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ABSTRACT
Two types of bivariate models for categorical response variables are introduced to
deal with special categories such as “unsure” or “unknown” in combination with
other ordinal categories, while taking additional hierarchical data structures into
account. The latter is achieved by the use of different covariance structures for a
trivariate random effect. The models are applied to data from the INSIDA survey,
where interest goes to the effect of covariates on the association between HIV risk
perception (quadrinomial with an “unknown risk” category) and HIV infection sta-
tus (binary). The final model combines continuation-ratio with cumulative link logits
for the risk perception, together with partly correlated and partly shared trivariate
random effects for the household level. The results indicate that only age has a sig-
nificant effect on the association between HIV risk perception and infection status.
The proposed models may be useful in various fields of application such as social
and biomedical sciences, epidemiology and public health.
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1. Introduction

There are many settings where a combination of binary, ordinal and even continuous
response variables occurs, and often a joint analysis of the responses offers more
insights than separate analyses. Consider our motivational case where perception
of risk for HIV infection (no,low,high, do not know) and HIV test status (positive,
negative) are recorded for each individual in a household. These outcomes play an
important role in the “health belief” model which emphasizes that an individual
empowered with health information is more likely to comply with preventive or
curative behaviours [5]. Self-perceived HIV risk is considered an integral component
in motivating avoidance of HIV risk, and the congruency between self-perception of
HIV risk and reported risk-taking behaviours might be especially important in the
likelihood to engage in self-protective behaviours, such as condom use and uptake of
HIV testing [30]. On the other hand, there is evidence that people who are aware
of their HIV status can adopt practices to reduce HIV transmission and to access
effective treatment [18].

While the association between perception of risk for HIV and disease status,
and HIV related risk behaviours is well documented [1, 13, 29, 33, 34], it seems
that this relation is complex and yet inconclusive. Koh and Yong [19] showed that
for individuals with risky sexual behaviour there is a positive association between
perception of risk and HIV status, i.e., the higher the perceived risk the higher the
odds of a positive HIV status. However, another study reported a negative association
such that risky groups tend to perceive no or low risk of HIV infection in contexts
where the disease prevalence is high [22, 28].

The National Survey of Prevalence, Risk Behavioural and Information about
HIV and AIDS of 2009 in Mozambique (INSIDA) allows us to study the joint
distribution of the perception of risk for HIV infection and the HIV infection status
as a function of several covariates on the individual level (such as age, gender, etc)
as well as on the household level (such as household size, etc). Statistical models
that jointly analyze perception of risk and HIV status provide more insights into
the association between perception and HIV status and can be used, e.g. to test
whether the association is homogeneous across the ordinal scale of perception, while
accounting for the characteristics at the individual and at the household level. These
models should reflect particular features of perception and disease status, such as that
both are categorical and that perception of risk is typically a semi-ordinal variable,
measured on a scale that usually contains a “do not know” or “unsure” risk category,
next to an ordinal scale such as no, low, moderate and high risk, while disease status
is a dichotomous variable.

Dale [9] introduced a bivariate logistic model that uses the bivariate Plackett
distribution to specify the joint distribution with global cross-product ratios as
marginal association measures. A global cross-product ratio measure results from
a cumulative link function and is useful when variables are ordered. Molenbergs
and Lesaffre [26] extended the Dale model to multivariate ordinal outcomes using
a multivariate Plackett distribution. Glonek and McCullagh [15] provided a general
definition of the class of regression models relating the joint distribution of categorical
responses to predictors based on the multivariate logistic transform introduced by
[23]. This multivariate logistic transform is a reparameterisation of cell probabilities
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in terms of marginal logistic contrasts. An arbitrary set of logistic contrasts may
however not correspond to a valid joint distribution. For that reason, [31] presented
an efficient algorithm for detecting whether or not the inverse transform exists, and
for computing it if it does.

McMillan and Hanson [25] presented a SAS macro that fits a bivariate Dale
model when the second variable is meaningless if the first variable equals a special
value (e.g. one cannot specify the number of drinks per drinking occasion if one never
has any drinking occasions). The approach used by [25] consists of two parts: one with
a dichotomous outcome (e.g.: drinking yes/no ) and a second part, conditional on
the dichotomous outcome to be positive, where both outcomes are ordinal (frequency
and quantity of drinking). In our setting, as explained further, the first variable can
also take a special value “unsure” or “unknown” and if “known”, it is of an ordinal
nature, turning it into a semi-ordinal type. But the second variable is meaningful,
regardless of whether the first one is known or not.

