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Summary: In this paper a procedure for clustering high dimensional multivariate data with missing

observations is proposed. Functional data analysis often utilizes dimension reduction techniques such

as principal component analysis. Dimension reduction techniques require complete data matrices.

To overcome this problem, the data were completed by means of multiple imputation. Each imputed

data set was subjected to a cluster procedure for multivariate functional data. Consensus clustering

was subsequently applied to summarize the ensemble of partitions into the final cluster result. The

uncertainty in cluster membership, due to missing data, was characterized by means of the agreement

between the members of the ensemble and the fuzziness of the consensus clustering. The usefulness

of the method was illustrated on the heart failure data.
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1. Introduction

Repeated measures and multivariate outcomes are very common in social, behavioral, and

educational sciences, as well as in clinical trials. A lot of methodological work has been done

to extend cluster analysis to these complex data structures, in particular repeated measures.

When analyzing repeated measurements data, individual differences in evolution are gen-

erally captured by random effects, often via linear mixed models (Laird and Ware, 1982;

Verbeke and Molenberghs, 2000). Individual differences can also be described by latent

trajectory classes (Land and Nagin, 1996; Nagin and Land, 1993, Nagin, 1999; Nagin and

Tremblay, 2001) or by growth mixture models (Muthén and Shedden, 1999; Muthén and

Muthén, 1998, 2007). When, for each patient, more than a single outcome is measured over

time, a multivariate set of longitudinal profiles is obtained. Interest could be in finding

subgroups of patients that are similar in their evolution over time for the various repeated

sequences. Examples can be found in Nagin and Tremblay (2001) and Nagin (2005). Growth

mixture modeling for a multivariate longitudinal data setting is often problematic. When the

number of repeated outcomes is large, computational problems are likely in the estimation

process due to the high dimension of the joint distribution of the random effects. Alternative

approaches, such as a two-stage method (Putter et al, 2008), a latent variable model for

repeated measures assuming an underlying quantity of main interest (Roy and Lin, 2000),

and an algorithm using pseudo-likelihood and ideas based on k-means clustering (Bruckers

et al, 2014) have been explored.

Nowadays, data complexity and dimensionality are enhanced by novel data collection tech-

niques. These techniques permit observations to be densely sampled over a continuum, usu-

ally time. The data then reflect the influence of a (set of) smooth function(s) underlying and

generating the observations. Often, the evolutions are not easily described by a mathematical

formula. The dependencies between these so-called functional data curves can be analyzed by
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methods from the functional data analyses framework. As usual, observed heterogeneity can

be corrected for via explanatory variables. Unobserved sources of population heterogeneity

can be investigated via cluster analyses, where the main objective is to classify patients into

homogenous groups. However, clustering functional data in general requires first a reduction

of the high dimension of the data.

Cluster analyses and data reduction techniques are hampered by missing values—an issue

often intertwined with longitudinal data. In the regression context, a multiple imputation

procedure (Rubin, 1987; Schafer, 1997; Carpenter and Kenward, 2013) can be applied to

quantify the extra uncertainty in estimators of population parameters due to the missing

values. Applying a cluster algorithm on the imputed data set results in multiple partitionings

of the patients. It is however not so clear how uncertainty due to the imputation process needs

to be reflected in the final result. Basagaña et al. (2013) present a framework for multiple

imputation in cluster analysis. They suggest ways to report how the final number of clusters,

the result of a variable selection procedure and the assignment of individuals to clusters is

affected by the missing values. Their final decision on a patient’s cluster membership is based

on a majority vote.

We propose to approach the problem as a combinatorial optimization problem to sum-

marize the cluster ensemble into a single consolidated clustering and at the same time

measure the missing data influence in the cluster analyses. In this paper, we apply a model-

based clustering technique to a multivariate functional data set after multiple imputation.

The concept of functional data is briefly introduced in Section 3. The final data analysis

brings together a number of statistical techniques that are briefly introduced: multivariate

functional data and functional principal component analyses, as a data reduction technique,

are described in Section 4. A summary overview of cluster methods for functional data is
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given in Section 6. The ensemble method for clustering is the topic of Section 7. The various

steps of the proposed procedure are graphically displayed in Figure 1.

