > 0 and δ ∈ ]0, 1[. Using the normal form transformation we can

then specify a constant of motion for the original system (3.1.1) and obtain qualitative

information on the map Σin → Σout, where

Σin = ]−1,−1 + δ[× {y0}, (3.1.3)

Σout = ]1− δ, 1[× {y0}.

A precise statement for the asymptotics of the transition map is given in Theo-

rem 3.3.2.

3.2 Normal linearization using finitely smooth transforma-

tions

This section is devoted to proving the following theorem.

Theorem 3.2.1. Consider the C∞ vector field (3.1.1) with p, q ∈ N∗ and gcd(p, q)=

1. There exists a near-identity coordinate change

(x, y) 7→ (x, z) = (x, y (1 + ψ (x, y))) ,
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preserving y = 0 and bringing (3.1.1) in the form (3.1.2). Moreover ψ is of the form

ψ(x, y) = Ψ(x, y, wn log(1 + x), wn log(1− x), (1− x2)1/q),

where Ψ is C∞ near [−1, 1]× {(0, 0, 0)} × [0, 1] and w = (1− x2)pyq.

Proof: The proof of Theorem 3.2.1 is a subsequent application of Theorem 3.2.7

and Theorem 3.2.9 (only if q > 1) presented in the next sections.

First we eliminate the resonant terms by an induction process (Section 3.2.1) before

removing the connecting terms (Section 3.2.2). The connecting terms are absent when

q = 1 so in this case Theorem 3.2.1 can be replaced by Theorem 3.2.7.

3.2.1 Reduction of the resonant part

Consider (3.1.1) and recall that w = (1− x2)pyq, so

ẇ = qwn+1f(w) + qxwn+1g(w) + qwχ(x)h(y). (3.2.1)

For the moment we focus on the resonant part of (3.1.1), i.e. we neglect χ(x)h(y). A

simple manipulation of the functions f + xg leads toẋ = q
2
(1− x2),

ẇ = wn+1(1− x)FL(w) + wn+1FR(w)(1 + x),
(3.2.2)

where FL and FR are a linear combination of the original f and g, more precisely

FL(w) =
q

2
(f(w)− g(w)), and FR(w) =

q

2
(f(w) + g(w)).

Later we will see the effect of our manipulations on the full system. Our intention is to

increase the order of w in the equation for ẇ step by step using changes of coordinates

in w. In the easier setting where one locally works around a single saddle, it is possible

to remove the resonant terms using finitely smooth expressions involving logarithms

(see e.g. [8]). Here we will extend this idea and therefore introduce the notion of tags.

Tags

In this paragraph we will introduce a series of tags which are functions of x, defined

on (−1, 1), by recursion. First we define TL and TR as the tags of order 1 satisfying

TL(0) = TR(0) = 0 where we impose that their time-derivatives, denoted as ṪL and

ṪR, should satisfy

ṪL = (1− x), and ṪR = (1 + x).

The time dependence of x is expressed in the first line of (3.2.2). A direct computation

shows that

TL(x) =
2

q
log(1 + x), and TR(x) = −2

q
log(1− x). (3.2.3)
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are the unique solutions satisfying the requirements. We recursively define T∗ for any

word ∗ composed of the alphabet {L,R} as solutions of

Ṫ∗L = (1− x)T∗, T∗L(0) = 0, Ṫ∗R = (1 + x)T∗, T∗R(0) = 0,

more specifically

T∗L(x) =

∫ x

0

2

q

T∗(s)

1 + s
ds, T∗R(x) =

∫ x

0

2

q

T∗(s)

1− s ds. (3.2.4)

A similar approach, using iterated integrals in terms of words, has been applied in

the study of the Abel equation in order to determine the number of limit cycles in

the center-focusproblem (see [14] and [15]). Unlike in the case [8], the tags do not

easily admit a closed expression: tags of order 2 may already contain dilogarithm

expressions and order 3 tags may even be more complicated. We do however show

the following proposition:

Proposition 3.2.2. Let k ≥ 1. The tags T∗ of order k (i.e. of word length k in ∗)
are of the form

T∗(x) = P∗(x, TL(x)) +Q∗(x, TR(x)),

where P∗(x, u), respectively Q∗(x, u), is polynomial in u with C∞ coefficients in x

of degree L(∗), respectively R(∗), corresponding to the number of times the letter L,

respectively R, appears in the word ∗.

Proof: For k = 1 this is obviously true. Suppose it is true for k ≥ 1. This means

that for words ∗ of length k we have

T∗(x) =

L(∗)∑
i=1

f i∗(x)T iL +

R(∗)∑
j=1

gj∗(x)T jR, (3.2.5)

where the functions f i∗ and gj∗ are C∞. We show that the expression for T∗R is similar

to (3.2.5) but the second summation is expanded to R(∗)+1. The case T∗L is treated

similarly.

By the recursive definition (3.2.4), it suffices to show that for every positive integer

k and C∞ functions f and g,∫ x

0

f(s)
logk(1− s)

1− s ds =

k+1∑
i=0

Fi(x) logi(1− x), (3.2.6)

and ∫ x

0

g(s)
logk(1 + s)

1− s ds = G(x) log(1− x) +

k∑
i=0

Hi(x) logi(1 + x), (3.2.7)

for some C∞ functions Fi, G and Hi. Observe that for any C∞ function f , we have∫ x

0

f(s)

1− sds = −f(1) log(1− x) +G(x),
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for some C∞ function G. Similarly, by partial integration we have∫ x

0

f(s) log(1−s)ds = F (x) log(1−x)+

∫ x

0

F (s)

1− sds = (F (x)− F (1)) log(1−x)+G(x),

for some C∞ functions F and G. By induction on n ∈ N it follows:∫ x

0

f(s) logn(1− s)ds =

n∑
i=0

Fni (x) logi(1− x), (3.2.8)

for some C∞ functions Fni (i = 0, . . . , n) since by partial integration∫ x

0

f(s) logn(1− s)ds = (F (x)− F (1)) logn(1− x)−
∫ x

0

G(s) logn−1(1− s)ds,

where G is C∞ and F is a C∞ primitive function of f . From these observations

(3.2.6) immediately follows since∫ x

0

f(s)
logk(1− s)

1− s ds = f(1)

∫ x

0

logk(1− s)
1− s ds+

∫ x

0

g(x) logk(1− s)ds.

To deal with (3.2.7), we now define C∞ bump functions χL(x) and χR(x) = χL(−x)

such that χL(x) + χR(x) = 1, and χL is locally 1, respectively 0, near x = −1,

respectively x = 1. The integral in (3.2.7) can be separated in∫ x

0

g(s)
logk(1 + s)

1− s ds =

∫ x

0

(
g(s)

1− sχL(s)

)
logk(1 + s)ds

+

∫ x

0

(
g(s) logk(1 + s)χR(s)

) 1

1− sds.

The expressions between brackets in each of the integrals are now C∞ functions and

since a similar result as (3.2.8) holds for log(1 + x), (3.2.7) follows from all of the

above.

Formal reduction of the resonant part using tags

We show that we can formally eliminate the resonant terms in (3.2.2). Normal lin-

earization amounts to finding a perturbation w∞ of w = (1−x2)pyq for which ẇ∞ = 0,

in other words we seek a first integral of the form w∞ = w + w2ψ̄(x,w). The new

coordinate Y (x, y) is chosen such that w∞ = (1− x2)pY q, i.e.

Y = y(1 + (1− x2)pyqψ̄(x, (1− x2)pyq))1/q, (3.2.9)

which will give the required normal linear form, eliminating completely the resonant

part. Denote byW the set of words with alphabet {L,R} and define for every k ∈ N0

the set Wk of words with length k.



74 CHAPTER 3. TRANSITION MAP NEAR SADDLE CONNECTION

Theorem 3.2.3. There exists a formal transformation

w∞ = w −
∞∑
k=1

wkn+1
∑
∗∈Wk

F∗(w)T∗,

where F∗ are C∞ functions and the tags T∗ are defined by (3.2.3) and (3.2.4), such

that (3.2.2) transforms to ẋ = q
2
(1− x2),

ẇ∞ = 0.

Proof: Let w0 = w. We claim that by appropriately choosing

wk+1 = wk − w(k+1)n+1
∑

∗∈Wk+1

F∗(w)T∗(w), k ≥ 0, (3.2.10)

for some C∞ functions F∗, we can ensure that

ẇk = w(k+1)n+1

 ∑
∗∈Wk

F∗L(w)(1− x)T∗ + F∗R(w)(1 + x)T∗

 , (3.2.11)

for some C∞ functions F∗L and F∗R, ∗ ∈ Wk. We show how these are defined in

the induction step below. Since the order in w of the words of length k increases

with k, it will imply that ẇk becomes flatter with growing k. The limit w∞ of this

transformation is of the desired form and due to the growing flatness will satisfy

ẇ∞ = 0. The claim is obviously true for k = 0. Let us now proceed under the

induction hypothesis that the claim is correct up to order k, i.e. (3.2.11) holds.

Define

wk+1 = wk − w(k+1)n+1

 ∑
∗∈Wk

F∗L(w)T∗L + F∗R(w)T∗R

 .

A simple computation shows that

ẇk+1 =
∑
∗∈Wk

−wn+1FL(w)
d
(
w(k+1)n+1F∗L(w)

)
dw


︸ ︷︷ ︸

w(k+2)n+1F∗LL(w)

(1− x)T∗L

+
∑
∗∈Wk

−wn+1FR(w)
d
(
w(k+1)n+1F∗L(w)

)
dw


︸ ︷︷ ︸

w(k+2)n+1F∗LR(w)

(1 + x)T∗L

+
∑
∗∈Wk

−wn+1FL(w)
d
(
w(k+1)n+1F∗R(w)

)
dw


︸ ︷︷ ︸

w(k+2)n+1F∗RL(w)

(1− x)T∗R
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+
∑
∗∈Wk

−wn+1FR(w)
d
(
w(k+1)n+1F∗R(w)

)
dw


︸ ︷︷ ︸

w(k+2)n+1F∗RR(w)

(1 + x)T∗R,

which is equivalent to (3.2.11) for k + 1.

When we compute the transition map in the next section, it may be beneficial to first

delete a finite part of the symmetric resonant terms corresponding to the function g in

(3.2.1) since we expect these to have a non-dominant effect on the transition. Indeed

the linearized system (3.1.2) is invariant under the symmetry (x, t) 7→ (−x,−t) and

so is the system (3.1.1) when f = h = 0. The transition map will in these cases be

given by (x0, 1) 7→ (−x0, 1). Therefore one can desire to use tags highlighting the

symmetry with respect to x = 0 other than the definition in (3.2.3) and (3.2.4).

We define the tags TE(x) and TO(x) of order 1 in the alphabet {E,O} as the functions,

smooth for x ∈ (−1, 1), satisfying TE(0) = TO(0) = 0 and where their time-derivative

satisfies

ṪE = x, and ṪO = 1,

in contrast to (3.2.3). Concretely a direct computation shows that

TE(x) = −1

q
log
(
1− x2) , and TO(x) =

1

q
log

(
1 + x

1− x

)
, (3.2.12)

are the unique solutions satisfying the requirements. Observe that these can easily

be related to the previous defined tags (and vice versa) since

TE =
1

2
(TR − TL) , and TO =

1

2
(TR + TL) . (3.2.13)

By induction we define

T∗E(x) =

∫ x

0

2

q

sT∗(s)

1− s2
ds, T∗O(x) =

∫ x

0

2

q

T∗(s)

1− s2
ds, (3.2.14)

for any ∗ ∈ Wsym consisting of words in the alphabet {E,O}. Remark that T∗E

preserves the symmetric behaviour of T∗ while T∗O inverses the symmetry of T∗ with

respect to x = 0. Therefore we know that a tag T∗ is odd whenever the number of

times that O appears in ∗ is odd, otherwise T∗ is even. Due to the relation to the

previous tags in (3.2.13) and the result of Proposition 3.2.2, it is easy to see that

the higher-order terms (3.2.14) can be expressed in terms of the tags (3.2.13) in a

similar way as in (3.2.5). Indeed this is a straightforward consequence of the following

lemma. Denote by Wsym
k the words of length k in Wsym.
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Lemma 3.2.4. Let � ∈ Wsym be arbitrary and denote the length of � by k ≥ 1. The

tag T� can be written as a linear combination of the tags T∗ with ∗ ∈ Wk, i.e.

T� =
∑
∗∈Wk

c�∗T∗,

for some c�∗ ∈ R. Similarly, any tag T∗ with ∗ ∈ Wk can be written as a linear

combination of tags T� with � ∈ Wsym
k .

Proof: We proof this by induction on the length k. For words of length 1, this is

expressed in (3.2.13). Suppose it is true for all � ∈ Wsym
k for some k ≥ 1. Due to the

recursive definition of the tags (3.2.14), it suffices to show that∫ x

0

sT∗(s)

1− s2
ds, and

∫ x

0

T∗(s)

1− s2
ds,

can be written as a linear combination of tags T◦ with ◦ ∈ Wk+1 for any ∗ ∈ Wk.

This follows immediately from the recursive definition (3.2.4) and the decompositions

s

1− s2
=

1

2

(
1

1− s −
1

1 + s

)
,

1

1− s2
=

1

2

(
1

1− s +
1

1 + s

)
.

The proof for expressing T∗ with ∗ ∈ Wk as a linear combination of T� with � ∈ Wsym
k

can be done similarly using the above decompositions.

Another direct consequence of Lemma 3.2.4 is an adaptation of Theorem 3.2.3 in

terms of the tags T∗ with ∗ ∈ Wsym. Instead of (3.2.2) we consider

ẇ = qwn+1f(w) + qxwn+1g(w). (3.2.15)

Theorem 3.2.5. There exists a formal transformation

w∞ = w −
∞∑
k=1

wkn+1
∑

∗∈Wsym
k

F∗(w)T∗,

where F∗ are C∞ functions and the tags T∗ are defined by (3.2.12) and (3.2.14), such

that (3.2.15) transforms to ẋ = q
2
(1− x2),

ẇ∞ = 0.

Proof: Let w0 = w and denote FE(w) = qg(w), F0(w) = qf(w). We show by

induction that there exist smooth functions F∗(w) for ∗ ∈ Wsym such that

ẇk = w(k+1)n+1

 ∑
∗∈Wsym

k

F∗E(w)xT∗ + F∗O(w)T∗

 , (3.2.16)
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where these variables wk are defined by

wk+1 = wk − w(k+1)n+1
∑

∗∈Wsym
k+1

F∗(w)T∗(w), (3.2.17)

for k ≥ 0. Obviously (3.2.16) is true for k = 0, so suppose it is true for some k ≥ 0

arbitrary. Define

wk+1 = wk − w(k+1)n+1

 ∑
∗∈Wsym

k

F∗E(w)T∗E + F∗O(w)T∗O

 ,

which is of the form (3.2.17). A straightforward computation shows

ẇk+1 =
∑

∗∈Wsym
k

−wn+1FE(w)
d
(
w(k+1)n+1F∗E(w)

)
dw


︸ ︷︷ ︸

w(k+2)n+1F∗EE(w)

xT∗E

+
∑

∗∈Wsym
k

−wn+1FE(w)
d
(
w(k+1)n+1F∗O(w)

)
dw


︸ ︷︷ ︸

w(k+2)n+1F∗OE(w)

xT∗O

+
∑

∗∈Wsym
k

−wn+1FO(w)
d
(
w(k+1)n+1F∗E(w)

)
dw


︸ ︷︷ ︸

w(k+2)n+1F∗EO(w)

T∗E

+
∑

∗∈Wsym
k

−wn+1FO(w)
d
(
w(k+1)n+1F∗O(w)

)
dw


︸ ︷︷ ︸

w(k+2)n+1F∗OO(w)

T∗O,

which concludes the proof since it is of the form (3.2.16).

We can now explicitly prove that the first non-zero term of f in (3.2.15) provides the

dominant asymmetric term in the linearization transformation of Theorem 3.2.5. For

this we consider (3.2.15) in the form

ẇ = qwm+1f(w) + qxwl+1g(w), (3.2.18)

where f(0) 6= 0 and g(0) 6= 0 and m, l ≥ 1. For simplicity of notation we preserved

the notation f and g, but these can be different than the ones from (3.2.15). The

exponent n then corresponds to min{m, l}.

Lemma 3.2.6. The transformation obtained in Theorem 3.2.3 and Theorem 3.2.5

applied to (3.2.18) where f(0)g(0) 6= 0 can be decomposed as

w∞ = w − wm+1Fasym(x,w)− wj+1Fsym(x,w),



78 CHAPTER 3. TRANSITION MAP NEAR SADDLE CONNECTION

where

Fasym(−x,w) = −Fasym(x,w), and Fsym(−x,w) = Fsym(x,w),

and j ≥ min{m, l}. The functions Fasym and Fsym should be considered as formal

series in w where the coefficients are given by linear combinations of the tags T∗ where

∗ ∈ W or ∗ ∈ Wsym. In particular

Fasym(x, 0) = qf(0)TO(x).

Proof: The first step in the proof of Theorem 3.2.5 applied to (3.2.18) is given by

w1 = w − qwm+1f(w)TO − qwl+1g(w)TE ,

where the tags TO and TE are given by (3.2.12). By a straightforward computation,

we get the new equation

ẇ1 = −q2wm+1f(w)
d
(
wm+1f(w)

)
dw

TO − q2wl+1g(w)
d
(
wm+1f(w)

)
dw

xTO

− q2wm+1f(w)
d
(
wl+1g(w)

)
dw

TE − q2wl+1g(w)
d
(
wl+1g(w)

)
dw

xTE .

