
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Spatial small area smoothing models for handling survey data with nonresponse

Peer-reviewed author version

WATJOU, Kevin; FAES, Christel; LAWSON, Andrew; Kirby, R. S.; AREGAY,

Mehreteab; Carroll, R. & VANDENDIJCK, Yannick (2017) Spatial small area

smoothing models for handling survey data with nonresponse. In: STATISTICS IN

MEDICINE, 36(23), p. 3708-3745.

DOI: 10.1002/sim.7369

Handle: http://hdl.handle.net/1942/24962



Spatial small area smoothing models for handling
survey data with nonresponse

K. Watjou1, C. Faes1, A. Lawson2, R.S. Kirby3, M. Aregay2, R. Carroll2, and Y. Vandendijck1

1 Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
2 Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA

3 Department of Community and Family Health, College of Public Health, University of South Florida, Tampa, FL,
USA

Abstract
Spatial smoothing models play an important role in the field of small area estimation (SAE). In
the context of complex survey designs, the use of design weights is indispensable in the estimation
process. Recently, efforts have been made in these spatial smoothing models, in order to obtain
reliable estimates of the spatial trend. However, the concept of missing data remains a prevalent
problem in the context of spatial trend estimation as estimates are potentially subject to bias. In
this paper, we focus on spatial health surveys where the available information consists of a binary
response and its associated design weight. Furthermore, we investigate the impact of nonresponse
as missing data on a range of spatial models for different missingness mechanisms and different
degrees of missingness by means of an extensive simulation study. The computations were done
in R, using INLA and other existing packages. The results show that weight adjustment to correct
for missingness has a beneficial effect on the bias in the missing at random (MAR) setting for all
models. Furthermore we estimate the geographical distribution of perceived health at the district
level based on the Belgian Health Interview Survey (2001).

Keywords: Complex Survey Design, Disease Mapping, Hierarchical Bayesian Modeling, Inte-
grated Nested Laplace Approximation, Missing Data.
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1 Introduction

Health surveys are an important source of information when investigating the geographical distri-

bution of diseases. Hierarchical spatial smoothing methods are well developed and used in a fairly

standard manner in disease mapping to infer about the geographical distribution of diseases (see

e.g. Elliott et al. [1], Waller and Gotway [2], Lawson [3]). However, health surveys are typi-

cally complex in design, with complex sample selection methods for drawing the sample from the

population. Examples of possible sampling designs include stratified sampling, cluster sampling,

convenience sampling, etc. An overview can be found in Schaeffer et al. [4].

Approaches to take into account the complex survey design can be grouped into design-based,

area-level and unit-level approaches. The most commonly used design-based method is the Horvitz-

Thompson (HT) estimator [5]. The HT estimator is a weighted estimator, with weights equal to

the inverse of the sampling probability. The idea of weighting is to make the sample as similar as

possible to the population. This estimator is design consistent and provides reliable inferences in

large samples, but it can be very inefficient, especially when sample sizes are small (Basu [6], Rao

[7]). In unit-level approaches, inference is built on a model of the health outcome, which takes into

account all key features of the sampling design such as weighting, stratification and clustering.

These models can become very complex as a large number of variables need to be included in the

model. In addition, key variables that are required for inclusion of individuals in the sample may

be unavailable (Gelman [8], Little [9], Pfefferman [10]). Design-based inference can be model-

assistent, such as the generalized regression estimator (GREG), bringing together model features

and design-based inference. Chen et al. [11], Mercer et al.[12] and Vandendijck et al. [13] de-

scribe methods of incorporating the design weights within a spatial hierarchical model. In this

paper, we compare a number of these proposed methods and investigate the effect of nonresponse

on the estimation of the geographical distribution of the outcome of interest.

In addition, nonresponse often occurs in surveys. It is often the case that selected individuals

may not want to participate in the survey or answer only part of the questions. The effect of this

missingness on inference is two-fold. First, as it reduces the sample size, it will lead to a reduced

precision of the estimates. Second, incompleteness can lead to biased inference, as the population

that do respond to the question might differ systematically from the population that do not respond
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to the question of interest. Different analysis approaches exist for dealing with incompleteness

of data. Focusing on incomplete data under the missing at random (MAR) assumption, we can

group the methods into weighting methods, imputation methods and full information maximum

likelihood methods (Rubin [14], Little et al. [15]). In the weighing methods, subjects that have no

missing observations are weighted in order to compensate for the removal of subjects that do have

missing observations. In the imputation methods, plausible values for the missing observations

are filled in. Full information maximum likelihood methods using only the available data yield

appropriate likelihood-based inference under an MAR mechanism. Weighting has been widely

used in many public health studies, and therefore is the focus of interest in this paper.

The goal of this paper is to investigate the effect of nonresponse in a complex survey on the

estimated geographical distribution of disease prevalence and compare the performance of differ-

ent models under missingness. In Section 2, we revise spatial smoothing methods that can be

used to estimate the geographical distribution of the health outcome in the presence of a complex

sampling design. Also, weight adjustments are discussed for incomplete data. In Section 3, a

simulation study is conducted to investigate the impact of missingness of the estimated spatial dis-

tribution. Section 4 presents an application of the methods to investigate geographical differences

of individual’s perceived health based on the Belgian Health Interview Survey, with emphasis on

the complex sampling design and incompleteness of the outcome.

2 Methodology

Denote Yik as the binary response value of the ith individual in area k (i = 1, ...,Nk and k = 1, ...,K),

with Nk the population size in area k and N = ∑
K
k=1 Nk the overall population size. We assume that

the population size is known for each area k. Interest is in the area-specific population prevalence

Pk, defined as

Pk =
1

Nk

Nk

∑
i=1

Yik. (1)

In order to get an estimate of the area-specific prevalence, a random probability-sample is taken

from the population, in which individuals are sampled from the population with a known sample
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probability πik. The sample size in area k is nk, where some of the nk could be zero. We define

n = ∑
K
k=1 nk as the total sample size. The sampled responses are denoted by yik. Note that some

of these responses could be missing, as some of the individuals might not respond to the question.

We define an indicator variable rik which indicates whether the sampled individual i in area k

responded to the question (rik = 1) or not (rik = 0). We define sk as the total set of individuals

which are sampled from district k, where |sk|= nk, and s∗k as the set of individuals that responded

to the question of interest, where |s∗k |= mk represents the number of individuals which responded

in area k.

The area-specific unweighted mean estimator based on the available data can be expressed as

P̂UNW
k =

1
mk

∑
i∈s∗k

yik. (2)

While this estimator is unbiased in the situation of a simple random sampling design without

replacement and missingness occurring completely at random, it lacks the ability to take the design

and missingness features into account due to the absence of the sampling weights in the estimation

process. In the next sections, different approaches are discussed that can take into account both the

sampling design and incompleteness. Sections 2.1 and 2.2. give an overview of available methods

to account for the non-random sampling design. Section 2.3 then discusses how these methods can

be adapted to account for incompleteness of the sample.

2.1 Horvitz-Thompson Estimator

Weighting is commonly used in the analysis of survey data. As surveys are often characterised by

a complex design, statistical methods need to take into account the design in order to correct for

the loss of representation of the population. The idea of weighting is to make the sample as similar

as possible to the population, by assigning a weight to each individual in the sample. This design

weight could be calculated as the reciprocal of the probability of being sampled, namely wd
ik =

1
πik

.

The famous Horvitz-Thompson estimator for the area-specific prevalence is

P̂HT
k =

∑i∈sk
wd

ikyik

∑i∈sk
wd

ik
=

1
nk

∑
i∈sk

w̃d
ikyik (3)
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(Horvitz and Thompson [5]), with w̃d
ik the normalised design weight defined as

w̃d
ik = nk ·

wd
ik

∑i∈sk
wd

ik
. (4)

This normalisation involves the reweighting of the sample to match the sample size in area k, i.e.

∑i∈sk
w̃d

ik = nk. The variance of P̂HT can be expressed as follows

v̂ar(P̂HT
k ) =

1
nk

(
1− nk

Nk

)
1

nk−1 ∑
i∈sk

w̃d2

ik (yik− P̂HT
k )2. (5)

The Horvitz-Thompson estimator is a design-unbiased estimator of Pk. Note that this direct es-

timator uses only the observation from the area of interest (Rao [16]). However, when sample sizes

are too small to produce reliable or stable estimates, it is better to use a unit-level estimator that

borrows strength across the different areas by using the observations from all sampled individuals.

2.2 Area-Level Methods

Unlike the design-based methods, the area-level approaches assume a model conditional on the

sampled observations and generally provide more accurate estimates (Pfeffermann [17]). The

estimates of an area obtained by a design-based approach are considered to be direct as they are

based solely on the measurements of the given geographical unit. Area-Level methods on the

other hand produce indirect estimates, as these methods rely on the presumption that area-specific

estimates borrow information from other areas as well. This makes it possible to find more accurate

estimates (see e.g. Ugarte et al. [18], Salvati et al. [19], Chambers et al. [20], Rao and Molina

[21]). Also, it creates the advantage that estimates can be obtained in areas with no sample, as

opposed to the design-based methods where the observations within an area are assumed to be

independent of observations acquired from surrounding areas. A linear model with area-specific

random effects was first proposed by Fay and Herriot [22] in order to obtain survey estimates for

income. Numerous applications have originated from the Fay-Herriot model, some of which are

included in the following section.

In this section, we present several Bayesian hierarchical smoothing models that were used by

Vandendijck et al. [13] and Mercer et al. [12], each consisting of three stages. At the first stage,
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the likelihood of the response is defined conditional on some latent variables (random effects). At

the second stage, the latent variables are defined, whether or not on a transformed scale. At the

third stage, the prior distributions on the variance parameters for the random effects and on any

other unknown parameters are specified. In all models, vague priors were specified in order to

minimize their effect on the inferential evaluation.

2.2.1 Unadjusted Binomial Model (UB)

The simplest approach ignores the sampling design. At the first stage it is assumed that

yk|Pk ∼ Binomial(nk,Pk)

logit(Pk) = β0 +uk + vk,
(6)

where yk = ∑i∈sk
yik are the aggregated responses in area k and uk and vk are area-specific random

effects. At the second stage, we assumed a normal distribution for the uncorrelated heterogeneity

which describes the heterogeneity in the data , i.e., vk ∼ N(0,σ2
v ), whereas we considered an

intrinsic conditional autoregressive model (ICAR) (Besag et al. [23], Rue et al. [24]) for the

correlated heterogeneity uk as follows:

uk|uk′ ,k 6=k′ ∼ N

 1
ak

∑
k′∈ne(k)

u
′
k,

σ2
u

ak

 , (7)

where ne(k) indicates the set of neighbors and ak the number of neighbors for a given area k.

According to common convention, two areas are considered neighbors if they share a common

boundary (Lawson [25]). Other choices for the neighborhood scheme are discussed by Bivand et

al. [26].

Compared to the Horvitz-Thompson estimator, this model allows to account for both spatial de-

pendence and heterogeneity, via the random effects specifications. This will result in the smoothing

of extreme local estimates in areas with small sample sizes, which is a desirable effect as it prevents

over-fitting. However, this model is not adjusted for the survey design, as the sample weights are

not included in the estimation process. This implies that if the design of the survey is informative,

the resulting estimates of the Unadjusted Binomial will be rendered biased. The models described

below resolve this by actively using the sample weights to adjust for the outcome of interest yk,

while retaining the advantage of the reduction in variability.
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2.2.2 Logit Normal Model (LN)

A simple way to allow spatial smoothing of the Horvitz-Thompson estimator is to assume a hierar-

chical spatial smoothing model for P̂HT
k . Because P̂HT

k is restricted between 0 and 1, an empirical

logit transformation of P̂HT
k is considered. The resulting model is given by:

yLN
k |Pk ∼ N

(
logit(Pk),σ

2
k
)

logit(Pk) = β0 +uk + vk,
(8)

where yLN
k = logit(P̂HT

k ) and the variance σ2
k is set equal to v̂ar(P̂HT

k )/
(

P̂2HT

k (1− P̂HT
k )2

)
(see

Mercer et al. [12]).

2.2.3 Arcsine Root Normal Model (AN)

As an alternative to the LN model, Raghunathan et al. [27] proposed the use of an arcsine-square

root transformation of the direct estimates. This method assures that the sampling variances, which

usually depend on the population proportions, are stabilised approximately (see also Efron and

Morris [28]). This leads to the following model specification:

yAN
k |Pk ∼ N

(
sin−1

(√
Pk

)
,σ2

k

)
sin−1

(√
P̂k

)
= β0 +uk + vk,

(9)

where yAN
k = sin−1

(√
P̂HT

k

)
and the variability σ2

k = 1
4·nE

k
depends on the effective sample size

nE
k = P̂HT

k (1− P̂HT
k )/v̂ar

(
P̂HT

k

)
.

2.2.4 Pseudo-Likelihood Model (PL)

The method described by Congdon and Lloyd [29] employs a weighted likelihood whereby the

response values are weighted using the normalised design weights w̃d
ik (see also Asparouhov [30]).

