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Abstract

Spatial smoothing models play an important role in the field of small area estimation (SAE). In
the context of complex survey designs, the use of design weights is indispensable in the estimation
process. Recently, efforts have been made in these spatial smoothing models, in order to obtain
reliable estimates of the spatial trend. However, the concept of missing data remains a prevalent
problem in the context of spatial trend estimation as estimates are potentially subject to bias. In
this paper, we focus on spatial health surveys where the available information consists of a binary
response and its associated design weight. Furthermore, we investigate the impact of nonresponse
as missing data on a range of spatial models for different missingness mechanisms and different
degrees of missingness by means of an extensive simulation study. The computations were done
in R, using INLA and other existing packages. The results show that weight adjustment to correct
for missingness has a beneficial effect on the bias in the missing at random (MAR) setting for all
models. Furthermore we estimate the geographical distribution of perceived health at the district
level based on the Belgian Health Interview Survey (2001).

Keywords: Complex Survey Design, Disease Mapping, Hierarchical Bayesian Modeling, Inte-
grated Nested Laplace Approximation, Missing Data.



1 Introduction

Health surveys are an important source of information when investigating the geographical distri-
bution of diseases. Hierarchical spatial smoothing methods are well developed and used in a fairly
standard manner in disease mapping to infer about the geographical distribution of diseases (see
e.g. Elliott et al. [1], Waller and Gotway [2], Lawson [3]). However, health surveys are typi-
cally complex in design, with complex sample selection methods for drawing the sample from the
population. Examples of possible sampling designs include stratified sampling, cluster sampling,
convenience sampling, etc. An overview can be found in Schaeffer et al. [4].

Approaches to take into account the complex survey design can be grouped into design-based,
area-level and unit-level approaches. The most commonly used design-based method is the Horvitz-
Thompson (HT) estimator [5]. The HT estimator is a weighted estimator, with weights equal to
the inverse of the sampling probability. The idea of weighting is to make the sample as similar as
possible to the population. This estimator is design consistent and provides reliable inferences in
large samples, but it can be very inefficient, especially when sample sizes are small (Basu [6], Rao
[7]). In unit-level approaches, inference is built on a model of the health outcome, which takes into
account all key features of the sampling design such as weighting, stratification and clustering.
These models can become very complex as a large number of variables need to be included in the
model. In addition, key variables that are required for inclusion of individuals in the sample may
be unavailable (Gelman [8], Little [9], Pfefferman [10]). Design-based inference can be model-
assistent, such as the generalized regression estimator (GREG), bringing together model features
and design-based inference. Chen et al. [11], Mercer et al.[12] and Vandendijck ef al. [13] de-
scribe methods of incorporating the design weights within a spatial hierarchical model. In this
paper, we compare a number of these proposed methods and investigate the effect of nonresponse
on the estimation of the geographical distribution of the outcome of interest.

In addition, nonresponse often occurs in surveys. It is often the case that selected individuals
may not want to participate in the survey or answer only part of the questions. The effect of this
missingness on inference is two-fold. First, as it reduces the sample size, it will lead to a reduced
precision of the estimates. Second, incompleteness can lead to biased inference, as the population

that do respond to the question might differ systematically from the population that do not respond



to the question of interest. Different analysis approaches exist for dealing with incompleteness
of data. Focusing on incomplete data under the missing at random (MAR) assumption, we can
group the methods into weighting methods, imputation methods and full information maximum
likelihood methods (Rubin [14], Little ez al. [15]). In the weighing methods, subjects that have no
missing observations are weighted in order to compensate for the removal of subjects that do have
missing observations. In the imputation methods, plausible values for the missing observations
are filled in. Full information maximum likelihood methods using only the available data yield
appropriate likelihood-based inference under an MAR mechanism. Weighting has been widely
used in many public health studies, and therefore is the focus of interest in this paper.

The goal of this paper is to investigate the effect of nonresponse in a complex survey on the
estimated geographical distribution of disease prevalence and compare the performance of differ-
ent models under missingness. In Section 2, we revise spatial smoothing methods that can be
used to estimate the geographical distribution of the health outcome in the presence of a complex
sampling design. Also, weight adjustments are discussed for incomplete data. In Section 3, a
simulation study is conducted to investigate the impact of missingness of the estimated spatial dis-
tribution. Section 4 presents an application of the methods to investigate geographical differences
of individual’s perceived health based on the Belgian Health Interview Survey, with emphasis on

the complex sampling design and incompleteness of the outcome.

2 Methodology

Denote Yj; as the binary response value of the i individual in area k (i=1,....Ny and k = 1,...,K),
with Ny the population size in area k and N = Z,’;l Ny the overall population size. We assume that
the population size is known for each area k. Interest is in the area-specific population prevalence

Py, defined as

P, = v 2 Yk (D

In order to get an estimate of the area-specific prevalence, a random probability-sample is taken

from the population, in which individuals are sampled from the population with a known sample
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probability 7;,. The sample size in area k is ng, where some of the n; could be zero. We define
n= ZkK:] ny as the total sample size. The sampled responses are denoted by y;;. Note that some
of these responses could be missing, as some of the individuals might not respond to the question.
We define an indicator variable r;; which indicates whether the sampled individual i in area k
responded to the question (r;z = 1) or not (r;z = 0). We define s; as the total set of individuals
which are sampled from district k, where |s;| = n, and s,t as the set of individuals that responded
to the question of interest, where |s;| = my represents the number of individuals which responded
in area k.

The area-specific unweighted mean estimator based on the available data can be expressed as

PNV = — Z Yik- )

IES‘

While this estimator is unbiased in the situation of a simple random sampling design without
replacement and missingness occurring completely at random, it lacks the ability to take the design
and missingness features into account due to the absence of the sampling weights in the estimation
process. In the next sections, different approaches are discussed that can take into account both the
sampling design and incompleteness. Sections 2.1 and 2.2. give an overview of available methods
to account for the non-random sampling design. Section 2.3 then discusses how these methods can

be adapted to account for incompleteness of the sample.

2.1 Horvitz-Thompson Estimator

Weighting is commonly used in the analysis of survey data. As surveys are often characterised by
a complex design, statistical methods need to take into account the design in order to correct for
the loss of representation of the population. The idea of weighting is to make the sample as similar

as possible to the population, by assigning a weight to each individual in the sample. This design

1

weight could be calculated as the reciprocal of the probability of being sampled, namely wlff{ =z

The famous Horvitz-Thompson estimator for the area-specific prevalence is

Yics, Wik
PIT = ST Zw,kylk (3)
ZtEsk ik zesk



(Horvitz and Thompson [5]), with Wﬁ{ the normalised design weight defined as
wd
Wz( lk ( 4)

Zlesk

This normalisation involves the reweighting of the sample to match the sample size in area %, i.e.

Yics, W9 = ni. The variance of ¥ can be expressed as follows

N 1 2

— SHT - HT 2

var(P") = (1 - —) wﬂc (yir — ). 5)
ni ny — 1 =

The Horvitz-Thompson estimator is a design-unbiased estimator of P;. Note that this direct es-

timator uses only the observation from the area of interest (Rao [16]). However, when sample sizes

are too small to produce reliable or stable estimates, it is better to use a unit-level estimator that

borrows strength across the different areas by using the observations from all sampled individuals.

2.2 Area-Level Methods

Unlike the design-based methods, the area-level approaches assume a model conditional on the
sampled observations and generally provide more accurate estimates (Pfeffermann [17]). The
estimates of an area obtained by a design-based approach are considered to be direct as they are
based solely on the measurements of the given geographical unit. Area-Level methods on the
other hand produce indirect estimates, as these methods rely on the presumption that area-specific
estimates borrow information from other areas as well. This makes it possible to find more accurate
estimates (see e.g. Ugarte ef al. [18], Salvati et al. [19], Chambers et al. [20], Rao and Molina
[21]). Also, it creates the advantage that estimates can be obtained in areas with no sample, as
opposed to the design-based methods where the observations within an area are assumed to be
independent of observations acquired from surrounding areas. A linear model with area-specific
random effects was first proposed by Fay and Herriot [22] in order to obtain survey estimates for
income. Numerous applications have originated from the Fay-Herriot model, some of which are
included in the following section.

In this section, we present several Bayesian hierarchical smoothing models that were used by

Vandendijck et al. [13] and Mercer et al. [12], each consisting of three stages. At the first stage,



the likelihood of the response is defined conditional on some latent variables (random effects). At
the second stage, the latent variables are defined, whether or not on a transformed scale. At the
third stage, the prior distributions on the variance parameters for the random effects and on any
other unknown parameters are specified. In all models, vague priors were specified in order to

minimize their effect on the inferential evaluation.

2.2.1 Unadjusted Binomial Model (UB)

The simplest approach ignores the sampling design. At the first stage it is assumed that

Yk’Pk ~ Binomial(nk,Pk)
. (6)
logit(Py) = Bo + ux + vk,

where yi = ¥ic, Vik are the aggregated responses in area k and uy and vy are area-specific random
effects. At the second stage, we assumed a normal distribution for the uncorrelated heterogeneity
which describes the heterogeneity in the data , i.e., vy ~ N(O, 6,,2), whereas we considered an
intrinsic conditional autoregressive model (ICAR) (Besag ef al. [23], Rue et al. [24]) for the

correlated heterogeneity u as follows:

2
)~ N Y ok, (7)

1

U |u, —

kel Ktk a0

where ne(k) indicates the set of neighbors and a; the number of neighbors for a given area k.

According to common convention, two areas are considered neighbors if they share a common

boundary (Lawson [25]). Other choices for the neighborhood scheme are discussed by Bivand et
al. [26].

Compared to the Horvitz-Thompson estimator, this model allows to account for both spatial de-
pendence and heterogeneity, via the random effects specifications. This will result in the smoothing
of extreme local estimates in areas with small sample sizes, which is a desirable effect as it prevents
over-fitting. However, this model is not adjusted for the survey design, as the sample weights are
not included in the estimation process. This implies that if the design of the survey is informative,
the resulting estimates of the Unadjusted Binomial will be rendered biased. The models described
below resolve this by actively using the sample weights to adjust for the outcome of interest yy,

while retaining the advantage of the reduction in variability.
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2.2.2 Logit Normal Model (LN)

A simple way to allow spatial smoothing of the Horvitz-Thompson estimator is to assume a hierar-
chical spatial smoothing model for 15,5 T Because Islfl T'is restricted between 0 and 1, an empirical
logit transformation of ﬁ,fi T'is considered. The resulting model is given by:
yiV| P ~ N (logit(P), o7 -
logit(P) = o+ ux + v,
where yEV = logit(PT) and the variance o7 is set equal to var(PHT)/ (ﬁszT(l — P T)2> (see

Mercer et al. [12]).

2.2.3 Arcsine Root Normal Model (AN)

As an alternative to the LN model, Raghunathan et al. [27] proposed the use of an arcsine-square
root transformation of the direct estimates. This method assures that the sampling variances, which
usually depend on the population proportions, are stabilised approximately (see also Efron and

Morris [28]). This leads to the following model specification:
VAN~ N (sin—‘ (\/Pk> ,sz>
/s )
sin~ ( Pk> = Bo + ug + v,

where y’,jN = sin~! (w /ﬁ,fl T) and the variability sz = # depends on the effective sample size
Tk

nE = BT (1~ PHT) gz (BUT).

2.2.4 Pseudo-Likelihood Model (PL)

The method described by Congdon and Lloyd [29] employs a weighted likelihood whereby the
response values are weighted using the normalised design weights Wﬁc (see also Asparouhov [30]).
Mercer et al. [12] noted that this model can be re-written as a simple hierarchical model of the

form

y;:L’Pk ~ Binomial(nkapk)
(10)
logit(Pk) = ﬁ() + U ‘|‘Vk7

with ny =Yies, Wg(yik, where WZ( is defined as in (4).
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2.2.5 Effective Sample Size Method (ES)

Chen et al. [11] proposed a similar approach to the pseudo-likelihood model, but accounting for
the sampling design via the use of the effective sample size (n*). The effective sample is defined
as the sample size that is needed to match the variance from a simple random sample with that
under a complex sampling design. Under the assumption of a simple stratified sampling design,

this leads to an effective sample size n” equal to
nf 1 — P / Var

with ﬁr(f’kH T as specified in Section 2.1. The model can be described as:

yE|P, ~ Binomial(nZ , ;)
(11
logit(Pk) = ﬁ() + U + vy,

where y£ = nf . PHT

represents the effective number of cases. The use of this adjusted binomial
likelihood gives a better reflection of the sampling distribution as compared to the normal approx-

imation in (8).

