
Made available by Hasselt University Library in https://documentserver.uhasselt.be

BonXai: Combining the Simplicity of DTD with the Expressiveness of

XML Schema

Peer-reviewed author version

MARTENS, Wim; NEVEN, Frank; Niewerth, Matthias & Schwentick, Thomas (2017)

BonXai: Combining the Simplicity of DTD with the Expressiveness of XML Schema.

In: ACM TRANSACTIONS ON DATABASE SYSTEMS, 42(3), p. 1-42 (Art N° 15).

DOI: 10.1145/3105960

Handle: http://hdl.handle.net/1942/24954

BonXai: Combining the Simplicity of DTD with the Expressiveness of
XML Schema Link
Peer-reviewed author version

Made available by Hasselt University Library in Document Server@UHasselt

Reference (Published version):
Martens, Wim; Neven, Frank; Niewerth, Matthias & Schwentick, Thomas(2017) BonXai:
Combining the Simplicity of DTD with the Expressiveness of XML Schema. In: ACM
TRANSACTIONS ON DATABASE SYSTEMS, 42(3), p. 1-42 (Art N° 15)

DOI: 10.1145/3105960
Handle: http://hdl.handle.net/1942/24954

https://www.uhasselt.be
http://hdl.handle.net/1942/24954
https://uhdspace.uhasselt.be

1

BonXai: Combining the simplicity of DTD with the
expressiveness of XML Schema

WIM MARTENS, University of Bayreuth

FRANK NEVEN, Hasselt University and Transnational University of Limburg

MATTHIAS NIEWERTH, University of Bayreuth

THOMAS SCHWENTICK, TU Dortmund University

While the migration from DTD to XML Schema was driven by a need for increased expressivity and flexibility,

the latter was also significantly more complex to use and understand. Whereas DTDs are characterized by

their simplicity, XML Schema Documents are notoriously difficult. In this article, we introduce the XML

specification language BonXai which incorporates many features of XML Schema but is arguably almost as

easy to use as DTDs. In brief, the latter is achieved by sacrificing the explicit use of types in favor of simple

patterns expressing contexts for elements. The goal of BonXai is not to replace XML Schema, but rather to

provide a simpler alternative for users who want to go beyond the expressiveness and features of DTD, but do

not need the explicit use of types. Furthermore, XML Schema processing tools can be used as a back-end for

BonXai, since BonXai can be automatically converted into XML Schema. A particular strong point of BonXai

is its solid foundation rooted in a decade of theoretical work around pattern-based schemas. We present a

formal model for a core fragment of BonXai and the translation algorithms to and from a core fragment of

XML Schema. We prove that BonXai and XML Schema can be converted back-and-forth on the level of tree

languages and we formally study the size trade-offs between the two languages.

ACM Reference format:
Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick. 2017. BonXai: Combining the

simplicity of DTD with the expressiveness of XML Schema. 1, 1, Article 1 (October 2017), 41 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Through its endorsement by the W3C, XML Schema [34] is nowadays adopted as the industry-wide

standard for the specification of XML schema languages. XML Schema can be considered as the

replacement of DTDs with added expressivity and flexibility regarding namespaces, modularization,

and datatypes. As an unfortunate side effect, the migration to XML Schema has also a negative

impact on usability. Indeed, while DTDs are praised for their simplicity, XML Schema is notoriously

difficult. It is designed to bemachine-readable rather than human-readable and the central document

of its specification (Part 1 of the specification) already consists of 100 pages of intricate text [16]. In

their book, Møller and Schwartzbach discuss the comprehensibility of XML Schema as follows [28,

p. 156]:

XML Schema is generally too complicated and hard to use by non-experts. This is a problem
since many non-experts need to be able to read schemas to write valid instance documents.

From a theoretical perspective, the most significant change in the migration from DTDs to XML

Schema is the introduction of complex types. This addition dramatically increases the expressive-

ness [26, 29], as explained next. In DTDs, the definition of an element is determined by the element’s

label. For instance, the DTD rule

<!ELEMENT section (title, paragraph*)>

specifies that every section element should have the same type of content: a left child labeled

title, followed by a sequence of children labeled paragraph. Complex types in XML Schema go

beyond that and allow element definitions to depend on the context in which they appear (e.g., the

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

label of the parent or grandparent, or any other ancestor element).
1
For instance, in XML Schema

we can define several types of section elements by using complex types. We could define that,

if a section element is a child of a preface element, then it has the content as described before,

but section elements appearing inside chapter elements are also allowed to have children labeled

subsection.
XML Schema is currently at version 1.1. Throughout this article, whenever we do not explicitly

mention a version number for XML Schema, we are referring to XML Schema 1.0. For the purpose

of this article, XML Schema 1.1 can be understood as an extension of XML Schema 1.0, i.e., every

valid XML Schema 1.0 Document is also a valid XML Schema 1.1 Document.

1.1 Complex Types in Practice
Surprisingly, early studies revealed that XML Schema Documents (henceforth, SDs) occurring in

practice hardly took advantage of complex types to go beyond the expressivity of DTDs [2, 3].

While the precise cause of the latter restricted use is unclear (we are not aware of any studies that

tried to explain this), plausible explanations are (i) that users did not know how to wield the extra

expressiveness of XML Schema; (ii) that it was too cumbersome to write sophisticated and precise

schemas when weighed against their obvious benefits or; (iii) that the full power of complex types

is rarely needed in practice. Actually, Møller and Schwartzbach assert that the introduction of types

is a major aspect complicating the design of XML Schema [28, p. 156]:

One important factor of the complexity of the language is the type mechanism. Even
without type derivations and substitution groups, this notion of types adds an extra layer
of complexity: an element in the instance document has a name, some element declaration
in the schema then assigns a type to this element name, and finally, some type definition
then gives us the constraints that must be satisfied for the given element. In DTD, an
element name instead directly identifies the associated constraints.

In other words, the use of types to express structural constraints could be just too complicated

for the majority of users. In fact, the practical study we discuss next emphasizes that structural

constraints beyond the power of DTDs are still hardly used in practice.

Since the study of Bex et al. [2, 3] is over a decade old and had a corpus of only 225 SDs, we

repeated this experiment on a much larger corpus of SDs. We were able to obtain 8080 unique,

well-formed SDs from the Web and analysed to which extent they use ancestor information to

determine complex types (see Section 4 for details). We observed the following: 80.66% of SDs

associate at most one complex type to every element name. In other words, these SDs do not use

complex types beyond the power of DTDs. For a further 13.03%, the complex types were determined

by the parent context (as in the example before, with preface and chapter). A further 3.64% also

took the grandparent context into account.

These studies are in strong contrast with the full expressive power of complex types in XML

Schema 1.0 or 1.1. In their full power, XML Schema 1.0 complex types allow the type of an element

in a document to depend on a regular condition on all ancestors of the element [26].
2
In practice,

we therefore see that the power of regular languages on the entire path of ancestors is not used at

all. Instead, in more than 97% of schemas, this regular test is extremely limited: it only looks at the

element itself, its parent, and its grandparent. Since XML Schema 1.1, one can use type alternatives
to allow attributes of ancestors influence the complex type of elements. We found 5 schemas (0.06%)

that use this feature.

1
Notice that, in principle, ancestors up to an arbitrary height can be relevant to determine the complex type of an element.

2
We mean this in a very precise way, namely the equivalence between items (a) and (b) in [26, Theorem 7.1].

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:3

1.2 A Main Idea of BonXai
A main idea underlying BonXai is to make it easier to define schemas for which the content of

elements depends on an easy-to-specify context. In BonXai, one would write the rule

section = {element title, (element paragraph)*}

to express the DTD rule before and the two rules

preface/section = {element title, (element paragraph)*}
chapter/section = {element title, (element paragraph)*, (element subsection)*}

to define the content of the section inside preface, resp. chapter, respectively. The semantics of

the first of the two rules is “the content of every section element inside a preface element is a

title element, followed by a sequence of paragraph elements” (similarly for the second rule).

<element name="preface">
<sequence>

[...]
<element name="section" type="TprefaceSection"/>
[...]

</sequence>
</element>

<element name="chapter">
<sequence>

[...]
<element name="section" type="TchapterSection"/>
[...]

</sequence>
</element>

<complexType name="TprefaceSection">
<sequence>

<element name="title" [...]/>
<element name="paragraph" maxOccurs="unbounded" [...]/>

</sequence>
</complexType>

<complexType name="TchapterSection">
<sequence>

<element name="title" [...]/>
<element name="paragraph" maxOccurs="unbounded" [...]/>
<element name="subsection" maxOccurs="unbounded" [...]/>

</sequence>
</complexType>

Fig. 1. SD fragment with complex types. Some parts, which could, e.g., contain more element tags or complex
type references, are omitted, indicated by [...].

An SD fragment that uses complex types for expressing the preface- and chapter rules is shown
in Figure 1. The semantics of this SD code is that “the TprefaceSection (resp., TchapterSection)
complex types occur inside preface (resp., chapter) elements and the content of these types of

sections are [as specified in the schema]”. We note that one could also write the SD fragment using

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:4 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

anonymous complex types. We decided against this because anonymous complex types come with

a few disadvantages and may be considered to be bad style [8]. We will discuss the relationship

between XML Schema anonymous types and BonXai in Section 3.4.

We have implemented a prototype translation from BonXai to XML Schema 1.0. As such, (i)

BonXai only contains features that can be translated to XML Schema and (ii) XML Schema tools can

be used as a back-end for BonXai. We stress that the objective of BonXai is not to incorporate every

feature that XML Schema offers. For instance, BonXai does not use named types and therefore

does not support complex type inheritance (e.g. through restriction and extension). Complex

type inheritance can be quite useful because it allows for a development style closely resembling

object-oriented design and thereby facilitating modularization.

BonXai is rather intended to provide a way to specify and manipulate a large class of XML

Schemas that only adds little additional complication beyond DTDs and is more human-readable

than XML Schema. Many XML Schema features have a parallel in BonXai and many XML Schema

documents can be translated to BonXai.
3

The automatic translation into (and largely also from) XML Schema is an important feature

which distinguishes BonXai from other schema languages for XML. While several good alternatives

for XML Schema exist, most notably DSD, Schematron and Relax NG [13, 32, 33], each with their

own user base, they cannot be directly compiled into XML Schema for the simple reason that they

can express schemas that are not definable in XML Schema 1.0 or 1.1. We give a comparison with

contemporary schema languages in Section 3.5. On the theoretical side, a strength of BonXai is its

solid foundation which is rooted in pattern-based schemas [25, 26] and which facilitates reasoning

and transformation algorithms [17, 20].

1.3 Structure of the Article
The focus of this article is on the main features of BonXai and the mathematical foundations of the

back-and-forth translation algorithms between BonXai and XML Schema. The paper is structured

as follows.

Section 2 provides a light-weight introduction to BonXai. In particular, we present an example

document together with a DTD, we show how the DTD can be written in BonXai and, subsequently,

how the schema can be extended with features that go beyond the capabilities of DTDs. (An

equivalent SD to the final BonXai schema can be found in the Appendix.)

In Section 3, we discuss more features of BonXai, their correspondence to XML Schema features,

and consider its relationship to other XML schema languages. We also discuss our prototype

implementation for a translator from DTD to BonXai and from BonXai to XML Schema and back

(available at www.bonxai.org). Section 4 contains details on the practical study we conducted on

SDs.

In Section 5, we present the formal core of the translation routines between BonXai and XML

Schema. To this end, we define formal models for the theoretical core of XML Schema and BonXai,

stripped of all the features that are not essential for understanding the translations. We bring

both languages to the level of abstraction where they define sets of labeled unranked trees. We

formally describe the translation algorithms on this level and prove that, in terms of languages of

labeled unranked trees, BonXai is equally expressive as XML Schema. Furthermore, we analyze the

worst-case blow-ups in these translations and prove why our algorithms are worst-case optimal.

3
From our corpus, 2220 schemas (27,5%) only use features that we already support in BonXai and for which our translation

to BonXai is exact (for other schemas, the translation to BonXai may approximate). If we would add native support for

simple types, this number would be 5621 (69.6%).

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:5

<document xmlns="http://example.org">
<template>

<section>
<titlefont name="SomeFont" size="42"/>
<style></style>
<section>

<titlefont size="23"/>
</section>

</section>
</template>
<userstyles>

<style name="userdefined1">

<color color="red"/>

</style>
<style name="...">

...
</style>

</userstyles>
<content>

<section title="Introduction">
In this paper we discuss ...
<section title="Motivation">

Our problem is important because ...
<bold>This text is bold</bold><italic>and this is italic</italic>
<style name="userdefined1">

This text is red and uses a different font.
</style>

</section>
</section>
<section title="...">

...
</section>

</content>
</document>

Fig. 2. An XML document for our running example.

Finally, we discuss practically relevant fragments of XML- and BonXai Schemas in which the

conversions are particularly efficient. We conclude in Section 6.

2 BONXAI BY EXAMPLE
In this section, we discuss a detailed (but still toy) example to highlight several features of BonXai.

We will follow the use case of an existing DTD in which we want to incorporate XML Schema

features.

Example 2.1 (An example document). Consider the XML document in Figure 2 (and its associated

tree representation in Figure 3). The document is intended to represent content formatted in

a fictional markup language. The document element has three children: template, userstyles
(which contains user-defined style definitions), and content. The content part contains the actual

text of the document, with markup (bold, font changes, etc.). Inside content, the text is structured
by section elements, which can be nested to form subsections, etc.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:6 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

document

template

section

titlefont

@name=”SomeFont”

@size=”42”

style

font

@name=”Times”

@size=”12”

section

titlefont

@size=”23”

userstyles

style

@name=”userdef.1”

font

@name=

”MyFancyFont”

color

@color=”red”

style

@name=”. . . ”

. . .

content

section

@title=”Intro. . . ”

text
section

@title=”Motivation”

text bold

text

italic

text

style

@name=

”userdef.1”

text

section

@title=”. . . ”

. . .

Fig. 3. Our example XML document as a tree.

The template element should describe the default formatting of the text within content. One
could think that template defines ACM SIG style, for example. Within template, the default

formatting of sections is specified within the section child of template and the default formatting

of subsections within the section grandchild. So, a difference between template and content
is that, in template, there is at most one section element per nesting depth. For the sake of the

example, the rationale is that the default formatting of all sections at the same level should be the

same. Furthermore, template does not contain text since all the actual text is within content.
The userstyles element contains a list of style elements. Each such style element should be

thought of as being some user-defined style (e.g., a fancy font for bold mathematics). Each style
element has a unique name, which can be referred to from within content. Our example uses only

one user-defined style: userdefined1.

We chose our example such that it has elements within content and within template that

have the same element names but different syntax and semantics, notably, the section element.