All these terms are of order at least m+ 2 in w (in fact of order 2m+ 1 or m+ l+ 1)

except for the last term when 2l+ 1 ≤ m+ 1. However this term is odd in x and can

therefore only be removed by a symmetric function. More precise in the next step

this is eliminated by a term g̃(w)TEE in the procedure of Theorem 3.2.5. Again after

this step, the only term which is of lower degree than m+2 is w3l+1G(w)xTEE , when

3l + 1 ≤ m + 1. Hence for any i ≥ 1 where i · l + 1 ≤ m + 1, equation (3.2.16) is of

the form

ẇi = w(i+1)l+1Gi(w)xTE . . . E︸ ︷︷ ︸
i times

+ O
(
wm+2),

for a smooth function Gi(w) where i ≥ 1. Hence by completing the procedure of

Theorem 3.2.5, we get the result stated in the lemma since we can expand the trans-

formation in terms of linear combinations of the tags T∗ for ∗ ∈ Wsym in each degree

of w and such a tag is odd if and only if the number of times the letter O occurs in

∗ is odd.

Finitely smooth reduction of the resonant part

The functions wn log(1 − x) and wn log(1 + x) are of Logarithmic Mourtada type

(LMT) near respectively 1 and −1 (see [8] or [37]) and C∞ in ] − 1, 1[. The loss of

smoothness is thus located at the points x = ±1. Hence we can prove the following.
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Theorem 3.2.7. Consider the C∞ vector field (3.1.1) with p, q ∈ N∗ and gcd(p, q) =

1. There exists a finitely smooth near-identity coordinate change

(x, y) 7→ (x, Y ) = (x, y(1 + ϕ(x, y))),

bringing (3.1.1) to the smooth vector fieldẋ = q
2
(1− x2),

Ẏ = Y (px+ χ(x)h̃(x, Y )).
(3.2.19)

for some h̃ which is C∞ in (x, Y ) for x ∈ (−1, 1) which can be expressed as a smooth

function of the variables(
x, Y, (1− x2)n log(1 + x), (1− x2)n log(1− x)

)
.

Moreover ϕ is of the form

ϕ(x, y) = Φ (x, y, wn log(1 + x), wn log(1− x)) ,

where Φ is C∞ near [−1, 1]× {(0, 0, 0)} and w = (1− x2)pyq.

Remark 3.2.8. Since (1−x2)n log(1+x) and (1−x2)n log(1−x) are of Mourtada type

near x = −1 and x = 1, it follows immediately that (1 − x2)h̃(x, Y ) is of Mourtada

type near x = −1 and x = 1. The flatness of χ at x = ±1 therefore induces the

smoothness of (3.2.19).

Proof: From Theorem 3.2.3 and the discussion before (3.2.9), there exists a formal

transformation

Y = y

1−
∞∑
k=1

wkn
∑
∗∈Wk

F∗(w)T∗

1/q

,

which removes the resonant terms in (3.1.1). Thanks to Proposition 3.2.2, we can

express this formal transformation as a function of (x, y, wnTL, w
nTR). Using Borel’s

Theorem (Theorem 1.2.5), there exists a coordinate change Y = y(1 +ψ(x, y)) of the

form

ψ(x, y) = Ψ(x, y, wnTL, w
nTR),

where Ψ is C∞ near [−1, 1]× {(0, 0, 0)}, transforming (3.1.1) toẋ = q
2
(1− x2),

Ẏ = Y (px+ χ(x)h̃(x, Y )) + F (x, Y ),

where F is a smooth function satisfying j∞F (x, 0) = 0. Using the technique in Sec-

tion 2.4, it is possible to adapt ψ by a flat function such that the new transformation

Y = y(1 + ϕ(x, y)) transforms (3.1.1) to (3.2.19).
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3.2.2 Removing the connecting terms

Consider the vector field (3.2.19). When q = 1, we know from Theorem 2.1.2 that

connecting terms do not occur in the original vector field (3.1.1), i.e. h = 0. In

this case Theorem 3.2.1 reduces to Theorem 3.2.7. When q > 1 is arbitrary, we

transform vector field (3.2.19) to the case without connecting terms using a non-

smooth transformation in x. This amounts to the following theorem.

Theorem 3.2.9. Consider the vector field (3.2.19) with q > 1. There exists a near-

identity coordinate change

(x, Y ) 7→ (x, z) = (x, Y (1 + ϕ(x, Y )),

bringing (3.2.19) in the form (3.1.2). Moreover ϕ is of the form

ϕ(x, Y ) = Φ
(
x, Y, (1− x2)1/q

)
,

where Φ is C∞ near [−1, 1]× {0} × [0, 1].

Proof: Write 1− x2 = (1−X2)q and therefore

x = X Ω(X), where Ω(X) =

√
1− (1−X2)q

X2
. (3.2.20)

Observe that Ω(X) is a C∞ strictly positive function for X ∈ (−
√

2,
√

2). This

change of coordinates maps [−1, 1] to itself, although in a finitely smooth way at the

boundary. After division by Ω(X) the effect of (3.2.20) on system (3.2.19) is given

by: Ẋ = 1
2
(1−X2),

Ẏ = Y
(
pX + χ (XΩ(X)) h̃(XΩ(X),Y )

Ω(X)

)
.

Since the transformation fixes x = ±1, the second term remains flat and therefore ẏ

can be written as

Ẏ = Y (pX +H(X,Y )) (3.2.21)

for some C∞ function H that is flat at X = ±1. Since this system has a saddle

connection with ratios of eigenvalues −p : 1 and p : −1, its normal form has no

connecting terms (see Theorem 2.1.2); it even has no resonant terms due to the

flatness of H. This is true since the inductive process of Chapter 2 does not create

non-flat terms. Indeed applying a smooth transformation of the form

Y = y + g(X)yk+1,

satisfying

−1

2
(1−X2)g′(X)− pkXg(X) + F (X) = 0,
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where F is a smooth function, infinitely flat at x = ±1, to (3.2.19) amounts to

ẏ = pXy+χ(X)yh̃(X, y+ g(X)yk+1)−F (X)yk+1 +F (X)yk+1
∑
i≥0

(−k− 1)ig(x)iyki.

Therefore there exists, according to Theorem 2.1.2, a C∞ normalizing transformation

Y = z(1 + ψ(X, z)) reducing (3.2.21) to normalized linear form. We can hence also

apply the transformation

Y = z(1 + ϕ(x, z)), where ϕ(x, z) = ψ(X(x), z),

to (3.2.19) to obtain a finitely smooth transition to (3.1.2).

It remains to prove that ϕ can be expressed as a C∞ function of x, s = (1−x2)1/q, y.

It suffices to prove that X(x) is C∞ in x and (1− x2)1/q. We have

X(x) = x

√
1− s
x2

= x

√
1− s
1− sq = x

√
1

1 + s+ · · ·+ sq−1
= xρ

(
(1− x2)1/q

)
,

where ρ is C∞.

3.3 An invariant and the transition map

Theorem 3.2.1 describes the transformation from (3.1.1) to the integrable system

(3.1.2). Since W := (1 − x2)pzq is a constant of motion for (3.1.2), it immediately

results to

Corollary 3.3.1. Consider the C∞ vector field (3.1.1) with p, q ∈ N∗ and gcd(p, q)=

1. There exists a constant of motion V (x, y) of the vector field given by

V (x, y) = (1− x2)pyq (1 + ψ(x, y))q ,

where ψ(x, y) is the function as described in Theorem 3.2.1.

We will use this idea to compute the transition map

Σin → Σout

with Σ∗ as defined in (3.1.3) and using the parametrization there introduced. Suppose

the vector field (3.1.1) can be written asẋ = q
2
(1− x2),

ẏ = y
(
px+ wnf(w) + xwng(w) + χ(x)h(y)yk

)
,

(3.3.1)

where |f(0)| + |g(0)| 6= 0 and h(0) 6= 0. When we want to determine the dominant

term in the transition map, we considerẋ = q
2
(1− x2),

ẏ = y
(
px+ wmf(w) + xwlg(w) + χ(x)h(y)yk

)
,

(3.3.2)
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where f(0)g(0)h(0) 6= 0 instead of (3.3.1). The exponent n defined in (3.3.1) corre-

sponds to min{m, l}, for m, l defined in (3.3.2). In this section we prove the following.

Theorem 3.3.2. Consider the vector field as given by (3.3.1), where |f(0)|+ |g(0)| 6=
0 and h(0) 6= 0. The transition map

D : Σin → Σout : x0 7→ D(x0),

can be written as

D(x0) = −x0 − (1 + x0)δ(x0),

where δ is a C∞ function in the variables(
x0, (1− x2

0)np log(1 + x0), (1− x2
0)np log(1− x0), (1− x2

0)1/q
)
. (3.3.3)

Moreover when we consider (3.3.2) with f(0)g(0)h(0) 6= 0, we have for x0 close to

−1 (x0 > −1):

D(x0) = −x0 +
1

p
(1− x2

0)mp+1f(0) log(1 + x0) (1 + F (x0)) , if mq < k, (3.3.4)

or

D(x0) = −x0 −
2

p
Akh(0)(1− x2

0)
pk
q

+1
(1 + F (x0)), if k < mq, (3.3.5)

where

Ak =

∫ 1

0

χ(x)

(1− x2)
pk
q

+1
dx, and lim

x0→−1+
F (x0) = 0.

The proof of this theorem is divided in two parts. First we prove that the transition

map can be expressed as a smooth function of the variables (3.3.3) in Section 3.3.1.

Then we derive the asymptotics of this map using the first non-linear term of the

transformation of Theorem 3.2.1. This is the subject of Section 3.3.2.

The notation used in Theorem 3.3.2 is not natural when one wants to study the

asymptotics of the transition map. If we parametrize Σin by (−1 + u0, 1) and Σout

by (1− u1, 1) (see Figure 3.1), we can reformulate Theorem 3.3.2 as follows.

Theorem 3.3.3. Consider the vector field as given by (3.3.1), where |f(0)|+ |g(0)| 6=
0 and h(0) 6= 0. Consider the transverse sections

Σin = {(−1 + u0, 1) | u0 > 0, u0 ≈ 0}, and Σout = {(1− u1, 1) | u1 > 0, u1 ≈ 0}.

The transition map

D̃ : Σin → Σout : u0 7→ u1 = D̃(u0),

can be expressed as a C∞ function in the variables(
u0, u

np
0 log(u0), u

1/q
0

)
.
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Moreover when we consider (3.3.2) with f(0)g(0)h(0) 6= 0, for u0 > 0 close to 0, we

have

D̃(u0) = u0 +
2np+1

p
f(0)unp+1

0 log(u0)
(
1 + o

(
1
))
, if nq < k,

or

D̃(u0) = u0 −
2
pk
q

+2

p
Akh(0)u

pk
q

+1

0

(
1 + o

(
1
))
, if nq > k,

where Ak is given in Theorem 3.3.2.

In this sense, we provide an alternative proof for the dependence of the transition map

as formulated in Theorem 3.3.3. This will be done in Section 3.3.3. The advantage

of the notation of Theorem 3.3.2 is that we can exploit the (a)symmetry of terms

to obtain the first non-linear term. Therefore we shall not prove the asymptotic

expansion as formulated in Theorem 3.3.3 but see this as a direct consequence of

Theorem 3.3.2.

Remark 3.3.4. One can define an asymptotic scale as has been done in [41]. For

this we express the variables (3.3.3) in terms of the small variable u0 = x0 + 1 (see

Theorem 3.3.3) by

ur10 logm1(u0) � ur20 logm2(u0), (3.3.6)

if r1 > r2 or r1 = r2 and m1 < m2 for ri ∈ Q and mi ∈ N.

3.3.1 The transition map as a function of the tags

Due to Corollary 3.3.1, we find a C∞ constant of motion of the system (3.1.1) given

by

V (x, y) = w
(

1 + Ψ
(
x, y, wnTL, w

nTR, (1− x2)1/q
))q

, (3.3.7)

using the first integral of the normally linearized system (3.1.2).

Let us now compute the entry-exit relation. Denote the initial variable on Σin by x0

and the corresponding exit variable by x1. Remark that x1 → 1 as x0 → −1, so we

write

1− x1 = (1 + x0)(1 + δ(x0)). (3.3.8)

As a matter of fact we will see that δ tends to 0 as x0 tends to −1, which we will show

using the implicit function Theorem with (3.3.8) as ansatz. This form of transition

map originates from the fact that it is near-identity due to the symmetry of the

eigenvalues of the saddle (see Figure 3.1).

At the cuts Σ∗, the invariant is given by

V (x, 1) = (1− x2)p
(

1 + Ψ
(
x, 1, (1− x2)npTL, (1− x2)npTR, (1− x2)1/q

))q
.
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Figure 3.1: Asymptotics of transition near saddle connection

For the sake of notation, denote the LMT-functions as

T̄L = (1− x2
0)npTL(x0), and T̄R = (1− x2

0)npTR(x0). (3.3.9)

We aim to express δ in terms of
(
x0, T̄L, T̄R, (1− x2

0)1/q
)

by applying the implicit

function Theorem to the equation V (x0, 1) = V (x1, 1) since V is invariant under the

flow and we impose that (x0, 1) and (x1, 1) are different points of the same orbit.

First we need to express TL(x1), TR(x1), (1− x2
1) in terms of x0 and δ. Observe that

TR(x1) = −2

q
log(1− x1) = −TL(x0)− 2

q
δ + O

(
δ2). (3.3.10)

Here and in the remainder of this section appearing O-terms are C∞ in (x0, δ) near

(−1, 0). Remark that they can blow up close to x0 = 1, but since we are interested

in the behaviour near x0 = −1 this does not pose a problem. The tag TL(x) is C∞

at x = 1, just as TR(x) is C∞ at x = −1. We see

TL(x1) =
2

q
log (2− (1 + x0)(1 + δ))

= −TR(x0) +
2

q
log

(
1− δ 1 + x0

1− x0

)
= −TR(x0)− 2

q
δ

1 + x0

1− x0
+ O

(
δ2). (3.3.11)

A simple computation shows

(1− x2
1) = (1− x2

0)

(
1− 2δ

x0

1− x0
+ O

(
δ2)) ,

hence for a power r ∈ Q+,

(1− x2
1)r = (1− x2

0)r
(

1− 2rδ
x0

1− x0
+ O

(
δ2)) . (3.3.12)
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Using the expansions above, more precise (3.3.10) and (3.3.12) for r = np, we have

T̄
(1)
R := (1− x2

1)npTR(x1) = −T̄L +

(
2np

x0

1− x0
T̄L −

2

q
(1− x2

0)np
)
δ + O

(
δ2),
(3.3.13)

and by (3.3.11) and (3.3.12),

T̄
(1)
L := (1− x2

1)npTL(x1) = −T̄R +

(
2np

x0

1− x0
T̄R −

2

q
(1− x2

0)np
1 + x0

1− x0

)
δ + O

(
δ2).

(3.3.14)

Denote

Ψ1 := Ψ
(
x1, 1,

(
1− x2

1

)np
TL(x1),

(
1− x2

1

)np
TR(x1),

(
1− x2

1

)1/q)
,

where Ψ is introduced in Theorem 3.2.1. This can be expressed as a function of x0

and δ thanks to (3.3.8), (3.3.12), (3.3.13) and (3.3.14)

Ψ1 = Ψ

(
−x0 − δ(1 + x0), 1, T̄

(1)
L , T̄

(1)
R , (1− x2

0)1/q

(
1− 2

q

x0

1− x0
δ + O

(
δ2))) .

(3.3.15)

Since V (x1, 1) can be expressed as a function of x0 and δ using (3.3.12) and (3.3.15),

we can search for solutions δ of

0 = Θ
(
δ, x0, T̄L, T̄R, (1− x2

0)1/q
)

:=

(
V (x1, 1)

(1− x2
0)p

)1/q

−
(
V (x0, 1)

(1− x2
0)p

)1/q

, (3.3.16)

where Θ is C∞ near (0,−1, 0, 0, 0), such that V (x0, 1) = V (x1, 1) is satisfied. In order

to apply the implicit function Theorem to (3.3.16) at (0,−1, 0, 0, 0) and consequently

show that we can express δ in terms of
(
x0, T̄L, T̄R, (1− x2

0)1/q
)

, it is sufficient to

show that
∂Θ

∂δ
(0,−1, 0, 0, 0) 6= 0,

since Θ(0,−1, 0, 0, 0) = 0. Notice that

Θ =

(
1− 2p

q

x0

1− x0
δ + O

(
δ2)) (1 + Ψ1)−

(
1 + Ψ

(
x0, 1, T̄L, T̄R, (1− x2

0)1/q
))

.

We find
∂Θ

∂δ
= −2p

q

x0

1− x0
(1 + Ψ1) +

∂Ψ1

∂δ
+ O

(
δ
)
, (3.3.17)

where
∂Ψ1

∂δ
= O

(
1− x2

0, T̄R, T̄L, δ
)
.

Hence we see

∂Θ

∂δ
(0,−1, 0, 0, 0) =

p

q
+
∂Ψ1

∂δ
(0,−1, 0, 0, 0) =

p

q
6= 0.

By the implicit function Theorem, we can thus write

x1 = −x0 − (1 + x0)δ(x0),
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where we can express

δ(x0) = δ̄
(
x0, T̄L, T̄R, (1− x2

0)1/q
)
,

for a C∞ function δ̄ near (−1, 0, 0, 0).

