DOCTORAATSPROEFSCHRIFT

2006 |School voor Informatietechnologie
Kennistechnologie, Informatica, Wiskunde, ICT

Context Acquisition and Aggregation Supports the

Realisation of Proactive Interaction
A Comparison between Decision Trees and Markov Models

Bijgevoegde stelling voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica, te verdedigen door:

Joan DE BOECK

Promotor: Prof. dr. Karin CONINX
181,39

JEBO
1006

u B universitei
ﬂ Universiteit Maastricht >>hﬂsse t

uhasselt

t

S s e e s —

DOCTORAATSPROEFSCHRIFT

2006 | School voor Informatietechnologie
Kennistechnologie, Informatica, Wiskunde, ICT

Context Acquisition and Aggregation Supports the

Realisation of Proactive Interaction
A Comparison between Decision Trees and Markov Models

Bijgevoegde stelling voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica, te verdedigen door:

Joan DE BOECK

Promotor: Prof. dr. Karin CONINX

U o universitei
ﬂ Universiteit Maastricht >>hasse -l-

D/2006/2451/48

Abstract

Over the last years, personal portable computer systems such as PDAs or
laptops are being used in different contexts: at the office, during a meeting or
at home. Switching between those contexts often requires the user to manually
change different system settings, such as the audio volume, screen resolution,
etc. In this work, we propose a first step towards a proactive user interface,
predicting the next probable system changes, based upon previously learned
samples. In particular, we will focus on two algorithms, decision trees and
Markov models, that may support this proactive interaction. By elaborating
on some practical scenarios, we compare both implementations by evaluating
their respective outcomes.

Contents

Contents

1 Introduction

2 Related Work

3 Proposed Approach

3.1
3.2

3.3

Scope ... e e
Decision Tree Implementation
3121, General Approaeh = amws 6 5 5 8 22853 F st
322 'Buillding fheTree « o wionz 5w 2 5 5 5 ¢ & 5 ¢ 8% e %@ 8
3.2.3 Making Predictions
Markov Model Implementation
3.3.1 General Approach
3.3.2 Updating Transition Probabilities

3.3.3 Forecasting the User’s Next actions

4 Comparison

4.1
4.2
4.3
4.4

Wizard of Oz Interface
First Experiment « « < « s ¢ s v 5 ¢ 5 5 5 0 ¢ 66 6080504 5 s
Second Poperiiment o« = « s s s s s v s s s s s e B EBEY T F S

Third Experiment

11
11
12
12
13
14
14
14
15
16

6

CONTENTS

5 Discussion

5.1 General Discussion«
5.2 Performance Considerations

5.2.1 Decision Tree

5.2.2 Markov Implementation
6 Conclusion and Future Work

Bibliography

Chapter 1

Introduction

Consider an employee with a laptop. At the office the computer is used with
a dual monitor and the audio level soft, in order not to disturb his colleagues.
Mostly, he’s working on the files found on the server, to which he is constantly
connected. When a telephone call is received, he needs his agenda tool and
todo-list. Alternatively, when in a meeting, the computer is either used for a
presentation or just for taking notes. Finally, at the end of the day, he takes
his portable home, where it is mainly used for entertainment, using the full
graphical and audio capabilities.

From the example, it may be clear that portable computer devices, such as
PDAs or laptops, are more and more being used in a variety of situations. As
these devices are easy to carry they may be applied in different contexts, in
with different system settings for each context are necessary.

With the current generation of user interfaces, this versatility in settings is
supported. However all settings must be manually changed each time a context
switch occurs. Manufacturers often provide their hardware with extra tools
that allow switching those settings all at once, but still those tools have to be
configured manually. Moreover, as the user’s behaviour and preferences can
change over time, configurations must be manually changed at regular points
in time.

We present a comparison of two approaches to create proactive user interfaces.
Proactive user interfaces monitor the current context and suggest the next
possible steps based upon the user’s behaviour learned from previous examples.
In the scenario above, if the employee enters the meeting room, the interface
may conclude from previously learned data that there is a good chance that
one of the two possible settings will be applied. As a consequence it suggests

8 Introduction

to switch to one of either. The same is also true when the user arrives at home
or at the office, or when a telephone call at the office is detected.