Here we consider two particular multivariate logit transforms defining regres-
sion models for the joint distribution of the perception of HIV risk (semi-ordinal) and
the HIV infection status (binary). They differ in their construction of the ordinal part
of the risk perception variable following a continuation-ratio logits or a cumulative
logits model, and the corresponding odds ratios when cross-tabulating risk perception
with infection status. The continuation-ratio logit model is best suited when each
category of the response variable is of intrinsic interest and when they are seen as
levels of achievement that can only be entered if the previous was achieved [2, 8].
Probabilities such as “unknown” vs “known” risk, and conditional probabilities “no
risk” vs “some risk” (if “known” risk), and “low risk” vs “high risk” (if “some risk”),
can be modelled by a continuation-ratio logit model without any need for a two-part
analysis to deal with the special “unknown” category. In a similar way a cumulative
logits approach for the ordinal categories no, low, high risk following the first contrast
“unknown” vs “known” risk is a very natural alternative modelling strategy, reflecting
the discretization of a latent continuous risk perception variable.

Another intrinsic feature of the INSIDA data is its hierarchical nature with
households as natural clusters resulting in correlated data for respondents from the
same household. A typical strategy to account for this hierarchical structure in a
multivariate setting is the use of multivariate random effects [12, 16, 32] We will
extend our bivariate marginal model for HIV risk perception and infection status
with different multivariate structures for the random effects distribution, including
independent, shared and correlated random effects.

Relevant information on the INSIDA survey is summarized in the following
section. The marginal model for the joint distribution of HIV risk perception and
infection status is formulated in Section 3 while its extension with household specific
random effects is described in Section 4. Section 5 summarizes and discusses the
results of the application of the different models to the INSIDA data. The paper ends
with a final discussion in Section 6.
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2. The INSIDA survey

The 2009 INSIDA survey is a cross-sectional two-stage survey on households, carried
out by the National Institute of Health in collaboration with the National Bureau of
Statistics of Mozambique. It was the first survey designed to collect comprehensive
data on the prevalence of HIV infection, knowledge, attitude, behaviour risk factors
and access to information on HIV and AIDS in the Mozambican population [17].

It was designed to interview 6232 households, 10800 men and women aged 15
to 64 years, 1770 teenagers aged 12 to 14 and 4300 children from 0 to 11 years old. It
was also expected that 13600 individuals would be tested for HIV. The actual number
of participating households was 6097 with a total of 14964 individuals. For our
objectives we consider the subset of individuals (men and women) aged 15-64 years,
being sexual active in the last 12 months prior to the survey (according to the sexual
activity variable in the survey). Not all households had eligible individuals as to this
definition, resulting in a total of 10548 individuals from 5573 households. Data on HIV
risk perception and infection status from 730 households were complete, in the sense
that data on both response variables were available for all members of the households;
for 83 households all members had data on one response variable, and 4760 households
had at least one member lacking the value for both response variables. Table 1 lists
the variables of interest with some basic descriptive information.

TABLE 1 ABOUT HERE

Perception of risk of contracting HIV was a general HIV risk assessment based on the
question: “Do you think your chances of getting AIDS are small, moderate, great, or
no risk at all?”. Possible answers were: “none”, “small”, “moderate”, “great”, “HIV+”
and “do not know”. Participants who responded “HIV+” (1.1%) where excluded,
since they were no longer at risk of HIV infection. The categories “do not know”,
“none” and “small” were relabeled as “unknown”, “no” and “low” respectively. When
missing data and covariates are taken into account, the resulting multidimensional
contingency table with all 5 categories for perception of risk had about 20% cells (out
of 960) with 0 frequency for moderate risk, while the other risk categories had less
than 8% cells with 0 frequency. This led to separation and thus convergence problems
for the joint modelling of the outcomes with all 5 categories for perception of risk
and therefore the two categories “moderate” and “great” risk were combined into one
“high”-category.

The HIV infection status was a binary variable derived from an HIV test: 1 if
positive and 0 otherwise. The HIV test was done posterior to the interview using
Dried Blood Samples (DBS) and two sequential ELISA tests. After counseling and
consent, household members would then receive their test results.

Risky behaviour was assessed based on a combination of three risky behavioural
patterns: multi-sexual partners during the last 12 months, inconsistent condom use
during the last three sexual intercourses with any partners, and having had an STD
during the last 12 months [11, 22]. From the answers to the corresponding yes/no
questions, a “global” ordinal measure of risky sexual behaviour RSB, ranging from 0
(no risk if all negative) to 3 (high risk if all positive) was defined.