Mercer et al. [12] noted that this model can be re-written as a simple hierarchical model of the

form
yPL

k |Pk ∼ Binomial(nk,Pk)

logit(Pk) = β0 +uk + vk,
(10)

with yPL
k = ∑i∈sk

w̃d
ikyik, where w̃d

ik is defined as in (4).
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2.2.5 Effective Sample Size Method (ES)

Chen et al. [11] proposed a similar approach to the pseudo-likelihood model, but accounting for

the sampling design via the use of the effective sample size (nE). The effective sample is defined

as the sample size that is needed to match the variance from a simple random sample with that

under a complex sampling design. Under the assumption of a simple stratified sampling design,

this leads to an effective sample size nE equal to

nE
k = P̂HT

k (1− P̂HT
k )

/
V̂ar(P̂HT

k )

with V̂ar(P̂HT
k ) as specified in Section 2.1. The model can be described as:

yE
k |Pk ∼ Binomial(nE

k ,Pk)

logit(Pk) = β0 +uk + vk,
(11)

where yE
k = nE

k · P̂HT
k represents the effective number of cases. The use of this adjusted binomial

likelihood gives a better reflection of the sampling distribution as compared to the normal approx-

imation in (8).

2.3 Unit-Level Methods (MB)

In contrast to previous area-level methods, Royall [31] proposed a predictive hierarchical model at

the unit level, in order to define an estimator for Pk:

P̂k =
1

Nk

∑
i∈sk

yik + ∑
i∈s′k

ŷik

 . (12)

The first term sums up the observed response values of the sampled individuals in area k, whereas

the second term refers to the unobserved individuals from the population and needs to be estimated

from the sample. A flexible model is formulated for the observed data yik, which is then used to

predict the response values for the non-sampled individuals (ŷik). Note that, the prediction model

for yik should take into account the variables that affected the sampling design, as the responses

could depend on these characteristics. As this might lead to a prediction model with many covari-

ates and as commonly not all covariates are publicly available, the available design weights can be
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used as a proxy for the population strata and used as a variable in the prediction model (Zheng and

Little [32-33]).

Chen et al. [34] proposed a Bayesian penalised spline predictive estimator in a survey sam-

pling setting for a finite population proportion, whereby the inclusion probability was incorporated

directly into the model as a covariate by means of a binary p-spline probit regression model. Van-

dendijck et al. [13] extended these ideas to the context of small area estimation. Two versions of

the hierarchical weight-smoothing model are considered:

yMB1
ik |Pik ∼ Bernoulli(Pik)

logit(Pik) = β0 + f (w̃ik)+uk + vk,
(13)

or

yMB2
ik |Pik ∼ Bernoulli(Pik)

logit(Pik) = β0 + f (π̃ik)+uk + vk,
(14)

where f (.) is a non-parametric function in either the design weights or the sample probabilities,

specified by a random walk model of order one (RW1) or a penalised spline (SP).

As we assume that not all information on the design is made available for the researcher (only

the design weights for the sampled individuals), Vandendijck et al. [13] proposed a method to

resample weights for the non-sampled individuals. Based on the work of Si et al. [35], a Bayesian

model was developed in order to estimate the design weights of non-sampled individuals. For this

model, we divide the data into Lk strata, whereby Lk is the number of unique design weights in

area k. Denote nlk as the sample size in poststratification cell l (l = 1, ...,Lk) in area k and Nlk as

the corresponding population size. Under the assumption of independent sampling, one can model

the sampling probabilities for a given individual i in area k with a Bernoulli distribution, whereby

the probabilities are given by

P(Rik = 1) =
ck

wik
. (15)

In this formula ck fulfills the roll of a positive normalising constant, in order to ascertain that the

probabilities sum up to sample size nk. Given the fact that all individuals in poststratification cell l

have the same weight, we can define wik ≡ w(l)k and the expected value of nlk can be expressed as

E(nlk) = ck
Nlk

w(l)k
. Since nk =∑

Lk
l=1 nlk, we can represent the normalising constant as ck = nk

1
∑

Lk
l=1

Nlk
w(l)k

.
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The vector of sample sizes in area k (n1k, ...,nLkk) is assumed to follow a multinomial distribution,

conditioned on nk for each k:

(n1k, ...,nLkk)∼

nk;

N1k
w(1)k

∑
Lk
l=1

N1k
w(1)k

, ...,

Nlk
w(l)k

∑
Lk
l=1

Nlk
w(l)k

 . (16)

In the above parametrisation, the population sizes Nlk are unknown parameters. Because of the fact

that they are also unnormalised, we normalise them in such a way that they sum to the population

size in area k after fitting them:

Ñlk =
Nlk

∑
Lk
l=1 Nlk

Nk. (17)

After obtaining information on Ñlk, (12) can be rewritten as

P̂k =
1

∑
Lk
l=1 Ñlk

(
Lk

∑
l=1

nlkȳl +
Lk

∑
l=1

(
Ñlk−nlk

)
P̂lk

)
, (18)

where we define ȳl =
∑i∈l yik

nlk
. An estimate for the prevalence Plk in each poststratification cell l

and area k can be obtained from (13) using the unique normalised weights w̃lk. While this ap-

proach yields a point estimate for the population prevalence Pk, inference is based on the posterior

distribution of P̂k. This posterior distribution is constructed by taking samples from the posterior

distribution of Ñlk and P̂lk. These samples can be inserted B times in (18) in order to get B posterior

samples for P̂k.

2.4 Adjustments for incomplete data

When dealing with nonresponse, weights need to be adjusted to take into account the reduced

sample size and the possible imbalance due to missingness. A first approach is to work with the

complete data as they are and normalise the weights according to the observed sample size mk in

each area. This leads to the use of the following weights

w̃d′
ik = mk ·

wd
ik

∑i∈s∗k
wd

ik
. (19)

Because we only adjust the sample size in this case and leave the design weights unchanged, this

procedure will be called the semi-adjusted method. However, since missingness might lead to an
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imbalance of the observations, e.g. when missingness is related to any of the design variables, it

is important to re-weight observations using poststratification. This can be done by defining a new

weight w∗ik, defined as the product of the design weights wd
ik and the missingness weight wm

ik. This

new missingness weight wm
ik can be defined as 1

P(rik=1) , whereby we can model this probability

using the following logistic regression model

logit(P(rik = 1)) = α +βXih, (20)

where Xih is a vector containing information on the h covariates which might have an effect on

the missingness process for individual i in area k. We can characterise the missingness weights as

wm
ik =

1+exp(α+βXih)
exp(α+βXih)

. The final weight is then normalised in such a way that it corresponds to the

number of non-missing observations:

w̃∗ik = mk ·
wd

ik ·w
m
ik

∑i∈s∗k
wd

ik ·w
m
ik
. (21)

Since we adjust both the sample size as well as the design weights for missingness, this proce-

dure will be called the adjusted method. All spatial smoothing methods as discussed in Section

2.1 and 2.2 can be adapted to the setting of incomplete data by substituting the weight used in

the HT estimator as either the semi-adjusted or the adjusted weight. Note that this weighting ap-

proach assumes that missingness does not depend on the unobserved outcome itself, and thus that

missingness is not MNAR.

The hierarchical weight-smoothing model allows for an additional correction to account for

nonresponse. Since the normalised weights are used directly as a covariate effect, this model

allows us to discern between the effects of the design weights and the missingness weights. This

separation can be expressed as follows:

yMB3
ik |Pik ∼ Bernoulli(Pik)

logit(Pik) = β0 + f1(w̃d
ik)+ f2(w̃m

ik)+uk + vk.
(22)

This model has the advantage to be able to separate the impact of the design variables with those

variables that affect the missingness probability. Indeed, the variables that explain the nonresponse

may not be the same as the design variables. We can expand the previous model even further

by adding an overdispersion parameter εik, with εik ∼ N (0,σ2
ε ). This parameter will account
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for all remaining variability for individual i of district k, further improving the prediction of the

area-specific prevalence (11). Thus, model (22) could be extended to:

yMB3
ik |Pik ∼ Bernoulli(Pik)

logit(Pik) = β0 + f1(w̃d
ik)+ f2(w̃m

ik)+uk + vk + εik.
(23)

The behavior of these methods under different degrees of missingness will be investigated in

the next section.

2.5 Prior specification

All area-level and unit-level methods described in Sections 2.2, 2.3 and 2.4 were implemented

using the Integrated Nested Lagrange Approximation (INLA) approach, described by Rue et al.

[36]. INLA was implemented as an R-package and can be downloaded at http://www.r-inla.org/.

It serves as a faster alternative to Markov Chain Monte Carlo (MCMC) methods when performing

statistical inference for latent Gaussian models. INLA computes accurate approximations to the

posterior marginals via numerical integration. Carroll et al. [37] performed an in-depth comparison

in the ability to recover estimates between INLA and OpenBUGS.

Prior distributions for the parameters β0,σ
2
u ,σ

2
v and σ2

w need to be specified. In general vague

priors are preferred in order to minimize their effect on the inferential evaluation, as was investi-

gated by Browne and Draper [38] and Gelman [39]. We assume a zero-mean normal distribution

with a high variance for the baseline parameter β0. Furthermore, we assign a Gamma(0.5, 0.008)

prior for both the spatial and non-spatial precision parameters σ−2
u and σ−2

v , similar to Mercer et

al. (2014). Lastly, we consider the prior distribution for σ−2
w to be Gamma(1,0.01), in accordance

with Wakefield (2009).

Furthermore, as a sensitivity analysis, we investigated the effect of the neighborhood structure.

As mentioned in Section 2.2, a first-order neighborhood structure was used in the analysis. In order

to investigate the robustness of the estimates with respect to the definition of the neighborhood

structure, an additional neighborhood scheme was considered. Hereby, we consider two areas i1

and i2 to be neighbors if they share a common boundary or if they both share a boundary with a

common neighbor i3.
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3 Simulation Study

The performance of all models described above are investigated via a simulation study. Section 3.1

describes the design of the simulation study in which we investigate the performance of the models

under different missing data mechanisms. Section 3.2 summarises the results of the simulations.

3.1 Design of simulation study

The 43 administrative districts of Belgium, with a total population size of around ten million, were

chosen to be the geographical setting of interest (see Figure 1). The population data was stratified

into 18 age-groups, each defined by a five-year interval. The total population size and average age

in the population is presented in Figure 1 (upper panels). The indicator x denotes the 18 different

age-groups in which the Belgian population is categorised (x = 1 for ages 0− 4, x = 2 for ages

5− 9, ..., x = 18 for ages 85+), and Yi( j)k is the binary response variable for the ith individual

belonging to age stratum j in district k (i = 1, ...,Nk, j = 1, ...,18,k = 1, ...,43).

Simulating Population Prevalences

We assume that the binary response variable follows a bernoulli distribution

Yi( j)k ∼ Bernouilli(Pjk),

where Pjk is the population prevalence in stratum j of district k. The following two models are

considered for the simulation of the population prevalences:

(M1) : logit(Pjk) = logit(0.10)+0.30 · xi( j)k,

(M2) : logit(Pjk) = logit(0.10)+0.30 · xi( j)k +uk + vk,

with xi( j)k the age category of individual i in area k. Compared to (M1), a convolution term

uk ∼ ICAR(0,σ2
u ) with precision σ−2

u ∼ Gamma(1.0,0.5) was added in (M2), encompassing an

uncorrelated random effect vk ∼ N (0,0.10). The spatial random effects were generated using

INLA. The values for these random effects were held constant across all simulations, allowing us
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to investigate the prediction of the underlying spatial trend. The true district-specific prevalence

can then be calculated by averaging the simulated prevalences Pjk, weighted by their corresponding

population sizes N jk:

Pk =
∑

J
j=1 N jkPjk

∑
J
j=1 N jk

.

These are presented in Figure 1 (lower panels). It can be observed that, in both prevalence models,

there is some degree of spatial heterogeneity.

Simulating Survey Sample

A survey sample of size 5000 is taken from the simulated population using a stratified probability

design, according to the following procedure:

1. The sample size per area is taken proportional to the population size in each area (Nk). A

multinomial distribution is employed in order to generate the sample sizes nk per district in order

to ensure the aforementioned proportionality:

(n1, ...,nK)∼Multinomial
(

5000;
N1

∑
K
k=1 N1

, ...,
Nk

∑
K
k=1 Nk

)
.

Note that the sampling procedure depends solely on the population sizes of the districts, not on the

spatial distribution of the simulated outcome.

2. Next we distribute these samples across the different strata within a district k. We denote q jk as

the selection probability stratum j is selected in district k. In this setting we assume that this prob-

ability depends on the age of the individuals, assuming older individuals have a higher probability

of being sampled. Defining x jk as the age group in stratum j and district k, this could be expressed

as follows:

q jk =
log(x jk +1)

∑
J
j=1 log(x jk +1)

.

The stratum-specific sample size n jk within each district are consequently simulated using a multi-

nomial distribution:

(n1k, ...,nJk)∼Multinomial(nk;q1k, ...,qJk).
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3. Finally, we generate the number of cases within this sample using a binomial distribution ac-

cording to the presumed population prevalences:

y jk ∼ Bin(n jk,Pjk).

Note that, for a simulated sample, the survey design weight of observation i in district k, wd
ik ≡

wd
i( j)k, is calculated as the inverse of the proportion of observations that are sampled from the

population in stratum j within district k.

Simulating Nonresponse

As we want to investigate the effect of nonresponse on the estimates’ spatial trend, different miss-

ing data mechanisms will be considered. It is assumed that only (1− β )% of the respondents

answer the question of interest, with β = (0,20,40,60)%. Different missing data mechanisms can

be underlying this, and the assumed scenarios are summarised by the probability weights qm
i( j)k in

Table 1. The probability to have not observed the response for the ith individual in area k is then

equal to P(ri( j)k = 0) = β
qm

i( j)k

∑
18
j=1 qm

i( j)k
.

