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Abstract

The isotropic matroid M [IAS(G)] of a graph G is a binary matroid, which is
equivalent to the isotropic system introduced by Bouchet. In this paper we discuss
four notions of connectivity related to isotropic matroids and isotropic systems. We
show that the isotropic system connectivity defined by Bouchet is equivalent to ver-
tical connectivity of M [IAS(G)], and if G has at least four vertices, then M [IAS(G)]
is vertically 5-connected if and only if G is prime (in the sense of Cunningham’s
split decomposition). We also show that M [IAS(G)] is 3-connected if and only if
G is connected and has neither a pendant vertex nor a pair of twin vertices. Our
most interesting theorem is that if G has n > 7 vertices then M [IAS(G)] is not ver-
tically n-connected. This abstract-seeming result is equivalent to the more concrete
assertion that G is locally equivalent to a graph with a vertex of degree < n−1

2 .

Keywords: circle graph, connectivity, degree, isotropic system, local equivalence,
matroid, pendant, prime, split, twin.

1 Introduction

In this paper a graph is a looped simple graph: each edge is incident on one or two vertices,
and no two edges are incident on precisely the same vertices. An edge incident on just
one vertex is a loop. We use the terms adjacent and neighbor only in connection with
non-loop edges; no vertex is its own neighbor, whether or not it is looped. We denote
by V (G) and E(G) the set of vertices and edges of G, respectively. We use n to denote
|V (G)| and NG(v) to denote the open neighborhood {w 6= v | vw ∈ E(G)}.

We assume in this paper that the reader is familiar with basic notions of matroid
theory, which can be found in [15]. Also, in this paper the rows and columns of matrices
are not ordered, but are instead indexed by some finite sets X and Y , respectively. We
refer to such a matrix as an X × Y matrix. The adjacency matrix A(G) of a graph G is
the V (G)× V (G) matrix over GF (2) such that (1) if v ∈ V (G), then the diagonal entry
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corresponding to (v, v) is equal to 1 if and only if v is looped, and (2) if v, w ∈ V (G) are
distinct, then the entries corresponding to (v, w) and (w, v) are equal to 1 if and only if
v and w are neighbors. If I denotes the V (G) × V (G) identity matrix, then the binary
matroid represented by the matrix

IAS(G) =
(
I A(G) A(G) + I

)
is denoted M [IAS(G)]; we call M [IAS(G)] the isotropic matroid of G. Notice that our
indexing convention assures us that for each v ∈ V (G), the v row of IAS(G) is the
concatenation of the v rows of I, A(G) and A(G) + I. The elements of M [IAS(G)]
corresponding to the v columns of I, A(G) and A(G) + I are denoted φ(v), χ(v) and ψ(v)
respectively.

It is worth taking a moment to observe that the distinction between looped and un-
looped vertices is more important in some parts of the theory than it is in others. For
instance, looped vertices are quite useful in the discussion of [20], where isotropic matroids
were introduced. In the present paper, though, we pay little attention to loops.

It was shown in [20] that M [IAS(G)] determines the delta-matroid and isotropic sys-
tem associated with G. Delta-matroids and isotropic systems are combinatorial structures
which have been studied by André Bouchet and others for the last thirty years or so; we
do not present detailed descriptions of them.

A fundamental property of isotropic matroids (and isotropic systems) is that they
detect a graph relation called local equivalence. That is, two graphs are locally equivalent
if and only if their isotropic matroids (or isotropic systems) are isomorphic [20]. Another
fundamental property from [20] is that isotropic matroids detect connectedness. That
is, if n > 2 then G is connected if and only if its isotropic matroid is connected if
and only if its isotropic system is connected. (Connectedness of M [IAS(G)] is the usual
matroid idea; connectedness of isotropic systems is a more specialized notion.) The present
paper concerns a question suggested by these properties: How is higher connectivity of
M [IAS(G)] reflected in the structure of G and the graphs locally equivalent to G?

The answer to our question is complicated by the fact that there are three different
measures of connectivity of a matroid M : the (ordinary) connectivity τ(M), the cyclic
connectivity κ∗(M) and the vertical connectivity κ(M). (We recall the definitions in
Section 2.)

It turns out that nonempty isotropic matroids always have τ(M) = κ∗(M), and this
value is determined in a simple way. Recall that if v 6= w ∈ V (G), then v and w are twins
if they have NG(v)− {w} = NG(w)− {v}, and v is pendant on w if {w} = NG(v).

Theorem 1. Every graph falls under precisely one of these four cases.

1. If n = 0 then κ∗(M [IAS(G)]) = 0 and τ(M [IAS(G)]) =∞.

2. If n = 1 or G is disconnected, then τ(M [IAS(G)]) = κ∗(M [IAS(G)]) = 1.

3. If n > 1, G is connected, and G has a pendant vertex or a pair of twin vertices, then
τ(M [IAS(G)]) = κ∗(M [IAS(G)]) = 2.
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4. If n > 1, G is connected, and G has neither a pendant vertex nor a pair of twin
vertices, then τ(M [IAS(G)]) = κ∗(M [IAS(G)]) = 3.

The inequality κ(M) > τ(M) holds for all nonempty isotropic matroids. The vertical
connectivity is more interesting than the (cyclic) connectivity; it attains a broader range
of values and is related to finer details of graph and matroid structure.

Recall the following definition of Cunningham [12].

Definition 2. ([7, 12]) A split (V1,W1;V2,W2) of a graph G is a partition V (G) = V1∪V2
such that |V1| , |V2| > 2, Wi ⊆ Vi and every v ∈ V1 has

NG(v) ∩ V2 =

{
W2, if v ∈ W1

∅, if v ∈ V1 −W1.

If G has no split, then G is said to be prime.

Notice that according to Definition 2, all graphs of order 6 3 are prime. This conven-
tion is not universal; some references explicitly require prime graphs to be of order > 3.
Notice also that Definition 2 can be restated using matrices: G has a split with respect
to V1 and V2 = V (G) − V1 if and only if |V1| , |V2| > 2 and r(A(G)[V1, V2]) 6 1, where
A(G)[V1, V2] is the submatrix of A(G) involving rows from V1 and columns from V2, and
r denotes the rank over GF (2).

If n > 4 then every pair of twin vertices v and w yields a split with V1 = {v, w},
and every pair consisting of a pendant vertex v and its neighbor w yields a split with
V1 = {v, w}. Moreover, if G is a disconnected graph with a connected component C,
then G has a split with V1 = V (C) if |V (C)| , |V (G)− V (C)| > 2; and G has a split with
V1 = V (C)∪ {x} if |V (G)− V (C)| > 2 and x ∈ V (G)− V (C). Every connected 4-vertex
graph has a pendant vertex or a pair of twins, so there is no prime graph with n = 4.
Bouchet [6] proved that every prime 5-vertex graph is locally equivalent to the cycle graph
C5, and a special case of Bouchet’s obstructions theorem for circle graphs [8] is that every
prime 6-vertex graph is locally equivalent to either C6 or the wheel graph W5.

Theorem 3. Every graph falls under precisely one of these five cases.

1. If n 6 3 and G is connected, then κ(M [IAS(G)]) = n.

2. If G is disconnected then κ(M [IAS(G)]) = 1.

3. If n > 4, G is connected, and G is not prime, then κ(M [IAS(G)]) = 3.

4. If n > 5, G is prime, and κ(M [IAS(G)]) < n, then κ(M [IAS(G)]) is odd and > 5.

5. If n > 5 and κ(M [IAS(G)]) = n, then G is locally equivalent to either the cycle
graph C5 or the wheel graph W5.
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Theorems 1 and 3 indicate five significant differences between the (cyclic) connectivity
and the vertical connectivity of an isotropic matroid. The first difference is that for n > 1,
κ∗(M [IAS(G)]) and τ(M [IAS(G)]) are always 6 3 while κ(M [IAS(G)]) has a greater
range of variation. (Some examples with κ(M [IAS(G)]) > 5 are discussed in Section 8.)

The second difference is that κ(M [IAS(G)]) is usually odd. (Indeed, up to isomor-
phism there are only three isotropic matroids whose vertical connectivity is even.) This
odd parity is reflected in the fact that the vertical connectivity of M [IAS(G)] is closely
related to a notion of connectivity for isotropic systems introduced by Bouchet [7]. We
refer to the connectivity of the isotropic system with fundamental graph G as the isotropic
connectivity of G, denoted κB(G). The definition of κB(G) is discussed in Section 4, where
we prove the following.

Theorem 4. If G is a graph then the isotropic connectivity of G and the vertical connec-
tivity of M [IAS(G)] are related as follows.