Socio-demographic characteristics such as place of residence (urban, rural), sex
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of respondent (male, female), age (grouped) and knowledge of at least one way to re-
duce HIV infection were also included as covariates [13, 29]. Place of residence accounts
for socio-economic inequalities between rural and urban areas on perception of risk of
HIV and HIV prevalence. Knowledge of at least one way to reduce HIV infection was
considered as a proxy for awareness of risk behaviour that leads to HIV contamination.

Table 1 also shows that the percentage of missing observations in the response
variables is 8.1% for the infection status and 1.4% for the risk perception. It is quite
low for the different covariates (from 0% to 3.7%) except for condom use (13.6%).
This relatively higher percentage for condom use, as compared for instance to the very
low percentage (0.04%) for the number of sexual partners (last 12 months) is rather
ascribed to the ambiguity of what is perceived as consistent or inconsistent use than
to particular non-ignorable mechanisms. Although a complete case analysis implies a
sample size reduction of about 25%, we decided to not focus on any more advanced
missing data methods but rather on the development of the joint models, as the final
dataset still contains observations of 7944 individuals within 4912 households.

3. The marginal joint model for HIV risk perception & infection status

Assume that there are i = 1, . . . , N households and j = 1, . . . , ni individuals in each
household. So ni is the number of eligible household members (ranging from 1 to 23,
see Table 1). Let Y ij = (Yij1, Yij2)T be a random vector of categorical outcomes:
Yij1 the perception of risk for HIV infection with 4 categories, coded as 0 to 3, corre-
sponding to “unknown”, “no”,“low” and “high” risk respectively, and Yij2 the binary

infection status (0=HIV negative, 1=HIV positive). Let Xij = (Xij0, Xij1, . . . , Xijq)
T

denote the vector containing q covariates of interest with Xij0 = 1 for all (i, j). The
majority of the covariates are at the individual level, some of them however or on the
household level and do not need a j subscript.

The multinomial probabilities (suppressing the ij subscript for simplicity)
P(Y1 = k, Y2 = `) with k = 0, 1, 2, 3 and ` = 0, 1 corresponding to the 4 × 2
contingency table define the joint probability distribution of the response vector
Y = (Y1, Y2)T . Based on the multinomial log-likelihood, the maximum likelihood
(ML) estimates can be computed. Instead of modelling the joint probabilities it is
often of more interest to reparametrize the (log-)likelihood in terms of 7 out of 8
non-redundant parameters related to the marginal distribution of Y1 (3 parameters),
the “success” probability π = P(Y2 = 1), and 3 association parameters. The
choices made for these 7 parameters should reflect the nature of variable Y1 with
the special category “unknown” (coded as 0) and the ordinal categories coded as 1,2,3.

Here we opted for two natural but different parametrization: the continuation-
ratio logits (CR) approach and a combination with a cumulative logits/proportional
odds (CR-PO) model. As depicted in Figure 1 (left upper graph), the continuation-
ratio approach follows a particular but in this case natural sequential pattern and is
based on the odds P(Y1 = 0)/P(Y1 > 0) corresponding to not knowing about one’s
risk, P(Y1 = 1|Y1 ≥ 1)/P(Y1 > 1|Y1 ≥ 1) corresponding to perceiving “no risk” given
that one knows about one’s risk, P(Y1 = 2|Y1 ≥ 2)/P(Y1 > 2|Y1 ≥ 2) corresponding
to perceiving low rather than high risk, given that one perceives some risk. So,
also suppressing the conditioning in the notation, the CR marginal distribution is
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determined by:

OddsCR
k = P(Y1 = k)/P(Y1 > k), k = 0, 1, 2.

Implied by the CR structure, the three association parameters are defined by the OR’s
of the corresponding 2 × 2 tables formed by cross classifying the CR structure of Y2

with Y1 (see Figure 1, left lower graph):

ORCR
k =

P(Y1 = k, Y2 = 0)P(Y1 > k, Y2 = 1)

P(Y1 > k, Y2 = 0)P(Y1 = k, Y2 = 1)
, k = 0, 1, 2,

reflecting for k = 0 how the odds to be HIV infected depends on knowing or not
knowing about one’s risk, for k = 1 how it depends on perceiving risk yes or no, and
for k = 2 how it depends on perceiving high or low risk.