In (S1), no nonresponse is present in the data; all outcomes are observed. These results will

be compared with the different scenarios in which some of the outcomes are unobserved. In (S2),

some of the outcomes are missing completely at random (MCAR). This means that the observed

outcomes are a random sample from the set of individuals that are contained in the survey. The

amount of missingness is given by a fixed parameter β . In (S3)-(S6), the missing data mechanism is

Missing at Random (MAR), in the sense that the probability of having a missing response depends

on age. Here, it is assumed that missingness increases (S3) or decreases (S5) with age. In the

appendix, some other age-related missingness mechanisms were considered and their results were

displayed. In scenario (S4) and (S6), we additionally assume that the amount of missingness is

spatially varying (S-MAR), incorporating a spatial random effect uk in the missingness probability

which follows a zero-mean ICAR model. Finally, in (S7) and (S8), we consider the setting where

the missing data mechanism is missing not at random (MNAR), assuming that the amount of

missingness depends on the outcome of interest. In (S8) a spatial random effect was added, adding

extra variability into the sampling scheme. For the simulation of the spatial random effect in (S4),
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(S6) and (S8), a Gamma(0.5,0.008) distribution was used for the spatial precision parameter σ−2
u ,

similar as in Mercer et al. [12] and Chen et al. [11]. The simulated spatial random effect is

presented in Figure 2 in the appendix.

The weights which adjust for missingness, wm
ik ≡ wm

i( j)k, are computed by the reciprocal of the

sample size within each stratum and district of the dataset wherein the observations with a missing

response are excluded and the sample size in the matching stratum and district in the original data

set with no missing values. The final weights which are used in the analysis, taking into account

both the sampling design and nonresponse, are defined as w∗ik = wd
ik ·w

m
ik. This implies that every

observation i in stratum j and district k has the same weight.

3.2 Simulation Results

For each combination of a prevalence model and missing data scenario we run S= 100 simulations.

The results of the unweighted estimator (2), Horvitz-Thompson estimator (3), unadjusted binomial

model (5), logit normal model (7), arcsin root normal model (8), pseudo-likelihood model (9),

effective sample size method (10) and the hierarchical weight-smoothing models (12), (13), (16)

and (17) are discussed in this section. For each of these expressions both the semi-adjusted (14)

and adjusted (15) weights are considered.

In the presence of missing data, the weights need to be redefined. As explained in Section 2.3,

we can either use the semi-adjusted weights w̃d′
ik , which correct for the number of respondents, or

use the adjusted weights w̃∗ik defined as function of design weight and missingness weight. Figure 2

shows the effect of different definitions of the weight on the bias of the area-specific prevalence

estimates. The box plot corresponds with the bias of the area-specific prevalences for the 100

simulations. These results clearly indicate that the definition of the weights can have a serious

impact on the results. While results between the semi-adjusted and adjusted weights are similar

under the MCAR missing data mechanism, there is a large discrepancy between these under the

scenario of MAR. This is not unexpected since the age-distribution of the sample is distorted

when missingness is MAR, but not when missingness is MCAR. This indeed indicates that post-

stratification of the weights for important covariates is very important when missingness occurs in

the sample.
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To evaluate the estimates, the squared bias and mean squared error (MSE) are used. P̂k
(s) rep-

resents the estimated prevalence for area k, based on the sth simulated sample, and ¯̂Pk =
1
S ∑s P̂k

(s)

is the corresponding averaged value over all simulated surveys. The overall squared bias and MSE

are then defined as:

Bias2 =
1
K

K

∑
k=1

(
¯̂Pk−Pk

)2
,

Variance =
1
K

K

∑
k=1

(
1

S−1

S

∑
s=1

(
P̂(s)

k −
¯̂Pk

)2
)
,

MSE = Bias2 +Variance.

Furthermore, we calculate the nominal coverage probabilities of the estimated prevalences. Ta-

bles 2, 3 and 4 summarise the results under the simulated model M1 (model with age-trend only),

whereas Tables 5, 6 and 7 correspond to the prevalence scenario M2 (model with additional spa-

tial heterogeneity, not explained by the covariate). These tables only include results for adjusted

weights.

The results show that, as expected, the UNW estimator can have very large bias. The larger

the discrepancy between sample and population, the larger the bias. Note that in some scenarios

the missingness slightly corrects for the imbalance between sample and population, decreasing the

bias in the sample. In general, however, this estimator cannot be recommended. Also the MSE of

this estimator is very large, in general, as a result of large variability. As this estimator is a direct

estimator, making use only of the information within an area, this estimator can be very unstable,

especially for areas with a small sample size.

Overall, the HT estimator, making use of the adjusted weights, performs much better in terms of

bias. Not only in the situation of complete data, but also when data are incomplete, bias is small.

In the setting of missingness not at random however (S7 and S8), the bias of the HT estimator

is increased again. This is not unexpected, as the weighting approach makes the assumption of

missingness at random (indeed, missingness probabilities are assumed to be independent of the

missing outcomes themselves). Looking at the MSE, it can be observed that MSE is often large

for the HT estimator. This is again due to the fact that the estimator can be unstable when sample

size is small, as only information within an area is being used.
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Comparing the different indirect modeling approaches (logit normal model, arcsine root nor-

mal model, pseudo-likelihood model, effective sample size method and weight-smoothing model)

versus the direct estimators, it can be observed the indirect approaches outperform the direct es-

timators, both in average squared bias, average MSE and the coverage probabilities of the 95%

credible interval. The average squared bias of all indirect estimators is small, as long as missing-

ness is MCAR or MAR. When the underlying prevalence process is spatially structured, the MB

and PL estimators outperform all other methods, leading to smallest bias, MSE and best coverage

for all scenarios. However, when the underlying prevalence process is spatially unstructured, all

area-level and unit-level methods behave similar in terms of bias and MSE. Overall, MAR and

MNAR leads to a deflation of the coverage for the AS, PL and ES models. Coverage for the area-

level and unit-level methods is good for MAR scenarios. Further note that even in the situation

that no spatial heterogeneity term is present in the true prevalence model, both the area-level and

unit-level models including the spatial heterogeneity term improve the fit in terms of both squared

bias and MSE. This shows that, indeed, the shrinkage of extreme local estimates, by the use of the

area- and unit-level estimators, is advantageous in the small area situation.

Different versions of the MB method were considered, either using a spline or random walk

(RW1) in the prediction model. Only small differences are observed between MB1 based on spline

(SP) or RW1, though, in general, the squared bias based on the spline model is slightly larger than

based on the RW1 model. However, the MSE is smallest for the spline model as it leads to smallest

variability. When the prevalence model does not contain any spatial random effect (model M1), we

do not see any improvement of model MB3 (using separate weights with or without overdispersion)

as compared to MB1. However, when the prevalence model does contain a spatial random effect

(model M2), a small improvement is observed. This can be due to the increased variability in the

prevalence model, which can be better modeled via the extended models.

When the missingness process is spatially structured, the bias in the area-specific prevalences

increases. Note that the S-MAR reflects a situation in which the missingness probabilities depend

on an (unobserved) environmental factor. In the current analyses, only observed covariates were

taken into consideration in the missingness probabilities, and therefore are mis-specified. This

explains why there is an increase in bias for all methods in the S-MAR scenario as compared to
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the MAR scenario. While the increase in bias can be large for the direct estimators, this increase is

limited for the area-level and unit-level estimators, as they further model the spatial heterogeneity.

Incorporation of a spatial heterogeneity term in the model for the missingness probabilities might

further improve the estimation.

In Figures 3 and 4, we present the spatial trends for the HT, AN and MB1 (based on RW1)

models, under prevalence model M1 and M2, respectively. Here, missingness scenarios S2 and S6

are of interest, whereby 20% nonresponse was simulated. When comparing the estimates in Figure

3 to the true proportion in Figure 1 (bottom left panel), it is apparent that the HT, AN and MB1

(RW1) methods have difficulties to recover the true proportion in the southern districts. In those

areas, lower sample sizes were acquired, as these were generated proportionally to the population

sizes (Figure 1 (top left panel)). This renders the design-based estimator HT less reliable and

inefficient, while the AN and MB1 estimators retrieve the true population proportion significantly

better in the MCAR setting. However, when looking at the results of the S2 and S6 mechanisms in

Figure 4 for the spatial prevalence model, all three estimators perform well.

In addition, Figures 3-6 show the estimated trends for simulation scenarios S1-S4, under both

prevalence models (M1 and M2). Here the weights adjust for 60% missingness. These results can

be found in the appendix.

A sensitivity analysis of the priors of the random effects is presented in the appendix. Tables 8-

11 show the summary statistics for the models which assign a Gamma(2, 1) prior for the precision

parameters σ−2
u and σ−2

v . Similarly, Tables 12-15 display the results when considering the prior

distribution of σ−2
u and σ−2

v to be a Gamma(1, 0.5). Furthermore, we display the summary results

for the analyses using the second-order neighboring structure in Tables 16-19. Overall, while one

can detect small deviations across the different simulation settings, the results show that the models

perform consistently when applying small deviations for the prior distributions and neighborhood

structure.
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4 Application to the Belgian HIS data set

We apply the methods described in Section 2 to the Belgian Health Interview Survey (HIS) (2001).

The Belgian HIS aims to investigate the health status of the Belgian population. The selection pro-

cess of the respondents comprises three steps. Firstly, respondents are selected based on the region

in which they live (Flanders, Wallonia and the Brussels region). A total sample size of 12.770 was

drawn from the population (4255, 3234 and 5281 respectively for the three regions). Secondly,

a stratification is carried out at the level of the ten provinces. Lastly, within the provinces, the

sampling units are selected in three stages. Municipalities are selected proportionally to their size

within the provinces and form the primary selection unit (PSU). Within these municipalities a sim-

ple random sample of households was drawn, forming the secondary sampling unit (SSU). Lastly,

not more four individuals, the tertiary sampling unit (TSU), were interviewed in each household.

For this analysis the variable “perceived health” was investigated. Participants answered the

question “How is your health in general?” on a scale from “Excellent” to “Very Poor”. This ordinal

variable was combined into two groups, using the dichotomization which can be conferred in Table

20. People which answered to be feeling “Very Good” or “Good” were allocated value 0, while

people who responded to be feeling “Reasonable” or worse got value 1 for the newly constructed

variable. This allows us to use the methods, outlined in Section 2.

The data collection was carried out over the same 18 age groups that were used in Section

3. Only participants who were older than 15 were taken into account for the analysis as this

question was only asked to individuals older than 15. The line plot in Figure 5 depicts a positive

correlation between the age of the participants and the perceived health, as well as with the amount

of missingness, after age 15.

In total, 10419 eligible observations were taken into account for the analysis. When using the

constructed binary perceived health variable, 2383 participants (22.87%) stated that their general

health was reasonable or worse, 6998 respondents (67.17%) found their health in general to be

good or better. 1038 (9.96%) people did not answer this question. The sample sizes in the different

Belgian districts range from 43 to 2576. The amount of missingness varies between 2% and 23

%, where the districts Ath and Mons in the province of Hainaut exhibit the largest degrees of

incomplete data. These results are visualised in Figure 7. Four districts (Dendermonde, Dinant,
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Ieper, Veurne) were not sampled in the HIS study and are highlighted in black. The original design

weights were poststratified in order to account for any distributional differences for age and gender.

We can define the poststratified design weights wd
i( j)k as follows:

wd
i( j)k = wi( j)k ·

N jk

∑i∈( j)wi( j)k
,

where wi( j)k and wd
i( j)k are the original design weight and the poststratified design weight respec-

tively for individual i in stratum j and area k. The unnormalised missingness weights were con-

structed using the following logistic regression models:

(W1) : logit(P(rik = 1)) = ηi = β0 +β1Agei +β2Genderi,

(W2) : logit(P(rik = 1)) = ηi = β0 +β1Agei +β2Genderi +uk + vk,

We model the probability of observing the response of interest for individual i in area k in terms

of the age and gender (genderi = 0 for males and genderi = 1 for females) of the given respondent.

As we also want to investigate whether methods can be further improved by incorporating a spatial

trend in the weights, we extended the model by incorporating a spatial (uk) and non-spatial (vk)

random effect in the estimation process which will account for any spatially correlated and uncor-

related variability not yet explained by the design variables Age and Gender. Finally, we can again

characterise the missingness weights as wm
ik =

1+exp(ηi)
exp(ηi)

.

The normalised design weights vary from 0.3865 to 5.595 while the normalised weights which

adjust for nonresponse range between 0.0282 and 3.575.