Similarly, style has a different semantics if it is used within userstyles, within template, or
within content. DTDs do not have the expressive power to take these differences into account and
must define a common content model for all elements with the same name. That is, a DTD can only

define one rule for section, independent of where a section element occurs in the document.

Example 2.2 (DTD for Example 2.1). Figure 4 contains a DTD against which the XML document

from Figure 2 is valid. We use the entity markup that allows us to write the schema more succinctly.

Notice that all element names in markup can be used recursively. This is because we did not want

to specify a specific ordering on how markup such as bold, italic, etc. should be nested in the

tree.

We now discuss two BonXai schemas for the running example. The BonXai schema in Figure 5

closely resembles the DTD given in Figure 4 and, in particular, does not use context information

beyond the power of DTDs. The BonXai schema in Figure 6 on the other hand uses this additional

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:7

<!ENTITY % markup "bold | italic | font | style | color">
<!ELEMENT document (template, userstyles, content)>
<!ELEMENT template (section)>
<!ELEMENT userstyles (style)*>
<!ELEMENT content (section)*>
<!ELEMENT section (#PCDATA | titlefont | section | %markup;)*>
<!ATTLIST section title CDATA #IMPLIED>
<!ELEMENT bold (#PCDATA | %markup;)*>
<!ELEMENT italic (#PCDATA | %markup;)*>
<!ELEMENT font (#PCDATA | %markup;)*>
<!ATTLIST font name CDATA #IMPLIED

size CDATA #IMPLIED>
<!ELEMENT style (#PCDATA | %markup;)*>
<!ATTLIST style name CDATA #IMPLIED>
<!ELEMENT titlefont EMPTY>
<!ATTLIST titlefont name CDATA #IMPLIED

size CDATA #IMPLIED>
<!ELEMENT color (#PCDATA | %markup;)*>
<!ATTLIST color color CDATA #REQUIRED>

Fig. 4. A DTD describing the XML document in Figure 2.

expressiveness, in the same way as an SD would. Both examples use a compact syntax inspired by

Relax NG [32].

We first discuss the BonXai schema in Figure 5 and draw parallels with the DTD. In fact, the

only semantical differences between this BonXai schema and the DTD are that the BonXai schema

has a target namespace, it defines a global element (document) that can be referred to from outside,

and it uses the XML Schema simple types string and integer.
The main part of the BonXai schema is inside the grammar block. Like a DTD, this block consists

of a collection of rules. The right-hand sides of rules denote content model definitions. In this

example, the left-hand sides are just element- or attribute names.
4
Comparing the DTD and the

BonXai schema, the only essential difference is that, in BonXai, we can immediately specify the

attributes of an element in its content model definition, similarly as in XML Schema.

The BonXai schema in Figure 5 is written to make the correspondence to the DTD apparent, but

it could be written more compactly. For instance, using regular expressions over element names on

the left-hand sides of rules, we could just as well write:

(bold | italic) = mixed { (group markup)* }

The semantics of this rule would be that “all bold or italic elements have mixed content

and allow all elements inside the markup group as children”. We see here that, unlike anonymous

types in XML Schema, the content model definitions for one element (bold) can be re-used for

defining the content of another element (italic). Similarly, we could also write a single rule for

the attributes name, color, and size:

(@name | @color | @title) = { type xs:string }

Next, we want to illustrate how BonXai’s expressiveness can be used to go beyond the type

mechanism of DTDs. In our example, we actually have two types of sections: one is used within

template and the latter one within content. The former contains definitions for formatting, while

the latter has the actual text content of the document. The rule

template//section = { element titlefont?, element style?, element section?}

4
In general, the left-hand sides can be arbitrary regular expressions over element names (optionally ending with attributes).

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:8 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

target namespace http://example.org
namespace xs = http://www.w3.org/2001/XMLSchema

global { document }

groups {
group markup =

{ element bold | element italic | element font | element style | element color }
}

grammar {
document = { element template, element userstyles, element content }
template = { element section }
userstyles = { (element style)* }
content = { (element section)* }
section = mixed { attribute title,

(element section | element titlefont | group markup)* }
bold = mixed { (group markup)* }
italic = mixed { (group markup)* }
font = mixed { attribute name, attribute size, (group markup)* }
style = mixed { attribute name, (group markup)* }
titlefont = { attribute name, attribute size }
color = mixed { attribute color, (group markup)* }
@name = { type xs:string }
@color = { type xs:string }
@title = { type xs:string }
@size = { type xs:integer }

}

Fig. 5. A BonXai schema similar in spirit to the DTD in Figure 4.

defines the former kind. It stipulates that section elements occurring somewhere below a template
element can contain a titlefont child, a style child, and a section child. Left-hand sides of

BonXai rules can use the XPath axes / and //, which stand for “child” and “descendant”, respectively.
The latter kind of section can be defined with the rule

content//section = mixed { attribute title, (element section |group markup)* }

which stipulates that elements occurring somewhere below a content element should contain

a title attribute, optional further sections and markup, and may contain text (indicated by the

keyword mixed). The keyword mixed allows mixed content, i.e., it is allowed to interleave text

with XML tags. A full BonXai schema is defined in Figure 6. (For completeness, we provide an XML

Schema equivalent to the BonXai schema in Figure 6 in Appendix A.)

Left-hand sides of BonXai rules can use arbitrary regular expressions over element names. This

gives BonXai, in theory, the same power to define element content depending on its ancestors as

complex types in XML Schema 1.0. We prove this in Section 5 by giving back and forth translations

between a formalization of a core of BonXai and a core of XML Schema 1.0.
5
In the regular

expressions over element names, BonXai denotes concatenation, disjunction, Kleene star, and

“optional” by “,”, “|”, “*”, and “?”, as in DTDs. The operator “&” stands for unordered concatenation,
which is known as xs:all in XML Schema.

5
Expanding BonXai with a feature that corresponds to XML Schema 1.1 type alternatives is conceptually not difficult. The

main idea of the proofs in Section 5 would be the same, but their precise formulation would be burdened with the additional

incorporation of attributes.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:9

target namespace http://example.org
namespace xs = http://www.w3.org/2001/XMLSchema

global { document }

groups {
attribute-group fontattr = { attribute name?, attribute size? }
group markup = { (element bold | element italic | element font |

element style | element color)* }
}

grammar {
document = { element template, element userstyles, element content }
content = { (element section)* }
template = { (element section)? }
userstyles = { (element style)* }
content//section = mixed { attribute title, (element section | group markup)* }
content//style = mixed { attribute name, group markup }
content//font = mixed { attribute-group fontattr, group markup }
content//color = mixed { attribute color, group markup }
(bold | italic) = mixed { group markup }
template//section = { element titlefont?, element style?, element section? }
template//style = { element font? & element color? }
userstyles/style = { attribute name, element font? & element color? }
(userstyles | template)//color = { attribute color }
(userstyles | template)//(font | titlefont) = { attribute-group fontattr }
(@name | @color| @title) = { type xs:string }
@size = { type xs:integer }

}

Fig. 6. A BonXai schema equivalent that describes the document in Figure 2 more precisely and uses several
XML Schema features. An XML Schema describing the same set of XML documents as this BonXai schema
can be found in Appendix A.

A left-hand side of a BonXai rule starting with / means that the matching of the left-hand-side

must start at the root of the document. For instance, we could just as well have written /document.
A left-hand side starting with // allows the first element to match anywhere in the document. If a

left-hand side does not start with / or //, we implicitly assume that it starts with //.
The main difference between the BonXai schema in Figure 6 and the XML Schema Definition in

Appendix A is that contexts in BonXai are defined explicitly. Another way of viewing the difference

between XML Schema and BonXai is top-down versus bottom-up. In XML Schema, all relevant

information about the root-path is propagated in a top-down fashion, encoded in types, while

BonXai, instead, looks upward from a node, thus separating types from their inference.

3 BONXAI, THE PRACTICAL LANGUAGE
In Section 3.1, we present BonXai in more detail but do not intend to discuss every feature of the

language. Instead, we provide a high-level overview and refer the reader to [22] for further details.

We just discuss a few BonXai-specific matters (ancestor patterns, child patterns, and priorities) and,

since we want to translate BonXai to XML Schema, argue how BonXai seamlessly incorporates

many features also present in XML Schema (like differentiation between elements/attributes,

element- and attribute groups, namespaces, constraints, schema imports, mixed types, default

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:10 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

values, anytype/anyattribute). Section 3.3 explains BonXai’s priority system and Section 3.4 the

relationship between BonXai and XML Schema’s anonymous complex types.

The design of BonXai is heavily influenced by existing XML schema languages. We discuss these

in Section 3.5. In Section 3.6, we discuss a system we built for developing and working with BonXai

schemas and for translating back and forth between BonXai and XML Schema. In Section 3.7 we

discuss a selection of use cases for the system.

3.1 The BonXai Schema Specification Language
BonXai schemas consist of up to five blocks. First is the namespace block, declaring all namespaces

used in the schema. The second block is called the global block and specifies which element names

can occur at the root of documents that match the schema. Third, we have an optional group block,
which can define groups, similar to XML Schema groups (but without type information). The fourth

block is called the grammar block and is the actual core of the schema. The grammar block contains

the definitions of the rules that define the structure of documents. Finally, there is an optional

constraints block which defines integrity constraints.

We now discuss selected constituents of BonXai and their relationship to XML Schema. We make

two groups: BonXai-specific constructs, which are constituents for which BonXai differs from XML

Schema, and compact syntax constructs, which have exactly the same semantics in XML Schema

than in BonXai.

3.1.1 BonXai-Specific Constructs. The following constructs constitute the core of BonXai. Here

we explain them from a practical point of view. We do not present their formal semantics in detail,

which is out of scope of the article. However, Section 5 formally defines BXSDs, which are very

close to the restriction of BonXai to these constructs.
6

Global Elements. These are the elements declared in the global block. Global elements can occur

as root elements in XML documents that match the schema. Furthermore, global elements are

precisely the elements that can be referenced from foreign namespaces. In our running example,

there is a single such element, called document.
Global elements in BonXai therefore fulfil a similar role as they do in XML Schema. In XML

Schema, the definition of global elements is implicit: an element is global if and only if it is defined

directly below the xs:schema element. We chose to have an explicit definition because this allows

us to write simpler rules in the grammar block. Indeed, if a rule in the grammar block just has an

element name as a left-hand side, this does not automatically imply that this element is global. As

such, the explicit global block allows rules in the grammar block to look more like DTD rules.

Rules. Rules within the grammar-block of a BonXai schema are of the form

<ancestor pattern> = <child pattern>

Intuitively, the semantics of such a rule is that “every node selected by the ancestor pattern should

have a list of children that satisfies the child pattern”.

Ancestor Patterns. The ancestor pattern (left of the equality sign in rules) describes the context

of the rule and should be matched against paths in the tree that start from the root. Ancestor

patterns are variants of regular expressions, built from element names and attribute names (i.e.

names starting with @). The regular expressions have the operators “|” (union), “/” (concatenation

6
The formal model in Section 5 ignores features that are not essential for understanding the translation between BonXai

and XML Schema, such as attributes, namespaces, the special syntax for ancestor patterns, and some of the operators in

child patterns.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:11

or child), “//” (descendant), “∗” (Kleene star), “+” (one-or-more), and “?” (zero-or-one). Subpatterns

can be grouped using round brackets.

For convenience, a pattern that does not start with either / or // is implicitly assumed to start

with //. This allows to just use an element name as ancestor pattern to match all elements of this

name, as in DTDs. We allow ancestor patterns to contain attribute names (prefixed with @) for

specifying the types of the attributes.

Child Patterns. In its simplest form, a child pattern is a regular expression describing the content

model of a set of elements. To allow some other features (e.g. groups) and not introducing ambiguity,

all element names have to be prefixed with the keyword element. Regular expressions in child

patterns are built using concatenation (,), union (|), interleaving(&), Kleene closure (*), one-or-
more (+), zero-or-one (?) and counters ({n,m}). We may write {n,*} to indicate that m is unbounded.
Subexpressions can be grouped using round brackets. The interleaving operator & is BonXai’s

equivalent of the all-pattern in XML Schema. As such, its use is restricted in the same way as

all-patterns are restricted in XML Schema, see [16, Section 3.8.2]. (In plain words, these restrictions

say that no content model should use an interleaving operator and at the same time a union or

a concatenation operator. Furthermore, in content models containing an interleaving operator,

counters are only allowed directly above element declarations in the syntax tree of the regular

expression.)

Alternative to being a regular expression, the child pattern can also be a type reference to some

type specified in some (foreign) namespace. This is mostly useful for using simple types. For more

details, we refer to the paragraph about type references further in this section.

In the case that the ancestor pattern of the rule can match an attribute, i.e., it contains a label

starting with @, the child pattern has to be a reference to a simple type.

The type of the attribute can either be declared directly in the child pattern containing the

attribute, or by a separate rule that matches the attribute, i.e., whose ancestor pattern selects the

attribute.

Priorities. It is possible to define BonXai rules such that two or more rules match the same path.

When such a multiple match occurs, BonXai gives priority to the rule that occurs last in the schema.

To illustrate, assume that in the running example of Section 2 we would change the ancestor pattern

content//section to section. Then we would have the rules

section = mixed {attribute title, (element section|group markup)*}
template//section = { element titlefont?, element style?, element section? }

in the schema. Both rules are matched by a section element that is below a template element. In

cases like this, the rule that occurs last in the schema takes priority. Here, template//section
takes priority and therefore the semantics of the modified schema are the same as the semantics

of the original schema. The rationale behind priorities is that a developer can first write down

rules that generally apply in the schema and write down the special cases and exceptions later.

We introduced priorities in BonXai because they were required for ensuring that BonXai can be

translated into XML Schema. We explain this matter in more detail in Section 3.3.

3.1.2 Compact Syntax Constructs. The semantics of the following constructs is the same in

BonXai and in XML Schema. BonXai simply offers a compact syntax for them. As a consequence,

translating these back and forth between BonXai and XML Schema is not difficult.

Attributes. Attributes are specified at the beginning of child patterns, that is, child patterns can

have an optional list of attribute declarations before the start of the element declarations. Attributes

are seperated by comma and can be followed by a ?, indicating that the attribute is optional.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:12 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

Groups. Groups can be used in BonXai to abbreviate parts of child patterns that are common to

several different patterns, similar to internal entities in DTD and groups in XML Schema (although

BonXai groups do not have complex type information). In our running example, we use the group

markup, to abbreviate the disjunction of the elements bold, italic, etc. Groups are declared in the

groups block and can be used using the keyword group inside child patterns.

Attribute groups can be used analogously to groups. They are prefixed by the keyword attribute-
group, as for example in the rules for font-elements in Figure 6.