We will not focus on capturing the context data itself, but rather on comparing
two algorithms that may be suitable to support proactive interfaces. In the
next chapter, we will discuss some related work, which may be of importance in
our research. Next, in chapter 3, we define the scope of this work and provide a
detailed overview. Chapter 4 describes the scenarios that are used to compare
both algorithms. The results and behaviours of the algorithms are discussed
in chapter 5. We end our contribution by formulating our conclusions and
suggestions for future work.

Chapter 2

Related Work

Proactive interfaces already can be found in several prototype application, for
instance as demonstrated by Lieberman et al. As consumer electronics are
becoming more and more complicated and a lot of users are unable to under-
stand their full potential, they created ‘Roadie’ [Lieberman 06]; a prototype
interface that will try to infer the user’s goal by monitoring his or her actions.
To make predictions, it will use EventNet [Espinosa 05], a plan recogniser
that uses knowledge mined from the ‘OpenMind Commonsense knowledge
Base’ [Singh 02], a knowledge base of 770,000 English sentences describing
everyday life. Using Roadie, users can select their goal from a list of sugges-
tions. Next, planning and commonsense reasoning is used to explain how to
reach the goal. The answer is displayed in plain text, explaining the user’s
next action(s). If the user makes a mistake, Roadie will launch a debugging
dialog for extra assistance.

Alternatively, Dey et al [Dey 04] propose a CA Ppella, which uses programming
by demonstration to teach a context-aware application. This program captures
context data, such as raw audio or video from the environment, which can be
replayed afterwards to indicate the relevant parts. After several iterations of
recording and indicating the relevant parts, the application should be able
to recognise a certain context (such as a meeting), from the recorded data,
and hence perform the relevant actions for that context (such as launching a
notepad to make notes during the meeting). The value of this work is that it
learns to recogmse a context from natural data; however the user still has to
indicate which : are the relevant parts.

Buyn and Che\gerst propose the utilisation of context history together with
user modeling and machine learning techniques to create proactive applica-~

/

10 Related Work

tions. In [Byun 04] they describe an experiment to examine the feasibility
of their approach for supporting proactive adaptations in the context of an
intelligent office environment. The application uses two different approaches
to obtain proactivity: proactive rule based adaptation, and proactive modeling
adaptation. The first uses simple predefined rules, but its limitation is that
users have to reconfigure the system as their preferences change. The second
approach automatically adapts those predefined rules when observation makes
clear that the user’s preferences have been changed. In order to learn the pat-
terns of the user’s behaviour, decision trees are used. Decision trees have the
advantage to be much easier to understand by designers than other machine
learning techniques such as neural networks. Buyn’s conclusion is that context
history has a concrete role for supporting proactive adaptation in ubiquitous
computing environments.

Cook et al. developed a smart home that adapts itself to its inhabitants.
The role of the prediction algorithms within the architecture is discussed
in [Cook 03]. They use three different algorithms, one of which is a Markov
model. A separate neural network is trained to select the prediction algorithm
that would probably make the best prediction with the available data. The
Markov model is generated from collected action sequences and used to predict
the next action, given the current context. This was tested on synthetic data
generated for 30 days, using separate scenarios for weekdays and weekends.
The algorithm generated a 74% predictive accuracy on that data.

Petzold et al investigate the feasibility of ‘in-door next location prediction’
using a sequence of previously visited locations [Petzold 05]. They compare
the efficiency of several prediction methods such as Bayesian networks, neural
networks and Markov models. Markov models score fairly well with an average
prediction accuracy of about 80%.

From the related work, it appears that decision trees and Markov models may
both fit in our proactive interface, as both solutions have proven to provide
adequate output with a reasonable amount of learning samples. Therefore, we
investigate which of both may be most suitable in our application.

Chapter 3

Proposed Approach

3.1 Scope

As mentioned in the introduction, in this research we focus on the computer
interface of a portable device. When a contextual change occurs (such as a
telephone call, entering a meeting, being at home,.. .), the interface calculates
the user’s possible goal and proactively suggests the next possible actions as
a result of previously recorded and processed learning samples.

We compare two approaches which may support proactive interaction: one
implementation is based on a decision tree algorithm; the second is based
upon a Markov Model. The details of both approaches are described in the
next sections (section 3.2 and section 3.3).

