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Abstract

Dial-a-ride services provide collective on-demand transportation, usu-
ally tailored to the needs of people with reduced mobility. This paper
investigates the operational effects of horizontal cooperation among dial-
a-ride providers. The current practice is that users choose a particular
provider to submit their requests. Providers operating in the same area
create their routing solutions independently of each other, given their
own set of customers. In contrast, horizontal cooperation through joint
route planning implies that customer requests can be exchanged among
providers in order to minimize the overall routing cost. In addition to
quantifying the operational benefits generated by such a horizontal coop-
eration, this paper identifies operational characteristics that influence the
magnitude of the savings. A real-life case study reveals the reasons why
providers benefit from certain request exchanges, as well as the extent
to which these exchanges are predictable in advance. The solutions are
obtained using a large neighborhood search algorithm that performs well
on benchmark data.

Keywords: dial-a-ride services, demand-responsive transportation, hor-
izontal cooperation, joint route planning

1 Introduction

A dial-a-ride system is an application of demand-dependent, collective
passenger transportation (Cordeau and Laporte, 2003). Each customer
requests a trip between an origin and a destination of choice, to which
a number of service level requirements are linked. The service provider
attempts to develop efficient vehicle routes and time schedules, respecting
these requirements and the technical constraints of a pickup and delivery
problem (Parragh et al., 2008). A frequent objective is to minimize op-
erational costs subject to full demand satisfaction and side constraints,
but service level criteria may be optimized as well. Balancing the human
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and economic perspectives involved in solving such a dial-a-ride problem
(DARP) is essential for organizing quality-oriented, yet efficient trans-
portation of customers with special needs, such as elderly or disabled. In
light of the ageing population, dial-a-ride systems are gaining importance
to complement regular transportation modes. They fulfill a social role as
well, preventing isolation of vulnerable groups in society.

When a certain area is served by multiple dial-a-ride providers with a
comparable quality policy, most users living in that area will intuitively
submit their requests to the provider located closest to their homes. The
different providers create their vehicle routes and schedules independently
of each other, based on the requests they receive. Whereas strategies to
share information or resources have been cost-effective practices among
logistic service providers for many years (Verdonck et al., 2013), they
are completely unexplored in the domain of dial-a-ride services. Also the
academic literature lacks insights into the effects of cooperation in the spe-
cific context of demand-responsive passenger transportation, e.g. due to
tighter quality requirements. The present paper performs an analysis on
joint route planning in dial-a-ride services. This particular form of hori-
zontal cooperation assumes a centralized decision making, enabling service
providers to exchange customer requests such that overall routing costs
are minimized. The problem is solved using a large neighborhood search
(LNS) metaheuristic whose performance is demonstrated using common
benchmark data from the literature.

The contribution of this paper is threefold. First, the potential of
horizontal cooperation through joint route planning among dial-a-ride
providers is analyzed. Second, the operational characteristics that in-
fluence these benefits are identified using artificially constructed data in
which the operational setting is varied. This analysis allows to draw gen-
eral conclusions on a more strategic/tactical level regarding the benefits
of cooperation. Third, a real-life case study is performed to discover the
reasons why service providers benefit from exchanging certain requests.
The predictability of these exchanges influences the extent to which infor-
mation must be disclosed to enable a successful cooperation. Note that
all analyses focus on the joint operational benefits incurred by the over-
all cooperation. To allocate these benefits among the providers, which
falls outside the scope of this paper, gain sharing techniques from existing
literature on horizontal cooperation (e.g. Shapley value, alternative cost
avoided method, equal profit method) may be used (Verdonck et al., 2016).

The remainder of this paper is structured as follows. Section 2 intro-
duces the standard DARP and provides a mathematical formulation of
the variant used in this work. Section 3 summarizes related literature on
horizontal cooperation in logistics and translates these principles to the
domain of demand-responsive people transportation. Section 4 discusses
the structure of the LNS metaheuristic. Section 5 presents the artificial
and real-life data sets used for the computational tests and analyzes the
results. Section 6 draws conclusions in view of a practical implementation
of horizontal cooperation and suggests ideas for future research.
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2 Problem statement

Cordeau and Laporte (2003) introduced a standard definition of the DARP.
It consists of designing several minimum-cost vehicle routes in a complete
graph of nodes and arcs. The nodes represent pickup and delivery loca-
tions of customers, as well as a single vehicle depot. The arcs between
these nodes have an associated travel time and cost, which is incurred if
the arc is traversed by a vehicle. Routes start and end at the depot within
fixed time intervals and respect a maximum route duration. The service
at each customer location starts within a hard time window. A maximum
user ride time cannot be exceeded and a vehicle’s load should respect
the maximum capacity. To ensure a correct physical route construction,
precedence and pairing of a customer’s origin and destination must be
ensured by visiting them in the right order, using the same vehicle. A
service duration indicates the time that may be needed for loading and
unloading customers.

The problem studied in this paper involves multiple service providers
that may or may not cooperate. Since each participating provider dis-
poses of at least one depot, a multi-depot variant of the DARP (Braekers
et al., 2014) needs to be solved. In scenarios with horizontal coopera-
tion among the providers, the principle of joint route planning implies
that requests may be served by a vehicle originating from any given de-
pot. In a scenario without cooperation, requests are preassigned to one
specific provider, usually based on the customer’s geographical situation.
In addition, the real-life case study concluding Section 5 involves multiple
customer types (Parragh, 2011) and configurable vehicle capacity (Qu and
Bard, 2013). The former means that customers are categorized based on
their mobility, i.e. whether they use a wheelchair or not. This hetero-
geneity is reflected in the fact that the vehicles offer a number of standard
seats and wheelchair spaces. Their design is instantaneously configurable,
meaning that the ratio between both resource types can be modified at
any stop in the route according to a limited set of configurations.

A mathematical formulation for this rich problem variant can be com-
posed by building upon the arc-based mixed-binary linear programs of
Cordeau (2006), Røpke et al. (2007), Parragh (2011), Qu and Bard (2013)
and Braekers et al. (2014). The resulting formulation is shown by equa-
tions 1-15. Given an input of n user requests, each node i in the range
1, ..., n represents the pickup location of a specific user i, whereas node
n + i represents the corresponding delivery location. The four-index bi-
nary decision variable xkfij indicates whether vehicle k traverses the arc
between nodes i and j in configuration f , where the set of possible con-
figurations Fk depends on the vehicle k. Each vehicle route is assumed to
start at an origin depot and end at a destination depot (eq. 4, 6). One
and the same vehicle should reach and leave corresponding pickup and
delivery locations i and n + i (eq. 2, 3, 5), which ensures flow conserva-
tion and pairing. However, without horizontal cooperation, only a limited
set of vehicles (i.e. the vehicles from one specific provider) is eligible to
serve a particular user (eq. 7). The use of an index k for parameters re-
lated to travel costs/times allows to account for vehicles originating from
multiple depots at different physical locations, even though a single node
is used to represent the start depot 0 and end depot 2n + 1. Decision
variable Lk

i computes the ride time of user i (eq. 10) and cannot exceed
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the maximum user ride time L (eq. 13). Explicit precedence constraints
become redundant if Lk

i is set at least equal to the associated direct ride
time. Decision variable Bk

i tracks the service start in node i (eq. 8) and
should respect the time window of this node (eq. 12). A vehicle may idle
at any time and place, e.g. when it reaches a node before the start of
the time window. Decision variable Qkr

i registers the load of resource r
upon leaving node i (eq. 9) and cannot exceed the capacity Cr

kf of vehicle
k in configuration f for resource r (eq. 14), respectively. The vehicle’s
configuration can be changed at any node. The time span between the
moment a vehicle leaves the origin depot and the moment it returns to
the destination depot cannot exceed the maximum route duration Tk (eq.
11). A minimum-cost selection of arcs is made (eq. 1), subject to all
constraints and full demand satisfaction. Finally, note that equations 8
and 9 can be linearized as proposed by Cordeau (2006).

Minimize
∑
k∈K

∑
f∈Fk

∑
i∈N

∑
j∈N

ckijx
kf
ij (1)

Subject to ∑
k∈K

∑
f∈Fk

∑
j∈N

xkfij = 1 ∀i ∈ P (2)

∑
f∈Fk

∑
j∈N

xkfij −
∑
f∈Fk

∑
j∈N

xkfn+i,j = 0 ∀i ∈ P, ∀k ∈ K (3)

∑
f∈Fk

∑
j∈N

xkf0j = 1 ∀k ∈ K (4)

∑
f∈Fk

∑
j∈N

xkfji −
∑
f∈Fk

∑
j∈N

xkfij = 0 ∀i ∈ P ∪D, ∀k ∈ K (5)

∑
f∈Fk

∑
i∈N

xkfi,2n+1 = 1 ∀k ∈ K (6)

∑
f∈Fk

∑
j∈N

xkfij ≤ a
k
i ∀i ∈ P, ∀k ∈ K (7)

Bk
j ≥ (Bk

i + di + tkij) .
∑
f∈Fk

xkfij ∀i ∈ N, ∀j ∈ N, ∀k ∈ K (8)

Qkr
j ≥ (Qkr

i + qrj ) .
∑
f∈Fk

xkfij ∀i ∈ N, ∀j ∈ N, ∀k ∈ K, ∀r ∈ R (9)

Lk
i = Bk

i+n − (Bk
i − di) ∀i ∈ P, ∀k ∈ K (10)

Bk
2n+1 −Bk

0 ≤ Tk ∀k ∈ K (11)

ei ≤ Bk
i ≤ li ∀i ∈ N, ∀k ∈ K (12)

tki,i+n ≤ Lk
i ≤ L ∀i ∈ P, ∀k ∈ K (13)∑

f∈Fk

∑
j∈N

(xkfij . max{0, q
r
i }) ≤ Qkr

i ≤
∑
f∈Fk

∑
j∈N

(xkfij . min{m
r
kf ,m

r
kf+qri }) ∀i ∈ N, ∀k ∈ K, ∀r ∈ R

(14)
xkfij ∈ {0, 1} ∀i ∈ N, ∀j ∈ N, ∀k ∈ K, ∀f ∈ Fk (15)

P = set of pickup nodes 1, ..., n

D = set of delivery nodes n+ 1, ..., 2n

N = set of all nodes (including the start depot 0 and end depot 2n+ 1)

K = set of vehicles
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Fk = set of configurations for vehicle k,

R = set of all resource types

ckij = cost associated with arc (i,j) for vehicle k

tkij = direct travel time associated with arc (i,j) for vehicle k

aki = binary parameter indicating if user i may be served by vehicle k

di = service duration in node i

qri = net number of users requiring resource r and boarding in node i

mr
kf = capacity of vehicle k in configuration f for resource r

3 Literature overview

Apart from the problem variants covered in this work, several other
models involving additional real-life characteristics have been pro-
posed to enhance the practical applicability of solution methods. A
comprehensive typology and literature review on DARPs, based on
contributions from the past four decades, is presented by Molenbruch
et al. (2017b). Specific reviews on dynamic problem variants and the
definition of service quality can be found in Berbeglia et al. (2010)
and Paquette et al. (2009), respectively. A structural description of
a fully automated dial-a-ride system is given in Dial (2002).