[Figure 1 about here.]

Section 9 illustrates the methodology on telemonitoring data for chronic heart failure

patients, introduced in Section 8. Daily measurements — of blood pressure, heart rate and

body weight — are collected to better monitor a patient’s instantaneous risk for heart failure.

2. Multiple Imputation

Data reduction techniques, like principal component analysis, require rectangular data struc-

tures. Records with missing values are discarded in the analyses. To circumnavigate this

problem, multiple imputation was used to create a set of complete/rectangular data sets.

Multiple imputation is a popular tool for dealing with data when they are only partially

observed (Rubin, 1987; Schafer, 1997; Carpenter and Kenward, 2013; Molenberghs and

Kenward, 2007). The idea is to use the observed information to impute a sensible value for

the missing ones. To reflect the uncertainty in this prediction, missing values are imputed

multiple times. Multiple imputation is appealing because it results in complete data sets,

that can be analyzed with standard statistical techniques. Two routes can be followed:

multivariate or fully conditionally specified imputation (Schafer, 1997; Little and Rubin,

2002; Van Buuren et al, 1999; Raghunathan et al, 2001). Both approaches assume the missing

data to be missing at random (MAR, Little and Rubin, 2002). Under the MAR assumption,

the probability that an observation is missing, is driven only by the observed data, implying

that no extra information is contained in the missing part of the data.

Standard imputation models applied to longitudinal data can lead to absurd results (Honaker

and King, 2010). Imputations falling far from previous and subsequent observations, or

imputations that are very implausible on the basis of common sense. Honaker and King



4 Biometrics, Month 20XX

(2010) developed the software package AMELIA that facilitates imputation of (among oth-

ers) smooth time-series patterns. AMELIA implements a so-called EMB algorithm. This

algorithm combines the classical EM procedure with a bootstrap approach to take draws

from the posterior.

3. Functional Data

Functional data analysis (FDA) can be seen as an extension of classical multivariate methods

where data are not vectors but rather functions or curves. Functional data describe a process

that changes smoothly and continuously over a domain. Often, this domain is time, resulting

in repeated measurement data, but it can be anything, such as, for example space or energy.

Data in many fields result from a process that is functional. Ramsay and Silverman (2005)

provide many examples.

In functional data analysis, the existence of a smooth function x is assumed. This function

gives rise to data yj, superimposed by measurement error εj, usually observed at discrete

time points tj, such that yj = x(tj) + εj. Although the curves are sampled for a finite set of

time-points, the observations are supposed to belong to an infinite-dimensional space. The

functional form of the data is often reconstructed from the discrete observations by assuming

that the finite-dimensional space is spanned by a basis of functions. Consider a basis φ =

{φ1, . . . , φK} and represent the functional data xi(t), for patient i, by a linear combination of

the K basis functions: xi(t) =
∑K

k=1 aikφk(t). The basis coefficients are estimated so that the

constructed curve optimally fits the data for a certain degree of smoothing. The number of

basis functions can be chosen in terms of a bias-variance trade-off (Ramsay and Silverman,

2005).
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4. Principal Component Analysis of Functional Data

For high-dimensional multivariate data, a dimension reduction via principal component

analysis (PCA) is usually performed prior to applying a statistical procedure in order to

avoid the effects of the curse of dimensionality. The principal components (Hotelling, 1933),

in the multivariate situation when data for N subjects is obtained for p variables, are defined

as:

fim =

p∑
j=1

βjmxij, i = 1, . . . , N. (1)

with βjm a set of orthogonal weights that maximize the variation in the fim. The solutions

to this maximization problem are given by the eigenvectors of the eigenequation V β = λβ,

with V the p × p sample variance-covariance matrix. A sequence of eigenvalue-eigenvector

pairs (λm, βm) satisfies this eigenequation, with βm orthogonal.

For functional data, a continuous index s is taking over the role of the discrete index j in

(1). The principal component scores, for univariate functional data, are obtained as the inner

product of two functions, the weight function and the data function (Ramsay and Silverman,

2005):

fi =

∫
β(s)xi(s)ds, i = 1, . . . , N.

