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Chapter 1

Introduction and Preliminaries.

1.1 Introduction

Consider two-dimensional differential systems of the form

(Z—f = Plz,y; )

p (1.1)
¥y _

dt - Q(m,yi’\)

in which P, @ are polynomials and A € IR* .

As the parameter A is varied changes may occur in the qualitative structure of the
solutions for certain parameter values . These changes are called bifurcations and
the parameter values are called bifurcation values . In this work we shall focus upon
the bifurcation of equilibria . Since the analysis of such bifurcations is performed by
studying the vector field near the equilibrium point these bifurcations are referred
to as local .

The problems we study are motivated by a desire to catalog all bifurcations which
occur in quadratic systems as a step toward solving Hilbert’s sixteenth problem on
the maximum number of limit cycles .

In chapters 2 and 3 we treat the following question : ” How complicated can local
bifurcations be in quadratic systems or in other terms , which phenomena can be
described by germs of families of quadratic vector fields on the plane ? ”.

We focus on two aspects of this problem . The first one considers the singularities
themselves , emphasizing their codimension as a quadratic system and as a general

system . The second one concerns the relation between the quadratic unfolding of
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the singularity and its (generic) unfolding as a general system.

The treatment of the first problem is described in chapter 2 . We make a distinction
between singularities having a finite codimension or having infinite codimension as a
general system . The singularities of the first kind are listed completely , while those
of the second kind are only checked to be non-isolated , or isolated but hamiltonian
, or having an axis of symmetry after a linear coordinate change , or approachable
by centers or integrable saddles (these cases are of course not mutually distinct).
Since a purely linear singularity of the first kind is necessarily hyperbolic , we can-
restrict to non-hyperbolic singularities of degree exactly two . The semi-hyperbolic
ones of the first kind have a codimension at most 3 . The same happens with the
singularities having an infinitisimal rotation as 1-jet , as well with the nilpotent sin-
gularities of cusp type . For all these singularities we give in chapter 3 a quadratic
unfolding representing a versal one ( versal among general systems) .

As the bifurcation diagram of the cusp of codimension 3 is not algebraic (and even
not analytic) , we obtain a negative answer to a question raised by Coppel in [Cop]
asking to characterize the phase portraits of quadratic systems by means of algebraic
inequalities on the coefficients.

Nilpotent singularities of saddle and elliptic type occur in codimension 3 and 4.
The elliptic points of codimension 4 and type 2 are conjectured to be of infinite
codimension. One also encounters nilpotent singularities of saddle-node type of
codimension 4. The remaining nilpotent singularities are of the second kind .

In chapter 3 we give a quadratic example of a generic unfolding for all saddles of
codimension 3 and 4 , for all elliptic points of codimension 3 and for all saddle-nodes
of codimension 4. We show that the elliptic points of codimension 4 and type 1 do
not have a quadratic generic unfolding . Essentially the reason is that the nilpotent
focus of codimension 3 can not be given a quadratic model.

In chapter 4 we consider the generic unfolding of the nilpotent saddle of codimension
4. In a first section we examine which local bifurcations occur in this unfolding. The
fact that there are no Hopf bifurcations of codimension > 3 leads to our conjecture
that two is the maximum number of limit cycles which bifurcate out of such a
singularity. In a second section we propose a bifurcation diagram.

Many proofs in this work essentially consist of formal calculations - calculations of
normal forms - which were performed on an Apollo 4000 using Macsyma , and using

programs from Rand and Armbruster [RA].



1.2 Preliminaries

1.2.1 Definitions

Definition
A singularity of a C* vector field on R" is a triple (IR", X, p) such that X is a C*
vector field on IR™ with X (p) = 0.

Definition
Two vector fields X and ¥ on IR* with X(0) = Y(0) = 0 are germ-equivalent in

0 if they coincide on some neighborhood of 0.

The equivalence classes for this equivalence relation are called germs of vector fields
in 0.

Let G™ denote the set of germs of C* vector fields on IR" in 0.

Definition
Let X,¥ € G". Then X and ¥ are (k-jet)-equivalent if for some (and hence for
all) representatives X and Y of resp. X and ¥ , we have X — Y = O(||z|[¥*1) , i.e.

36,6>0 st ||X(2) = Y(@)|| < cle|[H V||z]| < 6

An equivalence class for this equivalence relation is called a k- Jjet of a germ of a C*
vector field in 0 ( or a k-jet of a C* vector field in 0).
We denote it by jx(X)(0) or even Jk(X)(0).

If we choose coordinates on JR" , then a k-jet of a vector field X is nothing else than
the set of partial derivatives up to order k of the component functions of X in 0.
By this , it is clear that there exists a natural (1-1) correspondance between the
set Ji of k-jets of vector fields on /R™ in 0 and the space of vector fields Y on IR"
such that ¥'(0) = 0, and such that the component functions of ¥ are polynomials
of degree < k.

This correspondance induces on J an [R-vector space-structure , as well as a natural

Euclidean topology .



We also consider the following mappings :

, G* — Jo JP = JP
Tk : - L g and Il :< ' . . for 1>k
: { X = 5u(X)(0) " { 3(X)(0) = ji(X)(0)

Since [ljx oIl = I,k for m > [ > k and I, = Id , we can define the inverse limit of
the sets Ji* for the mappings I1;,. We denote it by J% and we call its elements co-jets.

= » Which is the inverse limit of the j; , and we
denote the image of X € G™ by Joo(X)(0). This is in fact nothing else than the
Taylor expansion of X in 0.

We also have a map jo, : G* — J°

Let us also consider the mappings II; : J2 — J7 , joo(X)(0) — 3x(X)(0).
On G™ (resp. JZ ) we take the coarsest topology for which the projections ji (resp.
II¢) are continous.

Definition

A set A C J} is semi-algebraic if it is the union of a finite number of sets which
can be defined by polynomial equalities and polynomials inequalities. (For the def-
inition of the codimension of a semi-algebraic subset we refer to [D1]).

A semi-algebraic subset A C G™ (resp. J7) is a subset which for some k is of the
form A = ;1 (Ay) (resp. A =TI (Ay)) , where A, is some-algebraic subset of JJ.

In the space of germs G? we consider the action of the group of germs of diffeomor-
phisms fixing 0 in R? ( C*-conjugacy defined by g X(z) = (dg:)"' X (g(z)) ) as
well as the action of the group of pairs (f, ¢) consisting of the germ of a strictly pos-
itive function and the germ of a diffeomorphism fixing 0 (C>~-equivalence). This
last action is defined by ((f,g).X)(z) = f(z)g"X(z) , and the group operation by
(f,9)-(f.9) = (f.(f 09),4 0g).

These differentiable actions on the germs induce algebraic actions on each space JZ.
In a fixed J the subset of jets conjugate or equivalent to a certain given jet (This
means an orbit of one of the given group-actions.) forms a submanifold ; the set of

jets conjugate or equivalent to the jets belonging to a given semi-algebraic subset



forms a semi-algebraic subset (Seidenberg-Tarski [Tal]).

Using these operations we are going to subdivide G? into semi-algebraic subsets.

Define

Wi = {X|Sp(j1(X)(0)) nilkR = @}

Wy = {X | AG1(X)(0)) = 0,Tr(j1(X)(0)) # 0}
= {X[|Sp(7(X)(0)) = {0,A} with X 30}

Ws = {X | A(i(X)(0)) > 0,Tr(j1(X)(0)) = 0}
= {X [ Sp(71(X)(0)) = {£i\} with X +# 0}

Wi= {X]AGI(X)0) =
= {X | Sp(1(X(0)) =

Ws = {X | 1(X)(0) =0}

= 0,Tr(5:(X)(0)) = 0,51(X)(0) # 0}

)
)) = {0},71(X)(0) # 0}

where A(j1(X)(0)) is the determinant , Tr(j,(X)(0)) is the trace and Sp(71(X)(0))
is the spectrum of the matrix of first partial derivatives of the component functions
of X in 0.

The sets Wy, Wy, W3, Wy, Wy are of codimension 0,1,1,2 4.

By the Hartman-Grobman theorem (see [PdM]) we know that the X € W, are
topological stable. They form the codimension 0 singularities.

If X € Ws we say that X has codimension 4. (Actually it would be better to say
that X has codimension > 4.)

We are going to subdivide the sets W; (j = 2,3,4) into sets Wi by looking at the
higher order jets. For this construction we work with a set of co-Jets in Takens

normal form (see section 3 of this paragraph): W; ’
We shall define sets W - W such that

Wii= {X |3 diffeomorphism ¢ (or a pair (f,¢)) with g¢: (IR?0) — (IR?0)
such that ¢*X € W), (or (f,9).X € W)}

The actual definitions are:



= {X | joo( X ZM A+me — with X #0}

=2 i=1

Define Wy, = Wy and Wy, = {X € W, |a; =0 Vj <i}, Vi >2.
If X € Wa\Wy(i41) we say that X is a semi-hyperbolic singularity of codimen-
sion i.

If X € Wy , Vi, we say that X is a semi-hyperbolic of codimension oc.

' ) 0 d
W3 = {X | joo(X)(0) = /\+Z 1‘ +y I@_yax)

1-1

Y by + yz)jl(a:% - y%) with A % 0}

i=1

Define Wa; = Wy and Wy, = {X e W, |b; =0 Vj <i—1},Vi
If X € W3\W5(i41) we say that X is a Hopf singularity of codimension i.
If X € Wy , Vi, we say that X is of oo codimension.

Wy= (X 1 5X)(0) = iz + (' + 53 ba')

i=1
Define Wy, = {X € W, |a; #0} and W;, = {X € W, | ay =0}. If X € W, , then

we say that X is (-or better has at the origin a-) singularity of cusp-type. This is a

first subdivision of W,;. In chapter 2 we will refine this subdivision.

Definition

X,Y € G are topologically (or C%-) equivalent if for some (and hence for all)
representatives X, Y of resp. X,V , there exist neighborhoods U and V of 0 in IR"
and a homeomorphism & : U — V | mapping orbits of X to orbits of Y.

If we denote the flow of a vector field X by ¢x : D C IR® x IR — R" , then the

condition in this definition means that :



If z € U and ¢x(z,[0,t]) C U for t > 0, then there is some t' > 0 such that
h(¢x(z,[0,t])) = dv(h(x),[0,¢]).

Linked to this notion is the stronger notion of C°-conjugacy.

Definition
X,Y € G™ are called C°-conjugate if there exist a homeomorphism & from a neigh-
borhood V' of 0 onto a neighborhood W of 0 such that A(¢x(z,t)) = ¢y (h(z),t) (as

long as we remain in V' , resp. W).

Definition
A C7 k-parameter family of vector fields on R™ , (X,) , where p € IR* denotes
the parameter , is defined to be a vector field
2 0
Xl v = Y, Xl « e ’:”""‘)a:c-

i=1

where the coefficient functions X; are C” with respect to (zq,...,z,, ) € R™ x IR*.

When X, is defined only on a neighborhood of (0,0) € IR™ x IR* we call it a local
family. If the neighborhood does not matter we consider germs of families. Such
a germ (X,,) will be called a k-parameter unfolding of X,.

Definition

Let (X)) be a k-parameter family on R". The bifurcation set ¥ of the family (X))
is defined to be the complement in IR* ( or some neighborhood of 0 € IR* ) of the
values p , for which there exist neighborhoods U, of 0 € IR" and a neighborhood V,
of 1 in IRF such that Vi’ € V, there exsist homeomorphism A, : U, — U, mapping
orbits of X, to orbits of X .

Definition
Two k-parameter families (X,) and (Y,) on the same space of parameters IR* are
called fiber-C°-equivalent over the identity or (fiber-C°1Id)-equivalent if
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there exist homeomorphisms A, such that for each 4 € R* , h, is a C%-equivalence
between the vector fields X, and Y.

If h, depends continously on p we say that the families (X,) and (Y,) are C°-
equivalent over the Id , or (C° Id)-equivalent . We skip ’ over the Id ' if we
also admit a change in the parameter space , i.e. k, is a C°equivalence between
X, and Y, with k¥ a homeomorphism in the parameter space . When k is a
C"-diffeomorphism (0 < r < co) we speak about a (fiber-C?%,C")-equivalence or a
(C% CT)-equivalence.

Remarks :

1. In the same way one can define similar notions with fiber-C°-conjugacy and
C°-conjugacy.

2. For local families around (0,0) one imposes the conditions that A,(0) = 0 and
h,(z) must only be defined for (z, 1) belonging to a neighborhood V x W of (0, 0) in
IR x R* , with {(h,(z), 1)|(z,1) € V x W} a neighborhood of (0,0). So these re-

lations induce equivalence relations for local families (and also for germs of families).

Definition

If ¢ : (IR',0) — (IR*,0) ( or ¢ defined only on a neighborhood of 0) is a C”-mapping
(0 < r < o0) and (X)) is a family with parameter u € IR* (defined on a neighbor-
hood of 0) we call family C"-induced by ¢ the family Y, := Xy with parameter
e€ R

Definition
An unfolding (X,) of Xj is called a (C° C")-versal unfolding if all unfoldings of
X, are C%-equivalent over the identity to an unfolding C™-induced from (X,.).

7]
H

In the same way one has the notion of (fiber-C?,C")-versal unfolding.

A versal unfolding of a singularity of a vector field (X,0) , if it exists does not only
describes all the singularities near (X,0) , it describes also the possible transitions
between these singularities as well as the global phenomena emanating from the

singularity.



The notion of versal unfolding leads to a specification of the codimension of a sin-
gularity.

Definition (codimension of a singularity)
Let (IR", X,p) be a singularity for which there is a versal unfolding known. Then
we define the codimension of the singularity (IR", X, p) as the minimal number of

parameters necessary to describe a versal unfolding.

1.2.2 Center manifolds
Vector fields

For a linear vector fields L on IR™ there exists a decomposition R" = E* @ E* @ E°,

invariant under et

, such that the eigenvalues of L* = L|E*® have a negative real
part , those of L* = L|E* a positive real part and those of L° = L|E° a zero real
part.

We call L semi-hyperbolic if dim(£° @ E*) # 0 and dim(E®) # 0.

Theorem [HPS]

Let (IR, X,0) be a C" singularity of a vector field , r € IN* = IN\{0} ,

with E°@E*@E° the decomposition associated to DX, and with DX, semi-hyperbolic
at 0 . Then there exists C”-manifolds W*, W* , W¢ containing 0 , invariant under
the flow of X such that

W? is tangent to E* at 0 and j,(X|W?)(0) = DX,|E*

W* is tangent to E* at 0 and j,(X|W*)(0) = DX,|E*

We is tangent to E° at 0 and j,(X|W°)(0) = DX, |E*

W? is called the stable manifold , W* the unstable manifold , W¢ the center man-
ifold of X . W* and W* are unique , while W¢ is not necessarily unique . If X is
C® |, then W* and W* are € while W*° is not necessarily C*.



Theorem ([PS],[PT))

Let X and W* be like in the previous theorem with dim(W*¢) = m

Then there ezists a p,0 < p < n—m , such that the germ of X at 0 is C°-conjugate
to the germ of

m m+p n o
X ZX: 21, -azm + Z Z: ) Z zia _
i=1 % i=m+1 =i t=m+p+1 %
where (z1,...,2,) is a coordinate system on W° , (z1y...,2,) is a coordinate system
on IR" extending (z1,...,2,) and 37, X ,62 = X|We.

Moreover , if
Y:Zﬁ(zl,...,zm)£+__z 2‘.5—2_{—._2 Z,’B—Zi

and if Ein;lﬁa%, is C%-equivalent (resp. C°-conjugate ) to Z?;lj(ia%,- , then X is
C°-equivalent (resp. C°-conjugate) to Y.

Families of vector fields

Let now (X,) be a C* family on R™ with X,(0) =0, x € R and E* @ E* & E°
the invariant decomposition associated to DX,(0). One can consider X, as a vector
field on IR* x IR™ with IR*-component zero .

The spaces E*, E*, R* @ E° are respectively the unstable , stable and center spaces
of the linearization of this field . So VI > 1 there exists a manifold W¢ of class C' in
IR* x IR of dimension m + k and tangent at 0 to R* @ E°. Let X, be the restriction
of X, to this manifold , (X,) is a family on IR™ with parameters y € IR*.

Theorem
Let X, be a germ of a family at 0 € IR® with parameters p € IR* such that the
center manifold W¢ of X, at 0 has dimension m,0 < m <n. Then

(1) 3p,0 < p < n —m such that the germ of the family X, is C°-conjugate over
the identity to the germ of

, ~ m+p o
X“:Xp,(yla"'al),m + Z y1 __ Z yla
i=m+1 v i=m4p+l Yi

10



where (pt1,. .., ks Y15+ .-, Yn) is a coordinate system on R¥ x IR™ , extending

a coordinate system on We.