Common extensions to the standard problem include advanced
service designs (e.g. transfers in Masson et al. (2014)), alternative
and/or multiple objectives (e.g. Lehuédé et al. (2013)) and dynamic
or stochastic information (e.g. Xiang et al. (2008)). Metaheuristics
based on local search, such as variable neighborhood search (Parragh
et al., 2010) and deterministic annealing (Braekers et al., 2014), are
very suitable for solving large-scale problem instances within realis-
tic computation times. They typically use combinations of classical
neighborhood types, such as relocate and exchange operations. So-
lution methods for rich problem variants benefit from additional op-
erators taking advantage of the specific structure. A recent shift of
attention is the integration of multiple types of solution approaches.
For example, several state-of-the-art metaheuristics benefit from in-
tegrating a population concept into local search approaches (Chas-
saing et al., 2016; Masmoudi et al., 2016) or vice versa (Masmoudi
et al., 2017). Besides, hybridizations of exact and approximate so-
lution methods have been proposed in the literature (Parragh and
Schmid, 2013).

The literature lacks insights into the effects of a horizontal co-
operation in the specific context of demand-responsive passenger
transportation. In general, Cruijssen et al. (2007b) describe hori-
zontal cooperation in transportation and logistics as the identifica-
tion and exploitation of win-win situations by companies operating
at the same level of the supply chain. The participating parties
may apply various strategies to meet their expectations of such a
cooperation, often related to an increased productivity for core ac-
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tivities (Cruijssen et al., 2007c). Verdonck et al. (2013) present
a detailed classification of cooperation techniques in freight trans-
portation. The present work translates one of these techniques, be-
ing joint route planning, to the related domain of demand-responsive
passenger transportation. Joint route planning is a particular type
of request sharing, which means that service providers may decide
to exchange their users in order to align their available resources
with the demand of users. Providers retain their own set of vehicles
and depots, but routes are designed in an overall efficient manner,
which implies that users may be served by any given provider. Such
a centralized decision making enables a better capacity utilization
and savings in transportation costs, e.g. thanks to reductions in un-
productive distance traveled by unloaded vehicles (Cruijssen et al.,
2007a). In logistics, joint route planning has been applied to the
pickup and delivery problem with time windows (PDPTW) by Kra-
jewska et al. (2008). Their computational tests on both artificial and
real-life data reveal cost savings between 16% and 31% obtained by
the participating carriers. Although the PDPTW and the DARP
are interrelated, the latter is more tightly constrained due to the
maximum user ride time. The impact of this additional constraint
is difficult to predict. On the one hand, it reduces the operational
flexibility of service providers and thus increases the benefits of scal-
ing through cooperation. On the other hand, it may impede efficient
customer combinations when cooperating.

4 Algorithm

The algorithm used in this paper is based on an efficient implemen-
tation of a large neighborhood search (LNS) framework by Pisinger
and Røpke (2010), extended with an additional periodic diversifi-
cation phase. It combines well-known operators from the literature
and specific components that are useful to solve the problem at hand.
The algorithmic structure is summarized in Algorithm 1 and the de-
sign choices are explained below.

The algorithm requires an initial solution sinit, constructed by a
random order insertion heuristic. This solution is copied to initialize
scur, sbest and sovr. In each iteration, scur represents the solution on
which operations are performed and sbest is the best solution found
during the current search phase, which ends at the next periodic
diversification. By contrast, sovr represents the best solution found
throughout the entire procedure. Each of the niter iterations starts
with the choice of a destroy operator. The four operators intro-
duced in Section 4.1 may be selected with equal probabilities. The
selected operator is executed until a random percentage of requests,
situated in the interval [0.01, desmax], has been removed from scur.
Then, a repair operator is chosen in order to gradually complete
scur. The three operators discussed in Section 4.2 may be selected
with equal probabilities. In order to focus on promising parts of the
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search area, the newfound objective value is not allowed to dete-
riorate excessively. Specifically, it cannot exceed detmax times the
objective value of sbest. This approach corresponds to the record-to-
record strategy of Dueck (1993). If the solution cannot be completed
without violating this threshold or any feasibility constraint, scur is
replaced with sbest and the current iteration is terminated. Other-
wise, the complete scur is intensified using two local search operators
which never deteriorate the objective value, as explained in Section
4.3. Afterwards, sbest and sovr are updated if necessary. After fdiv
iterations without improvement of sbest, a periodic diversification
is applied with the intention of escaping the local optimum, as de-
scribed in Section 4.4. The resulting scur serves as the first sbest of
the next search phase.

4.1 Destroy operators

In each iteration, one of the following destroy operators is executed
until the required destroy percentage is reached. The first three
operators are based on existing destroy strategies from the literature
(Røpke and Pisinger, 2006), whereas the fourth operator is a new
contribution.

• The random removal operator removes random requests from
the solution. All requests have equal probabilities to be se-
lected.

• The worst removal operator involves a biased random selection
procedure that takes into account the saving obtained by re-
moving a request. Removing undesirably positioned requests
may cause considerable improvements of the objective value.
Following the roulette wheel principle, the probability of re-
moving request i ∈ R equals a2i /

∑
r∈R a

2
r, with ai denoting

the corresponding distance saving and R the set of requests. A
probalistic selection procedure is preferred to a deterministic
variant in order to encourage diversification.

• The related removal operator involves a biased random selec-
tion procedure that considers spatial and temporal similarities
between requests. Removing interchangeable requests may in-
crease the probability of finding a different solution. After re-
moving a first randomly chosen request i, the similarity between
this request and each other request j is computed as follows:

bi,j =
(

di,j+di+n,j+n

dmax
+
|Ti−Tj |+|Ti+n−Tj+n|

tmax

)−1
da,b Distance between nodes a and b
dmax Length of the longest arc in the network
Ta Center of the time window of node a
tmax Difference between the largest upper time window bound

and the smallest lower time window bound over all nodes
i, i+ n Origin and destination nodes for request i

Consequently, for all following removals during the same itera-
tion, the probability of removing request j ∈ R equals b2i,j/

∑
r∈R b

2
i,r,
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Algorithm 1 - Structure of the large neighborhood search algorithm
1:

2: set parameters: niter, desmax, detmax, fdiv
3:

4: construct sinit
5: initialize scur, sbest, sovr ← sinit
6: set iimpr = 0 (iteration of last improvement sbest)

7:

8: for i = 1→ niter do
9:

10: if i = iimpr + fdiv then
11: scur, sbest ← periodic diversification on sovr
12: iimpr = i
13: end if
14:

15: select p = rand(0.01,desmax)

16: randomly select Di ∈ {Drand, Dworst, Drel, Dprox}
17: randomly select Ri ∈ {Rrand, Rgree, Rregr}
18: scur ← Ri(Di(scur, p))
19:

20: if scur complete and f(scur) ≤ f(sbest) ∗ detmax then
21: scur ← relocate on scur
22: scur ← exchange natural sequences on scur
23:

24: if f(scur) < f(sbest) then
25: sbest ← scur
26: iimpr = i
27: if f(scur) < f(sovr) then
28: sovr ← scur
29: end if
30: end if
31:

32: else
33: scur ← sbest
34: end if
35:

36: end for
37:

38: return sovr
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with R denoting the set of remaining requests. Thanks to the
small time windows involved with dial-a-ride problems, the ac-
tual service time in a node can accurately be approximated
by the center of the corresponding time window. As a result,
the similarities between requests are static and can be precom-
puted, which is computationally more efficient than the classical
related removal strategy and makes the similarities independent
of the scheduling procedure used.

• The proximity removal operator involves a biased random se-
lection procedure which favors request removals in areas where
different routes overlap in time and space, since enhancing the
interaction among routes may be interesting to stimulate hori-
zontal cooperation in the context of this paper. Thus, the prob-
ability of removing request i ∈ R equals c2i /

∑
r∈R c

2
r, with ci

denoting the similarity between request i and the most similar
request in a different route. Although similarity is measured
as for the related removal operator, both strategies are very
different. Related removal starts from a single random request
and intends to remove requests that are interchangeable with
this first request. In contrast, proximity removal does not re-
quire relatedness between the selected requests, but focuses on
requests that are each individually related to a request served
in another route.

The aforementioned operators were selected after testing their
contribution to the solution quality of the algorithm, as will be shown
in Section 5.1. The tests also reveal that a route removal operator is
rather unappropriate within the current framework, despite its com-
mon application in the literature. It tends to result in new solutions
whose objective value exceed the allowed threshold.

4.2 Repair operators

In each iteration, one of the following repair operators is executed
until either a complete solution is reached or no insertion can be
performed without exceeding the maximum deterioration threshold
or violating a feasibility constraint. The operators are based on
common repair strategies from the literature (Røpke and Pisinger,
2006).

• The random order insertion operator repeatedly performs the
best insertion of a randomly selected request, checking all inser-
tion positions in any route. Requests have equal probabilities
to be selected.

• The greedy insertion operator repeatedly performs the best in-
sertion over all requests, considering all insertion positions in
any route.

• The 2-regret insertion operator repeatedly performs the best
insertion of the request having the largest regret value, consid-
ering all insertion positions in any route. A request’s regret
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value is defined as the difference between the insertion cost at
its second-best insertion position and the insertion cost at its
best insertion position. This strategy recognizes that postpon-
ing the insertion of requests having a large regret value may
deteriorate the eventual solution quality. The second-best in-
sertion position is assumed to be in a different route than the
best one, such that both positions cannot simultaneously be
eliminated by the insertion of another request.

A random noise factor in the interval [0.95, 1.05] is applied to en-
courage variation in the choice of the insertion positions and routes.
The scheduling procedure of Cordeau and Laporte (2003) will be
used to perform time-related feasibility checks on the artificial data
in Sections 5.1 and 5.2, which ensures the comparability with other
solution approaches. The real-life case in Section 5.3 invokes the
scheduling procedure introduced in Molenbruch et al. (2017c), which
minimizes the total user ride time of a route. This is in line with
the service provider’s quality policy.

4.3 Additional local search

Two additional local search operators are applied to repaired solu-
tions whose objective value does not exceed the maximum deterio-
ration threshold. The relocate operator considers all requests in a
random order and moves them to the best position in any route. At
worst, a request is reinserted at its original position, which implies
that this operation cannot deteriorate the solution quality. The ex-
change natural sequences operator performs the best swap of two
natural sequences, being node sequences before and after which a
vehicle is empty. They can be exchanged without violating pairing
or precedence constraints. Any two natural sequences in a solution
may be used, provided that they belong to different routes and at
most one of them is empty. If no improving exchange can be found,
the original solution is maintained.

4.4 Periodic diversification

After fdiv iterations without improvement of sbest, a periodic diver-
sification is applied in order to guide the search towards a different
part of the solution space. This periodic diversification phase af-
fects scur and sbest, but not sovr, unless the diversification would
immediately result in a new overall best solution. The random re-
moval and random order reinsertion operators presented in Sections
4.1 and 4.2 destroy and repair desmax percent of all requests in a
copy of sovr. No threshold applies to the newfound objective value,
such that a complete solution is always accepted, provided that all
feasibility constraints are respected. If not, the entire diversification
phase is reapplied until a feasible solution is found. It is stored into
scur and sbest, after which the normal LNS procedure resumes from
these solutions.
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5 Analysis of horizontal cooperation

The LNS algorithm has been implemented in Python 3.4.3. Note
that Cython 0.22, a module that runs Python code in C and al-
lows variables to be declared as C types, is invoked to accelerate
the numerous executions of feasibility checks. The computational
resources and services used in this paper were provided by the VSC
(Vlaams Supercomputer Centrum), funded by the Research Foun-
dation Flanders (FWO) and the Flemish Government, department
EWI. All experiments are performed using Xeon E5-2680v2 CPUs
at 2.8 GHz with 64 GB of RAM.