2.3 Unit-Level Methods (MB)

In contrast to previous area-level methods, Royall [31] proposed a predictive hierarchical model at

the unit level, in order to define an estimator for P:

Zm+ZM~ (12)

iesy lESk

The first term sums up the observed response values of the sampled individuals in area k, whereas
the second term refers to the unobserved individuals from the population and needs to be estimated
from the sample. A flexible model is formulated for the observed data y;;, which is then used to
predict the response values for the non-sampled individuals (y;;). Note that, the prediction model
for y; should take into account the variables that affected the sampling design, as the responses
could depend on these characteristics. As this might lead to a prediction model with many covari-

ates and as commonly not all covariates are publicly available, the available design weights can be
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used as a proxy for the population strata and used as a variable in the prediction model (Zheng and
Little [32-33]).

Chen et al. [34] proposed a Bayesian penalised spline predictive estimator in a survey sam-
pling setting for a finite population proportion, whereby the inclusion probability was incorporated
directly into the model as a covariate by means of a binary p-spline probit regression model. Van-
dendijck et al. [13] extended these ideas to the context of small area estimation. Two versions of

the hierarchical weight-smoothing model are considered:

yﬁ.‘]/([B '|Py. ~ Bernoulli(Py)
(13)
logit(Py) = Bo + f(Wix) + ug + v,

or

Y| Py ~ Bernoulli(Py)
(14)
logit(Pi) = Bo + f (%) + ux + v,

where f(.) is a non-parametric function in either the design weights or the sample probabilities,
specified by a random walk model of order one (RW1) or a penalised spline (SP).

As we assume that not all information on the design is made available for the researcher (only
the design weights for the sampled individuals), Vandendijck et al. [13] proposed a method to
resample weights for the non-sampled individuals. Based on the work of Si et al. [35], a Bayesian
model was developed in order to estimate the design weights of non-sampled individuals. For this
model, we divide the data into L; strata, whereby L; is the number of unique design weights in
area k. Denote nj;, as the sample size in poststratification cell [ (/ =1,...,L;) in area k and Ny as
the corresponding population size. Under the assumption of independent sampling, one can model
the sampling probabilities for a given individual i in area k with a Bernoulli distribution, whereby
the probabilities are given by

PRy =1)= ;—"k (15)

In this formula c; fulfills the roll of a positive normalising constant, in order to ascertain that the
probabilities sum up to sample size n;. Given the fact that all individuals in poststratification cell /
have the same weight, we can define wi; = w(;); and the expected value of ny; can be expressed as

. L . .
E(ny) = ek | Since ny = Y., %, nix, we can represent the normalising constant as c; = nkﬁ.

w(l)k =1 W(l)k



The vector of sample sizes in area k (nyy, ..., ny,x) is assumed to follow a multinomial distribution,

conditioned on ny, for each k:

Nk Nik
W)k Wk
(n1k7"'7nka) ~ le P le M (16)
Zl 1 W ) Zl 1 W(l)k

In the above parametrisation, the population sizes Nj; are unknown parameters. Because of the fact
that they are also unnormalised, we normalise them in such a way that they sum to the population

size in area k after fitting them:

=% N, (17)

After obtaining information on Ny, (12) can be rewritten as

. 1
P = v (Z niyr+ Z Nix — i) Plk) (18)

1 =1

ZlElylk

where we define y; = o

An estimate for the prevalence Py in each poststratification cell [
and area k can be obtained from (13) using the unique normalised weights Ww;. While this ap-
proach yields a point estimate for the population prevalence P, inference is based on the posterior
distribution of B,. This posterior distribution is constructed by taking samples from the posterior
distribution of Nj; and Pj;. These samples can be inserted B times in (18) in order to get B posterior

samples for P.

2.4 Adjustments for incomplete data

When dealing with nonresponse, weights need to be adjusted to take into account the reduced
sample size and the possible imbalance due to missingness. A first approach is to work with the
complete data as they are and normalise the weights according to the observed sample size m; in

each area. This leads to the use of the following weights
) wd
W =y ik (19)

d -’
ZIG sy Wik

Because we only adjust the sample size in this case and leave the design weights unchanged, this

procedure will be called the semi-adjusted method. However, since missingness might lead to an
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imbalance of the observations, e.g. when missingness is related to any of the design variables, it
is important to re-weight observations using poststratification. This can be done by defining a new

weight w? , defined as the product of the design weights w§< and the missingness weight wig. This

new missingness weight wi can be defined as P(#:l), whereby we can model this probability
using the following logistic regression model
logit(P(rix = 1)) = o+ BXin, (20)

where Xj;, is a vector containing information on the /4 covariates which might have an effect on

the missingness process for individual i in area k. We can characterise the missingness weights as

m __ l+exp(a+BXy)

ik = “exp(atBXy) - The final weight is then normalised in such a way that it corresponds to the

number of non-missing observations:

W
A L 1)
Zte sy W W,k

Since we adjust both the sample size as well as the design weights for missingness, this proce-
dure will be called the adjusted method. All spatial smoothing methods as discussed in Section
2.1 and 2.2 can be adapted to the setting of incomplete data by substituting the weight used in
the HT estimator as either the semi-adjusted or the adjusted weight. Note that this weighting ap-
proach assumes that missingness does not depend on the unobserved outcome itself, and thus that
missingness is not MNAR.

The hierarchical weight-smoothing model allows for an additional correction to account for
nonresponse. Since the normalised weights are used directly as a covariate effect, this model
allows us to discern between the effects of the design weights and the missingness weights. This

separation can be expressed as follows:

MB3 | Py ~ Bernoulli(Py,)
(22)
logit(Py) = Bo+ /1 (W) + fa (W) + e+ v

This model has the advantage to be able to separate the impact of the design variables with those
variables that affect the missingness probability. Indeed, the variables that explain the nonresponse
may not be the same as the design variables. We can expand the previous model even further

by adding an overdispersion parameter &, with & ~ .4"(0,67). This parameter will account
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for all remaining variability for individual i of district k, further improving the prediction of the

area-specific prevalence (11). Thus, model (22) could be extended to:

Y%\ Py ~ Bernoulli(Py)
(23)
logit(Pi) = o+ f1 (W) + fo(Wik) + g + vy + €.

The behavior of these methods under different degrees of missingness will be investigated in

the next section.

2.5 Prior specification

All area-level and unit-level methods described in Sections 2.2, 2.3 and 2.4 were implemented
using the Integrated Nested Lagrange Approximation (INLA) approach, described by Rue et al.
[36]. INLA was implemented as an R-package and can be downloaded at http://www.r-inla.org/.
It serves as a faster alternative to Markov Chain Monte Carlo (MCMC) methods when performing
statistical inference for latent Gaussian models. INLA computes accurate approximations to the
posterior marginals via numerical integration. Carroll ez al. [37] performed an in-depth comparison
in the ability to recover estimates between INLA and OpenBUGS.

Prior distributions for the parameters 8y, 62,52 and 62 need to be specified. In general vague
priors are preferred in order to minimize their effect on the inferential evaluation, as was investi-
gated by Browne and Draper [38] and Gelman [39]. We assume a zero-mean normal distribution
with a high variance for the baseline parameter y. Furthermore, we assign a Gamma(0.5, 0.008)
prior for both the spatial and non-spatial precision parameters o, > and o, 2, similar to Mercer et
al. (2014). Lastly, we consider the prior distribution for o,, 2 to be Gamma(1,0.01), in accordance
with Wakefield (2009).

Furthermore, as a sensitivity analysis, we investigated the effect of the neighborhood structure.
As mentioned in Section 2.2, a first-order neighborhood structure was used in the analysis. In order
to investigate the robustness of the estimates with respect to the definition of the neighborhood
structure, an additional neighborhood scheme was considered. Hereby, we consider two areas i;
and i to be neighbors if they share a common boundary or if they both share a boundary with a

common neighbor i3.
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3 Simulation Study

The performance of all models described above are investigated via a simulation study. Section 3.1
describes the design of the simulation study in which we investigate the performance of the models

under different missing data mechanisms. Section 3.2 summarises the results of the simulations.

3.1 Design of simulation study

The 43 administrative districts of Belgium, with a total population size of around ten million, were

chosen to be the geographical setting of interest (see Figure 1). The population data was stratified

into 18 age-groups, each defined by a five-year interval. The total population size and average age

in the population is presented in Figure 1 (upper panels). The indicator x denotes the 18 different

age-groups in which the Belgian population is categorised (x = 1 for ages 0 — 4, x = 2 for ages
th

5-9, .., x =18 for ages 85+), and Y;(;); is the binary response variable for the /" individual

belonging to age stratum j in districtk (i = 1,...,N,j=1,..., 18,k =1,...,43).

Simulating Population Prevalences

We assume that the binary response variable follows a bernoulli distribution
Yi(jy ~ Bernouilli(Py),

where Pj; is the population prevalence in stratum j of district k. The following two models are

considered for the simulation of the population prevalences:

(M1) : logit(Pj;) = logit(0.10) +0.30 - x;( )

(M2) : logit(Pj) = logit(0.10) +0.30 - x;( jyi + ux + i,
with x;(;); the age category of individual / in area k. Compared to (M1), a convolution term
ur ~ ICAR(0, 62) with precision 6, 2 ~ Gamma(1.0,0.5) was added in (M2), encompassing an

uncorrelated random effect v ~ .4#7(0,0.10). The spatial random effects were generated using

INLA. The values for these random effects were held constant across all simulations, allowing us
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to investigate the prediction of the underlying spatial trend. The true district-specific prevalence
can then be calculated by averaging the simulated prevalences Pji, weighted by their corresponding

population sizes N j:
J
P, — Zj:lekij
Y
j=1Vjk
These are presented in Figure 1 (lower panels). It can be observed that, in both prevalence models,

there is some degree of spatial heterogeneity.

Simulating Survey Sample

A survey sample of size 5000 is taken from the simulated population using a stratified probability

design, according to the following procedure:

1. The sample size per area is taken proportional to the population size in each area (V). A
multinomial distribution is employed in order to generate the sample sizes n; per district in order

to ensure the aforementioned proportionality:

N N,
(ny,...,ng) ~ Multinomial (5000; ! k > .

Yo MR Nk
Note that the sampling procedure depends solely on the population sizes of the districts, not on the

spatial distribution of the simulated outcome.

2. Next we distribute these samples across the different strata within a district k. We denote g i as
the selection probability stratum j is selected in district k. In this setting we assume that this prob-
ability depends on the age of the individuals, assuming older individuals have a higher probability
of being sampled. Defining x j; as the age group in stratum j and district k, this could be expressed

as follows:
log(xjx+1)

B Y ilog(xj+1)

The stratum-specific sample size n j; within each district are consequently simulated using a multi-

qjk

nomial distribution:

(l’l]k7 ...,I’LJk) ~ Multinomial(nk;qlk, ...,q]k).
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3. Finally, we generate the number of cases within this sample using a binomial distribution ac-

cording to the presumed population prevalences:
yjk ~ Bil’l(njk,ij).

Note that, for a simulated sample, the survey design weight of observation i in district &, wgc =
wf(j) i 18 calculated as the inverse of the proportion of observations that are sampled from the

population in stratum j within district k.

