2.5D direct laser engraving of silicone microfluidic channels for stretchable electronics

Steven Nagels 1,2, Wim Deferme 1,2

¹ Institute for Materials Research (IMO-IMOMEC) — Engineering Materials and Applications, Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
² Flanders Make vzw, Oude Diesterbaan 133, B-3920 Lommel, Belgium
steven.nagels@uhasselt.be

Concept.

Laser ablation as a means of engraving microchannels in silicone rubbers.

Stretchable electronics.

Combine with **RT liquid conductor**. Stretchable conductive traces can be created within a single working day.

Vary laser power or apply multiple passes during a single engraving production step. 2,5D structures are achieved.

e.g. capacitive pressure sensor

Further possibility: buried vias.

1 3 4

- 1. Laser engrave
- 2. Enclose channels
- 3. Fill with RT liquid conductor
- 4. Encapsulate liquid

Stretchability.

Use cases.

Whenever application calls for traces which are:

- single or few in number
- finely detailed
- low in resistance
- conformable
- self-healing

Component based solution not an integrated production method.

Mostly limited by silicone material properties.

Necking induces resistance change.

Self-healing capacity after channel pinch-off.

Applications.

Soft robotics

On-skin electronics

Wearables

Scientific results

Laser P vs passes vs depth

POWER SET TO 10%			
10x10xn	Depth		Calc depth
1		74	78.1
2		132	132.7
3		191	187.3
4		243	241.9
5		299	296.4
6		356	351.0
7		398	405.6
8		398	460.1

1

2

3

4

5

6

7

8

2000 y = 300.34x + 29,133 1500 0 0 2 4 6 8 #passes

Conclusions:

- Laser gets out of focus with engravement depth
 - higher power = deeper cuts with each pass = faster roughness increase with each pass
- More or less linear correlation (ignoring roughness)
- First passes are in focus; nice and smooth
 - do not modulate engravement depth by number of passes
 - → directly use laser power to set engravement depth

Scientific results

Mechanical characteristics of conductive encapsulant

0.05

untreated PDMS + Polytec PU1000

6.00E+03
5.00E+03
4.00E+03
2.00E+03
1.00E+03
0.00E+00

0.03

deltaL/L0

0.01

0.02

Conclusions:

- Ag PU has a much lower starting resistance
- Ag PU does not adhere well at all
- Ag epoxy delaminates on untreated PDMS, explains 'favorable' measurement
- Ag epoxy makes for a stiffer match but adheres more or less ok when PDMS was pretreated with corona