A sequence of weight functions βm(s) is chosen such that they define the most important

modes of variation in the curves, conditional on the weights to be orthonormal. So,

(1) 1
N

(
∫

βmxi)
2 is maximal,

(2) ‖β2
m‖ =

∫
(βm)2 = 1,

(3)
∫

βmβk = 0, k 6= m.

Functional principal component analysis is also tantamount to solving an eigenequation.

Define the sample variance-covariance function as v(s, t) = 1
N

∑N
i=1 xi(s)xi(t). Then V , in

the functional version of PCA, is a variance operator and transforms a function β as V β =
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v(., t)β(t)dt. The eigenequation can then be expressed as:

V β(s) =

∫
v(s, t)β(t)dt = λβ(s), (2)

where β are eigenfunctions now instead of vectors. Web Appendix A describes how the

solutions to this continuous functional eigenanalysis problem (2) can be obtained.

When extending functional PCA to M -variate functional data, the weight functions become

M -vector functions β = (β1, . . . βM)
′
, with βl depicting the variation in the lth dimension

(Berrendero et al, 2011; Ramsay and Silverman, 2005). The principal component scores are

again linear combinations of the data:

fi =
M∑

m=1

∫
βmxm

i ,

where the weight functions βm are solutions of an eigenequation system V β = λβ. V is the

covariance operator as defined before, vii(s, t) is the covariance operator for the ith functional

data dimension and vij(s, t) the cross-covariance operator between dimensions i and j. The

eigenequation translates to a system of equations:

v11β
1 + v12β

2 + . . . + v1mβm = λβ1,

v21β
1 + v22β

2 + . . . + v2mβm = λβ2,

...

vm1β
1 + vm2β

2 + . . . + vmmβm = λβm.

In practice, a standard principal component analysis is carried out on a vector Zi concate-

nating all data functions of patient i.

5. Density for Functional Data

Model-based clustering identifies homogenous subgroups of patients using a mixture model

for the density function of the data. Delaigle and Hall (2010) use the Karhunen-Loève

expansion to introduce the notion of a probability density for functional data.

The basis, yielding a minimum value for the total mean squared error when decomposing
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a stochastic process X(t) as an infinite linear combination, is the set of orthogonal eigen-

functions of the process itself:

X(t) = µ(t) +
∞∑

j=1

fjβj(t).

If µ(t) = 0, i.e., for a centered process, the composition is referred to as the Karhunen-Loève

expansion (Karhunen, 1947; Loève, 1978). The basis coefficients are random variables, in

contrast to the coefficients resulting from, for example, a polynomial basis. The random

variables fj are uncorrelated, have zero mean and variance λj. We denote the distribution of

fj by fj. The variables fj follow a Gaussian distribution and are stochastically independent

for a Gaussian process.

Let p(x|h) = P (‖X −x‖ 6 h) for h > 0 and ‖X −x‖ the L2-distance between X and x.

Then, p(x|h) is the probability that X belongs to a ball of radius h centered at x. Delaigle

and Hall (2010) show that this probability can be written as a product of the densities fj,

corresponding to the largest eigenvalues:

log p(x|h) = C1(r, θ) +
r∑

j=1

logfj(fj) + O(r), (3)

where fj(fj) = fj(fj(x)) is the density of the j principal component score evaluated for the j

component score for x; r = r(h) diverges to infinity as h decreases to zero, and C1 depends

on h and on the infinite eigenvalue sequence, θ. Based on (3), a natural surrogate for the log

density of functional data is provided by the average of log densities of the r largest principal

components. This log-density l(x|r) = r−1
∑r

j=1 logfj (fj) captures variation with x up to

order r.

6. Clustering of Functional Data

An excellent review of approaches to clustering functional data is presented by Jacques

and Preda (2013). They classify the approaches into four categories: raw-data clustering,

two-stage procedures, model-based procedures and nonparametric techniques for clustering
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functional data. We opt for a model-based clustering, using principal components. This

procedure tackles the functional nature of the data, simultaneously performs a data reduction

and cluster exercise, while at the same time allowing for complex covariance structures in

the multivariate longitudinal profiles.

