

Objective

Characterization and modification of PHBHHx in order to enhance the applicability of this bioplastic

Modifications:

- 1. Ultrafine talc
- 3. Unmodified and surface-modified zinc oxide (s)ZnO

IO-IMOMEC

Talc-PHBHHx composites Minor influence on gas permeability

P.mm/m ² .day.atm] 7.9 (± 0.2) 9.0 (± 0.7) 8.4 (± 0.2) 7.5 (± 0.2) Fluence on o	[cm2.mm/m2.day.atm] 37.0 (± 0.7) 41.9 (± 0.4) 39.9 (± 0.9) 38.6 (± 0.7) Sther functional	[g.mm/m ² .day] 1.27 (± 0.01) 1.54 (± 0.09) 1.32 (± 0.04) 1.21 (± 0.05) properties
7.9 (± 0.2) 9.0 (± 0.7) 8.4 (± 0.2) 7.5 (± 0.2)	37.0 (± 0.7) 41.9 (± 0.4) 39.9 (± 0.9) 38.6 (± 0.7)	1.27 (± 0.01) 1.54 (± 0.09) 1.32 (± 0.04) 1.21 (± 0.05)
9.0 (± 0.7) 8.4 (± 0.2) 7.5 (± 0.2)	41.9 (± 0.4) 39.9 (± 0.9) 38.6 (± 0.7)	1.54 (± 0.09) 1.32 (± 0.04) 1.21 (± 0.05)
8.4 (± 0.2) 7.5 (± 0.2)	39.9 (± 0.9) 38.6 (± 0.7)	1.32 (± 0.04) 1.21 (± 0.05)
7.5 (± 0.2)	38.6 (± 0.7)	1.21 (± 0.05)
fluence on o	other functional	l properties
in Young's mo n at break rem	odulus (2 wt% talc nain practically the), tensile strength same.
n at break rem	nain practically the	same.
anges and opa	acity: 10.0→13.9%	o (2 wt% talc).
	in Young's mo n at break rem nanges and opa	In Young's modulus (2 wt% taic n at break remain practically the langes and opacity: $10.0 \rightarrow 13.9\%$

2. Effect of OMMT nanoclay in AON composites

Organomodified clay

- Layered silicate with very high aspect ratio
- Montmorillonite modified with organic cationic surfactant octadecylbis(2-hydroxyethyl)methylammonium chloride for batter dalamination and dispersion in polymer (- OMMT)
- 0, 1, 3, 5 and 10 wt%

Retarded crystallization in presence of OMMT

OMMT

- OMMT works as a catalyst towards thermal degradation of the polymer, this is probably due to rapid moisture uptake by OMMT
- During processing, moisture causes hydrolysis of polymer chains
 → slower crystallization

3. Effect of ZnO nanorods in AON composites

Zinc oxide (ZnO) is applied:

- to enhance vulcanization & thermal conductivity in rubber indus
- as antibacterial, wound healing or nutritional additive, UV
- as photocatalyst in treatment of organically polluted waste water
- as filler in polymers

Zinc oxide

- can be synthesized in a great variety of nanostructures
- surface modified for enhanced compatibility with polymer matri

Thermal stability & crystallization

□ ZnO

 has a slight catalytic effect on thermal degradation of the polymer, leading to a decrease in MW and thermal stability after processing.

sZnO

 partially counteracts thermal degradation due to deactivation of the zinc oxide surface by silanization.

Crystallization properties

Y

imer

- unmodified ZnO induces a decrease of 1.3°C in $T_{c,o}$ and 1.7°C $T_{c,p}$.
- sZnO does not affect the crystallization properties of AON.

ZnO: lar	ge impermeable clu	sters / visible voids	and cracks (5 wt%		
sZnO: n	o effect! Highly dis	persible nanorods for	rm very small clust		
Sample	PO ₂ [cm ³ .mm/m ² .day.atm]	PCO ₂ [cm ³ .mm/m ² .day.atm]	P _{water vapor} [g.mm/m².day]		
AON-0	9.0 (± 0.1)	42.9 (± 0.5)	1.37 (± 0.02)		
AON-1ZnO	8.4 (± 0.2)	40 (± 1)	1.22 (± 0.03)		
AON-3ZnO	8.6 (± 0.1)	40.0 (± 0.2)	1.22 (± 0.03)		
AON-5ZnO	/	/	/		
AON-1sZnO	9.0 (± 0.2)	43 (± 1)	1.38 (± 0.05)		
ON-3sZnO	9.2 (± 0.1)	42.1 (± 0.3)	1.33 (± 0.03)		
AON-5sZnO	9.2 (± 0.1)	42.9 (± 0.5)	1.30 (± 0.05)		
AON-3TiO ₂	9.0 (± 0.3)	42 (± 1)	1.35 (± 0.03)		

Tensile properties of (s)Zno/nanocomposites

• ZnO has similar effects as OMMT, although not as outspoken.

 sZnO renders AON stiffer, without losing too much of its ductility or tensile strength.

Sample	Young's modulus [Mpa]	Max. tensile strength [Mpa]	Nominal strain at max. load [%]	Nominal strain at break [%]
AON-0	704 (± 28)	19.1 (± 0.4)	5.8 (± 0.1)	7.4 (± 0.2)
AON-1ZnO	737 (± 23)	19.3 (± 0.3)	5.5 (± 0.2)	6.3 (± 0.1)
AON-3ZnO	792 (± 26)	18.8 (± 0.4)	4.8 (± 0.2)	5.7 (± 0.2)
AON-5ZnO	789 (± 29)	17.1 (± 1.0)	4.2 (± 0.4)	4.7 (± 0.2)
AON-1sZnO	719 (± 19)	19.0 (± 0.5)	5.9 (± 0.2)	6.9 (± 0.2)
AON-3sZnO	728 (± 25)	18.9 (± 0.7)	5.5 (± 0.2)	6.2 (± 0.2)
AON-5sZnO	751 (± 36)	18.8 (± 0.3)	5.4 (± 0.2)	6.0 (± 0.3)
AON-3TiO ₂	770 (± 45)	18.8 (± 0.3)	5.4 (± 0.2)	6.2 (± 0.1)

UV absorption properties

Conclusion

- PHBHHx shows potential for use as packaging material, but some drawbacks need to be faced
 - Slow crystallization will hinder processing
 - Moderate gas barrier properties must be enhanced

Ultrafine talc

ime

- Highly performant nucleating agent for PHBHHx
- Reduced spherulite size and uniform distribution
- At low concentrations, no significant effect on other investigated properties

Conclusion

OMMT nanoclay

- Good compatibility between PHBHHx and OMMT
- Gas permeability significantly reduced
- PHBHHx rendered stiffer and more brittle at higher concentrations
- Crystallization retarded \rightarrow avoid moisture!
- Additional orientation can be promising

sZnO nanorods

ime

- ZnO surface modification yields excellent dispersion
- Slight increase in stiffness/decrease in elongation at break
- No reduction of gas permeability
- UV-blocking = added functional property!

Final conclusion

- This study showed that a single modification is not sufficient to achieve better packaging properties at the same time.
- Combination of additives and/or other modification techniques must be further investigated.

Acknowledgments

- Thanks to prof. Philippe Dubois and dr. Marius Murariu for their continuous support in sample preparation and analysis and their helpful discussions during the PhD study of Jens Vandewijngaarden.
- Thanks to all colleagues of the research groups Packaging Technology
 Center and Applied and Analytical Chemistry of imo-imomec for their technical assistance in this research project.

🛛 🖾 mieke.buntinx@uhasselt.be