3.3.2 Asymptotics of the transition map

In the previous section we proved that we can express the transition map in terms of(
x0, T̄L, T̄R, (1− x2

0)1/q
)
. (3.3.18)

We now want to compute the asymptotics of the map near x0 = −1. Recall that δ

defined in (3.3.8) should be a solution of (3.3.16). Hence if we expand Θ near δ = 0,

we ought to solve

0 = Θ
(

0, x0, T̄L, T̄R, (1− x2
0)1/q

)
+ δ

∂Θ

∂δ

(
0, x0, T̄L, T̄R, (1− x2

0)1/q
)

+ O
(
δ2).
(3.3.19)

From the definition of Θ, it follows immediately that

Θ |δ=0= Ψ
(
−x0, 1,−T̄R,−T̄L, (1− x2

0)1/q
)
−Ψ

(
x0, 1, T̄L, T̄R, (1− x2

0)1/q
)
,

(3.3.20)

and using (3.3.17) one can check

∂Θ

∂δ

(
0, x0, T̄L, T̄R, (1− x2

0)1/q
)

=
2p

q

1

1− x0
+ . . . ,

where we shall use the notation . . . for a finitely smooth function, smooth on x0 ∈
(−1, 1), having the same property as the function F in the statement of Theorem

3.3.2. If we want to compute the dominant term of the transition map, i.e. the

term of lowest asymptotic order we have to describe (3.3.20). Suppose (3.1.1) can be

written as (3.3.2) where f(0)g(0)h(0) 6= 0 for some m, l, k ∈ N∗ with k 6= mq. We have

to distinguish two cases depending on which of the transformations (Theorem 3.2.7

or Theorem 3.2.9) is dominant, i.e. provides the terms of lowest degree of (1− x2) in

the linearizing transformation of Theorem 3.2.1:

(A) mq < k,

(B) k < mq.

Case A

Suppose mq < k. In this case, the transformation obtained in Theorem 3.2.7 to get

rid of the resonant terms is dominant. Obviously in (3.3.20), the first non-zero term
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which is not symmetric with respect to x = 0 provides a dominant contribution.

Therefore the transformation of Theorem 3.2.7 can formally be expressed as

w∞ = w − wm+1Fasym(x,w)− wj+1Fsym(x,w),

where j ≥ min{m, l} and

Fasym(−x,w) = −Fasym(x,w), and Fsym(−x,w) = Fsym(x,w),

in terms of the resonant monomials w∞ = (1 − x2)pzq and w = (1 − x2)pyq due to

Lemma 3.2.6. The transformation of Theorem 3.2.7 in terms of z and y can therefore

formally be expanded as

z = y

(
1− 1

q
wmFasym(x,w)− wjG(x,w) + h.o.t.

)
,

for some G satisfying G(−x,w) = G(x,w) and where the higher order terms contain

expressions of degree m+ 1 or higher in w. The difference (3.3.20) then reduces to

Θ |δ=0=
2

q

(
1− x2

0

)mp
Fasym(x0, 0)(1 + . . .).

Due to Lemma 3.2.6 and (3.2.13), we can rewrite this as

Θ |δ=0 = f(0)
(
1− x2

0

)mp
(TR(x0) + TL(x0))(1 + . . .)

= f(0)
(
1− x2

0

)mp
TL(x0)(1 + . . .).

Combining this with the Taylor expansion given in (3.3.19), we see

δ = − q

2p
(1− x0)f(0)

(
1− x2

0

)mp
TL(x0) (1 + . . .) ,

Hence

D(x0) = −x0 +
q

2p
(1− x2

0)f(0)
(
1− x2

0

)mp+1
TL(x0) (1 + . . .) ,

which concludes the proof of Theorem 3.3.2 in the case k > mq.

Case B

Suppose k < mq. The first higher order term in the transformation of Theorem 3.2.1

can be contributed by the transformation in Theorem 3.2.7 when lq < k. However

in this case, this contribution is symmetric and will therefore disappear when we

consider (3.3.20) similar as we have seen in case A. The main contribution to (3.3.20)

is then given by the transformation of Theorem 3.2.9 where we remove the connecting

terms. The transformation obtained in Theorem 3.2.1 can formally be written as

z = y
(

1− h(0)ykΦ(x)− wjG(x,w) + h.o.t.
)
,
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where G(−x,w) = G(x,w) and where Φ(x) = Φ(XΩ(X)) = Φ̃(X) is a solution of

−1

2
(1−X2)Φ̃′(X)− pkXΦ̃(X) +

χ(XΩ(X))

Ω(X)
= 0,

with (1 − x2) = (1 −X2)q and Ω(X) is defined in (3.2.20). In the original variable,

this translates to solving

− q
2

(1− x2)Φ′(x)− pkxΦ(x) + χ(x) = 0,

hence

Φ(x) =
2

q
(1− x2)

pk
q

∫ x

0

χ(s)

(1− s2)
pk
q

+1
ds.

Remark that∫ x0

0

χ(s)

(1− s2)
pk
q

+1
ds = −Ak + . . . , and

∫ −x0
0

χ(s)

(1− s2)
pk
q

+1
ds = Ak + . . . ,

where Ak is defined in Theorem 3.3.2. Similar as before, we see that the symmetric

difference (3.3.20) is given by

Θ |δ=0= −4

q
Akh(0)(1− x2

0)
pk
q (1 + . . .),

leading to

D(x0) = −x0 −
2

p
Akh(0)(1− x2

0)
pk
q

+1
(1 + . . .).

In Chapter 5 we provide two applications where we illustrate the power of the asymp-

totic expressions for the transition map. It will allow us to obtain some partial cyclic-

ity results since the non-smooth terms can not be compensated when composed with

a regular map.

3.3.3 Alternative expression of the transition map

In this section we prove the first part of Theorem 3.3.3, i.e. we show that the transition

map

D̃ : Σin → Σout : u0 7→ u1 = D̃(u0),

can be expressed as a C∞-function of the variables(
u0, u

np
0 log(u0), u

1/q
0

)
.

Due to Corollary 3.3.1, the transition map u1 = D̃(u0) is given implicitly by

V (−1 + u0, 1) = V (1− u1, 1). (3.3.21)

We are interested in the behaviour of u0 and u1 close to 0. Since the function ψ(x, y)

occurring in Corollary 3.3.1 can be expressed as a smooth function of(
x, y, (1− x2)np log(1 + x), (1− x2)np log(1− x), (1− x2)1/q

)
,
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and by exploiting the fact that log(2− ui) is smooth for ui close to 0 for i = 0, 1, we

can write (3.3.21) as

2pup0

(
1 + ΨL

(
u

1/q
0 , unp0 log(u0)

))
= 2pup1

(
1 + ΨR

(
u

1/q
1 , unp1 log(u1)

))
, (3.3.22)

for some smooth functions ΨL,ΨR vanishing at the origin. Denote by vi = u
1/q
i for

i = 0, 1. After taking the 1
pq

-th power of (3.3.22), this can be written as

v0 (1 + ΨL (v0, v
npq
0 log(v0))) = v1 (1 + ΨR (v1, v

npq
1 log(v1))) , (3.3.23)

for some new smooth functions ΨL,ΨR vanishing at the origin. It suffices to prove that

v1 can be expressed as a smooth function of v0 and vnpq0 log(v0) satisfying (3.3.23),

since this implies that we can express u1 as a smooth function of u
1/q
0 and unp0 log(u0).

Denote the left-hand side of (3.3.23) as

z1 = v1 (1 + ΨR (v1, v
npq
1 log(v1))) .

We want to invert this relation, such that we find an expression

v1 = z1

(
1 + Ψ̄R (z1, z

npq
1 log(z1))

)
,

for some smooth function Ψ̄R and substitute z1 by the left-hand side of (3.3.23).

Therefore denote V = vnpq1 log(v1) and Z = znpq1 log(z1) such that we can consider

the following systemz1 = v1 (1 + ΨR (v1, V )) ,

Z = vnpq1 (1 + ΨR (v1, V ))npq log [v1 (1 + ΨR (v1, V ))] .
(3.3.24)

We can simplify the second equation by expanding the logarithm, such that the system

(3.3.24) can be rewritten asz1 = v1 (1 + ΨR (v1, V )) ,

Z = V + τ(v1, V ),
(3.3.25)

where τ is a smooth function near the origin where it also vanishes. Even more, by

considering the explicit expression in (3.3.24), it follows by direct computation that

∂τ

∂v1
(0, 0) =

∂τ

∂V
(0, 0) = 0.

Due to the inverse function Theorem, we can invert the system (3.3.25) since the

functions described there are near-identity. Hence there exists a function Ψ̃(z1, Z),

smooth near the origin, such that

v1 = z1

(
1 + Ψ̃(z1, z

npq
1 log(z1))

)
.

If we replace z1 by the left-hand side of (3.3.23), we can express v1 as a smooth

function of v0 and vnpq0 log(v0). By returning to the old variables u0, u1, we get that

u1 can be expressed as a smooth function of u0, u
np
0 log(u0) and u

1/q
0 .
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Chapter 4

Saddle connections with symmetrically

perturbed eigenvalues

In this chapter, we generalize the techniques of Chapters 2 and 3 to the setting of a

smooth family of vector fields similar to (2.1.1) but with a symmetric perturbation in

the eigenvalues. We start by giving an adapted version of Theorem 2.1.3. The con-

struction is done in a similar fashion as the Poincaré-Dulac normalization for families

of hyperbolic vector fields as described in Section 1.3.2.

Remark that the semi-local normal form of Theorems 2.1.2 and 2.1.3 are robust when

we assume that the symmetric eigenvalues of the saddles p and q remain unperturbed.

The dependence on some parameter ε is in this case confined to the higher-order

terms. This situation typically occurs when the nature of the non-elementary singu-

larity under consideration is fixed. For instance the perturbance of a cusp where the

nilpotency is preserved is studied in [41]. However, when one studies an unfolding of

these singularities, generically this is broken as is the case for a fake saddle (see [13]).

We shall assume that the connection between the saddles remains unbroken and the

symmetry of the eigenvalues is preserved to get a finitely smooth normal form (see

Theorem 4.1.8).

Then we reduce the system even further by linearizing as we did in Theorem 3.2.1.

However we do this by defining an infinite amount of non-smooth variables which we

can not yet reduce to a finite set (see Theorem 4.2.5).

4.1 Parameter-dependent semi-local normal forms

In this section we focus on the techniques of Chapter 2 when studying families of

vector fields having a fixed saddle connection with symmetric (perturbed) eigenval-

91



92 CHAPTER 4. SYMMETRIC PERTURBATIONS OF THE EIGENVALUES

ues. Due to the normal form procedure in Section 1.3.2, we can at best obtain a

finitely smooth normal form. Otherwise the normal form should encompass an infi-

nite amount of resonant terms as was explained in Figure 1.9.

Consider a family of vector fields Xλ where λ ∈ Λ ⊂ RK for some K ∈ N and

some compact set Λ containing the origin. We are interested in families having

nearly-resonant saddles with a separatrix connection, i.e. the vector field X0 satisfies

the conditions of Theorem 2.1.3 for some co-prime integers p and q. We assume the

following:

(1) The family Xλ has two hyperbolic saddles situated at s± = (±1, 0).

(2) The eigenvalues at both saddles are symmetric, i.e. the linear part at s± of Xλ

is given by

J(s±) = ±a±(λ)

(
q 0

0 −p(1 + α(λ))

)
,

where a±(λ) > 0 and α(λ) depends smoothly on λ.

(3) There exists a connection between the saddles s±, smoothly depending on λ,

which can be straightened to {y = 0}.

The first assumption is not restrictive. Indeed s± are saddles for the unperturbed

vector field X0. Due to the structural stability of saddles, we know that there exist

saddles s̃±(λ) converging to (±1, 0) for λ converging to 0. By means of a coordinate

transformation, these saddles can be translated to the points (±1, 0).

Generically when we perturb a vector field of the form (2.1.6), the symmetry in

the eigenvalues will be broken. However the symmetry remains unbroken in some

applications, for instance when the saddle points are obtained by blowing up a family

of vector fields near a fake saddle (Section 5.2). We can assume that the linear part

is in diagonal form as a consequence of Propositions 1.3.8 and 1.3.9, since the linear

transformation to diagonalize depends smoothly on the parameters. If we rescale time

with a positive position-dependent factor, we can assume that a± = 1.

Finally, we require that the connection is fixed under perturbation. Although the

unstable, respectively stable, manifold of the saddle s−, respectively s+, depends

smoothly on the parameter λ, it is a non-generic requirement that they coincide. In

applications, the connection of symmetric saddles typically occurs on the blow-up

locus or the circle at ∞ and therefore it is natural to assume that the connection is

fixed. This is also a typical assumption when bounding the cyclicity of a two-saddle

cycle, as is done in [23].
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4.1.1 Semi-local pre-normal form

A family of vector fields that satisfies conditions (1), (2) and (3) can smoothly be

transformed toẋ = (1− x2)
(
q
2

+ (1− x2)f1(x, λ)
)

+ yf2(x, y, λ),

ẏ = y
(
p(1 + α(λ))x+ (1− x2)g1(x, λ)

)
+ y2g2(x, y, λ),

(4.1.1)

where f1, f2, g1, g2 are C∞. We omit the λ-dependence of α from the notation and

treat it as a separate variable. Any restriction on α directly translates to a restriction

on λ since α(λ) is a smooth function. Again we start by considering the scalar vector

field on the connection:

ẋ = (1− x2)
( q

2
+ (1− x2)f1(x, λ)

)
. (4.1.2)

Similar as in the unperturbed case (Theorem 2.2.8), we can simplify this equation.

Theorem 4.1.1. Let v : (a, b) × V → R represent a smooth family of vector fields

where V ⊂ RK with exactly 2 singular points x1, x2 ∈ (a, b) for all λ ∈ V such that

v′(x1) = q > 0 and v′(x2) = −q,

where q is independent of λ. Then there exist neighbourhoods O1 and O2 of respectively

[x1, x2] and [−1, 1] and a smooth transformation y : O1 × V → O2 such that the

equation dx
dt

= v(x, λ) is transformed into

dy

dt
=
q

2
(1− y2).

Proof: The results needed to prove this theorem in the unperturbed system remain

valid. Indeed a scalar vector field can be smoothly linearized near a hyperbolic point,

where the transformation smoothly depends on the parameter. This can be expanded

smoothly to a neighbourhood conjugating the full real line by extension through the

flow. The gluing morphism remains the same as in the unperturbed system since the

linearized systems are independent of the parameter λ.

If we apply Theorem 4.1.1, we obtain a transformation simplifying (4.1.2). If we

apply this to the full system (4.1.1), we getẋ = q
2
(1− x2) + yf̃2(x, y, λ),

ẏ = y
(
p(1 + α)x+ (1− x2)g̃1(x, λ)

)
+ y2g̃2(x, y, λ),

(4.1.3)

for some smooth f̃2, g̃1, g̃2. Next we straighten the stable, respectively unstable,

manifold at s−, respectively s+ simultaneously. These manifolds depend smoothly
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on the parameter λ. After a time rescaling of the form 1 + O
(
y
)
, system (4.1.3) can

be written asẋ = q
2
(1− x2),

ẏ = y
(
p(1 + α)x+ (1− x2)G1(x, λ)

)
+ y2G2(x, y, λ),

(4.1.4)

where G1 and G2 are smooth. Rescaling with

y = e
∫ x
0

2
q
G1(s,λ)ds

ỹ,

we obtain the form (where we omit the tilde from the notation):ẋ = q
2
(1− x2),

ẏ = p(1 + α)xy + y2F (x, y, λ),
(4.1.5)

for some smooth F .

Similar as in the proof of Theorem 1.3.12 we want to put (4.1.5) in a normal form up

to some sufficiently high degree N . This can be done by the same transformations as

in Lemma 2.3.2, however now dependent on the parameters λ.

Lemma 4.1.2. Given n ≥ 1. The effect of the near-identity transformation of the

form

(x, y) = (x̄, ȳ + hn(x̄, λ)ȳn+1)

on (4.1.5) is that y2F (x, y, λ) is replaced by

ȳ2F (x̄, ȳ)+

(
−q
2

(1− x̄2)
∂hn
∂x̄

(x̄, λ)− pn(1 + α) x̄ hn(x̄, λ)

)
ȳn+1 +O(ȳn+2). (4.1.6)

The typical ODE that we need to solve is of the form

− q

2
(1− x2)h′λ(x)− pn(1 + α)xhλ(x) +G(x, λ) = R(x, λ), (4.1.7)

where hλ(x) = h(x, λ) and R(x, λ) is the normal form term that we want to obtain.

This simplified term will depend on whether we are close to a resonant level or not.

By restricting α to a small neighbourhood of the origin, we can make sure that the

terms up to degree N in y do not contain other resonances than the one from the

unperturbed system. For instance in Figure 1.9 this is done up to degree 2 in y.

We tackle this problem by considering the qualitative information of the planar sys-

tem associated to (4.1.7). Therefore we need some results on the existence of local

separatrices near nodes. This is constructed by typical normal form theory.

Lemma 4.1.3. Let X(ε,γ) be a family of smooth planar vector fields in a neighbour-

hood (ε, γ) ∈ U ⊂ R× Rk of the origin of the formẋ = λx,

ẏ = (µ+ ε)y + f(x, y, γ),
(4.1.8)
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for λµ > 0 and some smooth f where f(x, y, γ) = O
(
‖(x, y)‖2

)
. Then there exists

a neighbourhood V ⊂ U of the origin and a smooth conjugation (x, y) 7→ (x, z) =

(x, y + ϕ(x, y, ε, γ)) defined for (ε, γ) ∈ V , where ϕ(x, y, ε, γ) = O
(
‖(x, y)‖2

)
, such

that (4.1.8) is conjugate to

• Case 1: µ
λ

= N ∈ N: ẋ = λx,

ẏ = (µ+ ε)y + β(ε, γ)xN ,
(4.1.9)

for some smooth β. Moreover, when β ≡ 0, then (4.1.8) admits a C∞ integral

curve y = ψ(x, ε, γ) passing through the origin.

• Case 2: µ
λ
/∈ N: ẋ = λx,

ẏ = (µ+ ε)y.
(4.1.10)

Moreover, (4.1.8) admits a C∞ integral curve y = ψ(x, ε, γ) passing through the

origin.

Proof: Without loss of generality we can assume that |ε| < |µ| such that we do not

lose the nodal behaviour of the singularity. The proof of the normalization uses an

inductive procedure applying the near-identity transformations

y = Y +AXmY n,

for some m,n ∈ N, L = m + n ≥ 2. If we apply this to (4.1.8), a straightforward

computation shows
ẋ = λx,

Ẏ = (µ+ ε)Y + f(x, Y, γ) +A ((1− n)(µ+ ε)− λm)︸ ︷︷ ︸
κ(ε)

xmY n + O
(
‖(x, Y )‖L+1).