Mixed and nillable content models. Mixed or nillable content models are declared using the key-

word mixed, respectively, nillable, in front of the child pattern. Both keywords can be combined.

Default and fixed values. Default values for attributes and elements using a simple type can be

declared using the syntax type <typename> default "<value>". Fixed values can be declared

analogously.

Integrity Constraints. BonXai allows to express the same integrity constraints as XML Schema

(i.e., unique, key, and keyref). The term “keyref” is taken from XML Schema, where it denotes a

foreign key constraint. As in XML Schema, keys should have a name, so that keyrefs can refer to

them. The general syntax of key constraints is

key <name> <ancestor pattern> { <selector> { <fields> } },

where the ancestor pattern is used to select the context for which the key should be defined and

selector and fields have the same meaning as in XML Schema. The syntax for unique constraints is

the same. The semantical difference between key and unique is – as in XML Schema – that a key

requires all fields to exist, which is not required for unique constraints.

In a keyref, the semantics of <name> is that it should be the name of the key it refers to.

Example 3.1 (Keys for Example 2.1). To express in our running example that names of user-defined

styles be unique, we can use the key constraint

key stylekey /document { //userstyles/style { @name } }

It says that, below the document root, paths that match //userstyles/style/@name uniquely

identify paths that match //userstyles/style (as in XML Schema).

Finally, we can express that every style used in content should be declared in userstyles by

the foreign key constraint

keyref stylekey /document { //style { @name } }

Namespaces. BonXai has full namespace support. The target namespace is declared using the

keyword target namespace. Other namespaces can be declared using the syntax namespace
<prefix> = <namespace URI>. The target namespace will be used as default namespace for

all names, which are not prefixed with a namespace prefix. Names in other namespaces can be

expressed by <prefix>:<local name>, as in XML Schema.

To reflect the usual practice of using qualified element names and unqualified attributes, all

element names without a namespace prefix are in the target namespace and all attribute names

without a namespace prefix are in the empty namespace, i.e., unqualified.

It is possible (but discouraged) to use unqualified element names by binding the empty namespace

to some prefix. Qualified attribute names can be achieved by adding a namespace prefix for the

target namespace and explicitly using this namespace prefix for all attribute names that should be

qualified.

References to foreign namespaces. BonXai allows to refer to content of foreign XML Schemas, so

that content that is defined elsewhere does not need to be re-defined within the BonXai schema.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:13

In particular, it is possible to refer to foreign elements, attributes, and XML Schema simple- or

complex types. We explain how foreign content can be referenced and how we intend the use of

foreign references in BonXai.

Global elements of foreign namespaces can be referenced by using the elementref keyword

inside child patterns. (In XML Schema it is only possible to refer to foreign elements if they are

global elements in the foreign schema. We inherit this restriction.) For example, if we want to be

able to embed SVG vector images, this can be accomplished in our running example by adding the

namespace declaration namespace svg=http://www.w3.org/2000/svg and extending the group

markup with elementref svg:svg.
Similarly, foreign global attributes can be referenced by using the attributeref keyword. For

example, if we want to be able to add XLink
7
references to documents, this can be accomplished

by adding the namespace declaration namespace xlink=http://www.w3.org/1999/xlink and

extending the content model of the document rule with attributeref xlink:href?. (We explain

how to import a bigger fragment of the XLink language when we discuss wildcards next.)

Type References. References to types (in foreign XML namespaces) are mainly intended to refer

to simple types like xs:integer and xs:string. Type references are expressed by replacing the

right-hand side of a rule with { type ns:typename }, where type is a keyword, ns should be a

declared namespace, and typename the name of the target type inside namespace ns. In our running
example, the rule @title = { type xs:string } express that all title attributes throughout
the document should use the type string, which is declared in the XML Schema namespace.

In general, it is also possible (but perhaps not encouraged) to refer to foreign XML Schema

complex types. For example, the rule //foo = { type svg:svgType } would state that each

element with name foo has the type svgType of the svg namespace. (However, we feel that using

elementref svg:svg instead, whenever possible, is more elegant.)

Right now, all type references need to go to a foreign namespace, as BonXai does not allow users

to define new types. (We consider extending BonXai with a syntax for defining simple types, see

Section 3.2.)

In summary, although BonXai is intended to be a language that reduces the use of types to

a minimum, we do allow references to foreign types. The reasons for this decision are that it

allows the use of XML Schema simple types and that we like to allow users to easily import (e.g.,

well-known, standard) types which are defined elsewhere. It should be noted that, whenever an

element is declared to have an (XML Schema-)type, no BonXai rules are applied to nodes below

this element, as the set of allowed subtrees for this element is entirely determined by the type.

Wildcards. Wildcards are expressed by any-patterns in XML Schema. Note that XML Schema

wildcards can be restricted to certain namespaces and it can be declared whether elements matched

by any-patterns should be checked against some schema declaration or not. BonXai provides the

same mechanism for wildcards. For example, to allow arbitrary foreign markup, we could extend

the markup group with any {lax namespace {##other}}, meaning, that elements from other

namespaces are allowed and should be validated, if a declaration is present. As in XML schema, the

validation policy can be changed to strict (a declaration has to be present) or skip (the subtree
below matched elements is not validated at all).

It is also possible to allow arbitrary attributes using the keyword anyattribute. As for arbitrary
elements, the wildcard can be restricted to certain namespaces. For example to allow arbitrary XLink

information to be added to document roots, we can extend the document node by anyattribute

7
XLink is a language intended to allow embedding of hyperlinks and some other meta-information to arbitrary XML

documents in a standardized way.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:14 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

{strict namespace {http://www.w3.org/1999/xlink}}. The strict keyword says that the

content should be validated and validation should fail if the XLink declaration is not present.

Annotations. Annotations can be used to add further information to a schema. In BonXai, anno-

tations can be added before every rule. Annotations have no semantical meaning for the schema.

However they might have a meaning for software used to create and edit BonXai schemas.

Our implementation (see Sections 3.6 and 3.7) uses annotations to preserve type names when

converting XML Schema to BonXai. This way the user can easily grasp the correspondence between

XML Schema complex types and BonXai rules. When converting BonXai to XML Schema, these

annotations are used to generate meaningful XML Schema complex type names. For example, our

implementation uses the annotation

@typename=MyTypename
//a = { ... }

with the meaning that a complex type created for the rule //a = { ... } should be named

MyTypename when converting to XML Schema. In theory, it may be possible that more than

one XML Schema complex type needs to be created for a single BonXai rule. In this case our

implementation adds numbers after the given name.

Unconstrained Elements. It is theoretically possible to write BonXai schemas which do not

constrain certain ancestor paths. For example, if a BonXai schema only has the two rules

/a = { element b, element c}
//b = { ... }

then the c-child of the root in a corresponding document does not have a matching ancestor pattern.

In this case, BonXai allows any content below this c-child. Concretely, we translate this case to
XML Schema’s anytype, which is the most general type in XML Schema [30, Section 3]. We treat

such elements the same as elements that refer to an XML Schema type (see the last paragraph

of References to foreign namespaces). Therefore, as a consequence, no BonXai rules are matched

against descendants of the c-child of the root.

3.2 Future Extensions
We briefly mention some possible future extensions of BonXai.

Simple Types. A compact syntax for specifying simple types is a natural extension of the BonXai

language. There are two main reasons why simple type specifications were not there from the

beginning. The first is that we wanted to concentrate first on the core of the language: structural

expressiveness and the rule mechanism. The second reason is that there is a workaround for those

who want to use new simple types in a BonXai schema: one can define an XML Schema that only

defines these simple types and import it in BonXai. For these reasons, simple types were not a

priority.

Type Alternatives. XML Schema 1.1 allows to specify alternative types for elements, where the

effective type is selected by some attribute value of the instance document.

If the need arises, it is possible to add support for alternative content models to BonXai by

allowing XPath node tests in ancestor patterns. These node tests can be restricted in a syntactical

way to keep compatibility with XML Schema, i.e., to precisely allow those rules that can be mapped

to XML Schema using the type alternatives mechanism.

Substitution Groups. Support for substitution groups can, in principle, be added to BonXai.

However, we do not know yet if this extension makes sense since, in practice, substitution groups

are very often used in combination with complex type inheritance, which we do not support.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:15

3.3 Priorities in BonXai
In this subsection, we explain some fine points of the priority-based semantics of rules in BonXai

schemas. Priorities were mainly introduced to avoid compatibility problems with XML Schema.

However, we think they can also be convenient, as we will explain below.

In the theory of pattern-based schemas for XML (of which BonXai is an example), two alternative

semantics for multiple matches of rules have been investigated [17, 20]: existential semantics

and universal semantics. We say that the ancestor-pattern of rule r = {s} matches a node n in an

XML tree, if the string of element names from the root of the document to n matches the regular

expression r. The two semantics can now informally be defined as follows:

• Universal semantics: for each node n in the XML tree and each rule r = {s} for which the

ancestor pattern matches n, the children of n must match s.
• Existential semantics: for each node n in the XML tree, there must be at least one rule r =
{s} for which the ancestor pattern matches n and the children of n match s.

Thus, under universal semantics, wewould require amatching element tomatch all contentmodel

definitions of relevant rules and under existential semantics, we would require a matching element

to match at least one content model definition of a relevant rule. Unfortunately, neither semantics

can be applied while retaining at the same time compatibility with the Unique Particle Attribution

(UPA) rule of the W3C XML Schema specification [16, Section 3.8.6.4]. In a nutshell, UPA requires

content model definitions to be deterministic regular expressions [6]. Furthermore, translating BonXai

schemas under the universal or existential semantics to XML Schema, requires deterministic regular

expressions to be closed under finite unions and finite intersections, respectively, which is not the

case [6, 9, 21]. As an aside we note that deterministic regular expressions are also not closed under

complement [9, 21].

A “quick and dirty” solution could be to require ancestor patterns in rules to have an empty

intersection. However, we feel that this would be very user-unfriendly. Consider again our running

example in Figure 6. The two ancestor patterns template//section and content//section have
a non-empty intersection since both could, in theory, match a word that has an occurrence of

template, followed by content, followed by section (even though such a word cannot occur as a

path in trees defined by the schema). Changing the two ancestor patterns to mend this problem

would make the schema less readable and require users to have deeper expertise in formal language

theory.

We show in Section 5 that the priority-based semantics of BonXai does not have the expressivity

problems of universal or existential semantics, by giving conversion algorithms from the core of

BonXai to XML Schema and back; and by observing that the Unique Particle Attribution constraint

is preserved. Furthermore, we feel that priorities make sense when designing schemas (specify

general rules first, special cases later) and lead to more readable schemas. Therefore, a sensible

way of using priorities is for cases where, for a set of elements with the same name, most of the

elements have the same content model, but there are a few exceptions. (Notice that, if two ancestor

patterns define regular expressions that end with different element names, the intersection of the

rules is always empty and priorities are irrelevant.)

We conclude this section with a use case for priorities: schema evolution. In our running example,

sections can be nested arbitrarily deeply. Assume that we want to change the schema such that the

nesting depth of sections is at most three. In the BonXai schema in Figure 6, this can be achieved

by inserting the rule

content/section/section/section = { attribute title, group markup }

at the end of the rules that start with content. The semantics of this rule would be that subsubsec-

tions only have a title attribute and markup, but no section children.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:16 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

If one would want to perform the equivalent change directly in XML Schema, one would be

required to make three complex types for sections below content: one for each allowed nesting

depth. The change would introduce much more clutter.

3.4 BonXai and XML Schema Anonymous Types
We briefly discuss the relationship between XML Schema anonymous types and BonXai. As BonXai

does not explicitly use named types, one may believe that it essentially offers a compact syntax for

anonymous complex types in XML Schema. However, this is not the case for the simple reason

that BonXai is more expressive. For instance, BonXai allows the content of nodes to depend on

ancestors arbitrarily high in trees (cfr. Section 5) which is not possible using only anonymous types.

From a more practical perspective, XML Schema anonymous types come with a set of dis-

advantages and may be considered to be bad style. Butek and Kendrick [8] note the following

disadvantages of anonymous types:

(1) they cannot be re-used to define content of other elements;

(2) they still often must be named (as some applications need names for the complex types); and

(3) they may render a schema less readable (they are less elegant as named types).

In contrast, BonXai does not have any of these three disadvantages:

(1) BonXai content model definitions can be re-used for other elements (see, for example, in Figure 6,

where we use the same content for bold and italic elements or for font and titlefont
elements).

(2) BonXai uses XML Schema as a back-end and our translation
8
from BonXai to XML Schema

does not generate anonymous types. As explained in Section 3.1 (under Annotations), users can
even specify the name of the complex type to be generated.

(3) This is purely a matter of opinion, but we feel that BonXai rules are even simpler to understand

than XML Schema code with named types. For instance, we believe that the two BonXai rules

for preface/section and chapter/section in the Introduction are simpler to understand

than the corresponding fragment of the XML Schema document.

3.5 A Comparison With Other Schema Languages for XML
As already stated before, BonXai borrows concepts from several existing schema languages for

XML. The purpose of this section is to give an overview of the most well-known of those languages

and discuss their relationship with BonXai.

Following [28], DSD2 [13] (Document Structure Description 2.0) is a language developed by the

University of Aarhus and AT&T Research Labs whose primary goal is to be simple yet expressive.

Like BonXai, DSD2 is based on rules which must be satisfied for every element in the input

document. BonXai and DSD2 are incomparable in how context is defined. While DSD2 is far more

expressive than DTDs, its exact expressiveness in formal language theoretic terms is unclear. It

allows context to be defined in terms of Boolean expressions which can refer to structural predicates

like parent and ancestor, but, unlike BonXai, also allows to look downward using predicates like

child and descendant. BonXai on the other hand harnesses the full power of regular languages

on the ancestor path, while DSD2 seems to remain within the star-free regular languages (on the

ancestor path). For this reason, DSD2, on a structural level, is incomparable to XML Schema.

Relax NG [32] has been developed within the Organization for the Advancement of Structured

Information Standards (OASIS). Like DSD2, its main goal is to combine simplicity with expressivity.