Section 5.1 uses existing artificial data to obtain a first impression
of the performance of the solution method and the operational sav-
ings that can be obtained through horizontal cooperation. However,
this data set is rather small and ignores a number of real-life char-
acteristics that may influence the findings. Therefore, Section 5.2
introduces a new artificial data set to analyze the effect of different
operational settings on the benefits of horizontal cooperation. Fi-
nally, Section 5.3 conducts a real-life case study to observe a pattern
in the exchanges of requests among providers. This may allow them
to predict which requests contribute in a horizontal cooperation.

5.1 Existing artificial data

A first series of experiments is performed on the a-instances intro-
duced by Cordeau (2006) and extended by Røpke et al. (2007). This
artificial data set consists of 24 relatively small benchmark instances,
including 16 to 96 requests and 2 to 8 vehicles. An instance is
structured as follows. Half of all requests are outbound, whereas
the others represent inbound requests. Origins and destinations are
randomly and independently generated in a square region [−10, 10]2.
The depot is located in the center at coordinates (0, 0). A single user
needs to be picked up or delivered at each location. Time windows
of 15 minutes are created for destinations of an outbound request,
as well as for origins of an inbound request. Travel times equal Eu-
clidean distances. A fixed maximum user ride time of 30 minutes
and a fixed service duration of 3 minutes are taken into account. Ve-
hicle capacity is fixed at 3 customers. The maximum route duration
is dependent on the instance and ranges from 240 to 720 minutes.
Braekers et al. (2014) extended this data set to a multi-depot vari-
ant, with four depots located at coordinates (5, 5), (-5, -5), (5, -5)
and (-5, 5). This variant will be used to mimic the presence of multi-
ple service providers. If they cooperate, all requests may be handled
by vehicles originating from any depot. Otherwise, each request is
assigned to one specific depot.
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Number Elite
Race surviving candidates

1 24/47 0.44 1.05 925
0.20 1.06 581
0.26 1.07 152

2 11/41 0.41 1.04 1417
0.40 1.05 1482
0.37 1.04 480

3 37/37 0.40 1.04 1468
0.39 1.05 1456
0.37 1.04 480

Table 1: Parameter tuning using the Irace package of López-Ibáñez et al. (2016).

5.1.1 Parameter tuning

First, these artificial instances are used for tuning the three main pa-
rameters of the metaheuristic. These are (1) the maximum destroy
percentage desmax, (2) the maximum deterioration factor detmax

and (3) the diversification frequency fdiv. Prior to performing de-
tailed parameter tuning tests, a range of appropriate values is iden-
tified for each parameter using the automatic iterated racing algo-
rithm of López-Ibáñez et al. (2016). The algorithm is initiated with
a very broad range of possible settings for each of the three param-
eters: (1) [0.20, 0.50], (2) [1.01, 1.08] and (3) [100, 5000]. In each
race, a sample of candidate configurations is drawn and repeatedly
tested on the single-depot and multi-depot variants of the instances
a8-64, a8-80 and a8-961. Candidate configurations are discarded
as soon as they perform statistically worse than others. The next
race starts with a new sample of candidate configurations that is
drawn such that promising parameter settings are favored. In this
test, a large tuning budget of 1000 experiments is provided, which
implies that the algorithm can perform three subsequent races of
approximately 333 experiments. The number of candidate configu-
rations decreases in subsequent races, such that more evaluations per
configuration can be made. Table 1 summarizes the results of the
automatic tuning. After three races, the algorithm identifies three
elite configurations, but is not able to discard any of the 34 other
configurations investigated during the last race. This implies that
the average results found for all 37 candidate configurations in the
last race are extremely close. For example, the differences in solu-
tion quality found for the three elite candidates do not exceed 0.04%.
Therefore, a more in-depth tuning is required within the promising
ranges identified by the tuning algorithm. Based on the surviving
candidates throughout the entire procedure, three well-performing
settings were identified for all three parameters: (1) 0.30, 0.35 and
0.40, (2) 1.04, 1.05, 1.06 and (3) 500, 1000 and 1500.

For each of the 27 resulting combinations, the algorithm is now

1Tests on smaller instances do not result in any optimality gaps at all.
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Single-depot Multi-depot Average
dist time (m) dist time (m) dist time (m)

Maximum destroy percentage desmax

30% 975.99 13.60 933.08 12.73 954.53 13.16
35% 975.93 14.85 932.81 14.00 954.37 14.42
40% 975.95 16.05 932.84 15.20 954.39 15.62

Maximum deterioration factor detmax

1.04 975.97 13.96 932.90 13.05 954.44 13.51
1.05 975.88 14.89 932.88 14.03 954.38 14.46
1.06 976.01 15.64 932.94 14.84 954.47 15.24

Diversification frequency fdiv
500 975.75 15.52 932.69 14.55 954.22 15.03
1000 975.96 14.75 932.96 13.91 954.46 14.33
1500 976.15 14.22 933.07 13.47 954.61 13.85

Table 2: Parameter tuning on the instances of Røpke et al. (2007) and Braekers
et al. (2014).

run 20 times (20000 iterations per run) on the selected instances.
Table 2 summarizes the average objective value and average compu-
tation time (in minutes) for each parameter separately. This analysis
confirms that the performance of the LNS algorithm remains remark-
ably stable and reveals desmax = 0.35, detmax = 1.05 and fdiv = 500
as the preferred parameter setting. This combination also generates
the best average result of all 27 combinations, with objective values
975.22 and 932.26. The fact that the resulting parameter values are
identical for the single-depot and multi-depot instances illustrates
the robustness of the parameter tuning. As expected, the solution
quality is not very sensitive to small changes in desmax and detmax,
as long as these parameters remain within acceptable ranges. That
is, large enough to escape the current solution, but small enough to
preserve an efficient route structure. However, rather frequent diver-
sifications through a small value of fdiv are highly beneficial, which
was not apparent from the automatic tuning. All three parameters
clearly influence the computation time. In other words, small sac-
rifices of solution quality may reduce the computation time if needed.

Also note that the automatic tuning does not take into account
the spread of the solutions for a particular parameter setting. Figure
1 reveals a more detailed analysis in which information on the aver-
age solution quality for each parameter separately (based on Table
2) is supplemented with the worst en the best solution found. This
reveals that applying a larger destroy percentage and a larger max-
imum deterioration may be useful to avoid extreme solutions. The
worst solution is - contrary to the average solution - considerably
better than for the preferred setting, whereas the best-found solu-
tion tends to remain stable. This is also confirmed by an analysis of
the corresponding standard deviations, which is not shown here.
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Figure 1: Parameter tuning based on best, average and worst solutions.
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Iter. Single-depot Multi-depot
dist time (m) dist time (m)

5000 977.52 3.95 935.09 3.71
10000 976.44 7.87 933.28 7.39
15000 975.67 11.75 932.61 11.01
20000 975.22 15.66 932.26 14.65
25000 975.17 19.61 931.99 18.29
30000 975.09 23.50 931.87 21.91
35000 975.03 27.39 931.71 25.55
40000 974.95 31.29 931.68 29.21

Table 3: Evolution of the average solution quality throughout the iterations.

Even though all experiments performed on the artificial instances
are based on 20000 iterations, it is interesting to point out that the
LNS metaheuristic tends to converge towards a good solution range
rather quickly. Table 3 shows the evolution of the average solution
quality and computation time for the single-depot and multi-depot
variants of instances a8-64, a8-80 and a8-96 after every 5000 iter-
ations. Note that the solutions for multi-depot instances tend to
converge somewhat more slowly, which confirms the observation of
Braekers et al. (2014) that these instances are more difficult to solve.
In other words, the larger search space offers more degrees of free-
dom. Nevertheless, after only 5000 iterations, the average objective
value already approximates its eventual value. Beyond 20000 iter-
ations, the limited improvements in solution quality do no longer
justify the linear increase in computation time.

5.1.2 Design choices

As discussed in Section 4.1, the set of destroy operators used slightly
deviates from the common practice in the literature. For example,
no route removal is included and an additional proximity removal
operator is proposed. This choice was based on preliminary tests of
different designs. The upper part of Table 4 summarizes the effect
of adding a route removal operator or deleting one of the removal
operators currently included. For every design, 20 runs consisting
of 20000 iterations were performed on the single-depot and multi-
depot variants of instances a8-64, a8-80 and a8-96. Adding a route
removal operator, which removes all requests in random routes until
the destroy percentage is reached, causes the largest deterioration
of the objective value. This operator tends to destroy the solution
structure to such an extent that the repaired solution often vio-
lates the maximum deterioration threshold. On the other hand, it
reduces the total computation time, which indicates that this opera-
tor requires little computational effort. Deleting the related removal
causes the second largest deterioration of the objective value. As
explained in Section 4.1, it is beneficial to remove requests that are
easily interchangeable in order to obtain a different repaired solu-
tion. The related removal is computationally inexpensive thanks to
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the fact that the similarities between requests can be computed in
advance. The other operators - including the newly proposed prox-
imity removal - also have a positive, though more limited effect on
the solution quality.

Generally, the effects of deleting any operator remain very lim-
ited thanks to the additional local search phase, which contributes
considerably to the performance of the algorithm. As illustrated in
the middle part of Table 4, leaving out these local search opera-
tors causes a considerable deterioration of the solution quality, even
when the corresponding savings in computation time are spent on
additional LNS iterations. In other words, the advantages caused
by including the additional local search phase justify its computa-
tional requirements amounting up to half of the total computation
time. Particularly the exchange natural sequences operators has an
important impact. Deleting this operator would cause a strong de-
terioration of the solution quality, whereas its contribution to the
total computation time is relatively small. In contrast, the relo-
cate involves considerable computational requirements relative to
the associated effect on the solution quality. Leaving out the latter
operator may be advisable whenever solutions of reasonable quality
need to be computed within a short time frame. However, if both
local search operators are included, their order of application hardly
affects the solution quality or computation time.

Finally, the use of the record-to-record strategy (Dueck, 1993) as
an acceptance criterion, meaning that a fixed maximum deteriora-
tion factor determines whether new solution are accepted, needs to
be justified. To this end, the same instances are solved using the
more traditional simulated annealing acceptance criterion based on
the Boltzmann function. Its parameters, being (1) the start tempera-
ture control parameter and (2) the cooling rate, are set as determined
in Røpke and Pisinger (2006) for the closely related PDPTW. Us-
ing the Boltzmann function, the computational tests reveal a slight
deterioration of the solution quality. In addition, the implementa-
tion of the Boltzmann function is inherently more complicated, e.g.
since two parameters need to be tuned and repairs should always be
entirely performed before an assessment can be made. On the other
hand, the computation time is slightly reduced due to the fact that
additional local search is only executed on accepted new solutions,
which become rare towards the end of the procedure. However, since
this may be the very reason why worse solution are obtained, pref-
erence is given to the record-to-record strategy.
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dist time (m)

Current design 953.74 15.15

... with route removal 954.78 14.47

... without random removal 953.87 15.41

... without worst removal 953.83 15.18

... without related removal 954.32 15.36

... without proximity removal 953.89 14.74

... without LS (20000 LNS iter.) 968.40 7.59

... without LS (40000 LNS iter.) 965.30 15.15

... with LS in reverse order 953.85 15.24

... without exchange natural sequences 963.12 14.16

... without relocate 955.22 8.55

... with Boltzmann acceptance criterion 955.40 11.06

Table 4: Results for different designs of the removal phase.