(2) If
S ¥ X >
Yo=) Yy, ¥m i) + Y= w2 g
g =1 t=m+1 ayl i=m+p+1 ayz

and if ¥, = 31 ~,5- is (fiber-C°)-equivalent (resp. (fiber-C°)-conjugate ) to
X, , thenY, is (ﬁber-CO) -equivalent ( resp. (fiber-C°)-conjugate ) to X,,.

Hence , if X, is a versal unfolding of X, , then X,, is a versal unfolding of X,.

1.2.3 Normal form theorems
Normal forms for vector fields

Let X be a C" vector field on /R" ,defined on a neighborhood of 0 , with X (0) = 0
and DX(0)=L,r € IN" U {0}

Let H" denote the vector space of polynomial vector fields on IR” which are homo-
geneous of degree h.

Let [L, —]x : H" — H" be the linear map which assigns to each ¥ € H* the Lieprod-

uct [L, Y] ) y aX 5

Recall | ZY Z E Bsc —)— e

‘r‘- =1 j=1

We now conmder the spllttmg H* = Bhg Gh , where Bh = Im([L,—]s) and G™ is

some complement,.

Theorem|[T1]
Let X, L, B* and G* be as above . Then there is a C*-diffeomorphism ¢ : (IR",0) —
(IR™,0) such that X' = ¢.(X) is of the form :

X =Ltped.. +a+ B

where g; € G* , ¥i = 2,...,r and 3.(R.)(0)

1l
o
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Remark
The proof can be found in [GH] . It is constructive , and it can be used to implement

the calculations in specific examples.

Normal form for unfoldings

Concerning normal forms for families (X,,) on R™ one can do something similar.
Let L = DX,(0) and J the space of k-jets of vector fields on JR™ which are not
necessarily zero at the origin.

Consider the map [L, —]; : T, s J, . B is again defined to be the image of [L, —];

and G is some complementary subspace : B* &) & = il

Theorem|T3]

Let X be a C* p-parameter family of vector fields on IR™ (defined in the neighborhood
of 0) , then for I € IN* U {co} and for every k € IN* U {oo} there ezists a C*-
diffeomorphism ¢ : IRP x IR™ +— IR” x R® with [l o ¢ = II (for 11 : IR? x R" —
IRP, (A, z) — A) such that the l-jet of $.(X) = X has the form :

X)) =H(X)O)+ X AY L APZ g, + OO+
il...ip,zj ;=1

where all Z;, ;. € G

Remarks :

1) A priori one can of course already bring j,(X,)(0) into the normal form.

2) If for fixed k and I, Xy, ..., X, denotes a basis for G , then the previous theorem
together with the first remark , imply that the family X is C*-conjugate over the
identity to L+ X7y fi(N)X: + O(ANO(I2]I1) + O((IM|+ [l2][)}*1) , where £i(A)

are polynomials in A of degree < 1.

12



Chapter 2

Singularities of finite

codimension.

Among the singularities which we encounter in differential equations

dz
dt

dy

== Plry) w
1

with P and Q polynomial of degree < 2, we will make a distinction between the
singularities which are of finite codimension as a singularity of a general differential
equation on the plane and singularities which are of infinite codimension.

The first will be called singularities of the first kind , while the latter will be said to
be of the second kind. Singularities of the second kind will be detected by showing
that they are either non-isolated,or that they are Hamiltonian , or that they have
an axis of symmetry after a linear coordinate change , or that they are approachable

by centers or by integrable saddles .

2.1 Hyperbolic singularities

By this we mean singularities with no eigenvalues on the imaginary axis. These
singularities are of codimension 0, as well among quadratic systems as among general
systems . In both cases the hyperbolic singularities form an open and dense set. In
the set of quadratic systems we work with the coefficient topology, while in the set of

§
germs of singular C* vector fields we work with the usual inverse limit topology of

13



the jet-spaces. These hyperbolic singularities are stable for topological equivalence.

2.2 Semi-hyperbolic singularities

By this we mean singularities with 0 as a simple eigenvalue or in other terms
: a . . L
71X(0) ~p bya— with b # 0. ( ~ stands for linear conjugation .)

Y

The normal form theorem permits to give following expression to jo, X (0) :

(g a,i-:r") % -+ (b - ; b,-:r:i) ygy— (2.2)
X is said to be of codimension & if a4, # 0 while a; =0 for j < k.

We will show that in case of singularities of the first kind only semi-hyperbolic
singularities of codimension < 3 occur, and the general as well as the quadratic
codimensions are the same.

For this purpose we can suppose that the system (2.1) is in canonical form (given
by Jordan normal form theory):

dz
= = az? + bzy + cy?

2.3
&y 2 2 (23)
o —ytdettery+ fy

THEOREM 1
The quadratic system (2.3) has :

(1) a saddle-node of codimension 1 if a # 0
(2) a saddle or a node of codimension 2 if a = 0,bd # 0
(3) a saddle-node of codimension 3 if a = 0,b = 0, cd #0

Ifa=0,b=0,c=0o0rifa=0,d=0 there is a curve of singularities so that the

codimension is 0o .

Proof: Instead of calculating normal form (2.2) , we use the method of center

manifolds because we will need it later on . As the center manifold is tangent to

14



E° = {(z,y) € R?*|ly = 0} we can represent it as a (local) graph

We = {(z,y) € R’ly = h(2)};

where h : U C IR — IR ,C* , is defined on some neighborhood U C IR of 0, with
h(0) = k'(0) = 0. The restriction to the center manifold is given by

Z—j = az’ + bzh(z) + (h(z))? (2.4)
Now we calculate the Taylorseries of h(x) at x=0. Substituting y = h(z) in the

second component of (2.3), we obtain

k' (z)(az® + bzh(z) + c(h(2))?) — (h(z) + d2? + exh(z) + f(A(z))?) = 0

with conditions 2(0) = £'(0) = 0.
So we find

h(z) = —dz® + d(e — 2a)2® — d(df + € — 5ae — 2bd + 6a®)z* + O(z®)

Substituting this Taylor approximation in (2.4) , we obtain for the behaviour on the
center manifold

% = ac? — bda® + (bd(e — 2a) + cd)z* + O(2") (2.5)

From this it is readily seen that the theorem holds.
The conclusion about the codimension as a quadratic system follows from the Tarski-

Seidenberg theorem (appendix of [A.R.]).

Remark:

Concerning the codimension of a non-isolated singularity we recall a result from
[D1].

In JZ, there exists a pro-algebraic subset A of oo codimension such that all X € G*
with joo(X)(0) € JZ\A satisfy a Lojasiewicz inequality ; i.e. there are k,¢,8 > 0
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such that

IX(@)l 2 cllel* for |lz]| <6

Hence , if X € G? has at the origin a non-isolated singularity , joo(X)(0) must
belong to A.

2.3 Singularities with an infinitesimal rotation

as 1-jet

By this we mean singularities with a pair of non-zero purely imaginary eigenvalues.
The formal normal form for these singularities is :

1+ D ala + ¥ )ap —yae) + (b +p))eae +yn)  (26)

el Ty oz ol dz 7Oy

X is said to be of codimension k if by # 0 while b; =0 for j < k —1. In case all
b; are zero , which is clearly a situation of infinite codimension , X is formally a
center.
Using the Jordan normal form theorem , multiplication with a positive number and
a rotation we may suppose that system (1.1) has the form :

1

sk = —y + az? + bzy + cy?

dt

dy (2.7)
% =z + dz? + exy — dy?

As has been shown by Bautin in [Bau], these singularities can be of codimension 1,
2 or 3 and in that case the codimension is the same among quadratic systems, or

they are centers and are integrable.

16



THEOREM 2 (Bautin)

Define

By =(a+¢)(b-2d)
By = (a+c¢)d(e+ 2a)(e — 3a — 5¢)
By = (a+c)d(e+ 2a)(d?* + 2¢® + ac)

The quadratic system (2.7) has at the origin :

(1) a Hopf-point of codimension 1 (or a fine focus of order 1) if By # 0
(2) a Hopf-point of codimension 2 if By =0, B, # 0

(3) a Hopf-point of codimension 3 if By = B, = 0,B5 # 0

(4) a center if By = By = B3 =0

2.4 Nilpotent singularities

A nilpotent singularity is a singularity with a nilpotent linear part; by this we mean

a linear part linearly conjugate to y—.
i :
Again using the Jordan normal form theorem , we can suppose that the system is

in the canonical form:

d 5

o =y + az? + bzy + cy?

dt

. (2.8)
d—i’ = dz* + exy + fy?

Up to a linear conjugacy we may even assume d to be 0 or 1.
First we treat the case d=1

THEOREM 3
When d =1, system (2.8) has at the origin:

(1) a cusp singularity of codimension 2 if e + 2a # 0
(2) a cusp singularity of codimension 3 if e +2a = 0,b+2f # 0,¢ # a(f — b —24d?)
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Under all further restrictions , the cusp singularity is Hamiltonian or is symmetric
with respect to an azis after a linear change of coordinates, and hence of co codi-

mension.

Proof: Using the Takens normal form theorem [T1], we can formally give system

(2.8) the following expression:

du

_— =7

dt

s (2.9)
i P2 nU”™ + 0,5 byl

where (u,v) are related to (x,y) by a near-identity transformation ( in the terminol-
ogy of [G.H.]). Using Macsyma one easily finds the family of such transformations
which perform these calculations up to terms of order 4 .The family is:

s

z= rev! + ((2rs + r¥)e + (rg + rir2)b + ria + r5)ur®
+r403 + ((6ric + rob+ 2rs + r2) f
+(2re¢ — 2ry 4+ ryry)e + (3r1b + 2ra)c + ryb?
+(2rs + r?)b+ (2riry —4ry)a + riuv?/2
+(2ric+ r2b + r3)uv? + rov? + (6(c + 1) f?
+(rqe + 4bc + 9r1b + 6rya) f + (2¢% — 5ric — 4ryb
—5r3 + r¥)e + 2ac? + (b* — 16r1a + 10r;)c
+3r16% — 6r3ab + (2r] — 1073)a — 4rg + 14r73)ud0/6
+(2(c+ 11)f — rae + be + 2r1b — 2rpa)uv/2
+(c+r)uv + (6% + 1162 + ((—3c — 107, )e — 12ac + 6b*
—12rya + 67r;) f + (=3bc — 10r,b + 6rya)e + 20c°
+4(7ry — ab)e + 6* — 2(8rya + Try)b — 1473 + 32r3)ut/24

(2.10)

+(2f% 4+ 3bf — 2rie — ce + 4a) + b* — 4ria — 2r)u/6
( +(f +0)u?/2 +u

18



’

y= rsv* + ((2rs +7I)f + (ra + mira)e + ri)ur®
+7r30° 4+ (671 f2 + 3roef + (3ric+ b —r3 4+ 1r)e
+2ryc — 6raa + 2ry + 2riry)uv?/2
+(2r1f + roe)uv? 4 riv?
+(6f3 + ((6c —r1)e — 24r1a 4 67;) f — 3rpe?
+(bc + rib — 12r3a)e + 2c2 (2.11)
+167r1¢ + 6720 — 2r3 + 14r)udv /6
+(2f% + ce —4ria + 2ry)uv/2 4+ fuv + v
—(1laf?* = 12(c+ ) f + (8ac + 4ria + 6r;)e
—2(3b+ 2¢*)e + ab® — 12r1b — 1671a® + 4rya)ut/12
+(=af + ¢+ r)u® — au?

\

For the normal form , we get

du

7 = vtpelwy)

d (2.12)
d_tt) = u? + azu® + agu* + byuv + bu?v + bsudv + py(u, v)

where

pi(u,v) = O(Ju,v|*),2 = 1,2, b; = e + 2a, by, depends on a parameter of the family
in such a way that we may assume that b, = 0 without loss of generality. This
choice once made:

by = —(b+2f)(af —c— ab—2d°)

as, a4 are polynomials in «,b,c,e, f and the parameters ry...rg of the family of
transformations.

From now on we suppose that b, = 0 .

!Uzu

| V= v+ nlu)

Using the transformation :
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system (2.12) is transformed into :

4
=V

d 2.13
& = Ut asl® + 0l + O(UY) (2.13)

+V(0,.U + bU% + O(UY)) + V2O(|U, V)

Now we consider the corresponding dual form :

VAV — (U +asU° +a,U* +0,(U))dU =V (b, U +bsU3 + O(U*))dU - V2O(|U, V P)dU

with O;(U) = O(U?®). Performing the coordinate transformation

{ r= U(l + 3asU/4 + 3a,U%/5 + O5(U))/?
g= V¥

with dO;(U) = O1(U)dU , we get

sds —r’dr — s(byr + 3ab;r? + (2(28 + a?)by + by)r® + O(r*))dr — s*O(|r, s|*)dr

where @ = —a3/4 and 8 = (1542 — 16a4)/80
So we see that system (2.8) is C*-equivalent to

( ﬁ _
dt ~ °
d
; d_; = r® 4 s(bir + 3abir? + (2(28 + a?)b; + bs)r® (2.14)
k +0(r?)) + s*0(Ir, s|)

From this and [DRS1] the first two statements follow immediately. To have a cusp

of codimension > 3 at the origin, one of the following conditions (C1) or (C2) must
hold:

e = —2a e = —2a
(C1) {b—- 5 (G2} { _
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Under conditions (C1), system (2.8) is Hamiltonian.
Suppose now that conditions (C2) are fullfilled.
Making use of the linear coordinate change 2 = X + aY,y = Y system (2.8) is

transformed into:

‘Z—f =Y + (b+ 2a%)XY
o (2.15)
- =X+ -a)Y?

System (2.15) is invariant under the transformation (X,Y,t) — (X, —Y, —t); and

consequently it is symmetric with respect to the X-axis.

Remark :

Concerning the codimension |, we refer to the normal form theory as presented in
[Bro].
A singularity with y— as 1-jet, can be transformed by a C*-diffeomorphism @ into

one with a formal normal form:

d
d_T: =V + 2 py2Cau”
(2.16)
dv "
I 2on>2 Anl

If such a singularity belongs to some Lie-algebra , like the Lie-algebra of Hamiltonian
vector fields or the Lie-algebra {X|0,X = £X} (with ¥(z,y) = (z, —y)), then ®
can be chosen in a way that the normal form belongs to the same Lie-algebra.

In that way, in both cases, all ¢, in (2.16) need to be zero. This is the same as saying

that all b, in (2.9) are zero , and it is clearly a situation of infinite codimension.
Next we treat the case d=0.

Here also it is easy to find the family of near-identity transformations which convert
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system (2.8) into the normal form (2.9) up to terms of order 4 . The family is

(2= rev' 4+ ((2rs+73)c+ (ra + rire)b + ria + rs)uv®

+740° + ((6r1c + r2b + 2r3 +72) f

+(2rac — 2rg + rire)e + (3r1b + 2rpa)c + b

+(2r3 + ri)b + (2riry — dry)a)u®v?/2

+(2r1c + r2b + r3)uv? 4 rov? + (6(c + ) f2

+(rpe + 4bc + 9r b + 6r2a) f

) +(2¢® — 5ric — 4ryb — 5ry + 13)e

+2ac? + (6* — 16r1a)c + 3r % — 6ryab

+(2r? — 10r3)a)u®v/6

+(2(c+r1)f — ree + be + 2r1b — 2rya)ulv/2 + (c + ry)uv
+(62 + 115f2 + (=3¢ — 10r)e — 12ac + 66 — 12ra)f
+(—=3bc — 10r1b + 672a)e — 4abc + b3 — 16r;ab)ut/24
+(2f% +3bf — 2r1e — c(e + 4a) + b — 4r1a)u®/6

; +H(f +0)u?/2+u

(2.17)

y= r5v* + ((2ra+rd)f + (ra + rira)e)uv® 4 r30°
+(6r1 2 + 3raef + (3ric + reb — r3 + 1r3)e
—6r3a)u?v?/2 + (2r, f + roe)uv? + ryv?
+(6f° 4+ ((6c — ry)e — 24r1a) f — 3rye?
+(be + r1b — 12rya)e)u’v /6
+(2f* + ce —dria)u’v/2 + fuv +v
—(1laf?* + 4a(2c+ r)e — 4a’c + ab?
—16ra®)u?/12 — afud — au?

(2.18)

\

The normal form reads:
[ du
® ="
1 : +O(uof)  (219)
dv

E = a3u3 + a4u4 + bguv + bguzv + b4U3’U
where a3 = —ae , a3 = —a(f(e — 2a) + €b)/2 \b; = e + 2a , by = (f(e — 2a) + €b)/2

and by is a polynomial in a, b, c, e, f and the parameter r; of the family of transfor-

mations .
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Using (2.19), we can prove the next theorem:

THEOREM 4
When d=0, the following statements can be made concerning the singularity at the

origin in system (2.8):

(1) if
ae <0 b (2 —e)f/e e# —2a n{Ipotent saddle of cod 3
e = —2a nilpotent saddle of cod 4
(2) If
‘ iptic singularity of cod
betiBa il e e # 2a elh‘pt{c sx‘nc,ulan' v of cod 3
ae >0 43 e=2a elliptic singularity of cod 4
e # 3a
(which we call of type 1)
(3) If
e:=3a # 0 3b+ f#0 elliptic singularity of cod 4
(f —2b)(3f —b) +25ac # 0 (which we call of type 2)
(4) If
e=3a#0 3b+f#£0 elliptic singularity which is approacha-
(f —2b)(3f —b)+25ac=0 ble by centers , and hence of oo cod
(5) If

the singularity is symmetric with respect
ae#0 b= (2a—c¢)f/e to an axis after a linear change

of coordinates , and hence of co cod
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(6) If

f#0 nilpotent saddle-node of cod 4
a#0 e=0 f=0 the singularity is non-isolated,

and hence of co cod

(7) If

a=0 the singularity is non-isolated,

and hence of co cod

Proof:

We prove (2) and (4), since the proof of the other statements is completely analogous
to the proof of theorem 2 .