Jacques and Preda use the approximation of the probability density for functional random

variables to fit a parametric mixture model to univariate functional data (Jacques and Preda,

2012) and to multivariate functional data (Jacques and Preda, 2013). We briefly summarize

the different steps of their algorithm.

Assume the existence of a latent group indicator Z = (Z1, · · · , ZK) for K clusters. For

subject i, Zg
i = 1 if its curves xi belong to group g, 0 otherwise. Let Z have a multinomial

distribution with mixing proportions π1, . . . , πK (
∑K

g=1 πk = 1). Under these assumptions,

the unconditional approximated density of X is equal to

f
(q)
X (x; θ) =

K∑
g=1

πg

qg∏
j=1

fj,g(fj,g(x); λj,g).

When X is a Gaussian process, the fj,g are Gaussian. The parameters θ =

{(πg, λ1,g, · · · , λqg ,g)16g6K} and q = (q1, · · · , qK) are estimated by maximizing the pseudo

completed log-likelihood via an iterative EM algorithm:

L(q)(θ; {X1, · · · , Xn}, {Z1, · · · , Zn}) =
n∑

i=1

K∑
g=1

Zg
i

(
log(πg) +

qg∑
j=1

log(fj,g(fi,j,g(xi))

)
,

where fi,j,g is the jth principal component of curves xi belonging to group g.

At iteration h, the E-step of the EM-algorithm evaluates the conditional expectation of

the pseudo completed log-likelihood, with respect to unknown Zg
i , given the observed data
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and current parameter estimates:

Θ(θ, θ(h)) = Eθ(h) [L(q)(θ; X, Z)|X = x]

=
∑n

i=1

∑K
g=1 Eθ(h) [Z

g
i |X = x]

(
log(πg) +

∑qg

j=1 log(fj,g(fi,j,g(xi; λj,g)))
)

'
∑n

i=1

∑K
g=1

πg
Qqg

j=1 fj,g(fi,j,g(xi);λj,g)PK
g=1 πk

Qqg
j=1 fj,g(fi,j,g(xi);λj,g)

×
(
log(πg) +

∑qg

j=1 log(fj,g(fi,j,g(xi; λj,g)))
)

where fj,g(fi,j,g(xi); λj,g) is the value of fj,g for X i = xi.

Before executing the M-step, Jacques and Preda (2013) update the group-specific principal

components fj,g. For this purpose, a weighted principal component analyses is fitted, with

weights Eθ(h) [Z
g
i |X = x]. Furthermore, the class-specific dimensions qg are selected by

means of the scree-test of Cattell (Cattell, 1966). After these intermediate steps, the M-

step maximizes Θ(θ, θ(h)) with respect to θ.

Jacques and Preda note that this procedure does not guarantee an increase in the pseudo

likelihood between two iterations. The reason for this is that an approximation to the density

of functional data is used. They advise to pre-run the algorithm a couple of times with

different (random) starting values, using a small number of iterations. The best solution

among these is then to be used as the starting point for the algorithm with a large number

of iterations (Biernacki, 2004). This empirical strategy increases the chance of convergence

to a local maxima.

7. Consensus Clustering

Cluster ensembles are collections of individual solutions to a given clustering problem (Strehl

and Ghosh, 2002). Let X = {x1, x2, . . . , xn} denote a set of objects/samples, where each xi

is some α-dimensional data vector. A partitioning of the n objects into k clusters can be

represented as a set of k sets of objects (Cl|l = 1, . . . k) or as a label vector λ ∈ Nn. The cluster

algorithm (function) to obtain this label vector is called a clusterer Φ. The label vector λ
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containing the class identifiers is not unique. The class labels can be permuted arbitrarily

without changing the underlying partition. The resulting partition can be a soft (fuzzy) or a

hard (crisp) partition. Results obtained from applying different clusterers Φ on a dataset can

be quite different but all equally plausible. The problem of combining multiple partitionings

into a single clustering is referred to as cluster ensembles. It is assumed that the consensus

cluster is less likely to be biased towards the models (Φ) used in the separate analyses and

more likely to reflect the underlying structure of the data. Day (1986) and Leclerc (1998)

studied the consensus of hard partitions; fuzzy consensus clustering has been investigated

by Gordon and Vichi (2001).