κB(G) =

{
κ(M [IAS(G)])+1

2
if κ(M [IAS(G)]) < n

∞ otherwise

The third significant difference between Theorems 1 and 3 is that κ∗(M [IAS(G)])
and τ(M [IAS(G)]) detect only pendant and twin vertices, while κ(M [IAS(G)]) detects
arbitrary splits. The fact that split graphs with 5 or more vertices are singled out by
the inequality κ(M [IAS(G)])) 6 3 may be deduced from Theorem 4 and Bouchet’s result
that split graphs are singled out by the inequality κB(G) 6 2 [7, Theorem 11]. We provide
the straightforward proofs of these results in Sections 4 and 7.

The fourth significant difference between Theorems 1 and 3, the singling out of C5

and W5 in case 5 of Theorem 3, is more difficult to prove. The significance of case 5 is
illuminated by the two following results.

Theorem 5. Let G be a graph with n > 4 vertices. Then κ(M [IAS(G)]) < n if and only
if some graph locally equivalent to G has a vertex of degree < n−1

2
.

As |V (C5)| = 5 and |V (W5)| = 6, Theorems 3 and 5 imply a striking property of local
equivalence.

Corollary 6. Let G be a graph with n > 7 vertices. Then G is locally equivalent to a
graph with a vertex of degree < n−1

2
.

Some relevant examples appear in Figure 1. In the top row of the figure we see C5,
W5, W6 and W7. Each graph in the bottom row is locally equivalent to the graph above
it, and is a degree-minimal representative of its local equivalence class. That is, no graph
locally equivalent to C5 has any vertex of degree 6 1, no graph locally equivalent to W5

or W7 has any vertex of degree 6 2, and no graph locally equivalent to W6 has either any
vertex of degree 6 1 or more than three vertices of degree 2. (These assertions may all
be verified by inspecting isotropic matroids, and using Corollary 7 of [10].) Note that C5

and W5 witness the failure of Corollary 6 for n = 5 and n = 6. Corollary 6 also fails for
n 6 3, of course, but it does hold for n = 4.
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Figure 1: The graphs C5, W5, W6 and W7 above degree-minimal locally equivalent graphs.

The fifth significant difference between Theorems 1 and 3 is that while the only local
equivalence class uniquely determined by the (cyclic) connectivity of the corresponding
isotropic matroid is the equivalence class of the empty graph, two nontrivial local equiv-
alence classes are uniquely determined by the vertical connectivity.

Corollary 7. Let G be a graph. Then κ(M [IAS(G)]) = 2 if and only if G is locally
equivalent to K2, and κ(M [IAS(G)]) = 6 if and only if G is locally equivalent to W5.

Most of the balance of the paper is devoted to proving the results already mentioned.
In Section 5 we observe that there is a connection between splits of G and the analysis
of 3-separations of matroids due to Oxley, Semple and Whittle [16, 17]. In Section 8
we deduce a characterization of circle graphs from the above results and Bouchet’s circle
graph obstructions theorem [8].

2 Definitions and notation

In this section we recall the definitions of local equivalence and matroid connectivity, and
also the notation we use for isotropic matroids.

Definition 8. Let G be a graph, with a vertex v.

• The loop complement Gv
` with respect to v is the graph obtained from G by reversing

the loop status of v.

• The simple local complement Gv
s with respect to v is the graph obtained from G by

reversing all adjacencies between distinct elements of NG(v).

• The non-simple local complement Gv
ns with respect to v is the graph obtained from

Gv
s by performing loop complementations at all vertices in NG(v).

Definition 9. Graphs G and H are locally equivalent if one can be obtained from the
other through some sequence of local complementations and loop complementations.
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We should mention that although the definition of local complementation for simple
graphs is fairly standard, the looped version is not. For instance, loop complementations
are not allowed in some references. Notice also that Definition 9 requires locally equiv-
alent graphs to have the same vertex set. We sometimes abuse language with regard to
this requirement, e.g., we might say “G is locally equivalent to W5” rather than “G is
isomorphic to a graph locally equivalent to W5.”

The definitions of the three types of matroid connectivity are rather complicated.

Definition 10. Let M be a matroid with rank function r = rM and ground set W .
Then M has a connectivity function λ = λM : 2W → N ∪ {0}, where for S ⊆ W ,
λ(S) = r(S) + r(W − S)− r(M).

Definition 11. Let M be a matroid with ground set W , and suppose k is a positive
integer. Then a subset S ⊆ W is:

• a cyclic k-separation of M if λ(S) < k and both S and W −S are dependent in M ;

• an ordinary k-separation of M if λ(S) < k and |S| , |W − S| > k;

• a vertical k-separation of M if λ(S) < k and r(S), r(W − S) > k.

An ordinary k-separation is simply called a k-separation in the literature; we use
the adjective ordinary to avoid confusion with the other two types of k-separations. This
convention allows us to refer to a “k-separation” as any of the three types of k-separations.

We mention four details regarding Definition 11. (i) In all three cases, if S is a
k-separation then k > λ(S) + 1 and S is a (λ(S) + 1)-separation. (ii) If S is a cyclic k-
separation for any k, then λ(S) < |S|+|W − S|−1−r(M) = |W |−1−r(M), so S is a cyclic
(|W |−r(M)−1)-separation. (iii) If S is a vertical k-separation then S is also an ordinary
k-separation. (iv) If S is a vertical k-separation then r(M) > r(S), r(W −S) > k > λ(S).
The definition of λ(S) then implies that r(M) > r(S), so r(M) > k.

Definition 12. Let M be a matroid with rank function r and ground set W .

• We define τ(M) = min({k | M has an ordinary k-separation}), where, by conven-
tion, min(∅) =∞.
If τ(M) > 1 then M is j-connected for every j ∈ {2, . . . , τ(M)}.

• We define κ∗(M) = min({k |M has a cyclic k-separation} ∪ {|W | − r(M)}).
If κ∗(M) > 1 then M is cyclically j-connected for every j ∈ {2, . . . , κ∗(M)}.

• We define κ(M) = min({k |M has a vertical k-separation} ∪ {r(M)}).
If κ(M) > 1 then M is vertically j-connected for every j ∈ {2, . . . , κ(M)}.

We refer to Oxley [15] for a thorough introduction to the properties of the three types
of matroid connectivity, but we take a moment to mention four more details. (v) We follow
Oxley’s convention: if M has no cyclic k-separation for any k then κ∗(M) = |W | − r(M),
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and if M has no vertical k-separation for any k then κ(M) = r(M). Some other authors
follow a different convention, according to which all three types of connectivity may equal
∞. (vi) If M is not 2-connected then τ(M) = 1; a component of M is a 1-separation. In
contrast, if M is not cyclically or vertically 2-connected, then κ∗(M) or κ(M) may be 0
or 1. For instance, if r(M) is 0 or 1 then M has no vertical k-separation for any k > 1,
and κ(M) = r(M). (vii) The empty matroid has τ(∅) = ∞ but κ∗(∅) = κ(∅) = 0.
(viii) The three notions of 2-connectedness differ in many cases. For instance, if M is a
vertically 2-connected matroid of rank > 1 and ` is a loop then the direct sum M ⊕ {`}
is not 2-connected; but it is vertically 2-connected.

We now recall the notation and terminology we use for isotropic matroids. If G is a
graph then the ground set of M = M [IAS(G)] is denoted W (G) or W (M); it has 3n
elements, one for each column of the matrix IAS(G). If v ∈ V (G), then the elements
of W (G) corresponding to the v columns of I, A(G) and A(G) + I are denoted φG(v),
χG(v) and ψG(v) respectively. The set τG(v) = {φG(v), χG(v), ψG(v)} is the vertex triple
of v; observe that vertex triples are always dependent. (We rely on the subscript and the
arguments to distinguish a vertex triple τG(v) from the connectivity τ(M) of a matroid.)
If X ⊆ V (G) then τG(X) = ∪x∈XτG(x). If a subset S ⊆ W (G) does not intersect any
vertex triple more than once, then S is a subtransversal of W (G); if S intersects every
vertex triple precisely once then S is a transversal. In particular, a transverse matroid of
G is a submatroid of M obtained by restricting to a transversal, and a transverse circuit
of G is a circuit of a transverse matroid. For each v ∈ V (G) there is a special transverse
circuit ζG(v), the neighborhood circuit of v. It includes φG(w) for every w ∈ NG(v), and
also includes either ψG(v) (if v is looped) or χG(v) (if v is unlooped).

3 Cyclic and ordinary connectivity of isotropic matroids

In the preceding section we mentioned that the properties “2-connected,” “cyclically 2-
connected” and “vertically 2-connected” are different in general. For nonempty isotropic
matroids, however, they are equivalent.

Proposition 13. If n > 0 then an isotropic matroid M = M [IAS(G)] is 2-connected,
cyclically 2-connected or vertically 2-connected if and only if G is connected and n > 1.