It may be clear that the applications for those interfaces and the amount of
system settings to monitor are nearly unlimited. However, we have chosen to
work with a limited but relevant set of system settings and locations to ensure
a manageable degree of complexity. We have defined the following attributes
and values:

e Five applications that can be opened or closed: OQutlook, Internet Ez-
plorer, MS Word, Photoshop and PowerPoint.

e Three values for the screen’s backlight: High, Medium and Low
e Four audio levels: Loud, Medium, Soft and Off

e Three display themes: Normal, High Contrast and Presentation

12 Proposed Approach

o Three screen resolutions: High Resolution, Projector and Dual Monitor

Besides this, we also foresee three possible locations where the interface may
be used in a different manner: Office, Meeting Room and Home. The latter
context attributes such as ‘location’ may be handled slightly different by the
system. Unlike the other attributes, the system cannot autonomously change
these values, as they are ‘read only’. Hence, a suggestion such as ‘go to the
meeting room’, must not occur.

As we are not concerned with capturing the data itself in order to avoid the
technical problems which rise in this domain, we use a simple ‘Wizard Of Oz’
user interface! as is described in section 4.1. In this form-based interface, we
manually input the user’s actions according to three predefined scenarios. We
will evaluate those scenarios with both implementations, as is described in
sections 4.2 through 4.4.

3.2 Decision Tree Implementation

3.2.1 General Approach

In a first part of the implementation we use decision trees [Mitchell 97] to
learn from the user’s actions. A decision tree is an internal data structure
consisting of a ‘root node’, ‘nodes’, ‘connections’ (branches) and ‘leaf nodes’
"as shown in figure 3.1. A node represents an attribute of the environment (e.g.
location, screen resolution, ...), and may have one or more branches. Each
branch contains a possible value for the attribute of its parent (e.g. ‘home’,
‘meeting room’ or ‘office’ for the node representing the attribute ‘location’).
Finally, a node that does not have children is called a leaf node, and it contains
the final action.

A decision tree is built from a list of training examples. Such a training
example is a collection of the current state of the attributes at the time of
an action, together with that action. In the tree, the action of the training
example will be reflected by the leaf node, while the values of the attributes
can be found following the path to that node. Furthermore, a training example
also contains information about the relevance of each attribute for the resulting
action. It is not obvious for a computer to ‘understand’ which attributes

1\We use the term ‘Wizard Of Oz’ here, because the application does not autonomously
captures the context data, but instead the researcher has to manually input the data via a
dialog-based interface.

3.2 Decision Tree Implementation 13

=1 Decizion Tree(z)
= Mode: "Backlight” [Relevance = 1]
Fi Branch: "Mediurm'
= Node: "PhotaShap” [Felevance = 0,9)
| = Branch: "Open"
. “- Leaf Value: "set Display Theme to Nomal”
- LeatValue: “set Display Theme to Presentation'
) Node: "Location" (Relevance = 1]
= Branch: "Meeting”
_ ~- Leaf Value: "set Screerresolution to High Res”
= Node: "Screenresolution” [Relevance = 1)
. B Branch; "High Res"
. Leal Value: "set PhotoS hop ta Open'!
- Leaf Walue: "set Backlight to Medium'

Figure 3.1: Example of a Decision Tree

are more relevant for a certain action than others. Therefore, a pragmatical
approach is suggested in our implementation: attributes that are changed
more recently have a higher relevance; attributes that are not changed are not
relevant at all. The underlying thought is that the reason for the user’s current
action is probably more dependent on the attribute that lastly changed.

3.2.2 Building the Tree

With each new training example, the entire tree is recalculated. In a first step,
we have to decide which attribute is placed at the root. Obviously, this is the
attribute that is relevant for most training examples. Therefore, among all
training examples, the attribute with the highest relevance and the highest
frequency is chosen. When a training example is found that is incompatible
with the current root node (having other relevant attributes), it will create a
new sub-tree with a new root, relevant for that particular example. This way,
tasks that differ too much from each other are stored in different subtrees. For
each node representing an attribute is then a branch created for each value of
that attribute.

For each branch the algorithm is recursively repeated: the most relevant at-
tribute is chosen from the remaining training examples and is placed as a node
in the particular subtree. When we get at the point where each of the remain-
ing training examples contains the same action, this outcome is added as a leaf
node. The result can be seen in figure 3.1. If more examples have a different
outcome, but they cannot be further subdivided, the leave node contains all

14 Proposed Approach

possible actions, together with their probability. Obviously, the more often a
value occurs in the list of training examples, the higher its probability gets.