4.1 Data Application

The right panel in Figure 5 shows the box plots for comparing the estimates associated with the

adjusted and semi-adjusted weights obtained by the models described in Section 2. Furthermore,

the hierarchical smoothing models, whereby the non-parametric function is specified in terms of

the two normalized weights are visualized as well. One could observe that the effect of the adjust-

ment of the weights is limited in the estimation process. This will be further investated by means

of a simulation study in the next section.
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We can also evaluate the unit-level methods based on their goodness-of-fit. In Table 23 the

deviance information criterion (DIC) values for each of the models are shown. It could be observed

that the approaches which use the adjusted weights in the estimation process perform slightly

better, compared to those which make use of the semi-adjusted weights. Furthermore, we can

observe that incorporation of the spatial heterogeneity into the missingness weights (W2) lead to

higher DIC values as compared to the methods using weights that do not incorporate the spatial

heterogeneity (W1). This is an indication that the spatial trend of the nonresponse does not play a

major role in this application. Because the semi-adjusted weights do not adjust for the missingness

in the data, no estimates for the MB3 models were obtained, since the missingness weights can

not be estimated. Also, we could not compute the DIC statistics for the MB3 (SP+OD) and MB3

(SP) methods under the W1 and W2 approach respectively. For these two situations, INLA could

not allocate enough memory in order to perform the estimations. It should be noted that, with the

exception of the five MB estimators, the DIC values cannot be compared among the different area-

level methods as the outcome of interest varies between them. When looking at the DIC values of

the hierarchical weight-smoothing models, we can conclude that the MB3 models perform best in

terms of goodness-of-fit.

Figure 8 presents the spatial distribution of the prevalence for six modeling approaches: The

unweighted estimator, the Horvitz-Thompson estimator, the arcsine root normal estimator, the

pseudo-likelihood estimator and two hierarchical weight-smoothed methods: one whereby the

weights are modeled through a non-parametric function which is specified by a random walk,

while the other utilises a penalised spline and an overdispersion parameter. The spatial trend based

on the UNW and HT estimator are most variable. Note that no estimates could be obtained for the

areas in which no samples were taken. As such, these areas are colored in black. In addition, it can

be observed that those areas where the sample size is smallest or missingness is highest have the

most extreme prevalence estimates. This instability was also observed in the simulation study. The

estimated spatial trend based on the indirect estimators behave in a similar way. There seems to be

an important North-South trend, with higher prevalence of poor perceived health in the Southern

part of Belgium. In this analysis, all methods lead to very similar results. In order to understand the

robustness of the methods with respect to the design and missingness, we performed an additional
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simulation study.

4.2 Simulation Setting

In the simulation study, the stratified clustered multi-stage design of the HIS data set was kept

intact. The survey sample has the same amount of observations as the 2001 Health Interview

Survey, namely 10419. The sample size and its distribution across the different strata remain the

same over all simulation runs. For each simulation run, we assume that the response variable is

missing. Consequently we use the following approach to simulate the response.

Simulating Prevalences

We assume that the binary response variable follows a bernoulli distribution

Yik ∼ Bernouilli(Pik),

where Pik denotes the population prevalence for individual i of district k. The following two models

are considered for the simulation of the population prevalences:

logit(Pik) = ηik = β̂0 + β̂1 ∗Ageik + β̂2 ∗Genderik +uk + vk

A convolution term uk ∼ ICAR(0,σ2
u ) with precision σ−2

u ∼ Gamma(1.0,0.5) was used, encom-

passing an uncorrelated random effect vk ∼N (0,0.10). The spatial random effects were gener-

ated using INLA. The values for these random effects were held constant across all simulations.

We also include an additional individual-specific random effect εik which follows a N (0,0.10)-

distribution as well. The parameter estimates β̂0, β̂1 and β̂2 were yielded from the same logistic

model, performed on the original data set. We assume a bernoulli distribution when simulating the

outcome variable Y ∗ik:

Y ∗ik = Bern(Pik)
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Simulating Nonresponse

The probability of not observing the response for the ith individual in area k is then equal to P(rik =

0) = β
qm

ik
∑i,k qm

ik
, whereby β = 0.10 (conform to the overall nonresponse percentage in the HIS data

set) and Table 21 contains the values of qm
ik. By using these values β and qm

ik, we aim to simulate

the missingness pattern across the age groups as seen in Figure 7 (right panel).

Results

In the analysis of the simulated data sets, we will focus primarily on the (W2) scenario when

estimating the missingness weights as this approach will account for more variability than (W1).

Figure 6 displays the area-specific estimates of the 100 simulation runs whereby the adjusted,

semi-adjusted and separate weights were applied in the estimation process. It is apparent that the

effect of adjusting for nonresponse is fairly limited. An explanation could be found in the fact that

the missingness distribution does not express a distinct trend across the eligible age groups and

that there is a low amount of missingness overall. When performing the analysis, INLA indicated

having difficulties allocating memory for the analyses of the MB3 models using a penalised spline,

both with or without the overdispersion term. This caused some of simulation runs to abort the

estimation process prematurely for these methods. However, the data sets for which the models

did converge, showed a clear bias as can be seen in Figure 6. As such, when performing an analysis

with these latter two models, one has to be cautious when interpreting the results. The summary

statistics for the adjusted weights (W2) are provided in Table 22. Overall, the HT and AN perform

best in terms of squared bias, closely followed by the MB1 models. When looking at the MSE

statistics, the unit-levels MB1 and MB3 (RW1) models perform considerably better than the area-

level models. And thus, it follows the same conclusion as the previous simulation study in Section

4. As mentioned early, the unit-level models MB3 models whereby a penalised spline was applied

performs considerably worse than the other approaches.

Note that the mechanism of simulation used in this section is different from the earlier simula-

tion study, as the current simulation study does not involve any sampling variability. This exercise

however still shows that models should properly reflect features of the sampling design, otherwise

inferences are likely to be distorted.
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5 Conclusion and Discussion

In this paper, the impact of missingness in health surveys on the estimation of the area-specific

prevalences was investigated. A comparison of different methods to estimate the area-specific

prevalences were compared, ranging from an unweighted estimator, the Horvitz-Thompson esti-

mator, to area-level and unit-level approaches taking into account spatially structured random ef-

fects. Weighting methods were preferred in this paper, as weighting can be used to account for both

the design of the survey as well as for missingness. Weighting methods are only valid under the

assumption of missing completely at random and missing at random, confirmed by the simulation

that pointed to increased bias in the case of missingness not at random. The area-specific preva-

lences are well estimated based on the weight smoothing methods, taking into account the design

and missingness weights as a covariate in the model and accounting for possible spatial correlation

via a convolution model. Also coverage is very well retained for the unit-level weight smoothing

methods. If missingness is spatially structured, this has a negative impact on the prevalence esti-

mation, leading to slightly increased bias and MSE. In conclusion, the use of weight-smoothing

methods accounting for poststratification weights to account for incompleteness in the data are

very promising when estimating the spatial trend based on survey data.

While common interest in this paper was on the estimation of the area-specific prevalence, the

unit-level models also allow to study the risk after accounting for know risk factors. It would be of

interest to study how a standardized rate can be obtained in the context of small area estimation.

This is a topic of further research.

Another extension of the proposed method is the use of an alternative spatial prior. While the

ICAR prior is commonly used in spatial modeling of lattice data, other spatial priors were proposed

in literature. An interesting option is the use of the Leroux prior [40], as the Leroux prior has some

advantages over the ICAR prior in terms of the ability to estimate the correlation effect.

Inference for all considered models (both area- and unit-level models) was done in the Bayesian

framework. The traditional approach towards Bayesian inference is the use of MCMC (Markov

Chain Monte Carlo methods). We however investigated INLA (Integrated Nested Laplace Ap-

proximations), as it serves as a faster alternative to MCMC methods when performing statistical

inference for latent Gaussian models. Carroll et al. [37] performed an in-depth comparison in the
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ability to recover estimates between INLA and OpenBUGS in the context of spatial hierarchical

modeling. Chen et al. [11] also showed a comparison between INLA and OpenBUGS for esti-

mation of the ES model. It however remains to be investigated how INLA compares with more

general MCMC methods in the specific context of missing data in small area estimation.
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Tables

Scenario Description Missingness probability weight Overall probability

S1 No missing data qm
i( j)k = 1 β = 0

S2 MCAR qm
i( j)k = 1 β = (0.2,0.4,0.6)

S3 MAR qm
i( j)k = 1− xi( j)k

20 β = (0.2,0.4,0.6)

S4 S-MAR qm
i( j)k = expit

(
logit

(
1− xa,ik

20

)
+uk

)
β = (0.2,0.4,0.6)

S5 MAR qm
i( j)k =

xi( j)k
20 β = (0.2,0.4,0.6)

S6 S-MAR qm
i( j)k = expit

(
logit

(xa,ik
20

)
+uk

)
β = (0.2,0.4,0.6)

S7 MNAR qm
i( j)k = 0.7yi( j)k0.9(1−yi( j)k) β = (0.2,0.4,0.6)

S8 MNAR qm
i( j)k = expit

(
logit

(
0.7yi( j)k0.9(1−yi( j)k)

)
+uk

)
β = (0.2,0.4,0.6)

Table 1: Description of the simulated nonresponse mechanisms
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 16.86 0.65 0.45 0.27 0.33 0.21 0.26 / / /

20% Missingness

MCAR (S2) 16.86(10) 0.87(9) 0.62(8) 0.37(2) 0.45(6) 0.37(1) 0.43(5) 0.38(3) 0.41(4) 0.47(7)

MAR (S3) 10.96(10) 0.48(9) 0.36(8) 0.24(3) 0.29(6) 0.21(1) 0.27(5) 0.23(2) 0.27(4) 0.30(7)

S-MAR (S4) 11.27(10) 0.54(9) 0.40(8) 0.26(3) 0.32(6) 0.23(1) 0.30(5) 0.24(2) 0.29(4) 0.32(7)

MAR (S5) 12.34(10) 0.62(9) 0.43(8) 0.27(5) 0.33(7) 0.26(4) 0.30(6) 0.13(2) 0.12(1) 0.17(3)

S-MAR (S6) 12.31(10) 0.58(9) 0.39(8) 0.25(3) 0.30(6) 0.25(2) 0.28(5) 0.22(1) 0.28(4) 0.31(7)

MNAR (S7) 7.81 0.60 0.50 0.61 0.54 0.30 0.59 0.53 0.55 0.55

S-MNAR (S8) 8.00 0.58 0.47 0.57 0.49 0.27 0.55 0.51 0.52 0.52

40% Missingness

MCAR (S2) 16.63(10) 1.14(9) 0.83(8) 0.49(1) 0.61(3) 0.57(2) 0.66(6) 0.63(4) 0.64(5) 0.69(7)

MAR (S3) 4.77(10) 0.22(8) 0.21(6) 0.17(1) 0.22(7) 0.21(4) 0.26(9) 0.19(2) 0.21(5) 0.20(3)

S-MAR (S4) 5.11(10) 0.24(6) 0.24(5) 0.20(2) 0.22(3) 0.25(7) 0.32(9) 0.19(1) 0.25(8) 0.23(4)

MAR (S5) 7.03(10) 0.38(9) 0.30(7) 0.22(1) 0.27(4) 0.27(3) 0.32(8) 0.26(2) 0.29(6) 0.28(5)

S-MAR (S6) 7.02(10) 0.34(9) 0.29(7) 0.21(1) 0.24(3) 0.23(2) 0.30(8) 0.27(6) 0.25(4) 0.25(5)

MNAR (S7) 0.88 4.26 4.28 4.77 4.45 4.53 4.56 4.26 4.38 4.33

S-MNAR (S8) 1.44 4.14 3.89 4.36 4.00 4.14 4.17 3.47 3.97 3.97

60% Missingness

MCAR (S2) 16.36(10) 1.72(9) 1.28(8) 0.83(1) 0.98(2) 1.12(3) 1.25(7) 1.17(5) 1.14(4) 1.21(6)

MAR (S3) 0.38(10) 0.18(8) 0.09(3) 0.11(5) 0.14(6) 0.18(7) 0.20(9) 0.10(4) 0.08(1) 0.08(2)

S-MAR (S4) 0.60(10) 0.15(7) 0.10(3) 0.12(4) 0.13(6) 0.20(8) 0.23(9) 0.13(5) 0.10(2) 0.09(1)

MAR (S5) 1.99(10) 0.10(1) 0.11(3) 0.13(5) 0.15(7) 0.20(8) 0.23(9) 0.15(6) 0.12(4) 0.11(2)

S-MAR (S6) 2.13(10) 0.13(2) 0.13(3) 0.13(4) 0.15(6) 0.19(8) 0.23(9) 0.17(7) 0.14(5) 0.12(1)

MNAR (S7) 5.60 19.68 19.08 19.89 18.81 18.96 18.94 18.44 19.29 19.15

S-MNAR (S8) 6.23 19.00 17.45 18.09 17.06 17.22 17.23 16.52 17.57 17.55

Table 2: Summary statistics of squared bias using adjusted weigths, analysed under the M1 simu-

lation mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed

to follow a Gamma(0.5,0.008)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 20.58 6.22 1.61 0.62 0.69 0.83 0.76 / / /

20% Missingness

MCAR (S2) 21.65(10) 7.99(9) 2.01(8) 0.83(1) 0.92(2) 1.03(5) 0.95(3) 1.04(6) 0.95(4) 1.38(7)

MAR (S3) 15.80(10) 7.04(9) 1.47(8) 0.56(1) 0.60(2) 1.03(5) 0.74(3) 1.18(6) 1.03(4) 1.23(7)

S-MAR (S4) 16.07(10) 6.85(9) 1.51(8) 0.58(1) 0.63(2) 0.94(4) 0.75(3) 1.18(6) 1.04(5) 1.25(7)

MAR (S5) 17.03(10) 7.21(9) 1.58(8) 0.60(1) 0.65(2) 0.96(7) 0.76(5) 0.87(6) 0.73(3) 0.75(4)