Proof. We first show the only-if direction. If n = 1 then M has three elements, a loop `
and a pair of parallel non-loops. The set S = {`} is an ordinary 1-separation and a cyclic
1-separation, so τ(M) = κ∗(M) = 1. Also, M has no vertical k-separation for any k, so
κ(M) = r(M) = 1.

If G is not connected, let C be a connected component of G and let S = τG(V (C)).
Then no row of IAS(G) has a nonzero entry in both a column corresponding to an element
of S and a column corresponding to an element of W (G) − S, so the rank of IAS(G)
is the sum of the ranks of the submatrices corresponding to S and W (G) − S. That is,
λ(S) = 0. As S and W (G)−S are both dependent sets of cardinality > 3 and rank > 1, S
is an ordinary 1-separation, a cyclic 1-separation and a vertical 1-separation; consequently
τ(M) = κ∗(M) = κ(M) = 1.
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We conclude by contrapositive that if M is 2-connected, cyclically 2-connected or
vertically 2-connected then G is connected and n > 1.

For the converse, observe that if e = vw is a nonloop edge of G then (a) the vertex
triples of v and w are circuits of M and (b) the neighborhood circuit ζG(v) intersects both
τG(v) and τG(w). Consequently a single component of M contains τG(v) ∪ τG(w). This
observation is true for every edge of G, so if G is a connected graph with n > 1 then M is
a 2-connected matroid. Notice that a cyclic 1-separation is an ordinary 1-separation and
a vertical 1-separation is also an ordinary 1-separation; as M is 2-connected, we conclude
that it cannot have any kind of 1-separation. Finally, n > 1 implies that r(M) = n > 1
and |W (G)| − r(M) = 3n − n = 2n > 1, so κ(M), κ∗(M) > 1 whether or not there is a
cyclic or vertical k-separation for some k > 1.

We proceed to prove Theorem 1. Suppose n > 1 and G is connected. If v is any vertex
of G then the vertex triple τG(v) is a dependent set of M [IAS(G)], whose complement
is also dependent. As r(τG(v)) 6 2, τG(v) is an ordinary 3-separation and a cyclic 3-
separation. Consequently τ(M [IAS(G)]) 6 3 and κ∗(M [IAS(G)]) 6 3.

Theorem 1 now follows from Proposition 13 and this:

Proposition 14. Suppose G is connected and n > 1. Then the following are equivalent.

1. M [IAS(G)] is not 3-connected.

2. M [IAS(G)] is not cyclically 3-connected.

3. M [IAS(G)] has a circuit of size 2.

4. G has a pendant vertex, or a pair of twin vertices.

Proof. We begin with a simple observation. Given a subset S ⊆ W (G), let Sφ, Sχ, Sψ ⊆
V (G) be the subsets with S = φG(Sφ) ∪ χG(Sχ) ∪ ψG(Sψ). Then the rank of S in M =
M [IAS(G)] is the GF (2)-rank of a matrix

(φG(Sφ) χG(Sχ) ∪ ψG(Sψ)

Sφ I ∗
V (G)− Sφ 0 B

)
,

where I is the Sφ×Sφ identity matrix and the off-diagonal entries of B record adjacencies
between vertices in Sχ ∪ Sψ and vertices outside Sφ. Observe that r(S) > |Sφ|, and if
r(S) = |Sφ| then no element of Sχ ∪ Sψ has a neighbor in V (G)− Sφ.

If condition 4 holds then IAS(G) has a pair of identical columns. This implies that
M has a pair of parallel elements, so condition 3 holds. Another simple argument shows
that condition 3 implies conditions 1 and 2: If S is a circuit of size 2 in M then as the sum
of the columns of IAS(G) is 0, W (G)− S is a dependent set. As |S|, |W (G)− S| > 2 it
follows that S is an ordinary 2-separation and a cyclic 2-separation.

The proof is completed by showing that either of conditions 1, 2 implies condition 4.
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Suppose condition 1 or condition 2 holds, and let S be an ordinary or cyclic 2-
separation of M . Proposition 13 tells us that S cannot be a 1-separation of either type, so
it must be that r(S)+r(W (G)−S) = n+1. The observation of the first paragraph tells us
that after interchanging S and W (G)− S if necessary, we may presume that r(S) = |Sφ|
and r(W (G) − S) = |(W (G)− S)φ| + 1. Consequently S is spanned by φG(Sφ), and
W (G)− S is spanned by φG(V (G)− Sφ) together with one additional element.

If Sφ = V (G) then r(W (G) − S) = 1. Choose any two elements of W (G) − S; they
must be parallel, so the corresponding columns of IAS(G) must be the same. Considering
the definition of IAS(G), it is easy to see that if two non-φ columns are the same then
the corresponding vertices of G are twins.

If Sφ is a proper subset of V (G) then as G is connected, there is an edge vw with
v ∈ Sφ and w /∈ Sφ. For each such edge, the χG(v) and ψG(v) columns of IAS(G) have
nonzero coordinates with respect to w, so these elements are not contained in the span of
φG(Sφ). Consequently χG(v), ψG(v) ∈ W (G) − S. It follows that the span of W (G) − S
also includes φG(v); as noted at the end of the paragraph before last, this implies that
W (G)−S is contained in the span of φG({v}∪ (V (G)−Sφ)). It follows that no column of
IAS(G) that corresponds to an element of W (G)− S has a nonzero x coordinate for any
vertex x /∈ {v}∪ (V (G)−Sφ). In particular, the χG(v) and ψG(v) columns of IAS(G) do
not have a nonzero x coordinate for any vertex x /∈ {v} ∪ (V (G)− Sφ), so the neighbors
of v all lie in V (G)− Sφ.

If x /∈ {v} ∪ (V (G) − Sφ) then either the χG(x) or the ψG(x) column of IAS(G) has
a nonzero x coordinate, so χG(x) or ψG(x) must be an element of S. As S is spanned
by φG(Sφ), it follows that the neighbors of x all lie in Sφ. As the neighbors of v all lie
in V (G) − Sφ, it follows that no edge of G connects any x /∈ {v} ∪ (V (G) − Sφ) to any
y ∈ {v} ∪ (V (G) − Sφ). Now, G is connected, so we conclude that there is no vertex
x /∈ {v} ∪ (V (G)− Sφ). That is, {v} = Sφ. As S is an ordinary or cyclic 2-separation, S
must contain some element other than φG(v); this other element must be χG(w) or ψG(w)
for some w 6= v. The fact that S is spanned by φG(Sφ) = {φG(v)} implies that w has no
neighbor other than v.

We conclude that if condition 1 holds or condition 2 holds, then condition 4 holds.

4 Isotropic separations and vertical separations

In this section we discuss vertical separations of isotropic matroids, and prove Theorem 4.
For an n-vertex graph G with adjacency matrix A = A(G), Bouchet [7] defines the cut-

rank function cG : 2V (G) → N∪{0}, where for all X ⊆ V (G), cG(X) = r(A[V (G)−X,X]),
the GF (2)-rank of the submatrix of A that includes the columns from X and the rows
from V (G)−X. (The rank of the empty matrix is taken to be 0.)

Notice that

cG(X) = cG(V (G)−X) 6 min{|X| , |V (G)−X|} 6
⌊n

2

⌋
∀X ⊆ V (G).

The equality cG(X) = 0 holds if X or V (G) − X is a union of vertex-sets of connected
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components of G. The equality cG(X) = 1 holds if X or V (G)−X consists of a single non-
isolated vertex, and also if G has a split (V1,W1;V2,W2) with X = V1 and W1 6= ∅ 6= W2.

It turns out that we can define cG using the isotropic matroid M = M [IAS(G)].
Define cM : 2V (G) → N ∪ {0}, where for all X ⊆ V (G), cM(X) = r(τG(X))− |X|.

Lemma 15. Let G be a graph and M = M [IAS(G)]. Then cG = cM . In other words, for
every X ⊆ V (G), r(τG(X)) = |X|+ cG(X). Moreover, λ(τG(X)) = 2cG(X).

Proof. Let A = A(G). We have that r(τG(X)) is the GF (2)-rank of the matrix

(φG(X) χG(X) ψG(X)

X I A[X,X] A[X,X] + I
V (G)−X 0 A[V (G)−X,X] A[V (G)−X,X]

)
.

Thus r(τG(X)) = r(I) + r(A[V (G)−X,X]) = |X|+ cG(X). It follows that

λ(τG(X)) = r(τG(X)) + r(τG(V (G)−X))− r(M)

= |X|+ cG(X) + |V (G)−X|+ cG(V (G)−X)− n = 2cG(X).