Intuitively, the final consensus is the partition of the n objects that shares most infor-

mation with the original clusterings. Consensus clustering synthesizes the information in

the elements of a cluster ensemble into a single clustering, often by minimizing a criterion

function measuring how (dis)similar consensus candidates are from the ensemble (the so-

called optimization approach to consensus clustering). Since there is no relation between the

labels assigned to object i by a clusterer (Φ1) and another clusterer (Φ2) the cluster ensemble

problem is more difficult than a classifier ensemble problem. This label correspondence issue

is the main problem that has to be dealt with when clustering ensembles. The problem can

be solved via the Hungarian method (Kuhn, 1955). An additional issue is that the number

and shape of the input clusters may be different and that the optimal final number of clusters

is often not known in advance.

To state the cluster ensemble as a problem of mapping a set of r labelings, λ(1,...,r),

to a single consensus clustering, λ, a consensus function Γ, Nn×r → Nn is needed: Γ :

{λ(q)|q ∈ {1, · · · , r}} → λ. An estimate λ̂ is often obtained by maximizing (minimizing)

a criterion/objective function measuring how (dis)similar consensus candidates are from

the ensemble. Measures for dissimilarity and similarity are key ingredient to clustering
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(ensembles). Let d be a suitable dissimilarity measure; most popular criterion functions

are of the form

L(λ) =
∑

wbd(λb, λ)p, (4)

where wb is a weight given to element λb of the ensemble, and p > 1. If p = 1 the

consensus solution is called a median of the ensemble, while p = 2 gives least squares

consensus partitions (Gordon, 1999). A variety of methods are available to minimize criteria

of this form; fixed-point algorithms for soft Euclidean and Manhattan consensus partitions,

greedy algorithms, SUMT algorithms, and exact solvers (Hornik, 2005). A multiplicity of

(dis)similarity measures are described in the literature. Among the ones commonly used are

the Euclidean and Manhattan dissimilarity of the memberships (Dimitriadou, Weingessel and

Hornik 2002), the Rand index (Rand 1971, Gordon 1999), Normalized Mutual Information

(Strehl and Ghosh 2002), the Katz-Powell index (Katz and Powell 1953), the Jaccard index,

etc. The maximization in (4) ranges over all possible k-partitions (Sthrel and Ghosh, 2002).

An exhaustive search over all possible clusterings with k labels for the one with the maximum

ANMI is in general not possible. Dimitriadon, Weingessel and Hornik (2002) have shown

that optimal matching can be determined very efficiently when agreement is expressed as

Euclidean partition dissimilarity. Web Appendix B illustrates the idea of concensus clustering

for the normalized mutual information (NMI).

To evaluate the reliability of a partition of a data set, the fuzziness in the partitioning

can be investigated. In fuzzy clustering, a data point does not completely belong to just one

cluster but has a probability of belonging to each cluster. Points on the edge of a cluster,

may be in the cluster to a lesser degree than points in the center. The uncertainty of a fuzzy

partition can be quantified via the the Partition Coefficient,
∑

i,j µ2
i,j, and the Partition

Entropy,
∑

i,j H(µi,j), where H(u) = ulog(u)− (1− u)log(1− u) (Bezdek 1981).
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8. Telemonitoring in the Management of Heart Failure Study

The intent of the TElemonitoring in the MAnagement of Heart Failure study (TEMA-HF1)

was to investigate whether intensive follow-up of chronic heart failure patients—through

modern communication technology, facilitating collaboration between general practitioners

and a heart failure clinic—could reduce mortality and re-hospitalization rate. Details regard-

ing the design and results of TEMA-HF1 are reported elsewhere (Dendale, 2012).

Chronic heart failure (CHF) is characterized by recurrent hospitalizations due to fluid

overload and/or worsening of renal function. To reduce morbidity, mortality and healthcare

cost, regular adjustment of the treatment of CHF patients is needed. Telemonitoring proofs

to be a valuable instrument to collect day-to-day measurements of important parameters,

resulting at the end in an improved clinical outcome.