The combined CR-PO parameterisation (see Figure 1, right upper graph) for

Figure 1. Graphical presentation of the continuation ratio (CR) and cumulative-proportional odds model

(CR-PO). Upper panels show the structure of the three odds representing the partly ordinal structure of the
HIV risk perception Y1: on the left the CR model, and on the right the first logit as in the CR model, and the

remaining ordinal part as a PO model (CR-PO model). Lower panels show the three 2 × 2 tables combining

the CR (left) and CR-PO (right) structure with the HIV infection status Y2.

the marginal distribution of Y2 starts again with P(Y1 = 0)/P(Y1 > 0), but then,
given that Y1 > 0, proceeds with the “cumulative” logits, again suppressing the
conditioning on Y1 > 0:

OddsPO
k = P(Y1 ≤ k)/P(Y1 > k), k = 1, 2.
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and implied association parameters ORCR
0 and

ORPO
k =

P(Y1 ≤ k, Y2 = 0)P(Y1 > k, Y2 = 1)

P(Y1 > k, Y2 = 0)P(Y1 ≤ k, Y2 = 1)
, k = 1, 2.

Note that, because of the conditioning on Y1 > 0, OddsCR
1 = OddsPO

1 and that
ORCR

1 = ORPO
1 and consequently only the 2 parameters related to k = 2 make both

parameterisations different. ORPO
2 quantifies the dependency between being HIV

infected and on perceiving high or no high (low or no) risk.

The above defined odds for Y1, the probability π for Y2 and the odds ratio pa-
rameters relating Y1 and Y2 can modelled as function of the covariates Xij , using
logit and log link functions as follows (suppressing any CR or PO superscript, but
reintroducing ij subscripts). For the marginal distribution of Yij1, the generalized
logit model is given by

log(Oddsk,ij) = Xijβ1k, k = 0, 1, 2, (1)

for the probability to be HIV positive of Yij2, the logit model is given by

logit(πij) = Xijβ2, (2)

and for the dependency parameters between Y1 and Y2, the model is defined as

log(ORk,ij) = Xijβ3k, k = 0, 1, 2, (3)

where βT
1k = (β10,k, β11,k, . . . , β1q,k), βT

2 = (β20, β21, . . . , β2q) and βT
3k =

(β30,k, β31,k, . . . , β3q,k) are vectors of regression parameters. Of course, not nec-
essarily the same covariates play a role for different parameters.

In the mixed CR-PO approach, the “known” perception categories 1 to 3 of Y1

can be seen as a categorisation of a latent continuous degree of perception having
a logistic distribution, which is an appealing concept and which motivates the use
of common slopes across the CR-logits (resulting in the “proportional odds” PO
model). Common slopes can also be considered for the CR model, at least again for
logits related to the “known” perception categories. The intercepts β10,k are taken
differently for k = 0, 1, 2 for both type of models and for the PO part of the model
with the additional constraint β10,1 ≤ β10,2 (following from the cumulative nature).
But it can be examined whether the slopes (or part of them) β11,k, . . . , β1q,k are not
depending on k, thus reducing the number of parameters considerably.

The model defined by (1)-(3) will be referred to as the “marginal bivariate”
model. This model takes into account the semi-ordinal nature of Y1 and allows
to study the dependency between perception of risk (Y1) and HIV status (Y2). It
ignores however the hierarchical data structure and corresponding intra-household
correlation. Indeed, one might expect the observations of Y ij for two individuals
within a household to be more alike than for two individuals from different households,
even after adjusting for covariates at the household level. Approaches using different
random effects structures are proposed in the next section.
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4. The mixed effects joint model for HIV risk perception & infection
status

To model the heterogeneity across households, or equivalently the intra-household
association, models (1), (2) and (3) can be extended with random household effects
as follows:

log(Oddsk,ij) = Xijβ1k + b1ki, k = 0, 1, 2, (4)

logit(πij) = Xijβ2 + b2i, (5)

and

log(ORk,ij) = Xijβ3k + b3ki, k = 0, 1, 2, (6)

with a total of 7 random effects

bi = ((b10i, b11i, b12i), b2i, (b30i, b31i, b32i)), (7)

having a joint zero-mean normal distribution. A fully unstructured 7-dimensional mul-
tivariate random effects parameterisation however was computationally not feasible,
and therefore simplified structures were considered, with shared random effects for
each type of parameter log(Oddsk,ij), logit(πij) and log(ORk,ij)

bi = ((b1i, γ11b1i, γ12b1i), b2i, (b3i, γ31b3i, γ32b3i)), (8)

defined by scalar scale parameters γ11, γ12, γ31, γ32 and random effects

(b1i, b2i, b3i) ∼ N3(0,Σ). (9)