In formal language theoretic terms, the expressiveness of Relax NG corresponds to the unranked

8
Here, we refer to the translation we implemented, not the translation between the formal models of the core of the

languages in Section 5, which is a drastic simplification.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:17

Table 1. Properties and Features of schema languages

DTD BonXai XML Schema Relax NG DSD2 Schematron

convertible to XML Schema
a • • •

rule based •b • • •

grammar based •b • •

standalone schema language • • • • • ◦c

compact syntax • • •

namespace support • • • • •

integrity constraints ◦d • • ◦d • •

type hierachies •

simple types ◦e • ◦e • ◦f

a
For every schema there exists an XML Schema document that accepts the same set of XML document.

b
Due to their simplicity, DTDs can be seen as both rule- and grammar based.

c
Possible to use stand-alone, but usually used as supplement to a grammar based language.

d
Very limited constraint support by ID/IDREF mechanism.

e
Usage of externally defined simple types is possible.

f
Simple types can be emulated using assertions.

regular tree languages which strictly includes XML Schema [26, 29]. Like XML Schema, Relax NG is

grammar based and utilizes types to define context. However, Relax NG schemas are not restrained

by the Unique Particle Attribution constraint or the Element Declarations Consistent constraint.

So, unlike XML Schema and therefore BonXai, the context of an element in Relax NG can depend

on the complete tree. As BonXai strives for simplicity it utilizes a readable compact syntax which

is inspired by that of Relax NG.

Schematron [33] is a rule-based language based on patterns, rules and assertions. Basically, an

assertion is a pair (ϕ,m) where ϕ is an XPath expression andm an error message. The error message

is displayedwhenϕ fails. A rule groups various assertions together and defines bymeans of an XPath

expression a context in which the grouped assertions are evaluated. Patterns then group various

rules together. Schematron is not so much intended as a stand-alone schema language but can be

used in cooperation with existing schema languages. BonXai shares the use of XPath-expressions

with Schematron, although BonXai restricts them to a very small subset (linear expressions) to

ensure compatibility with XML Schema.

Co-constraints is an overloaded term which generally refers to a mechanism for verifying data

interdependencies. While DSD, Schematron, and Relax NG quite naturally allow to express co-

constraints, XML Schema is rather limited in this respect. The latter motivated the formulation

of extensions of DTDs and XML Schema, named DTD++ [15] and SchemaPath [10], with XPath

expressions to express co-existence and co-absence of element names and attributes. These exten-

sions share with BonXai the use of XPath to express conditions but differ from BonXai in that they

increase the expressiveness beyond that of XML Schema.

We composed an overview of a set of properties (top half) and features (bottom half) of the

languages we discussed here in Table 1. A bullet means that we believe the language to have the

respective property (or support the respective feature). Compared with other schema languages,

the novelty of BonXai is that it

(1) can be translated automatically into XML Schema and

(2) offers a novel compact syntax that makes the relationship between the content of elements and

context information explicit.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:18 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

JEdit

BonXai-

Plugin

BonXai

OM

XSD

OM

DTD

OM

BonXai

Validator

DFA-based

XSD

GUI BonXai-Library

Automaton-

Library

P/W

P/W

P/W

XML

C

C

C

Fig. 7. Schematic overview of the system components. P/W: Parser/Writer, C: Converter, OM: Object Model.

Item (1) implies that BonXai can make use of the wide array of tools for XML Schema such as

validators, mappers into programming languages, query optimization engines that take XML

Schema information into account, etc. DSD2, Relax NG, and Schematron can express schemas

that are not expressible as XML Schema
9
and therefore do not have this feature. Concerning item

(2), we note that although Relax NG has a compact syntax, it also does not make the relationship

between content and context of elements explicit. Compared to XML Schema, we feel that BonXai’s

compact syntax renders many schema definitions more readable, as argued in the Introduction and

in Section 2.

3.6 Implementation and System
We implemented a prototype system that supports the development and maintenance of BonXai

schemas, which was presented at VLDB 2012 [23] and is available at www.bonxai.org. The system

includes a parser for the BonXai language, conversion routines (between BonXai and XML Schema,

from DTD to BonXai), and native validation against BonXai schemas.

Figure 7 presents a general overview of the system. The system is roughly divided into three parts,

the Graphical User Interface (GUI), the actual BonXai library, and a general purpose automaton

library.

3.6.1 User Interface. The GUI of our current implementation is provided through a plugin for the

open source editor JEdit [19]. JEdit provides basic text editing functionalities, syntax highlighting

and a flexible plugin interface. Through the GUI, the user can directly develop BonXai schemas. The

BonXai-Plugin provides the connection between the BonXai library and JEdit. We also developed a

command line client which provides an easy way for batch conversion of schemas.

3.6.2 Automaton Library. The automaton library provides a solid automata-theoretic core which,

in addition, allows for an easy integration of existing automaton based algorithms, like for instance

XML Schema inference algorithms [4] or algorithms for repairing the unique particle attribution

constraint of XML Schema [1]. The automaton library is capable of storing so-calledDFA-based XSDs
[25], which are an intermediate format between XML Schema and BonXai and which we extended

9
This can be proved using [26, Theorem 7.1].

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:19

to be able to cope with XML Schema features (for instance, those discussed in Section 3.1.2). We

discuss the underlying principles of DFA-based XSDs in more depth in Section 5 of this article.

3.6.3 BonXai Library. The BonXai library constitutes the heart of the system. It provides mod-

ules for the representation, import and export, and the conversion between DTD, XML Schema,

and BonXai. It also supports native validation of XML against DFA-based XSDs. The theoretical

foundations of the conversion algorithms between BonXai and XML Schema are discussed in

Section 5.

Object Models. Schemas are represented in an abstract way as extensions of DFA-based XSDs.

These object models store additional information, such as key, foreign key and uniqueness con-

straints, identifiers used for namespaces, complex type names, etc. To facilitate manipulation of

schemas, each class of schemas has its own object model.

Conversion Routines. As all conversions pass through the DFA-based XSD representation, there

are six conversion routines. The translation to and from XML Schema and DTD is rather direct

(not difficult from a theoretical perspective). The computation of a DFA-based XSD from a BonXai

schema is discussed in detail in Section 5. It basically reduces to the construction of a product

automaton encompassing all regular contexts in the schema. The converse direction requires to

compute regular contexts for every state of the DFA-based XSD. In addition, the conversion routine

creates mappings between automaton states and the corresponding BonXai rules or XML schema

types. This information, together with the mappings between XML nodes and automaton states

produced by the XML validator, is used by the GUI to highlight matching nodes/rules in the editor.

Information about constraints and namespace identifiers is directly converted between the object

models.

3.7 BonXai at Work
The GUI aids to understand the correspondence between BonXai rules and the generated complex

types in the transformed XML Schema document. Although the simplicity of BonXai relies on

the absence of complex types, type names (which can be provided in BonXai annotations, see

Section 3) can serve as short descriptions to help the user understand BonXai rules. In contrast to

XML Schema, such type names have no semantic meaning whatsoever. However, in the translation

to XML Schema, we use type names (if present) to generate names for XML Schema complex type

definitions.

Advanced functionalities of our GUI facilitate schema development and -debugging. In particular,

we support the analysis of the relationships between an XML document, a BonXai schema, and a

corresponding XML Schema document as follows:

• Highlighting of XML elements matched by a certain BonXai rule or by an XML Schema

complex type.

• Highlighting of the rule/type that matches an element in an XML tree.

• Highlighting the BonXai rule corresponding to an XML Schema complex type and vice versa.

• Finding nodes in an XML tree violating the schema.

• Finding nodes in an XML tree which are unconstrained by the schema, i.e., for which the

schema allows arbitrary content.

We now discuss a few more specific use cases for BonXai to illustrate that BonXai is not just a

“readable syntax for XML Schema” but can also be used to perform some more serious tasks more

efficiently.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:20 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

Fig.8.
The

jedit-plugin
in

action.H
ere

w
e
have

three
editor

panes:Top-Left
:XM

L
docum

ent
from

Figure
2,B

ott
om

-Left
:B

onXaischem
a
from

Figure
6,R

ight:
an

XM
L
Schem

a
equivalent

to
the

B
onXaischem

a
on

the
left

.The
section

elem
ent

is
m
arked

orange,as
its

content
m
odelis

not
correct.The

boldd
elem

ent
is
m
arked

red
as

it
is
not

allow
ed

to
appear

at
this

position
in

the
docum

ent
(note

the
spelling

error).The
turquoise

font
elem

ent
has

been
selected

by
the

user
in

the
XM

L
docum

ent.The
plugin

show
s
w
here

the
elem

ent
is
declared

in
the

B
onXaischem

a
and

XM
L
Schem

a
respectively

by
highlighting

the
elem

ent
declaration

in
purple.Furtherm

ore
it
show

s
w
here

the
content

m
odelofthe

selected
elem

ent
is
declared

by
m
arking

its
ancestor

path
(B
onXai)and

type
declaration

(X
M
L
Schem

a)in
green.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:21

Developing new Schemas / Using BonXai Stand-Alone. Asmentioned before, BonXai is not primarily

meant as a replacement for XML Schema, but to a large extent it can be used as such. The system

can be used to develop schemas from scratch and to debug them. When the schema is finished,

XML documents can be validated natively against the BonXai schema. An alternative validation

method is to use our conversion routine to XML Schema and validate against the XML Schema

document using a third-party XML Schema validator.

For stand-alone use, BonXai’s main strength lies in its succinct and transparent way for defining

the structure of XML documents. BonXai does not (yet) have a syntax for defining XML Schema

simple types. Therefore, simple types always need to be imported from an existing XML Schema

document One way to do this is to write a structurally very simple XML Schema document that

only defines a set of simple types. This XML Schema document can be imported into the BonXai

schema, which can then use the simple types from the XML Schema document and define structural

aspects through its grammar.

Evolving from a DTD to an XML Schema document. BonXai can be used to move from DTD to

XML Schema rather painlessly while, at the same time, taking advantage of the extra expressiveness.

One can automatically convert the given DTD into BonXai, add the desired extra structural features

directly in the BonXai schema, and convert the result to XML Schema.

Example 3.2. The BonXai schema in Figure 5 is equivalent to the DTD in Figure 4. By only a few

modifications it can be extended to the BonXai schema from Figure 6, which can then be exported

to an XML Schema document equivalent to the one in Appendix A.

Schema Evolution. Schema evolution refers to updating a schema to reflect a re-structuring of the

underlying data. We distinguish two use cases regarding schema evolution, depending on whether

we want to modify an existing XML Schema document or an existing BonXai schema using our

system. In the latter case, schema evolution can simply be done by editing the BonXai schema. In

the former case, the workflow is roughly the following: Convert the XML Schema document to

BonXai; alter the schema by specifying additional constraints or changing some content models;

and re-export the schema to XML Schema.

The highlighting features of the system, mapping patterns in BonXai rules to complex types in

the generated XML Schema fragment provide the developer with control to inspect the induced

changes in the original XML Schema more rapidly and accurately.

Especially the priority system used by BonXai can be very helpful in schema evolution. For

example, in our running example, sections can be nested arbitrarily deeply. Assume that we want

to change the schema such that the nesting depth of sections is at most three. In the BonXai schema

in Figure 6, this can be achieved by inserting the rule

content/section/section/section = { attribute title, group markup }

at the end of the rules that start with content. The semantics of this rule would be that subsubsec-

tions only have a title attribute and markup, but no section children.
Doing the equivalent change directly in XML Schema requires to make three complex types for

sections below content: one for each allowed nesting depth.

Analyzing existing XML Schema documents. Existing XML Schema documents can be converted

to BonXai to analyze their structural complexity. Such a BonXai inspection can, e.g., give an idea of

the amount of structural expressiveness which goes beyond DTDs and where it sits. In addition,

the selection patterns provided by BonXai can give direct insight into the definition of elements

depending on their context. As such, the BonXai translation, converting the machine readable

syntax of XML Schema in the more human-readable compact syntax of BonXai, and the associated

highlighting features in our GUI help users to understand schema definitions more quickly and

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:22 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

easily. The selection patterns in the left-hand sides of BonXai rules give users immediate insight

on where a given complex type is used in an XML document. Since such selection patterns are

basically specified in a fragment of XPath, users familiar with XML technology can already benefit

from this feature without having to learn yet another standard.

Example 3.3. In our running example, the BonXai rules

template//section = {element titlefont?, element style?, element section?}

and

content//section = mixed {attribute title, (element section|group markup)*}

give immediate insight in the difference between the complex types TtemplateSection and

Tsection from the XML Schema Document in Appendix A. The former specifies the structure of

section-descendants of template elements in the tree; and the latter of section-descendants of
content elements.

4 A PRACTICAL STUDY ON THE USE OF COMPLEX TYPES
As a part of the motivation for BonXai, we conducted a large-scale practical study to investigate

the extent to which XML Schema complex types are used in practice. A similar study was already

conducted over a decade ago by Bex et al. [2] but we decided that we needed more up-to-date

information. Whereas Bex et al. [2] studied a corpus of 225 unique SDs, we were able to collect

8080 unique, well-formed SDs from the Web. Our data set was obtained in three steps. We started

with the set of 1191 SDs from the practical study in [5] and augmented it with a second set which

we harvested using Google’s CSE in 2016. We obtained this set by querying Google’s CSE for files

of type ’xsd’, iteratively over all domains listed in Wikipedia
10
and downloading the results. We

iterated through date ranges to be able to go beyond the 100 result restriction of Google’s CSE. (In

particular, whenever we noticed that CSE returned 100 results, we decreased the date range to make

sure that we got all results that CSE could give us.) Since some of the results (about 10%; similar

as in [5]) are not actual XSD files but HTML documents that link to an XSD file, we extracted

these links and downloaded the resulting XML Schema documents. We then compared the results

we obtained from Google CSE with Google’s Web interface and noticed that the Web interface

gives significantly more results (possibly due to the use of the date range operator). We therefore

composed a third data set semi-manually. With the help of a student research assistant we manually

queried Google’s Web interface (again, over every top-level domain mentioned before) and saved

the returned links to file. We downloaded these SDs automatically and, again, we considered the

HTML files and downloaded the linked XSD files.

The resulting data was cleaned, filtered using an XML Schema parser, normalized for whitespace,

and then deduplicated. This resulted in the 8080 unique files that we could parse as XML Schema.

We analysed to which extent these SDs use ancestor information to determine complex types

(Table 2). We observed the following: 80.66% of SDs associate at most one complex type to every

element name. In other words, these SDs do not use complex types beyond the power of DTDs.

For a further 13.03%, the complex types were determined by the parent context (as in the example

before, with preface and chapter). A further 3.64% also took the grandparent context into account.