3.2.3 Making Predictions

To make a prediction, the decision tree is queried to find the next possible
action that can be proposed to the user. Upon the values we know for all
attributes from the current application state, a suitable leaf node must be
found. To find this leaf, we start with the root of the tree. With each node
encountered, we follow the branch that has the same value for the given at-
tribute as the value in the current application state. When a leaf node has
been found, its value(s) is(are) returned as the result of the prediction. When
no leaf node has been found, obviously there has never been such a learning
sample, and hence there is no prediction.

It may also be possible to find a solution in more than one subtree. In that
case, solutions are ordered according to the length of the path followed through
the tree. The longer the path, the more attributes are successfully tested, and
the more probable the outcome will be.

3.3 Markov Model Implementation

3.3.1 General Approach

In this part of the implementation, previously collected knowledge is stored in
a first-order Markov model [Boyle 05, Souvignier 05], which may be seen as a
state transition graph where each state in the diagram corresponds to a state
of the system, and each transition is annotated with its probability, as shown
in figure 3.2.

In our implementation, we divide the list of attributes in two classes: first the
attributes that may be changed by a suggestion of the system (such as open
applications, audio level, etc.); secondly, we consider the attributes that only
may be detected by the system but cannot be changed, such as the location.
Each attribute has a specific value, but additionally, when an attribute has not
been changed since the startup of the system, its value is considered and stored
in the model as ‘non relevant’ (N/R). This is important for the generalisation
of an observed sequence of actions, because it ignores irrelevant values.

When the system is started, it resides in a known state, having a value for
each attribute. As none of the attributes have been changed yet, this initial

3.3 Markov Model Implementation 15

state always maps to a state in the Markov model in which the value of each
attribute is set to N/R. As soon as an attribute is changed, the new application
state is compared with the internal Markov model. If there exists a state that
ezactly matches the current application state (taking into account the N/R
values), this becomes the active state of the model. If there is no match
between the current application state and the internal Markov model, we are
probably in a new learning path, and hence the new state is added to the
model. While extending the model or navigating through it, the transition
probabilities are updated as described in the next paragraph.

3.3.2 Updating Transition Probabilities

Intuitively, the transition probabilities in a Markov Model could be easily cal-
culated by counting how many times a transition had been occurred in the
past with respect to the total number of transitions from that state. However,
this would imply maintaining a history log for each state and each transition.
Besides storing all history data, this intuitive approach would give an equal
weight to all occurrences, independent whether they are old or very recent. In
our approach, we assign a higher weight to recently occurred transitions, as
they are probably more relevant in the learning process. A single exponential
smoothing function weighting past occurrences with an exponentially decreas-
ing factor is used, as described in [Rigole 07]. This function can be formulated

as
S 1 S1

iz

52 =m| 2 +(1-a) 2

5 T, 5

With 5;, the newly calculated probability and S/ the current probability in
the model. x; is either 1 or 0 dependent whether the transition was chosen
or not. « is a real number between 0 and 1 that indicates the weight of the
current transition with respect to those in history.

Consider the example in figure 3.2. Be S| = 0,2; S5 = 0,5; S, = 0,3 and
a=0,1. Suppose transition two to be selected, then we can find the following
values for Sy, S; and Sj3.

0,18 0 0,2
055 | =0,1(1 |+(1-01)(0,5
0,27 0 0,3

16 Proposed Approach

A

—»{ B)

T g2t N

‘,"ﬂ'\‘\ .f{ . /"FH‘
:\ A ;ﬁ-’i ¢)
e M\“g- et

Figure 3.2: State transitions with their probabilities

Empirically, we have chosen a=0.1 when the current transition already exists
in the model. When a new transition is defined (either to a new state or an
existing state), the initial probability equals zero. To update the probability
for this new transition, a higher weight a=0.4 is assigned in the previous
formula.

3.3.3 Forecasting the User’s Next actions

As soon as the user changes one of the attributes (e.g. the audio level or
the location), the system tries to predict the user’s goal, and formulates a
suggestion to assist the user to reach this goal. The suggestion can be derived
from the Markov Model as follows:

First, all transitions starting from the current new state are analysed in a
depth-first manner until all end-states are found. While searching for the end-
states, the probability for each end-state is calculated. As shown in figure 3.3,
multiple paths can lead to the same target. In that case, the probabilities are
added up. For our example, this results in:

Pa,f=Sl-Sg'S5+32'S4'SS

If a loop (a transition to a state that already has been analysed) is detected,
that path is ignored.

The result of the step described in this section is an ordered list of all end-
states together with their probabilities, which may be directly reached from
the current state.