5.1.3 Computational tests

Tables 5 and 6 present the detailed average results obtained by
the LNS metaheuristic for all single-depot instances of Røpke et al.
(2007) and multi-depot instances of Braekers et al. (2014) after 20
runs, consisting of 20000 iterations each. For the single-depot in-
stances, the solution quality comes close to the results of the hy-
brid genetic algorithm of Masmoudi et al. (2017). They published
the best-known heuristic solutions on these instances, performing 5
runs consisting of 50000 iterations. The proposed LNS metaheuris-
tic leaves no optimality gap for the smallest half of the instances,
whereas the average gap for the largest half of the instances equals a
mere 0.05% (varying between 0.00% and 0.26%). Looking at the best
solutions, the results for all instances match the optimal solutions
reported by Gschwind and Irnich (2014). The results for the multi-
depot variant are compared with Braekers et al. (2014), performing
5 runs consisting of 350,000 deterministic annealing iterations. The
LNS metaheuristic improves 5 of their average solutions, although
its overall performance is slightly worse. The average optimality
gaps are 0.00% for the smallest half of the instances and 0.19% for
the largest half (varying between 0.00% and 0.45%). Looking at
the best solutions, the results for all but two instances match the
optimal solutions computed by Braekers et al. (2014). The opti-
mal results for instances a8-80 and a8-96 are still unknown, but new
best heuristic results are found. The corresponding gap for these in-
stances is expressed relative to the best-known upper bound. Note
that the total distance traveled is consistently lower in the presence
of multiple depots than in the single-depot case, although the num-
ber of requests and the total size of the fleet remains unchanged.
This indicates that from a cost perspective, service providers may
take advantage of having multiple depots spread across their service
area. These operational savings should of course be weighed against
the fixed costs of exploiting multiple depots and a potential loss of
operational flexibility. For example, a central depot often accommo-
dates a backup driver to deal with unexpected sickness of a driver,
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whereas it may be impracticable to provide such a backup in each
of the multiple depots.

Similar results are obtained when 50000 iterations of the LNS
algorithm are applied to the larger, more difficult benchmark data
set of Cordeau and Laporte (2003). It consists of 20 instances, con-
taining between 24 and 144 requests. The requests are generated in
a comparable manner as in Cordeau (2006), but clustered around a
number of seed points. The coordinates of the depot are the averages
over those of the seed points. A single user is picked up or deliv-
ered at each location. Half of the instances have time windows of 30
minutes, whereas wider time windows of 60 minutes are defined for
the other half. A fixed maximum user ride time of 90 minutes and
a fixed service duration of 10 minutes are imposed. Vehicle capacity
is fixed at 6 customers and the maximum route duration equals 480
minutes for all instances. Table 7 compares the results of the LNS
metaheuristic with the hybrid genetic algorithm of Masmoudi et al.
(2017), obtaining the best solution quality for these instances so far.
The average optimality gap of the LNS metaheuristic equals 1.02%,
which is relatively close to the 0.47% gap found by Masmoudi et al.
(2017). The difference is even smaller for the best solutions: 0.29%
versus 0.19%. All optimality gaps are expressed relative to the best-
known solutions in the literature, since optimal results could not be
computed yet for these instances. A new best-known solution is dis-
covered for instance R10b.
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LNS algorithm Masmoudi et al. (2017)
Inst. Avg. Gap T(m) Best Gap Avg. Gap T(m) Best Gap

a2-16 294.25* 0.00% 0.57 294.25* 0.00% 294.25* 0.00% 0.21 294.25* 0.00%
a2-20 344.83* 0.00% 0.87 344.83* 0.00% 344.83* 0.00% 0.48 344.83* 0.00%
a2-24 431.12* 0.00% 1.14 431.12* 0.00% 431.12* 0.00% 0.42 431.12* 0.00%
a3-18 300.48* 0.00% 0.98 300.48* 0.00% 300.48* 0.00% 0.22 300.48* 0.00%
a3-24 344.83* 0.00% 1.32 344.83* 0.00% 344.83* 0.00% 0.40 344.83* 0.00%
a3-30 494.85* 0.00% 1.94 494.85* 0.00% 494.85* 0.00% 0.45 494.85* 0.00%
a3-36 583.19* 0.00% 2.54 583.19* 0.00% 583.19* 0.00% 0.67 583.19* 0.00%
a4-16 282.68* 0.00% 0.97 282.68* 0.00% 282.68* 0.00% 0.23 282.68* 0.00%
a4-24 375.02* 0.00% 1.49 375.02* 0.00% 375.02* 0.00% 0.31 375.02* 0.00%
a4-32 485.50* 0.00% 2.59 485.50* 0.00% 485.50* 0.00% 0.61 485.50* 0.00%
a4-40 557.69* 0.00% 3.10 557.69* 0.00% 557.69* 0.00% 0.63 557.69* 0.00%
a4-48 668.82* 0.00% 5.53 668.82* 0.00% 668.82* 0.00% 0.85 668.82* 0.00%
Avg. 430.27 0.00% 1.92 430.27 0.00% 430.27 0.00% 0.46 430.27 0.00%

a5-40 498.41* 0.00% 3.89 498.41* 0.00% 498.41* 0.00% 0.52 498.41* 0.00%
a5-50 686.62* 0.00% 6.35 686.62* 0.00% 686.62* 0.00% 0.73 686.62* 0.00%
a5-60 808.42* 0.00% 8.16 808.42* 0.00% 808.42* 0.00% 1.05 808.42* 0.00%
a6-48 604.12* 0.00% 6.06 604.12* 0.00% 604.12* 0.00% 0.73 604.12* 0.00%
a6-60 819.30 0.01% 8.74 819.25* 0.00% 819.25* 0.00% 0.88 819.25* 0.00%
a6-72 916.46 0.05% 11.71 916.05* 0.00% 916.05* 0.00% 1.28 916.05* 0.00%
a7-56 724.04* 0.00% 8.00 724.04* 0.00% 724.04* 0.00% 0.77 724.04* 0.00%
a7-70 889.44 0.04% 11.18 889.12* 0.00% 889.12* 0.00% 1.04 889.12* 0.00%
a7-84 1036.08 0.26% 15.41 1033.37* 0.00% 1033.37* 0.00% 1.39 1033.37* 0.00%
a8-64 747.58 0.02% 10.85 747.46* 0.00% 747.46* 0.00% 0.90 747.46* 0.00%
a8-80 946.37 0.07% 16.09 945.73* 0.00% 945.97 0.02% 1.38 945.73* 0.00%
a8-96 1231.72 0.17% 20.02 1229.66* 0.00% 1231.04 0.11% 1.59 1229.66* 0.00%
Avg. 825.71 0.05% 10.54 825.19 0.00% 825.32 0.01% 1.02 825.19 0.00%
∗ = optimal solution

Table 5: Results on the single-depot artificial data of Røpke et al. (2007).
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LNS algorithm Braekers et al. (2014)
Inst. Avg. Gap T(m) Best Gap Avg. Gap T(m) Best Gap

a2-16 284.18* 0.00% 0.57 284.18* 0.00% 284.18* 0.00% 0.09 284.18* 0.00%
a2-20 343.43* 0.00% 0.86 343.43* 0.00% 343.43* 0.00% 0.27 343.43* 0.00%
a2-24 427.17* 0.00% 1.13 427.17* 0.00% 427.17* 0.00% 0.26 427.17* 0.00%
a3-18 289.67* 0.00% 0.83 289.67* 0.00% 289.67* 0.00% 0.13 289.67* 0.00%
a3-24 348.30* 0.00% 1.38 348.30* 0.00% 348.30* 0.00% 0.24 348.30* 0.00%
a3-30 469.16* 0.00% 1.74 469.16* 0.00% 469.16* 0.00% 0.24 469.16* 0.00%
a3-36 592.42* 0.00% 2.57 592.42* 0.00% 592.42* 0.00% 0.41 592.42* 0.00%
a4-16 262.44* 0.00% 0.85 262.44* 0.00% 262.44* 0.00% 0.12 262.44* 0.00%
a4-24 355.72* 0.00% 1.49 355.72* 0.00% 355.72* 0.00% 0.18 355.72* 0.00%
a4-32 461.65* 0.00% 2.48 461.65* 0.00% 461.65* 0.00% 0.30 461.65* 0.00%
a4-40 540.42 0.01% 3.20 540.34* 0.00% 540.34* 0.00% 0.33 540.34* 0.00%
a4-48 631.75* 0.00% 5.20 631.75* 0.00% 632.31 0.09% 0.43 631.75* 0.00%
Avg. 417.19 0.00% 1.85 417.19 0.00% 417.23 0.01% 0.25 417.19 0.00%

a5-40 482.20 0.00% 4.12 482.19* 0.00% 482.19* 0.00% 0.33 482.19* 0.00%
a5-50 665.08 0.08% 6.02 664.54* 0.00% 665.17 0.09% 0.45 664.54* 0.00%
a5-60 790.13 0.03% 7.45 789.87* 0.00% 789.87* 0.00% 0.58 789.87* 0.00%
a6-48 586.85 0.13% 5.70 586.08* 0.00% 586.08* 0.00% 0.40 586.08* 0.00%
a6-60 777.99 0.17% 8.07 776.63* 0.00% 776.65 0.00% 0.57 776.63* 0.00%
a6-72 884.38 0.07% 11.29 883.77* 0.00% 883.77* 0.00% 0.83 883.77* 0.00%
a7-56 680.44 0.05% 7.08 680.08* 0.00% 682.14 0.30% 0.47 680.08* 0.00%
a7-70 857.09 0.34% 11.20 854.22* 0.00% 857.67 0.40% 0.70 855.76 0.18%
a7-84 1011.82 0.45% 14.82 1007.33* 0.00% 1009.92 0.26% 0.86 1007.33* 0.00%
a8-64 715.04 0.36% 9.83 713.11* 0.00% 713.11* 0.00% 0.73 713.11* 0.00%
a8-80 891.82 0.28% 14.84 889.29 0.00% 892.79 0.39% 1.19 890.69 0.16%
a8-96 1189.91 0.38% 19.28 1186.63 0.10% 1189.74 0.36% 1.57 1187.26 0.15%
Avg. 794.39 0.19% 9.98 792.81 0.01% 794.09 0.15% 0.72 793.11 0.04%
∗ = optimal solution

Table 6: Results on the multi-depot artificial data of Braekers et al. (2014).
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LNS algorithm Masmoudi et al. (2017)
Inst. Avg. Gap T(m) Best Gap Avg. Gap T(m) Best Gap

R1a 190.02 0.00% 4.93 190.02 0.00% 190.02 0.00% 0.35 190.02 0.00%
R2a 301.34 0.00% 19.68 301.34 0.00% 301.34 0.00% 0.89 301.34 0.00%
R3a 533.75 0.33% 40.27 532.00 0.00% 534.08 0.39% 1.04 532.00 0.00%
R4a 574.29 0.71% 72.22 570.25 0.00% 571.45 0.21% 1.59 570.25 0.00%
R5a 636.00 1.45% 107.80 629.93 0.48% 631.39 0.71% 1.90 628.48 0.25%
R6a 799.52 1.82% 151.77 791.25 0.76% 788.52 0.42% 2.28 787.41 0.27%
R7a 292.43 0.25% 10.60 291.71 0.00% 291.79 0.03% 0.48 291.71 0.00%
R8a 493.69 1.20% 38.20 491.01 0.65% 491.53 0.76% 1.03 488.89 0.22%
R9a 668.85 1.60% 75.20 661.06 0.42% 660.24 0.29% 1.54 658.31 0.00%
R10a 871.20 2.28% 138.24 860.06 0.97% 859.91 0.95% 2.43 853.16 0.16%