One can show that system (2.19) is C*°- equivalent to the system :

da_
a Y
%’ = —aez® +y((e + 2a)z + e 3a)(f(;e— 2l +0(z%) + y*O(|=, /")

After the rescaling z = ar ,y = s , t = 471, we get :

dr By
r . a
— 3 _ _ 2
ag T + (e + 2a)ayrs + e—d)en s — ) o 7,2 + sO(|r, s*)
dr B8 Se
We take a = By .
The coefficient of r* is then —(aea®y)/8 = —aeB?y* , and we impose B?y*ae = 1.

It is interesting to remark that the condition in (3) are chosen to have the r®s-
coefficient different from zero . Making the coefficient of r’s equal to 1 has no
effect on the coefficient of 7s . For this coefficient we have (e+2a)ay = (e+2a)8y* =
le + 2a|/+/ae , if we choose

sign = sign (e + 2a) .

Now

2
(e —2a)® >0 & € + dae + 4a® > 8ae & (e +2a)” > 8ae & id ] > 2v/2

Jae
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Conclusion:

If e # 2a we have an elliptic singularity of codimension 3 , if e = 2a we have an
elliptic singularity of codimension 4 (of type 1).

Here ends the proof of statement (2) . Under the conditions of (4) and using linear

coordinate changes and rescaling of time system (2.8) can be transformed into :

d d
_ 2 9,2
Zo=(y+a*+ay—2y /25)a$+3:::y3y

Let us introduce

d:v_ 25+ 4k 2 g
2. 1@ Ut —ag = U~ g5l
' dy k , 1542k
i —/c;L-}-gsc + 55 TY

For k > 0, Z; has a center at the origin .

Remarks:

a. Concerning the nilpotent focus.

When d = 0, the x-axis is an invariant line of system (2.8). Hence a degenerate

nilpotent focus cannot exist in a quadratic system.

b. Concerning the saddle (resp. elliptic point) of codimension 4.

We call it a saddle (resp. elliptic point) of codimension 4 since the normal form
theorem together with the Tarski-Seidenberg decision theorem show that these sin-
gularities lay on a semi-algebraic set of codimension 4 . For the elliptic point , the
distinction between type 1 and type 2 has to do with the value of certain coefficients

in the normal form.

For nilpotent elliptic points of codimension 4 and type 1 is the 4-jet C*-equivalent

to:

a 3 2 3 a
ygo T (-2 +u(2V2r + e’ + fa Nz,

with e = +1 anf f € R.



For nilpotent elliptic points of codimension 4 and type 2 is the 4-jet C*°-equivalent
to:

9 3 a3y 9
Yyuy T (=" +ylba + fo ))ay

with b > 2v/2 and f € R.

c. Concerning the codimension of a singularity which is approachable by centers .

d 0
Let W C G? be the set of those germs of vector fields X = Xl%— + XzBT on IR?
& 1 2

for which the eigenvalues of (8—1(0))5,3-___12 are non-zero purely imaginary . These
i

germs of vector fields can be given the formal normal form :

o0 . [e7e] ) a
(4 Sl + 1Yo~ ) + (b + g +a)

i=1 t=1

with A £ 0.
We define V; to be the set of those germs X € W whose (2k — 1)-jet is in normal
form with b = ... =4, =0 (k>2).

The sets V; are now defined by :

Vi ={X e W|3¢: R* » R* C>diffeomorphism such that ¢.(X) € Vi}

Using the Tarski-Seidenberg theorem it follows that V is a semi-algebraic subset
of G? of codimension k. So , if X can be approached by centers , X belongs to
Nk Vi €Nk Vi , a subset of infinite codimension .

d. Concerning the elliptic point of codimension 4 and type 2.

Using Macsyma it is easy to prove that all quadratic systems (2.8) with e = 3a # 0,
3b+ f #0and (f —2b)(3f — b) + 25ac # 0 are C*®-equivalent to
dz
at Y 8
+O0(lz,9") (2.20)
C_ly. - —.I:S _|_ ...é,.:r
dt vaty



So we see that the coefficients bs,...,b; of the normal form (2.9) all can be made

zero . For this reason we conjecture that these singularities are of co codimension.

2.5 Homogeneous Singularities

In this section we will show that every quadratic homogeneous singularity is ap-
proachable by saddles or integrable saddles. We may suppose that , after performing
a rotation , we have the following expression

— = az®+4 bzy + cy?
(2.21)

= ey + fy

THEOREM 5
The following statements can be made concerning the singularity at the origin in
system (2.21) :

(1) If
a(af? —bef +ce?) <0 the singularity is approachable by
centers , and hence of co cod.
(2) If
a(af? —bef +ce?) > 0 the singularity is approachable by inte-
grable saddles.
Proof:

First we prove (1).

Suppose a # 0 , e # 0 and a(af? — bef + ce?) < 0 Let us introduce

J

T 5 dt _ p-t 0 —e Pl %)y az? + bry + cy?
dy e 0 y exy + fy?
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1 2 _ 2
where P = ) with a = f and 5% = Y 5 and € € R.
0 3 e ae?
Using the transformation
u= zr+ay
= Py

one easily checks that system X, has a center at the origin for € # 0.

Incase a =0, e=0or a(af? —bef + ce?) = 0 we take a small perturbation of the
quadratic terms in order to bring them to non-zero values .

Next we prove (2) .

Suppose a # 0 , e # 0 and a(af? — bef + ce?) > 0. In this situation we introduce
the following system :

dz
Y. dt | _ p-1 0 € Pl%) 4 az® + bry +ch2
dy e 0 y exy + fy
dt
2 _ 2
where P = Lo with a = 4y ditd 3% = af’ —bef +ce and € € IR.
0 38 e ae?

One easily checks that system Y, has at the origin a saddle with first four dual Lya-
pounov coefficients equal to zero . (The dual Lyapounov coefficient of order 1 is the
divergence .) Such a saddle is integrable (see [JR]).

When @ = 0 or e = 0 we take a small perturbation of the quadratic terms to bring
them to non-zero values .

Suppose that the planar system X has at the origin a hyperbolic saddle. Then X

can be given the formal normal form ([Joy]

T i 3 gam | B D T
(3)=Ee-mr (5 2)(0)

If X is a quadratic system and the first four dual Lyapounov coefficients are zero,

~—
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then we know from [JR] that a, = 0 Vn . Hence, such saddles as well as the ho-
mogeneous vector fields approachable by them belong to a pro-algebraic subset of
infinite codimension. But it is by no means clear that this will have topological
consequernces.

In her thesis [Khe] , F. Khechichine gives indications that homogeneous singulari-
ties satisfying condition (2) have a versal quadratic unfolding. So one can expect
that those singularities are of finite codimension in the sense of the definition of

codimension of chapter 1.
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Chapter 3

Quadratic generic local

bifurcations of codimension < 4.

In this chapter we deal with the relation between the quadratic unfolding of the
singularity and its generic ( or versal ) unfolding as a general system . We will show
that every quadratic singularity of finite codimension , except for the elliptic points

of codimension 4 , has a generic ( or versal ) unfolding among the quadratic systems.

3.1 Nilpotent Bifurcations

In this section we treat the nilpotent singularities . We show that every nilpotent
singularity of the first kind , except for the nilpotent elliptic points of codimension
4, does have a generic unfolding among the quadratic systems . The reason of the
non-existence of a generic unfolding of the elliptic point of codimension 4 and type 1
essentially is that the nilpotent focus of codimension 3 cannot be given a quadratic
model . We do not treat the elliptic points of codimension 4 and type 2 because we

conjecture them to be of co codimension.

Since the proofs in the different cases follow a same procedure we only give the proofs
in the case of the saddle and elliptic points of codimension 3 and in the case of the
saddle of codimension 4 . In an appendix we give the coordinate transformations

which one can use in the proof of the other cases.
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3.1.1 Nilpotent Cusps
Let Xo be a germ of a vector field at 0 € IR? with X,(0) = 0 and with nilpotent
1-jet , then by [T1] the 2-jet of X, is C*°-conjugate to

o ) )
Vg + (ot + fay) 1 (3.)

Topologically , such an X, with a # 0 and 3 whatsoever looks like a cusp.

fig. 3.1
In generic 2-parameter families one may suppose that .8 = 0. In that case the

2-jet is C'*-equivalent to

d 7]
¥a. t (2 £ xy)a—y (3.2)

The germs of vector fields whose 2-jet is C*-equivalent to (3.24) ( resp. (3.2-) )
constitute a submanifold X%, (resp. £%_) of codimension 4 in the space of all germs
of vector fields at 0 € IR? (and of codimension 2 in the space of all germs of singular
vector fields in 0 € IR?).

The genericity of a 2-parameter unfolding X of X, can be defined by the fact that
the mapping ((z,y),A) — j*X\(z,y) cuts £, transversally in (0,0).

In [Bog] Bogdanov has shown that 2 families cutting transversally i, (resp. £L.)
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are (fiber-C° , C%)-equivalent . Such a transversal family is called a generic Bogdanov-

Takens bifurcation (or generic bifurcation of the cusp of codimension 2).
The family

+ (2 +,u+y(yis:))2 (3.3)

d
Xx=y— By

Oz

where A = (u, v) is the parameter , is called the standard Bogdanov-Takens bifurca-
tion or quadratic Bogdanov-Takens bifurcation . The bifurcation diagram and the
phase portraits of the family (3.3-) are represented in figure 3.2.

S t /«—u%

SN

fig. 3.2
One can also show that 2-parameter families X, cutting X2 ¢+ transversally can be
brought - up to C*®-equivalence - in the following simplified form , called a normal
form :

y‘é'?; .3 ($2 + ﬂ(/\) + y(V(/\) o o $2h($1 A) T yzQ(sc,y, ’\))% (34)

where p,v,h and Q are C* and @ is N-flat for an a priori given N .
The transversality of the map ((z,y), A) — j2X\(z,y) with respect to £, expresses



itself as

Dy, v)

D(/\1,/\z)(0) #0 (3.5)

Using this normal form theory we can show that every quadratic cusp singularity of

codimension 2 has a generic unfolding among the quadratic systems.

THEOREM 1
The 2-parameter family

Z—jzy+am2+bwy-§-cy2
C(Al.v‘\z): d (36)
d—?=)\1+A2y+$2+€$y+fy2

with e +2a # 0, is a generic bifurcation of a cusp codimension 2.

In generic 3-parameter families one also finds unfoldings of singularities with nilpo-
tent 1-jet which are however more degenerate than the cusp of codimension 2. More

precise , one also encounters the cases where the 2-jet of X, is C*-conjugate to

0 3 d
Vg T(as" +Bay)g (3.7)
with (o # 0 and 8 = 0) or (o = 0 and B # 0) . We proceed with the case (a # 0
and f=0).

To start with we will recall some results from [DRS1] .

A singularity with nilpotent 1-jet and whose 2-jet is C*-equivalent to ya% +aw25%
with a # 0 is called a cusp singularity of codimension > 3 . The set of germs of
such vector fields constitute a semi-algebraic subset of codimension 3 in the space
of all germs of singular vector fields in 0 € IR? . Denote this set by £3 . (£2 =

T UEE_UZS Y.
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One can prove (see [DRS1]) that each X, € X2 has a 4-jet C*°-equivalent to

3] d
yé}- + (2% + 7m3y)a—y (3.8)

One defines £, by the condition ¥ = 0 ; £ is a semi-algebraic subset of codimension
lin £} and % = £3, UZ2_ U LY |, where £2, is the submanifold of codimen-

SiOél 3 consisting of germs of singular vector fields whose 4-jet is C'*®-equivalent to
2, .3

s & —

Vgz T & )5

The genericity condition of 3-parameter families X, with Xo € 2+ consists in the

transversality of the mapping ((z,y),A) — 7*X\(z,y) with respect to 2.1 in (0,0).

An example of such a family is given by

— 9 ]
X3 =ya;+($2+#+y(1/0+f/1$i$3)3—y (3.9)
with A = (i, v,1). Its bifurcation set (in (g, vo,v1)-space ) consists of several

surfaces . The {u = 0}-plane outside the origin is a bifurcation surface of saddle-
node type . The other surfaces of bifurcation are situated in the half space

{# < 0}. They can best be visualized by drawing their trace on the half-sphere
S = {(gvo,ni)|g < 0,p® + v + v2 = €} for € > 0 sufficiently small . The
bifurcation set is a cone based on its trace with S. (see fig. 3.3)




The main result of [DRS1] can be stated as follows :
A local 3-parameter family in (0,0) € IR? x IR® transversally cutting X2, at (0,0)
is (fiber-C%,C%)-equivalent to XF .

Another result of [DRS1] is the following :

3-parameter families X, cutting £, transversally can be brought - up to C*°-

equivalence - in the form :

yom (& ) YK (5, (o) + (Ve
(3.10)

+a(M)z? £ 2° + z*h(z, N)) + yzQ(m,y,/\))gy—

where p, v, 11, a, K and @ are C*™-functions with K(0,A) = 1,2(0) = 0 and Q is
of order N in (z,y,A) , where N is arbitrarily high , but given a priori .

The genericity condition - the transversality of the map ((z,y),\) — j*X,\(z,y)
with respect to X2, at (0,0) - translates itself as

D(}L,Vg,l/l)
—-———D()\l’/\z,/\s)(ﬂ) # 0 (3.11)

Using this result we can prove that every quadratic cusp singularity of codimension
3 has a generic unfolding among the quadratic systems.

THEOREM 2
The 3-parameter family
d
d—j=y+a$2+bry+cy2
Clathz ) 4 (3.12)
| -ﬁ = A+ Ay + 22 + (\s — 2a)zy + fy?

with b+2f # 0 and ¢ # a(f —b—2a?) is a generic unfolding of a cusp of codimension
3.
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Remarks :

We may observe that Cy, s, ,) is an example of a family of quadratic systems
showing for certain parameter values two limit cycles , which disappear (or appear)
in a generic double cycle (L) , in a Hopf bifurcation of codimension 2 (h2) , in a
homoclinic loop of codimension 2 (¢2) or in the simultaneous occurence of a Hopf
bifurcation of codimension 1 (h) and a homoclinic loop of codimension 1 (c) . This

phenomenon was also observed in [Rou].

At the end of his article” A Survey of Quadratic Systems ” ([Cop]) Coppel raised the
following question : ”Is it possible to characterize the phase portraits of quadratic
systems by means of algebraic inequalities on the coefficients ?” . As the contact in
c2 between the line of double cycles L and the line of homoclinic loop bifurcations C
is a flat contact (see [DRS1]), we know that the germ of this bifurcation set at the
origin is not C*°-diffeomorphic to the germ of an algebraic variety , even not to the

germ of an analytic variety . This provides in a negative answer to Coppel’s question.

3.1.2 Nilpotent saddles and elliptic points of codimension
3

To start with we treat the remaining singularities of codimension 3 , namely in case

(e =0and 3 #0).

One can show that the germs of vector fields at 0 € IR? whose 1-jet is nilpotent and

whose 2-jet is C*™-conjugate to y(%- +Bmy§y with 3 # 0, have a 4-jet C'"*°-conjugate

to

9 3 4 2 3 ) 0
-— S 3.13
ya$+(em + dz +b:r:y+axy+c:cy)ay (3.13)

with 6> 0,e =0,+1 and a,b,¢c,d € IR .

It was shown in [D1] that the topological type of such a germ is determined by its
3-jet , if € # 0 and b £ 24/2 in case e = —1 .
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Adding the extra condition

Sea — 3bd # 0 (3.14)

one can show that the 4-jet is C-equivalent to

S + bzy + + — 5!
Y, T (a2’ +bey + e’y + fx y)ay (3.15)

with €2 = £1,6 > 0, f € IR.(For more information we refer to [DRS2].)

The topological type falls into one of the following classes:

(1) The saddle case : ¢ =1, any b and ¢, ( a degenerate saddle).
We denote by £34(e; = £1) the subsets of germs with such a 4-jet . They all
have the same topological type .

(2) The focus case : ¢, = —1 and 0 < b < 2v/2 ( a degenerate focus ) .
We denote by X%, (e; £ 1) the corresponding subsets of germs .