The use of shared random effects is a well-established method for reducing the dimen-
sion of the random effects structure and obtaining more parsimonious models [see 24].
The CR-PO model needs the additional constraint β10,1 + γ11b1i ≤ β10,2 + γ12b1i to
make sure that the cumulative probabilities are ordered appropriately. The condition
that γ11 ≤ γ12 is sufficient but not necessary. For any practical purposes it is sufficient
to constrain the parameter estimates such that

β10,1 + 4γ11σ1 ≤ β10,2 + 4γ12σ1, (10)

as P (|b1i| < 4σ1) > 0.9999.This constraint would actually become more problematic
for the most complex random effects structure (7). However, if (10) is not satisfied,
negative probabilities can be obtained which may require redefinitions on the
estimation algorithms (e.g. step-halving). On the other hand violations of (10) could
indicate that the CR-PO model with random effects structure (8) does not provide
a good fit to the data and should be dropped. Fortunately, we did not face such
problems with the models presented in this paper.
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Different choices considered for the covariance matrix Σ = V RV with

V =

 σ1 0 0
0 σ2 0
0 0 σ3


are based on different choices for the correlation matrix R. Matrix V implies that the
random effects vector bi, as given by (7) and (8), has variance components

varcomps(bi) = ((σ2
1, γ

2
11σ

2
1, γ

2
12σ

2
1), σ2

2, (σ
2
3, γ

2
31σ

2
3, γ

2
32σ

2
3)), (11)

allowing flexibility of different scales of variation over households for different pa-
rameters, in the same direction (positive γ’s) or in the opposite direction (negative γ’s).

A fully parameterized R matrix with three correlations ρk` = cor(bki, b`i),
1 ≤ k < ` ≤ 3 appeared to be computationally not feasible. The following
simplified structures are considered:

Independent RE-model

This model with independent random effects (b1i, b2i, b3i) corresponds to the choice
RIND = I3, the identity matrix.

Shared RE-model

This model with all random effects (b1i, b2i, b3i) shared corresponds to the choice
RSHARED = J3, the all-ones matrix, and implying one random effect b1i ∼ N(0, σ2

1)
and b2i = (σ2/σ1)b1i and b3i = (σ3/σ1)b1i. The vector of variance components remains
the same as in (11).

Correlated RE-models

A first choice

RCOR1
=

 1 ρ 1
ρ 1 ρ
1 ρ 1

 (12)

corresponds to two correlated random effects (b1i, b2i) and shared effects
b3i = (σ3/σ1)b1i. Consequently (b2i, b3i) are correlated too, with the same cor-
relation coefficient ρ.

A second choice

RCOR2
=

 1 1 ρ
1 1 ρ
ρ ρ 1

 (13)

corresponds to two correlated random effects (b1i, b3i) and shared effects
b2i = (σ2/σ1)b1i; and so (b2i, b3i) are correlated too.
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And a similar third choice

RCOR3
=

 1 ρ ρ
ρ 1 1
ρ 1 1

 (14)

corresponds to two correlated random effects (b1i, b2i) and shared effects b3i =
(σ3/σ2)b2i, implying that also (b1i, b3i) are correlated with correlation ρ.

Maximum likelihood estimation

Let aij,k` represent the cell count corresponding to cell (Yij1 = k, Yij2 = `) with
k = 0, 1, 2, 3 and ` = 0, 1, and µij,k` = P(Yij1 = k, Yij2 = `|Xij ,β1k,β2,β3k, bi) the
respective cell probability. For the multinomial distribution, the kernel of the likelihood
function in terms of aij,k` and µij,k` is given as

L =

N∏
i=1

∫
bi


ni∏
j=1

µ
aij,k`

ij,k`

 f(bi)dbi (15)

with f(bi) the Gaussian density function for bi with mean 0 and variance Σ. Maximiza-
tion of (15) is subject to the constraints that

∑
k,`

∑ni

j aij,k` = ni and
∑

k,` µij,k` = 1.

We approximate the integral in (15) using numerical integration carried out with adap-
tive quadratures, implementing 7 or more quadrature points. The maximum likelihood
estimators for Θ = {β1k,β2,β3k,Σ} were then obtained via the Newton–Raphson it-
erative algorithm

Θ(t+1) = Θ(t) +H(Θ(t))−1U(Θ(t))

with the score function U(Θ) = ∂ logL/∂Θ and the Hessian matrix H(Θ) =
∂2 logL/∂Θ∂Θ

′
Parameter estimation was implemented in PROC NLMIXED of

SAS/STAT software, version 9.2 (illustrative code available as supplementary material).