The longest finite dependency we found was up to ancestors of height fifteen.
11
As indicated by the

entry∞, we found 35 schemas for which ancestors up to arbitrary height determined the complex

10
https://en.wikipedia.org/wiki/List_of_Internet_top-level_domains

11
This particular schema was quite large and validated trees that encode strategies for tic-tac-toe (using two levels in the

tree for encoding one move). Schema: https://xopus.com/files/tictactoe/tictactoe.xsd

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:23

Table 2. The amount of context information needed to determine complex types in our data set.

k # schemas relative k # schemas relative k # schemas relative

1 6517 80.66 % 5 24 0.30 % 9 2 0.02 %

2 1053 13.03 % 6 9 0.11 % 14 1 0.01%

3 294 3.64 % 7 3 0.04 % 15 1 0.01%

4 132 1.63 % 8 4 0.05 % ∞ 35 0.43 %

TA 5 0.06 %

type of an element (which can only happen through recursion in the schema). Finally, the entry

“TA” denotes the number of schemas in our corpus that use XML Schema 1.1 type alternatives.12

To conclude, this practical study shows that the expressiveness of XML Schema complex types is

only used very sparingly in practice. Furthermore, it shows that, for the overwhelming majority of

Schema Documents, the structure of their complex types can be expressed using BonXai schemas

with very simple ancestor patterns. We discuss this matter from a theoretical perspective in

Section 5.4.

We made the links to all the .xsd files we found available for download [24]. The data set contains

raw links to 79.642 SDs. We also provided a smaller data set of links to unique SDs that were still

reachable in May 2017.

5 FOUNDATIONS OF BONXAI
In this section, we define clean formal models for the core of BonXai and XML Schema to explain

the principles of our translation from BonXai to XML Schema and back. However, we do not

describe the translation of all features (such as namespace support, attributes, groups, key/keyrefs,

references to types in foreign namespaces, etc.), since this is beyond the scope of this article. Instead,

we focus on considerably restricted, clean, cores of BonXai and XML Schema and formally define

how we translate these back and forth. Our abstractions will be on the level of tree languages,

i.e., the abstraction level of [26, 29]. These abstractions allow us to explain the theoretically most

challenging part of the translations that we implemented and to analyse size tradeoffs between the

languages.

The theoretical novelty in this section is that the translations that we present here are the first

that can preserve XML Schema’s expressive power on the level of tree languages. Although other

characterizations and translations exist (see [17, 20, 26]), the translations we present here are

the first that take into account XML Schema’s Unique Particle Attribution (UPA) constraint [16,

Section 3.8.6.4]. Indeed, the abstractions in [17, 20, 26] all assume that XML Schema content models

correspond to regular languages. However, as noted in Section 3.3, the UPA constraint in XML

Schema restricts content model definitions to a strict subclass of the regular languages that is not
closed under union or intersection. This has an important consequence, namely that the universal
semantics and existential semantics of BonXai-like schemas that were studied in [17, 20] are not well

compatible with XML Schema (see Section 3.3 for a deeper discussion). Here, we build further on

the ideas in [17, 20] to define a priority-based semantics for BonXai. We prove that this system does

allow for back-and-forth translations that take XML Schema’s weaker content model definitions

into account and, to the best of our knowledge, is the first to do so.

In summary, we will present the following:

• compact and clear formal models of the core of BonXai and the core of XML Schema, stripped

of features that are not essential for analysing the conversion algorithms;

12
Using type alternatives, the complex type of an element may also be determined by attribute values of its ancestors.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:24 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

• formal back and forth translation procedures between core XML Schema and core BonXai;

• an analysis of the blow-up of these conversions;

• a proof of worst-case optimality for the conversions; and

• practically relevant fragments of XML Schema and BonXai, where the conversions are

efficient.

As a consequence, we obtain that BonXai and XML Schema are equally expressive on the level of

tree languages.

5.1 The Theory Underlying BonXai: Core XML Schema and Core BonXai
Before we introduce the formal model for the core of BonXai and XML Schema, we first establish

some basic terminology and notation.

5.1.1 Basic Terminology. We introduce XML trees, regular expressions, and finite automata.

We view an XML document as a finite, rooted, ordered, labeled, unranked tree D. We assume a

finite alphabet (that is, a finite set) EName of element names from which the nodes of XML trees

take their labels, that is, each node v of D carries exactly one label lab(v) ∈ EName. By a,b, c, . . .
we denote elements from EName. For a node v , we denote by anc-str

D (v) the ancestor-string of
v in D which is given by the concatenation of the labels of the nodes on the path from the root

of D to v . More formally, the ancestor-string of v in D is the string lab(v1) · · · lab(vn), where v1 is

the root of D, vn = v , and vi+1 is a child of vi for each i = 1, . . . ,n − 1. We denote by ch-str
D (v)

the concatenation of the labels of the children of v in D. More formally, if the children of v are

u1, . . . ,um from left to right, then ch-str
D (v) = lab(u1) · · · lab(um). We note that ch-str

D (v) is
sometimes also called the content of node v . We often omit D in the notation of ancestor- or

child-strings when it is clear from the context.

Example 5.1. Consider the section childv of the element template in the tree of Figure 3. Then

anc-str (v) = document template section

ch-str (v) = titlefont style section .

We assume familiarity with finite automata and only discuss notation here. We denote a (nonde-

terministic) finite automaton or NFA as a tuple A = (Q, EName,δ ,q0, F) where Q is its finite set

of states, EName is the alphabet, δ : (Q × EName) → 2
Q
is the transition function, q0 ∈ Q is the

initial state and F ⊆ Q is the set of accepting states. An NFA is deterministic if δ (q,a) contains at
most one state for each q ∈ Q and a ∈ EName. The language of A (i.e., the set of words accepted

by A) is defined in the standard manner. The size of A, denoted |A|, is the number of states of

A. Sometimes we use finite automata without accepting states. We then simply write them as

A = (Q, EName,δ ,q0). We sometimes use A(w) as an abbreviation for the set δ ∗ (q0,w) of states
that A can reach after readingw , starting from its initial state.

We use regular expressions r with the following syntax
13

r ::= ε | ∅ | a | rr | r + r | (r)? | (r)+ | (r)∗ ,

where ε denotes the empty string and a ranges over symbols in the alphabet EName. Sometimes

we also use the symbol · for regular expression concatenation to improve readability. For a set

S = {a1, . . . ,an } ⊆ EName we sometimes abbreviate the disjunction (a1 + · · · + an) by S . As
usual, we write L(r) for the language defined by regular expression r . We define the size of regular

13
We note that BonXai and XML Schema content models have the same limited support for the all-operator (denoted & in

BonXai). Similarly, BonXai has the same support of counters (minOccurs/maxOccurs) than XML Schema. We exclude both

here for simplicity, because their back-and-forth translation is straightforward.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:25

expression r to be its total number of alphabet symbol occurrences. For example, both expressions

aaa and a(b + c)? have size three.
The Unique Particle Attribution (UPA) of XML Schema specifies that regular expressions in

content models need to be deterministic [16, Section 3.8.6.4]. We note that such expressions are

sometimes also called one-unambiguous [6]. Intuitively, a regular expression is deterministic if,

without looking ahead in the input string, it allows to match each symbol of that string uniquely

against a position in the expression when processing the input in one pass from left to right. For

instance, (a+b)∗a is not deterministic as already the first symbol in the string aaa could be matched

by either the first or the second a in the expression. Without lookahead, it is impossible to know

which one to choose. The equivalent expression b∗a(b∗a)∗, on the other hand, is deterministic.

Formally, let r̄ stand for the regular expression obtained from r by replacing the i-th occurrence

of alphabet symbol a in r by ai , for every i and a. For example, for r = b∗a(b∗a)∗, we have

r̄ = b∗
1
a1 (b

∗
2
a2)
∗
.

Definition 1 ([6], Definition 2.1). A regular expression r is deterministic (also: one-unambiguous)
if there are no stringswaiv andwajv ′ in L(r̄) such that i , j. ■

Equivalently, an expression is deterministic if the Glushkov construction translates it into a

deterministic finite automaton [6]. As a matter of fact, not every regular expression is equivalent

to a deterministic one [6]. Thus, semantically, the class of deterministic regular expressions forms

a strict subclass of the class of all regular expressions. We note that deciding if for a given regular

expression there exists an equivalent deterministic regular expression is PSPACE-complete [11].

5.1.2 A Formal Model for BonXai’s Core. Now we define BonXai Schema Definitions (BXSDs),
which are a formal model for the core of BonXai schemas. The difference between the BonXai

schema specification language and BXSDs is that the former can be used in our implementation

[23] and has most of the XML Schema Language features to make it usable in practice, whereas the

latter is a stripped down version that we use here to study translations between BonXai and XML

Schema. For instance, the BonXai language supports integrity constraints, but we do not define

these in BXSDs since their translation from and to XML Schema is straightforward.

Definition 2. A BonXai Schema Definition (BXSD) is a pair B = (EName, S,R) where S ⊆ EName
is a set of start elements and R is an ordered list r1 → s1, . . . , rn → sn of rules, where

• all ri and si are regular expressions over EName, and
• all si are deterministic.

■

We call i the index of rule ri → si , for each i = 1, . . . ,n. Furthermore, we call ri the ancestor
pattern and si the child pattern of the rule. Let D be an XML document and u a node of D. A rule

ri → si is relevant for u if i is the largest index such that anc-str
D (u) ∈ L(ri). Notice that a node u

has at most one relevant rule in B. An XML document D conforms to the BXSD B if the label of

root(D) is in S and, for each node u ∈ Nodes(D), if ri → si is relevant for u, then ch-str
D (u) ∈ L(si).

The definition of relevant rules reflects the priority system in BonXai: rules with a higher index

have higher priority.

Our abstraction of BonXai Schema Definitions requires expressions si to be deterministic to

make BXSDs expressively equivalent to XML Schema’s core.

Example 5.2. The formal abstraction of the BonXai schema in Figure 6 is the BXSD B =
(EName, S,R) where

• EName = {document, template, userstyles, content, section, style, title}

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:26 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

• S = {document}

• R is the ordered list containing rules (parts omitted):

//document→ template userstyles content

//content → section
∗

//template → section

//userstyles → style
∗

//content //section → (bold + · · ·+ section)
∗

...
//template //section → titlefont? style? section?

...
Here, we wrote the left-hand-sides of BonXai rules as in Section 2. Formally, in this section,

// abbreviates the regular expression EName∗.

Given the lacking closure of DRE under Boolean operations noted in Section 3.3, it is crucial

that none of our conversion algorithms presented in Section 5.2 construct unions, intersections, or

complements of content models. In fact, all our conversion algorithms only copy these expressions.

Therefore, if one were interested in converting between BonXai and a dialect of XML Schema

that does not require expressions to be deterministic, one can simply remove the corresponding

requirement from BXSDs and use the same conversion algorithms.

5.1.3 A Formal Model for Core XML Schema. Our abstraction of an XML Schema closely follows

the definition from [25, 26, 29].

An XML Schema uses a finite set of element names and complex type names. We therefore

fix finite sets EName and Types of element names and complex type names, respectively. The set
TEname of typed element names is then defined as {a[t] | a ∈ EName, t ∈ Types}. In an XML

Schema, a typed element name a[t] could, for example, be written as <xs:element name="a"
type="t"/>.

Definition 3. An XSchema Definition (XSD) is a tuple X = (EName, Types, ρ,T0) where EName
and Types are finite sets of elements and types, respectively, ρ is mapping from Types to regular

expressions over alphabet TEname, and T0 ⊆ TEname is a set of typed start elements. Furthermore,

the following two conditions hold:

Element Declarations Consistent (EDC) There are no typed elements a[t1] and a[t2] in a

regular expression ρ (t) with t1 , t2. Furthermore, there are no typed elements a[t1] and a[t2]

in T0 with t1 , t2.
Unique Particle Attribution (UPA) Each regular expression ρ (t) is deterministic.

■

Throughout this section we consistently use the abbreviation XSD to denote XSchema definitions.

We sometimes refer to ρ (t) as the content model associated to t . The EDC constraint can be found in

[16, Section 3.8.6.3] and, as mentioned before, the UPA constraint in [16, Section 3.8.6.4].

A typing of an XML document D w.r.t. X associates, to each node u of D, a type of the schema.

Formally, a typing of D w.r.t. X is a mapping µ from Nodes(D) to TEname. A typing µ is correct if
it satisfies the following three conditions:

• µ (root(D)) ∈ T0.

• For each node u ∈ Nodes(D), we have µ (u) ∈ {lab(u)[t] | t ∈ Types}.
• For each nodeu ∈ Nodes(D)with childrenu1, . . . ,un from left to right, we have µ (u1) · · · µ (un) ∈
L(µ (u)).

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:27

document

Tdocument
template

Ttemplate

section

TtemplateSection

titlefont

TtemplateFont

style

TtemplateStyle

font

TtemplateFont

section

TtemplateSection

titlefont

TtemplateFont

userstyles

Tuserstyles

style

TnamedStyle

font

TtemplateFont

color

TtemplateColor

style

TnamedStyle

. . .

content

Tcontent

section

Tsection

section

Tsection

bold

Tmarkup
italic

Tmarkup
style

TstyleRef

section

Tsection

. . .

Fig. 9. Typing for the XML document in Figure 2 and the XML Schema Definition in Example 5.3.

An XML document D conforms to an XSD X if there exists a correct typing µ of D w.r.t. X . Notice

that typings are unique due to the EDC condition, that is, there can be at most one correct typing

for a given document D w.r.t. a given XSD X .

Example 5.3. We present a simplified XSchema Definition for our example markup language

from Section 2 to illustrate XSchemas. We focus on elements, since this is the part where the

complexity lies when converting between XML Schema and BonXai. We can abstract the schema

as XSD X = (EName, Types, ρ,T0), where

• EName = {document, content, section, style, bold, italic, font, color, template, userstyles}

• Types = {Tdocument, Ttemplate, Tuserstyles, Tcontent, TtemplateSection, TtemplateStyle,
TtemplateFont, TtemplateColor, TnamedStyle, Tsection, Tmarkup, TstyleRef,
Tfont, Tcolor}

• ρ is defined as follows (some parts omitted):

Tdocument → template[Ttemplate] userstyles[Tuserstyles] content[Tcontent]
Ttemplate → (section[TtemplateSection])?
Tuserstyles → (style[TnamedStyle])∗

Tcontent → (section[Tsection])∗

TtemplateSection→ titlefont[TtemplateFont]? style[Ttemplatestyle]?
section[TtemplateSection]?

Tsection → (bold[Tmarkup] + · · ·+ color[Tcolor] + section[Tsection])∗

· · ·

• T0 = {Tdocument}

For the sake of the presentation we simplified the example a bit. In particular, we did not specify

the function ρ for all types and we omitted rules that would use the xs:all operator (respectively,

the &-operator in BonXai).

The correct typing for the XML document in Figure 2 according to the XSD in Example 5.3 is

displayed in Figure 9.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:28 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

5.2 Translations Between Schemas
5.2.1 From XML Schema to BonXai. We present a translation algorithm from XSDs to BXSDs.

This algorithm is the core of a procedure that we implemented to translate XML Schema into BonXai

[23]. The algorithm consists of two phases. The first phase converts an XSD into an intermediate

data structure, which is called a DFA-based XSD. We will define such a DFA-based XSD formally,

because it is a representation of schemas that is very convenient in proofs. In the second phase, the

DFA-based XSD is translated to the BXSD.