Simulating Nonresponse

As we want to investigate the effect of nonresponse on the estimates’ spatial trend, different miss-
ing data mechanisms will be considered. It is assumed that only (1 — )% of the respondents
answer the question of interest, with 8 = (0,20,40,60)%. Different missing data mechanisms can
be underlying this, and the assumed scenarios are summarised by the probability weights qlf'(‘j) 10
Table 1. The probability to have not observed the response for the i individual in area k is then
equal to P(r; j; =0) = B%

In (S1), no nonresponse is present in the data; all outcomes are observed. These results will
be compared with the different scenarios in which some of the outcomes are unobserved. In (S2),
some of the outcomes are missing completely at random (MCAR). This means that the observed
outcomes are a random sample from the set of individuals that are contained in the survey. The
amount of missingness is given by a fixed parameter . In (S3)-(S6), the missing data mechanism is
Missing at Random (MAR), in the sense that the probability of having a missing response depends
on age. Here, it is assumed that missingness increases (S3) or decreases (S5) with age. In the
appendix, some other age-related missingness mechanisms were considered and their results were
displayed. In scenario (S4) and (S6), we additionally assume that the amount of missingness is
spatially varying (S-MAR), incorporating a spatial random effect u; in the missingness probability
which follows a zero-mean ICAR model. Finally, in (S7) and (S8), we consider the setting where
the missing data mechanism is missing not at random (MNAR), assuming that the amount of
missingness depends on the outcome of interest. In (S8) a spatial random effect was added, adding

extra variability into the sampling scheme. For the simulation of the spatial random effect in (S4),
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(S6) and (S8), a Gamma(0.5,0.008) distribution was used for the spatial precision parameter o, 2

similar as in Mercer et al. [12] and Chen et al. [11]. The simulated spatial random effect is
presented in Figure 2 in the appendix.

The weights which adjust for missingness, wi = w”(’ > are computed by the reciprocal of the

i(j)k
sample size within each stratum and district of the dataset wherein the observations with a missing
response are excluded and the sample size in the matching stratum and district in the original data
set with no missing values. The final weights which are used in the analysis, taking into account
both the sampling design and nonresponse, are defined as w}, = wﬁc -wi. This implies that every

observation i in stratum j and district k has the same weight.

3.2 Simulation Results

For each combination of a prevalence model and missing data scenario we run S = 100 simulations.
The results of the unweighted estimator (2), Horvitz-Thompson estimator (3), unadjusted binomial
model (5), logit normal model (7), arcsin root normal model (8), pseudo-likelihood model (9),
effective sample size method (10) and the hierarchical weight-smoothing models (12), (13), (16)
and (17) are discussed in this section. For each of these expressions both the semi-adjusted (14)
and adjusted (15) weights are considered.

In the presence of missing data, the weights need to be redefined. As explained in Section 2.3,
we can either use the semi-adjusted weights W?,Z, which correct for the number of respondents, or
use the adjusted weights W}, defined as function of design weight and missingness weight. Figure 2
shows the effect of different definitions of the weight on the bias of the area-specific prevalence
estimates. The box plot corresponds with the bias of the area-specific prevalences for the 100
simulations. These results clearly indicate that the definition of the weights can have a serious
impact on the results. While results between the semi-adjusted and adjusted weights are similar
under the MCAR missing data mechanism, there is a large discrepancy between these under the
scenario of MAR. This is not unexpected since the age-distribution of the sample is distorted
when missingness is MAR, but not when missingness is MCAR. This indeed indicates that post-
stratification of the weights for important covariates is very important when missingness occurs in

the sample.
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(s)

To evaluate the estimates, the squared bias and mean squared error (MSE) are used. B, rep-
resents the estimated prevalence for area k, based on the s simulated sample, and ﬁk = %Zs ﬁk(s)
is the corresponding averaged value over all simulated surveys. The overall squared bias and MSE

are then defined as:

K ~ 2
Biasz = Z <Pk—Pk> s

1 & 1 3 /4 <2
Variance = — —Z (Pk(s)—Pk> ;
Kkzl S_ls:l

MSE = Bias? + Variance.

Furthermore, we calculate the nominal coverage probabilities of the estimated prevalences. Ta-
bles 2, 3 and 4 summarise the results under the simulated model M1 (model with age-trend only),
whereas Tables 5, 6 and 7 correspond to the prevalence scenario M2 (model with additional spa-
tial heterogeneity, not explained by the covariate). These tables only include results for adjusted
weights.

The results show that, as expected, the UNW estimator can have very large bias. The larger
the discrepancy between sample and population, the larger the bias. Note that in some scenarios
the missingness slightly corrects for the imbalance between sample and population, decreasing the
bias in the sample. In general, however, this estimator cannot be recommended. Also the MSE of
this estimator is very large, in general, as a result of large variability. As this estimator is a direct
estimator, making use only of the information within an area, this estimator can be very unstable,
especially for areas with a small sample size.

Overall, the HT estimator, making use of the adjusted weights, performs much better in terms of
bias. Not only in the situation of complete data, but also when data are incomplete, bias is small.
In the setting of missingness not at random however (S7 and S8), the bias of the HT estimator
is increased again. This is not unexpected, as the weighting approach makes the assumption of
missingness at random (indeed, missingness probabilities are assumed to be independent of the
missing outcomes themselves). Looking at the MSE, it can be observed that MSE is often large
for the HT estimator. This is again due to the fact that the estimator can be unstable when sample

size is small, as only information within an area is being used.
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Comparing the different indirect modeling approaches (logit normal model, arcsine root nor-
mal model, pseudo-likelihood model, effective sample size method and weight-smoothing model)
versus the direct estimators, it can be observed the indirect approaches outperform the direct es-
timators, both in average squared bias, average MSE and the coverage probabilities of the 95%
credible interval. The average squared bias of all indirect estimators is small, as long as missing-
ness is MCAR or MAR. When the underlying prevalence process is spatially structured, the MB
and PL estimators outperform all other methods, leading to smallest bias, MSE and best coverage
for all scenarios. However, when the underlying prevalence process is spatially unstructured, all
area-level and unit-level methods behave similar in terms of bias and MSE. Overall, MAR and
MNAR leads to a deflation of the coverage for the AS, PL and ES models. Coverage for the area-
level and unit-level methods is good for MAR scenarios. Further note that even in the situation
that no spatial heterogeneity term is present in the true prevalence model, both the area-level and
unit-level models including the spatial heterogeneity term improve the fit in terms of both squared
bias and MSE. This shows that, indeed, the shrinkage of extreme local estimates, by the use of the
area- and unit-level estimators, is advantageous in the small area situation.

Different versions of the MB method were considered, either using a spline or random walk
(RW1) in the prediction model. Only small differences are observed between MB1 based on spline
(SP) or RW1, though, in general, the squared bias based on the spline model is slightly larger than
based on the RW1 model. However, the MSE is smallest for the spline model as it leads to smallest
variability. When the prevalence model does not contain any spatial random effect (model M1), we
do not see any improvement of model MB3 (using separate weights with or without overdispersion)
as compared to MB1. However, when the prevalence model does contain a spatial random effect
(model M2), a small improvement is observed. This can be due to the increased variability in the
prevalence model, which can be better modeled via the extended models.

When the missingness process is spatially structured, the bias in the area-specific prevalences
increases. Note that the S-MAR reflects a situation in which the missingness probabilities depend
on an (unobserved) environmental factor. In the current analyses, only observed covariates were
taken into consideration in the missingness probabilities, and therefore are mis-specified. This

explains why there is an increase in bias for all methods in the S-MAR scenario as compared to
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the MAR scenario. While the increase in bias can be large for the direct estimators, this increase is
limited for the area-level and unit-level estimators, as they further model the spatial heterogeneity.
Incorporation of a spatial heterogeneity term in the model for the missingness probabilities might
further improve the estimation.

In Figures 3 and 4, we present the spatial trends for the HT, AN and MB1 (based on RW1)
models, under prevalence model M1 and M2, respectively. Here, missingness scenarios S2 and S6
are of interest, whereby 20% nonresponse was simulated. When comparing the estimates in Figure
3 to the true proportion in Figure 1 (bottom left panel), it is apparent that the HT, AN and MB1
(RW1) methods have difficulties to recover the true proportion in the southern districts. In those
areas, lower sample sizes were acquired, as these were generated proportionally to the population
sizes (Figure 1 (top left panel)). This renders the design-based estimator HT less reliable and
inefficient, while the AN and MB1 estimators retrieve the true population proportion significantly
better in the MCAR setting. However, when looking at the results of the S2 and S6 mechanisms in
Figure 4 for the spatial prevalence model, all three estimators perform well.

In addition, Figures 3-6 show the estimated trends for simulation scenarios S1-S4, under both
prevalence models (M1 and M2). Here the weights adjust for 60% missingness. These results can
be found in the appendix.

A sensitivity analysis of the priors of the random effects is presented in the appendix. Tables 8-
11 show the summary statistics for the models which assign a Gamma(2, 1) prior for the precision
parameters o, 2 and o, 2. Similarly, Tables 12-15 display the results when considering the prior
distribution of 6,2 and 6, 2 to be a Gamma(1, 0.5). Furthermore, we display the summary results
for the analyses using the second-order neighboring structure in Tables 16-19. Overall, while one
can detect small deviations across the different simulation settings, the results show that the models
perform consistently when applying small deviations for the prior distributions and neighborhood

structure.
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4 Application to the Belgian HIS data set

We apply the methods described in Section 2 to the Belgian Health Interview Survey (HIS) (2001).
The Belgian HIS aims to investigate the health status of the Belgian population. The selection pro-
cess of the respondents comprises three steps. Firstly, respondents are selected based on the region
in which they live (Flanders, Wallonia and the Brussels region). A total sample size of 12.770 was
drawn from the population (4255, 3234 and 5281 respectively for the three regions). Secondly,
a stratification is carried out at the level of the ten provinces. Lastly, within the provinces, the
sampling units are selected in three stages. Municipalities are selected proportionally to their size
within the provinces and form the primary selection unit (PSU). Within these municipalities a sim-
ple random sample of households was drawn, forming the secondary sampling unit (SSU). Lastly,
not more four individuals, the tertiary sampling unit (TSU), were interviewed in each household.

For this analysis the variable “perceived health” was investigated. Participants answered the
question “How is your health in general?”” on a scale from “Excellent” to “Very Poor”. This ordinal
variable was combined into two groups, using the dichotomization which can be conferred in Table
20. People which answered to be feeling “Very Good” or “Good” were allocated value 0, while
people who responded to be feeling “Reasonable” or worse got value 1 for the newly constructed
variable. This allows us to use the methods, outlined in Section 2.

The data collection was carried out over the same 18 age groups that were used in Section
3. Only participants who were older than 15 were taken into account for the analysis as this
question was only asked to individuals older than 15. The line plot in Figure 5 depicts a positive
correlation between the age of the participants and the perceived health, as well as with the amount
of missingness, after age 15.

In total, 10419 eligible observations were taken into account for the analysis. When using the
constructed binary perceived health variable, 2383 participants (22.87%) stated that their general
health was reasonable or worse, 6998 respondents (67.17%) found their health in general to be
good or better. 1038 (9.96%) people did not answer this question. The sample sizes in the different
Belgian districts range from 43 to 2576. The amount of missingness varies between 2% and 23
%, where the districts Ath and Mons in the province of Hainaut exhibit the largest degrees of

incomplete data. These results are visualised in Figure 7. Four districts (Dendermonde, Dinant,
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Ieper, Veurne) were not sampled in the HIS study and are highlighted in black. The original design
weights were poststratified in order to account for any distributional differences for age and gender.
We can define the poststratified design weights wld(j) ;. as follows:
N.
d J
Witk = Wik 57—
) Tie(j) Wil

where w;( ), and wf(j) , are the original design weight and the poststratified design weight respec-
tively for individual 7 in stratum j and area k. The unnormalised missingness weights were con-

structed using the following logistic regression models:

(W1): logit(P(ryx = 1)) = m; = Po+ P1Age; + PGender;,

(W2) : logit(P(rix = 1)) = n;i = Po+ Pi1Age; + BoGender; + uy + vy,

We model the probability of observing the response of interest for individual 7 in area k in terms
of the age and gender (gender; = 0 for males and gender; = 1 for females) of the given respondent.
As we also want to investigate whether methods can be further improved by incorporating a spatial
trend in the weights, we extended the model by incorporating a spatial (u;) and non-spatial (v;)
random effect in the estimation process which will account for any spatially correlated and uncor-
related variability not yet explained by the design variables Age and Gender. Finally, we can again
characterise the missingness weights as wi = %(p,;g’).