It is obvious that when κ(ε) 6= 0, for ε in some neighbourhood Vε of the origin, then

we can remove the term of degree (m,n) in f in a way that smoothly depends on

(ε, γ). Suppose we are in case 1, i.e. µ = λN for some N ∈ N, then it is sufficient to

show that

(1− n)(N +
ε

λ
)−m 6= 0. (4.1.11)

If we impose the condition |ε| < |λ|, then (4.1.11) is satisfied unless (m,n) = (N, 0)

thus leading to (4.1.9). When the eigenvalues are non-resonant, i.e. when we are in

case 2, we know that there is an M ∈ N such that

M <
µ

λ
< M + 1.



96 CHAPTER 4. SYMMETRIC PERTURBATIONS OF THE EIGENVALUES

By restricting ε to some small neighbourhood Vε of the origin, we can suppose that

M <
µ

λ
+
ε

λ
< M + 1, ∀ε ∈ Vε.

In order to show that κ(ε) 6= 0 for ε ∈ Vε, it is sufficient to show that

(1− n)
(µ
λ

+
ε

λ

)
−m 6= 0.

This is immediate since the part between brackets is not in N and it can only be zero

when n = 0. The smooth realizations of the transformation now follows from Borel’s

Theorem (Theorem 1.2.3) and the Chen Theorem (Theorem 1.3.3) for killing the flat

perturbation. The statement about the C∞ integral curves follows immediately from

the existence of these curves in the normalized system.

We are now able to construct smooth solutions of (4.1.7), for some choice of R(x, λ).

The technique applied in the following lemmas is similar to the proof of Lemma 2.3.13.

First we need to show that the associated two-dimensional system has locally smooth

solutions near the saddles using Lemma 4.1.3. Consequently we introduce a parameter-

dependent coefficient which should connect these locally smooth solutions. We need

to consider two different cases depending on whether we are close to a resonant term

of the unperturbed system (Lemma 4.1.5) or to a connecting term (Lemma 4.1.4).

Observe that this subdivision corresponds to the resonant, respectively non-resonant

case for the node in Lemma 4.1.3.

Lemma 4.1.4. Let p, k, q ∈ N0 such that p and q are relatively prime and suppose

that q does not divide k. Then there exists a neighbourhood V ⊂ RK of the origin such

that, for every smooth function F (x, λ) defined on a open set U×V where [−1, 1] ⊂ U ,

there exists a smooth function C(λ) ∈ R such that the differential equation

− q

2
(1− x2)h′λ(x)− pk(1 + α)xhλ(x) + F (x, λ) = −C(λ)χ(x), (4.1.12)

has a smooth solution hλ(x) in a neighbourhood of [−1, 1].

Proof: Denote by y = ΦF (x, λ) and y = ΨF (x, λ), extended to x ∈ (−1, 1),

respectively the smooth invariant manifolds near the nodes (−1, 0) and (1, 0) of the

system ẋ = q
2
(1− x2),

ẏ = −pk(1 + α)xy + F (x, λ).
(4.1.13)

These depend smoothly on the parameter λ due to Lemma 4.1.3. Indeed, applying

the transformation u = 1+x
1−x , respectively u = x−1

x+1
, to (4.1.13) turns it in the form

(4.1.8), where the ratio of the (unperturbed) eigenvalues is given by pk
q

. The system

is thus locally smoothly linearizable since we are in case 2. Therefore there exists a
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smooth integral curve in terms of u, which in its turn smoothly depends on x near

x = −1, respectively x = 1. Similarly, we can define the smooth invariant manifolds

y = Φχ(x, λ) and y = Ψχ(x, λ) near the nodes (−1, 0) and (1, 0) of the systemẋ = q
2
(1− x2),

ẏ = −pk(1 + α)xy + χ(x).

The coefficient C(λ) is defined as the coefficient such that

ΦF (x, λ) + C(λ)Φχ(x, λ) = ΨF (x, λ) + C(λ)Ψχ(x, λ), (4.1.14)

for x ∈ (−1, 1). By uniqueness of solution, it suffices that this equality is valid for

x = 0. Denote ∆∗(x, λ) = Φ∗(x, λ)−Ψ∗(−x, λ) such that C(λ) is characterized by

∆F (0, λ)− C(λ)∆χ(0, λ) = 0. (4.1.15)

Due to the symmetry of χ, one can check that ∆χ(x, λ) = 2Φχ(x, λ). A straightfor-

ward computation shows that

Φχ(0, λ) =
2

q

∫ 0

−1

χ(s)

(1− s2)
pk
q

(1+α)
ds,

which is non-zero since we have a positive integrand and converges due to the flatness

of χ at −1. Hence thanks to the implicit function Theorem applied to (4.1.15), we

know that C(λ) depends smoothly on λ. The solution of (4.1.12) in a neighbourhood

of [−1, 1] is then given by (4.1.14).

When we are close to resonance, solving (4.1.7) is more challenging. Because of this

resonance, expressed as the coefficient β in (4.1.9), logarithmic terms may occur and

thus obstruct the existence of locally smooth solutions as in the proof of Lemma 4.1.4.

However if we can compensate this resonance such that logarithmic terms do not

occur, then we know that every solution through the nodes is smooth. Due to the

parameter-dependence, we need to handle both the resonant phenomena as well as

the connecting terms when there is no resonance.

Lemma 4.1.5. Let p, n, k, q ∈ N0 such that p and q are relatively prime and n = kq.

Then there exists a neighbourhood V ⊂ RK of the origin such that, for every smooth

function F (x, λ) defined on a open set U × V where [−1, 1] ⊂ U , there exist smooth

functions A(λ), B(λ), C(λ) with values in R such that the differential equation

− q
2

(1−x2)h′λ(x)−pn(1+α)xhλ(x)+F (x, λ) = (A(λ)+xB(λ))(1−x2)pk−C(λ)χ(x),

(4.1.16)

has a smooth solution hλ(x) in a neighbourhood of [−1, 1], where C(0) = 0.
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Proof: Instead of solving (4.1.16), it is sufficient to consider

− 1

2
(1−x2)h′λ(x)−pk(1+α)xhλ(x)+F (x, λ) = (A(λ)+xB(λ))(1−x2)pk−C(λ)χ(x),

(4.1.17)

for any smooth function F (x, λ). We restrict λ to a neighbourhood V of the origin

such that

pk − 1 < pk(1 + α) < pk + 1, (4.1.18)

thus |α| < 1
pk

. In this way, the only resonance that can occur is when α = 0 as

obtained in the proof of Lemma 4.1.3. Decompose F (x, λ) as follows

F (x, λ) =

pk∑
i=0

(ai(λ) + xbi(λ))(1− x2)i + (1− x2)pk+1G(x, λ), (4.1.19)

where G is a C∞ function and ai, bi depend smoothly on λ. First we show that there

exist smooth integral curves y = ΦF (x, λ) and y = ΨF (x, λ) at respectively x = −1, 1

of the systemẋ = 1
2
(1− x2),

ẏ = −pk(1 + α)xy + F (x, λ)− (A(λ) + xB(λ))(1− x2)pk,
(4.1.20)

by defining A(λ) and B(λ) adequately. By virtue of Lemma 4.1.3, it suffices to prove

that the resonant term is identically zero in the local normal forms at (±1, 0) for these

well-chosen A(λ) and B(λ). First we perform smooth coordinate changes of the form

yi+1 = yi + (γi(λ) + xδi(λ))(1− x2)i, (4.1.21)

for i = 0, . . . , pk−1, where γi and δi depend smoothly on λ and y0 = y. By induction

we show that in this way, (4.1.20) transforms to
ẋ = 1

2
(1− x2),

ẏi = −pk(1 + α)xyi +

pk∑
j=i

(
a

(i)
j (λ) + xb

(i)
j (λ)

)
(1− x2)i

− (A(λ) + xB(λ))(1− x2)pk + (1− x2)pk+1G(x, λ),

(4.1.22)

for i = 0, . . . , pk. For i = 0, this is true since we have the decomposition (4.1.19).

Suppose (4.1.22) is true for some i ∈ {0, . . . , pk − 1}. We show that there is a

transformation of the form (4.1.21), turning (4.1.22) into a similar vector field but

with i replaced by i+ 1. Define

γi(λ) = − b
(i)
i (λ)

pk(1 + α)− i , and δi(λ) = − a
(i)
i (λ)

pk(1 + α)− i . (4.1.23)
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Observe that these denominators are non-zero for the restriction (4.1.18) since i 6= pk.

A straightforward computation shows that applying (4.1.21) where the coefficients are

given by (4.1.23) to (4.1.22), transforms the second equation to

ẏi+1 = −pk(1 + α)xyi+1 + (pk(1 + α)− i) (δi(λ) + xγi(λ))(1− x2)i

+ δi(λ)

(
1

2
− pk(1 + α(λ)) + i

)
(1− x2)i+1

+

pk∑
j=i

(
a

(i)
j (λ) + xb

(i)
j (λ)

)
(1− x2)i

− (A(λ) + xB(λ))(1− x2)pk + (1− x2)pk+1G(x, λ),

which can be simplified to the desired form. Hence after these smooth transforma-

tions, we have arrived at the system
ẋ = 1

2
(1− x2),

ẏpk = −pk(1 + α)xypk +
(
a

(pk)
pk (λ) + xb

(pk)
pk (λ)

)
(1− x2)i

− (A(λ) + xB(λ))(1− x2)pk + (1− x2)pk+1G(x, λ).

By choosing A(λ) = a
(pk)
pk (λ) and B(λ) = b

(pk)
pk (λ), we get the systemẋ = 1

2
(1− x2),

ẏpk = −pk(1 + α)xypk + (1− x2)pk+1G(x, λ).
(4.1.24)

It is now a straightforward task to show that the associated local normal form of

Lemma 4.1.3 has no resonant term. For instance for the local normal form at (−1, 0)

by applying a coordinate change

(x, ypk) =

(
u− 1

u+ 1
, (u+ 1)−2pk(1+α)z

)
to (4.1.24) leads to a vector field of the formu̇ = u,

ż = pk(1 + α)z + upk+1F̃ (u, λ),

for some locally smooth F̃ and thus has no resonant term since the remaining terms

are of higher degree. Due to Lemma 4.1.3, this proves the existence of a smooth

integral curve y = ΦF (x, λ) at x = −1 and similarly we can show the existence of a

smooth integral curve y = ΨF (x, λ) at x = 1 from (4.1.24).

The existence of similar smooth integral curves y = Φχ(x, λ) and y = Ψχ(x, λ) of the

system ẋ = 1
2
(1− x2),

ẏ = −pk(1 + α)xy + χ(x),
(4.1.25)



100 CHAPTER 4. SYMMETRIC PERTURBATIONS OF THE EIGENVALUES

is immediate from Lemma 4.1.3 due to the flatness of χ at x = ±1. Similar as in

the proof of Lemma 4.1.4, we can prove the existence of a smooth C(λ) by use of the

implicit function Theorem such that (4.1.17) is smoothly solvable for λ contained in

some neighbourhood of the origin also satisfying (4.1.18).

Due to Lemma 4.1.4 and Lemma 4.1.5, we can apply a similar induction scheme

as in the construction of the semi-local normal form (Theorem 2.1.3). However, we

can only do this a finite amount of times, since the requirements on λ become more

restrictive in each step (see for example (4.1.18)). We can prove the following.

Theorem 4.1.6. Let N > 1 be arbitrary. Consider the smooth vector field (4.1.5)

where p, q ∈ N, with gcd(p, q) = 1, defined in a neighbourhood U × V ⊂ R2 × Rk of

[−1, 1] × {0} × {0}. There exists a smooth transformation Φ : U × Ṽ → Ũ × Ṽ , for

some neigbourhood Ũ ⊂ R2 of [−1, 1]×{0} and Ṽ ⊂ V of the origin, such that under

this transformation (4.1.5) is transformed to a system of the form

ẋ = q
2
(1− x2),

ẏ = y

p(1 + α)x+
∑

n≥1,nq≤N

(An(λ) + xBn(λ))(1− x2)pnyqn

+

N∑
k≥1

Ck(λ)χ(x)yk + yN+1F (x, y, λ)

 ,

(4.1.26)

where the coefficients An, Bn, Cn depend smoothly on λ ∈ Ṽ .

Proof: We subsequently apply the transformation of Lemma 4.1.2 for n = 1, . . . , N .

In order to get the term of degree n + 1 in the desired form, we apply either

Lemma 4.1.4 if pn
q
/∈ N or Lemma 4.1.5 if pn

q
∈ N to solve (4.1.7) in each step.

Remark 4.1.7. The domain of λ where we can apply Lemma 4.1.4 and 4.1.5 in the

proof of Theorem 4.1.6 can not be chosen uniformly. Generically, the domain becomes

more and more restrictive as n goes to infinity. Therefore it is not possible to write

Theorem 4.1.6 in terms of formal power series as in Theorem 2.3.12.

As a final step in the normal form procedure, we want to eliminate the term in (4.1.26)

containing F (x, y, λ). Since this will contain higher order resonances, we expect that

this is optimally possible in a finitely smooth way.

4.1.2 Removal of higher order terms

Consider a vector field of the form (4.1.26), which we shall shortly denote asẋ = q
2
(1− x2),

ẏ = p(1 + α)xy + yR(x, y, λ) + yN+1F (x, y, λ),
(4.1.27)
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for some smooth functions R, representing the resonant and connecting terms, and

F , representing the finitely flat remainder, in a neighbourhood of [−1, 1]×{0}×{0}.
The aim of this section is to prove the following.

Theorem 4.1.8. Let n ≥ 1 be arbitrary. There exists a K = K(n) and a Cn-

transformation (x, y, λ) = (X,ϕ(X,Y, λ), λ) near the origin such that (4.1.5) is Cn-

equivalent with the system

Ẋ = q
2
(1−X2),

Ẏ = Y

p(1 + α)X +
∑

k≥1,kq≤K(n)

(Ak(λ) +XBk(λ))(1−X2)pkY qk

+

K(n)∑
k≥1

Ck(λ)χ(X)Y k,


(4.1.28)

where Ak, Bk, Ck are smooth functions of λ. Moreover, ϕ(x, y, λ) is of the form

ϕ(x, y, λ) = y + ynψ(x, y, λ).

Remark 4.1.9. When α ≡ 0, then Theorem 4.1.8 gives a weak version of Theorem

2.1.3 in a finite class of differentiability.

Proof: First we apply Theorem 4.1.6 to (4.1.5) to obtain a pre-normal form up

to degree N(ñ), where we define ñ = ñ(n) > n later on. Once we have defined this

relation, we define K(n) = N(ñ(n)). For simplicity we will denote the pre-normal

form as (4.1.27). Next we prove that there is a conjugation for which (4.1.27) can

be Cñ-conjugated to (4.1.28). This proof is divided in three parts as in Section 2.4.

First we show that there exist local conjugating morphisms in Lemma 4.1.12. Since

this family of transformations is the identity on the x-variable, we see that the con-

jugation corresponds to the solution of a partial differential equation (4.1.29). Hence

the local conjugations can be extended such that their domains of definition contain

the interval (−1, 1). Then we glue both transformations together in a finitely smooth

way similar as in the proof of Theorem 2.4.1 (see (2.4.4)). This is done by showing

that the difference of the two transformations is n-flat when approaching the invariant

manifold x = 1 in Lemma 4.1.13. We elaborate on this in the rest of this section.

First we show that the local conjugations exist. This in fact is a direct consequence of

Proposition 1.3.11. However by considering the explicit construction of the conjuga-

tion in Proposition 1.3.7 and Lemma 1.3.10, we can compute that the transformation

remains the identity on the x-variable.

Proposition 4.1.10. Let ñ ≥ 1 be arbitrary. Let F1, F2 and w2 be C∞-functions

where F2(x, 0, λ) = w2(x, 0, λ) = 0. There exists a finite N(ñ) ∈ N such that the
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system ẋ = F1(x),

ẏ = F2(x, y, λ) + τw2(x, y, λ),

is Cñ equivalent with the systemẋ = F1(x),

ẏ = F2(x, y, λ),

on some neighbourhood V of M = {y = 0} as long as w2 is N(ñ)-flat at all points of

M = {y = 0} and there is a compact C ⊂M such that F1 is supported in C and

F2(x, y, λ) + τw2(x, y, λ) < −µ,

for some µ > 0, τ ∈ [0, 1] and (x, y, λ) ∈ V . Moreover, the (n − 1)-jet of the

equivalence ϕ is the identity on M and is of the form

ϕ(x, y) = (x, y + ynψ(x, y)).

Proof: We apply Lemma 1.3.10 to the system. Hence we need to show that we can

solve (1.3.12) for some smooth h. Due to the global bound on the hyperbolicity, we

can apply the results from [32], where it is shown that (1.3.12) has a Cñ- solution

which is ñ-flat on M . The fact that this transformation leaves the first variable un-

changed follows from the explicit form of (1.3.8). Indeed D(F + τw) is in this case

a lower triangular matrix, as will be G(γ(x, y, λ, τ, t)). Adding the fact that the first

component of w is zero, we get that the first component of h is identically zero, hence

the first component of ϕτ remains the identity.

Remark 4.1.11. When the vector field of Proposition 4.1.10 is considered close to a

hyperbolic saddle, then the value N(ñ) depends, other than ñ, only on the stable and

unstable eigenvalue of the saddle (see Theorem 1.3.12). In fact a lower bound for N(ñ)

is defined in [5] for diffeomorphisms. Therefore the local conjugations of Theorem

4.1.8 at both saddles have the same required flatness N(ñ) due to the symmetry of the

system with respect to the eigenvalues.

If we apply Proposition 4.1.10 to the pre-normal form of (4.1.26), we can show the

following.