In the next step, all states in the Markov model are compared with the cur-
rent application-state for similarities. This may find similar states from other

=

3.3 Markov Model Implementation 17
S | i e N
f‘/‘ ‘\‘(\ 8 /5»,-»“"4 H"\‘{\ j)’mg:l%"‘m‘_
/’4\ e " /}—

N

(») ()

- ~, AT A

R N)
P s -_\T&(-_—F

i

Figure 3.3: Multiple paths to the same target state

learning paths, resulting in a better generalisation of the learned samples.
Therefore, for each state, we calculate a positive and a negative score as a
result of the comparison of each individual attribute. Roughly spoken, if an
attribute matches with the current state, the positive score is increased; in
the other case the negative score is decreased. As explained earlier in this
chapter, our Markov implementation also defines a value for ‘not relevant’ de-
noted as N/R, which results in a slightly more complex usage of the positive
and negative scores, as is explained in table 3.1.

Finally, this step ends with a list of all states, ordered by descending positive
values and negative values. The first two states in this list may be further
elaborated on; provided that their total score (positive+negative) is above a
certain threshold. Those state’s respective end-states (with probabilities) are
calculated in a similar way as described in the first step.

Finally, when the system has found all possible transitions to any relevant end-
state with the respective probability, this ordered list is translated to concrete
tasks that may assist the user, such as ‘Open PowerPoint’, ‘Set Audio Volume
to Loud’, etc. It may be clear that end-states that suggest to adapt attributes
that cannot be changed by the system (such as moving to another location)
are left out.

18

Proposed Approach

Table 3.1: Factors to calculate state similarities

Current App-State | State to Compare | Value
+ Factor | Changed («~N/R) Not Changed (N/R) 1
- Factor -1
+ Factor | Changed («~N/R) Match («~N/R) 2
- Factor 0
+ Factor | Changed (~N/R) Mismatch (\N/R) 0
- Factor -2
+ Factor | Not Changed (N/R) | Not Changed (N/R) 0
- Factor 0
+ Factor | Not Changed (N/R) | Match (\~“N/R) 1
- Factor 0
+ Factor | Not Changed (N/R) | Mismatch (~N/R) 0
- Factor -1

For illustration purposes, table 3.1 shows an overview of all
positive and negative factors. For instance, if the attribute of
the application’s current state has been explicitly changed, but the
value of the attribute of the state we are comparing is not relevant
(first row), the positive score is increased and the negative score
is decreased by one. Alternatively, if it matches (second row), the
positive score is increased by two, while the negative value is left
unchanged. It may be clear for the reader that the values in this
table are found empirically, and may be subject to change when
applying this approach in a larger scale.

Chapter 4

Comparison

As described in section 3.1, this research focuses on a user interface of a PDA
or a laptop, proactively suggesting the next possible actions that the user may
perform. This suggestion is triggered by a context switch, and derived from
previously learned examples. In order to compare both implementations, we
have conducted some experiments, each focusing on a specific scenario. In the
next section, we first describe the ‘Wizard of Oz’-interface that will be used
for the experiments. In the sections below, we then describe the focus of each
scenario. In order to draw our conclusions, for each experiment we count the
number of user actions, as well as the useful, useless and wrong suggestions.

Although the amount of samples in each experiment is rather limited, it may
give a good impression of the value of both algorithms. We believe more
samples within the same scenario would lead to slightly different relevances
or probabilities, but will not end up with significantly more complex models.
It may be clear however that those experiments will not give a proof of the
behaviour of the algorithms with prolonged use. Therefore, we refer to the
‘future work’ section in this text.

4.1 Wizard of Oz Interface

In order not to cope with the ‘detection’ of context or machine state and the
integration in a ‘real’ user interface, and in order to end up with manage-
able internal models, we have chosen for a limited set of attributes that are
manually fed to the internal models via a simple dialog, as shown in figure 4.1.

It may be clear that this interface is only built for testing the underlying

20 Comparison

o
et Stae s . Cuarent State
Oper Application. | el [FowerPoint /R [Clased) =
g ; 2l Butook N7E (Ll
b FhotoShon N (Closed)
Close Applicaton | . - o MS Wwierd NAR (Closed)
G S i rtermet Eaploter MR (Closed]
Sat Backligte Medium 'i- . Backight N/R {High)
' oS udoLovek MR (5ol
e R S o = Diisplay Thems N/R (Presentation)
ioseamibne ek, . _:; {6 cipamesolitiors N/R (Pioiectas)
St Dispy oz | High Conliast v Locabon N (Mesting)
Sﬂ’w [Piojectar ¥
bl
Assist mr Sefected State i
= =
|
Assisl _".i

Figure 4.1: The ‘Wizard Of Oz’ interface

algorithms, and that ultimately the computer should be able to autonomously
detect these (and other) system settings.