(8) The elliptic case : €, = —1 and b > 2y/2 (an elliptic point ).
Notation : X%, (e; = 1)

Saddle case Focus cases Elliptic case

fig. 3.4
The article [DRS2] is devoted to the following :
Let X and Y) be two local 3-parameter families with X, and Y; belonging to the
same set ¥3x, L34 or L34 . Suppose that both families are generic in the sense that
the mapping ((z,y),A) € R? x R® — j*X)(z,y) is transverse to the sets L34, 53,
or £%s at (0,0) . Then they are (fiber-C°,C°)-equivalent .
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An example of such a generic family in each case is given by

. 3 d
X e 45+ (e12® + poz + iy + y(v + bz + 62-’52))'8"y' (3.16)

where A = (p1, gta, ) , and b > 0,5 # 2/2, €12 =%l.

As in the cusp case one can prove that 3-parameter families cutting iy Bi or
Y%+ transversally can be brought - up to C*-equivalence - into a normal form .

This normal form is :

a
Xy = Y5s + (&12° + (N + py (V)

+y(v(A) + b(A)z + €2® + 23h(z, N)) + y2Q($’y’)\)){;% (3.17)

where €15 = £1, 11(A), p2(A), v(A), h(z, N) (with 1(0) = 20) = »(0) = 0,5(0) > 0)
are C'°-functions and @ is a C®-function of order N in (z,y, ) , where N is arbi-

trarily high , but given a priori .

The transversality condition of the mapping ((z,y),A) — 74X,(z,y) with respect
to X3 p amounts to

D(p1, pa,v)
_—_—_D(/\u ™, /\3)(0) #0 (3.18)

Using this normal form theory we can show that every quadratic nilpotent saddle

or elliptic point of codimension 3 has a quadratic generic unfolding.

THEOREM 3

(1) The 3-parameter family

d
Ej-=g,f+a:v.:2—+—b:11:y+cyr2

S(f\hf\z,f\a) : dy (3.19)
= =M e+ Aoy +eay + iy
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with ae < 0,b # Za-e)f and e # —2a is a generic unfolding of a nilpotent
e

saddle of codimension 3 .

(2) The 3-parameter family

dz 5 9
Ezy—i—az + bzy + cy

E(l/\].sAZV\a) : dy (3-20)
i A+ Aoz 4 Agy + exy + fy

with ae > 0,b # il

nilpotent elliptic point of codimension 3 .

and e # a,2a and 3a is a generic unfolding of a

(3) The 3-parameter family

dz 4 9
E:y-}-am + bzy + cy

E(z'\lr/\h/\a): dy (3.21)
= = AL+ Aoz + Asz? + azy + fy?

with b # f is a generic unfolding of a nilpotent elliptic point of codimension
8

Proof :
Before starting the proof we give the reduction of a family X, - cutting 3.

transversally - into normal form :
9 3
Xy = ygo+(ar’ +m(d)z +m()
9 .0 2 Y
+y(v(A) + b(A)z + e22” + 2°h(z, V) + ¥*Q(z, ¥, )‘))35 (3.22)

where 15 = £1, p3(A), sa(A), (M), (2, A) (with 1(0) = 2(0) = #(0) = 0, b(0) > 0)
are C*-functions and @ is a C*-function of order N in (z,y,)) , where N is arbi-

trarily high , but given a priori .
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Although this reduction is a known technique we recall it here because it is of fun-
damental importance for the proof of the theorem . We give this conversion to
the normal form in successive steps , prescribing each time for which it becomes
necessary , the addition of the supplementary required hypothesis . For further in-
formation we refer to [DRS2] . Let us start with a k-parameter family X, with the
unique hypothesis :

(Hyp 1) 71X,(0) is linearly conjugate to yai.
T

So , up to linearly conjugacy , we may suppose : 7' Xo(0) = y=— . As we know from
[T3] , the family X can be put - by C*®-equivalence - in the f?)llowing normal form:

0 9, 0
Vs + (F@ )+ 30 )+ Qe Vg + Qe Ny (323)

where @, and @, are of order O((||m|| + ||A]|)"V) for a certain N that one can chose
arbitrarily big , m = (z,y) , F and G are C*-functions in (z, A) and we may suppose
that they are polynomial of degree N in z .

The A-dependent coordinate change :

{ X=z
Y =y4Qi(z,y,A)

transforms the family (3.23) into

Ya—i- +(F(X, M)+ YG(X, ) + Q4(X,Y, )

4
%

where @ = O((|IM]| + [ADY-) , M = (X,Y).

Changing N — 1 into N , (X,Y) into (z,y) and omitting the prime , we find back
the expression (3.23) with )y = 0 . We proceed by developping @, in powers of y :

Qa2(z,y,A) = Fa,A) +yG(a, A) + y*Q(z,y, A)
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So , with an evident change of notation , we obtain that X) is C*®°-equivalent to :

9 | (Flanh) +96(E0) 57005 1, )2

3.24
Y3, 7y (3.24)

where @ is of order N , F(0,0) = g—F(O,O) = G(0,0) =0,
h

Next we introduce a second hypothesis :

2F 33

(Hyp 2) (0 0)= ’(9 3(0 0) # 0 and 6__(0 0) # 0.

Now we reduce F(z, ) to ;2% + py(A)x + py(N) (e1 =£1).

Hypothesis 2 implies that F(z,0)dz is the differential of a function of order 4 at
z = 0. Such a function admits as universal unfolding :
g z?
€1I + #27 +
3
PE 0
Hence , there exists a differentiable mapping u(A) = (u1(A), #2())) and a family of

where the term ¢; = £1 has the sign of
d1ﬂ'eomorph1sms depending on the parameter X :
U(z) = u(A)z + O(2®) + O(||A[])
such that
DA Tz, W = (65 -+ 05 + s (N
with p1(0) = p(0) = 0.

Performing the C*™-equivalence U, : (z,3) — (Ux(z),y) on the dual family
wy =ydy — (F(z,A) + yG(z,A) + y*Q(z,y, A))dz , we get :

wy ~ ydy — [a2® + 1p(N)a + 1 (A) + yG(z,A) + y*Q(z,y, \)]de

where ~ stands for C'*°-equivalence .
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As Gdz = U3(Gdz) , Qdx = Uz(Qdz) , U(z,0) = u(0)z + O(z?) and
U(z,A) = O(Jz| + ||A]]), the functions G, Q have the same properties as above :

;%(0,0) # 0 and Q@ = O(([lm| + |INIDY).

So , with an obvious change of notation we have :

3} 0
X, ~ 5o + (€12° + pa( Nz + (X)) + yG(z, ) + ¥2Q(z, y, /\))a—y (3.25)
: oG ;
with G(0,0) = 0, 5;-(0,0) # 0 and @ is of order N.
0*G oG <
(Hyp 3) —5-:52—(0,0) # 0 and %—(0,0) # 2v/2 in case ¢ = —1

The next step in the conversion to normal form is the reduction to
G(z,A) = v(A) + b(A)z + e22° + O(2®) with b(0) = b > 0 and €, = +1.

Let G(z,A) = v(A) + b(A)z + c(A)2? + O(23).
We have that v(0) = 0,5(0) 3 0 and ¢(0) #0 .

Consider the linear coordinate change , depending on the parameter X :
Uy:(z,y) = (a(M)z,8())y) . Applying it to X, we obtain :

d 1
g —(e10%2® + ppazx + py

(B Xy) = p 53;+ﬁ

+By(v + abz + o*cx® + O(z?)) + B*y*Q(axz, By, /\))%

Taking |8] = o? , sign(a)=sign(3)=sign(b(0)) and |a(A)| = h:%)\)', we see that Ul is

a C*°-equivalence which transforms the family X, into a new one with the desired

properties . The transversality condition of j*X),(m) with respect to £3, amounts
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to :

D(p1, e, v)
D)@ #0 (3.26)

So , to prove the genericity of the family

d
d—:=y+ax2+b$y+cy2
Sadas) e
E:/\1+A2$+A3y+€$y+fy2
(20— e)f

with ae < 0,b #

e
Sy into the normal form (3.22) the mapping R® — R X — (u1()), u2(N), v(A))
satisfies the condition

and e # —2a we have to show that bringing the family

D(p1, pa, v)
D(Ay, Az, v) (0)#0

To compute this determinant we treat every parameter seperately .

Consider the family

d
d_j =y+a$2+b$y+cy2
d (3.27)
"(% = Ay + ezy + fy2
Using the coordinate transformation
2= 1,0, V) = 23yz _ bt s
2 3
y=tz(U, V)
with
: b+2
t(U,V)= U+ ( if)U2 +CUV+i_g—“QU2V
| e 32f t 2] el (3.28)
2 2
W(OV) = V—alt+ UV —aft + Ly
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and a change of coordinates of the formu = U , v = V + O(|U, V|*) one checks that
system (3.27) is C'*°-conjugate to

¢ d_u _
at ~ "’
$ dv 2 3 4
;i—t- = —-G.Agu — eau +O(u )+v(,\3+(e+2a)u
[ (f(e =2a) + be + O(X3))u? + O(u?)) + v*O(Ju, v[?)

Now we consider the corresponding family of dual forms :

vdv—(—aau® —eau®+0(u'))du—v(As+(e+2a)u+0(u?))du—v?O(|u, v|*)du (3.29)

Denote f(u,A3) = —adsu®/3 — eau/4 + O(u®) .
Using an adapted form of the preparation theorem ([T2]) we find a coordinate change
of the form

u=®(U,A3) = ¢1(Aa)U + ¢2(A3)U? + O(U?)

with ¢,(0) = (—ae)~'/* such that

F(R(U, A3), As) = U /4 + n(Xs)U°/3

with

CEA:_J,

n(As) = “Caeyla + O(A3)

Performing this coordinate transformation to the family (3.28) we get

vdv — (U3 + 7’,‘()\3)U2)C[U — 'U(/\gqﬁl(/\g;) + (2)\3452()\3)

+(e + 2a)$1(A3))U + O(U?))dU — v*O(|U, v|?))dU
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Further we use the translation

and we obtain
sds — (r® — (n(X3))’r/3 + 2(n)a))>/2T)dr — s(Aad1(As) — (2Asp2(A3) +

e +2a)(61(Xs)")n(Xs) /3 + O((Xs)?) + O(r))dr ~ s*O(|r, s|*)dr

From tlllis we can con;:lude that g—i;(O) =0, g—';z(O) =0 and -(%I-/;(O) is proportional
e+ Z2a

to (—ae)1/4(1 ~ 3a )

Next we consider the family

Z—j:y-}—a:{:z—}—bmy-kcyz
p (3.30)
d—i’ = Az + exy + fy?

Using the coordinate transformation

z=14(U, V) + XU

Yy = tg(U, V) + /\QCUz -+ 12/\"2'(}3

and a coordinate change of the form v = U ,v = V + O(|U,V|*) , one checks that
system (3.30) is C*°-conjugate to

7 d_u _
a ="
d b—f
4 E?‘= Ayu + fAzu:’—(ae+O(A2))u3+0(u4)

+v((e+2a + O(A\))u + (fle — 2a) + eb + O(A))u? + O(u?))

+v20(|u,v|?)
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Now we consider the corresponding family of dual forms

(b —f)
2

vdv — (Au + Au? + (—ae + O(X))® + O(ut))du — vO(|u,v|)du  (3.31)

2 _ 3 4
Denote f(u,\;) = ,\2% 4 ¢ . f))\z% + (~ae + O(Az))% +0().

Using the preparation theorem we find a coordinate change of the form

u=®(U,A) = ¢ (\)U + O(U?)

with ¢,(0) = (—ae)'/* such that

4 3 2
f((I)(Ua )‘2)1 )\2) = %"‘ + 52()\2)'[;;— + gl(AZ)U?
with
600) = oo + OL) £22) = O()

Performing this coordinate transformation to the family (3.31) we get

vdv — (U% + £(A)U? + &(N)U)dU — vO(|Ag, U, v|)dU

Further we use the translation

and we obtain

sds = (r° + (&(X2) + O(A)r + O(A}))dr — sO(|Ag, 7, s )dr

From this we may conclude that %(0) =0 and
2

Ora

o, (0) is proportional to (—ae)'/2.

46



To conclude we consider the family

%:y+aw2+b:¢y+cy2
dy (3.32)
i AL+ exy + fy?

Using the coordinate transformation

== P
y=c\r+s

followed by the transformation

' i) 2(2f + 3b)A
r= tl(U,V)-|—3CQ 72 4 < f'g Py
{ s= tz(U,V)—C(f_i_—Qb),\l—Uz—2C2/\1UV

_C(Sf2 + 9bf — 4ce + 2ac + b*)\
\ 6

US

and a coordinate change of the formu = U , v =V + O(A)O(|U,V |*) + O(|U, V' |*)
one checks that system (3.32) is C*°-conjugate to

4 d_u _
a ="
d
E? = M = Mfu+ (ced + O(A2))u? — (ae + O(A))u® + O(u?)

v(O(A) + ge + 2a+ O(M\;))u + (f(e — 2a) + be + O(A))u? + O(u?))

+0*(O(M)O(fu,v]) + O(Ju, vf?)

—(ae + O(M))u® + O(ut))du — vO(|Ay, u, v|)du (3.33)
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Denote f(u,A;) = \ju — /\;fuz + ce)\lu3 ~ & O(AI)O(U") + O(u®).

Using the preparation theorem we find a coordinate change of the form

= ®(U, ) = 6(A)U + O(U?)

with ¢;(0) = (—ae)~1/* such that

F@U M) A) = GO + 00T + 60T+ L
with
Co(A1) = (_:_'%W +0(A}) G(A) = O(A1) = Ga(M)

Performing this coordinate transformation to the family (2.33) we get

vdv — (U° + G(A)U? + G(M)U + Go(M))dU — vO(|A, U, v|)dU

Further we use the translation

and we obtain

sds — (1% 4+ O(M)r + Go(A1) + O(A2))dr — sO(|Ay, 7y s|)dr

and we may conclude that (0 is proportional to (—ae)~1/4,

N
This ends the genericity of the family Sy, 5p,0)-

The proof of the genericity of the family E(lA A2,0) With e # a goes in the same
way . In case e = a the family E(h Xa,)s) 18 Dot generic . One easily checks that

O Opa oy Ov
a/\;,(ﬂ a)\a(o)_a_@(

0) = 0 . Therefore we consider the family E3\ g o)
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Using the transformation

I = tl(U, V)
y=t(U, V) + cA3U?
with ¢, (U, V) , t2(U, V) of (3.28) (with e = a) and a change of coordinates of the

formu = U , v =V + O(|U,V|*) one easily checks that the family E(zo,o,xa) is

C'*-conjugate to

¢ ilf _
dt
@ Azu? — (a® — bA3)u® + O(u?)
! dt
+u(3au + Ll b); 2ok O(u?))
+v?O(Ju, v[?)

Now we consider the corresponding family of dual forms

vdy — (/\3112 — (a2 — b)\g,)ua + O(u"))du

(f — b)a + QC)\aug i O(ua))du _ v2O(IU,U|2)du (3.34)

—v(3au

2 b\ A
Denote f(u,As) = 2 Sut 4 ?Su?’ + O(x®).

Using the preparation theorem we find the existence of a coordinate change of the

form

u=0(U,\) = $(\a)U + O(U?)

with ¢;(0) = (a*)*/* such that

4 3
f((p(Uv /\3)1 /\3) = _"%— + T](A:})%—

with p(A3) = (a?)~3%); + O(A2) .
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Performing this transformation to the family (3.34) we get

vdv — (=U® + n(As)U)dU = v(3ad?(As)U + O(U?))dU — v O(|U, v[?)dU

Further we use the translation

and we obtain

sds — (= + 2"(?:\3) 4 2”‘(;;3)3)& — s(ag?(Aa)1(As) + O(A2) + O(r))dr — s20(|r, s|*)dr

3,&1 8;1.2 dv

(0) (0) =0 and a—( ) # 0 . For the parameters A\; and

A2 the proofs are snmla,r as m the saddle case , and so we may conclude that the

So we see that

family B, ,, \, Is generic .

3.1.3 Nilpotent saddles , elliptic points and saddle-nodes

of codimension 4

In quadratic systems there are also singularities with nilpotent 1-jet which are how-
ever more degenerate than the preceding ones , as we have seen in chapter 1. More
precise , one encounters singularities which belong to one of the following submani-
folds (of codimension 4 in the space of all germs of singular vector fields at 0 € IR?):

(1)

254. = {X]7*X(0) ~ wgam + (1‘ +y(+a +f$3))8%’f € IR}.

Such singularities are called nilpotent saddles of codimension 4 .
(2)

The = {XIJ*X(0) ~yg + (<2 +y(2VEs +47 + fa%) ] € )
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Such singularities are called nilpotent elliptic points of codimension 4 and
type 1.

(3)

. d ad
Zgwe = {XJ*XO) ~ g0+ (2" +y(be £+ f27) 75> 0, f € R},

Such singularities are called nilpotent saddle-nodes of codimension 4 .