The normalised design weights vary from 0.3865 to 5.595 while the normalised weights which

adjust for nonresponse range between 0.0282 and 3.575.

4.1 Data Application

The right panel in Figure 5 shows the box plots for comparing the estimates associated with the
adjusted and semi-adjusted weights obtained by the models described in Section 2. Furthermore,
the hierarchical smoothing models, whereby the non-parametric function is specified in terms of
the two normalized weights are visualized as well. One could observe that the effect of the adjust-
ment of the weights is limited in the estimation process. This will be further investated by means

of a simulation study in the next section.
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We can also evaluate the unit-level methods based on their goodness-of-fit. In Table 23 the
deviance information criterion (DIC) values for each of the models are shown. It could be observed
that the approaches which use the adjusted weights in the estimation process perform slightly
better, compared to those which make use of the semi-adjusted weights. Furthermore, we can
observe that incorporation of the spatial heterogeneity into the missingness weights (W2) lead to
higher DIC values as compared to the methods using weights that do not incorporate the spatial
heterogeneity (W1). This is an indication that the spatial trend of the nonresponse does not play a
major role in this application. Because the semi-adjusted weights do not adjust for the missingness
in the data, no estimates for the MB3 models were obtained, since the missingness weights can
not be estimated. Also, we could not compute the DIC statistics for the MB3 (SP+OD) and MB3
(SP) methods under the W1 and W2 approach respectively. For these two situations, INLA could
not allocate enough memory in order to perform the estimations. It should be noted that, with the
exception of the five MB estimators, the DIC values cannot be compared among the different area-
level methods as the outcome of interest varies between them. When looking at the DIC values of
the hierarchical weight-smoothing models, we can conclude that the MB3 models perform best in
terms of goodness-of-fit.

Figure 8 presents the spatial distribution of the prevalence for six modeling approaches: The
unweighted estimator, the Horvitz-Thompson estimator, the arcsine root normal estimator, the
pseudo-likelihood estimator and two hierarchical weight-smoothed methods: one whereby the
weights are modeled through a non-parametric function which is specified by a random walk,
while the other utilises a penalised spline and an overdispersion parameter. The spatial trend based
on the UNW and HT estimator are most variable. Note that no estimates could be obtained for the
areas in which no samples were taken. As such, these areas are colored in black. In addition, it can
be observed that those areas where the sample size is smallest or missingness is highest have the
most extreme prevalence estimates. This instability was also observed in the simulation study. The
estimated spatial trend based on the indirect estimators behave in a similar way. There seems to be
an important North-South trend, with higher prevalence of poor perceived health in the Southern
part of Belgium. In this analysis, all methods lead to very similar results. In order to understand the

robustness of the methods with respect to the design and missingness, we performed an additional
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simulation study.

4.2 Simulation Setting

In the simulation study, the stratified clustered multi-stage design of the HIS data set was kept
intact. The survey sample has the same amount of observations as the 2001 Health Interview
Survey, namely 10419. The sample size and its distribution across the different strata remain the
same over all simulation runs. For each simulation run, we assume that the response variable is

missing. Consequently we use the following approach to simulate the response.

Simulating Prevalences

We assume that the binary response variable follows a bernoulli distribution
Yj; ~ Bernouilli(Py),

where Py, denotes the population prevalence for individual i of district k. The following two models

are considered for the simulation of the population prevalences:
logit(Px) = M = Po + Pi * Agey + B2 * Genderyy + uy + vy

A convolution term u; ~ ICAR(0,62) with precision 6, > ~ Gamma(1.0,0.5) was used, encom-
passing an uncorrelated random effect vy ~ .47(0,0.10). The spatial random effects were gener-
ated using INLA. The values for these random effects were held constant across all simulations.
We also include an additional individual-specific random effect €, which follows a .#7(0,0.10)-
distribution as well. The parameter estimates ﬁo, ﬁl and [§2 were yielded from the same logistic
model, performed on the original data set. We assume a bernoulli distribution when simulating the
outcome variable Yj;:

¥ = Bern(Py)
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Simulating Nonresponse

The probability of not observing the response for the i/’ individual in area k is then equal to P(ry =

0)=p Ziﬁq”z , whereby B = 0.10 (conform to the overall nonresponse percentage in the HIS data
set) and Table 21 contains the values of ¢}. By using these values 8 and ¢}, we aim to simulate

the missingness pattern across the age groups as seen in Figure 7 (right panel).

Results

In the analysis of the simulated data sets, we will focus primarily on the (W2) scenario when
estimating the missingness weights as this approach will account for more variability than (W1).
Figure 6 displays the area-specific estimates of the 100 simulation runs whereby the adjusted,
semi-adjusted and separate weights were applied in the estimation process. It is apparent that the
effect of adjusting for nonresponse is fairly limited. An explanation could be found in the fact that
the missingness distribution does not express a distinct trend across the eligible age groups and
that there is a low amount of missingness overall. When performing the analysis, INLA indicated
having difficulties allocating memory for the analyses of the MB3 models using a penalised spline,
both with or without the overdispersion term. This caused some of simulation runs to abort the
estimation process prematurely for these methods. However, the data sets for which the models
did converge, showed a clear bias as can be seen in Figure 6. As such, when performing an analysis
with these latter two models, one has to be cautious when interpreting the results. The summary
statistics for the adjusted weights (W2) are provided in Table 22. Overall, the HT and AN perform
best in terms of squared bias, closely followed by the MB1 models. When looking at the MSE
statistics, the unit-levels MB1 and MB3 (RW1) models perform considerably better than the area-
level models. And thus, it follows the same conclusion as the previous simulation study in Section
4. As mentioned early, the unit-level models MB3 models whereby a penalised spline was applied
performs considerably worse than the other approaches.

Note that the mechanism of simulation used in this section is different from the earlier simula-
tion study, as the current simulation study does not involve any sampling variability. This exercise
however still shows that models should properly reflect features of the sampling design, otherwise

inferences are likely to be distorted.
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5 Conclusion and Discussion

In this paper, the impact of missingness in health surveys on the estimation of the area-specific
prevalences was investigated. A comparison of different methods to estimate the area-specific
prevalences were compared, ranging from an unweighted estimator, the Horvitz-Thompson esti-
mator, to area-level and unit-level approaches taking into account spatially structured random ef-
fects. Weighting methods were preferred in this paper, as weighting can be used to account for both
the design of the survey as well as for missingness. Weighting methods are only valid under the
assumption of missing completely at random and missing at random, confirmed by the simulation
that pointed to increased bias in the case of missingness not at random. The area-specific preva-
lences are well estimated based on the weight smoothing methods, taking into account the design
and missingness weights as a covariate in the model and accounting for possible spatial correlation
via a convolution model. Also coverage is very well retained for the unit-level weight smoothing
methods. If missingness is spatially structured, this has a negative impact on the prevalence esti-
mation, leading to slightly increased bias and MSE. In conclusion, the use of weight-smoothing
methods accounting for poststratification weights to account for incompleteness in the data are
very promising when estimating the spatial trend based on survey data.

While common interest in this paper was on the estimation of the area-specific prevalence, the
unit-level models also allow to study the risk after accounting for know risk factors. It would be of
interest to study how a standardized rate can be obtained in the context of small area estimation.
This is a topic of further research.

Another extension of the proposed method is the use of an alternative spatial prior. While the
ICAR prior is commonly used in spatial modeling of lattice data, other spatial priors were proposed
in literature. An interesting option is the use of the Leroux prior [40], as the Leroux prior has some
advantages over the ICAR prior in terms of the ability to estimate the correlation effect.

Inference for all considered models (both area- and unit-level models) was done in the Bayesian
framework. The traditional approach towards Bayesian inference is the use of MCMC (Markov
Chain Monte Carlo methods). We however investigated INLA (Integrated Nested Laplace Ap-
proximations), as it serves as a faster alternative to MCMC methods when performing statistical

inference for latent Gaussian models. Carroll et al. [37] performed an in-depth comparison in the
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ability to recover estimates between INLA and OpenBUGS in the context of spatial hierarchical
modeling. Chen et al. [11] also showed a comparison between INLA and OpenBUGS for esti-
mation of the ES model. It however remains to be investigated how INLA compares with more

general MCMC methods in the specific context of missing data in small area estimation.
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Tables

Scenario  Description Missingness probability weight Overall probability
S1 No missing data q?gj) =1 B=0

S2 MCAR @i =1 B =(0.2,0.4,0.6)
S3 MAR O =1- e B =(0.2,0.4,0.6)
S4 S-MAR q ;. = expit (logit (1 — 55°) +uy) B =(0.2,0.4,0.6)
S5 MAR T = e B =(0.2,0.4,0.6)
S6 S-MAR q ;= expit (logit (55 ) +ux) B =(0.2,0.4,0.6)
7 MNAR a7}y = 0.770+0.91 i) B =(0.2,0.4,0.6)
S8 MNAR 4l = expit (logit (o,7>’iu>ko.9<1—yi<j>k>> n uk> B = (0.2,0.4,0.6)

Table 1: Description of the simulated nonresponse mechanisms
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UNW HT AN PL ES MBI (RW1) MBI1(SP) MB3 (RW1) MB3(SP) MB3 (SP+ OD)

Complete (S1) 16.86 0.65 0.45 0.27 0.33 0.21 0.26 / / /

20% Missingness

MCAR (S2) 16.86(19  0.87®) 0.62®) 0370 0450 0370 0.430) 0.380) 0.414 0.477
MAR (S3) 10.96(19  0.48% 0.36®) 0.243) 0.29(6) 0.21(1) 0.270) 0232 0.27% 0.30
S-MAR (S4) | 112709 054 040® 0.263) 0.3200) 0.23() 0.300) 0.24 0.294) 0.32(7)
MAR (S5) 12.34010 0,62 043® 02765 0330 0.2614 0.30(0) 0.13@ 0.12() 0.17
S-MAR (S6) | 12.31100 0580 0398 0253) 0300 0252 0.280) 0.22() 0.284) 0317
MNAR (S7) 7.81 060 050 061 054 0.30 0.59 0.53 0.55 0.55
S-MNAR (S8) 8.00 058 047 057 049 0.27 0.55 0.51 0.52 0.52

40% Missingness

MCAR (S2) 16.6319  1.140 0.83®) 0491 0.610) 0.57@ 0.66(%) 0.63% 0.640) 0.697)
MAR (S3) 47709 0226) 0210 0170 0220 0214 0.26) 0.19? 0.210) 0.200)
S-MAR (S4) 5.1100 0240 02405 020@ 0.220) 0.25() 0.320) 0.19() 0.25®) 0.23%)
MAR (S5) 7.0309 0389 0307 0.22(0 0.27@ 0.273) 0.328) 0.26 0.29(6) 0.280)
S-MAR (S6) 7.0200 0340 0200 02110 0.240) 0.23 0.30®) 0.27(0) 0.254) 0.250)
MNAR (S7) 0.88 426 428 471 445 453 4.56 4.26 4.38 433
S-MNAR (S8) 1.44 414 389 436  4.00 4.14 4.17 3.47 3.97 3.97