Lemma 4.1.12. Let ñ > 1 be arbitrary and consider (4.1.5). Let N(ñ) be the corre-

sponding value as obtained in Proposition 4.1.10 which only depends on the eigenval-

ues at (±1, 0). There exists Cñ-equivalences (x, y, λ) = (X,ϕ±(X,Y, λ), λ), where

ϕ±(x, y, λ) = y + yñψ±(x, y, λ),

which is Cñ in a neighbourhood of (±1, 0) such that (4.1.5) is conjugated to (4.1.28).
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Observe that the transformations ϕ± satisfy a partial differential equation

q

2
(1− x2)ϕx + y (p(1 + α)x+R(x, y, λ))ϕy

= ϕ
(
p(1 + α)x+R(x, ϕ, λ) + ϕNF (x, ϕ, λ)

)
,

(4.1.29)

where we used the notation from (4.1.27). Let δ > 0 and δ′ > 0 be chosen such that

ϕ+ is defined on a neighbourhood of [1 − 2δ, 1] × [−δ′, δ′] × {0}. By means of the

method of characteristics applied to (4.1.29), we can assume that ϕ− is defined for

(x, y) ∈ Σ = {1 − δ} × (−δ′′, δ′′) for some δ′′ > 0 where we can assume δ′ ≥ δ′′. In

fact this is similarly proven as in Lemma 2.4.2. We consider the difference of these

transformations, i.e.

∆(x, y, λ) = ϕ−(x, y, λ)− ϕ+(x, y, λ).

Observe that this difference is ñ-flat at y = 0 on Σ. Following (4.1.29), this difference

should satisfy the partial differential equation

q

2
(1− x2)∆x + y (p(1 + α)x+R(x, y, λ)) ∆y = ∆ (p(1 + α)x+H(x, y,∆, λ)) ,

(4.1.30)

where

H(x, y,∆, λ) =

∫ 1

0

∂h

∂y
(x, ϕ+(x, y, λ) + z∆, λ)dz,

with

h(x, y, λ) = y
(
R(x, y, λ) + yNF (x, y, λ)

)
.

We now want to show the following result

Lemma 4.1.13. Let n ≥ 1 be arbitrary. If ñ is large enough, then the exists a Cñ-

solution ∆(xE , yE , λ), equal ϕ− − ϕ+ on Σ, of (4.1.30) which is n-flat for xE → 1.

Proof: Since ∆ should satisfy (4.1.30), we can construct a solution using the method

of characteristics. The propagation of the difference is given by
ẋ = q

2
(1− x2),

ẏ = y (p(1 + α)x+R(x, y, λ)) ,

∆̇ = ∆ (p(1 + α)x+H(x, y,∆, λ)) ,

(4.1.31)

with initial values

x(0) = 1− δ, y(0) = s, ∆(0) = ∆0(s) = ϕ−(s)− ϕ+(s) = sn∆̃0(s),

for some continuous ∆̃0. Since we are interested in a neighbourhood of x = 1, we

apply the translation u = x−1
x+1

. By means of a near-identity transformation

(y1,∆1) = (ψ(u, y, λ), ξ(u, y,∆, λ)), (4.1.32)
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we can put (4.1.31) in pre-normal form
u̇ = −qu,

ẏ1 = y1 [p(1 + α) + fλ (upyq1) + F (x, y, λ)]

∆̇1 = ∆1 [p(1 + α) + gλ (upyq1 , u
p∆q

1) +G(u, y1,∆1, λ)] ,

(4.1.33)

similar to the pre-normal form in (1.3.11) where F and G are of degree ñ or higher.

The initial conditions in the new variables are now given by

u(0) = u0 = − δ

2− δ , y1(0) = ψ(u(0), s, λ) = s(1 + h.o.t.),

∆1(0) = ξ(u(0), s,∆0(s), λ) = ∆0(s)(1 + h.o.t.).

(4.1.34)

In order to define ∆ in (xE , yE) for 1− δ < xE < 1 but close to 1, we need to define

∆1 at the point

(u1, y1,E) =

(
xE − 1

xE + 1
, ψ

(
xE − 1

xE + 1
, yE , λ

))
.

For this we need to determine an initial value sE on Σ, in terms of the variables in

(4.1.31), and a time TE such that

(u(TE), y1(TE)) = (u1, y1,E).

A straightforward computation show that

TE = −1

q
ln

(
u1

u0

)
, (4.1.35)

which indeed is a positive value. In order to determine sE , we compute the transition

of the first two equations of (4.1.33) in reverse time with initial value (u1, y1,E) to

(u0, sE) on the cut Σ. Due to Theorem 1.3.18, we see that

s1,E =
1

u0
(u1y1,E)

p
q

(1+α)
(A(λ) + F (u1y1,E , λ)) , (4.1.36)

where F (z, λ) is of Mourtada type in the variable z and A(λ) is a Cñ positive function

and s1,E = ψ(u0, sE , λ). Due to the fact that ψ in (4.1.32) is near-identity, we know

that sE approaches 0 as s1,E approaches zero and vice-versa. We reparametrize time

in (4.1.33) such that the transition time from (u0, s1,E) on Σ to (u1, y1,E) is given by

1, i.e. 
u̇ = −qTEu,

ẏ1 = y1TE [p(1 + α) + fλ (upyq1) + F (x, y, λ)]

∆̇1 = ∆1TE [p(1 + α) + gλ (upyq1 , u
p∆q

1) +G(u, y1,∆1, λ)] ,

(4.1.37)

with initial values

u(0) = u0, y1(0) = s1,E , ∆1(0) = ∆1,0 = ξ(u0, sE ,∆0(sE), λ).
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A straightforward computation show that

u(t) = u0e
−qTEt = u0

(
u1

u0

)t
.

Denote z1 = upyq1 . It is shown in [52] that z1(t) with initial value z1(0) = up0s
q
1,E is

given by

z1(t) =

Ñ∑
i=1

epαTEtQi(Ω(t, α), λ)upi0 s
qi
1,E + ψÑ

(
up0s

q
1,E , λ

)
, (4.1.38)

where ψÑ is an Ñ -flat function for some Ñ > 0, Qi is a polynomial of degree ≤ i− 1

in Ω and where Ω is given by

Ω(t, α) =


epαTEt−1

pα
α 6= 0

TEt α = 0.

If we replace the value (4.1.35) of TE into (4.1.38), we get

z1(t) =

Ñ∑
i=1

(
u0

u1

) pα
q
t

Qi(Ω(t, α), λ)upi0 s
qi
1,E + ψÑ

(
up0s

q
1,E , λ

)
, (4.1.39)

where

Ω(t, α) =


(
u0
u1

) pα
q
t
−1

pα
α 6= 0

1
q

ln
(
u0
u1

)
t α = 0.

We now focus on the third equation of (4.1.37), i.e.

∆̇1 = ∆1TE [p(1 + α) + gλ (z1(t), up(t)∆q
1) +G(u, y1,∆1, λ)] . (4.1.40)

Denote

∆1(t) = ∆1,0e
p(1+α)TEtΘ(t).

This transforms (4.1.40) into

Θ̇ = TEΘ

[
gλ

(
z1, u

p
0∆q

1,0

(
u0

u1

)pαt
Θq

)
+ G̃(t,Θ, λ)

]
, Θ(0) = 1. (4.1.41)

Observe that since gλ(0, 0) = 0, we can rewrite (4.1.41) as

Θ̇ = ΘG̃λ(u1, u1 ln(u1), t),

for some Cñ-function Gλ, similar to the proof of Lemma 2.4.3. Therefore, the

solution of (4.1.41) is Cñ dependent on u1 and u1 ln(u1) and can be written as

Θ(t, u1, u1 ln(u1)). Since these monomial u1 and u1 ln(u1) are of Mourtada type,

it is easy to see that the function

uk̃1Θ(1, u1, u1 ln(u1)),
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has bounded partial derivatives with respect to u1 up to order k̃ < ñ, for u1 close to

zero.

Since ∆1,0 is ñ-flat in sE , and thus in s1,E , we get from (4.1.36) that there exists an

L > 0 depending on ñ, p, q for ñ sufficiently large, such that

∆1,0 = uL1 ∆̃(u1, yE).

The desired expression ∆1(u1, y1,E) is thus given by

uL1 ∆̃(u1, yE)

(
u0

u1

) p
q

(1+α)

Θ(1). (4.1.42)

By choosing L big enough, we can make sure that Θ(1) has bounded derivatives up

to degree n and the function given in (4.1.42) is flat of degree n.

4.2 Finitely smooth family linearization

In this section, we want to apply a similar procedure as in Section 3.2, but now

applied to a vector field of the form
ẋ = q

2
(1− x2),

ẏ = y

(
p(1 + α)x+

N∑
i=1

(Ai(λ)x+Bi(λ))(1− x2)piyqi + χ(x)

qN∑
j=1

Cj(λ)yj
)
,

(4.2.1)

where the coefficients Ai, Bi and Ci depend smoothly on the parameter λ and χ is

defined in (2.1.5).

First we consider (4.2.1) without connecting terms, i.e.
ẋ = q

2
(1− x2),

ẏ = y

(
p(1 + α)x+

N∑
i=1

(Ai(λ)x+Bi(λ))(1− x2)piyqi
)
.

(4.2.2)

We want to reduce this to an easily integrable system by means of a formal transfor-

mation involving tags. Denote by z = (1− x2)pyq the resonant monomial of (4.2.2),

such that 
ẋ = q

2
(1− x2),

ż = Axz + z2
N−1∑
i=0

(Ci(λ)(1 + x) +Di(λ)(1− x))zi,
(4.2.3)

where Ci and Di are linear combinations of Ai+1 and Bi+1 for i = 0, . . . , N − 1 and

A = pqα.

Observe that in contrast to (3.2.2), there is an additional term, linear in z, due to
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the perturbation of the eigenvalues of the saddles. In order to reduce (4.2.3), we

need to introduce a series of tags with a compensator-like behaviour. For instance,

the Ecalle-Roussarie compensator defined in (1.3.15) is a smooth function of x0 for

x0 > 0, satisfying
∂ω

∂x0
= −α0ω + 1

x0
,

and appears due to the perturbation of the eigenvalue by α0 = qα(ε) in (1.3.13).

Here we define the SL and SR tags of order one as the smooth functions defined on

(−1, 1) with SL(0) = SR(0) = 0 where their time-derivatives ṠL, ṠR satisfy

ṠL = (1− x)−AxSL, ṠR = (1 + x)−AxSR. (4.2.4)

The time-position relation between x and t is defined by the first equation of (4.2.3).

Define for every word ∗ ∈ W in the alphabet {L,R}, by induction on the length `(∗),
the tags

Ṡ∗L = (1− x)S∗ −A(`(∗) + 1)xS∗L, S∗L(0) = 0,

Ṡ∗R = (1 + x)S∗ −A(`(∗) + 1)xS∗R, S∗R(0) = 0. (4.2.5)

Observe that these tags correspond to the tags defined in (3.2.3) and (3.2.4) for

α = 0. It is difficult to express the higher order terms in terms of the first tags as

we did in Proposition 3.2.2, due to the compensator-like behaviour. Indeed, a direct

computation shows that the solutions of (4.2.5) are given by

S∗L(x) =
2

q
(1− x2)pα(`(∗)+1)

∫ x

0

S∗(s)

(1 + s)(1− s2)pα(`(∗)+1)+1
ds,

and

S∗R(x) =
2

q
(1− x2)pα(`(∗)+1)

∫ x

0

S∗(s)

(1− s)(1− s2)pα(`(∗)+1)+1
ds,

where the difficulty lies in the appearance of powers which are not necessarily integers.

We can however show the following adaptation of Theorem 3.2.3, where we denote

by Wk the words of length k in W.

Theorem 4.2.1. There exists a formal transformation

z∞ = z −
∞∑
k=1

zk+1
∑
∗∈Wk

F∗(z, λ)S∗,

where F∗ are polynomial functions and the tags S∗ are defined by (4.2.4) and (4.2.5),

such that (4.2.3) transforms to ẋ = q
2
(1− x2),

ż∞ = Axz∞.



108 CHAPTER 4. SYMMETRIC PERTURBATIONS OF THE EIGENVALUES

Proof: Denote by z0 = z and W0 = {1}. We show that there exist coefficients

C∗,i(λ), D∗,i(λ) for every ∗ ∈ W and i = 0, . . . , N − 1, such that

żk = Axzk + zk+2
∑
∗∈Wk

(k+1)(N−1)∑
i=0

(C∗,i(λ)(1 + x) +D∗,i(λ)(1− x)) ziS∗, (4.2.6)

where we inductively define

zk+1 = zk − zk+2
∑
∗∈Wk

(k+1)(N−1)∑
i=0

(C∗,i(λ)S∗R +D∗,i(λ)S∗L) zi. (4.2.7)

It is obvious that (4.2.6) corresponds to (4.2.3) for k = 0. Therefore suppose (4.2.6)

is true for some k ≥ 0 and apply (4.2.7). By a straightforward computation we get

żk+1 = Axzk+1 +Axzk+2
∑
∗∈Wk

(k+1)(N−1)∑
i=0

i (C∗,i(λ)S∗R +D∗,i(λ)S∗L) zi

− zk+3

 ∑
∗∈Wk

(k+1)(N−1)∑
i=0

(k + 2 + i) (C∗,i(λ)S∗R +D∗,i(λ)S∗L) zi


·

(
N−1∑
j=0

(Cj(λ)(1 + x) +Dj(λ)(1− x))zj
)
.

By replacing x by 1
2

((1 + x)− (1− x)) in the second term, and by observing that the

term for i = 0 is zero, we see that this expression is again of the form (4.2.6).

A natural question to ask is the asymptotic behaviour of the formal transformation

of Theorem 4.2.1 with respect to x = ±1. For this we denote

S̄∗(x) = (1− x2)`(∗)S∗(x),

for any ∗ ∈ W where `(∗) denotes the length of the word. From (4.2.4), a straight-

forward computation shows that S̄L(x) and S̄R(x) satisfy

q

2
(1− x2)

dS̄L
dx

= (1− x)(1− x2)− q(pα+ 1)xS̄L,

q

2
(1− x2)

dS̄R
dx

= (1 + x)(1− x2)− q(pα+ 1)xS̄R.

(4.2.8)

Similarly, from (4.2.5), we get

q

2
(1− x2)

dS̄∗L
dx

= (1− x)(1− x2)S̄∗ − q(`(∗) + 1)(pα+ 1)xS̄∗L,

q

2
(1− x2)

dS̄∗R
dx

= (1 + x)(1− x2)S̄∗ − q(`(∗) + 1)(pα+ 1)xS̄∗R.

(4.2.9)

These adapted tags are of Mourtada type (see Definition 1.3.17) at x = ±1 as we

prove in the following theorem.
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Theorem 4.2.2. Consider the function S̄∗(x) for some ∗ ∈ W defined by (4.2.8) and

(4.2.9). For any k ≥ 0, we have

lim
x→−1+

(1− x2)k
dkS̄∗
dxk

(x) = lim
x→1−

(1− x2)k
dkS̄∗
dxk

(x) = 0. (4.2.10)

Proof: Define recursively for any ∗ ∈ W the functions

S̄i∗(x) = (1− x2)
dS̄i−1
∗

dx
(x),

for i ≥ 1, where S̄0
∗(x) = S̄∗(x). It suffices to prove that

lim
x→−1+

S̄k∗ (x) = lim
x→1−

S̄k∗ (x) = 0, (4.2.11)

for any k ≥ 0. Indeed by an induction argument, we see that

S̄k∗ (x) = (1− x2)k
dkS̄∗
dxk

(x) +Gk∗

(
x, S̄0

∗ , . . . , S̄
k−1
∗

)
,

for some smooth function Gk∗ where

Gk∗(x, 0, . . . , 0) = 0.

Therefore showing (4.2.11) for any k ≥ 0 immediately proves (4.2.10) for any k ≥ 0.

We will prove that (4.2.11) is true for any k ≥ 0 by induction on the length `(∗). First

we show that the statement is true for S̄L. The proof for S̄R is completely similar.

Due to (4.2.8), we know that the graph y = S̄L(x) is tangent to the vector fieldẋ = q
2
(1− x2),

ẏ = −q(pα+ 1)xy + (1− x2)(1− x).
(4.2.12)

If we impose that

pα+ 1 >
1

2
, (4.2.13)

we know that (4.2.12) has two singularities (±1, 0) which are nodes. Similar as in the

proof of Lemma 2.3.13 we can show that the solution passing through the origin also

passes through the nodes since it can not diverge to infinity. This means that

lim
x→−1+

S̄L(x) = lim
x→1−

S̄L(x) = 0. (4.2.14)

Now from (4.2.8), it immediately follows that

S̄1
L(x) =

2

q
(1− x2)(1− x)− 2(pα+ 1)xS̄L(x).

By induction on k, it is an easy exercise to show that

S̄kL(x) = (1− x2)Hk
L(x) +

k−1∑
i=0

F k,iL (x)S̄iL(x), (4.2.15)
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for some smooth functions Hk
L, F

k,i
L (x) for i = 0, . . . , k− 1. Hence by induction on k,

starting from (4.2.14), using (4.2.15), we can show that

lim
x→−1+

S̄kL(x) = lim
x→1−

S̄kL(x) = 0,

for any k ≥ 0.

Suppose (4.2.11) is true for any word ∗ ∈ Wm, m ≥ 1. In order to finish the induction

procedure, it suffices to prove

lim
x→−1+

S̄k∗L(x) = lim
x→1−

S̄k∗L(x) = 0, (4.2.16)

and similar for S̄k∗R(x) for any k ≥ 0. Since the proofs are similar, we will only prove

the result for S̄k∗L(x). Due to (4.2.9), we know the graph y = S̄∗L(x) is tangent to

the vector fieldẋ = q
2
(1− x2),

ẏ = −q(m+ 1)(pα+ 1)xy + (1− x2)(1− x)S̄∗(x).