Similarly as before we call a 4-parameter family X, with X, € Dis, T2s or Dins
1

generic if the mapping ((z,y),A) — j*X\(z,y) is transversal with the corresponding

submanifold. (As said above we do not look at the elliptic points of codimension 4

and type 2.)

One can show that 4-parameter families X cutting X34, E“Eli or L% .. transversally

can be brought - up to C*°-equivalence - into the following normal forms :

1) If X, € £%. , this normal form reads

Vg + (& (N + () + Y () + b\

a
+e2? + 2%h(z, ) + v2Q(z, v, /\))5; (3.35)
where €2 = %1, 1(A), p2(A), v(A), b(A) (with u1(0) = u2(0) = v(0) = b(0) = 0)
are C*°-functions and @ is a C*°-function of order N in (a9, A):
The genericity of the family amounts to

D(#I’HZ,V: b)
D(/\lu A?a /\3’ )‘4)

40 (3.36)

(2) If Xo € X4 , this normal form reads
1

Vg (2 4 Ve + i (3) + y(02) + BN

Tea? + 2*h(z A)) + 52Q(e, y, A))% (3.37)
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where €2 = F1, u1(A), p2(A), v(A), 6(N) ( with ,(0) = p(0) = »(0) =0,
b(0) = 21/2 ) are C*-functions and @ is a C*®-function of order N in (@954 ):
The genericity of the family amounts to

D(#laﬂhua b)
D(A1, Az, Az, Ay)

#0 (3.38)

(3) If Xy € £ys , this normal form reads

Ve + (@ + us()e 4 (e + () +1(v() + B)a

+ere? + 2o, 1)+ Qa 0, N g (3:39)
where € = 1, 1 (A), g2(A), v(A), b(A) (with p1(0) = p2(0) = pa(0) = v(0) = 0,
b(0) > 0) are C*-functions and Q is a C®-function of order N in (.37, M)
The genericity of the family amounts to

D(#la#%ﬂ.‘h U)
0 3.40
'D(’\h/\%ASa/\*l) :}é ( )

Using these normal forms one can prove that every quadratic nilpotent saddle of
codimension 4 and nilpotent saddle-node of codimension 4 has a generic unfolding

among the quadratic systems .

THEOREM 5

(1) The 4-parameter family

( dx 2 2
- yter + bzy + cy
Sowrarsan s g (3.41)
e A+ Aoz + Ay + (A — 2a)zy + fy?

with a # 0 and b+ 2f # 0 is a generic unfolding of a nilpotent saddle of

codimension 4 .



(2) The 4-parameter family

dz
pr =y + az® 4+ bzy + cy?

SN()\],/\Q,)\,;,X;) : (3‘42)
7 Y=+ e+ Doy + Maa? + fy*
with a # 0 and f # 0 is a generic unfolding of a nilpotent saddle-node of

codimension 4.

Proof :

We only prove case (1) . For case (2) we refer to the appendix of this section.

To prove the genericity of the family Sy, 1,1,,1,) we have to show that bringing this
family into the normal form (3.35) condition (3.36) is satisfied. Again we treat the
parameters separately.

Using the transformation

z = t;(U, V) — cAU?/6
=6L(U, V) + c\U?V/2
with ¢,(U,V) , t,(U, V) of (3.28) (with e=-2a) and a change of coordinates of the

formu=U,v =V +O(|U,V|') we get that the family S(o,0,0,,) is C*°-conjugated
to

(du
a - "
dv
= (2a® — ady)u® + O(u?) + v(Aqu
_2(b+ f)a ; /\4(b =+ f)u2 L O(UB)) + sz(iu,via)
b
From this it is readily seen that g";l (D= g‘;z(ﬂ) 8(3; (0) =0 and ”(?'“'( 0) # 0.

For the parameters A\; , A; and A3 the proofs are exa,ctly the same as m the case of

the nilpotent saddle of codimension 3.
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3.1.4 On the versal unfolding of the elliptic point of codi-
mension 4 and type 1

In this section we will consider all elliptic points of codimension 4 and type 1 as
obtained in theorem 4 of chapter 1 and we will show that such a singularity can
never have a quadratic versal unfolding. This fact does not really need to be further
argumented since we already know that a quadratic nilpotent focus does not occur,

while near the elliptic point of codimension 4 and type 1 (as a general system) one

obtains nilpotent foci merely by making the coefficient before acya——in the normal
y

form (3.37) less than 2+/2.

Nevertheless we will make the necessary normal form calculations in order to show

that this coeflicient before 2 always undergoes a generic fold near such an ellip-
Y

tic point of codimension 4 and type 1.

As seen in theorem 4 of chapter 1 the expression of these quadratic vector fields is :

d
d—f:y—f—a:vznf-b:ry—i—cg,t2
(3.43)

dy
-~ =9 2
— = 2azy + fy

with @ # 0,b # 0 . We may suppose a > 0 .

Let us consider quadratic perturbations having at the origin a singularity with 1-jet

U and which is not of cusp type.
dz 5 5
E’i" :y+(a+a‘20)1' +(b+au):cy+(c+a02)y
dy (3.44)
P (2a + bun)zy + (f + bo2)y®

We perform the coordinate change
U=

v=y+ (a+ap)e®+ (b+an)zy + (¢ + aog)y?
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and get :

(3.45)
— = —czou® + O(u?) + v(enu+ O(u?)) +0°0(1)

with
cso = 2a® + a(by; + 2ag0) + azbi;
(3.46)

e = 4a+ by + 2ag

Using Macsyma it is easy to show that system (3.45) is C*-conjugate to :
du

—_— =7

dt

d
Etti = —caor® + O(u?) + v(enu + O(u?)) + v20(Ju, v[?)

From now on we work with the family of dual forms:

vdv + (czou® + O(u'))du — v(epru + O(u?))du — v?O(|u, v|*)du (3.47)

There exists a transformation of the form
T e céé‘lu + O(u?)
s=uv

which changes the family (3.47) into

sds + r’dr — s((cu1/vex)r + O(r?))dr — s20(|r, s|?)dr

Direct calculation shows that the coefficient of —rsdr, c11/+/cs , is always greater

or equal than 2v/2. Moreover , the Taylor expansion of this coefficient is given by:

2(by — 2ay)?
2V2+ - 1116(12 G O([br1, azo”)

So we see that the coefficient undergoes a fold.
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We end by proving the genericity of this fold. For this purpose we have to show
that bringing the family

d

;ii:-zy—kamz—}—bzy-l-cyz

dy_
dt

Xy
M+ Aoz + Agy + 2azy + fy?

with A = (Aq, Az, A3) into the normal form

ya_az = [=2” + pa (Ve + (V) + y(v(A) + (V)7 £ 27 + 2°h(z, \)) + v*Q(z, v, mﬁ%

the map IR® — IR® |, A — (u1(\), pa(A), v())) satisfies the condition

D(.U‘la L2, ‘V)
D0, A3 0 70

The proof is completely similar to the proof of theorem 3 .
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Appendix
Transformations used in the proof of the genericity of the family Cir )

For the parameter A, we used the transformation:

{ x=t,(UV)—cAU%/2

y= t?(U: V)
with
t(U,V)=U+cUV + (b+ f)U?/2
(3.48)
(U, V)=V —alU?+ fUV
For the parameter \; we used the translation
1 ==
y=chu+tv
followed by the transformation
u = tl(U, V)
v = tz(U, V)
with ¢,(U, V) and ¢,(U, V) of (3.48).
Transformations used in the proof of the genericity of the family £ M
For the parameters A, and A3 we used the transformation:
T = tl(U, V)
(3.49)
¥y = t2(Uv V)
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with

[ t,(U, V) =

t(U,V) =

U+ (b+ U2+ (2c — a(b+2f))UV/3

(6% — 2ac+ 3bf + 2f1)U%/6 + (bc — 2ab® + (4¢c — 6ab) f — 4af?)U?V/6
—c(4af + 2¢ 4+ 2ab)UV?/3 + (5413 + (99b + 80a?) f2

(—118ac + 54b% + 80a%b) f + 128¢* — 14abe + 95° + 20a2b?)U*/216
(—12af° + 12(c — 2ab) f2 + (3(b + 4a?)c — 15ab?) f

6a’bc — 3ab®)URV/18 + (48a%f° + (96a2b — 384ac) f?

(—17¢* — 30abc + 5a%b?) f — 8bc? — Tab?c + a*b°)U*V?/18

(4acf(af + c+ ab) + ¢ + abe(2¢ + ab))UV3/9

V + AU? — fUV — (a(b+2f) + ¢)V?/3

(2¢ — 5af — ab)U3/3 + (4af? + 2a%b + 3f% — ac)U?V/3
—2f(ab+c+af)UV?/3 — (5Taf? + 12(2¢c — 3ab — 4a®) f

6(b + 6a®)c + 15ab® + 24a3b)U*/36

(2713 + 94a*f? — (41ac + 67a%b) f — 8¢% — 16abe + 10a6*)U3V/27
—(18af® + (9c + 9ab + 4a®) f? + 2a* f(2ab — Tc) f — 8ac?

—~Ta’be + a®0*)U?V? /9 + (4af?(af + c + ab)

(¢ + 2abe + a®?) fYUV?/9

For the parameter A; we used the translation

5=
y=—(2af —2c+ab)\u/3 +v
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followed by the transformation

{ u = t1(U, V)
v =1t(U,V)

with ¢ (U, V) and t3(U, V) of (3.49)

Transformations used in the proof of the genericity of the family SN\, x,.3,2)-

For the parameter Ay we used the transformation
r=t(U,V)
{ y =t(U,V)
with
[ (U, V)= U+ (f+bU2+cUV + (2f* + 3bf — dac + b*)U3/6
c(b+2f)UV/2 + (b — dabe + 602 f — 12acf + 11bf2 + 6f3)U*/24
4 (b*c + 2a%c + 4bef + 6cf?)U3V/6

(U, V)= V —aU? + fUV — afU? + f2UV

+a(dac — b* — 11 f)U*/12 + f3U3V

\

(3.50)

For the parameter A3 we used the transformation
{ z=t(U,V)—cAU?/2 —c(b+ f)AU3/3

y= t?(U'} V)

with £,(U, V) and t,(U, V') of (3.50).

For the parameter A\; we used the transformation

T = t](U, V)
y = t2(U, V) + e\ U?

with ¢;(U, V) and (U, V) of (3.50).
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For the parameter A; we used the translation

r=u
y=chu+v

followed by the transformation

{ u=1t,(U,V)

v=ty(U, V) + chU?

with ¢, (U, V) and ¢,(U, V) of (3.50).
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3.2 Semi-hyperbolic bifurcations

In this section we treat the semi-hyperbolic bifurcation . By this we mean an
unfolding of a semi-hyperbolic singularity X of finite codimension . We will show
that every such quadratic singularity has a quadratic versal unfolding . The standard
model to which all codimension k semi-hyperbolic bifurcations can be reduced to by

C°-equivalence is :

0 0
X:“t (vo+wnz+...+vp_2*! :l:;ck”"l)b-g—: :I:y-gg

(3.51)
where the (vg,...,v,;) are independent parameters .

As is well known the bifurcation diagrams of these bifurcations only deal with sin-
gularities and are given by catastrophy theory . See figures 3.5-3.7.

Semi-hyperbolic bifurcation of codimension 1

0 a
2 s —_—
(z +)\)3I+yay

i\t o
b < <

($+A);9%—ya%
RO WL
[ MF ol



Semi-hyperbolic bifurcation of codimension 2

0 0
3 e e
=y +)\a:+,u)6$:l:yay

there are four cases , of which we represent the (+,-)-one :

b A

fig. 3.6
Semi-hyperbolic bifurcation of codimension 3

g 0
4 2 £ D
(z* + Az +;,c:c+u)a$ :tyay
The bifurcation diagram looks as follows :
4
A =H
i
I
fig. 3.7

Vector fields in regions LILIII have respectively 0,2 and 4 singularities.
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We proceed by recalling that a C*°-family X, with X semi-hyperbolic of codimen-

sion k can be brought -up to C'"*®-conjugacy - into the normal form :

k+1 ) P k ] P
2 e+ Qe g, (S bW+ Qalew e (652)

with a;(A), bi(A), Q;(z,y, A) of class C® ; a;(0) = 0,Vi € {0,...,k} , apy1 # 0,
bo(0) > 0 and Q;(z,y, A) = O(||z, y[[**?*) + O(||A||*).

Proposition
Let X, be a k-parameter unfolding so that the mapping A : R* — IRF |
A = (ag(A),...,ax-1(A)) has mazimal rank at the origin .

Then X is versal , i.e X is (C°, C°)-equivalent to XEF .

Proof :

Multiplying (3.52) with the function g(z,X) = [TF,b:()A)z']™! , it is easily seen
that X is C*®-equivalent to :

o k+1 ‘ B d . o
Xa(z,y) = D ei( M)z’ + Qi(z, v, Mgl £y +Qs(=,, )‘)]@

=0

where Qi(z,y, ) = O(||z, y|[*+*) + O(||A[]).

Using the expansion g(z, \) = Z;‘:é g;(Mz? + O(2**?) , we find that

ai(A) = oo 9i(M)aii(N) .

It is readily seen that «;(0) =0, Vi € {0,...,k} , ax4+1(0) # 0 and the mapping
A = (ag(A),...,ak_1())) has maximal rank at the 0.

To continue we make a reduction to the center manifold . For any r € IN we know
the existence of a C™*'-center manifold W* . Since this manifold is tangent at the
origin (z,y,A) = (0,0,0) to the (z,))-space , we can approximate it as a (local)
graph

We = {(z,y,)) € R® x R¥y = h(z,\)}
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where h is defined on some neighborhood U C IR x IR of (0,0) € IR x IR* with
h(0,0) = 0 and Dhe) = O .
We may approximate h as a Taylor series

h(z,A) = 3 hi(A)ad,

i20

Following a same reasoning for the vector field X, as in the proof of theorem 1 of
chapter 2 , we find that A;(0) =0 Vj € {0,...,k+1}.

Next we consider the reduction of X,(z,y) to the center manifold W¢ :

d
dz
= [Bo(A) + B1(M)z + ... 4 Be(A)z* + B (A)z*+! + O(-"?k“)]‘(%

Yi(z) = f(=z,})

Using the fact that A(z, A) = O(||A||?) + O(||A||)O(z) + O(z**+!) , we find that
Bo(0) = ... = 3x(0) =0, Br41(0) # 0 and that the mapping A — (Bo(R),. .., Be-1(}))

has maximal rank at the origin .

Using the division theorem of Lassalle [Las] and a same reasoning as in theorem 6.3
of [Brd] we find that

f(2,2) = £Q(z, N[z + e (N)z* + ... + p1(V)z + o(N)]

with Q(z, ), p;()) of class C' , [ = [r;k(i—;’ll] @, it; are defined on a neighborhood

of the origin , with @(0,0) > 0 and #;(0) =0, Vi.

Since A — (By(A),...,Bk-1(1)) has maximal rank at the origin , one easily checks

AT |

that the map A — (go(A),..., gk—1(\)) has maximal rank at the origin .

So f(m,/\)g—m is C%equivalent to

a
(= + e (N)2* + 2 L (Ve + ,uo(/\))%
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. X y s, B
To conclude we use the translation z = u — “T:-(Tl to transform this expression into

( we write x instead of u ) :

. d
:1':(59{"{-1 + 6k_1(/\)zk_l +...+ 60(/\))5

where 6;(A) = pu;(A) + O(\?%).

So , using a theorem of Palis-Takens (see section 1.2.2) , we may conclude that X,
is (C°, C°)-equivalent to the family X%,

THEOREM 6

(1) The 1-parameter family

d

—% = Ao + az?® + bzy + cy?

SHpgy with a # 0 (3.53)
4y _ 2 2

7 = ytdet tezy+ fy

is a versal semi-hyperbolic bifurcation of codimension 1 .

(2) The 2-parameter family

d
d—jzz\0+)\1x+b3:y+cy2

d
=y +da + ey + [y

SH()\O.Al) : wzth bd 3‘5 0 (354)

is a versal semi-hyperbolic bifurcation of codimension 2 .

(3) The 3-parameter family

( d: : '
d—: = Ao + Mz + Apz? + cyl
SH(AQ,M,/\Q) s dy with cd 75 0 (355)
o Syt At eay+ fy

is a versal semi-hyperbolic bifurcation of codimension 3 .
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Proof :

Instead of doing the normal form calculations , we prove this theorem using the
center manifold reduction . We only give the proof of (3) , the proofs of (1) and
(2) go in the same way . We know that the center manifold can be represented as
a local graph

y = h(z,A) = ho(A) + hi(A)z + ho(V)z? 4+ O(z?)

One easily checks that ho(A) = O(||A|12), h1(A) = O(J|A|]) and ky(0) = —d

(see chapter 2) . For the behaviour on the center manifold we find :
T = Ao+ Mz + Az? + ch(z, A)?
= (Ao + ch3(A)) + (A1 + 2cho(A)hi(N))z + (Mg + 2¢ho(A)ha(A)z? + O(2?)