60% Missingness

MCAR (S2) 16.36(10 172 1.28®) 0.83(1) 0.98( 1.120) 1257 1.17® 1.14% 1.210
MAR (S3) 038019 0.18® 0.09® 0110 0.14© 0187 0.20 0.104) 0.08(1) 0.08
S-MAR (S4) 0.6019  0.15D  0.100 0.12® .13 0.20(®) 0.239 0.130) 0.10@ 0.09()
MAR (S5) 1.9919 0100 0.11® 0.13®) 0.157 0.20®) 0.230) 0.15) 0.124) 0.11?
S-MAR (S6) 213019 0.13@ 0130 0.13@) 0150  0.19®) 0.239) 0.177M 0.140) 0.12()
MNAR (S7) 560  19.68 19.08 19.89 18.81 18.96 18.94 18.44 19.29 19.15
S-MNAR(S8) | 623  19.00 1745 18.09 17.06 17.22 17.23 16.52 17.57 17.55

Table 2: Summary statistics of squared bias using adjusted weigths, analysed under the M1 simu-
lation mechanism. The prior distribution of the precision parameters ©, 2 and o, 2 are assumed

to follow a Gamma(0.5,0.008)-distribution. (X 103)
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UNW HT AN PL ES MBI (RW1) MBI (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) | 20.58 6.22 161 062 0.9 0.83 0.76 / / /
20% Missingness
MCAR (S2) | 21.65100 7990 201®) 0831 0920 1.030) 0.950) 1.04(0) 0.954 1.38(7
MAR (S3) 15.8010 704  1.47®) 0.56(D 0.602) 1.030) 0.74®) 1.18() 1.03% 1237
S-MAR (84) | 16.0709 6859 1518 0.58() 0.63? 0.941) 0.750) 1.18(0) 1.040) 1.25()
MAR (S5) 17.0319 721 1588 0.60() 0.65?) 0.96(7) 0.76) 0.87(0) 0.733) 0.75¥
S-MAR (S6) | 17.1000 718 1.59®) 0.60() 0.64( 1.00) 0.750) 1.06(9) 0.954 1.26(7
MNAR (S7) 1275 7.10 164 095 086 1.30 1.14 1.26 1.16 1.45
S-MNAR (S8) | 12.95 7.25 171 094 092 1.24 1.12 1.27 1.11 1.43

40% Missingness

MCAR (S2) 22,9410 10410 250®) 1.08) 1.250) 1.26%4 1.23@ 1.31(0) 1.280) 1.70(7
MAR (S3) 11.7509 9,00 1398 0520 0522 1.200) 0.694) 1.287) 1.12® 1.25(0)
S-MAR (S4) | 11.62019 826 1.41®) 0,510 0.59@ 1.140 0.740) 1.32) 1.124 1.246)
MAR (S5) 139209 9.11® 1518 057D 0582 1.05¥ 0.79®) 1.19(60) 1.06) 1317
S-MAR (S6) | 13.80(19 8,63 1.56®) 0.55() 0.64? 0.97¢% 0.740) 1.23(0) 1.030) 1317
MNAR (S7) 7.91 1264 541 512 474 5.23 5.03 5.18 5.08 5.31
S-MNAR (S8) 8.52 1269 518 473 439 4.85 4.69 4.42 4.68 4.96
60% Missingness
MCAR (S2) | 26.0919 1547 3.130®) 1,580 1.602) 1.840) 1.87% 2.40) 2.330) 2.747)
MAR (S3) 114409 13010 1.56®) 0530 0.622) 1.04® 0.71%) 1.407 1.130) 1.25()
S-MAR (S4) | 11.92019 12910 1348 0522 04701 1.07% 0.740) 1.43( 1.140) 1.29(0)
MAR (S5) 12.9810) 12850 1.41®) 054 (.48 0.99¢4) 0.720) 1.270) 1.080) 1.34
S-MAR (S6) | 13.0510 12.66® 1.60® 05700 0.65@  0.96* 0.730) 1.30(0) .11 1.38(7
MNAR (S7) 1672 3175 2022 2025 19.08 19.64 19.43 18.98 19.66 19.81
S-MNAR (S8) | 18.11 3163 18.69 1859 17.44 18.07 17.93 17.17 18.05 18.29

Table 3: Summary statistics of MSE using adjusted weigths, analysed under the M1 simulation
mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed to follow

a Gamma(0.5,0.008)-distribution. (x103)
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UNW HT AN PL ES MBI (RWI) MBI (SP) MB3(RWI) MB3 (SP) MB3 (SP + OD)

Complete (S1) | 033 095 095 098 0.97 1.00 1.00 / / /
20% Missingness

MCAR (S2) 039 094 095 098 097 1.00 0.99 0.99 0.99 1.00
MAR (S3) 052 095 097 098 098 1.00 0.99 0.99 1.00 1.00
S-MAR (S4) 0.51 095 097 098 0.98 1.00 1.00 0.98 1.00 1.00
MAR (S5) 049 095 097 099 098 1.00 1.00 0.99 0.99 1.00
S-MAR (S6) 049 095 097 098 098 1.00 1.00 0.99 1.00 1.00
MNAR (S7) 0.63 092 092 0.87 0.89 0.96 0.95 0.98 0.98 0.99
S-MNAR (S8) | 0.62 092 092 0.88 0.90 0.96 0.96 0.98 0.98 0.99

40% Missingness

MCAR (S2) 047 093 095 098 097 1.00 0.99 0.99 0.99 1.00
MAR (S3) 079 092 092 0.88 0.88 0.96 0.95 0.99 1.00 1.00
S-MAR (S4) 0.78 092 094 0.89 0.89 0.96 0.96 0.99 1.00 1.00
MAR (S5) 0.71 093 0.96 095 0.96 0.99 0.98 0.99 1.00 1.00
S-MAR (S6) 0.70 094 096 095 094 0.99 0.99 0.99 1.00 1.00
MNAR (S7) 092 0.75 0.61 029 0.29 0.58 0.50 0.74 0.72 0.85
S-MNAR (S8) | 0.89 0.76 0.64 0.36 0.38 0.62 0.56 0.79 0.76 0.86
60% Missingness
MCAR (S2) 056 091 093 098 097 1.00 0.99 0.99 0.99 1.00
MAR (S3) 093 0.85 0.83 0.65 0.64 0.81 0.78 1.00 1.00 1.00
S-MAR (S4) 092 0.86 0.83 0.67 0.67 0.83 0.79 1.00 1.00 1.00
MAR (S5) 0.89 0.89 091 0.82 0.82 0.94 0.92 1.00 1.00 1.00
S-MAR (S6) 0.89 090 091 0.83 0.82 0.95 0.93 0.99 1.00 1.00
MNAR (S7) 0.81 0.53 0.17 0.02 0.01 0.11 0.07 0.29 0.30 0.46
S-MNAR (S8) | 0.80 0.54 0.24 0.05 0.05 0.20 0.16 0.35 0.38 0.50

Table 4: Nominal coverage probabilities using adjusted weigths, analysed under the M1 simulation
mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed to follow

a Gamma(0.5,0.008 )-distribution.
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UNW HT AN PL ES MBI (RWI) MBI (SP) MB3(RWI1) MB3 (SP) MB3 (SP + OD)

Complete (S1) | 0.04 0.04 0.89 0.33 1.76 0.33 0.33 / / /

20% Missingness

MCAR (S2) | 0.03() 0.04® 168% 051® 25200 0.490) 0.507 0.494 0.50(%) 0.480)
MAR (S3) 0.04) 0.05® 1370 0.46® 20100 0.47(6) 0.4707) 0.54®) 0.470) 0.450)
S-MAR (S4) | 0.041) 0.04® 1490 05005 240010 0.50(7) 0.50®) 0.4703) 0.50(0) 0.49¢4)
MAR (S5) 0.02() 0.03@ 1.60® 0.440) 279010 0.47®) 0.477) 0.450) 0.47() 0.45%)
S-MAR (S6) | 0.041) 0.05® 1770 0463 3,030 0.47(9) 0.48( 0.608) 0.470) 0.464)
MNAR (S7) 1.65 170 288 201 4.01 1.99 1.99 2.07 1.98 1.97
S-MNAR(S8) | 1.58 1.65 300 2.03 4.02 2.00 2.01 2.11 2.01 1.99

40% Missingness

MCAR (S2) | 0.05() 0052 2990 0.730) 47601 0.77®) 0.76(%) 0.77 0.760) 0.75®
MAR (S3) 0.04)  0.06@ 283" 0.78%) 432010 0.78(7) 0.78(0) 0.90®) 0.780) 0.763)
S-MAR (S4) | 0.06() 0.06® 282 0763 462010 0.79®) 0.79) 0.780) 0.79(0) 0.784
MAR (S5) 0.020 0.03@ 2679 0.693) 421010 0.757 0.75() 0.828) 0.740) 0.734
S-MAR (S6) | 0.040) 0.05® 309 0760 51200 0.80(®) 0.790) 1.01®) 0.80(7) 0.77@
MNAR (S7) 858 846 1091 9.4  12.07 9.28 9.17 10.55 9.14 9.14
S-MNAR (S8) | 834 840 1139 925 12.61 9.29 9.30 9.70 9.26 9.28

60% Missingness

MCAR(S2) | 0.08) 0.08@ 574 1410 113500 1.53) 1.510) 2.116) 1.500) 1.46M4
MAR (S3) 0.081) 0.11@ 617 1540 10.58(10 154 1.530) 1.54(®) 1.52(4) 1.500)
S-MAR (S4) | 0,07V 0.07® 6.05® 1.483) 10.42(10) 1.56(®) 1.56(7 1.54(0) 1.540) 1.504)
MAR (S5) 0.04) 0.05@ 5110 1510 g4100 1.607) 1.59(0) 1.63® 1.580) 1.56(4)
S-MAR (S6) | 0.05() 0.08® 520 1.603) 8.47(10) 1.677 1.66(0) 1.83®) 1.650) 1614
MNAR (S7) 2840 2839 37.63 3177  38.07 31.97 32.02 3237 31.91 31.94
S-MNAR (S8) | 27.86 2794 3805 31.69 3822 32.04 32.17 33.13 32.05 32.10

Table 5: Summary statistics of squared bias using adjusted weigths, analysed under the M2 simu-
lation mechanism. The prior distribution of the precision parameters ©, 2 and o, 2 are assumed

to follow a Gamma(0.5,0.008)-distribution. (X 103)

35



UNW HT AN PL ES MBI (RW1) MBI (SP) MB3 (RW1) MB3(SP) MB3 (SP + OD)

Complete (S1) | 246 363 630 346 9.28 2.38 2.40 / / /
20% Missingness
MCAR (S2) | 3.15© 4648 836 432 947010 3.03(M 3.0614) 3.130) 3.060%) 3.0612)
MAR (S3) 2980 4268  7.600 3967 78100 2.8701) 2.894) 3.430) 2.8803) 2.88(2)
S-MAR (S4) |2.920) 4.16® 7870 3920 97100 287 2.884) 2.900%) 2.880) 2.87()
MAR (S5) 3.000  4.16® 823 3897 11.68010 2,91 2.930) 2.950) 2934 292
S-MAR (S6) | 3.015) 4250 8210 3957 11.84010) 2.90(1) 2.9203) 3.58(0) 2.924) 2912
MNAR (S7) 470  6.11 893 571 12.77 4.49 451 5.01 4.50 4.50
S-MNAR(S8) | 457 613 907 579  11.90 4.46 449 5.17 4.49 4.49