5. Application to the INSIDA survey

In this section we briefly report on the application of both type of models (CR and
CR-PO) on the INSIDA data, the selection of covariates and the covariance structure
of the random effects, and discuss and interpret the estimates as obtained from the
best fitting model.

Model building and model selection

Due to the computational complexity, extensive model building was not feasible for
the mixed effects joint models, contrary to the marginal models which ran without any
difficulties with both model parametrization. As a pragmatic approach, the optimal
set of covariates was first selected for the three model components (1)-(3) for each
type of marginal joint model (continuation ratio & cumulative logit models) using a
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backward selection procedure and then this set was investigated for the possibility of
common slopes and random effects.

The final set of covariates is listed in Tables 3 and 4. A likelihood ratio (LR)
test was applied to check the possibility to have common slopes for the ordinal logits,
resulting in LR=13, df=10 (p-value=0.2237) and LR=15, df=10 (p-value=0.1321)
for the CR and CR-PO models respectively. Table 2 below compares the fit of the
different models in terms of their values for -2×loglikelihood, Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC). The last two columns
show the ranking of all models according to AIC and BIC. Both rankings are very
close and show that the marginal models on position 8 and 9 are inferior to most of
the mixed effects models, confirming the need to include household random effects.
So we focus discussion on the latter type of models.

The model outperforming all others is the CR-PO model 6 with correlation
matrix (14) for the random intercepts. Within the CR-PO family the second best
model (and overall second best model according to BIC) is model 3 with independent
random intercepts, closely followed by the CR and CR-PO model 4 with correlation
matrix (12) for the random intercepts.

TABLE 2 ABOUT HERE

A note of cautiousness however is in place here. The fits of the CR models 5 and 6 and
CR-PO model 5 (indicated with an asterisk in Table 2) gave the SAS/STAT warning
“hessian matrix not positive definite” implying that estimates for the standard errors
of some parameter estimates are not available. Applying different starting values and
exploring other options to improve the numerical computations were not successful.
The most common reason for this SAS/STAT warning relates to scaling issues or mis-
specified or overspecified models. In our view, we are hitting the limits of identifiability
and overspecification with some of our models. Results of these models were excluded
of further analysis in this paper.

Parameter estimates and interpretation

Table 3 and 4 show the estimates of the best CR model 4 and the best CR-PO model
6 (being the overall best one). The estimates for the parameters and standard errors
for the marginal distribution of the HIV risk perception, the infection status and the
assocation between both are quite similar between both models. Obviously, as the
covariance structures of the random effects for both models are different, so are the
estimates for the variance components.

TABLE 3 ABOUT HERE

Further discussion is focused on CR-PO model 6. First note that the model constraint
(10) is satisfied as β̂10,1 +4γ̂11σ̂1 = 5.73 ≤ β̂10,2 +4γ̂12σ̂1 = 6.36. The odds to not know
the risk is about 48% higher for households in the rural areas, 112% higher for women,
17% higher for the older individuals (age ≥ 45) as compared to the youngest ones (age
15-24), and 25% higher for a unit increase on the risky sexual behaviour scale. Having
knowledge on how to reduce risk of HIV infection reduces the odds to not know the
risk with about 50%. Given “known” risk perception, the odds to perceive no risk
(versus low or high risk), as well as the odds to perceive low risk versus high risk,
is about 97% higher for households in the rural areas and 43% higher for the older
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individuals (age≥ 45) as compared to the youngest ones (age 15-24). The odds of no
risk is about 29% lower for women, 43% lower when having knowledge how to reduce
HIV risk, and 41% lower for any unit increase on the risky sexual behaviour scale.

TABLE 4 ABOUT HERE

For the HIV infection status, the odds to be positive is about 61% lower for households
in the rural areas and 68% higher for women. The odds to be positive is highest
for the age group 25-34, being 166% higher as compared to the youngest ones (age
15-24); and 116% higher for the age group 35-44 and 60% higher for the age group
≥ 45, both as compared to the youngest group. Finally, the odds increases 26% with
any unit increase on the risky sexual behaviour scale. The effect of having knowledge
on how to reduce HIV risk was not significant.