= f(z, )

with f(z,0) = cd’z* + O(2®) (see chapter 2).

From the previous theorem it is clear that this ends the proof .
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3.3 Hopf-Takens bifurcations

In this section we study the C'*°-unfoldings of singularities of finite codimension
whose 1-jet has a pair of non-zero purely imaginary eigenvalues . We will show that
every such quadratic singularity has a versal unfolding among the quadratic vector
fields. The standard model to which all codimension & Hopf-Takens bifurcation can
be reduced to by (weak-C*,C*)-equivalence is :

X = “y Yar (£ + 92 + pe-a(a® + 97+
Fi(e +97) + o) e +y) + Ol ) (3.56)
1 0 aw 3y ? "
where the (uo, ..., ptx-1) are independent parameters . We call the families X the

'standard generalized Hopf bifurcations’ or the ’standard Hopf-Takens bifurcations’.

Definition

Two k-parameter families X, and Y, are called (weak-C®, C*)-equivalent if there
exist a neighborhood U of 0 € IR? , C*° local diffeomorphisms k,, defined on U and
a C*-diffeomorphism ¢ defined on a neighborhood V of 0 € R* such that for each
p €V, h, sends singularities of X, to singularities of Y;(u) preserving the type (sink
or source) and sends closed orbits of X, to closed orbits of Y, () also preserving their

repelling or attracting nature .

As is well known the bifurcation diagrams of these bifurcations only deal with the

number of limit cycles around a singular point . See figures 3.8-3.10.
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Codimension 1 : The Andronov-Hopf bifurcation

0

e, 3} 5 . g a
“’a_y_yEEJ“((‘“ +y )+/\)($5:c-+y0_y)

Qee

0

) . a9
255 ~Vgz ~ (@4 + N(apm +y

a7
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Codimension 2 : The Hopf-Takens bifurcation of codimension 2
9 9 ST L 2.2 9 9
25y ~Vgs T4 +mle ¥+ mo)(zgo tyg)

\
b, "

® | Y (@

fig 3.9

Codimension 3 : The Hopf-Takens bifurcation of codimension 3
4 9 2 .03 g ;a3 3 5 . 9 9
25y Yo T(E FY) (e +90) + (e +y) + o) (e +yay)
The bifurcation diagram looks as follows :

m

&= 0y

v

fig 3.10
In the regions LITLIIT,IV the vector fields have respectively 1,2,0 or 3 limit cycles.
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We proceed by recalling that a C*-family X, with X, a Hopf-Takens bifurcation of

codimension k can be brought - up to C*-conjugacy - into the normal form :

b (e (20 0
B BOE? +37) )6y, —vg) +

: TN T A A
[Zaj(/\)(x +y )J](“'”“é;'”a_y) + X(2,9,1) (3.57)
with ao(0) = ... = a4_1 =0, a;(0) # 0, b(0) > 0 and X = O(||z, y||?*+?).

Proposition

Let X be a k-parameter unfolding so that the mapping A : RF — IR* ,
A — (ag(A),...,ak-1())) has mazimal rank at the origin .

Then X is versal , i.e Xy is (weak-C*® , C* )-equivalent to in .

Proof :

In order to check the transversality of the family X, we repeat the proof of [T2].
Each member in the family (3.57) can be blown-up and we obtain a C* k-parameter
family Y of vector fields on S x IR of the form ;

ad d
Y = 6(617'1’\)%_{'@(917'1/\)5
= (Bo(A) + B2 4 ..+ B\t 4 r2HIg(6, 7 0)) D (3.58)

90
F(ao(A) + ar(A)r? + ...+ ap(M)r?* + 720, 7, X)) r—

The topological properties of the family (3.56) in the neighborhood of {r = 0} do not
change if we multiply by [b(6,r, A)]™! , since this function is non-zero and positive
on some neighborhood of {r =0} x {0} in S* x R x IR* . We obtain :

d

(Co(A) + ea(N)r? + oo+ e(W)r ¥ + e 410, M) )r == (3.59)

Y= or
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with ¢(0) = ... = ¢4-1(0) = 0, cx(0) # 0 and the mapping A — (c,(A), ..., cx-1(A))

has maximal rank at the origin .

Up to some C'*-coordinate change ® , preserving the parameter , we can put this
family in such a form that the closed orbits ( near the origin ) of 0.(Y2) = Y; are
of the form {r = r,} with r, € R. If ¢y, .(0,r, A) denotes the flow of Y; , and
¢%,.4(0,7, ) the r-component , we define ® by :

1 2r .
o(0,r,\) = (4, 7 ) By, (0,7, A)du, A)

Since D®(0,0,0) = Id , ® is a local C*-diffeomorphism at (0,0,0) , and we get :

Y; d + (do(A) + dr(M)r? + ... + di(M)r + r2E ¢ (0, r, )\))rg;

~ o0
with do(0) = ... = di_1(0) = 0, di(0) # 0 and the mapping A — (d,(A),... ydik—1(A))
has maximal rank at the origin .
The Poincaré -mapping of Y3 is of the form :

PA, 1) = (14 a,(A))r + aa(A)r® + ..+ g (A)r#F 4 p2642R() 1)
with @,(0) = ... = a4_1(0) = 0, ax(0) # 0 and X — (as(A)y- ., ak-1(})) has

maximal rank at the origin .

Let us now consider

D\ r) =r(P(A,r) —r — P(A, =1) —7)

We see that :

(1) D(A\,0) =0

(2) D(A,r) = DX, ~7)

(8) D(A,r,) =0iff r, is the radius of a closed orbit of Y3

(4) D(A, 7o) > (<)0iff P(A,7,) < (>)0
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We call a function with these properties a ’displacement function’ of the unfolding .

D(A,7) = 2a,(A)r? + 200 (A)r* + ... + 200 (A)r?+2 4 P53 R(N )

A displacement function of the standard generalized Hopf bifurcation X% can be
given by:

Di(p,) = ™% 4 1 r™ + L+ puor?

By the Malgrange preparation theorem (for even functions) we know that in some
neighborhood of (r = 0, A = 0) there exists U(\,7) , f.(A),... fi,(}) , all C* and
U(0,0) > 0, such that

DA, r) = UA r)(E£r® 2 + £ + . 4+ fi(A)7? + fo(X)

Since D(A,0) = 0 VA, we necessarily have f,(A) = 0.
Putting po(A) = fi(A), ..., pe-1(A) = fi(A) :

DA r) =Ur)(2r¥ ¥ 4 e (A% 4 4 po(A)r?)

= UM\, r)D%(o(N), . . ., pee1(A), )

It is readily seen that the mapping A — (go(\), ..., gx—1(A)) has maximal rank at
the origin .

From this we may conclude that X, is a versal unfolding .

Using this proposition (and Macsyma) we easily proof that every quadratic Hopf

singularity of finite codimension has a quadratic versal unfolding.

THEOREM 7

(1) The I-parameter family

dz g 9
Ez,uga:—-y-l—a:c + bzy + cy
d
d—?:m-l—pgy-i-d:cz-}—exy—dyz

Hy, (3.60)
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with (a + ¢)(b—2d) # 0 is a versal Hopf-Takens bifurcation of codimension 1.

(2) The 2-parameter family

d
;g- = poz — y + az’ + (2d + py)zy + cy?

H(I‘Ov.‘-‘]) : dy (3'61)
= =z + poy + da? + exy — dy?

with (¢ + ¢)d(e + 2a)(e — 3a — 5c) # 0 is a versal Hopf-Takens bifurcation of

codimension 2 .

(3) The 3-parameter family

d
d_:: = [oZ — Yy + a:c?—l— (2d+,u1)$y +Cy2

H(uo.m.m) : dy (362)
o = &+ poy +da’ + (3a+ Se + p)ay — dy

with (a + c)d(d® + 2¢® + ac) # 0 is a versal Hopf-Takens bifurcation of codi-

mension 3 .

Proof :

The genericity of the family H,, is readily seen.

To prove the genericity of the family Huy,4,) we have to show that bringing the

family into the normal form (3.57) the mapping (go, 1) — (ao(po, 1), a1(to, 111))

has maximal rank at the origin. Therefore we treat every parameter seperately.

Using the coordinate transformation

(2 = u—(d+ u)u?/3 + (a — 2+ e)uv/3 + (d + p1)v?/3
—(€? 4 ce + Tae + 6¢® + 2ac + 4a® + 2dp; + p2)u3/12

—(4d(e + 2a) + p1(4e — 5¢ + Ta))uv/8

{ +(e* — 17ce — 5ae — 6c2 — 22ac + 4a® — 16pyd — Tp?)uv?/24
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[(y= v+ (a+2c—e)u?/3+(2d — p))ww/3 + (2a + ¢ + e)v?/3
(2d(8c + 6a — €) + u1(2e — ¢ + 5a))u®/12

(6ac —4a® — 13ce — 11lac — 9e? — 12dy,; + 3p?)u?v/24

! (8d(e + 2¢ + 4a) + p1(3a + 3¢ — 8e))uv?/24

one easily checks that the family H,,,) is C*-equivalent to

= vt (0t Iuu(u? +7)8
o + 0ol
S =ut (a+ c)uv(u® +v?)/8

From this we may conclude that the family H(,,,,) is generic.

The genericity of the family H(,, ., ;) can be proved in an analogous way . Since

the expressions are rather long we prefer not to include them here.

3.4 Appendix

In this appendix we explain our method by which we construct our generic quadratic

unfoldings. We elucidate the problems we met during the calculations and the way

we solved of them.

The procedure of [DF] by which we construct generic quadratic unfoldings consists

of the next steps : (we treat the case of a nilpotent saddle of codimension 3)

We start with a quadratic vector field S, € £%, and we determine the near-identity

transformation ® such that the 3-jet of ®,(Sy) is transformed into the normal form:

a
y2 + (z® + bzy + :L'zy)—-—

oz dy
with b > 0.
So we find that
d
& y + a? — 2zy
.l @
2 dy
a =
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is transformed into

du
—_ =
Bz +O(Ju, vl*)
E!E = w4+ uv+uv
dt

by the near-identity transformation

N u2+2u3

= Uy — — _

) 2 3
y= v-—u’

Next we apply the transformation to the vector field Sy + S; where

0 7]
Sz(:i?,y) = P2(w: y)g; 5 Q?(‘T"ay)%

with
i+5=2 o i+j=2 o
Pyz,y) = D ayz'y’ and  Qx(z,y)= > byz'y
i+j=0 i+j=0
'z 0 iz 0

By choosing Py(z,y) and Q;(x,y) such that the 2-jet of ®.(S, + S;) already is in
normal form (?7) , we find that the quadratic family

dz

e e 2
Seon: T, y+z° —2zy
a,b,c) - d
(-E: a+bz+cy+(b+c)z? —zy

is transformed into

du

E:
dv

i a+bu+cv+uv+ (3 —4b—6c)u/3 + ulv

v

Slaitiay ¢ +O(Ju, v[*)

by the transformation ®.Then we have to prove the genericity of the family S’{Q,b,c).

The greatest disadvantages of this working method are the following :
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The use of several parameters at the same time complicates the calculations and it
also reduces the surveyability of the expressions considerably.

The required computertime is very long , sometimes more than 24 hours (CPU-time)
on an Apollo 4000.

The above considerations forced us to change our working method. To construct
quadratic generic unfoldings we now proceed as follows: We start with a vector field
SQ c 2354. . f.i.

d
e y+ 2% —2zy
dt
So:
dy
a — T

and we add terms wich correspond to the important terms in the normal form (3.17):
(#1(A), p2(A), v(X)). So we get the quadratic family :

dz g
— = y+2°-2zy
g ) dt
(a:bie) -
dy
F ke a+ bz + cy —zy

In order to prove the genericity of the family Séa'b’ o) We deal with every parameter
seperately . The above method works in general , except for one particular case ,

namely the elliptic point of codimension 3 with @ = e (see theorem 3 of chapter 3).

76



Chapter 4

Generic 4-parameter family on
the plane : unfolding of the

nilpotent saddle of codimension 4.

In this chapter we consider a generic 4-parameter family X, written in the normal
form :
Ve (4 a0+ b e+ 0% (2, 0) + Qe V)
where € = 1, A = (g1, g2, v, b) ,h(z, A) is C=-function , Q(z,y, A) is a C*-function
of order N in (z,y,A) , where N is arbitrarily high .
Remark that one can change ¢ = —1 into € = +1 by means of the coordinate
change (z,y, g1, p2,v,b,t) — (—z,y, —g1, pt2, —v, b, —t). This change is not a C*-
equivalence since we admit a reversal of time . So from now on we work with
€= +1.
In a first section we investigate which local bifurcations occur in the family X, . We
find that there are Hopf singularities of codimension 1 and 2 , semi-hyperbolic bifur-
cations of codimension 1 and 2 , Bogdanov-Takens bifurcations , cusp bifurcations
of codimension 3 and nilpotent saddle point bifurcations of codimension 3. The fact
that there are no foci of codimension 3 leads to our conjecture that 2 is the maxi-
mum number of limit cycles that bifurcate from a nilpotent saddle of codimension
4. It is clear that the b-axis is a line of nilpotent saddle bifurcations of codimension
3. In a second section we propose a bifurcation diagram for the transition between a

nilpotent saddle of codimension 3 with b > 0 and a nilpotent saddle of codimension
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3 with b < 0.

4.1 Local bifurcations

The critical points of X, are given by y = 0 and 2> + pyz + p; =0 .

Let SN be the zero set of the discriminant of this last equation :

SN = {(p1,p2, v, 0)|27pu} + 443 = 0}. We now verify that the critical points are
non-degenerate outside SN.

Let m, = (z,,0) be any critical point . Taking ¢ = z, + X,y = Y we calculate the
2-jet of Xy at m, :

72 X\(m,) = Y@i’ + (=Det(z,, \) X + Tr(zo, \)Y + 32,X?
+(b+ 2z, + 3x2h(2,, A) +m3@(3: M)XY + Q(z.,0 /\)Yz)—(?-—
o o o9 Ga:ﬂ oy oy Y BY

where
{ —Det(z,, ) = 322 + po

Tr(zo,A) = v+ bz, + 22 + 23h(z,, A)

In particular we see that :

-1 _ 0 . ¢
J X)\(mo) = ( —Det(fﬂo,)\) Tr(mo,)\) ) ( y )

The determinant , Det(z,, A) , of the 1-jet is non zero when A ¢ SN and the saddle
or focus/node nature is given by the sign of Det(z,,A) . So the problem reduces to
the study of the roots of the cubic equation : z® 4+ ppx 4+ p; = 0 . There exists 3
non-degenerate points in the region B_ = {27u} + 4p3 < 0} and 1 non-degenerate
point in the region Ry = {27u} + 4u3 > 0} . The nature of these points can be
described as follows :

a focus or node is located between 2 saddles for A € R_ ; there exists a hyperbolic

saddle for A € R, .
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4.1.1 The Hopf singularities

The set of Hopf singularities of any codimension is contained in the set obtained by

elimination of z, from the 2 equations :
{ Tr(zy,A) = v+ bz, + 2% + 23h(z,,A) = 0
T3+ pox, + 1 =0
This is the set of values of A where X, has some critical point (z,,0) with vanishing

trace.

In order to calculate the first Lyapounov coeflicient at the point (z,,0) , we perform
{ = z—uz,
y =y

5}
yg. + (2% + 32,2 + (322 + o)z + y(v + bz + z,) + 2% + 2z, + 2

+2oh(20, A) + (2 + 20 )*h(z + 25, A) = 23h(2,, 1)) +4°Q(z + 25,9, )\))a%

the translation :

Omitting the primes we obtain :

which , because v 4 bz, + 22 + 23h(z,,A) = 0, gives :
e,
yo.+ (z° 4+ 3z,2% + (322 + pa)z + y((b + 2z,)x + 22

+ ((z 4 2,)°h(z + 20, A) — 22h(z,,N))) + ¥?Q(z + o, ¥, /\))5%

As the singularity must be a focus (Det(z,,A) > 0) we have :

3$§+}L2<0

The coordinate change:

{ =21
y = (—(322 + p))V/%’
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gives , omitting the primes and writing A = Det(z,,)\) = —(322 + p2)

VAya +%(

+(e -+ 2h + 20, 3) = e2h(z0s ) + VEYQe + 20 Vi, ] 5

2% + 32,27 — Az) + y((b + 2z,)z + z°

oy . . 1
Multiplying this expression by —= we find :

VA

(b+ 2z,) z?