S-MAR (S6) 17.10(10) 7.18(9) 1.59(8) 0.60(1) 0.64(2) 1.00(5) 0.75(3) 1.06(6) 0.95(4) 1.26(7)

MNAR (S7) 12.75 7.10 1.64 0.95 0.86 1.30 1.14 1.26 1.16 1.45

S-MNAR (S8) 12.95 7.25 1.71 0.94 0.92 1.24 1.12 1.27 1.11 1.43

40% Missingness

MCAR (S2) 22.94(10) 10.41(9) 2.50(8) 1.08(1) 1.25(3) 1.26(4) 1.23(2) 1.31(6) 1.28(5) 1.70(7)

MAR (S3) 11.75(10) 9.00(9) 1.39(8) 0.52(1) 0.52(2) 1.20(5) 0.69(3) 1.28(7) 1.12(4) 1.25(6)

S-MAR (S4) 11.62(10) 8.26(9) 1.41(8) 0.51(1) 0.59(2) 1.14(5) 0.74(3) 1.32(7) 1.12(4) 1.24(6)

MAR (S5) 13.92(10) 9.11(9) 1.51(8) 0.57(1) 0.58(2) 1.05(4) 0.79(3) 1.19(6) 1.06(5) 1.31(7)

S-MAR (S6) 13.80(10) 8.63(9) 1.56(8) 0.55(1) 0.64(2) 0.97(4) 0.74(3) 1.23(6) 1.03(5) 1.31(7)

MNAR (S7) 7.91 12.64 5.41 5.12 4.74 5.23 5.03 5.18 5.08 5.31

S-MNAR (S8) 8.52 12.69 5.18 4.73 4.39 4.85 4.69 4.42 4.68 4.96

60% Missingness

MCAR (S2) 26.09(10) 15.47(9) 3.13(8) 1.58(1) 1.60(2) 1.84(3) 1.87(4) 2.40(6) 2.33(5) 2.74(7)

MAR (S3) 11.44(10) 13.01(9) 1.56(8) 0.53(1) 0.62(2) 1.04(4) 0.71(3) 1.40(7) 1.13(5) 1.25(6)

S-MAR (S4) 11.92(10) 12.91(9) 1.34(8) 0.52(2) 0.47(1) 1.07(4) 0.74(3) 1.43(7) 1.14(5) 1.29(6)

MAR (S5) 12.98(10) 12.85(9) 1.41(8) 0.54(2) 0.48(1) 0.99(4) 0.72(3) 1.27(6) 1.08(5) 1.34(7)

S-MAR (S6) 13.05(10) 12.66(9) 1.60(8) 0.57(1) 0.65(2) 0.96(4) 0.73(3) 1.30(6) 1.11(5) 1.38(7)

MNAR (S7) 16.72 31.75 20.22 20.25 19.08 19.64 19.43 18.98 19.66 19.81

S-MNAR (S8) 18.11 31.63 18.69 18.59 17.44 18.07 17.93 17.17 18.05 18.29

Table 3: Summary statistics of MSE using adjusted weigths, analysed under the M1 simulation

mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed to follow

a Gamma(0.5,0.008)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 0.33 0.95 0.95 0.98 0.97 1.00 1.00 / / /

20% Missingness

MCAR (S2) 0.39 0.94 0.95 0.98 0.97 1.00 0.99 0.99 0.99 1.00

MAR (S3) 0.52 0.95 0.97 0.98 0.98 1.00 0.99 0.99 1.00 1.00

S-MAR (S4) 0.51 0.95 0.97 0.98 0.98 1.00 1.00 0.98 1.00 1.00

MAR (S5) 0.49 0.95 0.97 0.99 0.98 1.00 1.00 0.99 0.99 1.00

S-MAR (S6) 0.49 0.95 0.97 0.98 0.98 1.00 1.00 0.99 1.00 1.00

MNAR (S7) 0.63 0.92 0.92 0.87 0.89 0.96 0.95 0.98 0.98 0.99

S-MNAR (S8) 0.62 0.92 0.92 0.88 0.90 0.96 0.96 0.98 0.98 0.99

40% Missingness

MCAR (S2) 0.47 0.93 0.95 0.98 0.97 1.00 0.99 0.99 0.99 1.00

MAR (S3) 0.79 0.92 0.92 0.88 0.88 0.96 0.95 0.99 1.00 1.00

S-MAR (S4) 0.78 0.92 0.94 0.89 0.89 0.96 0.96 0.99 1.00 1.00

MAR (S5) 0.71 0.93 0.96 0.95 0.96 0.99 0.98 0.99 1.00 1.00

S-MAR (S6) 0.70 0.94 0.96 0.95 0.94 0.99 0.99 0.99 1.00 1.00

MNAR (S7) 0.92 0.75 0.61 0.29 0.29 0.58 0.50 0.74 0.72 0.85

S-MNAR (S8) 0.89 0.76 0.64 0.36 0.38 0.62 0.56 0.79 0.76 0.86

60% Missingness

MCAR (S2) 0.56 0.91 0.93 0.98 0.97 1.00 0.99 0.99 0.99 1.00

MAR (S3) 0.93 0.85 0.83 0.65 0.64 0.81 0.78 1.00 1.00 1.00

S-MAR (S4) 0.92 0.86 0.83 0.67 0.67 0.83 0.79 1.00 1.00 1.00

MAR (S5) 0.89 0.89 0.91 0.82 0.82 0.94 0.92 1.00 1.00 1.00

S-MAR (S6) 0.89 0.90 0.91 0.83 0.82 0.95 0.93 0.99 1.00 1.00

MNAR (S7) 0.81 0.53 0.17 0.02 0.01 0.11 0.07 0.29 0.30 0.46

S-MNAR (S8) 0.80 0.54 0.24 0.05 0.05 0.20 0.16 0.35 0.38 0.50

Table 4: Nominal coverage probabilities using adjusted weigths, analysed under the M1 simulation

mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed to follow

a Gamma(0.5,0.008)-distribution.
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 0.04 0.04 0.89 0.33 1.76 0.33 0.33 / / /

20% Missingness

MCAR (S2) 0.03(1) 0.04(2) 1.68(9) 0.51(8) 2.52(10) 0.49(5) 0.50(7) 0.49(4) 0.50(6) 0.48(3)

MAR (S3) 0.04(1) 0.05(2) 1.37(9) 0.46(4) 2.01(10) 0.47(6) 0.47(7) 0.54(8) 0.47(5) 0.45(3)

S-MAR (S4) 0.04(1) 0.04(2) 1.49(9) 0.50(5) 2.40(10) 0.50(7) 0.50(8) 0.47(3) 0.50(6) 0.49(4)

MAR (S5) 0.02(1) 0.03(2) 1.60(9) 0.44(3) 2.79(10) 0.47(8) 0.47(7) 0.45(5) 0.47(6) 0.45(4)

S-MAR (S6) 0.04(1) 0.05(2) 1.77(9) 0.46(3) 3.03(10) 0.47(6) 0.48(7) 0.60(8) 0.47(5) 0.46(4)

MNAR (S7) 1.65 1.70 2.88 2.01 4.01 1.99 1.99 2.07 1.98 1.97

S-MNAR (S8) 1.58 1.65 3.00 2.03 4.02 2.00 2.01 2.11 2.01 1.99

40% Missingness

MCAR (S2) 0.05(1) 0.05(2) 2.99(9) 0.73(3) 4.76(10) 0.77(8) 0.76(6) 0.77(7) 0.76(5) 0.75(4)

MAR (S3) 0.04(1) 0.06(2) 2.83(9) 0.78(4) 4.32(10) 0.78(7) 0.78(6) 0.90(8) 0.78(5) 0.76(3)

S-MAR (S4) 0.06(1) 0.06(2) 2.82(9) 0.76(3) 4.62(10) 0.79(8) 0.79(7) 0.78(5) 0.79(6) 0.78(4)

MAR (S5) 0.02(1) 0.03(2) 2.67(9) 0.69(3) 4.21(10) 0.75(7) 0.75(6) 0.82(8) 0.74(5) 0.73(4)

S-MAR (S6) 0.04(1) 0.05(2) 3.09(9) 0.76(3) 5.12(10) 0.80(6) 0.79(5) 1.01(8) 0.80(7) 0.77(4)

MNAR (S7) 8.58 8.46 10.91 9.14 12.07 9.28 9.17 10.55 9.14 9.14

S-MNAR (S8) 8.34 8.40 11.39 9.25 12.61 9.29 9.30 9.70 9.26 9.28

60% Missingness

MCAR (S2) 0.08(1) 0.08(2) 5.74(9) 1.41(3) 11.35(10) 1.53(7) 1.51(6) 2.11(8) 1.50(5) 1.46(4)

MAR (S3) 0.08(1) 0.11(2) 6.17(9) 1.54(6) 10.58(10) 1.54(7) 1.53(5) 1.54(8) 1.52(4) 1.50(3)

S-MAR (S4) 0.07(1) 0.07(2) 6.05(9) 1.48(3) 10.42(10) 1.56(8) 1.56(7) 1.54(6) 1.54(5) 1.50(4)

MAR (S5) 0.04(1) 0.05(2) 5.11(9) 1.51(3) 8.41(10) 1.60(7) 1.59(6) 1.63(8) 1.58(5) 1.56(4)

S-MAR (S6) 0.05(1) 0.08(2) 5.20(9) 1.60(3) 8.47(10) 1.67(7) 1.66(6) 1.83(8) 1.65(5) 1.61(4)

MNAR (S7) 28.40 28.39 37.63 31.77 38.07 31.97 32.02 32.37 31.91 31.94

S-MNAR (S8) 27.86 27.94 38.05 31.69 38.22 32.04 32.17 33.13 32.05 32.10

Table 5: Summary statistics of squared bias using adjusted weigths, analysed under the M2 simu-

lation mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed

to follow a Gamma(0.5,0.008)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 2.46 3.63 6.30 3.46 9.28 2.38 2.40 / / /

20% Missingness

MCAR (S2) 3.15(6) 4.64(8) 8.36(9) 4.32(7) 9.47(10) 3.03(1) 3.06(4) 3.13(5) 3.06(3) 3.06(2)

MAR (S3) 2.98(6) 4.26(8) 7.60(9) 3.96(7) 7.81(10) 2.87(1) 2.89(4) 3.43(5) 2.88(3) 2.88(2)

S-MAR (S4) 2.92(6) 4.16(8) 7.87(9) 3.92(7) 9.71(10) 2.87(2) 2.88(4) 2.90(5) 2.88(3) 2.87(1)

MAR (S5) 3.00(6) 4.16(8) 8.23(9) 3.89(7) 11.68(10) 2.91(1) 2.93(3) 2.95(5) 2.93(4) 2.92(2)

S-MAR (S6) 3.01(5) 4.25(8) 8.21(9) 3.95(7) 11.84(10) 2.90(1) 2.92(3) 3.58(6) 2.92(4) 2.91(2)

MNAR (S7) 4.70 6.11 8.93 5.71 12.77 4.49 4.51 5.01 4.50 4.50

S-MNAR (S8) 4.57 6.13 9.07 5.79 11.90 4.46 4.49 5.17 4.49 4.49

40% Missingness

MCAR (S2) 4.14(6) 5.96(8) 11.33(9) 5.58(7) 13.94(10) 4.06(4) 4.04(2) 4.05(3) 4.06(5) 4.03(1)

MAR (S3) 3.94(2) 5.38(8) 11.10(9) 5.18(7) 12.78(10) 3.96(4) 3.97(5) 4.48(6) 3.96(3) 3.90(1)

S-MAR (S4) 3.87(3) 5.24(8) 11.36(9) 5.04(7) 14.67(10) 3.91(4) 3.92(6) 3.87(2) 3.92(5) 3.86(1)

MAR (S5) 4.05(5) 5.33(8) 11.08(9) 5.10(7) 13.37(10) 4.03(2) 4.04(4) 4.19(6) 4.03(3) 4.00(1)

S-MAR (S6) 4.01(3) 5.43(8) 11.08(9) 5.17(7) 15.39(10) 4.01(2) 4.04(5) 4.71(6) 4.04(4) 3.99(1)

MNAR (S7) 13.00 14.61 18.52 14.14 20.76 12.78 12.64 16.97 12.61 12.59

S-MNAR (S8) 12.58 14.55 19.17 14.32 20.74 12.69 12.70 14.37 12.68 12.65

60% Missingness

MCAR (S2) 6.40(5) 8.64(8) 17.17(9) 7.79(6) 27.29(10) 6.08(2) 6.10(3) 8.04(7) 6.11(4) 6.06(1)

MAR (S3) 6.25(6) 8.03(8) 17.50(9) 7.44(7) 25.10(10) 6.03(3) 6.02(4) 6.10(5) 6.02(2) 6.02(1)

S-MAR (S4) 6.26(6) 7.8(8)3 17.51(9) 7.35(7) 25.19(10) 6.11(4) 6.10(3) 6.15(5) 6.10(2) 6.02(1)

MAR (S5) 5.95(4) 7.52(8) 15.39(9) 7.14(7) 20.43(10) 5.95(5) 5.92(2) 6.01(6) 5.93(3) 5.87(1)

S-MAR (S6) 6.14(5) 7.97(8) 15.76(9) 7.48(7) 20.52(10) 6.09(2) 6.11(4) 6.72(6) 6.10(3) 6.07(1)