40% Missingness

MCAR (S2) 4.149 5966 11330 5587 1394010 4,064 4,042 4.050) 4.060) 4.03()
MAR (S3) 3.94@ 5388 11.100 5187 1278010 3.964) 3.970) 4.48(0) 3.96(3) 3.900)
S-MAR (S4) | 3.87®) 524®) 1136 5047 146700 3914 3.92(0) 3.872) 3.9205) 3.86(1)
MAR (S5) 4.05% 533® 11.08® 5107 13.3700 4,03 4.04% 4.19(0) 4.030) 4.0001)
S-MAR (S6) | 4.013) 54308 11.08®) 5177 1539010 4.01@ 4.040) 4710 4,044 3.99)
MNAR (S7) 13.00 1461 1852 1414  20.76 12.78 12.64 16.97 12.61 12.59
S-MNAR (S8) | 12.58 14.55 19.17 1432 20.74 12.69 12.70 14.37 12.68 12.65
60% Missingness
MCAR (S2) | 6400 8.64® 17.179 7.79(6) 27.29(10) 6.082) 6.104) 8.04(7) 6.114 6.061)
MAR (S3) 6.250) 8.03®) 17500 744 251000 6,030 6.02(4) 6.10) 6.02 6.02()
S-MAR (S4) | 6.26© 7.8®3 17510 73507 2519(10) 6.11% 6.100) 6.150) 6.10 6.02(1)
MAR (S5) 5954 75208 15390 7.14D  20.43010) 5.950) 5.92(2) 6.010) 5.930) 5.870)
S-MAR (S6) | 6.14®) 7.97®) 1576 7487 205200 6092 6.11¢4) 6.72(0) 6.103) 6.07()
MNAR (S7) 3643 3884 4825 39.63  50.18 37.77 37.71 38.60 37.66 37.73
S-MNAR (S8) | 36.09 3877 4800 39.13  50.29 37.38 37.52 39.84 37.42 37.48

Table 6: Summary statistics of MSE using adjusted weigths, analysed under the M2 simulation
mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed to follow

a Gamma(0.5,0.008)-distribution. (x103)
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UNW HT AN PL ES MBI (RWI) MBI (SP) MB3(RWI) MB3 (SP) MB3 (SP + OD)

Complete (S1) | 092 0.89 0.88 0.90 0.85 0.95 0.95 / / /
20% Missingness

MCAR (S2) 090 0.87 0.86 0.89 0.82 0.94 0.94 0.94 0.94 0.94
MAR (S3) 091 0.87 0.88 0.90 0.83 0.95 0.95 0.94 0.95 0.95
S-MAR (S4) 091 0.87 0.88 091 0.84 0.95 0.95 0.95 0.95 0.95
MAR (S5) 091 0.87 0.87 090 0.82 0.95 0.94 0.95 0.94 0.95
S-MAR (S6) 091 0.88 0.87 091 0.80 0.95 0.95 0.93 0.95 0.95
MNAR (S7) 0.81 0.81 0.78 0.80 0.73 0.84 0.84 0.83 0.84 0.84
S-MNAR (S8) | 0.82 0.81 0.78 0.80 0.74 0.84 0.84 0.83 0.84 0.85

40% Missingness

MCAR (S2) 0.89 0.84 0.85 0.90 0.80 0.95 0.94 0.95 0.94 0.95
MAR(S3) 0.89 0.86 0.87 091 0.81 0.95 0.95 0.94 0.95 0.95
S-MAR (S4) 0.89 0.86 0.86 091 0.80 0.95 0.95 0.95 0.95 0.95
MAR (S5) 0.89 0.86 0.88 091 0.82 0.94 0.94 0.94 0.94 0.95
S-MAR (S6) 0.89 0.86 0.85 091 0.76 0.95 0.95 0.93 0.95 0.95
MNAR (S7) 056 0.62 0.54 0.58 0.50 0.59 0.59 0.56 0.59 0.60
S-MNAR (S8) | 0.60 0.64 0.57 0.59 0.53 0.60 0.60 0.59 0.61 0.61
60% Missingness
MCAR (S2) 0.86 0.81 0.81 091 0.69 0.95 0.95 0.92 0.95 0.96
MAR (S3) 0.86 0.82 0.83 091 0.70 0.95 0.95 0.95 0.95 0.95
S-MAR (S4) 0.86 0.82 0.81 091 0.70 0.94 0.94 0.94 0.94 0.94
MAR (S5) 0.87 0.83 0.83 092 0.71 0.95 0.95 0.95 0.95 0.95
S-MAR (S6) 0.86 0.83 0.83 091 0.73 0.95 0.95 0.94 0.95 0.95
MNAR (S7) 038 043 033 039 032 0.38 0.39 0.38 0.39 0.39
S-MNAR (S8) | 041 045 035 041 034 0.40 0.40 0.39 0.40 0.40

Table 7: Nominal coverage probabilities using adjusted weigths, analysed under the M2 simulation
mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed to follow

a Gamma(0.5,0.008 )-distribution.
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UNW  HT AN PL ES MBI (RWI1) MBI (SP) MB3(RWI1) MB3 (SP) MB3 (SP + OD)
Complete (S1) | 1689  0.65 063 042 048 0.18 0.22 / / /
20% Missingness
MCAR (S2) 16.9019  0.88) 0.85®) 0.56©) 0.64)  0.34) 0.38(4 0.37@ 0.380) 0.510)
MAR (S5) 10.96(19  0.490) 047® 0316 0.36(7 0.190) 0.24@ 0264 0.250) 031
S-MAR (S6) | 112509 0,54 0.528) 0350 0407 0.21() 0.26@ 0324 0.270) 0.340)
MNAR (S7) 7.80 060 058 054 053 0.70 0.82 0.55 0.63 0.56
S-MNAR (S8) 8.01 059 058 053 052 0.67 0.79 0.55 0.61 0.53
40% Missingness
MCAR (S2) 167019 1,16 1.10®) 0735 0827  0.5801) 0.642 0.68(4 0.670) 0.79(0)
MAR (S5) 476119 023 0220 014D 018  0.18@ 0.22( 0.22(9) 0.180) 0.184
S-MAR (S6) 5.1209 02568 0257 0.181) 0.20@ 0.224) 0.279 0.23(0) 0.220) 0.220)
MNAR (S7) 0.88 427 424 442 421 4.81 4.96 4.05 4.46 427
S-MNAR (S8) 145 416 407 413 392 4.51 4.66 3.84 4.14 3.97
60% Missingness
MCAR (S2) 1636110 1720 1520 1110 1.19@ 1.200) 1.28@ 1.450 1.300) 1.4100)
MAR (S5) 038109 0.189) 0.16(7 0.10® 0.124 0.15) 0.17®) 0.08(1) 0.120 0.120
S-MAR (S6) 0.60119  0.15D  0.13®  0.09) .10 0.22(®) 0.259 0.14(9 0.140) 0.126)
MNAR (S7) 560  19.68 1947 1942 18.54 19.20 19.21 17.99 19.33 19.01
S-MNAR(S8) | 623  19.00 1860 17.97 17.16 17.83 17.96 16.85 17.92 17.63

Table 8: Summary statistics of squared bias using adjusted weigths, analysed under the M1 simu-
lation mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed

to follow a Gamma(2,1)-distribution. (x103)
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UNW  HT AN PL ES MBI (RWI) MBI (SP) MB3(RWI1) MB3(SP) MB3 (SP+OD)
Complete (S1) | 0.04 004 086  0.36 1.74 0.34 0.34 / / /
20% Missingness
MCAR (S2) | 003D 0.04@ 1789 0547 25400 0.52(4) 0.520) 0.71® 0.53(0) 0.460)
MAR (S5) 0.04) 0.05® 146 0.507 205010 0.50% 0.50(6) 0.50®) 0.50) 0.430)
S-MAR (S6) | 0.041)  0.05® 1510 0547 24400 0.53(4) 0.54(0) 0.55®) 0.530) 0.46()
MNAR (S7) 1.65 169 290  2.02 4.02 2.01 2.00 2.08 2.00 1.94
S-MNAR(S8) | 1.59 166  3.08  2.06 4.06 2.02 2.03 2.08 2.03 1.95
40% Missingness
MCAR (S2) | 0.05() 0052 3270 0794 45400 0.82(0) 0.83(7 0.820) 0.84(®) 0.730)
MAR (S5) 0.040 0.06@ 3.03® 0844 410010 0.840) 0.85(7 0.96(8) 0.85(0) 0.740)
S-MAR (S6) | 0.06()) 0.06 2.93©) 0.82¢4) 4.49(10) 0.870) 0.88(7 0.88(8) 0.88(0) 0.77)
MNAR (S7) 855 842 1081 9.17 11.94 9.30 9.22 9.77 9.18 9.09
S-MNAR (S8) | 836 842 1139 936  12.53 9.38 9.38 9.70 9.33 9.21
60% Missingness
MCAR (S2) | 0.08) 0.08@ 555 1544 10.6410 1.670) 1.67® 1.77® 1.67( 1.460)
MAR (S5) 0.08) 0.11@ 6.16® 1.697 10.0300 1.687) 1.69®) 1.67% 1.68(6) 1.460)
S-MAR (S6) | 0,07V 0.07® 6.00® 1.62¢4) 9.96(10) 1.690) 1.70(7) 1.73®) 1.70(0) 1.470)
MNAR (S7) 2840 2839 3542 3204 3773 32.25 32.24 32.85 32.13 31.96
S-MNAR (S8) | 27.86 27.94 3589 31.94  37.94 32.20 32.37 32.50 3227 32.10

Table 9: Summary statistics of squared bias using adjusted weigths, analysed under the M2 simu-
lation mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed

to follow a Gamma(2,1)-distribution. (x103)
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UNW HT AN PL ES MBI (RWI) MBI (SP) MB3(RWI1) MB3 (SP) MB3 (SP+OD)
Complete (S1) | 20.61 6.22 553 274 276 2.01 1.99 / / /
20% Missingness
MCAR (S2) | 21.7109 801 6938 329 32906 2.46(4) 2.430) 2.400 2412 2.670)
MAR (S5) 15.8019 7040  5098®) 274 2670) 2344 2.26(D 2270 2.27@ 2.400)
S-MAR (S6) | 16.07019 684 5848 270 268 2262 2.23(1 2.40¥ 2.260) 2.380)
MNAR (S7) 12.76 7.08 6.10 298 287 2.77 2.81 2.56 2.63 2.64
S-MNAR (S8) | 12.96 7.25 627 305 297 2.79 2.83 2.61 2.62 2.64
40% Missingness
MCAR (S2) | 23.0519 10.49® 867®) 3877 3850 3012 3.0303) 3.08(4 2.99() 3.300)
MAR (S5) 117409 898 7168 2887 2705 27700 2.580) 2.48(1) 2.502) 2.61¢4)
S-MAR (S6) | 11.6410 8240  6.64®) 2697 26305 2.65) 2514 2420 2400 2.490)
MNAR (S7) 791 1262 1095 709  6.68 7.13 7.19 6.35 6.72 6.66
S-MNAR (S8) 8.53 1269 1094 688  6.51 6.97 7.03 6.26 6.43 6.40
60% Missingness
MCAR (S2) | 26.0919 15470 11.08®) 484 45100 4.050) 4.090) 4.40¥ 4.082 4.460)
MAR (S5) 1144109 1301 901® 3257 2933) 3196 3.000%) 2.92() 2.802) 2.99¢4)
S-MAR (S6) | 11.92(19 12910 857®) 314 2790 3.20(0) 3.080) 3.030) 2.87@ 3.034)
MNAR (S7) 1672 3175 2797 2238 21.08 2191 21.83 20.83 21.85 21.75
S-MNAR(S8) | 1811  31.63 2682 21.05 19.74 20.74 20.78 19.51 20.62 20.55