VA T /A

-§-\/LZ(($ + 2,)°h(z + 24, A) — 23h(2,,N)) + ¥2Q(z + 2., \/Ey, ,\)]6%

The Lyapounov coefficient of order 1 is given by (see [ALGM , DRS2] ):

3z, , |, a°
et + 4y

Hotge g

Yoz

L — _a_Q ) ‘E"i'?;f:c»'i"E _SIO—AQ(ImOaA)
- TR A+ 3855, 0,0) + e =

= 5 ) ()

where

A = coeflicient of 2? in (z + z,)*h(z + o, A) — 3h(z,, A)

B = coefficient of z in (z + 2,)3h(z + 2., A) — 23h(z.,, )

Clearly A , B are of the form A = 2,4, B = 22B . The expression (4.1) has the

same sign as :

(=32, — AQ(z,,0,\))(b+ 22, + 22B) — A(1 + 2,A + 3A%§-(%, 0, 1))

Using the new parameter ¢ = b + 2z, + 22 B this expression becomes:

~3z,c— A(L +:coA+cQ(:cﬂ,0,,\)+3A%—{§—(xo,0,/\)) (4.2)

The Hopf singularities of codimension > 2 can only appear when this last expression

is zero . Therefore let us now suppose that this holds.

Next we calculate the second Lyapounov coefficient . Using Macsyma we find that
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this coefficient has the same sign as an expression of the form:

22 (¢, ) (4.3)

with £(0,0) <0 .

We prefer not to include the expression nor the calculation because they are both
very long . Since we are only looking for small values of z, and ¢ we may con-
clude from (4.3) that we must have z, = 0 or ¢ = 0 to have Hopf singularities
of codimension > 2 . But 2, = 0 or ¢ = 0, together with the condition that
expression (4.2) is zero, imply that A = 0. This shows that there are no Hopf singu-

larities of codimension > 2 in the unfolding of the nilpotent saddle of codimension 4.

Remarks :

1. In his work [Bau] , Bautin showed that for quadratic systems at most three
small-amplitude limit cycles can bifurcate out of a critical point of focus or center
type. From [Bog] , [DRS1], [DRS2] we know that for nilpotent singularities of codi-
mension < 3 this number is at most 2 . The maximum number of limit cycles which
can bifurcate out of a single critical point of a quadratic system is still a matter of
investigation . The fact that there are no Hopf singularities of codimension > 2 in
the generic unfolding of the nilpotent saddle of codimension 4 is the first reason to
conjecture that two is the maximum number of limit cycles that bifurcate out of

such a singularity.

2. In attempt to prove the genericity of the Hopf singularities of codimension 2 we
performed the necessary normal form calculations. But unfortunately, the obtained

expressions were to complicated to use further on.

3. Following a same procedure as above one can show that a nilpotent elliptic point
of codimension 4 and type 1 and a nilpotent saddle-node of codimension 4 can not

be approached by Hopf singularities of codimension > 3.

4. On the other hand every nilpotent elliptic point of codimension > 4 and type
2 can be approached by Hopf singularities of codimension 3. This can be seen as
follows:
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From chapter 1 we know that these singularities have the following form :

%: y + az? + bzy + cy?
j (4.4)
d—f = 3azy + fy’

with a # 0,3b+ f # 0 and a := (f —2b)(3f — b) + 25ac # 0.

Using the coordinate transformation :

{u: Jax + fy

v=y

system (4.4) 1s transformed into

2 - 3b
% - 3a'v+%u2+ 3b;_fuv+ f +QC;C 3 f112
dv
'CE = uv
. . 3 ] 1 Il . I
The linear coordinate change v = —2,v = —y and the change of time ¢ = 41
g ay
ith © _ give , after omitting the pri
wi = ; g -
~ 17 give , after omitting the primes
o y + 22 + 2y + y?
dt
- p
Yy _
=
23 2
with § = / (33_{;29“. (The condition a # 0 implies that é # —-%)
Let us introduce the family
d 4k
==yt (L o) oy + 6
Z, . dt 25
] dy B 1256 + 12
— = —kz+-z —_—ik
A A

For k£ > 0, Z; has at the origin a Hopf singularity of codimension 3.



4.1.2 Bifurcations along the set SN

The vector field X has a degenerate singular point for A € SN = {27u?+443 = 0}.
Let (2,,0) be this point . We have :

T+ pato+p1 =0
(4.5)
322+ =0
The nilpotent bifurcations
The trace at the point (z,,0) is given by
Tr(z,,A) = v + bz, + 22 + 23h(z,, A) (4.6)

The point(z,,0) is nilpotent if T'r(z,,A) = 0.

Define NB = SN N {Tr(z,,A) = 0}.

Let A € NB\{0} , A° = (u§, u3,v°, 0°).

Let g =pS 4+ My, ppa=pS+ My ,v=v°+N ,b=0V+B,z=z,+X,

y =Y and A = (M,;, M, N, B).

We develop the family X, in the coordinates X,Y and the parameters A ; z, enters
in the formula as an arbitrarily small extra parameter .

Taking into account that 2 + ez, + g3 = 0, 322 4+ pp = 0 and T'r(z,, A°) = 0 we

have

%,

Xoesn =Yoz

+[(Myz, + My) + Mo X + 32,X% + X3
+Y (N + Bz, + (b° + 2z, + B)X + X*

+((X 4+ 20)3h(X + 25, A° + A) — 22h(24,A°)))

17,
+}/2Q(X + Ty, Y, Ao + A)JW

To determine the type of the singularity (z,,0) we consider the 4 jet of X
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at (z,,0):

. 9,
74 X0 ((2,,0)) = Yﬁ + (X2 4 by X2+ Y (b1 X + bn X2+ b3y X3)
(4.7)
0
+Y2(boz + b12 X + boaY + bya X? + b1z XY + bo4Y2))z9"}-;
where
( a 3 o
by = 3z, by = b°+ 2z, + a(x h(z, A%))z=z,
1 82 3 o 1 63 3 [}
bn =1+ 53;5(3: b2, A"))uss, b3 = 6@(1‘ h(z,A%))s=z,
0
bog = Q(.’BO,U,/\O) b03 = B—Q(SL'O,O, )‘o)
Y
oQ . 0*Q
b12 = a(moaoa ’\ ) blS - %(30,0, /\O)
18°Q 16%°Q) g
b2z 5922 (20,0, A0) bos = 53—;;1?(%’0’/\ )

First we treat the case z, # 0.
If b3 # 0: (2,,0) is a cusp singularity of codimension 2.
Suppose by; = 0. Using a linear coordinate transformation , working with dual forms

and using Macsyma one shows that (4.7) is C*-equivalent to :

dz

—_— y

jz (4.8)
1

j;— = :1‘,‘2 + y(C3le3 + 0(3.74)) + y20(|$,y|3)

with ez = (by0) ™ (=ba1 + barbaoboz + babao — 3b35bos) = (3z,) (=1 + O(z,)).
Since we are only looking for z, small , we can conclude that the singularity (z,,0)

is a cusp singularity of codimension 3 .

Next we treat the case z, = 0.

The condition z, = 0, together with (4.5) and (4.6) , imply that u¢ = u$ = v° = 0;
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therefore 6° # 0.
Using Macsyma it is easily seen that 74X (g0,0,40)(0,0) is C*-equivalent to :

dz
i — y
jf (4.9)
d_:Z = 2%+ cpe? + O(2®) + y(enz + enz® + 0(2%)) + y?0(|z, y )
by1b 2b b
with ¢;1 =8, ¢y = -3-1—92—;—21 . Byg = % . Condition (3.14) becomes

5621 s 3C116‘40 = 5 -+ O(bo)
Since we are looking for 4° small , we can conclude that (0,0) is a nilpotent saddle
of codimension 3 .

We proved the following theorem:
THEOREM
In each nilpotent case the family X o, 1s a generic unfolding of the vector field X yo.

The proof of this theorem follows a same procedure as in the previous chapter.

Remark:

About the nature of the limit cycles that bifurcate out of the cusps of cod 3 and the
nilpotent saddles of cod 3.

Using the method of dual forms one shows that system (4.9) is C*°-equivalent to:

dzx

iy s— y

jt o (4.10)
y ¥ ] == 11C4 ) ~r 7 9 P 12y

= = 2+ y(ene + =02 4 0(%) + y?O(fe, y)

So, from (4.8) and (4.9) (see [DRS1] and [DRS2]) we see that the cusps and the
saddles are of the same kind. In the region with two limit cycles in the bifurcation
diagram we have the following arrangement: the inner one is attracting and the

outer one is repelling.
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The semi-hyperbolic bifurcations

We suppose now that A\ € SN\NB , so that T'r(z,,A°) #0 .
Let A° = (p1, p3,v%,0°) , g1 = p3 + My, o =u3+ M, v=v,+N,b=0b0"+8,
z=2z,+X,y=Y and A = (M;, M, N, B).
Then
7] " 2 3y 0

Xyesn = Y g + (@A) + B(A)X +e(A)Y (14 O(I(X, V) + 32, X7 + X7) 2
where a(A) = M; + z,M, , b(A) = M, , ¢(A) = Tr(z,,\° + A) (with ¢(0) =
Tl X722 03

Lemma
Let m, = (z,,0) , then

a Iz a
12 X ~ PR 5, 2 N\NB d
72X e(m,) ~ ¢(0)} E)G c(O)/\ B for A° € SN\ an
A? & {(p1, pr2, v, ) |pa = p2 = 0}
5 d 1 ., 0
FPXe(my) ~ c(0)Y =— — —X for \> € SN\NB and

Y  <(0)" oXx
A% € {(p1, pa, v, b) s = po = 03\ {0}

Proof p 5
Obviously , for \°> € SN\NB : j'X)o(m,) = Yﬁ + C(O)YW.

The central axis is 0X . Then , each central manifold W has an expression :

WY =0(X) = KX?+ 0(X?)

The restriction of X, to W has the following orbit equation :

dX
= U(X
o = YX)
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To find the coefficient K , we write that W is invariant by X. , i.e. at the point
(X, ¥(X)) the tangent vector to W has the same direction as Xyo(X, ¥(X)) :
dv

Vo i
(X, ¥(X)) = T2 (X) (4.11)

This equation gives :

c(0)K X2 + 32,X2 + O(X?)

KX?+ 0(X3) = 26X+ 0(X7)

This implies that ¢(0)K + 3z, = 0 and the first result follows .
If now A2 € SN\NB and X\° € {(u1, ta, v, b)|11 = pz = 0}\{0} the center manifolds

W are of the form :

Y =9(X)=KX*+0(Xx*%)

Again , applying (4.11) we obtain :

c(0)K X3 + X3 + O(X*)
KX®+ O(X%)

=3KX*+ O(XS)
and the result follows .

Lemma

The family Xyoyp s a generic semi-hyperbolic bifurcation of codimension I for

A° € SN\(NB U {(p1, p2,v,b) |1 = p2 = 0}) ; and a generic semi-hyperbolic bifur-
cation of codimension 2 for A° € (SN\NB) N ({(p1, pr2, v, 8) |1 = 2 = 0}\{0}) .

Proof
Suppose WA : Y = ®(X,A) is an equation for a central manifold for the family .
The restriction of X to WA has the orbit equation :

A\ A
LACHA Y

X = ®(X,A)
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where W4 is parametrised by X.
Consider to begin with A° € SN\NB .We look at

®(X,A) = A(A) + B(MX + K(A)X?+ 0(X?)

with A(0) = B(0) =0 and K(0) = —3(:;—0) as calculated above .
c
We obtain the first order terms of A from equation (4.11) applied to Xyo4a. We

have

a(A) + c(A)A(A) = O(A?)

which implies :

a(A)

A=)

+ 0O(A?)

Obviously da(0) # 0 and so dA(0) # 0 .
If A° € (SN\NB) N ({(g1, p2,v,b)|pp1 = p2 = 0}\{0}), we look at

®(X,A) = A(A)+ B(A)X + C(A)X?+ K(A)X® + O(X*)

Again , formula (4.11) applied to the family Xyo4s gives :
{ a(A) + c(A)A(A) = O(A?)

b(A) + c(A)B(A) = O(A?)

The independence of dA(0),dB(0) follows from the independence of da(0),db(0) .
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4.1.3 Proposal of a bifurcation diagram

To give some evidence for our proposal of a bifurcation diagram we use the method

of rescaling. We will use the following rescalings:

H1 = 73,&1
=TI pa = T2y
y =T v="TU
. b= b
and
([ m=Th
T =TT p2 = TH,
y=r14y { v=r1
b=rb

After a rescaling we have a family X5 where 7 is a small parameter and XeK,
some compact subset of IR . Depending on the nature of the family X5 around

some value A, , the study splits into two cases :

The generic case :

Let A, be a generic bifurcation value for the family X3¢ - Then , the bifurcation set
of X5, is given by transversality conditions and , using an implicit function argu-
ment we obtain for X5 and small 7 , a bifurcation set with the same codimension .
If o is the local bifurcation set of X5, at X, , then the local bifurcation set for X5

is diffeomorphic to o x [0,¢] for 7 € [0, €] , € small enough .

The perturbed Hamiltonian (P.H.) case :
Here , up to multiplication with a positive C'*°-function , we have that X5, is a
Hamiltonian vector field . Let wy, be the dual form of X5, . Then wy, = dH for
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some C*-function H , and we can expand

wy, = dH — 1wp(X) + o(7)

To simplify the discussion suppose that V7 wy  has the same singular points as
dH . Let o= [a,b] be a segment in the phase plane which at each point of Ja,b] is
transversal to a closed component of a level curve of H . Suppose that at a it is also

transversal to a closed cycle or it is a non degenerate center of H . We parametrize

o by means of the value of H : 0 = [e, 5] = [H(a), H(D)] .

Perturbation Lemma/ALGM]

Let wy , H,o be as above . Let I be a compact subset in the parameter space of X.
Then there exists a T(K) > 0 such that for all (A\,7) € K x [0,T(K)] :

1) The vectorfield X5 . is transversal to ]a, f]

2) The Poincaré map Px (h) of Xy, , or its inverse P-X':(h) is defined on [a, (] .
8) For h € [a,f] , the coordinate defined by the value of H , it holds that

P (h)=h+ Tj wo(X) + ofr) (4.12)

“Yh

where v, is the compact component of {H = h} passing through the point h € [, 3],

clockwise oriented for the integration.

Let I(h,X) = J,, wp(A) be the Abelian integral giving the first order term of formula
(4.12).
The fixed points of P (k) are the zeroes of the function
Py (h)—h -
G(h,A\1)=—""——— =1I(h,A)+0O(7) (4.13)

-
Here O(7) is a C* function in (k, X, ) of order 7 .

Using formula (4.13) it is easy to find conditions for existence and genericity of Hopf
bifurcations (at A = a) and of limit cycle bifurcations (at k # &) ; at least for small
values of 7 # 0 .

Suppose now that the endpoint 3 belongs to I' , where I is some hyperbolic singular
cycle of H . That is a connected compact piece of {H = 8} made of hyperbolic sad-
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dle points and regular arcs . Then the formulas (4.12) and (4.13) are not sufficient to
study bifurcations of X5, near I, because the mapping is not longer differentiable
at H = g forr =0 . A direct study of P5 . is needed .

Here we establish the list of all bifurcations we encounter in the sequel . Most of
them are well known [ A, ALGM,S,Sc,GH, CH, DRS1, DRS2].

A Codimension 1 bifurcations

A.1 Andronov-Hopf bifurcation (H)

A.2 Semi-hyperbolic bifurcation of codimension 1 (SN)

A.3 Saddle loop bifurcation (L)

We suppose that X, has a hyperbolic saddle s(),) with a homoclinic connection
I' . Let o be a segment transverse to I' . Let s()\) be the unique singularity of X,
near s(},) and —u(A) , v(A) its eigenvalues (u(A),v(}) > 0) . Let W*(X), W¥())
be the stable and unstable separatrices of X, near ' (I' = W*(},) = W*(A,)).

Let {a(A)} = W*(X)no, {b(A)} = W*(A)No and p(A) = a(A) —=b(A) (u(r,) = 0).
See figure (4.1) .

a
a
wi(\)
s(A)
w'(\)
fig. 4.1
Generic case N
The bifurcation set is given by u(A) =0, E(%—\—O% = 1.
o(h,

P.H.-case :
We suppose that the {H = 3} contains a loop I' with a hyperbolic saddle s . Then
X5, also has a saddle at s . Let —u(X,7), v(,7) be the eigenvalues of this saddle .

u(d, 1) -
We have o) 1 —71a(A)+ o(r) .

Let I(8,A) = frwp(X). Then , the bifurcation set is given by I(8,)) = 0, with
a(X,) # 0.
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A .4 Saddle connection (SC)

Here , X, has 2 hyperbolic saddles s,(A,),s2(A,) , connected with an unstable
manifold manifold W*(),) of 5;(A,) and a stable one of s3(),) . Let o be a transversal
to T, let s;(A), s2(A) be the unique singularities of X near s1(A,), 32(As),

W*(X) , W*(A) the invariant manifolds of s;1(A), s2(A) near I'.

Let {a(A)} = onNW?*(A), {b(A)} = o NW¥(X) and p(A) = a(X) —b(A) with {a(A.)} =
{6(A)}=eonT.

[+
w'(A) b
_.._/
s{{\) N Wi\ S
fig. 4.2

Generic case :

The bifurcation set is given by u(A) =0 .