MNAR (S7) 36.43 38.84 48.25 39.63 50.18 37.77 37.71 38.60 37.66 37.73

S-MNAR (S8) 36.09 38.77 48.00 39.13 50.29 37.38 37.52 39.84 37.42 37.48

Table 6: Summary statistics of MSE using adjusted weigths, analysed under the M2 simulation

mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed to follow

a Gamma(0.5,0.008)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 0.92 0.89 0.88 0.90 0.85 0.95 0.95 / / /

20% Missingness

MCAR (S2) 0.90 0.87 0.86 0.89 0.82 0.94 0.94 0.94 0.94 0.94

MAR (S3) 0.91 0.87 0.88 0.90 0.83 0.95 0.95 0.94 0.95 0.95

S-MAR (S4) 0.91 0.87 0.88 0.91 0.84 0.95 0.95 0.95 0.95 0.95

MAR (S5) 0.91 0.87 0.87 0.90 0.82 0.95 0.94 0.95 0.94 0.95

S-MAR (S6) 0.91 0.88 0.87 0.91 0.80 0.95 0.95 0.93 0.95 0.95

MNAR (S7) 0.81 0.81 0.78 0.80 0.73 0.84 0.84 0.83 0.84 0.84

S-MNAR (S8) 0.82 0.81 0.78 0.80 0.74 0.84 0.84 0.83 0.84 0.85

40% Missingness

MCAR (S2) 0.89 0.84 0.85 0.90 0.80 0.95 0.94 0.95 0.94 0.95

MAR(S3) 0.89 0.86 0.87 0.91 0.81 0.95 0.95 0.94 0.95 0.95

S-MAR (S4) 0.89 0.86 0.86 0.91 0.80 0.95 0.95 0.95 0.95 0.95

MAR (S5) 0.89 0.86 0.88 0.91 0.82 0.94 0.94 0.94 0.94 0.95

S-MAR (S6) 0.89 0.86 0.85 0.91 0.76 0.95 0.95 0.93 0.95 0.95

MNAR (S7) 0.56 0.62 0.54 0.58 0.50 0.59 0.59 0.56 0.59 0.60

S-MNAR (S8) 0.60 0.64 0.57 0.59 0.53 0.60 0.60 0.59 0.61 0.61

60% Missingness

MCAR (S2) 0.86 0.81 0.81 0.91 0.69 0.95 0.95 0.92 0.95 0.96

MAR (S3) 0.86 0.82 0.83 0.91 0.70 0.95 0.95 0.95 0.95 0.95

S-MAR (S4) 0.86 0.82 0.81 0.91 0.70 0.94 0.94 0.94 0.94 0.94

MAR (S5) 0.87 0.83 0.83 0.92 0.71 0.95 0.95 0.95 0.95 0.95

S-MAR (S6) 0.86 0.83 0.83 0.91 0.73 0.95 0.95 0.94 0.95 0.95

MNAR (S7) 0.38 0.43 0.33 0.39 0.32 0.38 0.39 0.38 0.39 0.39

S-MNAR (S8) 0.41 0.45 0.35 0.41 0.34 0.40 0.40 0.39 0.40 0.40

Table 7: Nominal coverage probabilities using adjusted weigths, analysed under the M2 simulation

mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed to follow

a Gamma(0.5,0.008)-distribution.
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 16.89 0.65 0.63 0.42 0.48 0.18 0.22 / / /

20% Missingness

MCAR (S2) 16.90(10) 0.88(9) 0.85(8) 0.56(6) 0.64(7) 0.34(1) 0.38(4) 0.37(2) 0.38(3) 0.51(5)

MAR (S5) 10.96(10) 0.49(9) 0.47(8) 0.31(6) 0.36(7) 0.19(1) 0.24(2) 0.26(4) 0.25(3) 0.31(5)

S-MAR (S6) 11.25(10) 0.54(9) 0.52(8) 0.35(6) 0.40(7) 0.21(1) 0.26(2) 0.32(4) 0.27(3) 0.34(5)

MNAR (S7) 7.80 0.60 0.58 0.54 0.53 0.70 0.82 0.55 0.63 0.56

S-MNAR (S8) 8.01 0.59 0.58 0.53 0.52 0.67 0.79 0.55 0.61 0.53

40% Missingness

MCAR (S2) 16.70(10) 1.16(9) 1.10(8) 0.73(5) 0.82(7) 0.58(1) 0.64(2) 0.68(4) 0.67(3) 0.79(6)

MAR (S5) 4.76(10) 0.23(9) 0.22(8) 0.14(1) 0.18(5) 0.18(2) 0.22(7) 0.22(6) 0.18(3) 0.18(4)

S-MAR (S6) 5.12(10) 0.25(8) 0.25(7) 0.18(1) 0.20(2) 0.22(4) 0.27(9) 0.23(6) 0.22(3) 0.22(5)

MNAR (S7) 0.88 4.27 4.24 4.42 4.21 4.81 4.96 4.05 4.46 4.27

S-MNAR (S8) 1.45 4.16 4.07 4.13 3.92 4.51 4.66 3.84 4.14 3.97

60% Missingness

MCAR (S2) 16.36(10) 1.72(9) 1.52(8) 1.11(1) 1.19(2) 1.20(3) 1.28(4) 1.45(7) 1.30(5) 1.41(6)

MAR (S5) 0.38(10) 0.18(9) 0.16(7) 0.10(2) 0.12(4) 0.15(6) 0.17(8) 0.08(1) 0.12(3) 0.12(5)

S-MAR (S6) 0.60(10) 0.15(7) 0.13(4) 0.09(1) 0.10(2) 0.22(8) 0.25(9) 0.14(6) 0.14(5) 0.12(3)

MNAR (S7) 5.60 19.68 19.47 19.42 18.54 19.20 19.21 17.99 19.33 19.01

S-MNAR (S8) 6.23 19.00 18.60 17.97 17.16 17.83 17.96 16.85 17.92 17.63

Table 8: Summary statistics of squared bias using adjusted weigths, analysed under the M1 simu-

lation mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed

to follow a Gamma(2,1)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 0.04 0.04 0.86 0.36 1.74 0.34 0.34 / / /

20% Missingness

MCAR (S2) 0.03(1) 0.04(2) 1.78(9) 0.54(7) 2.54(10) 0.52(4) 0.52(5) 0.71(8) 0.53(6) 0.46(3)

MAR (S5) 0.04(1) 0.05(2) 1.46(9) 0.50(7) 2.05(10) 0.50(4) 0.50(6) 0.50(8) 0.50(5) 0.43(3)

S-MAR (S6) 0.04(1) 0.05(2) 1.51(9) 0.54(7) 2.44(10) 0.53(4) 0.54(6) 0.55(8) 0.53(5) 0.46(3)

MNAR (S7) 1.65 1.69 2.90 2.02 4.02 2.01 2.00 2.08 2.00 1.94

S-MNAR (S8) 1.59 1.66 3.08 2.06 4.06 2.02 2.03 2.08 2.03 1.95

40% Missingness

MCAR (S2) 0.05(1) 0.05(2) 3.27(9) 0.79(4) 4.54(10) 0.82(6) 0.83(7) 0.82(5) 0.84(8) 0.73(3)

MAR (S5) 0.04(1) 0.06(2) 3.03(9) 0.84(4) 4.10(10) 0.84(5) 0.85(7) 0.96(8) 0.85(6) 0.74(3)

S-MAR (S6) 0.06(1) 0.06(2) 2.93(9) 0.82(4) 4.49(10) 0.87(5) 0.88(7) 0.88(8) 0.88(6) 0.77(3)

MNAR (S7) 8.55 8.42 10.81 9.17 11.94 9.30 9.22 9.77 9.18 9.09

S-MNAR (S8) 8.36 8.42 11.39 9.36 12.53 9.38 9.38 9.70 9.33 9.21

60% Missingness

MCAR (S2) 0.08(1) 0.08(2) 5.55(9) 1.54(4) 10.64(10) 1.67(5) 1.67(8) 1.77(8) 1.67(6) 1.46(3)

MAR (S5) 0.08(1) 0.11(2) 6.16(9) 1.69(7) 10.03(10) 1.68(7) 1.69(8) 1.67(4) 1.68(6) 1.46(3)

S-MAR (S6) 0.07(1) 0.07(2) 6.00(9) 1.62(4) 9.96(10) 1.69(5) 1.70(7) 1.73(8) 1.70(6) 1.47(3)

MNAR (S7) 28.40 28.39 35.42 32.04 37.73 32.25 32.24 32.85 32.13 31.96

S-MNAR (S8) 27.86 27.94 35.89 31.94 37.94 32.20 32.37 32.50 32.27 32.10

Table 9: Summary statistics of squared bias using adjusted weigths, analysed under the M2 simu-

lation mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed

to follow a Gamma(2,1)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 20.61 6.22 5.53 2.74 2.76 2.01 1.99 / / /

20% Missingness

MCAR (S2) 21.71(10) 8.01(9) 6.93(8) 3.29(7) 3.29(6) 2.46(4) 2.43(3) 2.40(1) 2.41(2) 2.67(5)

MAR (S5) 15.80(10) 7.04(9) 5.98(8) 2.74(7) 2.67(6) 2.34(4) 2.26(1) 2.27(3) 2.27(2) 2.40(5)

S-MAR (S6) 16.07(10) 6.84(9) 5.84(8) 2.70(7) 2.68(6) 2.26(2) 2.23(1) 2.40(4) 2.26(3) 2.38(5)

MNAR (S7) 12.76 7.08 6.10 2.98 2.87 2.77 2.81 2.56 2.63 2.64

S-MNAR (S8) 12.96 7.25 6.27 3.05 2.97 2.79 2.83 2.61 2.62 2.64

40% Missingness

MCAR (S2) 23.05(10) 10.49(9) 8.67(8) 3.87(7) 3.85(6) 3.01(2) 3.03(3) 3.08(4) 2.99(1) 3.30(5)

MAR (S5) 11.74(10) 8.98(9) 7.16(8) 2.88(7) 2.70(5) 2.77(6) 2.58(3) 2.48(1) 2.50(2) 2.61(4)

S-MAR (S6) 11.64(10) 8.24(9) 6.64(8) 2.69(7) 2.63(5) 2.65(6) 2.51(4) 2.42(2) 2.40(1) 2.49(3)

MNAR (S7) 7.91 12.62 10.95 7.09 6.68 7.13 7.19 6.35 6.72 6.66

S-MNAR (S8) 8.53 12.69 10.94 6.88 6.51 6.97 7.03 6.26 6.43 6.40

60% Missingness

MCAR (S2) 26.09(10) 15.47(9) 11.08(8) 4.84(7) 4.51(6) 4.05(1) 4.09(3) 4.40(4) 4.08(2) 4.46(5)

MAR (S5) 11.44(10) 13.01(9) 9.01(8) 3.25(7) 2.93(3) 3.19(6) 3.00(5) 2.92(1) 2.80(2) 2.99(4)

S-MAR (S6) 11.92(10) 12.91(9) 8.57(8) 3.14(7) 2.79(1) 3.20(6) 3.08(5) 3.03(3) 2.87(2) 3.03(4)

MNAR (S7) 16.72 31.75 27.97 22.38 21.08 21.91 21.83 20.83 21.85 21.75

S-MNAR (S8) 18.11 31.63 26.82 21.05 19.74 20.74 20.78 19.51 20.62 20.55

Table 10: Summary statistics of MSE using adjusted weigths, analysed under the M1 simulation

mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed to follow

a Gamma(2,1)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 2.46 3.63 6.65 3.45 9.11 2.40 2.42 / / /

20% Missingness

MCAR (S2) 3.16(5) 4.65(8) 9.12(9) 4.39(7) 9.38(10) 3.08(2) 3.11(4) 3.94(6) 3.11(3) 3.08(1)

MAR (S5) 2.98(6) 4.27(8) 8.42(10) 4.02(7) 7.84(9) 2.92(2) 2.94(5) 2.93(4) 2.93(3) 2.90(1)

S-MAR (S6) 2.92(4) 4.15(8) 8.38(9) 3.96(7) 9.65(10) 2.90(2) 2.92(3) 2.95(6) 2.93(5) 2.88(1)

MNAR (S7) 4.70 6.08 9.50 5.72 12.67 4.52 4.54 5.00 4.54 4.51

S-MNAR (S8) 4.59 6.13 9.81 5.82 11.88 4.49 4.52 4.84 4.52 4.48

40% Missingness

MCAR (S2) 4.15(6) 5.96(8) 12.64(9) 5.48(7) 13.64(10) 3.99(2) 4.01(3) 4.02(5) 4.01(4) 3.97(1)

MAR (S5) 3.95(5) 5.38(8) 12.27(9) 5.07(7) 12.35(10) 3.89(2) 3.92(4) 4.43(6) 3.91(3) 3.85(1)

S-MAR (S6) 3.86(5) 5.20(8) 12.19(9) 4.90(7) 14.22(10) 3.82(2) 3.85(3) 3.87(6) 3.85(4) 3.80(1)

MNAR (S7) 12.98 14.55 19.20 14.05 20.38 12.73 12.68 14.41 12.64 12.61

S-MNAR (S8) 12.60 14.55 20.10 14.23 20.33 12.68 12.72 13.75 12.68 12.63

60% Missingness

MCAR (S2) 6.40(6) 8.64(8) 18.08(9) 7.73(7) 26.19(10) 6.07(2) 6.09(3) 6.34(5) 6.10(4) 6.01(1)