Table 10: Summary statistics of MSE using adjusted weigths, analysed under the M1 simulation

mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed to follow

a Gamma(2,1)-distribution. (x103)
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UNW  HT AN PL ES MBI (RWI1) MBI (SP) MB3 (RWI) MB3(SP) MB3 (SP+ OD)
Complete (S1) | 246 363 665 345 9.11 2.40 242 / / /
20% Missingness
MCAR (S2) |3.169 4.65® 9120 4397 93g(19) 3.082 3.11¢4) 3.94(0) 3.114) 3.081)
MAR (S5) 2980 4270 8420100 402"  7.840) 2.9202) 2.94(5) 2,934 2.930) 2.9001)
S-MAR (S6) | 2924 4.15®) 8380 3967 96510 2.90 2.920) 2.950) 2.930) 2.881)
MNAR (S7) 470 608 950 572 1267 4.52 4.54 5.00 4.54 4.51
S-MNAR (S8) | 459 613 981 582  11.88 4.49 452 4.84 452 4.48
40% Missingness
MCAR(S2) | 4.150 596®) 12649 5487 13.64(10) 3.992) 4,010 4.0209 4,014 3.970)
MAR (S5) 3.956) 5380) 12270 5077 123500 389 3.924) 4.43(0) 3.910) 3.85(1)
S-MAR (S6) | 3.86®) 520 12,190 4907 14.22(10) 3.82) 3.850) 3.87(0) 3.854) 3.80()
MNAR (S7) 1298 1455 1920 1405  20.38 12.73 12.68 14.41 12.64 12.61
S-MNAR (S8) | 12.60 14.55 20.10 1423  20.33 12.68 12.72 13.75 12.68 12.63
60% Missingness
MCAR (S2) | 6400 8.64® 18.08® 773 26.19(10) 6.07 6.09¢) 6.340) 6.10% 6.0111)
MAR (S5) 6.250) 80308 18549 7397 2413000  603@ 6.040) 6.050) 6.054 5.97()
S-MAR (S6) | 6.26© 7.838) 1855 7.32(7) 2436(10) 6.10 6.110) 6.250) 6.11% 6.03(1)
MNAR (S7) 3643 3884 4757 3946 4921 37.78 37.80 38.98 37.72 37.75
S-MNAR (S8) | 36.09 3877 47.16 39.14  49.58 37.47 37.67 38.30 37.59 37.64

Table 11: Summary statistics of MSE using adjusted weigths, analysed under the M2 simulation
mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed to follow

a Gamma(2,1)-distribution. (x103)

41



UNW  HT AN PL ES MBI (RWI1) MBI (SP) MB3(RWI1) MB3 (SP) MB3 (SP + OD)
Complete (S1) | 1686  0.65 062 039 046 0.18 0.21 / / /
20% Missingness
MCAR (S2) 16.9019  0.88¢) 0.84®) 0530 0617  0.48% 0.38 0.37() 0.380) 0.500)
MAR (S5) 10.96(19  0.49®) 047® 0.295) 0.357 0.13(M 0.243) 0232 0.24% 0310
S-MAR (S6) | 11.2509 0,54 0.51®) 0.3305) 0.39(7) 0.15() 0.26@ 0.29(4) 0.270) 0.34(0)
MNAR (S7) 7.80 060 057 054 052 0.66 0.80 0.50 0.62 0.56
S-MNAR (S8) 8.01 059 057 053 051 0.61 0.76 0.61 0.59 0.53
40% Missingness
MCAR (S2) 16.7009 1,16 1.09®) 0.69¢%) 0.79() 1.017M 0.64() 0.66( 0.660) 0.770)
MAR (S5) 476119 023 0220 014D 018  0.16@ 0.22( 0.210) 0.180) 0.184
S-MAR (S6) 5.1209 02568 0257 0.181) 0.200) 0.18@ 0.279 0.224) 0.220) 0.22(6)
MNAR (S7) 0.88 427 422 446 423 457 4.92 4.05 445 427
S-MNAR (S8) 145 416 404 415 391 4.16 4.58 3.69 4.12 3.96
60% Missingness
MCAR (S2) 16.36(10 1720 1537 1,071 1.17@ 2.110) 1.270) 1.40(0) 1.28% 1.380)
MAR (S5) 0.38109  0.18®) 0.140 0.10® 0.120) 0.26) 0.17( 0.07(1) 0.11® 0.11%
S-MAR (S6) 0.6019  0.15D  0.12®  0.09) .09 0.27® 0.24(®) 0.130) 0.13(0) 0.113)
MNAR (S7) 560  19.68 19.38 19.51  18.57 18.50 19.22 18.20 19.34 19.03
S-MNAR (S8) | 623  19.00 1843 1796 17.09 16.68 17.81 16.23 17.84 17.59

Table 12: Summary statistics of squared bias using adjusted weigths, analysed under the M1 sim-
ulation mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed

to follow a Gamma(1,0.5)-distribution. (x103)
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UNW  HT AN PL ES MBI (RWI) MBI (SP) MB3(RWI1) MB3(SP) MB3 (SP+OD)
Complete (S1) | 0.04 004 086  0.33 1.68 0.32 0.32 / / /
20% Missingness
MCAR (S2) | 0.03() 0.04@ 1740 0517 24609 0.490) 0.49(0) 0.66(8) 0.494) 0.440)
MAR (S5) 0.040  0.05@ 1430 0465 19700 0.46®) 0.477 0.53® 0.47©) 0.41)
S-MAR (S6) | 0.041)  0.05® 1490 0517 236019 0.500) 0.50(0) 0.56(8) 0.504) 0.450)
MNAR (S7) 165 169 288  2.00 3.93 1.98 1.97 2.16 1.98 1.92
S-MNAR(S8) | 159  1.66 3.05 2.03 3.97 1.99 2.00 1.99 2.00 1.94
40% Missingness
MCAR (S2) | 0.05() 0052 3190 0744 43900 0.770) 0.78(0) 0.90®) 0.787 0.700)
MAR (S5) 0.040 0.06@ 296® 0794 395010 0.790) 0.79(9) 1.08®) 0.80(7 0.71%)
S-MAR (S6) | 0.061) 0.06@ 289®) (0774 435010 0.810) 0.82(0) 0.84) 0.83(7) 0.730)
MNAR (S7) 855 842 1081 9.11 11.76 9.24 9.15 9.63 9.14 9.05
S-MNAR (S8) | 836 842 1140 930 1237 9.31 9.32 9.56 9.27 9.17
60% Missingness
MCAR (S2) | 0.08) 0.08@ 5510 1454 103400 1.56(0) 1.570 1.60®) 1.56) 1.394)
MAR (S5) 0.08) 0.11@ 6.090 1.587 9.73(10) 1.57() 1.58®) 1.560) 1.56(4) 1.400)
S-MAR (S6) | 0.07()  0.07® 5920 1.524)  9.69(10) 1.580) 1.59(8) 1.59 1.59(6) 1.410)
MNAR (S7) 2840 2839 3598 3176  37.18 31.96 31.95 3235 31.86 31.75
S-MNAR (S8) | 27.86 2794 3642 31.68 37.44 31.91 32.09 33.18 32.02 31.85

Table 13: Summary statistics of squared bias using adjusted weigths, analysed under the M2 sim-
ulation mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed

to follow a Gamma(1,0.5)-distribution. (x103)
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UNW HT AN PL ES MBI (RWI1) MBI (SP) MB3(RWI1) MB3 (SP) MB3 (SP + OD)
Complete (S1) | 20.58 622 515 225 228 1.70 1.66 / / /
20% Missingness
MCAR(S2) | 21.7109 801 6398 2736 2757 225 2.04) 2.08(3) 2.030) 2.370)
MAR (S5) 15.80(10 7,04 5488 2227 218 1.984 1.86(D 1.89@ 1.930) 2.130)
S-MAR (S6) | 16.0719 6840 536’ 2207 22006 1.88 1.840) 1.944) 1.920) 2.110)
MNAR (S7) 12.76 708 559 248 238 2.43 2.40 2.19 2.26 2.36
S-MNAR (S8) | 12.96 7.25 574 253 248 2.38 2.41 231 2.24 2.36
40% Missingness
MCAR (S2) | 23.0519 1049 7.89®) 3230 3250 3060 2.5603) 2.56(2) 2.55(1) 2.93(4
MAR (S5) 117409 898 6378) 22906 2154 2440 2.09() 2.150) 2.12 2.290)
S-MAR (S6) | 11.64119) 8240 593 2154 2.120) 232 2.06(7) 2.170) 2.06(1 2.19(0)
MNAR (S7) 791 1262 1017 657 616 6.56 6.70 6.07 6.30 6.33
S-MNAR (S8) 8.53 1269 1014 632 596 6.20 6.48 5.56 6.00 6.06
60% Missingness
MCAR (S2) | 26.0919 1547 988®) 4,106 3854 4480 3.530 3.7303) 3.55) 4.000
MAR (S5) 11.4409 13010 7788 2575) 2342 2.89(7) 2420 2.43@) 2.350) 2.58(6)
S-MAR (S6) | 11.92(19 12910  7.40®) 2483 2,19(1) 2817 2.49%) 2560 240 2.62(0
MNAR (S7) 1672 3175 2665 21.82 20.54 20.73 21.31 20.46 21.41 21.37
S-MNAR (S8) | 1811  31.63 2549 2040 19.12 19.12 20.10 18.45 20.10 20.11

Table 14: Summary statistics of MSE using adjusted weigths, analysed under the M1 simulation

mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed to follow

a Gamma(1,0.5)-distribution. (x103)
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UNW  HT AN PL ES MBI (RWI1) MBI (SP) MB3 (RWI) MB3(SP) MB3 (SP+ OD)
Complete (S1) | 246 363 651 3.42 9.04 2.38 2.40 / / /
20% Missingness
MCAR (S2) | 3.160) 46508 8879 4357 931010 3.05@ 3.084) 3.93(0) 3.084) 3.05()
MAR (S5) 2985 4.27® .18(10) 398"  7.740) 2.88(2) 2914 3.250) 2914 2.8701)
S-MAR (S6) | 29250 4.15®) 817 3947 957010 2.882) 2.900) 3.16() 2.901) 2.861)
MNAR (S7) 470 608 928 568 1258 4.50 452 5.01 451 4.48
S-MNAR(S8) | 459 613 956 579  11.78 4.47 4.50 4.47 4.50 4.46
40% Missingness
MCAR(S2) | 4.155) 596® 12250 5427 13.50(10) 3.942) 3.97¢4) 4.4000) 3.96() 3.930)
MAR (S5) 3.955) 5380) 11.890 5010 122200 3852 3.87¢) 5187 3.8603) 3.80()
S-MAR (S6) | 3.86©® 5208 11.85% 4.85(7) 14.11010) 377 3.800) 3.820) 3.814) 3.75(0
MNAR (S7) 1298 1455 1893 1397  20.17 12.68 12.62 14.14 12.60 12.54
S-MNAR (S8) | 12.60 1455 1979 1417  20.12 12.63 12.66 13.53 12.63 12.58
60% Missingness
MCAR(S2) | 6400 8.64® 17559 7637 26,0000 5.962) 6.004) 6.050) 6.003) 5910
MAR (S5) 6.250) 8038 18.08® 7277 2389(10) 59202 5.95¢4) 5.970) 5.950) 5.85(1)
S-MAR (S6) | 6.26© 7.83®) 18.07® 7207 24.16(10) 6.00 6.020) 6.010) 6.024) 5911
MNAR (S7) 3643 3884 4763 39.19  48.62 37.51 37.51 38.33 37.46 37.47
S-MNAR (S8) | 36.09 3877 4733 3891  49.08 37.21 37.44 39.80 37.39 37.34

Table 15: Summary statistics of MSE using adjusted weigths, analysed under the M2 simulation
mechanism. The prior distribution of the precision parameters O, 2 and o, 2 are assumed to follow

a Gamma(1,0.5)-distribution.(x103)
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UNW  HT AN PL ES MBI (RWI1) MBI (SP) MB3(RWI1) MB3 (SP) MB3 (SP + OD)
Complete (S1) | 20.61 622 134 055 0.6l 0.80 0.74 / / /
20% Missingness
MCAR(S2) | 21.7109 8010 1.71® 0.740) .82 1.010) 0.93¢ 1.000) 0.920) 1.33
MAR (S5) 15.80(10 7,049 1220 9511 0.552 0.99%) 0.713) 1.150) 1.000) 1.20
S-MAR (S6) | 16.0709 684 1250 ¢.52() 0.56? 0.91% 0.730) 1.15©) 1.020) 1.220)
MNAR (S7) 1276  7.08 141 091  0.82 1.24 1.09 1.23 1.11 1.41
S-MNAR (S8) | 1296 725 147 090 088 1.19 1.08 1.24 1.08 1.39
40% Missingness
MCAR (S2) 167019 1,16 0.77®) 0491 0.593) 0582 0.68(0) 0.60(4 0.650) 0.69(7
MAR (S5) 476119 0237 0220 0200 024® 0224 0.28) 0.18(1) 0.220) 0.20
S-MAR (S6) 5.1209 0250 0250 0230 0244 0.26(®) 0.349 0.19() 0.250) 0.23@
MNAR (S7) 0.88 427 438 485 452 4.50 451 437 438 4.36
S-MNAR (S8) 145 416 400 450 413 4.18 4.20 3.97 4.03 4.03
60% Missingness
MCAR (S2) 16.36(19 172 1.19®) 0.80() 0.94( 1.124 1.250 1.17 1.120) 1.18(0)
MAR (S5) 038109 0.187 0.124 0.145) 0.16©) 0.19®) 0.210) 0.113) 0.08@ 0.08(1)
S-MAR (S6) 0.6019 .15 0.120) 0.158)  0.16(" 0.21® 0.239) 0.14¥ 0.10@ 0.09()
MNAR (S7) 560  19.68 19.17 19.95 18.89 18.91 18.88 18.22 19.27 19.17
S-MNAR(S8) | 623  19.00 1775 1838 17.36 17.46 17.47 16.80 17.80 17.70