The first step for each sample, is to indicate the initial state of the application.
This is the state the computer resides in, when he starts working. In our
interface, this is done while the background of the top-left pane is dark (as
shown in figure 4.1).

After finishing, by clicking the button, the combo-boxes are used to simulate
the changing system settings. The top-right text-box constantly gives feedback
about the current application-state.

As soon as the system is able to suggest some further actions, they are proposed
in the bottom-most part of the window. As shown in figure 4.2, the listbox on
the left gives the overview of all suggestions with their relevance. Relevances
are calculated in percentages as a normalised result of internal calculations,
but they must not be seen as an absolute chance. On the right, detailed infor-
mation about the selected proposition is shown. Finally, by clicking the ‘assist’
button, the selected suggestion is accepted and the corresponding application
state is established.

4.2 First Experiment 2

4.2 First Experiment

In the first scenario, we focus on the adaptations of the interface when a
user moves to another location, independent of the machine’s initial state.
The experiment consisted of 5 subsequent trials, each starting from a slightly
different initial computer state (initial screen resolution, initial audio level,
initial location, etc...). In each trial the user moves to the meeting room
where the audio level should be set to ‘off’.

In total, this scenario required 9 actions for 5 trials. After the first trial in
which, obviously, the audio level must be turned off explicitly, all sequent
trials gave correct suggestions for both algorithms. Three times, a correct
suggestion was proposed, and one time both algorithms should suggest to
turn of the audio, but because the sound was already off in the initial state of
that trial, the suggestion was suppressed.

4.3 Second Experiment

The second experiment is slightly more complex, as it focuses on the different
computer settings when being at home or at the office. At home, the audio
should be ‘loud’, the monitor is in ‘high resolution’ and mostly the application
‘Internet Explorer’ should be open, while ‘Outlook’ is closed. On the contrary,
at the office, the audio level is set to ‘low’, there is a dual monitor setup and
either ‘Outlook’, ‘Word’ or ‘Photoshop’ is open.

The experiment consisted of 10 trials simulating to go home and to arrive
at the office. In total, the scenario required 43 actions. Both algorithms
gave 23 desired suggestions. The Markov implementation gave 3 unnecessary
suggestions, while the decision tree implementation gave 4. Those suggestions
where all the result of the fact that there is no application that is always opened

Assiet T Selectad State
0% PeiseiFait vl be pary SeBacdioiafigh T TTTTTS] | fEvee =
. {181 100% :Set Backlight to High | iPowerPaint wilkbe Open

; Set Backlght to High

Assist l | #]

Figure 4.2: Example of a suggestion by the system

22 Comparison

at the office. Therefore, both algorithms may suggest to open applications
that are not necessary. In this experiment, however, we have to notice that
the decision tree suggested to turn on the sound as a next action after a
suggestion to turn off the sound had been accepted. Because this suggestion
was at the very end of the scenario, when the desired state was reached, this
was not recorded as a ‘false’ suggestion.

4.4 Third Experiment

In a third experiment we will compare how both algorithms may generalise
learning paths from another situation, as well as how the algorithm behaves
when exactly the same actions are performed in another order.

The first learning path contains changing the sound, theme and screen settings
in an explicit location (e.g. meeting room). Next, the same sequence is desired,
but now in an unspecified location. We see that the decision three has learned
from the previous learning path, while the Markov model did not. In a third
sequence, we desire again a similar sequence of actions, but now at an explicit
location, other than the first sequence (e.g. office). Now we observe that both
algorithms have correctly learned from the second sample. For the decision
tree, the second learning sample is preferred above the first, as it is more
general.

Finally, we define a new learning path of four actions in a first sample, and
do the same actions but in reverse order in a second sample. We see that af-
ter some actions, the generalisation extension of our Markov implementation
finds the similarities and does a correct suggestion, while the decision three
algorithm does not make any suggestions. It may be clear that, both algo-
rithms will make correct suggestions when the second time the reverse order
is presented, because meanwhile, both have learned from the user’s actions.

ns
at

mn
is

T

I T—— R — T

Chapter 5

Discussion

5.1 General Discussion

From the previous experiments, we can see that both implementations are
behaving similar. In all scenarios the suggestions are nearly identical, and the
number of unnecessary or false suggestions is very low. The experiments show
that the decision tree implementation seems to be better in generalising and
applying learned data in another context, which could also be expected when
reasoning about the algorithm. As a drawback however, one can imagine that
this may result in many general or false suggestions when using larger sample
sets (such as turning on the sound directly after it is has been turned off, as
we observed in experiment 2 in section 4.3).