Since cG = cM and local equivalences of graphs induce isomorphisms of isotropic
matroids that preserve vertex triples [10, Section 3], we obtain the well-known result of
Bouchet [7] that cG = cG′ when G and G′ are locally equivalent.

Proposition 16. Let X ⊆ V (G). Then cG(X) < min{|X| , |V (G)−X|} if and only
if there is a k > 1 such that τG(X) is a vertical k-separation of M = M [IAS(G)]. If
this is the case then the smallest k for which τG(X) is a vertical k-separation of M is
k = 2cG(X) + 1.

Proof. Suppose cG(X) < min{|X| , |V (G)−X|}. Then r(τG(X)) = |X| + cG(X) >
2cG(X) + 1, r(τG(V (G) − X)) = |V (G)−X| + cG(X) > 2cG(X) + 1 and λ(τG(X)) =
2cG(X) < 2cG(X) + 1, so τG(X) is a vertical (2cG(X) + 1)-separation of M .

For the converse, suppose τG(X) is a vertical k-separation of M . Then k > λ(τG(X))+
1 = 2cG(X) + 1. Also, k 6 r(τG(X)) = |X| + cG(X) and k 6 r(τG(V (G) − X)) =
|V (G)−X| + cG(X), so 2cG(X) < |X| + cG(X) and 2cG(X) < |V (G)−X| + cG(X). It
follows that cG(X) < min{|X| , |V (G)−X|}.

Proposition 17. Suppose G is a graph, and M = M [IAS(G)] is such that κ(M) <
n. Then M has a vertical κ(M)-separation τG(X) for some X ⊆ V (G), and κ(M) =
2cG(X) + 1.

Proof. Let k = κ(M). Since k < n = r(M), M has a vertical k-separation but no vertical
k′-separation with k′ < k.

If k = 1 then M is not 2-connected and r(M) = n > k = 1, so G is disconnected and
n > 1. If C is a connected component of G then X = τG(V (C)) is a vertical 1-separation
of M . Every entry of A[V (C), V (G)− V (C)] is 0, so cG(X) = 0 and k = 1 = 2cG(X) + 1.
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Suppose k > 1, and let S be a vertical k-separation of M that is not of the form τG(X).
Then interchanging the names of S and W (G) − S if necessary, we may presume that
there is a vertex triple τG(v) such that S contains precisely two elements of τG(v). Let
S ′ = S∪τG(v). Then r(S ′) = r(S) and r(W (G)−S ′) ∈ {r(W (G)−S)−1, r(W (G)−S)}.
If r(W (G) − S ′) = r(W (G) − S) − 1 then we have r(S ′), r(W (G) − S ′) > k − 1 and
r(S ′)+r(W (G)−S ′) = r(S)+r(W (G)−S)−1 < r(W (G))+k−1, so S ′ is a vertical (k−1)-
separation, contradicting the choice of k. Consequently r(W (G) − S ′) = r(W (G) − S),
so S ′ is a vertical k-separation. Repeating this modification as many times as necessary,
we ultimately obtain a vertical k-separation τG(X). Proposition 16 tells us that k =
2cG(X) + 1.

Corollary 18. If every X ⊆ V (G) has cG(X) = min{|X| , |V (G)−X|}, then the vertical
connectivity of M = M [IAS(G)] is n. Otherwise,

κ(M) = 1 + 2 ·min{cG(X) | X ⊆ V (G) has cG(X) < min{|X| , |V (G)−X|}}.

Proof. Suppose M has a vertical k-separation for some k. Then M has a vertical κ(M)-
separation but no vertical k′-separation with k′ < κ(M), so Proposition 17 tells us that
there is a subset X0 ⊆ V (G) such that κ(M) = 1 + 2cG(X0) < n, and Proposition 16 tells
us that cG(X0) < min{|X0| , |V (G)−X0|}. On the other hand, Proposition 16 implies
that every subset X ⊆ V (G) has κ(M) 6 1 + 2cG(X). For if τG(X) is not a vertical k-
separation for any k, then 1+2cG(X) = n > κ(M); and if τG(X) is a vertical k-separation
for some k, then τG(X) is a vertical (2cG(X) + 1)-separation, so 2cG(X) + 1 > κ(M).

If M has no vertical k-separation for any k then κ(M) = n by definition, and Propo-
sition 16 tells us that cG(X) = min{|X| , |V (G)−X|} for all X ⊆ V (G).

Corollary 18 tells us that κ(M) cannot be even unless n is even and M has no vertical
k-separation for any k.

Bouchet [7] described the connectivity of an isotropic system using the cut-rank func-
tion of any graph associated with that isotropic system. This concept was studied further
by Allys [1] and Bouchet and Ghier [9].

Definition 19. ([7]) Let G be a graph. Then a subset X ⊆ V (G) is an isotropic k-
separation of G if |X| , |V (G)−X| > k and cG(X) < k.

Definition 20. ([7]) Let G be a graph. Then the isotropic connectivity of G is defined as

κB(G) = min({k | there is an isotropic k-separation of G}),

where, again, by convention, we take min(∅) =∞.

Notice that if X satisfies Definition 19 for some value of k, then we have cG(X) <
min{|X| , |V (G)−X|} and the smallest value of k for which X satisfies Definition 19 is
cG(X) + 1. We deduce Theorem 4:

κB(G) =

{
∞ if κ(M [IAS(G)]) = n
κ(M [IAS(G)])+1

2
otherwise.
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5 Splits of G and separations of M [IAS(G)]

Before providing proofs of Theorems 3 and 5, we take a moment to point out an interesting
consequence of the discussion above. Namely: if G is a graph then there is a close
relationship between splits of G and decompositions of the matroid M [IAS(G)].

Theorem 1 gives us the easy parts of this relationship. First, if G is not connected then
components of G and M [IAS(G)] correspond, with the proviso that an isolated vertex of
G corresponds to two matroid components. Second, if G is connected then two-element
splits of G correspond to ordinary 2-separations of M [IAS(G)]. These in turn give rise to
a description of M [IAS(G)] using 2-sums; see [15, Section 8.3] for details regarding the
relation between 2-sums and ordinary 2-separations.

Suppose now that M [IAS(G)] is 3-connected. Then Theorem 1 tells us that G is
connected and n > 5, as every connected graph with n 6 4 has a pendant vertex or
a pair of twins. It turns out that splits of G are related to a certain type of ordinary
3-separation, which has been studied by Oxley, Semple and Whittle [16, 17]. We begin
with a couple of lemmas.

Lemma 21. Let M be a 3-connected isotropic matroid.

1. Every subset S ⊆ W (M) with |S| > 4 has r(S) > 3.

2. Every subset S ⊆ W (M) with |S| > 3n− 5 has r(S) = n.

Proof. As M is 3-connected, it has no loop or pair of parallels. The only 4-element
matroid of rank 2 without a loop or parallels is U2,4, which is not binary. Consequently
the rank of a 4-element set in M must be > 3.

The second assertion takes a little more work. Let M = M [IAS(G)]. Suppose first
that there is a subset X ⊆ V (G) with |X| = n − 2 and τG(X) ⊆ S. If cG(X) = 0 then
no edge of G connects X to V (G)−X, so G is not connected. If cG(X) = 1 then G has
a split (V1,W1;V2,W2) with V1 = X; either the two elements of V (G) −X are twins, or
one is pendant on the other. According to Theorem 1, then, the hypothesis that M is
3-connected requires cG(X) > 2; as cG(X) 6 |V (G)−X| = 2, it follows that cG(X) = 2.
Lemma 15 tells us that r(τG(X)) = n− 2 + cG(X) = n, so r(S) = n too.

Now, suppose there is no subset X ⊆ V (G) with |X| = n − 2 and τG(X) ⊆ S. Then
there is a vertex v ∈ V (G) such that S includes precisely two elements of τG(v). Let
{v1, . . . , vj} include all such vertices, and let S ′ = S ∪ τG(v1) ∪ · · · ∪ τG(vj). Each vertex
triple τG(vi) is dependent, so r(S) = r(S ′). The argument of the preceding paragraph
applies to S ′, so r(S ′) = n.

Corollary 22. Let M be a 3-connected isotropic matroid with ground set W . Then

{ordinary 3-separations S of M such that |S| , |W − S| > 6}
= {ordinary 3-separations S of M such that |S| , |W − S| > 4}
= {vertical 3-separations of M}.

the electronic journal of combinatorics 24(2) (2017), #P2.49 12



Proof. It is obvious that the first set is contained in the second.
If S is an element of the second set, then the first assertion of Lemma 21 tells us that

r(S), r(W − S) > 3. It follows that S is a vertical 3-separation of M .
Now, let S be a vertical 3-separation of M . Without loss of generality, we may presume

that |S| > |W − S|. Properties (iii) and (iv) of Section 2 tell us that S is an ordinary
3-separation of M , and r(M) > r(S). The second assertion of Lemma 21 then tells us
that |S| 6 3n− 6 = |W | − 6, so |S| > |W − S| > 6.