Table 16: Summary statistics of squared bias using adjusted weigths, analysed under the M1 simu-

lation mechanism with second-order neighbors. The prior distribution of the precision parameters

o, 2 and o, 2 are assumed to follow a Gamma(0.5,0.008)-distribution. (x103)
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UNW HT AN PL ES

MB1 (RW1) MBI (SP) MB3 (RW1) MB3 (SP)

MB3 (SP + OD)

Complete (S1) | 20.58 6.22 134 055 061 0.81 0.74 / / /
20% Missingness
MCAR(S2) | 21.7109  801® 1.71® 0740 (.82 1.010 0.93%) 1.00) 0.920) 133
MAR (S5) 15.8010  7.040 1220 051D .55 0.9903) 0.71% 1.150) 1.00) 1.200)
S-MAR (S6) | 16.07(19 6841  1258) ¢0.52() 0562 091 0.730) 1.150) 1.0209 1.22)
MNAR (S7) 12.76 7.08 141 091  0.82 1.24 1.09 1.23 1.11 1.41
S-MNAR (S8) | 12.96 7.25 147 090  0.88 1.19 1.08 1.24 1.08 1.39
40% Missingness
MCAR (S2) | 23.0519 1049® 2.17®) 0.99() 1.142 1.23(0) 1.200) 1214 1.230) 1.647)
MAR (S5) 117409 898 1.120) 047D .47 1.16(© 0.650) 1.23®) 1.094) 1217
S-MAR (S6) | 11.64019 8240 1,180 0471 0552 1.10%) 0.713) 1.26(®) 1.104 1.20
MNAR (S7) 791 1262 526 512 475 5.16 493 5.21 5.05 5.29
S-MNAR (S8) 8.53 1269 502 478  4.44 4.83 4.66 4.79 4.69 4.96
60% Missingness
MCAR (S2) 26.0909 15470 271®) 1441 1463 1.77 1.81% 1.93(0) 1.860) 2277
MAR (S5) 11440 13.0109 1267  0.470) 0.58? 0.984 0.650) 1.29®) 1.080) 1.18(6)
S-MAR (S6) 11920 129110 1,095 (.48 0.43() 1.014 0.670) 1.36(®) 1.11) 1.257)
MNAR (S7) 16.72 3175 2004 2024 19.11 19.52 19.30 19.12 19.96 20.12
S-MNAR (S8) | 18.11 31.63 1873 18.80 17.67 18.23 18.07 17.77 18.65 18.75

Table 17: Summary statistics of MSE using adjusted weigths, analysed under the M1 simulation

mechanism with second-order neighbors. The prior distribution of the precision parameters ©,;

and o, 2 are assumed to follow a Gamma(0.5,0.008)-distribution. (x103)
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UNW  HT AN PL ES MBI (RWI) MBI (SP) MB3(RWI1) MB3(SP) MB3 (SP+OD)
Complete (S1) | 0.04 004 103 034 1.88 0.32 0.33 / / /
20% Missingness
MCAR (S2) | 0.031) 0.04® 206 0518 28400 0.48(0) 0.48( 0.480) 0.48(4) 0.460)
MAR (S5) 0.04) 0.05® 1.689 0470 233010 0.460 0.46(7) 0.46(6) 0.45% 0.440)
S-MAR (S6) | 0.041) 0.05® 1810 0.526) 27400 0.50(0) 0.517 0.500) 0.504) 0.480)
MNAR (S7) 1.65 169 316 203 4.24 2.00 1.99 227 1.98 1.96
S-MNAR (S8) | 1.59 166 338 204 4.36 1.99 2.00 2.18 2.00 1.98
40% Missingness
MCAR (S2) | 0.05() 0052 3770 0.76% 51300 0.78(0) 0.78(7 0.88(®) 0.770) 0.740)
MAR (S5) 0.040  0.06@ 3490 0805 46510 0.80(0) 0.807) 1.05® 0.794) 0.760)
S-MAR (S6) | 0.06() 0.06? 3440 0.79¢4)  4.96(19) 0.81®) 0.817 0.790) 0.80(®) 0.77)
MNAR (S7) 855 842 1164 916 1246 9.26 9.17 10.13 9.12 9.12
S-MNAR (S8) | 836 842 1236 929 1321 9.31 9.31 9.72 9.26 9.26
60% Missingness
MCAR(S2) | 0.08) 0.08@ 7310 1500 11.6100 1.59(0) 1.590 2.600) 1.570) 1.524)
MAR (S5) 0.08) 0.11® 750 1677 10.9619 1.64(6) 1.640) 1.74®) 1.624 1.570)
S-MAR (S6) | 0,07V 0.07® 7340 1574 10.87(10) 1.63(®) 1.63(7) 1.62(0) 1.610) 1.56(3)
MNAR (S7) 2840 2839 3947 3180 3881 31.97 31.94 32.74 31.82 31.85
S-MNAR (S8) | 27.86 27.94 40.58 31.63  39.53 31.88 32.02 34.33 31.87 31.91

Table 18: Summary statistics of squared bias using adjusted weigths, analysed under the M2 simu-

lation mechanism with second-order neighbors. The prior distribution of the precision parameters

o, 2 and o, 2 are assumed to follow a Gamma(0.5,0.008)-distribution. (x103)
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UNW  HT AN PL ES MBI (RWI1) MBI (SP) MB3 (RWI) MB3(SP) MB3 (SP+ OD)
Complete (S1) | 246 363 672 349 9.34 2.44 2.45 / / /
20% Missingness
MCAR (S2) |3.169 4.65® 9290 4447 9g3(10) 3.13(0 3.153) 3.16() 3.16@) 3.14@)
MAR (S5) 2.985) 4270 84100 4087 830 2.961) 2.98(0) 2.963) 2,974 2.962
S-MAR (S6) | 2920 4.15®) 856 4037 10.10010 2.950) 2.96(0) 2.940) 295 2.942)
MNAR (S7) 470 608 9.6l 579 12.99 4.58 4.60 6.06 4.59 4.58
S-MNAR(S8) | 459 613 998 587 1236 4.53 4.56 5.56 4.56 4.56
40% Missingness
MCAR(S2) | 4.155) 596® 12780 5577  14.43(10) 4.07@ 4.09% 4.469) 4.080) 4.06")
MAR (S5) 3950 5388 1236 516" 131300 3970 4.010) 5.08(0) 3.984) 3.962)
S-MAR (S6) | 3.86) 5208 12420 4.98(7) 14.93(10) 3.86(4) 3.88(0) 3.85) 3.870) 3.85()
MNAR (S7) 1298 1455 1985 1412 21.17 12.79 1273 15.74 12.68 12.68
S-MNAR (S8) | 12.60 14.55 2084 1426  21.37 12.72 12.75 14.15 12.71 12.72
60% Missingness
MCAR (S2) | 64005 8.64 19,649 7900 27.49(10) 6.202) 6.2203) 9.40®) 6.224) 6.190)
MAR (S5) 6.25%) 8.03® 19.430) 7607 2537010 6.192 6.22(3) 6.74(6) 6.224) 6.190)
S-MAR (S6) | 6.263) 7.838) 1936 7.46(7) 2555(10) 6.240) 6.26(0) 6.23() 6.25% 6.22(1
MNAR (S7) 3643 3884 5082 3930  50.75 37.56 37.55 39.50 37.48 37.53
S-MNAR (S8) | 36.09 3877 5130 39.08  51.58 37.39 37.56 42.49 37.45 37.50

Table 19: Summary statistics of MSE using adjusted weigths, analysed under the M2 simulation
mechanism with second-order neighbors. The prior distribution of the precision parameters ©,; 2

and o, 2 are assumed to follow a Gamma(0.5,0.008)-distribution. (x103)
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Health Excellent Good Reasonable Poor Very Poor

0 0 1 1 1

Response

Table 20: Dichotomization of the perceived health variable

Description Missingness probabilities gl

Age Group 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

qi 023 0.18 0.09 0.07 0.08 0.06 0.07 0.08 0.08 0.07 0.08 0.07 0.10 0.18 0.28

Table 21: Definition of the missingness probability weights for the simulation study of the HIS data

set for each eligible age group.

UNW HT AN PL ES MBI (RWI) MBI (SP) MB3(RWI) MB3(SP) MB3 (SP + OD)

Bias> | 054 021 021 0.70 0.30 0.27 0.23 0.30 2.49 2.49

MSE | 192 274 1.14 124 090 0.51 0.49 0.52 2.75 2.74

Table 22: Summary statistics of squared bias and MSE using adjusted weigths for the simulation
setting of the HIS data set. The prior distribution of the precision parameters O, 2 and o, 2 are

assumed to follow a Gamma(0.5,0.008)-distribution. (x 103)

MBI (RW1) MBI (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)
Adjusted weights (W1) | 10580.49 10576.65 10433.52 10214.34 /
Adjusted weights (W2) | 10583.65 10583.82 10502.65 / 10388.13
Semi-adjusted weights 10586.64 10589.35 / / /

Table 23: The DIC values of the hierarchical weight-smoothing estimators for the HIS dataset for

the W1 and W2 approach in the calculation of the missingness weights.
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Figure 1: The top panels show the population size (left panel) and average age category (right
panel) per district. The lower panels correspond to the underlying prevalence models M1 (left)

and M2 (right).
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Figure 2: The left panel depicts the box plots for the estimated bias under MCAR mechanism, while
the right panel shows the box plots for those under the S-MAR assumption. Both were constructed

under the M1 simulation mechanism, for 60% missingness.
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Figure 3: Spatial maps displaying the estimated prevalence for the HT estimator (top row), AN
estimator (middle row) and MB3 (SP+0D) estimator (bottom row), analysed under the M1 sim-

ulation mechanism and S2 (left column) and S6 (right column) missingness mechanism with 20%

missingness.
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Figure 4: Spatial maps displaying the estimated prevalence for the HT estimator (top row), AN
estimator (middle row) and MB3 (SP+0OD) estimator (bottom row), analysed under the M2 sim-
ulation mechanism and S2 (left column) and S6 (right column) missingness mechanism with 20%

missingness.
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Figure 5: Line plot for prevalence of perceived health and nonresponse percentages over five-year
age intervals (left panel) and the box plots of the estimated prevalences for perceived health using

the models with adjusted, semi-adjusted and separate weights (right panel).
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Figure 6: Box plots of the simulated estimated prevalences for perceived health using the models

with adjusted (W2), semi-adjusted and separate weights (right panel).
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Figure 7: Spatial maps of the sample sizes for the Belgian districts (left) and the amount of miss-

ingness for the perceived health variable in HIS data set (right). Unsampled municipalities are

highlighted in black.
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Figure 8: Spatial distribution of UNW estimates (top left), HT estimates (top right), AN estimates,
(middle left), PL estimates (middle right), MBI (SP) estimates (bottom left) and MB3 (RW1) esti-
mates (Bottom right) using adjusted weights. Unsampled municipalities are highlighted in black

for the UNW and HT estimates.
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