Of the covariates, age was the only factor with a significant effect on the odds
ratio models (6), more precisely for the odds ratio in the 2× 2 table cross classifying
“unknown”/“known” risk perception against positive/negative infection status. For
the youngest age-group (15-24) there is a significant “positive” association with an
odds ratio estimate of 1.97 (95% C.I.:1.16 –3.35), implying that the odds to be HIV
positive were 97% higher when one does not know about his/her risk, as compared to
“known” risk. This association is only significantly different for the age-group 25-34,
for which the odds ratio estimate reduces to 0.98, implying a lower odds when risk
is unknown than when it is known. As there was no evidence of an effect of risky
sexual behavior on the association between HIV risk perception and HIV status, our
study does not confirm the earlier (contradictory) findings of [19] or [28]. However,
since β30,0 > β30,1 the odds of HIV infection is significantly higher for individuals
with “unknown” risk than with “known” risk, and it increases with an increase
on the risk perception scale (since β30,2 > β30,1), the latter suggesting a positive
association between risk perception and HIV status though not statistically significant.

The above interpretations of the fixed effects are conditional on household.
The heterogeneity across households is characterized by the variance components.
The effect of household seems to mainly play at the level of the probability to have a
HIV positive status, with estimated variance σ̂2 =

√
2.421 = 1.556 (p-value < 0.001

using a χ2
0,1mixture). Using the approximate formula βM = βRE/

√
c2σ2

RE + 1 with

c = 16
√

3/15π between marginal effect βM and conditional effect βRE in a random
intercept logistic model with random effect variance σ2

RE [10, 27], we get the following
unconditional, population averaged effects: the odds to be HIV positive is about 50%
lower for households in the rural areas and 47% higher for women; is highest for the
age group 25-34, being 106% higher as compared to the youngest ones (age 15-24),
76% higher for the age group 35-44 and 41% higher for the age group ≥ 45, both as
compared to the youngest group; increases by 18% with any unit increase on the risky
sexual behaviour scale. An estimate of an approximate intra-household correlation
(correlation between HIV infection status between members of the same household)
can be calculated as σ̂2

2/(σ̂
2
2 + π2/3) = 0.42. However, the basis for this calculation

is not very strong and caution is needed with its use [20], but it gives an idea of the
order of magnitude.

The estimated correlation between the random effects b1i and b2i was found to
be significantly negative, implying that (since γ̂11 ≥ 0 and γ̂12 ≥ 0) for a household
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whose members have a higher probability to be HIV positive (as compared to e.g. a
household for which b1i = 0), the probability of these members perception of risk tend
to be more on the left end of the scale of HIV risk perception (as compared to e.g. a
household for which b2i = 0), where that scale is defined as 0=“unknown risk”,1=“no
risk”, 2=“low risk”, and 3=”high risk”.

As the random effect b2i was correlated significantly with b1i and shared its ef-
fect with b3i, we decided to keep all other variance related parameters in the model,
despite the fact that they turned out to be not significantly different from 0 (at level
0.05).

6. Discussion

This article presents two types of bivariate models for categorical response variables,
being HIV risk perception Y1 having one category “unknown risk” and three other
ordinal categories (”no risk”, ”low risk”,”high risk”), and HIV infection status Y2

(positive or negative). As interest goes to modelling the association between Y1 and Y2

as a function of covariates, while taking into account the hierarchical data structure,
joint models with random household effects were considered. One model (CR model)
starts with a continuation ratio-logits model for Y1, being a natural choice in this
particular setting, and combines it with the binomial distribution of Y2 using global
cross-product ratios as marginal association measures (following Dale’s approach [9],
and further extended with (partly) correlated and/or shared random effects for each
of the three model components. A second model (CR-PO model) follows the same
construct but starts with a model for Y1 that combines continuation-ratio logits with
cumulative logits (proportional odds). In the particular setting of HIV risk perception
and infection status, both joint models only differ in two parameters, one parameter
related to the risk perception distribution and one association parameter. In case Y1

would have five or more parameters (e.g. including a ”moderate risk” category), both
type of joint models would differ in four or more parameters.

By specifying a model for the cross product ratio we can investigate different
notions of dependence between the outcomes, e.g., whether outcomes are positively
dependent, or if this dependence increases with respect to certain covariates. Models
based on Figure 1 and the formulas for the odds ratios ORCR

k and ORPO
k (k = 0, 1, 2)

are of interest given the logits as defined for Y1. In terms of our application, ORCR
0

or ORPO
0 quantifies the factor of change in the odds of not knowing his/her risk (as