Corollary 23. A 3-connected isotropic matroid has no ordinary or vertical 3-separation
of size 4 or 5.

The theory of Oxley, Semple and Whittle [16, 17] excludes a special type of ordinary
3-separation.

Definition 24. Let S be an ordinary 3-separation of a matroid M . Then S is sequential
if the elements of S can be ordered as s1, . . . , sm in such a way that λ({s1, . . . , si}) < 3
for every i ∈ {1, . . . ,m}. S is also considered to be sequential if its complement has such
an ordering.

Corollary 25. Let S be an ordinary 3-separation of a 3-connected isotropic matroid.
Then S is sequential if and only if either S or its complement is of cardinality 3.

Proof. If S or its complement is of cardinality 3, then every ordering of the three elements
will satisfy Definition 24.

For the converse, suppose instead that S = {s1, . . . , sm} is a sequential ordinary
3-separation of M = M [IAS(G)] with m > 3, and that the given order satisfies Def-
inition 24. Then S ′ = {s1, s2, s3, s4} is an ordinary 3-separation of M , contradicting
Corollary 23.

Corollaries 22 and 25 tell us that if G is a connected graph with no pendant or twin
vertices, then the non-sequential ordinary 3-separations of M [IAS(G)] and the vertical
3-separations of M [IAS(G)] coincide.

The theory of non-sequential ordinary 3-separations presented by Oxley, Semple and
Whittle [16, 17] includes the following notion of equivalence.

Definition 26. If M is a matroid with ground set W and S ⊆ W , then the full closure
of S is the smallest subset fcl(S) ⊆ W that contains S and is closed in both M and M∗.
Two ordinary 3-separations S and S ′ are equivalent if the sets {fcl(S), fcl(W − S)} and
{fcl(S ′), fcl(W − S ′)} are the same.

Proposition 27. Suppose M = M [IAS(G)] is 3-connected. Then every non-sequential
ordinary 3-separation of M is equivalent to an ordinary 3-separation τG(X), where G has
a split (V1,W1;V2,W2) with V1 = X.

Proof. Let S be a non-sequential ordinary 3-separation which is not of the form τG(X).
Interchanging the labels of S and W (G) − S if necessary, we may presume that there is
a vertex v such that |τG(v) ∩ S| = 2.
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Let S ′ = S ∪ τG(v). Then r(S) = r(S ′), and r(W (G) − S ′) 6 r(W (G) − S). If
r(W (G)− S ′) < r(W (G)− S) then S ′ is an ordinary 2-separation, an impossibility as M
is 3-connected; hence r(W (G)−S ′) = r(W (G)−S). It follows that S ′ is also an ordinary
3-separation. Corollaries 22 and 25 tell us that |S| , |W (G)− S| > 6, so it must be that
|S ′| , |W (G)− S ′| > 5; then Corollary 25 tells us that S ′ is a non-sequential 3-separation.
Moreover S and S ′ have the same closure, and W (G)− S and W (G)− S ′ have the same
closure.

Repeating this process as many times as possible, we eventually obtain a non-sequential
ordinary 3-separation τG(X) such that S and τG(X) have the same closure, and W (G)−S
and W (G)− τG(X) have the same closure. Then S is equivalent to τG(X).

As τG(X) is a non-sequential ordinary 3-separation, Corollary 25 tells us that |τG(X)|
and |W (G)− τG(X)| are both > 3. Consequently |X| and |V (G)−X| are both > 1.
Also, as noted after Corollary 25 the fact that τG(X) is a non-sequential ordinary 3-
separation implies that τG(X) is also a vertical 3-separation. Then Proposition 16 implies
that cG(X) = 1, so G has a split (V1,W1;V2,W2) with V1 = X.

As discussed in [15, Section 9.3], it follows that if M [IAS(G)] is 3-connected then the
splits in G give rise to a description of M [IAS(G)] using 3-sums.

6 Theorem 5

In this section we prove an expanded form of Theorem 5. We begin with a result about
small transverse circuits.

Proposition 28. Let q be the cardinality of the smallest transverse circuit(s) in M =
M [IAS(G)]. If q < n+1

2
, then 2q − 1 > κ(M).

Proof. Let A = A(G). If ζ is a transverse circuit of size q 6 n
2

and X = {x ∈ V (G) |
τG(x) ∩ ζ 6= ∅}, then the columns of IAS(G) corresponding to the elements of ζ =
ζ ∩ τG(X) sum to 0. It follows that if X0 = {x ∈ X | χG(x) ∈ ζ or ψG(x) ∈ ζ} then the
columns of A[V (G)−X,X] corresponding to elements of X0 sum to 0. Consequently

cG(X) = r(A[X, V (G)−X]) < q = |X| 6 |V (G)−X| .

Then Corollary 18 tells us that κ(M) 6 1 + 2cG(X) 6 1 + 2(q − 1).

The inequality of Proposition 28 is strict for some graphs. For instance, if G is the
interlacement graph of an Euler circuit of K4,4 then κ(M [IAS(G)]) = 5, but the smallest
transverse circuits are of size 4.

Theorem 29. If n > 4 then these conditions are equivalent.

1. Some graph locally equivalent to G has a vertex of degree < n−1
2

.

2. G has a transverse circuit of size < n+1
2

.
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3. There is a subset X ⊆ V (G) such that τG(X) and τG(V (G) − X) both contain
transverse circuits.

4. κ(M [IAS(G)]) < n.

Proof. The equivalence of conditions 1 and 2 follows from this obvious consequence of the
theory developed in [10]:

Proposition 30. Let G be a graph, and let q be the size of the smallest transverse cir-
cuit(s) in M = M [IAS(G)]. Then q− 1 is the smallest degree of any vertex in any graph
locally equivalent to G.

Proposition 28 tells us that condition 2 implies condition 4, and condition 3 immedi-
ately implies condition 2, so it suffices to show that condition 4 implies condition 3. Recall
that Corollary 18 tells us that if κ(M) < n then there is a subset X ⊆ V (G) such that
cG(X) < min{|X| , |V (G)−X|}. Then the columns of the matrix A[V (G)−X,X] are lin-
early dependent, so there is some subset X0 ⊆ X such that the columns of A[V (G)−X,X]
corresponding to the elements of X0 sum to 0. Equivalently, if S = {χG(x) | x ∈ X0} then
the sum of the columns of IAS(G) corresponding to elements of S is a column vector Σ
whose v coordinate is 0 for every v ∈ V (G) − X. Let S ′ ⊆ τG(X) be the set obtained
from S as follows. First: for every x ∈ X−X0 such that the x coordinate of Σ is 1, insert
φG(X). Second: for every x ∈ X0 such that the x coordinate of Σ is 1, remove χG(x) and
replace it with ψG(X). The effect of these changes is to add 1 to every nonzero coordinate
of Σ, so the sum of the columns of IAS(G) corresponding to elements of S ′ is 0. As
S ′ is a subtransversal contained in τG(X), we conclude that τG(X) contains a transverse
circuit. Interchanging X and V (G)−X, the same argument tells us that τG(V (G)−X)
also contains a transverse circuit.

Corollary 31. If κ(M [IAS(G)]) = n then the diameter of G is 6 2.

Proof. Suppose instead that the diameter of G is greater than 2. Then there are vertices
v 6= w ∈ V (G) such that X = NG(v) ∪ {v} and Y = NG(w) ∪ {w} have X ∩ Y = ∅. But
τG(X) contains the neighborhood circuit ζG(v), and τG(Y ) contains ζG(w), so condition
3 of Theorem 29 is satisfied.

The converse of the corollary is false as there are large graphs of diameter 6 2, but
according to Corollary 6 there is no graph with n > 7 and κ(M [IAS(G)]) = n.

7 Theorem 3 and Corollary 6

In this section we prove Theorem 3 by proving the following five statements for M =
M [IAS(G)]. These statements differ slightly from those of Theorem 3, as they have not
been restricted so as to be mutually exclusive.

1. If n 6 3 and G is connected, then κ(M) = n.

2. If G is disconnected, then κ(M) = 1.
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3. If G is connected and not prime, then κ(M) = 3.

4. If G is prime and κ(M) < n, then κ(M) is odd and κ(M) > 5.

5. If n > 4 and κ(M) = n, then G is locally equivalent to C5 or W5.

Recall that the cut-rank function of G is given by cG(X) = r(A[X, V −X]) for X ⊆
V (G), and it determines κ(M) as in Corollary 18. Statements 1, 2, 3 and 4 above follow
from three obvious properties of the cut-rank function, which were observed by Bouchet
[7]. For the reader’s convenience we recall these obvious properties now.