Since we assumed that (4.2.11) for k = 0 and we still impose (4.2.13), we have that

this describes a vector field with two nodal singularities (±1, 0). Similar as in the

case S̄L, we see that the solution passing through the origin passes through the nodes

and hence

lim
x→−1+

S̄∗L(x) = lim
x→1−

S̄∗L(x) = 0.

As before, this together with (4.2.11) induces (4.2.16), since for any k ≥ 1 we can

write

S̄k∗L(x) =

k−1∑
i=0

(
Hk,i
∗L (x)S̄i∗(x) + F k,i∗L (x)S̄i∗L(x)

)
,

for some smooth functions Hk,i
∗L , F

k,i
∗L for i = 0, . . . , k − 1.

The formal transformation obtained in Theorem 4.2.1 induces a transformation in the

original variable y as it did in (3.2.9) which we can apply to the full system (4.2.1).

Hence we have the following result.

Theorem 4.2.3. Consider the vector field (4.2.1) with p, q ∈ N and gcd(p, q) = 1.

There exists a near-identity coordinate change which is finitely smooth in x and formal

in y

(x, y) 7→ (x, y∞) = (x, y(1 + ϕ(x, y, λ))),

formally bringing (4.2.1) to the vector fieldẋ = q
2
(1− x2),

ẏ∞ = y∞
(
p(1 + α)x+

∑∞
j=1 Fj(x, λ)yj∞

)
,

(4.2.17)
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where the functions Fj are smooth for x in a neighbourhood of [−1, 1] and are in-

finitely flat at x = ±1. Formally, in terms of z = (1− x2)pyq, the transformation ϕ

corresponds to the transformation obtained in Theorem 4.2.1.

The remaining connecting terms can be removed in a similar fashion as in Theorem

3.2.9.

Theorem 4.2.4. Consider (4.2.17) with p, q ∈ N and gcd(p, q) = 1. There exists a

near-identity coordinate change which is finitely smooth in x and formal in y

(x, y∞) 7→ (x, Y ) = (x, y∞(1 + ψ(x, y∞, λ))),

formally bringing (4.2.17) to the vector fieldẋ = q
2
(1− x2),

Ẏ = p(1 + α)xY.
(4.2.18)

Moreover, the transformation ψ can formally be decomposed as

ψ(x, y, λ) =
∑
i≥1

Gi(x, s, λ)yi,

where s = (1− x2)
(1+α)
q and Gi is C∞.

Proof: Let Y0 = y∞. We prove that there exists a sequence of near-identity

transformations Yj+1 = Yj(1 + ψj(x, Yj , λ)) which can be smoothly decomposed as a

function of x, s, λ such that for every i ≥ 0, we have
ẋ = q

2
(1− x2),

Ẏj = Yj

(
p(1 + α)x+

∞∑
i=j+1

Fj,i(x, λ)Y ij

)
,

(4.2.19)

where the functions Fj,i are smooth for x in a neighbourhood of [−1, 1] and are

infinitely flat at x = ±1. For j = 0, this immediately corresponds to (4.2.17), so

suppose it is true for some j ≥ 0. Then we apply the transformation

Yj = Yj+1 +Hj(x, λ)Y j+1
j+1 ,

where Hj(x, λ) is a solution of

− q

2
(1− x2)

∂Hj(x, λ)

∂x
− pj(1 + α)xHj(x, λ) + Fj,j+1(x, λ) = 0. (4.2.20)

By virtue of Lemma 4.1.2, this transforms (4.2.19) to
ẋ = q

2
(1− x2),

Ẏj+1 = Yj+1

(
p(1 + α)x+

∞∑
i=j+2

Fj,i(x, λ)Y ij+1 + O
(
Y j+2
j+1

))
.

(4.2.21)
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Similar as in the proof of Theorem (3.2.9), we can show that these higher-order terms

are all infinitely flat at x = ±1. Therefore (4.2.21) is of the form (4.2.19) for j replaced

by j + 1. Hence it suffices to prove that there exists a solution Hj(x, λ) of (4.2.20)

that depends smoothly on (x, s, λ). This is obvious since we can take

Hj(x, λ) =
2

q
spk
∫ x

0

Fj,i(u, λ)

(1− u2)
pk(1+α)

q
+1
du,

where due to the flatness of F the last integral is a smooth function of x.

If we combine the formal transformations of Theorem 4.2.3 and Theorem 4.2.4 and

realize these transformations using Borel’s Theorem 1.2.5 combined with the removal

of flat terms as we did in the proof of Theorem 4.1.8 we get the following result.

Theorem 4.2.5. Let n ≥ 1 be arbitrary and consider (4.2.1) with p, q ∈ N and

gcd(p, q) = 1. There exists a finitely smooth near-identity coordinate change

(x, y) 7→ (x, Y ) = (x, y(1 + Φ(x, y, λ))),

bringing (4.2.1) in the form (4.2.18). Moreover, we can express Φ as a Cn function

in the variables (
x, y, (S̄∗)∗∈W , (1− x2)

1+α
q

)
,

where the tags S̄∗ are defined in (4.2.8) and (4.2.9).



Chapter 5

Application to homoclinic connections

In this chapter we illustrate the results of Chapter 2 and Chapter 3. We study graphics

having only one singularity which is non-elementary. We confine ourselves to the case

where the singularity is either a cusp (Section 5.1) or a fake saddle (Section 5.2).

When we consider perturbations, we will always assume that the singularity remains

unperturbed. This chapter is also part of [12] which is accepted for publication in

Journal of Differential Equations.

5.1 The cusp

We consider a vector field unfolding a cusp-singularity as in [41]. We assume that the

vector fields are already written in Loray’s normal form (see [36]). In this paper, the

author distinguishes two cases:

αn :

ẋ = 2y + 2xhn (f(h) + xg(h)) ,

ẏ = 3x2 + 3yhn (f(h) + xg(h)) ,
(5.1.1)

where f(0) 6= 0 and

βn :

ẋ = 2y + 2xhn (hf(h) + xg(h)) ,

ẏ = 3x2 + 3yhn (hf(h) + xg(h)) ,
(5.1.2)

where g(0) 6= 0 with h := x3 − y2 and f and g are C∞ in each case. We perform

a quasi-homogeneous blow-up (x, y) = (r2 cos θ, r3 sin θ) leading to two hyperbolic

saddles on the blow-up locus with reciprocal saddle quantities (see Figure 5.1). One

can check that the two cusp separatrices of αn (respectively βn) approach the origin

in the directions θ = ±θ0 for some θ0 ∈
]
0, π

2

[
.
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Figure 5.1: Quasi-homogeneous blow-up of a cusp

In order to get the transition map near the right part of the blow-up locus, we consider

the directional chart (see Figure 5.2)

(x, y) = (Y 2, Y 3X). (5.1.3)

The variable Y serves as the radial variable whereas X acts as (projectivized) angular

variable.

Figure 5.2: Projective blow-up (5.1.3)

To study the part to the left of the singularity one would first think of considering

a similar directional chart, which would give us information on the directions θ ∈]
π
2
, 3π

2

[
. However, as this region does not include θ0 it is better to replace this

directional chart by a chart using a rational parametrization of the parabola that

approximates a circle near θ = π (see Figure 5.3):

(x, y) = (Y 2(X2 − 1), 2Y 3X). (5.1.4)
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Again, the variable Y serves as the radial variable whereas X acts as angular variable.

In fact it reveals convenient for the computations to do some scaling; we will hence

use instead:

(x, y) = (aY 2(4X2 − 1), 4Y 3X), where a :=
2

3
21/3. (5.1.5)

As will be explained in (5.1.9), this choice of a is necessary to have a nice factorization

of the Ẋ equation.

Figure 5.3: Parabolic blow-up (5.1.4)

5.1.1 Projective blow-up

In this section we consider the vector fields in Loray normal form in the blow-up chart

(5.1.3). For αn we find, after division by the non-negative factor Y :

αn :

Ẋ = 3(1−X2),

Ẏ = Y X +Hn
(
f (H) + Y 2g (H)

)
,

(5.1.6)

where f(0) 6= 0 and H = (1−X2)Y 6. Similarly, βn becomes

βn :

Ẋ = 3(1−X2),

Ẏ = Y X +Hn
(
(1−X2)Y 6f (H) + Y 2g (H)

)
,

(5.1.7)

where g(0) 6= 0. In both cases, the saddle connection lies on Y = 0 between X = ±1.
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5.1.2 Parabolic blow-up

In this section we consider the vector fields in the blow-up chart given by (5.1.5). A

straightforward computation gives(
Ẋ

Ẏ

)
=

1

4aY 3(8X2 + 1)

(
6XY −a(4X2 − 1)

−2Y 2 4aXY

)(
ẋ

ẏ

)
(5.1.8)

Let us first compute Ẋ

Ẋ =
3Y

4a(8X2 + 1)
(16X2 − a3(4X2 − 1)3).

For the special value a3 = 16/27, this simplifies to

Ẋ =
4Y (8X2 + 1)

9a
(1−X2). (5.1.9)

After division of (5.1.8) by the non-negative factor a2

4
(1+8X2)Y and normalizing by

Y = (8X2 + 1)−1/3Ȳ ,

we obtain

αn :

Ẋ = 3(1−X2),

˙̄Y = XȲ + 27a

4(8X2+1)2/3
H̄n(f(H̄) + a 4X2−1

(8X2+1)2/3
Ȳ 2g(H̄)),

(5.1.10)

and

βn :

Ẋ = 3(1−X2),

˙̄Y = XȲ + 27a

4(8X2+1)2/3
H̄n(H̄f(H̄) + a 4X2−1

(8X2+1)2/3
Ȳ 2g(H̄)),

(5.1.11)

where H̄ = − 16
27

(1−X2)Ȳ 6.

5.1.3 The normalizing transformation

All the previous vector fields can be written in the formẋ = 3(1− x2),

ẏ = y
(
x+ F (x)yk + O

(
yl
))
,

(5.1.12)

where k = 6n− 1, l = 6n+ 1, respectively k = 6n+ 1, l = 6n+ 5, for αn, respectively

βn and where F is not identically zero. We show in this section that the first non-zero

term gives rise to a non-zero connecting term in the normal form (2.1.6) which is of

lower order than the resonant terms, i.e. we are in the case k < mq of Theorem 3.3.2.

As an application of Theorem 2.1.3, we have the following.
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Lemma 5.1.1. Let k = 6n − 1 for some n ≥ 1 or k = 6n + 1 for some n ≥ 0.

There exists a smooth coordinate transformation (x, y) 7→ (x, z) = (x, ϕ(x, y)), such

that system (5.1.12), with F not identically 0, is orbitally equivalent to
ẋ = 3(1− x2),

ż = z
[
x+ γχ(x)zk + χ(x)zk+1f1(z)

+(1− x2)lz6l
(
f2

(
(1− x2)z6

)
+ xf3

(
(1− x2)z6

))]
,

(5.1.13)

where γ 6= 0, k < 6l and f1, f2, f3 are C∞. Moreover, we have

y = z +G(x)zk+1 + O
(
zl+1),

where G is a C∞ solution of

− 3(1− x2)G′(x)− kxG(x) + F (x) = γχ(x). (5.1.14)

Following the method of proving Lemma 2.3.13, the coefficient γ in (5.1.13) has the

property that it is the unique coefficient for which (5.1.14) has a smooth solution G

in a neighbourhood of [−1, 1] and depends on the function F . For each of the cases

above, we want to compute the coefficient γ. For this, we need the following lemma.

Lemma 5.1.2. Let p, k, q ∈ N0 such that gcd(p, q) = 1 and λ = pk
q
/∈ N. Let N = bλc.

There exists an γ ∈ R such that the differential equation

−q
2

dh(x)

dx
(1− x2)− pkxh(x) + (1− x2)N+1 = γχ(x), (5.1.15)

has a C∞ solution in a neighbourhood of [−1, 1]. Moreover,

γ

∫ 1

0

χ(u)

(1− u2)λ+1
du =

1

2

√
π Γ(1− α)

Γ
(

3
2
− α

) ,

where α = λ−N .

Proof: It only remains to explicitly compute γ, since the existence of such a γ

that (5.1.15) has a smooth solution is guaranteed by virtue of Lemma 2.3.13. The

coefficient γ corresponds to the unique value where the curves y = ϕγ(x) and y =

ψγ(x), tangent to the vector fieldẋ = q
2
(1− x2),

ẏ = −pkxy + (1− x2)N+1 − γχ(x),
(5.1.16)

and given by the locally smooth solutions near the nodes (−1, 0) and (1, 0), coincide

on the interval (−1, 1). In order to compute γ, we need to provide explicit expressions

for the C∞-graphs y = ϕγ(x) and y = ψγ(x) (see Figure 5.4).
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Figure 5.4: Connecting the smooth graphs

One can easily verify that

ϕγ(x) = (1− x2)λ
2

q

∫ x

−1

(1− u2)−αdu− (1− x2)λγ
2

q

∫ x

−1

χ(u)

(1− u2)λ+1
du, (5.1.17)

where α = λ − N ∈ (0, 1), is a solution of (5.1.15). It remains to prove that this

solution is locally C∞ near x = −1. We claim that

2

q
(1− x2)λ

∫ x

−1

(1− u2)−αdu =

21−α

q(1− α)
(1 + x)N+1(1− x)λhypergeom

(
[α, 1− α] , [2− α] ,

x+ 1

2

)
,

where the hypergeometric function is defined in Section 1.2.3. Since this is C∞ near

x = −1, we know that (5.1.17) describes the local unstable manifold. We prove the

claim using Euler’s formula for hypergeometric functions (1.2.9):∫ x

−1

(1− u2)−αdu
z=u+1

=

∫ x+1

0

z−α(2− z)−αdz

z=t(1+x)
= 2−α(1 + x)1−α

∫ 1

0

t−α
(

1− t
(

1 + x

2

))−α
dt

=
2−α

1− α (1 + x)1−α Γ(2− α)

Γ(1− α)Γ(1)

∫ 1

0

t−α
(

1− t
(

1 + x

2

))−α
dt

=
2−α

1− α (1 + x)1−αhypergeom

(
[α, 1− α] , [2− α] ,

x+ 1

2

)
.

Similarly, we can show that

ψγ(x) = − 21−α

q(1− α)
(1− x)N+1(1 + x)λhypergeom

(
[α, 1− α] , [2− α] ,

1− x
2

)
− (1− x2)λ

2γ

q

∫ x

1

χ(u)

(1− u2)λ+1
du,

describes the local stable manifold near x = 1. We have ϕγ(0) = ψγ(0) if and only if

2−α

1− αhypergeom

(
[α, 1− α] , [2− α] ,

1

2

)
= γ

∫ 1

0

χ(u)

(1− u2)λ+1
du.

The result now follows from the fact

hypergeom

(
[α, 1− α] , [2− α] ,

1

2

)
=

2−1+α√πΓ(2− α)

Γ
(

3
2
− α

) .
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Thanks to Lemma 5.1.1 and Lemma 5.1.2 the first coefficient in the normal form of

(5.1.6) can be deduced.

Corollary 5.1.3. There exists a C∞ function h(x) defined in a neighbourhood of

[−1, 1] that satisfies

−3
dh(x)

dx
(1− x2)− (6n− 1)xh(x) + (1− x2)n = γχ(x),

requiring

γ

∫ 1

0

χ(u)

(1− u2)n+5/6
du =

1

2

√
πΓ
(

1
6

)
Γ
(

2
3

) .

The other blow-up vector fields (5.1.7), (5.1.10) and (5.1.11) need to be treated in

a similar way. Lemma 5.1.1 applied to these vector fields provides us a differential

equation (5.1.14) which should be smoothly solvable. By choosing γ wisely, as a

consequence of Lemma 2.3.13, this is possible in a similar way as in the proof of

Lemma 5.1.2. First we consider (5.1.7).

Corollary 5.1.4. There exists a C∞ function h(x) defined in a neighbourhood of

[−1, 1] that satisfies

−3
dh(x)

dx
(1− x2)− (6n+ 1)xh(x) + (1− x2)n = γχ(x),

requiring

γ

∫ 1

0

χ(u)

(1− u2)n+7/6
du = −

√
πΓ
(

5
6

)
Γ
(

4
3

) .

Proof: It is a straightforward computation to see that

−3
df(x)

dx
(1− x2)− (6n+ 1)xf(x) + (1− x2)n + 2(1− x2)n+1 = 0,

has a smooth solution

f(x) = 3x(1− x2)n.

Hence to solve the ODE as stated in the corollary, it suffices to solve

−3
dg(x)

dx
(1− x2)− (6n+ 1)xg(x)− 2(1− x2)n+1 = γχ(x).

The solution h is then simply given by f + g. In order to solve for a smooth g, we

can apply Lemma 5.1.2.

If we treat (5.1.10), we have
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Corollary 5.1.5. There exists a C∞ function h(x) defined in a neighbourhood of

[−1, 1] that satisfies

−3
dh(x)

dx
(1− x2)− (6n− 1)xh(x) + (1− x2)n(8x2 + 1)−2/3 = γχ(x)

requiring

γ

∫ 1

0

χ(t)

(1− t2)n+5/6
dt =

1

3

π3/2

Γ
(

2
3

)
Γ
(

5
6

) .
Proof: Similar as in the proof of Lemma 5.1.2, we need to connect both local

smooth solutions. The local smooth solution near x = −1 is given by

Φγ(x) =
1

3
(1− x2)n−1/6

∫ x

−1

(8t2 + 1)−2/3

(1− t2)5/6
− γ χ(t)

(1− t2)n+5/6
dt.

We see that this is smooth near x = −1 as follows∫ x

−1

(8t2 + 1)−2/3

(1− t2)5/6
dt

z=t+1
=

∫ x+1

0

(8(z − 1)2 + 1)−2/3

z5/6(2− z)5/6
dz

z=u(x+1)
= (x+ 1)1/6

∫ 1

0

(8(u(x+ 1)− 1)2 + 1)−2/3

u5/6(2− u(x+ 1))5/6
du

This integral, which smoothly depends on x, is finite on a neighbourhood of x = −1.