compared to knowing one’s risk), while ORCR
1 (or ORPO

1 ) quantifies the factor of
change in the odds of perceiving no risk (as compared to perceiving low or high risk),
given the changes in the relevant covariates. According to Table 4, the odds of HIV
positive when one does not know his/her risk is estimated as 1.97 for the age group
(15-24) and hence the probability of not knowing ones risk is about twice as large as of
knowing (leading to probabilities about 2/3 and 1/3 respectively) when HIV positive.
This corroborates with the findings of [29] which states that in Mozambique personal
risk of HIV infection is greatly underestimated by individuals’ risk perception, despite
the high HIV prevalence [3]. This odds ratio decreases by about 50% (95% C.I.:0.30 –
0.81) when switching from the age group (15-24) to the age group (25-34), leading to
an odds of about 1 or consequently more or less equal probability of knowing or not
knowing individual’s risk.
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This modelling approach can be applied to similar settings as in [22] or slightly
modified to deal with related but somewhat different settings as in quantity-frequency
surveys [see 25]. Quantity-frequency response scales typically have two dimensions
being the frequency (never, monthly or less, 2-4 times per month,. . .) and the quantity
(1-2 drinks, 3-4 drinks,. . .). The second dimension only applies conditional on the
first one being different from “never”. This can be accommodated in our model by
excluding the association parameters corresponding k = 0, being ORCR

0 and ORPO
0 .

Our model then boils down to the one described in [25] but would allow to fit the data
as one joint model with inclusion of common effects across the model components as
well as different multivariate random effects structures.

The proposed full likelihood approach with different multivariate random ef-
fects structures and facing computational limits might become a real challenge
to larger tables. Such an exercise however is considered worthwhile, as it forces
one to think about all model components in detail. A GEE approach is a natural
alternative approach [6, 14, 21]. However, implementing this approach and fitting
such a model to our data with different types of working correlations (again
facing us with many different options) would be far from straightforward. It is a
very interesting topic of research but considered beyond the scope of this contribution.

For the application to the INSIDA data, different models with varying sets of
covariates for the three components of the model and different covariance structures
for the household random effects were fit, and the final model was selected using
AIC and BIC, being the CR-PO model with partly correlated and partly shared
random effects. Not unexpected, the estimates for the (conditional on household)
parameters for the joint distribution of (Y1, Y2) of the (overall) best CR-PO model
and the (second) best CR model were quite close. Computational difficulties were
encountered for some of the models, indicating that information in the data for some
of the parameters is quite scarce. The proposed models may be useful in various fields
of application such as social and biomedical sciences, epidemiology and public health.

The results from the final CR-PO model as fitted to the INSIDA data indicate
that only age has a significant effect on the association between HIV risk perception
and infection status. The variable risky sexual behaviour, of special interest as it
has been mentioned before in literature in relation to the HIV perception & status
association, was not significant for the association model. The random household effect
was mainly relevant for the HIV status. The negative association between perception
of risk and HIV infection status within a household implies that assessing household
members health status through his/her perception of risk is a very biased procedure,
especially for younger individuals. Those that do not correctly perceive their HIV
risk may unknowingly transmit the disease, thus increasing the HIV incidence and
prevalence rates. We believe that a universal or mandatory HIV screening for special
population groups should therefore be considered as a complementary tool in the
fight against HIV/AIDS in the country. Mandatory testing has gained lot of political
support in addressing the problem of HIV infection in certain regions of Gulf countries
(Saudi Arabia, UAE), China, India, Ethiopia, Cambodia, Senegal and others [7].

One limitation in the INSIDA application is related to the considerable amount of
missing data for both, the response variables and the covariates. Further investigation
is required in order to assess the impact that missing mechanisms other than missing
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completely at random may have on the applicability of our models in general and the
results and conclusions about the application to the INSIDA data in particular.
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Table 2. Comparison of model fit. The column ’-2ll’ shows the values of -2×log-likelihood; the column ‘#Par’

shows the number of parameters and the columns ’Rank’ refers to the ranking of the models according to the
AIC and BIC criterion.

Type Model -2ll #Par AIC BIC AIC rank BIC rank
1 Marginal 26887 34 26955 27192 8 8
2 Shared RE 26654 41 26736 27000 6 6.5
3 Independence RE 26565 41 26647 26910 5 5

CR 4 Correlated RE(1) 26553 42 26637 26907 2 3
5* Correlated RE(2) – 42 – – - -
6* Correlated RE(3) – 42 – – - -
1 Marginal 26888 34 26956 27193 9 9
2 Shared RE 26655 41 26737 27000 7 6.5
3 Independence RE 26558 41 26640 26904 3.5 2

CR-PO 4 Correlated RE(1) 26556 42 26640 26909 3.5 4
5* Correlated RE(2) – 42 – – - -
6 Correlated RE(3) 26540 42 26624 26893 1 1

* models with convergence problems.
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