In the TEMA-HF1 study, 160 CHF patients, hospitalized in 7 Belgian hospitals, were

included between April 2008 and June 2010. Patients were randomly assigned to receive

usual care (UC) after discharge, or to be intensively followed for up to 6 months by telemon-

itoring (TM). To illustrate the methodology outlined in this article, only data from the TM

group was used. For this group, the telemonitoring device daily transferred data on body

weight, blood pressure (systolic and diastolic), and heart rate. Missing information on two

consecutive days provoked an alert, patients were contacted to motivate them to make the

measurements. At baseline, additional patient characteristics were collected: sex, age, heart

rhythm, cardiac muscle fibre stretch as measured through NTprobBNP, a fitness indicator

(according NYHA class indication) and the left ventricle ejection fraction (LVEF), which is a

measure of heart performance. Four TM patients left the study prematurely for motivational

reasons, 4 died during the course of the 6 month study, and 16 were hospitalized at least

once for heart failure related reasons.

Although alerts were sent out when the longitudinal measurement were missing for two
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consecutive days, quite some missingness is present in the data. Twenty-eight percent of

the patients did receive an alert concerning missing information for the heart rate, 64%

concerning the blood pressure measurements and 84% concerning body weight (Dendale,

2012).

The ability, of the 4 daily-measured biomarkers, to discriminate between patients needing

re-hospitalization in the near future and patients not needing to be hospitalized, has been

investigate by Njeri Njagi et al. (2013). They fitted a joint model for the time to re-

hospitalization and the longitudinal biomarker. The model results in a dynamic predic-

tion, i.e., a patient-specific probability for re-hospitalization. This probability is estimated

based on info in the longitudinal biomarker (the level of the biomarker and changes in the

biomarker), and can (theoretically) be updated daily with every new value of the biomarker

being collected.

9. Results

Information about the extent of missingness in the heart failure data is presented in Tables 1

and 2.

[Table 1 about here.]

[Table 2 about here.]

Baseline characteristics are fairly complete. About one out of four patients does not have

information for the six minute walking test (WALK). On average, 76% of the patients’

daily measurements for the biomakers were recorded. Meaning that on average for 137

days out of 180, heart rate, diastolic and systolic blood pressure were communicated to

the heart failure clinic by means of the telemonitoring device. The heart failure data has

particular features. Heart rate and blood pressure are recorded by the same device and thus

simultaneously missing or present. The periods lacking telemonitoring data, are, in general,
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not too long (average duration is 6 days, median duration is 1 day). However, some patients

are featured by longer periods of lacking data. About 5% of the periods, with missing info

on consecutive days, lasts longer than 2 weeks. Fifteen patients (8%) dropped out and left

the study prematurely (before day 170). The mean follow-up time is 163 days.

The EMB algorithm implemented in AMELIA (Honaker and King, 2009) was used to

obtain ten complete data matrices. A natural logarithm transformation was applied to the

longitudinal measurements of heart rate, blood pressure, and body weight in order to normal-

ize the distributions. The imputation model included all patients’ baseline characteristic. For

the daily-measured biomakers a smooth model over time was imposed, with patient specific

time trends. Specifically, a cubic spline model was specified. The EM algorithm can suffer

from numerical instability when the number of parameters in the imputation model is high

and/or when the degree of missingness is high. Therefore, a ridge prior of 10% was used.

Multiple imputation leads to valid results when the imputation model is correctly specified

and missingness is missing-at-random (MAR). MAR cannot be formally tested for. But the

accuracy of the imputed values can be judged by over-imputing. Each observed value, in

succession, is treated as if it was missing. After a large number of imputations, it can be

investigated if the actual observed value falls within the range of imputed values. Based on

this technique it can be concluded the imputation model is acceptable (graph not shown).