Similarly the right smooth manifold is given by

Ψγ(x) =
1

3
(1− x2)n−1/6

∫ x

1

(8t2 + 1)−2/3

(1− t2)5/6
− γ χ(t)

(1− t2)n+5/6
dt.

Hence we want

γ

∫ 1

0

χ(t)

(1− t2)n+5/6
dt =

∫ 1

0

(8t2 + 1)−2/3

(1− t2)5/6
dt.

The expression as stated in the corollary can be found using MAPLE.

Finally for (5.1.11), we have

Corollary 5.1.6. There exists a C∞ function h(x) defined in a neighbourhood of

[−1, 1] that satisfies

−3
dh(x)

dx
(1− x2)− (6n+ 1)xh(x) +

4x2 − 1

(8x2 + 1)4/3
(1− x2)n = γχ(x),

requiring

γ

∫ 1

0

χ(t)

(1− t2)n+7/6
dt = −

√
3

2

Γ
(

2
3

)
Γ
(

5
6

)
√
π

.

Proof: Denote

F (x) =
4x2 − 1

(8x2 + 1)4/3
.



5.1. THE CUSP 121

We need to do a similar trick as in the proof of Corollary 5.1.4, to elevate the degree

of (1− x2). This is done in the following way. Consider

−3
dh(x)

dx
(1− x2)− (6n+ 1)xh(x) + F (x)(1− x2)n(1 + 2(1− x2))

− 2(1− x2)n+1F (x) = γχ(x).

By a straightforward computation using partial integration and an argument similar

as the one in the proof of Corollary 5.1.5, we see that the left smooth invariant

manifold is given by

Φγ(x) = xF (x)(1− x2)n − 1

3
(1− x2)n+1/6

∫ x

−1

3uF ′(u) + 2F (u)

(1− u2)1/6
+ γ

χ(u)

(1− u2)7/6
du,

and the right smooth invariant manifold is given by

Ψγ(x) = xF (x)(1− x2)n − 1

3
(1− x2)n+1/6

∫ x

1

3uF ′(u) + 2F (u)

(1− u2)1/6
+ γ

χ(u)

(1− u2)7/6
du.

As before, Φγ(0) = Ψγ(0) amounts to

γ

∫ 1

0

χ(u)

(1− u2)7/6
du = −

∫ 1

0

3uF ′(u) + 2F (u)

(1− u2)1/6
du

= −
√

3

2

Γ
(

2
3

)
Γ
(

5
6

)
√
π

.

The expression as stated in the corollary can be found using MAPLE.

5.1.4 The transition maps and cyclicity

Theorem 3.3.2 states that the transition maps for the vector fields αn are of the form

D(x0) = −x0 + 2γA6n−1(1− x2
0)n+5/6 + h.o.t.,

where γ denotes the first non-zero coefficient in the normal form and

A6n−1 =

∫ 1

0

χ(t)

(1− t2)n+5/6
dt

The notation ‘h.o.t.’ denotes the higher order terms with respect to the variable

1 + x0 as explained in remark 3.3.4. Hence for (5.1.6) by Corollary 5.1.3, we have

D(x0) = −x0 + f(0)

√
πΓ
(

1
6

)
Γ
(

2
3

) (1− x2
0)n+5/6 + h.o.t., (5.1.18)

and for (5.1.10), by Corollary 5.1.5, we have

D(x0) = −x0 +
27a

2

(
−16

27

)n
f(0)

π3/2

Γ
(

2
3

)
Γ
(

5
6

) (1− x2
0)n+5/6 + h.o.t.. (5.1.19)
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Similarly for the vector fields βn we have

D(x0) = −x0 + 2γA6n+1(1− x2
0)n+7/6 + h.o.t.,

where γ denotes the first non-zero coefficient and

A6n+1 =

∫ 1

0

χ(t)

(1− t2)n+7/6
dt.

Hence the transition map for (5.1.7) is given by (see Corollary 5.1.4)

D(x0) = −x0 − 2g(0)

√
π Γ
(

5
6

)
Γ
(

4
3

) (1− x2
0)n+7/6 + h.o.t.,

and for (5.1.11) by (see Corollary 5.1.6)

D(x0) = −x0 −
√

3

a

(
−16

27

)n
g(0)

Γ
(

2
3

)
Γ
(

5
6

)
√
π

(1− x2
0)n+7/6 + h.o.t..

We combine the results in each of the blow-up maps (5.1.3) and (5.1.5) to get an

upper bound on the cyclicity of a cuspidal loop where the cusp is locally smoothly

conjugated to (5.1.1) or (5.1.2). Write

Σin = {(−1 + x, 1) | |x| << 1}, and Σout = {(1− y, 1) | |y| << 1},

and use x, respectively y to parametrize Σin, respectively Σout. In this way, the

transition map D : Σin → Σout can be considered as a one-dimensional function

y = D(x). The two cases x > 0 and x < 0 corresponding to either the blow-up chart

(5.1.3) or (5.1.5) correspond to two different types of limit cycles, namely the interior

and exterior ones. In this way we can bound the cyclicity of the inner or outer limit

cycles separately and also bound the true (two-sided) cyclicity as we explain shortly

here. Without going in too much detail, the transition map near the blow-up locus

of (5.1.1) is given by

D(x) =

x+ xn+5/6(κf(0) + o
(
1
)
), if x ≥ 0,

x+ |x|n+5/6 (ηf(0) + o
(
1
)
), if x < 0,

(5.1.20)

for some non-zero κ, η related to the coefficients in (5.1.18), respectively (5.1.19).

Observe that this map is only Cn. When there is a cuspidal loop, one can consider

the inverted regular transition R : Σin → Σout near the loop. The most degenerate

case is when

R(x) = x+ h.o.t..

Since this is C∞ at x = 0, its asymptotic expansion does not contain non-smooth

terms which can compensate for the non-smooth terms in the map D. Hence if we

look at the difference map ∆(x) = D(x)−R(x), we know that

∆(n)(x) =

x
5/6(κ̄f(0) + o

(
1
)
), if x ≥ 0,

|x|5/6 (η̄f(0) + o
(
1
)
), if x < 0.

(5.1.21)
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This has only one zero in a neighbourhood U of x = 0. Due to Rolle’s Theorem, we

know that ∆ can not have more than n + 1 zeroes in U . This allows us to give a

partial cyclicity result since zeroes of the difference map correspond to limit cycles of

the system. We can put an upper bound on the cyclicity of a specific family of vector

fields perturbating from the cuspidal loop where the cusp is conjugated to (5.1.1) or

(5.1.2) as follows.

Suppose we have a family Xλ of smooth vector fields defined in a neighbourhood

V of the parameter λ0 such that Xλ0 contains a cuspidal loop Γ. Suppose that for

every λ ∈ V the vector field Xλ has a cusp singularity conjugated to (5.1.1) where

f(0) can depend on λ but remains non-zero. The results above remain true, however

the coefficients become parameter-dependent. Moreover the coefficients κ and η in

(5.1.20) and (5.1.21) can also be parameter-dependent. Even though, the statement

that (5.1.21) has at most one zero in a neighbourhood U of x = 0 remains valid.

Hence we can find a neighbourhood W of Γ such that Xλ has at most n + 1 limit

cycles contained in W .

In a similar way we can show that for a family of vector fields Xλ conjugated to (5.1.2)

with a cuspidal loop Γ for Xλ0 can have at most n+2 limit cycles in a neighbourhood

W of Γ.

5.2 The fake saddle

Following [13], we consider a degenerate planar singularity of the formẋ = Ax2 + bxy +O(‖(x, y)‖3),

ẏ = x2 + y2 +O(‖(x, y)‖3),
(5.2.1)

with A2 < 4(1 − b) and b ∈ (0, 1) (see Figure 5.5a). These are the conditions under

which the origin has exactly two hyperbolic sectors, an incoming separatrix and an

outgoing separatrix. Both separatrices are of center type, and are similar to the two

branches of a one-dimensional saddle-node singularity. We show in Section 5.2.1 that

after a homogeneous blow-up a saddle connection along the equator connects two

hyperbolic saddles with ratios of eigenvalues b − 1 : 1 and 1 − b : −1. As we are

interested in this thesis in the study of the resonant case, we confine ourselves to the

cases 1− b equal to 1 or 1
2
. Other resonant cases (1− b ∈ Q) demand more involved

calculations and shall therefore not be handled in this text. Even the case 1− b = 1
k

with k ∈ N requires a non-trivial computation since one needs to compute a residue

of some function g(x)

(1−x2)k+1 at x = 1 and x = −1 in general. Before examining the

transition map along the fake saddle by seeing it essentially as a transition through

two symmetric saddles, we first put the system in an elementary form in Section 5.2.1

and Section 5.2.2. In Section 5.2.3 we deal with the case b = 0, in Section 5.2.4 we
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deal with b = 1
2
. Since it is merely our intention to demonstrate the applicability of

the results in this thesis, we confine ourselves to these two cases.

(a) Phase portrait (b) Blow-up

Figure 5.5: Fake saddle

5.2.1 Persistence of SN-fiber

We blow-up the singularity by writing (x, y) = (rX, rσ) (with σ = ±1) (see Figure

5.5b) to find: ṙ = σr(X + 1) + O
(
r2
)
,

Ẋ = σX(σAX −X2 + b− 1).

The origin (r,X) = (0, 0) is a saddle. Then we have two C∞-separatrices X = ψ(r)

and r = 0 each of them defined in a neighbourhood of the origin. For σ = +1, the two

saddle points which appear in the polar blow-up are glued in a single saddle point,

whose invariant manifold blows down to a C∞ invariant graph

x = yψ(y),

where ψ is defined and smooth in a neighbourhood of 0. This manifold corresponds

to the SN-fiber and by a C∞ change of coordinates we can straighten it to x = 0.

5.2.2 Preliminary normal form

Up to a smooth change of coordinates, we can assume that x = 0 is an invariant

manifold passing through the fake saddle. The behaviour of the vector field on this



5.2. THE FAKE SADDLE 125

line is of the form

ẏ = y2 + h.o.t.,

which can be put in a normal form by a C∞ transformation, eliminating all higher

order terms in the above equation except maybe a resonant cubic term (see [54]).

Thanks to this latter transformation, the system takes the formẋ = Ax2 + bxy + xO
(
‖(x, y)‖2

)
,

ẏ = x2 + y2 + σy3 + xO
(
‖(x, y)‖2

)
,

(5.2.2)

for σ = 0, 1. We reduce the terms of homogeneous degree 3 and higher as follows:

Lemma 5.2.1. Consider the vector field (5.2.2). There exists a formal conjugacy

such that this vector field is conjugated to

• Case 1: b = 0 ẋ = Ax2 + x3f(x) +Bxmy,

ẏ = x2 + y2 + σy3 + x3g(x) + xh(x)y3,
(5.2.3)

for some m > 1, B 6= 0, orẋ = Ax2 + x3f(x),

ẏ = x2 + y2 + σy3 + x3g(x) + xh(x)y3,
(5.2.4)

• Case 2: b = 1
N

, with N ∈ N0, N ≥ 2ẋ = Ax2 + x3f(x) + bxy,

ẏ = x2 + y2 + σy3 + x3g(x) + αxNy2 + βx2Ny,
(5.2.5)

• Case 3: b = 2
M

, with M ∈ N0 odd, M ≥ 3ẋ = Ax2 + bxy + x3f(x),

ẏ = x2 + y2 + σy3 + x3g(x) + βxMy,
(5.2.6)

• Case 4: b 6= 0 and b 6= 2
K

, with K ∈ N0ẋ = Ax2 + bxy + x3f(x),

ẏ = x2 + y2 + σy3 + x3g(x).
(5.2.7)

The functions f, g and h are C∞ in each of the cases.
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Proof: We consider (5.2.2). Suppose the vector field is already in the expected

form up to homogeneous degree N ≥ 2. In order to reduce the term of homogeneous

degree N + 1, we apply a transformation of the form

(x, y) =
(
X + CXkY l, Y +DXkY l

)
,

where k ≥ 1, l ≥ 1 and N = k + l (similar as in the work of Takens [54]) and work

by induction on k. To see the effect in the lowest homogeneous degree, it suffices to

consider the effect on the quadratic terms of the vector fieldẋ = Ax2 + bxy,

ẏ = x2 + y2.

This transforms to
Ẋ = AX2 + bXY + C(b− l − bk)XkY l+1

+ C(2A−Ak + bD)Xk+1Y l − lCXk+2Y l−1,

Ẏ = X2 + Y 2 +D(2− bk − l)XkY l+1 + (2C −AkD)Xk+1Y l − lDxk+2Y l−1,

where we omit the terms of higher order. Remark that b − l − bk 6= 0, such that we

can eliminate the term XkY l+1 in the first equation of (5.2.2). We can choose D to

get rid of the term Xk+1Y l in the second equation, if and only if

b 6= 2− l
k

.

Since b ∈ [0, 1), this can only happen when l = 2, b = 0 and when l = 1 and b = 1
N

for some N ≥ 2. Next we consider the transformation when l = 0 and k ≥ 2, to seeẊ = AX2 + bXY + C(b− bk)XkY + (CA(2− k) + bD)Xk+1,

Ẏ = X2 + Y 2 +D(2− bk)XkY + (2C −DkA)Xk+1.

Observe that b− bk can only be zero if b = 0 and 2− bk is zero when b = 1
N

as before

or when b = 2
M

with M ≥ 3 and odd. With this method it is impossible to eliminate

the terms which are independent of y. By induction, we get the forms as described

in the lemma except for the case b = 0. Here we have after inductionẋ = Ax2 + x3f(x) +B(x)y,

ẏ = x2 + y2 + σy3 + x3g(x) + xh(x)y3,

for some formal function B(x). In the case that B vanishes, i.e. B(x) ≡ 0, we

immediately get (5.2.4). Otherwise, we can suppose that there is a B 6= 0 and m > 1

such that B(x) = Bxm(B + xq(x)). If we apply a transformation x = Φ(X), where

Φ(X) = X + O
(
X2),
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is a smooth solution of

BXmΦ′(X) = B(Φ(X)) = Φ(X)m(B + Φ(X)q(Φ(X)),

we get Ẋ = AX2 +X3f̃(X) + B(Φ(X))
Φ′(X)

y = AX2 +X3f̃(X) +BXmy,

ẏ = X2 + y2 + σy3 +X3g̃(X) +Xh̃(X)y3.

In order to compute the transition map near the saddle-node fiber, it suffices to work

up to equivalence. In this way, we can simplify even further. The proof is a simple

adjustment of the induction argument in the previous lemma where we rescale in each

induction step.

Lemma 5.2.2. Consider the vector field (5.2.1). There exists a formal equivalence

such that this vector field is equivalent to

• Case 1: b = 0 ẋ = Ax2 + x3f(x) +Bxmy,

ẏ = x2 + y2 + x3g(x),
(5.2.8)

for some m > 1, B 6= 0, orẋ = Ax2 + x3f(x),

ẏ = x2 + y2 + x3g(x),
(5.2.9)

• Case 2: b = 2
M

, with M ∈ N0, M ≥ 3ẋ = Ax2 + bxy + x3f(x),

ẏ = x2 + y2 + x3g(x) + βxMy,
(5.2.10)

• Case 3: b 6= 0 and b 6= 2
K

, with K ∈ N0ẋ = Ax2 + bxy + x3f(x),

ẏ = x2 + y2 + x3g(x).
(5.2.11)

The functions f, g and h are formal series in each of the cases.

Proof: We multiply the acquired vector fields form Lemma 5.2.1 with 1 − σy. In

degree 3, we get an extra term x2y. This is part of the local normal form, or can be

eliminated using the procedure of Lemma 5.2.1 without adding terms of degree three

dependent on y. On the higher order terms we then apply the same procedure.
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When b = 0, we apply after each step of degree N + 3 with N ≥ 1 a reparametriza-

tion by multiplying the vector field with 1−γxNy, where γ is the coefficient of xh(x)

corresponding to xN . In this way we construct new terms of degree N + 3 of degree

at most 1 in y, which we can again eliminate using the normalization procedure.

When b = 1
N

, we multiply the vector field with 1 − αxN after normalization up

to degree N + 2. All changes are in higher degrees except for a term in degree N + 2

with degree 1 in y, which we can eliminate again by normalization.

Using Borel’s Theorem (Theorem 1.2.3), we can realize these transformations as C∞

functions, however some flat terms arise. We will omit these from the notation, since

after a blow-up procedure they contribute to a flat term in the radial variable which

can be eliminated according to the results in Section 2.4.

5.2.3 Generic transition map with 1:1-resonance

By Lemma 5.2.2 we consider for b = 0 a vector field of the formẋ = Ax2 + x3f(x) +Bxmy,

ẏ = x2 + y2 + x3g(x),
(5.2.12)

for some m > 1 and B 6= 0. Denote f0 = f(0) and g0 = g(0) and assume that m = 2

in order to simplify computations. We know that the ratio of the eigenvalues of both

saddles is −1.

Similar as in Section 5.1, we apply a parabolic blow-up of the form

(x, y) = (Y (X2 − 1), XY ). (5.2.13)

After multiplication with X2+1
2Y

, we getẊ = 1
2
(1−X2)

[
1 + (1−X2)F (X) + F1(X)Y + O

(
Y 2
)]
,

Ẏ = XY + (1−X2)G1(X)Y +G2(X)Y 2 + O
(
Y 3
)
,

(5.2.14)

where

F (X) = AX −X2,

F1(X) = (1−X2)(−g0X
4 + f0X

3 + (B + 2g0)X2 − f0X − g0),

G1(X) = −X3 +
1

2
AX2 − 1

2
A,

G2(X) = −1

2
(1−X2)2(−2g0X

3 + f0X
2 + (B + 2g0)X − f0).
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In order to compute the dominant term in the transition map, we need to put (5.2.14)

in semi-local normal form and identify the first non-zero resonant or connecting term.