MAR (S5) 6.25(6) 8.03(8) 18.54(9) 7.39(7) 24.13(10) 6.03(2) 6.04(3) 6.05(5) 6.05(4) 5.97(1)

S-MAR (S6) 6.26(6) 7.83(8) 18.55(9) 7.32(7) 24.36(10) 6.10(2) 6.11(3) 6.25(5) 6.11(4) 6.03(1)

MNAR (S7) 36.43 38.84 47.57 39.46 49.21 37.78 37.80 38.98 37.72 37.75

S-MNAR (S8) 36.09 38.77 47.16 39.14 49.58 37.47 37.67 38.30 37.59 37.64

Table 11: Summary statistics of MSE using adjusted weigths, analysed under the M2 simulation

mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed to follow

a Gamma(2,1)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 16.86 0.65 0.62 0.39 0.46 0.18 0.21 / / /

20% Missingness

MCAR (S2) 16.90(10) 0.88(9) 0.84(8) 0.53(6) 0.61(7) 0.48(4) 0.38(2) 0.37(1) 0.38(3) 0.50(5)

MAR (S5) 10.96(10) 0.49(9) 0.47(8) 0.29(5) 0.35(7) 0.13(1) 0.24(3) 0.23(2) 0.24(4) 0.31(6)

S-MAR (S6) 11.25(10) 0.54(9) 0.51(8) 0.33(5) 0.39(7) 0.15(1) 0.26(2) 0.29(4) 0.27(3) 0.34(6)

MNAR (S7) 7.80 0.60 0.57 0.54 0.52 0.66 0.80 0.50 0.62 0.56

S-MNAR (S8) 8.01 0.59 0.57 0.53 0.51 0.61 0.76 0.61 0.59 0.53

40% Missingness

MCAR (S2) 16.70(10) 1.16(9) 1.09(8) 0.69(4) 0.79(6) 1.01(7) 0.64(1) 0.66(2) 0.66(3) 0.77(5)

MAR (S5) 4.76(10) 0.23(9) 0.22(8) 0.14(1) 0.18(5) 0.16(2) 0.22(7) 0.21(6) 0.18(3) 0.18(4)

S-MAR (S6) 5.12(10) 0.25(8) 0.25(7) 0.18(1) 0.20(3) 0.18(2) 0.27(9) 0.22(4) 0.22(5) 0.22(6)

MNAR (S7) 0.88 4.27 4.22 4.46 4.23 4.57 4.92 4.05 4.45 4.27

S-MNAR (S8) 1.45 4.16 4.04 4.15 3.91 4.16 4.58 3.69 4.12 3.96

60% Missingness

MCAR (S2) 16.36(10) 1.72(8) 1.53(7) 1.07(1) 1.17(2) 2.11(9) 1.27(3) 1.40(6) 1.28(4) 1.38(5)

MAR (S5) 0.38(10) 0.18(8) 0.14(6) 0.10(2) 0.12(5) 0.26(9) 0.17(7) 0.07(1) 0.11(3) 0.11(4)

S-MAR (S6) 0.60(10) 0.15(7) 0.12(4) 0.09(1) 0.09(2) 0.27(9) 0.24(8) 0.13(5) 0.13(6) 0.11(3)

MNAR (S7) 5.60 19.68 19.38 19.51 18.57 18.50 19.22 18.20 19.34 19.03

S-MNAR (S8) 6.23 19.00 18.43 17.96 17.09 16.68 17.81 16.23 17.84 17.59

Table 12: Summary statistics of squared bias using adjusted weigths, analysed under the M1 sim-

ulation mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed

to follow a Gamma(1,0.5)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 0.04 0.04 0.86 0.33 1.68 0.32 0.32 / / /

20% Missingness

MCAR (S2) 0.03(1) 0.04(2) 1.74(9) 0.51(7) 2.46(10) 0.49(5) 0.49(6) 0.66(8) 0.49(4) 0.44(3)

MAR (S5) 0.04(1) 0.05(2) 1.43(9) 0.46(5) 1.97(10) 0.46(4) 0.47(7) 0.53(8) 0.47(6) 0.41(3)

S-MAR (S6) 0.04(1) 0.05(2) 1.49(9) 0.51(7) 2.36(10) 0.50(5) 0.50(6) 0.56(8) 0.50(4) 0.45(3)

MNAR (S7) 1.65 1.69 2.88 2.00 3.93 1.98 1.97 2.16 1.98 1.92

S-MNAR (S8) 1.59 1.66 3.05 2.03 3.97 1.99 2.00 1.99 2.00 1.94

40% Missingness

MCAR (S2) 0.05(1) 0.05(2) 3.19(9) 0.74(4) 4.39(10) 0.77(5) 0.78(6) 0.90(8) 0.78(7) 0.70(3)

MAR (S5) 0.04(1) 0.06(2) 2.96(9) 0.79(4) 3.95(10) 0.79(5) 0.79(6) 1.08(8) 0.80(7) 0.71(3)

S-MAR (S6) 0.06(1) 0.06(2) 2.89(9) 0.77(4) 4.35(10) 0.81(5) 0.82(6) 0.84(8) 0.83(7) 0.73(3)

MNAR (S7) 8.55 8.42 10.81 9.11 11.76 9.24 9.15 9.63 9.14 9.05

S-MNAR (S8) 8.36 8.42 11.40 9.30 12.37 9.31 9.32 9.56 9.27 9.17

60% Missingness

MCAR (S2) 0.08(1) 0.08(2) 5.51(9) 1.45(4) 10.34(10) 1.56(6) 1.57(7) 1.60(8) 1.56(5) 1.39(3)

MAR (S5) 0.08(1) 0.11(2) 6.09(9) 1.58(7) 9.73(10) 1.57(6) 1.58(8) 1.56(5) 1.56(4) 1.40(3)

S-MAR (S6) 0.07(1) 0.07(2) 5.92(9) 1.52(4) 9.69(10) 1.58(5) 1.59(8) 1.59(7) 1.59(6) 1.41(3)

MNAR (S7) 28.40 28.39 35.98 31.76 37.18 31.96 31.95 32.35 31.86 31.75

S-MNAR (S8) 27.86 27.94 36.42 31.68 37.44 31.91 32.09 33.18 32.02 31.85

Table 13: Summary statistics of squared bias using adjusted weigths, analysed under the M2 sim-

ulation mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed

to follow a Gamma(1,0.5)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 20.58 6.22 5.15 2.25 2.28 1.70 1.66 / / /

20% Missingness

MCAR (S2) 21.71(10) 8.01(9) 6.39(8) 2.73(6) 2.75(7) 2.25(4) 2.04(2) 2.08(3) 2.03(1) 2.37(5)

MAR (S5) 15.80(10) 7.04(9) 5.48(8) 2.22(7) 2.18(6) 1.98(4) 1.86(1) 1.89(2) 1.93(3) 2.13(5)

S-MAR (S6) 16.07(10) 6.84(9) 5.36(8) 2.20(7) 2.20(6) 1.88(2) 1.84(1) 1.94(4) 1.92(3) 2.11(5)

MNAR (S7) 12.76 7.08 5.59 2.48 2.38 2.43 2.40 2.19 2.26 2.36

S-MNAR (S8) 12.96 7.25 5.74 2.53 2.48 2.38 2.41 2.31 2.24 2.36

40% Missingness

MCAR (S2) 23.05(10) 10.49(9) 7.89(8) 3.23(6) 3.25(7) 3.06(5) 2.56(3) 2.56(2) 2.55(1) 2.93(4)

MAR (S5) 11.74(10) 8.98(9) 6.37(8) 2.29(6) 2.15(4) 2.44(7) 2.09(1) 2.15(3) 2.12(2) 2.29(5)

S-MAR (S6) 11.64(10) 8.24(9) 5.93(8) 2.15(4) 2.12(3) 2.32(7) 2.06(7) 2.17(5) 2.06(1) 2.19(6)

MNAR (S7) 7.91 12.62 10.17 6.57 6.16 6.56 6.70 6.07 6.30 6.33

S-MNAR (S8) 8.53 12.69 10.14 6.32 5.96 6.20 6.48 5.56 6.00 6.06

60% Missingness

MCAR (S2) 26.09(10) 15.47(9) 9.88(8) 4.10(6) 3.85(4) 4.48(7) 3.53(1) 3.73(3) 3.55(2) 4.00(5)

MAR (S5) 11.44(10) 13.01(9) 7.78(8) 2.57(5) 2.34(2) 2.89(7) 2.42(1) 2.43(4) 2.35(3) 2.58(6)

S-MAR (S6) 11.92(10) 12.91(9) 7.40(8) 2.48(3) 2.19(1) 2.81(7) 2.49(4) 2.56(5) 2.40(2) 2.62(6)

MNAR (S7) 16.72 31.75 26.65 21.82 20.54 20.73 21.31 20.46 21.41 21.37

S-MNAR (S8) 18.11 31.63 25.49 20.40 19.12 19.12 20.10 18.45 20.10 20.11

Table 14: Summary statistics of MSE using adjusted weigths, analysed under the M1 simulation

mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed to follow

a Gamma(1,0.5)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 2.46 3.63 6.51 3.42 9.04 2.38 2.40 / / /

20% Missingness

MCAR (S2) 3.16(5) 4.65(8) 8.87(9) 4.35(7) 9.31(10) 3.05(2) 3.08(4) 3.93(6) 3.08(4) 3.05(1)

MAR (S5) 2.98(5) 4.27(8) 8.18(10) 3.98(7) 7.74(9) 2.88(2) 2.91(4) 3.25(6) 2.91(4) 2.87(1)

S-MAR (S6) 2.92(5) 4.15(8) 8.17(9) 3.94(7) 9.57(10) 2.88(2) 2.90(3) 3.16(6) 2.90(4) 2.86(1)

MNAR (S7) 4.70 6.08 9.28 5.68 12.58 4.50 4.52 5.01 4.51 4.48

S-MNAR (S8) 4.59 6.13 9.56 5.79 11.78 4.47 4.50 4.47 4.50 4.46

40% Missingness

MCAR (S2) 4.15(5) 5.96(8) 12.25(9) 5.42(7) 13.50(10) 3.94(2) 3.97(4) 4.40(6) 3.96(3) 3.93(1)

MAR (S5) 3.95(5) 5.38(8) 11.89(9) 5.01(6) 12.22(10) 3.85(2) 3.87(4) 5.18(7) 3.86(3) 3.80(1)

S-MAR (S6) 3.86(6) 5.20(8) 11.85(9) 4.85(7) 14.11(10) 3.77(2) 3.80(3) 3.82(5) 3.81(4) 3.75(1)

MNAR (S7) 12.98 14.55 18.93 13.97 20.17 12.68 12.62 14.14 12.60 12.54

S-MNAR (S8) 12.60 14.55 19.79 14.17 20.12 12.63 12.66 13.53 12.63 12.58

60% Missingness

MCAR (S2) 6.40(6) 8.64(8) 17.55(9) 7.63(7) 26.00(10) 5.96(2) 6.00(4) 6.05(5) 6.00(3) 5.91(1)

MAR (S5) 6.25(6) 8.03(8) 18.08(9) 7.27(7) 23.89(10) 5.92(2) 5.95(4) 5.97(5) 5.95(3) 5.85(1)

S-MAR (S6) 6.26(6) 7.83(8) 18.07(9) 7.20(7) 24.16(10) 6.00(2) 6.02(5) 6.01(3) 6.02(4) 5.91(1)

MNAR (S7) 36.43 38.84 47.63 39.19 48.62 37.51 37.51 38.33 37.46 37.47

S-MNAR (S8) 36.09 38.77 47.33 38.91 49.08 37.21 37.44 39.80 37.39 37.34

Table 15: Summary statistics of MSE using adjusted weigths, analysed under the M2 simulation

mechanism. The prior distribution of the precision parameters σ−2
u and σ−2

v are assumed to follow

a Gamma(1,0.5)-distribution.(×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 20.61 6.22 1.34 0.55 0.61 0.80 0.74 / / /

20% Missingness

MCAR (S2) 21.71(10) 8.01(9) 1.71(8) 0.74(1) 0.82(2) 1.01(6) 0.93(4) 1.00(5) 0.92(3) 1.33(7)

MAR (S5) 15.80(10) 7.04(9) 1.22(8) 0.51(1) 0.55(2) 0.99(4) 0.71(3) 1.15(6) 1.00(5) 1.20(7)

S-MAR (S6) 16.07(10) 6.84(9) 1.25(8) 0.52(1) 0.56(2) 0.91(4) 0.73(3) 1.15(6) 1.02(5) 1.22(7)

MNAR (S7) 12.76 7.08 1.41 0.91 0.82 1.24 1.09 1.23 1.11 1.41

S-MNAR (S8) 12.96 7.25 1.47 0.90 0.88 1.19 1.08 1.24 1.08 1.39

40% Missingness

MCAR (S2) 16.70(10) 1.16(9) 0.77(8) 0.49(1) 0.59(3) 0.58(2) 0.68(6) 0.60(4) 0.65(5) 0.69(7)

MAR (S5) 4.76(10) 0.23(7) 0.22(6) 0.20(3) 0.24(8) 0.22(4) 0.28(9) 0.18(1) 0.22(5) 0.20(2)

S-MAR (S6) 5.12(10) 0.25(7) 0.25(6) 0.23(3) 0.24(4) 0.26(8) 0.34(9) 0.19(1) 0.25(5) 0.23(2)