A Markov-model at the other hand, is better to recall the exact learned ma-
chine state, and may be less suitable for generalising the learned data. In this
context, however, the addition to search for similar states may improve this
drawback. Moreover, because of the latter addition, the Markov implementa-
tion is less dependent on the order in which actions are presented, as we found
in experiment three (section 4.4).

Finally, extrapolating our results to a larger number of learning samples and
more complex environments, both models may calculate suggestions with a lot
of actions to perform, or they may return a list of several possible final goals.
This may confuse the user, and therefore we suggest that the results must be
limited, both in terms of the number of suggestions, as well as the number of
actions within a suggestion. For instance, only the four or five most relevant
suggestions, limited to four or five subsequent steps may be shown to the user.

24 Discussion

5.2 Performance Considerations

As both algorithms may run at a PDA, with limited resources, some consider-
ation about performance may be useful. It is clear that our test examples are
far too simple to measure the performance, but based upon the description of
the algorithms in chapter 3, we can make predictions about the time complex-
ity of both algorithms. For both algorithms, we describe the time complexity
when adding a new learning sample as well as when finding a suggestion. A
thorough optimisation of the algorithms, however, may imply that some parts
of the algorithms can result in another time complexity.

5.2.1 Decision Tree

For each new sample, the decision tree must be rebuilt. For this purpose, all
training examples have to be iterated once for each level in the tree. Searching
in a well balanced tree is logarithmic with its number of nodes. With n the
number of nodes and f the number of training samples, this results in:

O(t - log(n)) (5.1)

Searching for a single suggestion is performed by a single search operation
in the tree, which is logarithmic with the complexity of the tree. Multiple
suggestions leading to a desired end-state are executed as multiple independent
. search operations within the tree. With [the length of the path to the end
state, this gives O(l - log(n)). The value of [is typically small, as it has little
sense to make tens of suggestions at once. Therefore, we can conclude:

O(log(n)) (5.2)

5.2.2 Markov Implementation

When a new sample is presented, in a first step, the entire model is analysed
to find whether the new application state already exists in the model or not.
This process is linear with the number of states m in the model. If necessary,
a new state is created, and the probabilities of the transitions of the previous
state are updated. As this is only a local adaptation, it is independent of the
model’s complexity.

O(m) (5.3)

)

5.2 Performance Considerations 25

To make a suggestion, from the current state, all possible end-nodes are
searched for, and the respectable probabilities are calculated. As loops in
the graph are ignored, this is a linear function with the number of nodes
present in the sub-graph (s). In a second step the Markov model is entirely
analysed to find states that are ‘similar’ to the current application state; this
is an operation which is linear with the number of nodes in the graph. The
time complexity is:

O(s - m) (5.4)

In a worst case scenario, s is equal to m (as it is a sub-graph), resulting in:

O(m?) (5.5)

As from our experiments, the complexity of the decision tree (n) and the
Markov model (m) appear to be proportional, we can conclude from this
reasoning that the decision tree implementation is a factor log(n) slower for
adding new samples to the tree. Alternatively, our Markov implementation!
is slower (quadratic compared to logarithmic) for calculating a suggestion.

! Also searching for similar states when making a suggestion

Chapter 6

Conclusion and Future Work

In this work, we compared two algorithms that may be used to support a
proactive user interface. As a result of a user action or a context switch (such
as moving to another location), the interface proactively suggest the following
probable actions. We described the implementation of both a decision tree
algorithm and a Markov model. Both algorithms were tested using a “Wiz-
ard of Oz’ interface which has been used to provide input according to three
predefined scenarios.

From the results, we could conclude that both algorithms behave more or less
in the same way, and that the differences are very small. However it appears
that 'a decision tree is more suitable to generalise samples learned in a specific
context, while a Markov model is more suitable when the learning sample
must be recalled. Moreover, due to its nature, a decision tree may sometimes
generate false suggestions.