R1b 164.46 0.00% 6.16 164.46 0.00% 164.46 0.00% 0.51 164.46 0.00%
R2b 296.12 0.16% 27.75 295.66 0.00% 295.66 0.00% 1.09 295.66 0.00%
R3b 489.82 1.03% 61.77 484.82 0.00% 487.23 0.50% 1.62 484.83 0.00%
R4b 535.48 1.16% 123.63 530.22 0.17% 532.19 0.54% 2.49 531.86 0.48%
R5b 585.23 1.38% 177.01 578.66 0.24% 582.06 0.83% 3.30 579.03 0.30%
R6b 746.02 2.10% 256.92 740.25 1.31% 741.06 1.42% 3.84 737.03 0.87%
R7b 248.21 0.00% 16.23 248.21 0.00% 248.29 0.03% 0.72 248.21 0.00%
R8b 463.67 1.08% 55.64 461.48 0.60% 463.32 1.00% 1.72 461.11 0.52%
R9b 600.10 1.11% 139.98 594.64 0.19% 595.37 0.32% 3.12 593.49 0.00%
R10b 805.31 2.69% 244.83 784.22 0.00% 793.64 1.20% 3.46 791.01 0.87%

Avg. 514.78 1.02% 88.44 510.06 0.29% 511.18 0.48% 1.77 509.41 0.20%

Table 7: Results on the single-depot artificial data of Cordeau and Laporte (2003).
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The computation times exceed the ones mentioned by Masmoudi
et al. (2017) and Braekers et al. (2014), even though a relatively
small number of iterations is performed. In this respect, it should
be noted that these authors implemented their algorithms using the
C++ programming language, rather than Python. The Python lan-
guage allows for a rapid development of object-oriented programs,
especially suitable to examine algorithm potential. Unfortunately,
these programs tend to execute relatively slowly. A fair comparison
between the proposed LNS and other metaheuristics can only be
based on results obtained upon meeting a criterion that is indepen-
dent of the processor speed or the coding efficiency (Leyman and
De Causmaecker, 2017), such as the number of routes investigated
during the procedure (i.e. the number of times a feasibility check
has been performed). Anyway, this contribution has no intention
to be competitive in terms of computation time, particularly since
the analysis of centralized decision making through joint route plan-
ning is situated at a strategic level, rather than at a time-critical
operational level. The aforementioned results indicate that in terms
of solution quality, the LNS metaheuristic can be competitive with
the current state of the art within reasonable computation times.
Hence, it is an appropriate instrument for assessing the potential of
joint route planning in dial-a-ride services.

5.1.4 Horizontal cooperation

The presence of multiple depots in the data of Braekers et al. (2014)
allows to analyze the impact of a horizontal cooperation for these
artificial instances. In fact, the solution strategy adopted so far as-
sumes a cooperation between four service providers, i.e. the four
depots. Each request may be handled by a vehicle originating from
any depot, which can be seen as service providers that allow the ex-
change of any request among each other. The corresponding optimal
or best-known results are repeated in the second column of Table 8.

A scenario without horizontal cooperation can be created by as-
signing each request to one specific service provider. To this end,
it is first assumed that a request can only be handled by a vehi-
cle originating from the depot closest to the customer’s home loca-
tion, which represents the provider that the customer would logically
choose. Each depot disposes of one fourth of the total fleet. If the
number of vehicles is not sufficient to serve all customers, an ad-
ditional vehicle is added. The results are now obtained by solving
the problem for each depot separately, given the assignment of re-
quests to depots. The third column of Table 8 presents the joint
total distance traveled without cooperation, the associated increase
in distance traveled (relative to the second column) and the minimal
fleet requirement. No exact solutions are known for this scenario,
but the LNS metaheuristic is likely to generate optimal solutions for
such small-sized problems. The results show that for this data set,
the increase in total distance traveled ranges between 11.46% and
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Inst. Cooperation No cooperation2 No cooperation3

dist fleet dist dist incr fleet dist dist incr fleet

a2-16 284.18 2 362.56 27.58% 5 349.25 22.90% 4
a2-20 343.43 2 382.79 11.46% 4 363.37 5.81% 5
a2-24 427.17 2 489.57 14.61% 5 484.27 13.37% 5
a3-18 289.67 3 356.65 23.12% 4 368.80 27.32% 4
a3-24 348.30 3 460.87 32.31% 4 436.73 25.39% 5
a3-30 469.16 3 584.59 24.60% 5 574.66 22.49% 6
a3-36 592.42 3 701.95 18.49% 7 692.68 16.92% 5
a4-16 262.44 4 322.43 22.86% 5 322.40 22.85% 6
a4-24 355.72 4 446.56 25.54% 7 460.58 29.48% 5
a4-32 461.65 4 600.96 23.18% 7 580.03 25.64% 6
a4-40 540.34 4 717.47 30.18% 8 731.19 35.32% 6
a4-48 631.75 4 777.48 23.07% 8 829.87 31.36% 5

Avg. 417.19 3.17 516.99 23.92% 5.75 516.15 23.72% 5.15

a5-40 482.19 5 654.59 35.75% 6 619.94 28.57% 6
a5-50 664.54 5 943.59 41.99% 6 782.73 17.79% 8
a5-60 789.87 5 1020.23 29.16% 7 1016.31 28.67% 7
a6-48 586.08 6 759.46 29.58% 8 770.44 31.46% 8
a6-60 776.63 6 1011.22 30.21% 8 993.60 27.93% 9
a6-72 883.77 6 1189.43 34.59% 9 1246.96 41.10% 8
a7-56 680.08 7 931.57 36.98% 9 884.40 30.04% 8
a7-70 854.22 7 1111.93 30.17% 8 1172.38 37.25% 8
a7-84 1007.33 7 1368.92 35.90% 8 1399.84 38.97% 7
a8-64 713.11 8 1003.07 40.66% 9 976.66 36.96% 8
a8-80 889.29 8 1192.13 34.05% 10 1129.13 26.97% 8
a8-96 1185.45 8 1569.84 32.43% 10 1557.17 31.36% 9

Avg. 792.71 6.50 1063.00 34.10% 8.17 1045.80 31.93% 7.83

Table 8: Effect of horizontal cooperation on instances of Braekers et al. (2014).

41.99%, with an average of 22.37%. The fleet requirements are also
larger than in the scenario with cooperation, although fleet mini-
mization is not an objective as such. Particularly smaller service
providers considerably reduce their fleet requirements by exchang-
ing requests that are inconvenient to include in their own routes.

Finally, a different scenario without horizontal cooperation is cre-
ated to illustrate the impact of the request assignment rule. The
fourth column of Table 8 contains the results when customers are
assumed to be served by a vehicle originating from the depot closest
to the customer’s outbound location. Compared with the scenario
with cooperation, the increase in joint total distance traveled ranges
between 5.81% and 41.10%, with an average of 21.69%. Hence, both
assignment rules in the scenario without cooperation give rise to sim-
ilar benefits when a horizontal cooperation is established, given the
characteristics of the data set under consideration. For example, the
users in these instances do not submit paired outbound and inbound
requests, which will be the case in other experiments in this paper.

2Assignment to a depot based on the home location of the user
3Assignment to a depot based on the outbound location of the user
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5.2 New artificial data

Real-life dial-a-ride systems are often characterized by additional
features not included in the data used in Section 5.1. First, re-
quests are often submitted in pairs. A customer traveling from his
home location to a certain event (e.g. a medical appointment) is
likely to make the reverse trip later that day. Although the exist-
ing artificial instances consist of an equal number of outbound and
inbound requests, their geographical and time-related pairing is ig-
nored. Second, requests tend to be clustered in space. Most origins
and destinations of customers will be located in densely populated
areas or at specific attraction poles, such as hospitals. The existing
artificial instances do not take into account this observation. Finally,
most real-life systems serve a larger number of customers. Partic-
ularly in the multi-depot case, even the largest instance reaches an
average of only 24 requests per depot (= 96 requests for four de-
pots). Therefore, a more extensive artificial data set with additional
real-life characteristics is introduced in Section 5.2.1. Section 5.2.2
presents six hypotheses regarding the effect of the operational set-
ting on the benefits of horizontal cooperation, which are then tested
in Section 5.2.3 using the new artificial instances.

5.2.1 Data set

In order to analyze the effect of horizontal cooperation in the pres-
ence of somewhat more realistic features, 10 new artificial multi-
depot instances have been created. All instances include a total
number of 400 requests, originating from 200 customers submitting
a corresponding outbound and inbound request. Random time win-
dows of 15 minutes are imposed for the arrival of outbound trips
and for the departure of inbound trips. The time span between the
latest arrival for an outbound trip and the earliest departure for the
corresponding inbound trip ranges between one and four hours. The
service area [−10, 10]2 is assumed to consist of four densely pop-
ulated cities or clustering poles. Each clustering pole comprises a
vehicle depot possessing 8 vehicles, which results in a total number
of four depots (i.e. four different service providers) and 32 vehicles.
This fleet size is sufficient to serve all requests in all scenarios that
will be investigated. The depots are located at coordinates (-5, -
5), (5, -5), (-5, 5) and (5, 5). An equal number of 50 customers
(100 requests) is assigned to each depot. This is reflected by the
fact that their home location, being the origin of their outbound
trip and the destination of their inbound trip, is clustered around a
particular depot using the procedure of Cordeau et al. (1997), with
clustering parameter φ = 0.75. Based on real-life experience, it is
assumed that 25% of the customers request a long-distance trip, in
which case the destination of their outbound trip (also the origin of
their inbound trip) is clustered around a different depot than their
home location. For all other customers, both locations are clustered
around the same depot. The maximum user ride time and maximum
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route duration equal 30 minutes and 720 minutes, respectively. The
service at each stop requires three minutes and the vehicle capacity
is limited to three customers.

5.2.2 Effect of operational setting on cooperation benefits

The impact of the operational setting on the benefits of horizontal
cooperation is analyzed by applying minor changes to the instances
introduced in the previous section. Six groups of alternative opera-
tional settings are considered based on the following hypotheses:

1. The relative benefits of horizontal cooperation increase as the
width of the customers’ time windows decreases. This hypoth-
esis is based on the fact that a reduced number of feasible cus-
tomer combinations decreases the operational flexibility of a
service provider (Molenbruch et al., 2017a), such that the ben-
efits of a horizontal cooperation may become more important.
Reductions of the time window width from 15 minutes to (a)
10, (b) 5 and (c) 0 minutes are investigated.

2. The relative benefits of horizontal cooperation increase as more
users request long-distance trips. This hypothesis assumes that
a frequent presence of service providers in each other’s service
areas enables more request exchanges and increases the poten-
tial of horizontal cooperation. The percentage of long-distance
requests is increased from 25% to (a) 50%, (b) 75% and (c)
100%.

3. The relative benefits of horizontal cooperation increase as the
strength of the clustering around the clustering poles weakens.
This hypothesis assumes that overlapping service areas of dif-
ferent providers enable more potential request exchanges and
increase the benefits of horizontal cooperation. The clustering
parameter φ is reduced from 0.75 to (a) 0.60, (b) 0.45 and (c)
0.302.

4. The relative benefits of horizontal cooperation increase as the
clustering poles are located closer to each other. This hypoth-
esis may again be explained by an increased overlap of the
providers’ service areas. The coordinates of the depots are
changed from -5.00/5.00 to (a) -3.33/3.33, (b) -1.66/1.66 and
(c) a single central depot at (0, 0).