The model-based cluster algorithm for multivariate functional data, described in Section 6,

was then carried out on each completed data set. Basically the method boils down to applying

a parametric mixture model to the surrogate density of the functional data. Multivariate

functional principal components analyses is a key building block for as much as the surrogate

density function is determined by the PC scores. Since the units of the four biomarkers are

different (kg, bpm, and mmHg), the data were first normalized, Y (t) = R(t, t)−1X(t))

with R(t, t) =
√

(V (t, t)), whereupon the contribution of the 4 biomarkers, in defining the
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principal components, is the same. The response profiles were first smoothed by means of

a cubic spline basis with 69 basis functions. A patient’s evolution in diastolic, and systolic

blood pressure, heart rate and weight can be well summarized by the first three principal

component scores. Sixty-nine percent of the variability in these biomarkers is explained

by three principal components: 28% (range 27–29%) is attributable to the first principal

component, 22% (range 21–25%) to the second principal component and finally the third

component adds another 19% (range 18–20%). These are percentages averaged over the ten

imputed data sets. Graphical displays of the normalized curves of the 4 responses and of the

principal component scores can be found in Web Appendix C.

The model-based cluster algorithm was applied to the surrogate densities of each of the ten

completed data sets separately. For each data set, the algorithm was initialized by running

fifty random initializations, for 40 iterations. The random initialization resulting in the best

solution (i.e., the highest pseudo likelihood value), is used as the starting point for a longer

algorithm with 500 iterations. The threshold of the Cattell scree test was set to 0.05. An

increase in the pseudo log likelihood value less than 1e-5 was specified as the stopping criteria.

Code for R developed by Jacques and Preda (2013) was used.

For the obtained soft two-class solutions, information about the cluster sizes, the estimated

orders for the surrogate density functions, and the fuzziness are given in Table 3. The

Euclidean agreement between the 10 elements of the ensemble ranges from 0.67 (data set 4

and 10) to 0.94 (data set 3 and 6), with a mean Euclidean agreement of 0.80.

[Table 3 about here.]

The agreement among the ten imputed data sets is of particular interest. This measurement

quantifies the uncertainty in partitioning the heart failure patients, induced by the presence

of missing data. The two-class cluster solution for member 4 of the ensemble, results in a

partition of (31,49) patients, for member 6 this is (15,65).
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Subsequently, two-class consensus clustering was used to synthesize the information in

the 10 partitions—resulting from the model-based clustering— into a single clustering.

The Euclidean distance was used as dissimilarity measure, and the consensus solution was

obtained by maximizing the objective function. A fixed-point algorithm, implemented in

the R package CLUE (Hornik, 2005), was used. This algorithm results in a soft consensus

partition.

The results are presented in Table 3. Partitioning of the 80 patients, based on their profiles

for diastolic and systolic blood pressure, heart rate, and weight results in groups of sizes

63 and 17. The average agreement between the consensus clustering and the 10 members

of the ensemble equals 0.78 (range 0.65–0.86). The fact that a patient is not necessarily

assigned to the same cluster for each of the 10 imputed data sets introduces uncertainty in

the consensus cluster assignment. This uncertainty is measurable via a patient’s probability

of belonging to the cluster. The normalized partition coefficient—measuring the uncertainty

in a fuzzy partition — equals 0.36 for the resulting consensus clustering. The fuzziness for the

consensus clustering is generally higher than the fuzziness of the 10 members of the ensemble.

The fuzziness for the consensus result, reflects uncertainty in allocation as present in any

cluster procedure, increased by uncertainty due to missing information in a patient’s profile.

The cluster allocation is clear cut for most patients. For the 65 patients assigned to cluster

1, the average probability of belonging to cluster 1 is 87%. For cluster 2 this probability

equals 89%. No relation has been found between the proportion of missingness in a patient’s

pattern and its cluster membership. Twelve patients (19%) of cluster 1 were re-hospitalized

at least once during the study, in cluster 2 four patients (24%) were re-hospitalized at least

once. This difference is not statistically significant (χ2 =0.005, p-value = 0.94).

It is well documented (Hajnal and Loosveldt, 2000; Bradley and Fayyad (1998); Pena,

Lozano and Larranaga, 1999) that cluster results are sensitive to the preferred algorithm
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and the randomly selected starting values. Likewise for the proposed method, alternative

options and settings could lead to different partitions of the heart failure data.