When considering the performance of both algorithms, we also see little dif-
ference. Although this is a preliminary conclusion, decision trees appear to
be less optimal to integrate new samples in a large model, while our Markov
implementation is worse in order to calculate a new suggestion.

As the experiments look promising for both algorithms, a real and more ex-
tensive evaluation may be conducted. Therefore, it is necessary to build a
tool that is able to capture and change the relevant computer attributes and
detect the current location or context. As this future tool can then be easily
used in practice, larger sample sets and more complex models can be built.
Furthermore, a practical evaluation will also allow us to query end-users for
their subjective satisfaction for either algorithm.

Acknowledgements

The author would like to thank Kristof Verpoorten for the very appreciated
collaboration, as well as Prof. Dr. Kris Luyten for sharing his knowledge,
discussing the experiments and providing valuable feedback.

Bibliography

[Boyle 05]

[Byun 04]

[Cook 03]

[Dey 04]

[Espinosa 05]

[Lieberman 06]

[Mitchell 97]

[Petzold 05]

RD Boyle. Hidden Markov Models. http://www.comp.leeds.
ac.uk/roger/HiddenMarkovModels/html_dev/main.html,
2005.

H.E. Byun & K. Cheverst. Utilising context history to support
proactive adaptation. In Applied Artificial Intelligence, vol.
18, nr. 6, pages 513-532, July 2004.

D. Cook, M. Youngblood, E. Heierman, K. Gopalratnam,
S. Rao, A. Litvin & F. Khawaja. MavHome: An Agent-Based
Smart Home, 2003.

Anind K. Dey, Raffay Hamid, Chris Beckmann, Tan Li &
Daniel Hsu. a CAPpella: Programming by Demonstration of
Context-Aware Applications. In Proceedings of CHI 2004, Vi-
enna, Austria, April 2004.

José Espinosa & Henry Lieberman. FventNet: Inferring Tem-
poral Relations Between Commonsense Events. In Proceed-
ings of MICAI 2005, pages 61-69, 2005.

Henry Lieberman & José Espinosa. A goal-oriented inter-
face to consumer electronics using planning and commonsense
reasoning. In IUI '06: Proceedings of the 11th international
conference on Intelligent user interfaces, pages 226-233, New
York, NY, USA, 2006. ACM Press.

Tom Mitchell. Machine learning. McGraw-Hill Education
(ISE Editions), October 1997.

Jan Petzold, Faruk Bagci, Wolfgang Trumler & Theo Ungerer.
Next Location Prediction Within a Smart Office Building. In

32

BIBLIOGRAPHY

[Rigole 07]

[Singh 02]

[Souvignier 05]

Proceedings of ECHISE 2005 - 1st International Workshop
on Exploiting Context Histories in Smart Environments (held
in Conjunction with the Pervasive 2005 Conference), Munich,
Germany, May 2005.

Peter Rigole, Tim Clerckx, Yolande Berbers & Karin Coninx.
Task-driven automated component deployment for ambient
intelligence environments. Submitted to the Elsevier Pervasive
and Mobile Computing Journal (PMC), 2007.

Push Singh, Thomas Lin, Erik Mueller, Grace Lim, Travell
Perkins & Wan Li Zhu. Open Mind Common Sense: Knowl-
edge acquisition from the general public. In roceedings of the
First International Conference on Ontologies, Databases, and
Applications of Semantics for Large Scale Information Sys-
tems, P. Irvine, CA, 2002.

Bernd Souvignier. Wiskunde 2 wvoor kunstmatige inlelligen-
tie, Deel ITI. Probabilistische Modellen. http://www.math.
ru.nl/souvi/wiskunde2_05/1es12.pdf, 2005.

De transnationale Universiteit Limburg is een uniek samenwerkingsverband
van twee universiteiten uit twee landen: de Universiteit Hasselt en de
Universiteit Maastricht.

De opleidingen Informatica/Kennistechnologie/ICT en Biomedische
Wetenschappen/Moleculaire Levenswetenschappen zijn reeds ondergebracht
in dit samenwerkingsverband. Ook in andere wetenschapsdomeinen wordt
de samenwerking tussen beide universiteiten bevorderd.

www.unimaas.nl

Universiteit Maastricht

Postbus 616

NL-6200 MD Maastricht

Tel.: 0031(0)43 388 222

www.uhasselt.be

Universiteit Hasselt | Campus Diepenbeek
Agoralaan | Gebouw D

BE-3590 Diepenbeek

Tel.: +32(0)11 26 81 11