Property 1. If n 6 3 and G is connected, then every X ⊆ V (G) has cG(X) =
min{|X| , |V (G)−X|}.

Property 2. G is disconnected iff some X ⊆ V (G) has ∅ 6= X 6= V (G) and cG(X) = 0.
Equivalently, G is connected iff cG(X) > 1 for every X ⊆ V (G) with ∅ 6= X 6= V (G).

Property 3. A partition (V1, V2) of V (G) provides a split of G iff |V1| , |V2| > 2 and
cG(V1) = cG(V2) 6 1.

The proof of statement 5 is considerably more difficult. We actually prove Corollary
6 first, and then explain how to deduce statement 5 from the “corollary.”

7.1 Corollary 6

Definition 32. Let G be a graph, and let γ be a subset of W (G). Then the sum (i.e.,
the symmetric difference)

S(γ) = γ +
∑

|γ∩τG(v)|>1

τG(v).

is the subtransversal associated to γ.

That is, S(γ) is obtained from γ in two steps: for each v ∈ V (G) with τG(v) ⊆ γ,
remove τG(v) from γ; and for each v ∈ V (G) with |γ ∩ τG(v)| = 2, replace the two elements
of γ ∩ τG(v) with the third element of τG(v).

For ease of reference we state the following observation as a lemma.

Lemma 33. Suppose γ is an element of the cycle space of M [IAS(G)], i.e., γ is a subset
of W (G) and the columns of IAS(G) corresponding to γ sum to 0. If γ is a union of
vertex triples then S(γ) = ∅; otherwise S(γ) 6= ∅ and S(γ) is the disjoint union of some
transverse circuits of M [IAS(G)].

Proof. The sum of the columns of IAS(G) corresponding to elements of γ equals the sum
of columns corresponding to elements of S(γ).

Lemma 34. Let G be a graph. Then the following properties of a subset X ⊆ V (G) are
equivalent.

1. The rank of τG(X) in M [IAS(G)] is > 2 · |X|.
2. The rank of τG(X) in M [IAS(G)] equals 2 · |X|.
3. No transverse circuit of M [IAS(G)] is contained in τG(X).
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Proof. As τG(X) contains the vertex triples τG(x) with x ∈ X, and these vertex triples
are pairwise disjoint dependent sets of M [IAS(G)], r(τG(X)) 6 |τG(X)| − |X| = 2 · |X|.
This explains the equivalence between properties 1 and 2.

Suppose property 3 fails, i.e., τG(X) contains a transverse circuit ζ. Let τG(X) =
S1 ∪ S2 ∪ S3, where the Si are pairwise disjoint subtransversals of W (G) and ζ ⊆ S1. As
vertex triples are dependent in M [IAS(G)], S3 is contained in the closure of S1 ∪ S2. It
follows that

r(τG(X)) = r(S1 ∪ S2) 6 r(S1) + r(S2) 6 −1 + |S1|+ |S2| 6 −1 + 2 · |X| ,

so property 1 also fails.
Suppose now that property 1 fails. Let τG(X) = S1∪S2∪S3, where the Si are pairwise

disjoint subtransversals of W (G). Again, the fact that vertex triples are dependent in
M [IAS(G)] implies that r(τG(X)) = r(S1 ∪ S2) < 2 · |X| = |S1 ∪ S2|. Consequently,
S1∪S2 contains some circuit γ of M [IAS(G)]. Lemma 33 tells us that there is a transverse
circuit ζ with ζ ⊆ S(γ).

Here is an easy consequence of Lemma 34.

Corollary 35. Let G be a graph with n vertices, and let X ⊆ V (G) be a subset with
|X| > n

2
. Then τG(X) contains a transverse circuit.

Proof. As 2 · |X| > n and n = r(W (G)), 2 · |X| > r(τG(X)).

In general, if |X| 6 n
2

then τG(X) need not contain a transverse circuit. However, in
Theorem 38 we prove that if n > 7 then M [IAS(G)] has some transverse circuit of size
6 n

2
. A couple of preliminary results will be useful.

Lemma 36. Let G be a graph, and let q be the size of the smallest transverse circuit(s)
in M [IAS(G)]. Suppose Q ⊆ V (G) and |Q| = q. Then one of the following holds:

1. There is no transverse circuit contained in τG(Q).

2. There is precisely one transverse circuit contained in τG(Q).

3. There are precisely three transverse circuits contained in τG(Q), and they partition
τG(Q).

Proof. Suppose τG(Q) contains two transverse circuits ζ1 6= ζ2. As ζ1∆ζ2 is not a union
of vertex triples, Lemma 33 tells us that S(ζ1∆ζ2) contains a transverse circuit, ζ3. If
ζ1∩ζ2 6= ∅ then |S(ζ1∆ζ2)| < q, contradicting the minimality of q. Consequently ζ1∩ζ2 =
∅ and S (ζ1∆ζ2) = ζ3.

Corollary 37. Let G be a graph, and suppose q > 5 is the cardinality of the smallest
transverse circuit(s) in M [IAS(G)]. Suppose Q ⊆ V (G), |Q| = q and τG(Q) contains
three transverse circuits. Then for every v /∈ Q, the only transverse circuits contained in
τG(Q ∪ {v}) are the ones contained in τG(Q).
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Proof. Suppose instead that τG(Q∪ {v}) contains a transverse circuit ζ, which intersects
τG(v). Then ζ also intersects at least q − 1 vertex triples in τG(Q); as q − 1 > 4, ζ
must share at least two elements with a transverse circuit ζ ′ contained in τG(Q). Then
Lemma 33 tells us that S(ζ∆ζ ′) contains a transverse circuit; but this is impossible as
|S(ζ∆ζ ′)| < q.

Theorem 38. Let G be a graph with n > 7 vertices. Then M = M [IAS(G)] has a
transverse circuit of size 6 n

2
.

Proof. We have verified the theorem for n = 7 and n = 9 by exhaustion, using the matroid
module [18] for SageMath [19] and the nauty package [13]. For the rest of the proof, then,
we assume that either n = 8 or n > 9.

Suppose the theorem fails for G, i.e., every transverse circuit of M is of size > n
2
. For

convenience we let p =
⌊
n
2

⌋
, and we fix a subset P ⊆ V (G) with |P | = p. If v /∈ P

then Corollary 35 and Lemma 36 tell us that τG(P ∪{v}) contains either precisely one or
precisely three transverse circuits. Each such transverse circuit meets every vertex triple
in τG(P ∪ {v}); and if there are three such transverse circuits, they constitute a partition
of τG(P ∪ {v}).

Suppose there is a vertex v1 /∈ P such that τG(P ∪ {v1}) contains three transverse
circuits. If v2 /∈ P ∪{v1} then Corollary 35 tells us that τG(P ∪{v2}) contains a transverse
circuit. As p > 4, however, Corollary 37 tells that τG(P ∪ {v2}) does not contain a
transverse circuit. We conclude by contradiction that there is no vertex v1 /∈ P such that
τG(P ∪ {v1}) contains three transverse circuits. That is, for each v /∈ P there is a unique
transverse circuit ζv ⊆ τG(P ∪ {v}).

The rest of the proof is split into three cases.
Case 1: n is even. If v /∈ P and w ∈ τG(v) is not included in ζv, then Lemma 33 tells

us that w is not included in any circuit γ ⊆ τG(P )∪{w}. That is, the rank of τG(P )∪{w}
is 1 + r(τG(P )). But 1 + r(τG(P )) = 1 + 2p = 1 + n, an impossibility as the rank of M is
only n.

Case 2: n > 13 and odd. Let V (G) = {v1, . . . , v2p+1}, with P = {v1, . . . , vp}, and for
i > p let ζi = ζvi . Notice that if i, j > p, i 6= j and |ζi ∩ ζj| > 1 then ζi∆ζj meets no more
than p vertex triples, including τG(vi) and τG(vj). Lemma 33 then tells us that S(ζi∆ζj)
contains a transverse circuit of size 6 p, a contradiction; we conclude that |ζi ∩ ζj| 6 1
whenever i 6= j. As each of ζp+1, . . . , ζ2p+1 includes p elements of τG(P ), the fact that
|ζi ∩ ζj| 6 1 ∀i 6= j implies that∣∣∣∣∣

2p+1⋃
i=p+1

(τG(P ) ∩ ζi)

∣∣∣∣∣ >
p+1∑
i=1

(p+ 1− i) =
p(p+ 1)

2
.