DFA-based XSDs were introduced in [25, Definition 6] as an alternative characterization of XML

Schema Definitions. We define DFA-based XSDs here with a minor difference: due to the UPA

condition, we require their content models to be deterministic regular expressions.

Definition 4. A DFA-based XSD is a tuple (A, S, λ), where A = (Q, EName,δ ,q0) is a DFA with

initial state q0 and without final states, S ⊆ EName is the set of allowed root element names and

λ is a function mapping each state in Q \ {q0} to a deterministic regular expression over EName.
Furthermore, q0 has no incoming transitions and for every state q ∈ Q and every element name a
occurring in λ(q), we have that δ (q,a) is non-empty. ■

In the remainder of the article, S usually equals {a | δ (q0,a) , ∅}. (The intuition is that, for each

element a ∈ S , the automaton A can read a string that starts with a. Since S is simply the set of root

elements, λ does not map q0 to a regular expression.) However, we sometimes use fully defined

DFAs (which are DFAs in which |δ (q,a) | = 1 for every state q and label a) and therefore we need

to explicitly mention S in general.

An XML document D satisfies (A, S, λ) if the root node is labeled with an element name from S
and, for every node u, A(anc-str

t (u)) = {q} implies that ch-str
D (u) is in the language defined by

λ(q).
We now explain how to translate a given XSD X = (EName, Types, ρ,T0) into an equivalent

DFA-based XSDA in linear time. The procedure is outlined in Algorithm 1 and resembles procedures

in [17, 26], which were developed for different models of XSDs.
14
It has the following property.

Lemma 5 (Adapted from [17, Lemma 7]). Each XSD can be translated into an equivalent DFA-based
XSD in linear time.

Proof. Let X = (EName, Types, ρ,T0) be an arbitrary XSD. The equivalent DFA-based XSD

(A, λ) withA = (EName,Q,δ ,q0) is constructed by Algorithm 1. We provide additional explanation

for the algorithm. In line 3, δ (q0,a) is well-defined thanks to the EDC constraint for XSDs (that

states that t is uniquely determined by a). Similarly, in line 4 we have that X fulfills the EDC

constraint. Therefore, δ (t1,a) is well-defined and A is guaranteed to be a deterministic automaton.

Finally, in line 5, µ (ρ (t)) denotes the regular expression obtained from ρ (t) by replacing every

typed element a[t] by the element a. Notice that, since X fulfills the UPA constraint, we have

that µ (ρ (t)) is a deterministic regular expression. Therefore, (A, S, λ) is a DFA-based XSD and has

deterministic content models. The fact that (A, S, λ) can be constructed from X in linear time is

immediate from the algorithm. The equivalence between (A, S, λ) and X is easily seen. □

We now show how to translate DFA-based XSDs into equivalent BXSDs. The translation is in

Algorithm 2 and is similar to the proof of Theorem 7.1 ((a)⇒ (d)) in [26].

Lemma 6. Each DFA-based XSD (A, S, λ) can be translated into an equivalent BXSD B with linearly
many rules in |A|.
14
One consequence of the slightly different models of XSDs is that the translation in [17] is quadratic, whereas it is linear in

our case.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:29

Algorithm 1 Translating an XSD to an equivalent DFA-based XSD.

Input: XSD X = (EName, Types, ρ,T0)
Output: DFA-based XSD (A = (Q, EName,δ ,q0), S, λ) equivalent to X
1: S := {a | ∃t ∈ Types such that a[t] ∈ T0}

2: Q := {q0} ⊎ Types
3: For each a[t] ∈ T0, δ (q0,a) := t
4: For each t1 ∈ Types and a ∈ EName such that a[t2] occurs in ρ (t1), δ (t1,a) := t2
5: For each t ∈ Types, λ(t) := µ (ρ (t)) ▷ µ (ρ (t)) is obtained from ρ (t) by

replacing every a[t ′] with a

Algorithm 2 Translating a DFA-based XSD into an equivalent BXSD.

Input: DFA-based XSD (A = (Q, EName,δ ,q0), S, λ)
Output: BXSD B = (EName, S,R) equivalent to X
1: for every state q ∈ Q do
2: rq := a reg. expression for (Q, EName,δ ,q0, {q})
3: sq := λ(q)

4: R := rq1
→ sq1

, . . . , rqn→ sqn , where {q1, . . . ,qn } = Q

Proof. Let (A, S, λ) be a DFA-based XSD with A = (EName,Q,δ ,q0). Algorithm 2 specifies

how to obtain the equivalent BXSD B = (EName, S,R). In line 2, the regular expression rq defines

the language of the DFA A in which q is an accepting state, i.e., the language of the automaton

(EName,Q,δ ,q0, {q}). Since each expression sq on line 3 is deterministic, the right-hand sides of

rules in R are deterministic as well. Finally, R contains the rules rq → sq , for each q ∈ Q , in arbitrary

order. □

Notice that the ordering of the rules in R in Algorithm 2 can be arbitrary, since, because A is

a DFA, L(rq1
) ∩ L(rq2

) = ∅ for each pair of states q1 , q2 from A. We emphasize that the BXSD

B can have regular expressions that are exponentially larger than |A| in general. This cannot be

avoided
15
because A is a DFA and the worst-case conversion from a DFA to a regular expression is

well-known to be exponential [14]. In Section 5.4 we discuss classes of schemas that capture most

cases in practice and that do not lead to such a blow-up.

5.2.2 From BonXai to XML Schema. The translation from BonXai to XML Schema follows a

similar overall outline as the reverse translation of Section 5.2.1. Again, we use DFA-based XSDs as

an intermediate representation in the translation. That is, we first translate BXSDs into DFA-based

XSDs and translate the latter to XSDs. However, the present translation is more technical than the

one before.

Algorithm 3 describes the translation of BXSDs into DFA-based XSDs.

Lemma 7. Each BXSD B can be translated into an equivalent DFA-based XSD (A, S, λ) for which
|A| is at most exponential in |B |.

Proof. Let B = (EName, S,R) be a BXSD, where R = r1 → s1, . . . , rn → sn . We translate B into

(A, S, λ) as described in Algorithm 3. On line 2 we want the DFAs Ai = (EName,Qi ,δi ,q
i
0
, Fi) to be

minimal and complete. Here, a DFA Ai is complete when δi (q,a) is defined for every q ∈ Qi and

a ∈ EName. A DFA can be made complete by adding an extra “sink state” to which all previously

15
Proving that an exponential blow-up cannot be avoided is more technical than just this observation, see Section 5.3.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:30 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

non-defined transitions lead. Furthermore, it is well-known that every regular language has a

unique minimal, complete DFA. (Notice that, since regular expressions are exponentially more

succinct than deterministic finite automata, Ai can be exponentially larger than ri in the worst

case.)

The DFA-based XSD (A, S, λ) is then constructed through a product automaton: in line 3, we

define A to be the product A1 × · · · × An . More precisely, A = (Q, EName,δ ,q0), where Q =
Q1×· · ·×Qn , q0 = (q1

0
, . . . ,qn

0
) and, for every state (p1, . . . ,pn) ∈ Q and every a ∈ EName, we have

δ ((p1, . . . ,pn),a) = (q1, . . . ,qn) where, for every i , δ (pi ,a) = qi . Notice thatA can be exponentially

larger than |B | and does not have accepting states.

The content models of the DFA-based XSD are defined in lines 7 and 9. Line 7 handles the case

where at least one of the automata A1, . . . ,An accepts, i.e., at least one BXSD rule matches. The

content model of the relevant state in the DFA-based XSD is then defined to be the content of the

highest-priority matching BXSD rule. Line 9 handles the case where no BXSD rule matches. Here,

according to the definition of BXSDs, every child-string should be allowed. We therefore must

allow the content (EName)∗. It can be shown that B is equivalent to (A, S, λ). □

It should be noted that Algorithm 3 is optimized for readability and not for efficiency. It is

straightforward to change it such that it only computes reachable states of A. Note that whether a
state is reachable also depends on the right-hand sides of the rules, because a transition δ (p,a) for
which the label a does not occur in λ(p) can never be taken in a satisfying document.

The final translation we need is the one from DFA-based XSDs into XSDs. It is summarized in

Algorithm 4 and has linear running time.

Lemma 8 (Adapted from [17, Lemma 7]). Each DFA-based XSD can be translated into an equivalent
XSD in linear time.

Proof. Let (A, S, λ) be a DFA-based XSD, where A = (EName,Q,q0,δ). We construct an equiva-

lent XSD X = (EName, Types, ρ,T0) in Algorithm 4. In line 4 of the algorithm we implicitly use

that δ (q,a) is non-empty for every state q and every element name a occurring in λ(q). □

We note that the XSD that results from Algorithm 4 can be “minimized” efficiently using a

minor adaptation of the minimization algorithm for XSDs from [27].
16
The difference with the

minimization algorithm from [27] would be that the deterministic regular expressions rq should

not be minimized.
17

5.3 Worst-Case Optimality of the Translation Algorithms
We now prove that both translation algorithms are worst-case optimal. In particular, we show

that both conversions from the previous section can lead to exponential size blow-ups in general.

In Section 5.4, we exhibit fragments that are prevalent in practice for which the conversions are

efficient.

5.3.1 From XML Schema to BonXai. When converting an XSchema Definition (XSD) to a BonXai

Schema Definition (BXSD) using the procedures in Lemmas 5 and 6 it is possible that the BXSD

is exponentially larger than the XSD. The source of this exponential blow-up lies in Algorithm 2

which is used in Lemma 6. More precisely, line 1 constructs a regular expression equivalent to a

DFA, which is well known to be exponential in the worst case [14].

16
More formally, it is possible to efficiently produce an XSD such that the set Types is minimal among all equivalent XSDs.

Also, the expressions rq do not become larger.

17
In fact, it is not clear how to efficiently minimize a deterministic regular expression — if it were possible to do this

efficiently, the whole resulting XSD could be minimized in polynomial time by the algorithm from [27].

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:31

Algorithm 3 Translating a BXSD to an equivalent DFA-based XSD.

Input: BXSD B = (EName, S,R = r1→ s1, . . . , rn→ sn)
Output: DFA-based XSD (A, S, λ) equivalent to B
1: for each i = 1, . . . ,n do
2: Ai := minimal complete DFA (Qi , EName,δi ,qi

0
, Fi) for L(ri)

3: A := A1 × · · · ×An ▷ A has state set Q1 × · · · ×Qn
4: for each (q1, . . . ,qn) ∈ Q1 × · · · ×Qn do
5: if ∃i ∈ {1, . . . ,n} such that qi ∈ Fi then
6: i := largest number such that qi ∈ Fi
7: λ((q1, . . . ,qn)) := si
8: else
9: λ((q1, . . . ,qn)) := (EName)∗

Algorithm 4 Translating a DFA-based XSD to an equivalent XSD.

Input: DFA-based XSD (A = (Q, EName,δ ,q0), S, λ)
Output: XSD X = (EName, Types, ρ,T0) equivalent to (A, S, λ)
1: Types := Q
2: T0 := {a[δ (q0,a)] | a ∈ S,δ (q0,a) , ∅}
3: for each state q ∈ Q do
4: rq := expression obtained from λ(q) by replacing each symbol a with a[δ (q,a)]
5: ρ (q) = rq

We will now show that this blow-up cannot be avoided in general, which means that, in this

sense, our conversion algorithm is worst-case optimal. We recall, however, that our conversion

which we showed in Lemma 6 does not produce a large number of rules in the BXSD. Therefore, if

the DFAs that Algorithm 2 encounters on line 2 only yield polynomially large regular expressions,

then the whole conversion is polynomial. We discuss a particularly relevant such case in Section 5.4.

The following theorem is the most technical result in this article. Its proof leverages a technique

from [14]. The hard part of our proof is to show that the exponential blowup cannot be avoided by

a clever use of the priorities in BonXai.

Theorem 9. There exists a family (Xn)n∈N of XSDs such that, for each n, Xn has sizeO (n2) but the
smallest BXSD equivalent to Xn has size at least 2

Ω(n) .

Before we give the proof of Theorem 9, we need a lemma that bounds the size of regular

expressions for left derivatives of languages (left derivatives were defined by Brzozowski [7]). To

this end, the left derivative of a string language L with respect to a string w , denoted by ∂w L, is
defined as

∂w L
def

= {v | wv ∈ L}.

The left derivative of a language L with respect to a language X , denoted by ∂X L, is defined as

∂X L
def

=
⋃
w ∈X

∂wL = {v | ∃w ∈ X such thatwv ∈ L}.

For a regular expression α , we denote by ∂X α a regular expression for the language ∂X L(α). We

denote by depth(α) the depth of the parse tree for α .

Lemma 10. Let α be a regular expression andX be an arbitrary language. Then there exists a regular
expression α ′ for the language ∂XL(α), such that |α ′ | ∈ O (depth(α) |α |).

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:32 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

Proof. If X = ∅ then ∂XL(α) = ∅ and the lemma holds. We therefore assume from now on that

X , ∅. For a language L, let prefix(L) = {v | ∃w such that vw ∈ L} be the set of all prefixes of
strings in L. We construct α ′ inductively as follows.

∂X ∅ = ∅

∂X ε =



ε if ε ∈ X

∅ otherwise

∂X a =




ε + a if X ∩ {ε,a} = {ε,a}

a if X ∩ {ε,a} = {ε }

ε if X ∩ {ε,a} = {a}

∅ otherwise

∂X (α1 + α2) = ∂X α1 + ∂X α2

∂X (α1 · α2) = (∂X1
α1) · α2 + ∂∂L (α

1
)X α2

∂X α∗ = (∂∂L (α ∗)X (ε + α)) · α∗

Here, X1

def

= X ∩ prefix(L(α1)) and, by definition ∂L(α1) X = {v | ∃w ∈ L(α1) such that wv ∈ X }
and, similarly, ∂L(α ∗) X = {v | ∃w ∈ L(α

∗) such thatwv ∈ X }.
We sketch how it can be inductively shown that the above definitions are correct in the case where

X , ∅. The base cases are clear. In the inductive step, the set ∂X (α1 + α2) consists of all strings v
for which that there is a stringw ∈ X such thatwv ∈ L(α1) orwv ∈ L(α2). This language is defined
by the (inductively obtained) regular expression ∂X α1 + ∂X α2. The language ∂X (α1 · α2) is the
set of strings v for which there exists aw ∈ X such thatwv ∈ L(α1 · α2). Here, we have two cases

depending on how wv matches α1 · α2. In the first we have wv = wv1v2 with wv1 ∈ L(α1) and
v2 ∈ L(α2) and in the second we havewv = w1w2v withw1 ∈ L(α1) andw2v ∈ L(α2). In the first

case, we have thatw is a prefix of a word in L(α1) and, therefore,v ∈ (∂X1
α1) ·α2. In the second case,

w2 ∈ ∂L(α1)X and, therefore, v ∈ ∂∂L (α
1
)X α2. This concludes the proof for the language ∂X (α1 · α2).