5. The relative benefits of horizontal cooperation increase as the
size of the problem reduces. This hypothesis assumes that small-
sized service providers have fewer possibilities to efficiently com-
bine their own customers, such that they gain considerable op-
erational flexibility through horizontal cooperation. The size
of the instances is reduced from 400 requests and 32 vehicles

2Scenarios with lower values of φ have not been considered, since they are unrealistic. In
the most extreme scenario (φ = 0.00), customer locations would be spread in a completely
random manner, not influenced by the distance to any depot. As a result, a customer living
near a particular service provider would have a 75% probability of contacting one of the three
other providers, which does not correspond to realistic behavior.
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to (a) 300 requests and 24 vehicles, (b) 200 requests and 16
vehicles and (c) 100 requests and 8 vehicles.

6. The relative benefits of horizontal cooperation either increase
or decrease as the sizes of the service providers become more un-
balanced. It is difficult to predict whether the relatively large
benefits obtained by small providers or the relatively small ben-
efits obtained by large providers will prevail. Starting from
equally-sized providers handling 100 requests each, the balance
is changed into (a) 125-75-75-125, (b) 150-50-50-150 and (c)
175-25-25-175. The large-sized providers exploit depots (5, 5)
and (-5, -5) and the fleet is allocated proportionally: (a) 10-6-
6-10, (b) 12-4-4-12 and (c) 14-2-2-14.

To investigate these hypotheses, adaptations are applied to the
current operational setting for each hypothesis separately. The rela-
tive benefits of horizontal cooperation are computed for the adapted
operational setting and then compared to the baseline scenario. The
results are obtained after 2 runs for each instance (20 runs in total),
with each run consisting of 20000 iterations. It should be mentioned
that, in order to deal with the large scale of the instances, operations
in each iteration of the LNS algorithm are performed on a selection
of eight related routes, rather than on the complete set of routes (e.g.
similar to the principle of parallel computing (Taillard, 1993)). For
large-scale instances with many vehicles, requests that are distant
from each other are indeed unlikely to be successfully interchange-
able. The selection of related routes prior to each iteration requires
the following steps. First, a random route is selected based on equal
probabilities. Second, the relatedness between this route and all
other routes is assessed. For this purpose, the distances between
each node in the first route and its closest node in the second route
(which may also be the depot node) are summed, resulting in a mea-
sure that is small for related routes. Third, the seven routes being
most related to the first route are selected, provided that at least two
routes in the total selection are not empty. This selection procedure
is repeated prior to each iteration. The choice of the subset’s size
is based on computational tests, of which the results are shown in
Table 9. This table shows the average total distance traveled for dif-
ferent sizes of the subset, as well as the corresponding computation
time in minutes. Solution quality improves at a declining rate as the
size of the subset increases, whereas computation times increase at
a growing rate. Subsets consisting of 8 routes provide a reasonable
equilibrium between solution quality and computation time.

5.2.3 Results

Table 10 presents the average results in the baseline scenario and the
six alternative operational settings. The first column refers to the
scenario under consideration. The second column gives the relative
saving in joint distance traveled thanks to horizontal cooperation.
Detailed information on the distance traveled and the required fleet
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Size dist time

4 routes 2191.60 15.72
6 routes 2154.08 26.69
8 routes 2130.24 39.95
10 routes 2114.63 57.10
12 routes 2107.81 75.77

Table 9: Results for different sizes of the selected subset of routes.

with and without cooperation is displayed in the next four columns.
The seventh column shows whether the relative benefits of horizon-
tal cooperation in a certain scenario are statistically different from
the ‘previous’ scenario. For example, scenario 50% long trips is com-
pared with the baseline scenario, scenario 75% long trips is compared
with scenario 50% long trips, etc. The corresponding p-values are
indicated. For hypotheses (1) and (5), the assessment is based on
the Wilcoxon signed-ranks test, since the locations of the customer
requests remain unchanged from the baseline scenario. The weaker,
but less restricted Mann-Whitney U-test is used for the other hy-
potheses (Anderson et al., 2010). Finally, the last column in Table
10 mentions the percentage of requests that are exchanged to an-
other depot in the scenario with cooperation.
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Scenario Benefits Cooperation No cooperation Sign. Exch.
dist dist fleet dist fleet p-val pct.

Baseline 5.61% 2130.24 30.20 2256.96 32.00 - 43.34%

Hypothesis 1
- time window width 10 6.70% 2195.39 31.45 2353.15 32.00 0.005* 41.61%
- time window width 5 7.85% 2302.46 31.95 2498.56 32.00 0.005* 42.19%
- time window width 0 10.33% 2489.76 32.00 2776.47 32.00 0.005* 42.63%

Hypothesis 2
- 50% long trips 8.01% 2563.82 29.80 2786.95 32.00 0.000* 53.38%
- 75% long trips 10.62% 3001.90 29.80 3358.43 32.00 0.000* 57.69%
- 100% long trips 11.56% 3349.86 29.95 3787.91 32.00 0.063 57.44%

Hypothesis 3
- clustering φ = 0.60 6.27% 2337.91 29.95 2494.23 32.00 0.436 47.06%
- clustering φ = 0.45 9.00% 2601.31 30.50 2858.70 32.00 0.001* 51.23%
- clustering φ = 0.30 12.67% 2925.11 30.55 3349.34 32.00 0.001* 57.61%

Hypothesis 4
- depots -3.33/3.33 7.17% 1856.75 29.15 2000.23 31.95 0.003* 48.75%
- depots -1.66/1.66 11.53% 1559.06 26.40 1762.28 31.80 0.000* 63.60%
- central depot 16.73% 1390.84 21.00 1670.31 31.35 0.000* 74.33%

Hypothesis 5
- 300 requests, 24 vehicles 8.42% 1673.09 23.55 1826.84 24.00 0.005* 43.58%
- 200 requests, 16 vehicles 11.10% 1181.27 15.90 1328.83 16.00 0.007* 42.90%
- 100 requests, 8 vehicles 14.41% 669.27 8.00 781.92 8.00 0.005* 38.30%

Hypothesis 6
- providers 125-75-75-125 5.83% 2164.61 29.45 2298.59 30.40 - -
- providers 150-50-50-150 7.02% 2095.32 29.50 2253.55 28.15 - -
- providers 175-25-25-175 6.29% 2074.89 28.35 2214.25 25.30 - -

Table 10: Effect of operational scenarios on benefits of horizontal cooperation.

28



The results show that the benefits of horizontal cooperation,
ranging from 5.61% to 16.73%, strongly depend on the operational
setting. More specifically, in the given experimental setting, hy-
potheses (1), (2), (3), (4) and (5) are essentially confirmed by the
results. For example, reducing the width of the time windows in
hypothesis (1) increases the total distance traveled, due to the fact
that service providers have fewer possibilities to combine customers.
However, this impact is less noticeable when service providers take
advantage of the operational flexibility created in a horizontal coop-
eration, which explains why the benefits of cooperating become more
important as time windows become tighter. Note that for hypothe-
sis (2), the benefits of horizontal cooperation do no longer increase
significantly once a level of 75% long trips is reached. For hypothesis
(3), the benefits of cooperation only increase significantly once the
clustering becomes weak (φ = 0.45 or lower). Hypothesis (6) is not
confirmed, as there is no clear pattern across the scenarios and the
differences are very small. Consequently, in the given experimental
setting, only the global size of the horizontal cooperation is determi-
native of the operational benefits, not the size differences between
the participating service providers. However, one must be aware of
potential interaction effects. For example, hypothesis (6) may be
confirmed for a smaller total number of requests in the data set.

As mentioned before, this analysis focuses on the overall sav-
ings obtains by the cooperation, regardless of the strategy accord-
ing to which these savings are distributed among the participat-
ing providers. However, by means of example, the alternative cost
avoided method (ACAM) (Tijs and Driessen, 1986) is applied to the
results in the baseline scenario. According to Verdonck et al. (2016),
this method is intuitively appealing and transparent because the to-
tal cost, i.e. the joint distance traveled, is divided into separable
and non-separable costs. The separable cost of each provider corre-
sponds to the increase in joint distance traveled when this provider
enters the cooperation. The remaining, non-separable cost is divided
among the providers using weights based on the difference between
the individual cost and the separable cost of the provider. The re-
sulting cost allocation is displayed in Table 11 and allows to identify
the savings that each individual provider obtains by participating in
the cooperation. Since all providers have an equal size and hence
a comparable contribution, it is not surprising that the savings are
approximately evenly divided.

yi = mi + c(i)−mi
n∑

j=1
[c(j)−mj ]

∗ (c(N)−
n∑

j=1

mj)

yi = cost allocated to provider i (with i ∈ {1, ..., n})
mi = separable cost of provider i = c(N)− c(N\i)
c(N) = cost incurred with cooperation among all providers

c(i) = cost incurred by provider i operating individually
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Provider Without With Saving
cooperation cooperation

Provider 1 579.14 541.64 37.50 (6.48%)
Provider 2 553.60 521.74 31.86 (5.76%)
Provider 3 565.72 542.65 23.07 (4.08%)
Provider 4 558.50 524.21 34.29 (6.14%)

Total 2256.96 2130.24 126.72 (5.61%)

Table 11: Operating costs per provider without cooperation and with coopera-
tion, using the alternative cost avoided method as an allocation strategy.

Hypotheses (2), (3) and (4) assumed that the benefits of horizon-
tal cooperation may be affected by an increased potential of request
exchanges, e.g. because of overlapping service areas or an increased
presence of providers in each other’s areas. This is confirmed by the
percentage of requests exchanges, particularly for hypothesis (4).
Although the percentage of requests exchanges is certainly not an
accurate indicator of the benefits of horizontal cooperation (e.g. it
remains unchanged for hypothesis (1)), this finding confirms the un-
derlying mechanism assumed for hypothesis (2), (3) and (4).

As a final remark, note that the solution approach may slightly
underestimate the actual operational savings caused by horizontal
cooperation. The average total distance traveled without coopera-
tion, obtained by solving four separate small-sized routing problems,
is presumably closer to optimality than the solution with coopera-
tion. From this perspective, the benefits caused by horizontal co-
operation may be slightly larger than computed. The optimality
gaps cannot be displayed, since the optimal solutions for these large
instances are unknown.

5.3 Real-life case study

The artificial data sets used in Sections 5.1 and 5.2 are suitable for
comparing algorithmic performances or demonstrating the relative
effects of different operational settings. However, they inevitably
ignore some real-life complexities that may influence the absolute
size of the benefits obtained through horizontal cooperation. First,
real-life systems operate on a road network, such that distances and
travel times may not be directly proportional to Euclidean distances.
Second, case-specific problem characteristics may apply, giving rise
to additional types of constraints. Third, both from a cost-related
and a quality-related perspective, service providers usually pursue
more complicated objectives (measurable or not) than a mere min-
imization of total distance traveled. The objective of this section
is to quantify the benefits of horizontal cooperation in the context
of a real-life case study. In addition, solutions with and without
cooperation are analyzed to identify specific conditions under which
request exchanges among participating providers may be beneficial.
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5.3.1 Data set

The data of this real-life case study is provided by a service provider
in Belgium, having branches in Wilrijk and Melsbroek. Currently,
these branches operate independently, meaning that there is no ex-
change of information or resources at all. Each branch disposes of
one depot that is strategically situated near a large rehabilitation
center or hospital, notwithstanding the fact that customers may re-
quest rides to any destination of choice. The current practice is that
users are assigned to the branch of which the depot is closest to
their destination location, regardless of their home location. In Fig-
ure 2, the home locations of the customers assigned to the branches
in Wilrijk and Melsbroek (which are approximately 35 km apart) are
represented by red dots and blue diamonds, respectively. It is visu-
ally clear that the service areas of both branches overlap to a certain
extent, such that a horizontal cooperation between these branches
may be worth investigating.