As |τG(P )| = 3p, we conclude that p+1
2

6 3; this is impossible as n > 13.
Case 3: n = 11. The argument of case 2 applies, except for the last sentence. We have

V (G)− P = {v6, . . . , v11}, and for each i ∈ {6, 7, 8, 9, 10, 11} we have a unique transverse
circuit ζi ⊆ τG(P ∪{vi}). We use κi to denote the element of ζi∩τG(vi). If any one element
of τG(P ) is included in as many as three of ζ6, . . . , ζ11 then counting elements as in case 2
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tells us that τG(P )∩ (ζ6∪· · ·∪ ζ11) has at least 5 + 4 + 4 + 2 + 1 = 16 > 15 = 3p = |τG(P )|
elements, an impossibility. Consequently, no element of τG(P ) is included in more than
two of the circuits ζ6, . . . , ζ11. As each ζi includes 5 elements of τG(P ), and τG(P ) has
only 15 elements, we conclude that each element of τG(P ) appears in precisely two of
ζ6, . . . , ζ11.

Consider the total of the six column-sums corresponding to ζ6, . . . , ζ11. On the one
hand, each column corresponding to an element of τG(P ) appears twice; as we are work-
ing over GF (2), the total equals the sum of the columns of IAS(G) corresponding to
κ6, . . . , κ11. On the other hand, each ζi is a circuit, so the total is 0. As there is no
transverse circuit of size < 6, the subtransversal {κ6, . . . , κ11} is a transverse circuit.

Recall that each of the transverse circuits ζ6, . . . , ζ11 intersects each of the vertex triples
τG(v1), . . . , τG(v5) precisely once, each element of one of these vertex triples appears in
precisely two of ζ6, . . . , ζ11, and |ζi ∩ ζj| 6 1 ∀i 6= j. We claim that these constraints
make it possible to index v1, . . . , v11 and label the elements of τG(P ) in such a way that
for 1 6 k 6 5 the vertex triple τG(vk) is {κk, λk, µk} and the table below is correct, in the
sense that the two numbers in the table location corresponding to each element of τG(P )
provide the two indices i, j such that ζi ∩ ζj includes that element.

κ 6,7 6,8 8,10 7,9 9,10
λ 8,9 7,10 6,9 6,10 7,8
µ 10,11 9,11 7,11 8,11 6,11
k 1 2 3 4 5

We proceed to verify the claim. Without loss of generality we may presume that
v1, . . . , v11 have been indexed in such a way that τG(v1) contains both ζ6 ∩ ζ7 and ζ8 ∩ ζ9,
while τG(v2) contains ζ6 ∩ ζ8. The third element of τG(v1) must be the one element of
ζ10 ∩ ζ11, so the elements of τG(v1) may be denoted κ1, λ1, µ1 in such a way that the
k = 1 column of the table above correctly records the appearances of elements of τG(v1)
in ζ6, . . . , ζ11. As τG(v2) contains ζ6∩ ζ8 it is not possible that τG(v2) also contains ζ7∩ ζ9;
for if it did, the third element of τG(v2) would be the element of ζ10 ∩ ζ11, which appears
in τG(v1). Interchanging indices of v10 and v11 if necessary, we may presume that τG(v2)
contains ζ7 ∩ ζ10. Then we may name the elements of τG(v2) in such a way that the k = 2
column of the table above is correct. We may presume that τG(v3) contains ζ6∩ ζ9. There
is then only one value of i for which τG(v3) could possibly contain ζi ∩ ζ10: i ∈ {6, 9} is
impossible as we have already identified an element of τG(v3) in ζ6 ∩ ζ9, and i ∈ {7, 11} is
impossible because τG(v1) contains ζ10∩ζ11 and τG(v2) contains ζ7∩ζ10. We conclude that
τG(v3) contains ζ8 ∩ ζ10. The third element of τG(v3) must then be shared with ζ7 ∩ ζ11,
and we can name the elements of τG(v3) so that the k = 3 column of the table is correct.
Interchanging the indices of v4 and v5 if necessary, we may presume that τG(v4) contains
ζ6 ∩ ζ10 and τG(v5) contains ζ6 ∩ ζ11. Then there is only one value of i for which τG(v4)
could possibly contain ζi∩ ζ11: i ∈ {7, 9, 10} is impossible because of the elements already
assigned to τG(v1), τG(v2) and τG(v3); and i = 6 is impossible because τG(v4) contains an
element of ζ6 ∩ ζ10. It follows that τG(v4) contains ζ8 ∩ ζ11. The third element of τG(v4)
must then be the element of ζ7 ∩ ζ9, and we may name the elements of τG(v4) so that the
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k = 4 column of the table above is correct. The k = 5 column of the table is then forced,
except for the assignment of κ, λ, µ labels to the elements of τG(v5).

We now claim that the subtransversal {κ1, . . . , κ10} is an independent set of M . Sup-
pose the claim is false; then there is a subset ζ ⊆ {κ1, . . . , κ10} such that the columns of
IAS(G) corresponding to elements of ζ sum to 0. Let Y = {y > 6 | κy ∈ ζ}, let Z = {ζ}∪
{ζy | y ∈ Y }, and let γ = {x ∈ τG(P ) | x is included in an odd number of elements of Z}.
Consider the sum of columns of IAS(G) corresponding to elements of elements of Z. As
we are working over GF (2), any column that appears an even number of times in the
sum contributes 0. Each column corresponding to a κy with y ∈ Y appears twice in the
sum, once in ζ and once in ζy, so these columns contribute 0. It follows that the sum of
columns of IAS(G) corresponding to elements of elements of Z is the same as the sum of
columns of IAS(G) corresponding to elements of γ. This sum must be 0, as the individ-
ual column-sums corresponding to ζ and the ζy are all 0. We conclude that the sum of
columns of IAS(G) corresponding to elements of γ is 0. Let S(γ) be the subtransversal
associated to γ, as in Definition 32. Then S(γ) ⊆ τG(P ), so S(γ) does not contain any
transverse circuit of M . According to Lemma 33, it follows that S(γ) = ∅. That is,
for each i ∈ {1, . . . , 5} the intersection γ ∩ τG(vi) is either ∅ or τG(vi). Inspecting the
table above, though, we see that no nonempty set Y ⊆ {6, . . . , 10} respects the require-
ment that every i ∈ {1, . . . , 5} has γ ∩ τG(vi) ∈ {∅, τG(vi)}. For instance, if 9 ∈ Y then
µ2 ∈ γ, so γ ∩ τG(v2) = τG(v2), so Y must include precisely one of 6, 8 and precisely one
of 7, 10; but Y = {6, 7, 9} and Y = {6, 9, 10} both violate γ ∩ τG(v3) ∈ {∅, τG(v3)}, and
Y = {7, 8, 9} and Y = {8, 9, 10} both violate γ ∩ τG(v1) ∈ {∅, τG(v1)}. Of course Y = ∅
is impossible too, as {κ1, . . . , κ5} is independent. These observations verify the claim.

As {κ6, . . . , κ11} is a circuit ofM , the claim implies that {κ1, . . . , κ10} is an independent
subtransversal whose closure includes κ11. As explained in Section 4 of the first paper in
this series [10], after replacing G with a locally equivalent simple graph (if necessary) we
may presume that κi = φG(vi) for 1 6 i 6 10, and κ11 = χG(v11). (N.b. Our definition
of local equivalence includes loop complementations, so we lose no generality when we
presume that G is simple.) The fact that {κ6, . . . , κ11} is a transverse circuit implies that
NG(v11) = {v6, . . . , v10}. We have no information about adjacencies among the vertices
of NG(v11), but we can determine the other adjacencies in G as follows.

Let S = {κ1, κ2, κ3, κ4, κ5, λ1, λ2, λ3, λ4, λ5}. The closure of S inM contains an element
x /∈ S if and only if x is included in a circuit of M whose other elements are contained in
the closure of S. It follows that the closure of S contains µ1, . . . , µ5 (which are included in
vertex triples in τG(P )) and κ6, . . . , κ11 (which are included in ζ6, . . . , ζ11). We conclude
that the submatroid M | (τG(P ) ∪ {κ6, . . . , κ11}) is spanned by S, so its rank is 6 10.

As B = {κ1 = φG(v1), . . . , κ10 = φG(v10)} is an independent set of rank 10, B must be
a basis of the submatroid M | (τG(P ) ∪ {κ6, . . . , κ11}). We can find fundamental circuits
with respect to B by searching for sums (symmetric differences) of the ζi which contain
only one element not included in B. Here are some of these fundamental circuits:
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Figure 2: The case n = 11, with unspecified edges in the induced subgraph H.