We now move on to the final case in the definition, ∂X α∗. Here we must find a regular expression

for the strings v for which there is aw ∈ X such thatwv ∈ L(α∗). Sincewv ∈ L(α∗) we have that
wv can be written aswv = w1w2v1v2 wherew = w1w2, v = v1v2,w1 ∈ L(α

∗),w2v1 ∈ L(ε +α), and
v2 ∈ L(α

∗). We have that w2 ∈ ∂L(α ∗) X and, therefore, v1 is in the language of (∂∂L (α ∗)X (α + ε)).
This means that v is in the language of (∂∂L (α ∗)X (α + ε)) · α∗.

It remains to show that |α ′ | ≤ depth(α) |α |. We emphasize that the bound on the length of

∂XL(α) does not depend on X (and therefore the complicated subscript languages do not matter).

This is because the only case where a subscript has a real effect on the expression is for expressions

of the form ∂X a.
We show |α ′ | ≤ 2(depth(α) |α |) by an induction on the structure of α . For the induction base

case, we observe that |α | = |α ′ | ≤ 2 in the cases where |α | is an atomic expression. Applying the

induction hypothesis to the equations above gives us

|α ′ | ≤




2

(
depth(α1) |α1 | + depth(α2) |α2 |

)
if α = α1 + α2

2 depth(α1) |α1 | + |α2 | + 2 depth(α2) |α2 | if α = α1 · α2

2 depth(α1) |α1 | + |α | if α = α∗
1

Using the fact that both depth(α1) and depth(α2) are bounded by depth(α) − 1, we get that

|α ′ | ≤




2(depth(α) − 1) (|α1 | + |α2 |) if α = α1 + α2

2(depth(α) − 1) (|α1 | + |α2 |) + |α2 | if α = α1 · α2

2(depth(α) − 1) |α1 | + |α | if α = α∗
1

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:33

Using the fact that |α1 | + |α2 | ≤ |α |, we can conclude in all three cases that |α ′ | ≤ 2(depth(α) |α |).
This concludes the proof. □

Now we are ready to prove Theorem 9: there exists a family (Xn)n∈N of XSDs such that, for each

n, Xn has size O (n2) but the smallest BXSD equivalent to Xn has size at least 2
Ω(n)

.

of Theorem 9. We leverage a technique by Ehrenfeucht and Zeiger [14], who showed that there

exists a class of languages (Zn)n∈N, such that Zn can be accepted by a DFA of sizeO (n2) but cannot
be defined by a regular expression of size smaller than 2

n−1
.

For every n ∈ N we let Σn = {ai j | i, j ∈ {1, . . . ,n}}. We call i the source and j the target of a
symbol ai j . We define Zn as

Zn =
{
w1 · · ·wm ∈ Σ

∗
n | ∀i ∈ {1, . . . ,m − 1},

∃j,k, l such thatwiwi+1 = ajkakl
}
.

That is, in every word in Zn , the target of a symbol and the source of the following symbol must be

equal. Every word w ∈ Σ∗n \ Zn has a first symbol aiℓ whose target ℓ does not coincide with the

source of the following symbol. We call ℓ the error index ofw .

We now construct a family (Xn)n∈N of XSDs, such that Xn is of sizeO (n2) and the smallest BXSD

equivalent to Xn has size 2
Ω(n)

. We define Xn by its DFA-based XSD (An , Sn , λn). To this end, we

let Sn = Σn and choose the components of An = (Q ∪Q ′, Σn ,δ ,q1) as follows.

• Q = {qi |1 ≤ i ≤ n} and Q ′ = {q′i |1 ≤ i ≤ n};

• for every qi ∈ Q and ajℓ ∈ Σ, δ (qi ,ajℓ) =



qℓ if i = j

q′i if i , j

• and, for every q′i ∈ Q
′
and ajℓ ∈ Σ, δ (q

′
i ,ajℓ) = q

′
i ,

• for every qi ∈ Q , λ(qi) = ε ∪ Σ,
• for every q′

ℓ
∈ Q , λ(q′

ℓ
) = ε ∪ Σ ∪ {aℓℓaℓℓ }.

In other words, An is a DFA that tests whether a word is in Zn and remembers, for words not in Zn ,
their error index.

The documents valid with respect to Xn are thus characterized by the following two properties.

• All label sequences over Σn are allowed in paths.

• The only allowed kind of branching is binary branching of the form ai j → aℓℓaℓℓ below
nodes whose ancestor path contains a Zn-error with error index ℓ.

We note that, as branching can only take place below an error, and the first error of a path is unique,

in every document there can be binary branching aℓℓaℓℓ with at most one kind of symbols.

It is straightforward thatXn is of sizeO (n2). To show that every BXSD B equivalent to (An , Sn , λn)
is of size 2

Ω(n)
we prove that B must have at least one ancestor pattern of size 2

Ω(n)
. As already

mentioned, it is known from [14] that every regular expression for Zn is of size 2
Ω(n)

. Actually

Ehrenfeucht and Zeiger prove a stronger result:

Proposition 11 ([14, Theorem 4.1]). For every n ∈ N, there is a string д ∈ Zn , such that every
regular expression α with vдw ∈ L(α) for some v andw and L(α) ⊆ Zn is of size 2

Ω(n) .

For our purposes, we need a slightly stronger version:

Proposition 12. For every n ∈ N, there are strings д1, . . . ,дn ∈ Zn such that h = д1д2 . . .дn ∈ Zn
and for every i ∈ {1, . . . ,n},
• дi contains no symbol from {a1i , . . . ,ani }; and
• every regular expression αi with vдiw ∈ L(αi) for some v andw and L(αi) ⊆ Zn is of size 2

Ω(n) .

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:34 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

of Proposition 12. First we note that Proposition 11 still holds, if we replace the condition

L(α) ⊆ Zn by L(α) ⊆ Zm , for anym > n. This is because symbols outside Σn are useless for strings

from Zn , and therefore any regular expression for Zn over Σm could be translated into an expression

of (at most) the same size over Σn by replacing every symbol outside Σn with ∅.

By the same kind of reasoning it follows that, for every i ∈ {1, . . . ,n}, Proposition 11 also holds

with respect to strings in Zn over Σ(i)
n = Σn \ {ai j ,aji | j ≤ n} and expressions over Σn . Let thus,

for every i , hi ∈ Zn be a string over Σ(i)
n such that every regular expression α with vihiwi ∈ L(α)

for some vi and wi and L(α) ⊆ Zn is of size 2
Ω(n)

. By choosing vi and wi as suitable one-letter

strings we obtain strings дi = vihiwi with the stated properties. This concludes the proof of

Proposition 12. □

Let now B be a BXSD for (An , Sn , λn). Our goal is to show that B has at least one ancestor pattern

of size 2
Ω(n)

. We can assume w.l.o.g. that B does not contain any rule with a child pattern allowing

content models aiiaii and aj jaj j , for i , j. To this end, let us assume such a rule α exists and there

is a string z = a1 . . . am matching the left hand side of α such that some document in L(B) contains
z as its ancestor path. If no such z exists, α can be deleted from B without changing its language.

On the other hand, if such a document exists, α allows the document in which below the z-path
two leaves labeled aii occur and the document in which below the z-path two leaves labeled aj j
occur, contradicting the definition of the language of Xn .

We call any rule allowing a content model aiiaii a ti -rule and any other rule a t-rule. We

emphasize that, as we just showed, a rule can only be a ti -rule, for one index i .
We consider strings (as ancestor paths) from Zn of the form s = hks ′, with h from Proposition 12,

k ≥ 1 and s ′ ∈ Σ∗n . Clearly, strings can be matched by several rules, but for each string s , B must

have a last rule rs : αs → βs whose left hand side matches s . However, several strings can possibly

share the same last rule.

Let, for every such s ,

α ′s = ∂hk−1д1 ...дj αs ,

where j = 0 if αs is a t-rule and j = i − 1 if αs is a ti -rule. We note that дj+1 . . .дns
′ ∈ L(α ′s) by

construction. By Lemma 10, it follows that |α ′s | = O (|αs |
2) and therefore |αs | = Ω(

√
|α ′s |).

For each string s = hks ′ ∈ Σ∗n one of the following conditions must hold, for some ℓ ∈ {1, . . . ,n}.

(1a) L(α ′s) ⊆ Zn .
(1b) L(α ′s) ⊈ Zn , rs is a tℓ-rule, and every string in L(α ′s) \ Zn has error index ℓ.
(2a) L(α ′s) ⊈ Zn , rs is a tℓ-rule, and there exists a string in L(α ′s) \ Zn with error index j , ℓ.
(2b) L(α ′s) ⊈ Zn and rs is a t-rule.

Let us assume first that, for some s = hks ′ ∈ Σ∗n , one of the cases (1a) or (1b) holds.
In case (1a), we can conclude from Proposition 12 that α ′s is of size 2

Ω(n)
. Therefore αs is of size√

2
Ω(n) = 2

Ω(n)
.

In case (1b), we construct a regular expression γ from α ′s by replacing each occurrence of a

symbol aiℓ with i ∈ {1, . . . ,n} by ∅. By construction, γ has the following properties:

• |γ | ≤ |α ′s |;
• L(γ) ⊆ Zn , since every string in L(α ′s) \ Zn has a symbol aiℓ for some i; and
• дℓ ∈ L(γ), as дℓ ∈ L(α

′
s) and дℓ contains no symbol aiℓ by definition.

We can conclude from Proposition 12, that γ and therefore α ′s is of size 2
Ω(n)

. We can conclude

again that αs is of size 2
Ω(n)

, as well.

We can thus assume from now on that, for every s = hks ′ ∈ Σ∗n , one of the cases (2a) or (2b)
applies.We are going to show next that this implies that the number of rules in Bmust be unbounded,

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:35

a contradiction from which we can conclude the statement of the theorem. More precisely, we

show that for each string of the form s = hks ′ ∈ Σ∗n , there is a string z = h
k−1z ′ ∈ Σ∗n such that rz

comes strictly after rs in the list of rules of B. Clearly, repeated application of this statement yields a

sequence of at least k rules with ascending indexes. As the process can be started with an arbitrary

k , we get the desired contradiction.

Let thus s = hks ′ ∈ Σ∗n , for some k ≥ 1. By our assumption, either condition (2a) or (2b) holds for

α ′s .
We first consider the case that rs is a tℓ-rule, for some ℓ ∈ {1, . . . ,n} and (2a) holds with some

stringw ∈ L(α ′s) \ Zn with error index j , ℓ. Let us assume towards a contradiction that rs is the
last rule (in the order of rules) matching z = hk−1д1 . . .дℓ−1w . Then the document consisting of a

path with label sequence z arriving at some node v with two leaf children labeled by aℓℓ below v ,
is valid for B, a contradiction as the error index of z is not ℓ. Therefore, there must be another rule

in B after rs whose left hand side matches z and whose right hand side does not allow the content

model aℓℓaℓℓ .
We next consider the remaining case that rs is a t-rule and (2b) holds. Letw ∈ L(α ′s) \ Zn with

some error index j and let us assume towards a contradiction that rs is the last rule matching

z = hk−1w . Then the document consisting of a path with label sequence z arriving at a node v with

two leaf children labeled by aj j is not valid for B, a contradiction.
Therefore, again there must be another rule in B after rs whose left hand side matches z and

whose right hand side allows the content model aj jaj j .

Thus, we have shown that for each string of the form s = hks ′ ∈ Σ∗n , there is a string z = h
k−1z ′ ∈

Σ∗n such that rz comes strictly after rs in the list of rules of B, and we are done.

This completes the proof that B has size 2
Ω(n)

. □ □

5.3.2 From BonXai to XML Schema. We prove that the translation from BXSDs to XSDs is

worst-case optimal.

Theorem 13. There exists a family of BXSDs (Bn)n∈N such that, for each n, the BXSD Bn has size
O (n) but the smallest XSD equivalent to Bn has size at least 2

n .

sketch. Let n ∈ N be arbitrary. Let Bn = (ENamen , Sn ,Rn) be the BXSD with

ENamen = {a,a1, . . . ,an ,b1, . . . ,bn },

Sn = {a1, . . . ,an }, and Rn consisting of the following rules:

//a → ε
//(b1 + · · · + bn) → ε
//(a1 + · · · + an) → (a + a1 + · · · + an)

//a1//a1//a → b1

//a2//a2//a → b2

...
...
...

//an//an//a → bn
Here we wrote the regular expressions on the left-hand-side of rules as in Section 2 with // as an
abbreviation for EName∗. This schema defines a set of unary (i.e., non-branching) trees and its

semantics is the following. If the ancestor path of an a-element contains, for each 1 ≤ i ≤ n, at
most one ai element, its content model is ε . Otherwise, if j is the largest number such that aj occurs
at least two times on the path to the a element, then this a element has bj as a child.

It can be proved with techniques from [27] that the smallest XSD equivalent to the above BXSD

is exponentially large in n. Intuitively, in order to decide which bi is the child under an a, the types

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:36 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

of the XSD needs to keep track of the largest j , for which aj has already occurred twice, and, worse,

the set of i > j, for which ai has already occurred once. □

5.4 Efficient Translations for Fragments
Even though the translations between XSD and BonXai in Sections 5.2.1 and 5.2.2 are provably

optimal, they can be exponential in the worst case. In this section, we argue why we do not expect

this to be a problem in practice. In particular, we prove that the translation is polynomial for

a restriction of XSDs that accounts for the overwhelming majority of schemas in practice. Our

examination of 8080 XML Schemas from the Web revealed that, in more than 97%, the content

model of an element only depends on the label of the element itself, the label of its parent, and

the label of its grandparent (see Table 2 in the Appendix; these are the schemas with k ≤ 3). This

data motivates a class of schemas which can be converted efficiently. More precisely, consider the

following class of DFA-based XSDs.