This is done as follows.

Lemma 5.2.3. There exists a smooth transformation

(X,Y ) 7→ (x, y) = (X,ϕ(X,Y )),

such that the system (5.2.14) is orbitally equivalent toẋ = 1
2
(1− x2),

ẏ = y
[
x+ (αx+ β) (1− x2)y + (1− x2)2y2

(
xf̄
(
(1− x2)y

)
+ ḡ

(
(1− x2)y

))]
,

for some smooth functions f̄ and ḡ. Moreover, we have

β = B

(
1− e

−2Aπ√
4−A2

)
.

Proof: The existence of a smooth equivalence as stated in the lemma is immedi-

ate from Theorem 2.1.2. It remains to compute the coefficient β. This is done by

repeating the first steps in the normalization procedure. Denote

G(X) = 1 + (1−X2)F (X) =

(
1−X2 +

A

2
X

)2

+

(
1− A2

4

)
X2,

which is strictly positive for A2 < 4 = 4(1 − b). We divide the vector field by the

factor between square brackets in (5.2.14) and apply the transformation

Y = Ψ(X)Z,

where

Ψ(X) = exp

(∫ X
1−X2

−∞

−A
u2 +Au+ 1

du

)
.

After a straightforward computation, one can deduce the systemẊ = 1
2
(1−X2),

Ż = XZ +H1(X)Ψ(X)Z2 + O
(
Z3
)
,

where

H(X) =
G1(X)−XF (X)

G(X)
,

and

H1(X) =
G2(X)−XF1(X)− (1−X2)F1(X)H(X)

G(X)
.

By direct computation, we can see that we can decompose

H1(X)Ψ(X) = (1−X2)(αX + β) + (1−X2)2H2(X),
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for some constant α and C∞ function H2 and with

β = B

(
1− e

−2Aπ√
4−A2

)
.

By a transformation of the form (X,Z) = (X,Z1) = (X,Z+h(X)Z2) we can eliminate

the term (1 − X2)2H2(x)Z2. The rest of the normalization procedure of Theorem

2.1.2 is of the form

(X,Z1) 7→ (x, y) =
(
X,Z1 + Z3

1ψ(X,Z1)
)
,

for some smooth function Ψ and thus leaves the coefficient β unchanged.

Combining Lemma 5.2.3 and Theorem 3.3.2, the transition map of (5.2.12) in the

blow-up chart (5.2.13) is asymptotically given by

D(x0) = −x0 +B

(
1− e

−2Aπ√
4−A2

)
(1− x2

0)2 log(1 + x0) + h.o.t.. (5.2.15)

Observe that blow-up chart (5.2.14) only allows us to describe the dynamics for x < 0

of (5.2.12). However if we apply the reflection x → −x to (5.2.12), then (5.2.13)

describes exactly the dynamics for x > 0. After the reflection the sign of A and B

changes in (5.2.12). If we repeat the discussion above, we compute in this case that

the transition map in the blow-up chart is asymptotically given by

D(x0) = −x0 −B

(
1− e

2Aπ√
4−A2

)
(1− x2

0)2 log(1 + x0) + h.o.t.. (5.2.16)

Combining these results and by considering the difference map ∆ as in Section 5.1.4,

we see that ∆′(x) locally has one zero if A and B are non-zero.

Again this can be generalized to a parameter-dependent situation. Suppose Xλ is

a family of vector fields such that for all λ in an open set U there is a singularity

of the form (5.2.2) with b = 0. Suppose Xλ0 has a fake saddle loop Γ and is locally

equivalent to (5.2.12) with AB 6= 0. Then there exists a neighbourhood W of Γ such

that Xλ does not contain more than two limit cycles for λ ∈ U .

5.2.4 Generic transition map with 1:2-resonance

When b = 1
2
, the saddle quantity is given by 1

2
, respectively 2 at the saddles after

blow-up. Using Lemma 5.2.2, the vector field can locally be transformed toẋ = Ax2 + x3f(x) + 1
2
xy,

ẏ = x2 + y2 + x3g(x) + βx4y,
(5.2.17)
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for some β ∈ R and some C∞ functions f, g. Denote f0 = f(0) and g0 = g(0). After

blow-up (5.2.13) and multiplying with (X2+1)
Y

, we get a vector field of the formẊ = 1
2
(1−X2)

[
1 + (1−X2)F (X) + F1(X)Y + O

(
Y 2
)]
,

Ẏ = 2XY + (1−X2)G1(X)Y +G2(X)Y 2 + O
(
Y 3
)
,

(5.2.18)

where

F (X) = 2AX − 2X2 + 1,

F1(X) = 2(1−X2)2(g0X
2 − f0X − g0),

G1(X) = −2X3 +AX2 +
1

2
X −A,

G2(X) = (1−X2)3(−2g0X + f0).

Similar as in the case b = 0, we put (5.2.18) in semi-local normal form and identify

the first non-zero term.

Lemma 5.2.4. There exists a smooth transformation

(X,Y ) 7→ (x, y) = (X,ϕ(X,Y )),

such that the system (5.2.18) is orbitally equivalent toẋ = 1
2
(1− x2),

ẏ = y
[
2x+ (αx+ β) z + z2

(
xf̄ (z) + ḡ (z)

)]
,

for some smooth functions f̄ and ḡ, where z = (1− x2)2y. Moreover, we have

β = 2f0

(
1 + e

−3πA√
2−A2

)
.

Proof: Again, we only need to compute β since the rest of the statement follows

immediately from Theorem 2.1.2. We divide the vector field (5.2.18) by the factor in

square brackets where we remark that

G(X) = 1 + (1−X2)F (X) = 2

(
1−X2 +

A

2
X

)2

+

(
1− A2

2

)
X2

is a strictly positive function since A2 < 2 = 4(1 − b). Consequently we apply the

transformation

Y = Ψ(X)Z, with Ψ(X) = e
∫X
−1 2H(s)ds,

where

H(X) =
G1(X)− 2XF (X)

G(X)
.
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A straightforward computation shows that the vector field can now be written asẊ = 1
2
(1−X2),

Ż = 2XZ +
(
(1−X2)2(αX + β) + (1−X2)3H2(X)

)
Z2 + O

(
Z3
)
,

for some constant α and C∞ function H2 and with

β = 2f0

(
1 + e

−3πA√
2−A2

)
.

Following the normal form procedure of Theorem 2.1.2, we can remove the term

(1−X2)3H2(X)Z2 by a transformation of the form

(X,Y ) =
(
X̄, Ȳ + H̄(X̄)Ȳ 2) ,

where H̄(X̄) is a smooth solution of

−1

2
(1− X̄2)H̄ ′(X̄)− 2X̄H̄(X̄) + (1− X̄2)3H2(X̄) = 0,

without changing the coefficients α and β. The higher order terms (with respect to

Ȳ ) will then be put in normal form without changing the terms of degree 2.

By Lemma 5.2.4 and Theorem 3.3.2, we get that the transition map in the blow-up

chart (5.2.13) for x < 0 is asymptotically given by

D(x0) = −x0 − f0

(
1 + e

−3πA√
2−A2

)
(1− x2

0)3 log(1 + x0) + h.o.t.,

and a similar map for x > 0 where A is replaced by −A. In a similar way as at the

end of Section 5.1.4, we can see that there exists a neighbourhood of 0 where the

second derivative of the displacement map ∆ has at most one zero when f0 6= 0.

Consider a family of vector fields Xλ, λ ∈ U , with a singularity of the form (5.2.2)

with b = 1
2
. Suppose Xλ0 has a fake saddle loop Γ and is locally equivalent to (5.2.17)

with f0 6= 0. Then there exists a neighbourhood W of Γ such that Xλ does not contain

more than three limit cycles in W for λ ∈ U .



Overview and open questions

The primary focus in this thesis was to examine the dynamics near non-elementary

singularities as we did in Chapter 5. After a blow-up procedure (see Figure 5.1 and

Figure 5.5), these singularities have a similar behaviour near the blow-up locus. More

precise, the invariant manifolds of two saddles on the blow-up locus locally divide the

phase space in two hyperbolic sectors. Moreover the ratio of the eigenvalues at the

saddles are reciprocal. Therefore, in some well-chosen charts, we can consider vector

fields of the form ẋ = (1− x2)
(
q
2

+ O
(
1− x2

))
+ O

(
y
)
,

ẏ =
(
px+ O

(
1− x2

))
y + O

(
y2
)
.

In order to simplify the system near the saddle connection on the blow-up locus, it is

natural to construct a formal transformation per induction on the degree of y as we

did in Section 2.3, since this denotes the radial component denoting the distance to

the blow-up locus and thus the singularity. In contrast, the typical Poincaré-Dulac

normalization relies on an induction scheme on the homogeneous degree of both (x, y)

(see Section 1.3.1), since the distance to the singularity relies on both variables. The

algebraic condition induced by the adjoint action of the linear part is then replaced

by an ordinary differential equation (see (2.3.4) and (2.3.5)). In order to solve this

in a smooth way, it is qualitatively equivalent to construct a smooth connection of

the form y = ϕ(x) through two nodes. At some degrees (resonant degrees), ev-

ery invariant manifold is smooth up to some logarithmic term due to resonance (see

Lemma 2.3.5). Otherwise there exists only one smooth invariant manifold at each of

the nodes, which we can connect by adding some well-chosen function (see Lemma

2.3.13). The corresponding connecting terms are non-unique as we discussed in Sec-

tion 2.3.3. An interesting question is to determine the intrinsic property of a vector

field connected to these resonant terms. As we have seen in the applications, the

coefficient of the dominant term in the transition map does not rely on the choice of

connecting function χ. Since we expect rational exponents, demanding C∞ normal

forms may be too restrictive.

133
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Eventually, after realisation by Borel’s Theorem (Theorem 1.2.5) and removal of the

flat terms (Section 2.4), we end up with a simplified vector field which is valid near

the connection. These semi-local normal forms can be constructed for any value of

saddle quantity (Theorems 2.1.2, 2.1.3 and 2.1.4) as long as we assume that they are

fixed. We do allow perturbations in higher-order terms.

We reduce the system even further to an easily integrable system by allowing transfor-

mations which are only finitely smooth (see Theorem 3.2.1). The non-smooth terms

admit nice expressions in the form of logarithmic tags and fractional exponents which

both are of Mourtada type near the axes x = ±1. By exploiting the first integral of

the linearized system (see Corollary 3.3.1), we can deduce the smooth dependence of

the transition map along the connection in terms of these Mourtada type functions

and identify the first non-zero higher order term (see Theorem 3.3.2). From the proof

of this theorem (see (3.3.20)), it becomes clear that the first non-zero symmetric term

in the semi-local normal (2.1.3), (2.1.6) or (2.1.7) plays a dominant role. This can

be logarithmic when the transition trough the saddles themselves is dominant (see

(3.3.4)) or given by a term with a fractional exponent when the transition in between

the saddles (composed with the Dulac map of one of the saddles) is dominant (see

(3.3.5)). This is directly connected to whether the first non-zero symmetric term

in the normal form is resonant or connecting. In Chapter 5, we demonstrate both

behaviours and we show how we can use this results to derive a partial cyclicity re-

sults. If we want to deduce cyclicity results for arbitrary perturbations preserving

the nature of the singularity as in [41], we should consider the full transition map up

to some degree and apply a division-derivation algorithm. This will be part of future

work.

If we also allow a perturbation, although only symmetric, in the eigenvalues of the sad-

dles, it becomes clear that similar results as above remain true (see Chapter 4). How-

ever we can only expect the semi-local normal form in this case (see Theorem 4.1.8)

to be finitely smooth similar as for a family of vector fields having a saddle (see

Section 1.3.2). As in Theorem 3.2.1, we can reduce this system even further by in-

ductively defining terms of Mourtada type. However due to the perturbation in the

eigenvalues, the tags are given by an adapted compensator. It is not yet clear how

they compare to the typical Ecalle-Roussarie compensators at the saddles and we can

not decompose them as in Proposition 3.2.2 since the non-smoothness of the tags is

not confined to only one point.

Finally we illustrate in Chapter 5 how to apply the results of this thesis. The tech-

nique used here is to manually compute the normal form up to some degree and

use Theorem 3.3.2 to see the effect on the transition map. However, since Corollary

3.3.1 provides an expression for an invariant, we can assume a shape of the invariant
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with undetermined coefficients as ansatz and establish equations for all coefficients

appearing therein. Similarly we can exploit the fact that the transition map can

be expanded in terms of a finite number of variables. In this way one can provide

conditions for a predetermined family of vector field (for instance cubic vector fields

having some properties) for which the family has at most 1, 2, . . . limit cycles and try

to give explicit parameter values for which this bound is reached.

In the examples, the saddle connection appears after blowing up a singular point

which is initially nilpotent or degenerate. The saddle connection on the blow-up

locus can be predicted by examining the dominant quasi-homogeneous part of the

vector field. Under the condition that the saddles are the only two singularities on

the blow-up locus, one might wonder what the relation is between the semi-local nor-

mal form after blow-up like we obtain in Chapter 2 and the normal forms obtained

from information of the quasi-homogeneous part (before blow-up) like in [35]. This

is an open question.

In [41], the transition map is computed in a very elegant and short way: instead of

computing the transition map along the real axis, the authors use a complex path and

use the monodromy of the two individual saddles to prescribe the dominant term of

the transition map. In comparison to [41], our technique is technically more involved

but at the same time it is more straightforward and applicable to the general setting.

More precisely, when considering a versal unfolding of a cusp as in [21], one needs to

consider a three-dimensional family blow-up. We believe that the semi-local normal

forms obtained in this thesis can simplify the vector field near the blow-up sphere.

This will be subject of further research.

The case of the fake saddle is more involved. The saddle quantities are dependent

on b nonetheless that they stay reciprocal. It is worth the effort to compute the

full expansion of the transition map in terms of the compensator-like Mourtada type

functions appearing in Theorem 4.2.5. The cyclicity results of homoclinic connections

of a fake saddle can in this case also include perturbations in the parameter b.

Generically, when one perturbs a saddle connection without breaking the connection

itself, one loses the symmetry of the eigenvalues. Therefore, it might be of interest

to also compute normal forms for asymmetric pairs of eigenvalues, starting from the

scalar vector field (2.2.4) on the connection, where A 6= 0.
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Het doel van deze thesis is om technieken te voorzien die ons in staat stellen om de dy-

namica van gladde vlakke vectorvelden te bestuderen in de buurt van niet-elementaire

singulariteiten. Doorgaans wordt dit gedaan door het opblazen van de singulariteit

waar deze vervangen wordt door een cirkel die de richtingen beschrijft waarin men de

singulariteit kan benaderen, genaamd de opblaaslocus. In veel gevallen verkrijgen we

zo twee hyperbolische zadels op de opblaaslocus met wederkerige verhoudingen van

eigenwaarden. Om de transitie in de buurt van de singulariteit te bepalen, moeten we

dus de transitie door een zadel-connectie berekenen die de bovengenoemde symmetrie

heeft.

De vectorvelden die verschijnen in de opgeblazen faseruimte zijn van de vormẋ = (1− x2)
(
q
2

+ O
(
1− x2

))
+ O

(
y
)
,

ẏ =
(
px+ O

(
1− x2

))
y + O

(
y2
)
,

waar y de radiale richting weergeeft en x de rol speelt van de angulaire variabele.

De getallen p en q zijn rechtstreeks verwant met het spectrum van de hyperbolische

zadels in de punten (±1, 0). We veronderstellen dat de separatrix-connectie onver-

broken blijft.

We starten met het verstrekken van een gladde semi-lokale normaalvorm waaraan het

originele vectorveld equivalent is op een gladde manier. Deze equivalentie is geldig in

een omgeving van de connectie. We onderscheiden verschillende gevallen afhankelijk

van de lokale resonanties van de zadels. Dit wordt op een gelijkaardige manier gedaan

als de Poincaré-Dulac normalizatie. Eerst construeren we een formele conjugatie nabij

de connectie. In deze inductieve procedure verkrijgen we oftewel resonante termen

die ook voorkomen in de lokale normaalvormen oftewel connectiviteitstermen. Deze

laatste termen zijn noodzakelijk om de lokale normaalvormen aan elkaar te plakken

op een gladde manier. Vervolgens realizeren we deze transformatie als een gladde

coördinaatsverandering door gekende lokale resultaten te veralgemenen.
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In een volgende stap normaal-lineariseren we de verkregen normaalvormen. Hier-

mee bedoelen we dat we die termen elimineren die niet linear zijn in functie van de

variabele die de loodrechte richting op de connectie voorstelt, i.e. de y-variabele.

Hierdoor verliezen we wel de gladheid van de transformatie. Desalniettemin kunnen

we deze transformatie uitdrukken als een gladde functie van enkele eindig gladde

tags met een logaritmische vorm en termen met fractionele machten. Doordat het

normaal-gelineariseerde systeem een eenvoudige eerste integraal heeft, kunnen we hi-

erdoor een invariant definiëren van het originele vectorveld in normaalvorm. Deze

invariant leidt op zijn beurt naar een methode om de transitie-afbeelding te bereke-

nen door de zadelconnectie.

Uiteindelijk passen we deze resultaten toe op enkele voorbeelden. Eerst moeten de

vectorvelden wel aangepast worden zodat ze geschikt zijn om opgeblazen en genormal-

izeerd te worden. We gebruiken de typische kaarten van een (quasi-)homogene opblaz-

ing als ook een parabolische opblazing. Deze constructie is noodzakelijk wanneer de

singulariteiten niet te bevatten zijn in één kaart. Ze wordt verkregen door een stere-

ografische projectie van de opblaascirkel waar we de variabelen niet herschalen. Door

voorgaande resultaten toe te passen, verkrijgen we de transitie-afbeeldingen nabij de

onderzochte singulariteiten en verwerven zo gedeeltelijke cycliciteitsresultaten voor

grafieken met enkel één singulariteit die de vorm onder beschouwing heeft.
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