The final step in the outlined procedure (Section 7), i.e., the consensus clustering, involves a

number of choices. The (dis)similarity measure, the objective function, and the optimization

algorithm have to be decided. For the heart failure data, Web Appendix D describes the

susceptibility of the method in terms of some of these choices. The choice of the distance

measure and procedure to optimize the objective function was not very important. The

choice of the scree-test threshold, or the number of principal components, to be used in the

approximation of the surrogate density, on the other hand does influence the cluster results.

For the first imputed data set, the number of principal components was forced to be equal

for the two clusters, and changed from 1–10. It is seen that the optimization only converges

when four principal components are used; and that the number of patients with unstable

group allocation increases with the number of principal components diverging from 4. For

the heart failure data, we conclude that the final cluster result is rather sensitive to the

number of principal components selected by the scree-test.

10. Discussion

In this paper, a procedure for clustering high dimensional multivariate data with missing ob-

servations is proposed. Functional data analysis often utilizes dimension reduction techniques

such as principal component analysis. Dimension reduction techniques require complete

data matrices. To overcome this problem, the data were completed by means of multiple

imputation. Each imputed data set was subjected to a cluster procedure for multivariate

functional data. Consensus clustering was subsequently applied to summarize the ensemble

of partitions into the final cluster result.

The uncertainty in cluster membership, due to missing data, was characterized by means

of the agreement between the members of the ensemble and the fuzziness of the consensus
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clustering. The usefulness of the method was illustrated on the heart failure data. However,

a number of topics are still open for further investigation.

The functional representation of raw data in general involves some smoothing. In this

work the data was smoothed by a cubic spline basis with 69 basis functions. But alternative

smoothing methods—including other basis function, local weighting methods and rough-

ness penalty approaches—could have been used. They all have in common that smoothing

parameters (e.g., the number of basis functions, bandwidth of kernel function or penalty

parameters) have to be optimally chosen.

The class-specific orders, used to describe the pseudo likelihood, are chosen through the

threshold of the Cattle scree test. This is a heuristic method. Other heuristic and statistical

procedures could be used to determine the number of components to be retained (Jackson,

1993).

Information criteria like AIC and BIC are generally used to determine the optimal number

of clusters. These criteria can be obtained from the pseudo likelihood, but are not very useful.

Only relative comparisons between a set of models attempting to fit a given dataset can be

done with these. The amount of data used in the algorithm, depends on the class-specific

orders resulting from the Cattle Scree test. Thus it is not guaranteed that the data used in

different models is identical, which hampers the determination of the number of clusters.

Breaban and Luchian (2011) have defined a new information criterion, CritCF. This

criterion takes into account the number of clusters and the number of variables for ranking

partitions. This criterion could be valuable in addressing two issues at once, the issue of

selecting the class-specific orders and the issue of determining the optimal number of clusters.

The proposed algorithm was applied on ten completed data sets, but the choice of the

number of imputed data sets is still an open topic.
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Figure 1. Steps of the proposed procedure.
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Table 1
Number of patients with missing information at baseline.

Characteristic # of patients Characteristic # of patients
Age 0 LVEF 2
Gender 0 NTPROBNP 4
Diastolic Blood Pressure 0 REG-AF 0
Systolic Blood Pressure 0 NYHA 0
Heart Rate 0 WALK 26
Weight 0
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Table 2
Percentage of days with missing information.

Biomarker mean median
Diastolic Blood Pressure 24 14
Systolic Blood Pressure 24 14
Heart Rate 24 14
Weight 20 7
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Table 3
Number of patients assigned to clusters 1 and 2.

Imputed Dataset
1 2 3 4 5 6 7 8 9 10 consensus

# of patients
Cluster 1 63 62 63 49 62 65 53 62 65 62 63
Cluster 2 17 18 17 31 18 15 27 18 15 18 17

# of principal components
Cluster 1 6 6 6 6 6 6 6 7 6 7 -
Cluster 2 5 5 5 53 5 5 6 6 5 6 -
Fuzziness 0.24 0.22 0.25 0.37 0.28 0.23 0.53 0.27 0.22 0.22 0.36