Definition 14. A DFA-based XSD is k-suffix, if the type of an element only depends of the last k
symbols of its ancestor string. More precisely, a DFA-based XSD (A, S, λ) withA = (Q, EName,δ ,q0)
is k-suffix based if A(w1a1 · · ·ak) = A(w2a1 · · ·ak) for all stringsw1,w2 over EName and symbols

a1, . . . ,ak ∈ EName. ■

Hence, 97% of the schemas in our data set have a corresponding 3-suffix DFA-based XSD. Actually,

this DFA-based XSD can be obtained simply by applying the construction of Lemma 5 to the given

XSD. Furthermore, according to Lemmas 5 and 8, the translations between XSDs and DFA-based

XSDs are straightforward and very efficient. We therefore do not revisit these constructions and

focus on translations between (k-suffix) DFA-based XSDs and BXSDs. The BXSDs corresponding

to this class of schemas can be defined as follows.

Definition 15. A regular language L is a suffix language if L = {w } or L = L(EName∗w) for
some word w . It is a k-suffix language if, additionally, |w | ≤ k . A BXSD (EName, S,R) is k-suffix
based if, for every rule r → s in R, the left-hand side r is a k-suffix language. ■

The following theorem considers the translation from k-suffix based BXSDs and k-suffix DFA-

based XSDs. It is similar in flavor to Proposition 5.2 in [20], but considers rules with a priority

system as in BonXai. Kasneci and Schwentick avoided this issue by assuming that rules have

pairwise disjoint left-hand-side languages.

Theorem 16. Each k-suffix based BXSD can be translated in polynomial time into an equivalent
k-suffix DFA-based XSD of linear size.

Proof. Let B = (EName, S,R) be a k-suffix based BXSD where R = (r1 → s1, . . . , rn → sn)
where, for each i = 1, . . . ,n, ri = wi or ri = //wi withwi a string of length at most k .

The equivalent k-suffix DFA-based XSD D = (A, S, λ) with A = (Q, EName,δ ,qε) can be defined

as follows. Let P = {w | ∃ string v over EName for whichwv ∈ {w1, . . . ,wn }} be the set of prefixes

of all wi and let Q := {(qw , j) | w ∈ P , j ∈ {0, 1}} be a set of states representing all prefixes and

indicating whether the “current prefix” is still a prefix of the whole word. Then we define

δ ((qw , j),a) =



(qv , j), ifwa = v,

(qv , 1), otherwise,

where v is the longest suffix ofwa in P . Furthermore we let λ((w, 1)) = si , where i is the highest
index such that ri = //wi and wi is a suffix of w , and λ((w, 0)) = ℓ, where ℓ is the highest index
such that rℓ = wℓ = w . The construction of D from B is easily seen to be polynomial. Equivalence

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:37

between B and A can be immediately seen since A follows the standard approach for pattern

matching with automata. Furthermore, D fulfills the k-suffix property by definition. □

We note that A follows a standard approach for pattern matching with automata. The computed

DFA-based XSD is equivalent to the one computed by Algorithm 3. It exploits the fact, that the

BXSD is suffix based to avoid the (expensive) product construction.

We now consider the reverse direction. An important difference with Theorem 16 is that this

direction is exponential in k , that is, it needs k to be constant in order to be polynomial. However,

as we noted before, in 97% of the schemas occurring in out practical study, we see that k ≤ 3.

Theorem 17. Let k be a constant. Each k-suffix DFA-based XSD can be translated in polynomial
time into an equivalent k-suffix based BXSD.

Proof. Let D = (A, S, λ) with A = (Q, EName,δ ,q0) be a k-suffix DFA-based XSD. The BXSD

B = (EName, S,R), where B consists of the rules

//a1/a2/ . . . /ak → α , for which λ(A(a1a2 . . . ak)) = α and

/a1/a2/ . . . /aℓ → α , for which ℓ < k and λ(A(a1a2 . . . aℓ)) = α .

Note that the ordering of the rules does not matter as the ancestor patterns describe pairwise

disjoint languages.

The BXSD B is equivalent to D and contains less than |EName| (k+1)
rules. It is clear that B can

be computed in polynomial time if k is fixed. □

Finally, we note that it is easy to decide if a given XSD can be translated efficiently into a BXSD,

i.e., whether it corresponds to a k-suffix DFA-based XSD (where k can either be fixed in advance or

not). Questions of this kind were investigated in [12, 18, 31].

6 CONCLUSIONS
We introduced BonXai with the goal of defining a schema language that approximates the expres-

siveness of XML Schema and reconciles this with the simplicity of DTDs. Thereby, BonXai is a

language in which we can express many features of XML Schema in a more readable format, and

automatically convert to actual XML Schema schemas. BonXai is a full-fledged schema language

with many features and a formal specification [22]. The language can be employed in various

scenarios (c.f., Section 3.7) ranging from the creation of novel XML Schemas to debugging of

existing XML Schemas. Furthermore, BonXai is built on a solid theoretical foundation which is

rooted in pattern-based schemas [25, 26] and which facilitates transformation algorithms and their

analysis. While transforming between BonXai and XML Schema can have high complexity in the

worst case, we believe that for a very large and practically relevant class this is never the case (c.f.,

Section 5.4).

ACKNOWLEDGMENT
We are grateful to Thomas Timm for his significant help in performing the practical study that we

discussed in the Introduction. We are grateful to Christian Wolf for collecting the data sets (which

included a significant amount of manual labour).

REFERENCES
[1] Geert Jan Bex, Wouter Gelade, Wim Martens, and Frank Neven. 2009. Simplifying XML Schema: effortless handling of

nondeterministic regular expressions. In ACM International Conference on Management of Data (SIGMOD). ACM, New

York, NY, USA, 731–744.

[2] Geert Jan Bex, Wim Martens, Frank Neven, and Thomas Schwentick. 2005. Expressiveness of XSDs: from practice to

theory, there and back again. In International Conference on World Wide Web (WWW). 712–721.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:38 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

[3] Geert Jan Bex, Frank Neven, and Jan Van den Bussche. 2004. DTDs versus XML Schema: A practical study. In

International Workshop on the Web and Databases (WebDB). 79–84.
[4] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Stijn Vansummeren. 2010. Inference of Concise Regular

Expressions and DTDs. ACM Trans. Database Syst. 35, 2 (2010), 11:1–11:47.
[5] Henrik Björklund, Wim Martens, and Thomas Timm. 2015. Efficient Incremental Evaluation of Succinct Regular

Expressions. In International on Conference on Information and Knowledge Management (CIKM). 1541–1550.
[6] A. Brüggemann-Klein and D. Wood. 1998. One-Unambiguous Regular Languages. Information and Computation 142, 2

(1998), 182–206.

[7] Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (1964), 481–494.

[8] Russel Butek and Shannon Kendrick. 2011. Web services hints and tips: avoid anonymous types. http://www.ibm.com/

developerworks/webservices/library/ws-avoid-anonymous-types/ws-avoid-anonymous-types-pdf.pdf. (2011). IBM

developerWorks Technical Library.

[9] P. Caron, Y. Han, and L. Mignot. 2011. Generalized One-Unambiguity. In International Conference on Developments in
Language Theory (DLT). 129–140.

[10] Claudio Sacerdoti Coen, Paolo Marinelli, and Fabio Vitali. 2004. Schemapath, a minimal extension to XML schema

for conditional constraints. InWWW, Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills (Eds.). ACM,

164–174.

[11] W. Czerwiński, C. David, K. Losemann, and W. Martens. 2013. Deciding Definability by Deterministic Regular

Expressions. In International Conference on Foundations of Software Science and Computation (FOSSACS). 289–304.
[12] W. Czerwiński, W. Martens, and T. Masopust. 2013. Efficient Separability of Regular Languages by Subsequences and

Suffixes. In International Colloquium on Automata, Languages, and Programming (ICALP). 150–161.
[13] DSD. 2002. Document Structure Description (DSD). http://www.brics.dk/DSD/. (2002).

[14] A. Ehrenfeucht and H. P. Zeiger. 1976. Complexity Measures for Regular Expressions. J. Comput. Syst. Sci. 12, 2 (1976),
134–146.

[15] Davide Fiorello, Nicola Gessa, Paolo Marinelli, and Fabio Vitali. 2004. DTD++ 2.0: Adding support for co-constraints.

In Extreme Markup Languages.
[16] S. Gao, C.M. Sperberg-McQueen, H. Thompson, N. Mendelsohn, D. Beech, and M. Maloney. 2012. W3C XML Schema

Definition Language (XSD) 1.1 Part 1: Structures. http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/. (April

2012).

[17] Wouter Gelade and Frank Neven. 2011. Succinctness of pattern-based schema languages for XML. J. Comput. System
Sci. 77, 3 (2011), 505–519.

[18] P. Hofman and W. Martens. 2015. Separability by Short Subsequences and Subwords. In International Conference on
Database Theory (ICDT). 230–246.

[19] JEdit [n. d.]. jEdit Programmer’s Text Editor. www.jedit.org. ([n. d.]).

[20] Gjergji Kasneci and Thomas Schwentick. 2007. The complexity of reasoning about pattern-based XML schemas. In

ACM Symposium on Principles of Database Systems (PODS). 155–164.
[21] K. Losemann, W. Martens, and M. Niewerth. 2012. Descriptional Complexity of Deterministic Regular Expressions. In

International Symposium on Mathematical Foundations of Computer Science (MFCS). 643–654.
[22] W. Martens, V. Mattick, M. Niewerth, S. Agarwal, N. Douib, O. Garbe, D. Günther, D. Oliana, J. Kroniger, F. Lücke, T.

Melikoglu, K. Nordmann, G. Özen, T. Schlitt, L. Schmidt, J. Westhoff, and D. Wolff. 2015. Design of the BonXai Schema

Language. (Draft 2015). Available at http://www.bonxai.org/downloads/bonxai-design.pdf.

[23] W. Martens, F. Neven, M. Niewerth, and T. Schwentick. 2012. Developing and Analyzing XSDs through BonXai. PVLDB
5, 12 (2012), 1994–1997.

[24] Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick. 2017. BonXai: Combining the simplicity of

DTD with the expressiveness of XML Schema (Data Set). http://bonxai.org/downloads.html. (2017).

[25] WimMartens, Frank Neven, and Thomas Schwentick. 2007. Simple off the shelf Abstractions of XML Schema. SIGMOD
Record 36, 3 (2007), 15–22.

[26] Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan Bex. 2006. Expressiveness and complexity of XML

Schema. ACM Trans. Database Syst. 31, 3 (2006), 770–813.
[27] W. Martens and J. Niehren. 2007. On the minimization of XML Schemas and tree automata for unranked trees. J.

Comput. System Sci. 73, 4 (2007), 550–583.
[28] Anders Møller and Michael Schwartzbach. 2006. An introduction to XML and web technologies. Addison-Wesley.

[29] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. 2005. Taxonomy of XML schema languages

using formal language theory. ACM Trans. Internet Techn. 5, 4 (2005), 660–704.
[30] D. Peterson, S. Gao, A. Malhotra, C.M. Sperberg-McQueen, H. Thompson, and P.V. Biron. 2012. W3C XML Schema

Definition Language (XSD) 1.1 Part 2: Datatypes. http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/. (April

2012).

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

http://www.ibm.com/developerworks/webservices/library/ws-avoid-anonymous-types/ws-avoid-anonymous-types-pdf.pdf
http://www.ibm.com/developerworks/webservices/library/ws-avoid-anonymous-types/ws-avoid-anonymous-types-pdf.pdf
http://www.brics.dk/DSD/
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
www.jedit.org
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:39

[31] T. Place, L. van Rooijen, and M. Zeitoun. 2013. Separating Regular Languages by Piecewise Testable and Unambiguous

Languages. In International Symposium on Mathematical Foundations of Computer Science (MFCS). 729–740.
[32] RelaxNG. 2001. Relax NG Specification. http://www.relaxng.org/spec-20011203.html. (2001).

[33] Schematron. 1999. Schematron. http://www.schematron.com/. (1999).

[34] C.M. Sperberg-McQueen and H. Thompson. 2005. XML Schema. http://www.w3.org/XML/Schema. (2005).

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

http://www.relaxng.org/spec-20011203.html
http://www.schematron.com/
http://www.w3.org/XML/Schema

1:40 Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick

A COMPLETE XML SCHEMA DOCUMENT

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xs:schema xmlns="http://example.org"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://example.org">

<xs:element name="document" type="Tdocument"/>

<xs:complexType name="Tdocument">
<xs:sequence>

<xs:element name="template" type="Ttemplate"/>
<xs:element name="userstyles" type="TuserStyles"/>
<xs:element name="content" type="Tcontent"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Ttemplate">
<xs:sequence>

<xs:element name="section" type="TtemplateSection" minOccurs="0"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="TuserStyles>
<xs:sequence>

<xs:element name="style" type="TnamedStyle"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Tcontent">
<xs:sequence>

<xs:element name="section" type="Tsection"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="TtemplateSection">
<xs:sequence>

<xs:element name="titlefont" type="TtemplateFont" minOccurs="0"/>
<xs:element name="style" type="TtemplateStyle" minOccurs="0"/>
<xs:element name="section" type="TtemplateSection" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="TtemplateStyle">
<xs:all>

<xs:element name="font" type="TtemplateFont" minOccurs="0"/>
<xs:element name="color" type="TtemplateColor" minOccurs="0"/>

</xs:all>
</xs:complexType>

Fig. 10. An XML Schema document equivalent to the BonXai schema in Figure 6, describing the XML
document in Figure 2 — part 1.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema 1:41

<xs:complexType name="TtemplateFont">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="size" type="xs:integer" use="optional"/>

</xs:complexType>

<xs:complexType name="TtemplateColor">
<xs:attribute name="color" type="xs:string"/>

</xs:complexType>

<xs:complexType name="TnamedStyle">
<xs:all>

<xs:element name="font" type="TtemplateFont" minOccurs="0"/>
<xs:element name="color" type="TtemplateColor" minOccurs="0"/>

</xs:all>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="Tsection" mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:group ref="markup"/>
<xs:element name="section" type="Tsection"/>

</xs:choice>
<xs:attribute name="title" type="xs:string" use="required"/>

</xs:complexType>

<xs:group name="markup">
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="bold" type="Tmarkup"/>
<xs:element name="italic" type="Tmarkup"/>
<xs:element name="style" type="TstyleRef"/>
<xs:element name="font" type="Tfont"/>
<xs:element name="color" type="Tcolor"/>

</xs:choice>
</xs:group>

<xs:complexType name="Tmarkup" mixed="true">
<xs:group ref="markup"/>

</xs:complexType>
<xs:complexType name="TstyleRef" mixed="true">

<xs:group ref="markup"/>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="Tcolor" mixed="true">

<xs:group ref="markup"/>
<xs:attribute name="Tcolor" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="Tfont" mixed="true">

<xs:group ref="markup"/>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="size" type="xs:integer" use="optional"/>

</xs:complexType>
</xs:schema>

Fig. 11. An XML Schema document equivalent to the BonXai schema in Figure 6, describing the XML
document in Figure 2 — part 2.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.