The data set covers two consecutive operating days, being Mon-
day May 18 and Tuesday May 19, 2015. On the first day, the data
consists of 296 private requests served in both branches. Without
cooperation, 134 and 162 requests are assigned to Wilrijk and Mels-
broek, respectively. On the second day, a total number of 241 (124
+ 117) private requests should be satisfied. Note that a single re-
quest may involve multiple customers traveling together, such that
the total number of individual private requests equals 444 on Mon-
day, which is typically a rather busy day, and 319 on Tuesday. The
vast majority of the requests come in pairs. Customers are hetero-
geneous with respect to their mobility, since approximately 70% of
them are wheelchair users. Requests tend to be clustered around
peak hours (8-10 am, 3-5 pm) and mainly represent trips to/from
a limited set of rehabilitation centers or hospitals around Antwerp
and Brussels.

The fleet consists of 69 vehicles, offering a configurable ratio of
normal seats and wheelchair spaces. In one extreme configuration, a
maximum number of four wheelchair users can be transported at the
same time, leaving three normal seats available. The other extreme
configuration provides seven normal seats, leaving space for a sin-
gle wheelchair user. Several intermediate combinations are eligible
as well. Routes investigated by the LNS algorithm satisfy the load
constraints if at least one feasible configuration exists for each of its
arcs separately. Currently, 23 vehicles are assigned to the depot in
Wilrijk, whereas 46 are assigned to Melsbroek. At first sight, the
fleet size seems more than sufficient to serve all requests. However,
apart from the private customer requests mentioned before, the ser-
vice provider also performs fixed pickup and delivery tours, typically
at the request of daycare centers. They pick up customers and de-
liver them at the daycare center in the morning, and bring them back
home in the afternoon. For contractual reasons, private customer re-
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Figure 2: Location of the customer nodes.

quests cannot be served during a fixed pickup and delivery tour. As
a result, the vehicles performing such a tour are only available for
private customers in the time span between their arrival and their
departure at the daycare center, which is often the off-peak period
between the morning peak and the afternoon peak. Therefore, the
optimization problem addressed in this paper, i.e. related to private
requests, is quite tightly constrained during peak hours and rather
easy during the off-peak. More specifically, a total number of 41
vehicles (12 in Wilrijk, 29 in Melsbroek) is not available during peak
hours. Finally, a vehicle is not necessarily physically stationed at
the depot to which it is assigned. Drivers living relatively far from
the depot are asked to take their vehicles home during the night if
this allows a cost-efficient service of customers in that region during
the early morning or late evening.

5.3.2 Problem characteristics

In consultation with the service provider, the impact of three differ-
ent objective functions is analyzed:

1. The first objective function corresponds to the typical objec-
tive used for artificial data, which is a minimization of the total
traveling cost. This objective assumes that the costs incurred
by a service provider are exclusively related to the distance
traveled by its vehicles, which is a substantial simplification of
the service provider’s real cost structure. Based on the ser-
vice provider’s information, a variable vehicle cost of e0.30 is
incurred per kilometer traveled. Only the costs for serving pri-
vate customers are taken into account, since the fixed pickup
and delivery tours are invariable.
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2. The second objective function is based on a more comprehen-
sive computation of costs, considering both the distance trav-
eled and the wage payed to the driver. According to the ser-
vice provider, the hourly driver wage amounts to e25 includ-
ing taxes. A driver’s wage cost is computed based on the time
spent in the vehicle. This includes potential waiting time faced
at any location, be it between two private requests, after a fixed
pickup tour or before a fixed delivery tour. To avoid excessive
driver waiting time during the off-peak, a shift can be split into
two short shifts at most, provided that the intermediate break
(staring and ending at the vehicle’s depot) lasts for at least
3 hours. As the driver may freely dispose of his time during
such a break, the service provider does not incur wage costs
meanwhile. This operational flexibility is useful to cope with
demand differences during peak and off-peak hours.

3. In order to support tactical decisions, fleet size may be included
in the optimization process. Although the available number of
vehicles is fixed on the short term, the service provider is par-
ticularly interested in knowing the minimum fleet size required
to meet all customer demand. Given certain fixed costs for ac-
quiring, insuring and maintaining vehicles, this allows him to
find a balance between a medium-term reduction in fixed ve-
hicle costs and the associated increase in operating costs due
to a reduced flexibility in serving customers. More specifically,
the third objective function consists of a hierarchical minimiza-
tion of (1) the number of active vehicles and (2) the operating
costs as defined in the second objective function. The first part
only relates to those vehicles not performing a fixed pickup and
delivery tour. If a vehicle is activated for a fixed pickup and
delivery tour anyway, it would not make sense not to use it for
private requests during the intermediate time span.

Furthermore, the heterogeneity of customers and the configura-
bility of vehicles were already discussed in Section 5.3.1. All other
problem characteristics largely correspond to the standard problem
(Cordeau and Laporte, 2003). A time window is imposed for every
request, though always on the moment of pickup. The maximum
user ride time is expressed as 1.5 times the direct ride time between
the customer’s pickup and delivery location. A fixed service dura-
tion of five minutes is taken into account for wheelchair users only.
The maximum route duration is limited to 10 hours, even for split
shifts. An exception to this rule is allowed to ensure that the same
driver performs corresponding fixed pickup and delivery tours.

5.3.3 Results

Solving the real-life case requires the following conceptual adjust-
ments. First, the Graphhopper API is invoked to geocode all nodes
and precompute distances and travel times on the road network, us-
ing OpenStreetMap data. Based on realistic estimates, the resulting
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travel times are multiplied by a factor 1.25 to provide sufficient mar-
gin in the schedules. Second, the scheduling procedure of Cordeau
and Laporte (2003) is replaced by the one discussed in Molenbruch
et al. (2017c). The latter scheduling procedure delivers schedules in
which total user ride time is minimized, which is fully in line with
the service policy of the provider. Last, additional depots disposing
of a single vehicle are added to represent the addresses of drivers who
may take their vehicles home. An additional constraint prevents the
total number of vehicles from exceeding the actual fleet size. With-
out cooperation, the sum of all vehicles stationed at the depot in
Wilrijk (resp. Melsbroek) or at the home address of a driver related
to this depot cannot exceed 23 (resp. 46). With cooperation, the
total fleet size is limited to 69 vehicles. No constraint is imposed on
the distribution of these vehicles among both depots.

Table 12 shows the average results with and without horizontal
cooperation for both operating days, optimizing the different objec-
tives. A total number of 20 runs was performed, each consisting
of 20000 iterations. The first column indicates the operating day
and the applicable scenario (with/without cooperation). The sec-
ond column shows the total cost for a given scenario, which consists
of the variable vehicle cost (e0.30 per km traveled) and the wage
cost (e25 per hour, if applicable) displayed in the next two columns.
The fifth column gives the total required fleet size, summing the ac-
tive vehicles in both depots as mentioned in the next two columns.
The eighth and ninth column indicate the number of requests served
by both branches. The last two columns indicate the number of re-
quests exchanged from Wilrijk to Melsbroek and from Melsbroek to
Wilrijk, respectively.

Optimizing the first objective, the benefits of horizontal cooper-
ation are similar to the baseline scenario for the artificial data in
Section 5.2. A 5.64% (May 18) and 3.88% (May 19) average re-
duction in the variable vehicle cost is found. This is a plausible
outcome, given the rather limited degree of overlap between both
service areas. In the scenario with cooperation, only very small net
transfers of vehicles3 and customers are suggested. However, the
absolute number of request exchanges is very different on both op-
erating days, even though the degree of overlap between the service
areas is similar. This reconfirms the finding from Section 5.2.3 that
the number of requests exchanged is not a reliable indicator of the
benefits of a horizontal cooperation.

As mentioned before, a mere minimization of the total travel-
ing cost does not comprise the cost-related approach envisaged by
the service provider. It is therefore important to investigate how

3On May 19, the available fleet of 23 vehicles is insufficient to find a feasible solution for
the branch of Wilrijk in the scenario without cooperation, such that an additional vehicle
was added during the solution procedure. In reality, the service provider would allow slight
violations of time-related constraints to find a feasible solution requiring only 23 vehicles.
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the benefits of horizontal cooperation change when a more realis-
tic objective is introduced. Results for the second objective show
that, due to high labor costs in Belgium, the wage payed to drivers
considerably outweighs the variable vehicle cost. The relative impor-
tance of the latter becomes so small that the efficiency of the vehicle
routing (i.e. combining customers as efficiently as possible) is partly
sacrificed whenever another routing plan shortens the overall work
duration of the drivers. Horizontal cooperation turns out to con-
tribute relatively little in shortening the drivers’ shifts. The average
reduction in total cost is limited to 3.17% (May 18) and 1.69% (May
19) when the second objective is investigated. There is a net trans-
fer of customers towards Melsbroek, particularly on May 18. This
may be explained by the computation method of the wage cost. In
Melsbroek, many drivers perform a fixed pickup and delivery tour at
the beginning/end of their shift. Unproductive (but costly) waiting
time after the end of the fixed pickup tour or before the start of the
fixed delivery tour may be filled with requests transferred from the
branch in Wilrijk. This is particularly beneficial for requests which
would otherwise be a driver’s first or last job of the day, thanks to
the direct effect on the corresponding route duration and thus on
the wage cost.

Optimizing the third objective, solutions involving an average of
64.90 (May 18) and 68.00 (May 19) instead of 69 vehicles can be ob-
tained in the scenario without cooperation. Horizontal cooperating
further reduces the average fleet size to 63.75 (May 18) and 66.40
(May 19). This reduction mainly concerns the depot in Melsbroek,
in combination with a net transfer of customers from Melsbroek to
Wilrijk. The corresponding increase in average total cost relative to
objective 2 is only 1.63% (May 18) and 1.30% (May 19), which is
a particularly interesting finding from the service provider’s point
of view. Of course, it should be stressed that medium-term deci-
sions on the fleet size cannot be based on results originating from
two operating days. Ideally, this decision is based on data over a
longer period of time, such that the service provider can determine
his requirement of vehicles in normal circumstances. Unfortunately,
since the data collection requires lots of manual interventions by the
provider, it was not possible to provide additional data.
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Scenario Total Veh Wage Ft FW FM W M W→M M→W

Objective 1: minimization of traveling cost

18.05 coop. 2136.47 2136.47 - 68.95 24.70 44.25 126.05 169.95 60.10 52.15
no coop. 2264.21 2264.21 - 68.95 22.95 46.00 134.00 162.00

19.05 coop. 2114.19 2114.19 - 69.00 23.60 45.40 118.65 122.35 26.75 21.40
no coop. 2199.63 2199.63 - 69.85 24.00 45.85 124.00 117.00

Objective 2: minimization of distance and wage cost

18.05 coop. 8556.61 2512.85 6043.76 69.00 22.15 46.85 105.45 190.55 76.60 48.05
no coop. 8836.29 2532.01 6304.28 69.00 23.00 46.00 134.00 162.00

19.05 coop. 8391.43 2521.63 5869.80 69.00 25.05 43.95 121.95 119.05 26.90 24.85
no coop. 8535.94 2509.08 6026.86 70.00 24.00 46.00 124.00 117.00

Objective 3: hierarchical minimization of (1) fleet size and (2) distance and wage costs

18.05 coop. 8695.80 2460.48 6235.33 63.75 25.95 37.80 163.60 132.40 54.50 84.10
no coop. 8924.59 2473.68 6450.91 64.90 21.00 43.90 134.00 162.00

19.05 coop. 8500.42 2497.40 6003.02 66.40 25.20 41.20 137.65 103.35 19.95 33.60
no coop. 8575.29 2491.58 6083.71 68.00 24.00 44.00 124.00 117.00

Table 12: Effect of horizontal cooperation on real-life case for different objectives.
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From a quality-related perspective, it is important to verify whether
the horizontal cooperation causes any increase in the average ride
time of customers, since a larger number of customers may be trans-
ported jointly. Even though a minimal service level is guaranteed
through an upper bound on each customer’s ride time, the aver-
age ride time remains a relevant quality measure. Analyzing the
minimal-cost solution on each operating day, horizontal cooperation
is found to increase the average customer ride time from 21.30 to
21.58 minutes (May 18) and from 24.55 to 24.89 minutes (May 19),
which is negligible. This implies that the greatest merit of horizon-
tal cooperation lies in a reduction of empty rides. For example, on
May 18, empty distance traveled reduces from 4179.38 to 3886.29
km (-7.01%). Nevertheless, empty rides still account for almost half
of the total distance traveled, since drawing efficient vehicle routes
is complicated due to the tight quality constraints that characterize
DARPs.