For µ1: {µ1, φG(v2), φG(v4), φG(v6), φG(v7), φG(v10)} = ζ6∆ζ7∆ζ10.
For µ2: {µ2, φG(v1), φG(v3), φG(v6), φG(v8), φG(v9)} = ζ6∆ζ8∆ζ9.
For µ3: {µ3, φG(v2), φG(v5), φG(v7), φG(v8), φG(v10)} = ζ7∆ζ8∆ζ10.
For µ4: {µ4, φG(v1), φG(v5), φG(v7), φG(v8), φG(v9)} = ζ7∆ζ8∆ζ9.
For µ5: {µ5, φG(v3), φG(v4), φG(v6), φG(v9), φG(v10)} = ζ6∆ζ9∆ζ10.
For κ11: {κ11, φG(v6), φG(v7), φG(v8), φG(v9), φG(v10)} = ζ6∆ζ7∆ζ8∆ζ9∆ζ10.
For i ∈ {1, . . . , 5}, the fundamental circuit of λi is equal to the symmetric difference

of τG(vi) and the fundamental circuit of µi.
The fundamental circuits indicate that G is of the form pictured in Figure 2 (with

each vertex vi abbreviated by i), but we do not know which edges appear in the induced
subgraph H of G with V (H) = {v6, v7, v8, v9, v10}. Notice that, if we like, we may perform
a local complementation at v11 without changing M [IAS(G)] (up to isomorphism) and
without changing any information about G that has been mentioned above. The effect of
a local complementation at v11 is to complement all edges in H, so we may assume that
|E(H)| 6 5 without loss of generality.

The argument for n = 11 ends with the claim that no matter which edges appear in
H, M [IAS(G)] has a transverse circuit of size 6 5. The claim is justified by considering
different possible configurations of edges in H, as follows.

If H has an isolated vertex, then that vertex is of degree 4 in G, so its neighborhood
circuit is of size 5.

If H is disconnected but has no isolated vertex then H has a connected component of
size 2 and a connected component of size 3. There are two distinct configurations of this
type. For instance, if {v7, v8} forms a connected component of H then {φG(v1), φG(v2),
ψG(v7), ψG(v8)} is a transverse circuit. On the other hand, if {v7, v9} forms a connected
component of H then so does {v6, v8, v10}. No matter which edges appear in the larger
component, there will be a transverse circuit of the form {φG(v4), ρG(v6), σG(v8), υG(v10),
φG(v11)} with ρ, σ, υ ∈ {χ, ψ}.

If H is connected then as |E(H)| 6 5, H has a vertex of degree 2 or a vertex of
degree 4. For instance, if v6 is of degree 4 in H then {φG(v1), φG(v2), φG(v5), ψG(v6),
χG(v11)} is a transverse circuit. There are three different configurations of degree-2 ver-
tices. For instance, if NH(v8) = {v7, v9} then {χG(v1), φG(v4), χG(v5), χG(v8), φG(v11)} is
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a transverse circuit; if NH(v8) = {v9, v10} then {φG(v2), χG(v5), φG(v6), χG(v8), φG(v11)}
is a transverse circuit; and if NH(v8) = {v6, v10} then {φG(v2), χG(v5), χG(v8), φG(v9),
φG(v11)} is a transverse circuit.

7.2 Case 5 of Theorem 3

With Theorem 5 and Corollary 6 proven, we know that if n > 5 and κ(M [IAS(G)]) = n,
then n < 7. To complete the proof of Theorem 3, we must show that such a G is locally
equivalent to either the cycle graph C5 or the wheel graph W5.

As κ(M [IAS(G)]) = n > 3, case 3 of Theorem 3 tells us that G is prime. If n = 5 we
refer to Bouchet [6], who showed that every prime 5-vertex graph is locally equivalent to
C5. Suppose n = 6. If G is a circle graph then as discussed in [11], G has a transverse
circuit of size 6 3; but then Theorem 5 contradicts the hypothesis that κ(M [IAS(G)]) =
n. Consequently G is not a circle graph. According to Bouchet’s circle graph obstructions
theorem [8], every non-circle graph with n = 6 is locally equivalent to W5.

8 A characterization of circle graphs

In this section we briefly discuss a way to use the ideas of this paper to characterize
circle graphs. We refer to the second paper in the series [11] for definitions, and for the
following.

Theorem 39. ([11]) Let G be the interlacement graph of an Euler system of a 4-regular
graph F . If F has a circuit of size q, then G has a transverse circuit of size 6 q.

Proposition 28 immediately implies the following.

Corollary 40. Let G be the interlacement graph of an Euler system of a 4-regular graph
F . If the girth of F is g(F ) 6 n

2
, then κ(M [IAS(G)]) 6 2g(F )− 1.

With a little more work we obtain an upper bound on the vertical connectivity of the
isotropic matroid of a circle graph.

Corollary 41. Let G be a circle graph. Then κ(M [IAS(G)]) 6 max{5, n− 3}.

Proof. Every graph with n 6 5 is a circle graph, and satisfies κ(M [IAS(G)]) 6 n 6 5.
If n > 6 and G is associated with a 4-regular graph F with g(F ) 6 3, then Corollary 40
tells us that κ(M [IAS(G)]) 6 5.

According to the tables of Meringer [14], for 6 6 n 6 9 the only 4-regular graph of girth
> 3 is K4,4. It turns out that circle graphs associated with K4,4 have κ(M [IAS(G)]) = 5.
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To see why, recall the observation of [11] that

0 1 0 0 1 0 0 1
1 0 0 0 1 1 0 0
0 0 0 1 1 1 0 0
0 0 1 0 1 0 0 1
1 1 1 1 0 0 1 0
0 1 1 0 0 0 1 0
0 0 0 0 1 1 0 1
1 0 0 1 0 0 1 0


is the adjacency matrix of an interlacement graph I(C) of an Euler circuit C of K4,4.
Note that if X includes the vertices corresponding to the last four rows and columns then

cI(C)(X) = r(A[X, V (I(C))−X]) = r




1 0 0 1
1 1 0 0
1 1 0 0
1 0 0 1


 = 2,

so κ(M [IAS(I(C))]) 6 5. As I(C) is prime, it follows that κ(M [IAS(I(C))]) = 5. We
conclude that every circle graph with n 6 9 has κ(M [IAS(G)]) 6 5.

If n > 10 and G is the interlacement graph of an Euler system of a 4-regular graph of
girth 4, then Corollary 40 tells us that κ(M [IAS(G)]) 6 7. As 7 6 n− 3, the inequality
asserted in the present corollary is satisfied.

It remains to consider circle graphs with n > 10 that are associated with 4-regular
graphs of girth > 4. The Moore bounds for the order of a regular graph of given girth
are well known; see [2, Chapter 23] for a discussion. The Moore bounds tell us that the
order of a 4-regular graph of girth g > 4 satisfies the following inequality.

n >

{
1 + 4 · (1 + 3 + · · ·+ 3(g−3)/2) if g is odd

1 + 4 · (1 + 3 + · · ·+ 3(g−4)/2) + 3(g−2)/2 if g is even.

If g > 5 is odd then we deduce that

n > 1 + 4 + 12((g − 3)/2) = 5 + 6g − 18 = 2g + 4g − 13 > 2g + 7,

and if g > 6 is even then we deduce that

n > 1 + 4 + 12((g − 4)/2) + 9 = 5 + 6g − 15 = 2g + 4g − 10 > 2g + 14.

We require only the fact that g > 4 implies n > 2g + 2, as this allows us to apply
Corollary 40 and conclude that κ(M [IAS(G)]) 6 2g − 1 < n− 3.

We should mention that the bound κ(M [IAS(G)]) 6 n−3 of Corollary 41 is sharp for
n = 10, although it is certainly not sharp for n > 10. Consulting Meringer’s tables [14],
we see that there are two 4-regular graphs of order 10 and girth > 3. One of these graphs
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is obtained from C5 by doubling every vertex and quadrupling every edge, and the other
is obtained from K5,5 by removing a perfect matching. Computations performed using
the matroid module of SageMath [18, 19] indicate that circle graphs associated with these
two 4-regular graphs have κ(M [IAS(G)]) = 7.

It is not hard to see that κ(M [IAS(W5)]) = 6 and κ(M [IAS(W7)]) = 7, so according
to Corollary 41 the fact that W5 and W7 are not circle graphs is detected by the high
vertical connectivity of their isotropic matroids. Bouchet gave three forbidden vertex-
minors for circle graphs [8]: W5 and W7 are two of them, and the third is a bipartite
graph denoted BW3. The vertical connectivity of the isotropic matroid of BW3 is only 5,
as BW3 has vertices of degree 2, so in order to exclude BW3 we must use another property
of circle graphs.

Theorem 42. The family C of circle graphs is determined by these three properties.

• C is closed under vertex-minors.

• If G ∈ C then all transverse matroids of G are cographic.

• If G ∈ C then κ(M [IAS(G)]) 6 max{5, |V (G)| − 3}.
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