MNAR (S7) 0.88 4.27 4.38 4.85 4.52 4.50 4.51 4.37 4.38 4.36

S-MNAR (S8) 1.45 4.16 4.00 4.50 4.13 4.18 4.20 3.97 4.03 4.03

60% Missingness

MCAR (S2) 16.36(10) 1.72(9) 1.19(8) 0.80(1) 0.94(2) 1.12(4) 1.25(7) 1.17(5) 1.12(3) 1.18(6)

MAR (S5) 0.38(10) 0.18(7) 0.12(4) 0.14(5) 0.16(6) 0.19(8) 0.21(9) 0.11(3) 0.08(2) 0.08(1)

S-MAR (S6) 0.60(10) 0.15(6) 0.12(3) 0.15(5) 0.16(7) 0.21(8) 0.23(9) 0.14(4) 0.10(2) 0.09(1)

MNAR (S7) 5.60 19.68 19.17 19.95 18.89 18.91 18.88 18.22 19.27 19.17

S-MNAR (S8) 6.23 19.00 17.75 18.38 17.36 17.46 17.47 16.80 17.80 17.70

Table 16: Summary statistics of squared bias using adjusted weigths, analysed under the M1 simu-

lation mechanism with second-order neighbors. The prior distribution of the precision parameters

σ−2
u and σ−2

v are assumed to follow a Gamma(0.5,0.008)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 20.58 6.22 1.34 0.55 0.61 0.81 0.74 / / /

20% Missingness

MCAR (S2) 21.71(10) 8.01(9) 1.71(8) 0.74(1) 0.82(2) 1.01(6) 0.93(4) 1.00(5) 0.92(3) 1.33(7)

MAR (S5) 15.80(10) 7.04(9) 1.22(8) 0.51(1) 0.55(2) 0.99(3) 0.71(4) 1.15(6) 1.00(5) 1.20(7)

S-MAR (S6) 16.07(10) 6.84(9) 1.25(8) 0.52(1) 0.56(2) 0.91(4) 0.73(3) 1.15(6) 1.02(5) 1.22(7)

MNAR (S7) 12.76 7.08 1.41 0.91 0.82 1.24 1.09 1.23 1.11 1.41

S-MNAR (S8) 12.96 7.25 1.47 0.90 0.88 1.19 1.08 1.24 1.08 1.39

40% Missingness

MCAR (S2) 23.05(10) 10.49(9) 2.17(8) 0.99(1) 1.14(2) 1.23(6) 1.20(3) 1.21(4) 1.23(5) 1.64(7)

MAR (S5) 11.74(10) 8.98(9) 1.12(5) 0.47(1) 0.47(2) 1.16(6) 0.65(3) 1.23(8) 1.09(4) 1.21(7)

S-MAR (S6) 11.64(10) 8.24(9) 1.18(6) 0.47(1) 0.55(2) 1.10(5) 0.71(3) 1.26(8) 1.10(4) 1.20(7)

MNAR (S7) 7.91 12.62 5.26 5.12 4.75 5.16 4.93 5.21 5.05 5.29

S-MNAR (S8) 8.53 12.69 5.02 4.78 4.44 4.83 4.66 4.79 4.69 4.96

60% Missingness

MCAR (S2) 26.09(10) 15.47(9) 2.71(8) 1.44(1) 1.46(2) 1.77(3) 1.81(4) 1.93(6) 1.86(5) 2.27(7)

MAR (S5) 11.44(9) 13.01(10) 1.26(7) 0.47(1) 0.58(2) 0.98(4) 0.65(3) 1.29(8) 1.08(5) 1.18(6)

S-MAR (S6) 11.92(9) 12.91(10) 1.09(5) 0.48(2) 0.43(1) 1.01(4) 0.67(3) 1.36(8) 1.11(6) 1.25(7)

MNAR (S7) 16.72 31.75 20.04 20.24 19.11 19.52 19.30 19.12 19.96 20.12

S-MNAR (S8) 18.11 31.63 18.73 18.80 17.67 18.23 18.07 17.77 18.65 18.75

Table 17: Summary statistics of MSE using adjusted weigths, analysed under the M1 simulation

mechanism with second-order neighbors. The prior distribution of the precision parameters σ−2
u

and σ−2
v are assumed to follow a Gamma(0.5,0.008)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 0.04 0.04 1.03 0.34 1.88 0.32 0.33 / / /

20% Missingness

MCAR (S2) 0.03(1) 0.04(2) 2.06(9) 0.51(8) 2.84(10) 0.48(6) 0.48(7) 0.48(5) 0.48(4) 0.46(3)

MAR (S5) 0.04(1) 0.05(2) 1.68(9) 0.47(8) 2.33(10) 0.46(5) 0.46(7) 0.46(6) 0.45(4) 0.44(3)

S-MAR (S6) 0.04(1) 0.05(2) 1.81(9) 0.52(8) 2.74(10) 0.50(6) 0.51(7) 0.50(5) 0.50(4) 0.48(3)

MNAR (S7) 1.65 1.69 3.16 2.03 4.24 2.00 1.99 2.27 1.98 1.96

S-MNAR (S8) 1.59 1.66 3.38 2.04 4.36 1.99 2.00 2.18 2.00 1.98

40% Missingness

MCAR (S2) 0.05(1) 0.05(2) 3.77(9) 0.76(4) 5.13(10) 0.78(6) 0.78(7) 0.88(8) 0.77(5) 0.74(3)

MAR (S5) 0.04(1) 0.06(2) 3.49(9) 0.80(5) 4.65(10) 0.80(6) 0.80(7) 1.05(8) 0.79(4) 0.76(3)

S-MAR (S6) 0.06(1) 0.06(2) 3.44(9) 0.79(4) 4.96(10) 0.81(8) 0.81(7) 0.79(5) 0.80(6) 0.77(3)

MNAR (S7) 8.55 8.42 11.64 9.16 12.46 9.26 9.17 10.13 9.12 9.12

S-MNAR (S8) 8.36 8.42 12.36 9.29 13.21 9.31 9.31 9.72 9.26 9.26

60% Missingness

MCAR (S2) 0.08(1) 0.08(2) 7.31(9) 1.50(3) 11.61(10) 1.59(6) 1.59(7) 2.60(8) 1.57(5) 1.52(4)

MAR (S5) 0.08(1) 0.11(2) 7.50(9) 1.67(7) 10.96(10) 1.64(6) 1.64(5) 1.74(8) 1.62(4) 1.57(3)

S-MAR (S6) 0.07(1) 0.07(2) 7.34(9) 1.57(4) 10.87(10) 1.63(8) 1.63(7) 1.62(6) 1.61(5) 1.56(3)

MNAR (S7) 28.40 28.39 39.47 31.80 38.81 31.97 31.94 32.74 31.82 31.85

S-MNAR (S8) 27.86 27.94 40.58 31.63 39.53 31.88 32.02 34.33 31.87 31.91

Table 18: Summary statistics of squared bias using adjusted weigths, analysed under the M2 simu-

lation mechanism with second-order neighbors. The prior distribution of the precision parameters

σ−2
u and σ−2

v are assumed to follow a Gamma(0.5,0.008)-distribution. (×103)
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UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Complete (S1) 2.46 3.63 6.72 3.49 9.34 2.44 2.45 / / /

20% Missingness

MCAR (S2) 3.16(5) 4.65(8) 9.29(9) 4.44(7) 9.83(10) 3.13(1) 3.15(3) 3.16(6) 3.16(4) 3.14(2)

MAR (S5) 2.98(5) 4.27(8) 8.41(10) 4.08(7) 8.30(9) 2.96(1) 2.98(6) 2.96(3) 2.97(4) 2.96(2)

S-MAR (S6) 2.92(1) 4.15(8) 8.56(9) 4.03(7) 10.10(10) 2.95(5) 2.96(6) 2.94(3) 2.95(4) 2.94(2)

MNAR (S7) 4.70 6.08 9.61 5.79 12.99 4.58 4.60 6.06 4.59 4.58

S-MNAR (S8) 4.59 6.13 9.98 5.87 12.36 4.53 4.56 5.56 4.56 4.56

40% Missingness

MCAR (S2) 4.15(5) 5.96(8) 12.78(9) 5.57(7) 14.43(10) 4.07(2) 4.09(4) 4.46(6) 4.08(3) 4.06(1)

MAR (S5) 3.95(1) 5.38(8) 12.36(9) 5.16(7) 13.13(10) 3.97(3) 4.01(5) 5.08(6) 3.98(4) 3.96(2)

S-MAR (S6) 3.86(3) 5.20(8) 12.42(9) 4.98(7) 14.93(10) 3.86(4) 3.88(6) 3.85(2) 3.87(5) 3.85(1)

MNAR (S7) 12.98 14.55 19.85 14.12 21.17 12.79 12.73 15.74 12.68 12.68

S-MNAR (S8) 12.60 14.55 20.84 14.26 21.37 12.72 12.75 14.15 12.71 12.72

60% Missingness

MCAR (S2) 6.40(5) 8.64(7) 19.64(9) 7.90(6) 27.49(10) 6.20(2) 6.22(3) 9.40(8) 6.22(4) 6.19(1)

MAR (S5) 6.25(5) 8.03(8) 19.43(9) 7.60(7) 25.37(10) 6.19(2) 6.22(3) 6.74(6) 6.22(4) 6.19(1)

S-MAR (S6) 6.26(5) 7.83(8) 19.36(9) 7.46(7) 25.55(10) 6.24(3) 6.26(6) 6.23(2) 6.25(4) 6.22(1)

MNAR (S7) 36.43 38.84 50.82 39.30 50.75 37.56 37.55 39.50 37.48 37.53

S-MNAR (S8) 36.09 38.77 51.30 39.08 51.58 37.39 37.56 42.49 37.45 37.50

Table 19: Summary statistics of MSE using adjusted weigths, analysed under the M2 simulation

mechanism with second-order neighbors. The prior distribution of the precision parameters σ−2
u

and σ−2
v are assumed to follow a Gamma(0.5,0.008)-distribution. (×103)

49



Health Excellent Good Reasonable Poor Very Poor

Response 0 0 1 1 1

Table 20: Dichotomization of the perceived health variable

Description Missingness probabilities qm
ik

Age Group 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

qm
ik 0.23 0.18 0.09 0.07 0.08 0.06 0.07 0.08 0.08 0.07 0.08 0.07 0.10 0.18 0.28

Table 21: Definition of the missingness probability weights for the simulation study of the HIS data

set for each eligible age group.

UNW HT AN PL ES MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Bias2 0.54 0.21 0.21 0.70 0.30 0.27 0.23 0.30 2.49 2.49

MSE 1.92 2.74 1.14 1.24 0.90 0.51 0.49 0.52 2.75 2.74

Table 22: Summary statistics of squared bias and MSE using adjusted weigths for the simulation

setting of the HIS data set. The prior distribution of the precision parameters σ−2
u and σ−2

v are

assumed to follow a Gamma(0.5,0.008)-distribution. (×103)

MB1 (RW1) MB1 (SP) MB3 (RW1) MB3 (SP) MB3 (SP + OD)

Adjusted weights (W1) 10580.49 10576.65 10433.52 10214.34 /

Adjusted weights (W2) 10583.65 10583.82 10502.65 / 10388.13

Semi-adjusted weights 10586.64 10589.35 / / /

Table 23: The DIC values of the hierarchical weight-smoothing estimators for the HIS dataset for

the W1 and W2 approach in the calculation of the missingness weights.
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Figure 1: The top panels show the population size (left panel) and average age category (right

panel) per district. The lower panels correspond to the underlying prevalence models M1 (left)

and M2 (right).
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Figure 2: The left panel depicts the box plots for the estimated bias under MCAR mechanism, while

the right panel shows the box plots for those under the S-MAR assumption. Both were constructed

under the M1 simulation mechanism, for 60% missingness.
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Figure 3: Spatial maps displaying the estimated prevalence for the HT estimator (top row), AN

estimator (middle row) and MB3 (SP+OD) estimator (bottom row), analysed under the M1 sim-

ulation mechanism and S2 (left column) and S6 (right column) missingness mechanism with 20%

missingness.
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Figure 4: Spatial maps displaying the estimated prevalence for the HT estimator (top row), AN

estimator (middle row) and MB3 (SP+OD) estimator (bottom row), analysed under the M2 sim-

ulation mechanism and S2 (left column) and S6 (right column) missingness mechanism with 20%

missingness.
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Figure 5: Line plot for prevalence of perceived health and nonresponse percentages over five-year

age intervals (left panel) and the box plots of the estimated prevalences for perceived health using

the models with adjusted, semi-adjusted and separate weights (right panel).
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Figure 6: Box plots of the simulated estimated prevalences for perceived health using the models

with adjusted (W2), semi-adjusted and separate weights (right panel).
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Figure 7: Spatial maps of the sample sizes for the Belgian districts (left) and the amount of miss-

ingness for the perceived health variable in HIS data set (right). Unsampled municipalities are

highlighted in black.
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Figure 8: Spatial distribution of UNW estimates (top left), HT estimates (top right), AN estimates,

(middle left), PL estimates (middle right), MB1 (SP) estimates (bottom left) and MB3 (RW1) esti-

mates (Bottom right) using adjusted weights. Unsampled municipalities are highlighted in black

for the UNW and HT estimates.
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