5.3.4 Reasons for request exchanges

The present case study deals with different branches belonging to the
same service provider, which facilitates the establishment of a hori-
zontal cooperation. When two separate service providers decide to
cooperate, they may not be willing to share all information on their
customer requests, both for privacy reasons and from a strategic per-
spective. Therefore, it would be interesting to know which requests
are most valuable in a horizontal cooperation, i.e. which requests
will be exchanged among providers. However, it is unclear whether
this assessment can be made in advance and even if so, whether
similar operational benefits can be obtained by sharing only those
requests. The remainder of this section aims to identify reasons why
requests are exchanged, analyzing the detailed route structures in
the solutions obtained before.

Figure 3 is similar to Figure 2, but only shows the customers
being exchanged in the cost-minimal solution (objective 2). Hence,
the red dots (resp. blue diamonds) are the home locations of cus-
tomers who were previously assigned to the branch in Wilrijk (resp.
Melsbroek), but now served by a vehicle origination from the depot
in Melsbroek (resp. Wilrijk). Three particular groups of customers
are highlighted, as they are examples of the three main reasons for
exchanges that are identified. They are ranked in descending order
of predictability:

1. A first group of exchanges is explained directly by the geograph-
ical location of the customers’ home addresses. For example,
consider customers A1 and A2, who are living close to Antwerp
and both request a trip to the rehabilitation center in Mels-
broek early in the morning. Thanks to their coinciding time
windows, it is immediately obvious why these customers will
be combined in a single ride. However, in this case, it is more
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Figure 3: Location of the exchanged customer nodes.

efficient to deviate from the current assignment rules and serve
these customers using a vehicle that originates from the depot
in Wilrijk, since this vehicle covers less empty distance to reach
the customers’ home addresses. This type of exchange is easily
predictable in advance. Unfortunately, relatively few requests
belong to this category due to the limited overlap between both
service areas. Nevertheless, in a setting where service providers
prefer to have their own set of customers, one might think of an
agreement to preassign them based on their geographical char-
acteristics. Note that this corresponds to the current practice
of the real-life service provider considered in this study, who -
in the scenario without cooperation - assigns customers to the
branch that is located closest to their outbound location. In
this respect, it is interesting to investigate whether it would be
more efficient to systematically assign customers based on (1)
their home location or (2) the geographical center between their
home and outbound location. Table 13 compares the three dif-
ferent assignment strategies for the second objective function.
Similar results are obtained for the other objectives. On both
operating days, the assignment based on the geographical cen-
ter is strongly outperformed, but it is unclear which of the two
other strategies is preferable. None of them matches the results
of a full horizontal cooperation, which indicates that joint route
planning is a prerequisite for obtaining substantial operational
benefits.

2. A second group of exchanges can be explained indirectly, based
on the fact that customer requests come in pairs. For example,
consider the group of customers with label B in Figure 3. Based
on their home location near Brussels, it might seem strange that
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Scenario Total Veh Wage

18.05 cooperation 8556.61 2512.85 6043.76
assign by destination 8836.29 2532.01 6304.28
assign by home 8764.87 2505.98 6258.89
assign by average 8933.25 2586.28 6346.97

19.05 cooperation 8391.43 2521.63 5869.80
assign by destination 8535.94 2509.08 6026.86
assign by home 8732.30 2563.97 6168.34
assign by average 8862.98 2549.22 6313.77

Table 13: Effect of different assignment strategies (cost minimization)

in the scenario with cooperation, these customers are picked up
by a vehicle from the branch in Wilrijk. This is explained by
the fact that vehicles from the depot in Wilrijk deliver some
customers at the rehabilitation center in Melsbroek (such as
A1 and A2 in the previous example). While these customers
undergo their treatment, it would not be efficient for these ve-
hicles to idle at the rehabilitation center, nor to return to their
own service area being unloaded. Therefore, they serve one or
several local requests in the area of Melsbroek, i.e. the ones
with label B. However, since multiple local request(s) might be
eligible, this type of exchanges is difficult to predict, despite
being easy to explain in retrospect.

3. A last group of exchanges are impossible to predict, since they
are only convenient relative to the actual structure of the routes.
For example, consider customer C, living north of Sint-Niklaas
(which is close to Wilrijk and Antwerp, but far from Mels-
broek). This customer is picked up at a hospital in Antwerp
by an empty vehicle originating from the depot in Melsbroek.
The reason for this unexpected finding is that after the delivery
of this customer, the vehicle picks up another customer living
south of Sint-Niklaas and requesting a ride to the rehabilita-
tion center in Melsbroek. Obviously, in this case, the exchange
of customer C cannot be explained taking an isolated view on
his request. It can only be interpreted in a broader context,
optimizing the entire set of routes in the solution. Therefore,
it seems an impossible task for service providers to predict this
type of exchanges in advance.

6 Conclusions and future research

Although horizontal cooperation through joint route planning has
been a cost-effective practice among logistic service providers for
many years, this strategy remains completely unexplored in the do-
main of demand-responsive passenger transportation. This paper
analyzes the potential of horizontal cooperation among dial-a-ride
providers, as well as the operational characteristics that influence
the benefits. In addition, a real-life case study discovers the reasons
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why providers benefit from exchanging particular requests among
each other. The extent to which these exchanges are predictable de-
termines how much information must be disclosed in order to make
the cooperation succeed. From a technical point of view, the analy-
sis of horizontal cooperation is approached as a multi-depot variant
of the dial-a-ride problem, in which each service provider exploits
one or more depots. Joint route planning implies that requests may
be served by vehicles originating from any depot. Without coopera-
tion, requests are preassigned to a specific provider based on the cus-
tomer’s geographical location. A large neighborhood search meta-
heuristic with additional periodic diversification is applied to solve
this problem. Its excellent performance on single-depot and multi-
depot instances is illustrated through tests on existing artificial data.

To analyze the impact of horizontal cooperation, a larger artifi-
cial data set with more realistic characteristics is introduced. The
comparison of scenarios with and without horizontal cooperation re-
veals a total distance gain between 5.61% and 16.73%, which is more
modest than reported in freight transportation. The operational
setting is shown to have a substantial impact on the magnitude of
the benefits. Statistical analyses confirm that the potential of hori-
zontal cooperation increases for problem variants with smaller time
windows, more long-distance trips, weaker clustering of customers
around their closest depot, more overlap between service areas or
fewer customers. Further research may focus on analyzing potential
interactions between these effects. In addition, the influence of other
operational characteristics on the impact of horizontal cooperation
may be identified, such as heterogeneity of customers or combination
constraints.

The concept of horizontal cooperation is also applied to a real-
life case study, involving a service provider considering a cooperation
between two of his branches. Several conclusions can be drawn that
go beyond the specific characteristics of this case study. For exam-
ple, the benefits of horizontal cooperation are mainly explained by
a reduction in empty distance, without affecting the service level
offered to customers. Unfortunately, the variable costs related to
the distance traveled only account for a small part of the total cost
incurred by the provider. Taking driver wages into account, rather
than a mere minimization of the total distance traveled, the impact
of horizontal cooperation becomes smaller. In addition, real-life co-
operations between separate service providers may be hampered by
a reluctance to share information for several reasons. The solutions
with and without horizontal cooperation are analyzed in order to
discover the underlying reasons why requests are exchanged among
the participating parties. Few of the exchanges turn out to be easily
predictable in advance, which implies that the potential of a horizon-
tal cooperation can only be fully exploited if providers share com-
plete information on their requests. However, the observed exchange
patterns may provide useful information to develop new local search
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operators which are tailored to the context of horizontal cooperation.

In order to tailor the proposed solution approach to specific real-
life systems that differ from the one considered in the real-life case
study, the LNS metaheuristic may need to be extended with addi-
tional problem characteristics. For example, it may be interesting
to analyze the impact of a dynamic problem setting, where requests
may be submitted or canceled during the execution of the service, on
the benefits of horizontal cooperation. It is likely that cooperation
will create more flexibility for service providers to respond to addi-
tional requests, as these requests may be served by any vehicle. The
same reasoning applies to a request that should be rescheduled to
another vehicle in real time, e.g. when the intended vehicle cannot
reach the customer in time as a result of a breakdown or a traffic
jam. In other words, the benefits of cooperation may be larger in
a dynamic setting. This assumption is to be confirmed by future
research.

Note that this paper mainly focuses on the operational effects of
joint route planning. In reality, other factors may impede the imple-
mentation of such a centralized decision making strategy (Cruijssen
et al., 2007c). The initialization phase often requires considerable
investments to align information systems and policies. For example,
the proposed form of cooperation has little chance of success if the
participating providers offer a different quality of service. Moreover,
trust and commitment are required among all participating parties.
In this respect, joint route planning would be facilitated by the cre-
ation of an independent body that collects all user requests and
divides them in a globally optimal manner among the participating
service providers.

Finally, note that the analysis in this paper is executed in terms
of the joint benefits obtained by the participating service providers.
This disregards the fact that all parties have to agree on a strategy to
divide these benefits, which is necessary to guarantee the stability of
the cooperation in the long term. Considerable research has already
been conducted into profit sharing techniques in logistics, which may
also be applied to demand-responsive passenger transportation. For
example, Verdonck et al. (2016) compare three common sharing tech-
niques (Shapley value, alternative cost avoided method, equal profit
method) and find that the participating providers may prefer dif-
ferent techniques, e.g. depending on the size of their contribution.
Moreover, the first two techniques do not guarantee to deliver a sta-
ble solution in which no subcoalition would benefit from leaving the
grand coalition, whereas the latter technique may only be accept-
able in the early phases of a growing cooperation. In summary, it is
not straightforward for the participating providers to agree on the
choice of a particular profit sharing technique.
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2013. A multi-criteria large neighbourhood search for the trans-
portation of disabled people. Journal of the Operational Research
Society 65 (7), 983–1000.

Leyman, P., De Causmaecker, P., 2017. Termination criteria for
metaheuristics: Is computation time worth the time? In: Booklet
of abstracts of the 31st annual conference of the Belgian Opera-
tional Research Society, Brussels. pp. 89–90.
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