P.H.-case :

We suppose that the function H has a connection I between two saddle points sy, s2
contained in the level {H = B} . Let I(}) = frwp(A).

Then , the equation of the bifurcation set is I(A) =0 .

A.5 Double Cycle (DC)

We suppose the X, has a semi-stable limit cycle I' . Let o be transversal to I' , and
P(h,X) the return map on o defined for (h, A) near (h,,A,) , where {h,} = o NT.

Generic case :

P
The equations for the bifurcation set are P(h,A) =0, %—h—(h, A) =0 and
62P(h Ao) #0
W o0y "o #
P.H.-case :
Let I(k,)) be the Abelian integral associated to the family . We suppose that for
2
some h, # a,I(h,,X,) = —gT](ho,Xo) = 0 and -g—h—i(ho,xo) # 0 . Then the equation
h
for the bifurcation set is I(h, A) (h,A)=10.

~ 9
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B Codimension 2 bifurcations

B.1 Degenerate Hopf-Takens bifurcation (DH)

B.2 Semi-hyperbolic bifurcation of codimension 2 (C)

B.3 Bogdanov-Takens bifurcation (TB)

B.4 The degenerate loop (DL)

The vector field X, has a loop I" through a saddle point s(},) where the divergence

is zero . Let o be a transversal to I' and s()) the unique singular point of X, near

5(As) . Then

FXAs(N) ~ 22 — (1 aou))ya%

Oz
where a,(),) = 0.
It is shown in [R] that the return map P, on ¢ has the following expansion (u is a

parameter on o , positive on the side where the return map is defined ) :
Pa(u) = 6+ Bu(A) + o (A) (1 (u, A) + o(u,)) + B (\)u + o(u)

u—@e(d) 1
a,(A)

where w(u, ) =

Generic case :

The equations of the bifurcation set are given by : a,(A) = B,(A) = 0and S1(X.) # 0.

P.H.-case :

Let T be a loop for the Hamiltonian H . We suppose that ' C {H = 0} and
that H > 0 inside the loop or outside the loop depending on whether the other
separatrices are outside the loop or inside . For A > 0 near 0 , the Abelian integral

I has the following expansion :

I(h,2) = B,(X) + @o(A)h log(h) + By (A)h + o( k)
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The equations for the bifurcation set are 5,(A) = @,(3) = 0 and B,(X,) # 0 . This
bifurcation has been studied in [DRS1] .

cycles
2 cycles

==

L =4
~
g
m
—
™

fig. 4.3
B.5 Saddle-node connection (SNC)
The stable (resp. unstable ) manifold of a saddle-node sn(),) coincides with an
unstable (resp. stable ) separatrix of a saddle point s(),) . The bifurcation diagram

1s given by :

>\/

fig. 4.4
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SC

SN

fig. 4.5
See [Sc] for more details .
B.6 Two-saddles cycle (TSC)
We suppose that X, has 2 saddle points s1()\,), s2(),) which are connected by two
saddle connections T;, T’y to make a singular cycle T' containing 2 saddles .

s{A,) s,0\,)

fig. 4.6
Let A;(A;), —€1(A,) be the eigenvalues at s;(),) and Ay(),), —€2(X,) be the eigenval-
ues at s5(Ao) (A1, A2, &1,€2 > 0). The two hyperbolicity ratios r1(A,) = (£1/M1)(As)

and r3(Ao) = (€2/A2)(A,) are different from 1.

The generic case :

6 &

In this case r = S # 1. The singular cycle is attracting if » > 1 and expanding
; 1 72 : :

if r < 1. Up to orientation we can suppose that we are in the attracting case. Next,
up to the order between s;, s, , there are two subcases : the strong attracting case

(71> 1 and r; > 1) and the weak attracting case (r; > 1 and r; < 1) . These
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bifurcations are studied in [DRS2] . The bifurcation diagrams are the following :
The strong attracting case :

SC;
Lr
SCq
L
fig. 4.7
The weak attracting case :
SC;
DC
Lr
SCy
L
fig. 4.8
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The degenerate case :

In this case r; > 1 and r, < 1 , but the return mapping along I' is equal to the
identity. Therefore r = r;r, = 1. For more information we refer to [DRS2].

C Bifurcations of codimension 3

C.1 Cusp bifurcation of codimension 3 (NC)

C.2 Nilpotent saddle bifurcation of codimension 3 (NS)

C.3 Degenerate two-saddles cycle (DTSC)

Here , X, has 2 saddle points s1(A,),s2(),) which are connected by two saddle
connection I'y,I'; to make a singular cycle I' containing 2 saddles and one of the
saddles is divergence free , or in other words has 1 as hyperbolicity rate.

Suppose r1(A,) = 1 and r3(A,) > 1. The bifurcation diagram is given by:

sC
B

fig. 4.9

The bifurcation diagram is a smooth transition between the diagram of the strong

attracting case and that of the weak attracting one. For more information we refer

to [Moul].
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Rescalings
Consider the family X, = yi + (2% + pox 4 py + y(v + bz + 22 4+ 22h(z,N)) +

: 5 dx

y Q(ﬁay,/\))a—y-

For b constant and non-zero the family X,, ., .5) is a generic unfolding of a saddle
of codimension 3 . From [DRS2] we know that the bifurcation diagram is a cone
( in the (pq,p2,v)-space ) with vertex at the origin . More precisely , the parts
of the bifurcation set are surfaces (for the codimension 1 strata) and lines (for the
codimension 2 ones) which are transversal to the spheres (u2 + p2 + v = €?) , for
e small enough . The intersection of the bifurcation diagram with such a sphere is
illustrated in figure (4.10) for 6 > 0 . To make a planar picture a point on the sphere
S has been deleted . This point has been chosen outside the bifurcation set on the
hemisphere SN {u, > 0} . In the central part of the picture the vertical coordinate

is v ; the horizontal one is u; , oriented to the right .




Using the linear transformation (z,y, p1, g2, v, b) — (—z, =y, —p1, 2, v, b) one finds
the bifurcation diagram of a saddle of codimension 3 with b < 0 . The intersection
of the bifurcation sets with a plane pu, = —e , with € > 0 small , is given in figure
(4.11).

b>0 b<0

fig. 4.11
In order to clarify the transition between the situation & > 0 and the situation b < 0
we introduce the principal rescaling:
T=TT ,Yy=7F, =70 , o =T, , v =70 ,b=1h.
Using this rescaling family X is transformed into (omitting the bars above z,y)

d 2 0
g+ @ e Gt r0uwEL )

For each 7 > 0, X is C*®-equivalent to

9 ’ 9
¥z (@ Rzt 4Ty 4 ry(be 40" + 0(n) 5 (4.15)
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For 7 = 0 this family becomes:

] 8
vp. T (x3+ﬁz$+ﬁ1+7y)6—y (4.16)

This is a family of cubic Liénard equations with constant damping.
In the principal chart {ff, = —1} the phase portraits are:

fig. 4.12
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Similarly as in [DRS2] and [DR] one shows the genericity of the lines of superior
and inferior saddle connections using the rotational property with respect to the
parameter 7 and the semi-rotational property with respect to the parameter 7,.
The divergence of the vector fields (4.16) is equal to 7. So there can be no limit
cycles for 7 # 0. For ¥ = 0 we have a 1-parameter family of Hamiltonian vector
fields.

For 7 # 0, the bifurcation lines remain for 7 small. They are stable since they are
defined by a transversality condition. For ¥ = 0 the situation degenerates. Therefore

we consider the following blow up in parameter space:

V=ur
Ay =
Ly = fiz with P2 +4+r°=1
b=b
7= A

Using this blow up family (4.15) becomes:

5 ) o
Yoo + (@ + Bz + i + uy(? + rba + ra?) + 0w’ y)5, M)

For z,y, b, fi1, fi; in a compact there exists a M > 0 such that bz + 22+ O(u)| < M,
for u such that 0 < u < u, (for a certain wu, small enough),

So we have # —rM < i 4 rbe 4 ra? + rO(u) < v + M.

If7>0and 0 <r < £, we have % §ﬁ+r5x+ra:2+r0(u) < 3—2"

fr<Oand 0<r < —2—i4,we have % §ﬁ+r5x+r:c2+r0(u) <Z.

So, it remains to look at r = 1 and |#| < M, with M, > 0 fixed and sufficiently big.
This is the same as using the following rescaling (”second” rescaling):

[CTAN

— R e ey B -3 g B B T
x_u""gay—uyaﬂl_u#1:#2"”#23”‘“””15’—“{)'
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So, for r = 1 family (4.17) becomes:

o ; 9
Yt = vgz + (0% + oz + i + uy (v + be + 2°) + O(ui)y)a—y (4.18)

In order to study a neighborhood in the original parameters we take

(Fir,fia, ) € 82 = {(u, fia, D)2 + @2 + B = 1} , 3] < M, (M, > 0/fixed and
sufficiently big) and u small enough.

First we treat the case b = +1, with (f;, fi2) small.

9 o i 9
Y iaoio) = ¥g5 + (274 fo + o+ wy(7 + 2 +27) + O(u)y) 5

Let (x,,0) be a nilpotent singularity of {3, z, 5,1, (for u small).
This implies that:

-~ _ 9.3
#r = 21:0

fiz = =322
V= —z,— a2

It is easy to check that this singularity is of Bogdanov-Takens type for z, # 0 and
a nilpotent saddle of codimension 3 for z, = 0.

However what we need is the study of the family Y{z, 4,5.21.) With

(B4, fiz,u) € K x [0,€] , I a small neighborhood and € > 0 small. This is a first
problem we do not deal with. Its elaboration may rely on the study performed in
[DRS2], but taking care of the fact that u tends to zero.

The case b = —1 is similar.

For ji; = 41, ji, small and b in an arbitrarily large compact we have a structurally

stable situation, namely a unique hyperbolic saddle.

Also for fi; = 1 we end up with the same structurally stable situation.
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At last we consider the case fi, = —1 (with ,ELI,Z) in a arbitrarily large compact).

The equation of the planes (in (ﬁl,é,ﬁ)-space) of the degenerate singularities is

ft1 = =—>= and for this , the corresponding degenerate singular point is

3v3 |
Z,,0) = (£—=,0).
(50,0) = (2720
The limits of the lines of the Bogdanov-Takens singularities , for u — 0 , are :

d v =0

2 b1
i = +—= an +—+ -
. 3v3 <3 3
After making the translation z = 2, + X,y = Y and using Macsyma to perform
the normal form calculations we find on these lines the following points of nilpotent

cusps of codimension 3:

2

2
T = = ’
M1 3\/5

?767 )

A3
I

b=

| =

The equation of the Hopf singularities is given by

{ 3 —z, 41, =0

Tr(z,,0) = u(bz, + & + 22) + O(u?) = 0

1 1 .
with z, €] — ﬁ’?ﬁ[ , since A := Det(z,,0) = 1 — 322 must be strictly greater
than 0.

Hence the limit of the Hopf singularities , for u — 0 , is :
{ fihh—z,+x3=0

f/-{—?)a:a—}—wgzﬂ

1
with 2, € [~—=

1
N

Taking coordinates (X,Y) around the Hopf point (z,,0) (z = X + 2,,y = Y) and
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taking into account that T'r(z,,0) = 0 , we find :

Y@i’ + (X% 4+32,X% — (1 —=32)X 4uY((b+ 2z, + O(u)X + (1 + O(u)) X2
+FO)O(X?)) + OWO(YY) 5

Using the coordinate change

X= u
Y = JAv
followed by a multiplication with . e get
u rith —= , w :
Y 1 \/K g
a L g . 38, 5 (b+22,)u+ O@?)  u+O(u?) 9
vau-I—(Zu +Xu —u TE u TA u
0
+0(u?)0(v%)) + O*)0(v*)) -
. s 0 d . .
As the 1-jet is bigs Tngs the formula in chapter 4.2.1 of [DRS2] gives that the
u v

first Lyapounov coefficient has the same sign as an expression of the form :

w(l — 32,0 — 922) + O(u))

So the limit of the Hopf singularities of codimension 2 , for u — 0 , is given by
ﬁl - I, + 3}'2 =0
b+ .+ 7l ={

1—-3z,b—922 =0

and z, € [—

I\ {o}.

Sl-
Sl

104



Remark that :

(1)

. 2
#1_3\/5
1 x 2
when z, = —: ' SO
V3 V3
.1
V==
\ 3
(2)
'&1'—)‘0
when z, | 0: < b— +oo
. 1
Py
YT T3
(3)
2

1 v 2

when z, = ——: e

v3 V3
.1
r==-
\ 3

(4)

pr — 0

when z, 10 : b— —oo

. 1

D — —=

\ 3

So, near the singularities there are at most 2 limit cycles. The rest of the study
(4.18) with fi; = —1, especially of the limit cycles and the saddle loops, is a second

problem we do not treat.



We can however say more concerning inferior and superior saddle connections.
In order to examine the point of two-saddle connection (Z; = 0 = ¥) in the family

(4.16) we consider the following blow up in parameter space:

{ ]

V= sv
i = spy
{ = a with 72 4 ()2 + (V) = 1
b=1b
T = 8T

By this family (4.15) becomes:(omitting primes above z,y)

3 I ! I 1 a
O +(2° + oz + s(py +y(v +rbz +rz?) + O(szrz)y)@ (4.19)
Similarly as we did in the study of family (4.17) one shows that we must look at
r =1and (g;,v') in a large enough compact. This is the same situation as using
the rescaling (”third” rescaling):

z=sr ,y=s% =ty ,pa=5%y ,v=5% ,b=sb .

So, for r = 1 family (4.19) becomes:

a ‘3 l'\ ! / r 2 2 a
yEEHJ’ + i +s(py +y(v +bz+2%)) + O(s )y)ay

Write

, O
2 (353 A #237)_'

0
H o _
AT ==y By

9z

X*" is Hamiltonian . The case uy = +1 is of no interest for the bifurcation analysis

because X# is structurally stable . So we consider only g = —~1.
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Superior saddle connections (SC,).
As it is recalled above the equation of the superior saddle connections , at the limit

s — 0, 1s given by :

S(A'):Aw9=0

The equation of v, is: y = %(1 —2%) ,z € [-1,1].
So we find :

S(V) = f,wp = L, (5 + (v + bz +2?))dz

= L + \/ii(l — 2 + bz +2?))dz

P22, 242

Inferior saddle connections (SC;).

1 .
The equation of 4; is : y = —5(3:? —1),z € [-1,1], and so we find the following
equation , for s — 0 , for the inferior saddle connections.

Two saddle connections (TSC)
The intersection of the plane SC, of superior saddle connections with the plane SC;
of inferior saddle connections gives a line of two saddle connections in the (u), v, b )-

space. The equations of this line are :

[ m=0
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These calculations lead us to the proposal of the following transition between dia-

grams of figure (4.11).

fig. 4.13
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Proposal along the line TSC:

fig. 4.14
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This proposal is motivated by the following considerations : Consider the family

0

a I i [}
+(2® —e+s(py +y(v + bz +27)) + 0(3"’)y)@

You

The singular points z;(s) , z2(s) are given by

y=70
z° — g+ s,u‘l =0
Near (-1,0) we introduce u = = + 1.

= B el el —|—s;¢'=u3—3u2+2u+s;¢' =0
1 1

Around u = 0 , this gives u = —%s,u; + O(s?).

1 . g s
Hence z = -1 — 55k + O(s?) for the point z;(s) and the trace at this point is

Tr(z:(s)) = s(v' — b + 1) + O(s?).

Near (1,0) we introduce u =z — 1.

(u+ 1P —(u+1)+sp; =ud+3u?+2u+sp; =0

1
Around u = 0, this gives u = —58H + O(s?).

Hence z = 1 — —;-s,u; + O(s?) for the point z,(s) and the trace at this point is
Tr(z2(s)) = s(v' + b 4+ 1)+ O(s?).

In the neighborhood of the line uy = 0,v" = =1/5 , Tr(z1(s)) ~ s(2 — ') + O(s?)
and Tr(zy(s)) ~ s(§ + b') 4+ O(s?). Therefore, for s small , if ' runs from values
2, Tr(z1(s)) (resp. Tr(z2(s)) decreases (resp.
increases) from positive (resp. negative) values to negative (resp. positive) values.

less than —2 to values greater than

So the hyperbolicity ratio r(z;(s)) (resp. 7(2(s))) increases (resp. decreases ) from
values smaller (resp. greater) than 1 to values greater (resp. smaller) than 1. We
have the following situation:

for b' < —%: r(21(s)) < 1 and r(zy(s)) > 1; for b’ > 2: r(21(s)) > L and r(z2(s)) < 1;
and for intermediate values of b': r(z;(s)) < 1 and r(zy(s)) < 1.

So, for each s small enough but greater than 0, we find back the situation of the
generic cases ( described in [DRS2] and [Mou]). For s = 0 the situation degenerates.
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The remaining elaboration can be considered a third problem, which is however a
subproblem of the second one. The third rescaling can indeed be seen as a blowing
up of the second one, and will be presumably be unavoidable in the study of the

second problem.
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