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Abstract 

Low back pain (LBP) coincides with sensorimotor impairments, e.g., reduced lumbosacral tactile 

and proprioceptive acuity and postural control deficits. Recent functional magnetic resonance 

imaging (fMRI) studies suggest that sensorimotor impairments in LBP may be associated with 

brain changes. However, no consensus exists regarding the relationship between functional brain 

changes and sensorimotor behavior in LBP. Therefore, this review critically discusses the 

available fMRI studies on brain activation related to non-nociceptive somatosensory stimulation 

and motor performance in individuals with LBP. Four electronic databases were searched, 

yielding nine relevant studies. Patients with LBP showed reduced sensorimotor-related brain 

activation and a reorganized lumbar spine representation in higher-order (multi)sensory 

processing and motor regions, including primary and secondary somatosensory cortices, 

supplementary motor area and superior temporal gyrus. These results may support behavioral 

findings of sensorimotor impairments in LBP. Additionally, patients with LBP displayed 

widespread increased sensorimotor-evoked brain activation in regions often associated with 

abnormal pain processing. Over-activation in these regions could indicate an over-

responsiveness to sensory inputs that signal potential harm to the spine, thereby inducing over-

generalized protective responses. Hence, functional brain changes could contribute to the 

development and recurrence of LBP. However, future studies investigating the causality between 

sensorimotor-related brain function and LBP are imperative. 
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Introduction 

Low back pain (LBP) is a highly prevalent health condition
1,2

 characterized by recurring 

episodes and a high risk of chronification.
3-7

 Currently, LBP has been identified as the main 

cause of disability worldwide.
8,9

 The majority of LBP complaints are “non-specific”, meaning 

that the pain cannot be ascribed to a recognizable specific pathology such as an inflammatory 

disorder or vertebral fracture.
10

 This highlights the need to elucidate the mechanisms that 

underlie the development and recurrence of LBP.
11

 

 

Sensorimotor impairments have been identified as possible key factors in the development and 

recurrence of non-specific LBP.
12,13

 For example, patients with LBP show a disrupted body 

schema of the trunk
14,15

 and a decreased tactile and proprioceptive acuity at the lumbar spine 

compared to healthy controls.
16-20

 To compensate for the less accurate lumbosacral 

proprioceptive signals, patients with LBP predominantly use ankle muscle proprioception during 

postural control.
21-23

 This altered use of proprioception in patients with LBP resulted in increased 

postural sways during challenging postural conditions
23,24

 and was related to a worse sit-to-stand-

to-sit performance compared to healthy subjects.
25

 Altogether, this vast body of behavioral work 

indicates that patients with LBP show sensorimotor impairments, which can be present prior to 

the emergence of pain.
12,13

 Unfortunately, the mechanisms underlying these sensorimotor 

impairments are very poorly understood. Since optimal sensorimotor behavior depends on the 

adequate central processing and integration of sensory signals,
26-28

 investigating the relation 

between brain function and sensorimotor behavior in patients with LBP could elucidate the 

neural mechanisms of sensorimotor impairments in LBP.
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The recently increased use of magnetic resonance imaging (MRI) in LBP research revealed that 

patients with LBP display structural and functional brain changes (for reviews, see 
29,30

). For 

example, resting-state functional MRI (fMRI) studies have convergently shown an increased 

functional connectivity (FC) in the primary somatosensory cortex (S1), primary motor cortex 

(M1), insula, medial prefrontal cortex, cingulate cortex and amygdala, and abnormal FC within 

the default mode network in patients with LBP at rest (for reviews, see 
29,30

). Additionally, task-

related fMRI studies reported altered brain activation patterns during the processing of specific 

stimuli in patients with LBP. The majority of these studies focused on the processing of 

nociceptive stimuli. They showed that patients with LBP display increased brain activation 

during nociceptive processing in e.g., S1, S2, insula, prefrontal cortices, anterior cingulate cortex 

(ACC) and posterior cingulate cortex (PCC) compared to healthy controls.
31-34

 

 

However, very few task-related fMRI studies investigated brain activation related to 

sensorimotor behavior, i.e. the processing of non-nociceptive somatosensory stimuli and motor 

performance in individuals with LBP. Consequently, no consensus exists on whether subjects 

with LBP display functional brain changes related to sensorimotor behavior. However, such 

knowledge could guide clinicians towards optimizing the evidence-based diagnosis and 

treatment of LBP. Therefore, this review systematically summarizes and critically discusses the 

existing fMRI-based findings on brain function during somatosensory processing and motor 

performance in individuals with LBP. Moreover, methodological considerations for future 

studies and implications for clinical practice will be discussed.  
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Brain activation during somatosensory processing and motor performance in individuals 

with low back pain: search strategy and selection of articles 

This critical review using a systematic approach was conducted following the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines
35

  and reports 

the required information accordingly (see PRISMA checklist, Supplemental Digital Content 1, 

http://links.lww.com/PHM/A520). The protocol was registered in the PROSPERO database with 

registration number CRD42016053053. Electronic databases Pubmed, CINAHL, Web of 

Science, and Embase were searched systematically from inception onwards, with the latest 

search performed on May 26
th

, 2017. The following research question was formulated: “Do 

individuals with LBP exhibit functional brain changes related to somatosensory processing 

and/or motor performance, as examined with fMRI techniques?” To promote comparability of 

results across studies, only studies using resting-state and task-related fMRI (vs. e.g., 

electroencephalography) were included. The search strategy was formulated, with the assistance 

of a librarian, by using the PICOS framework. MeSH terms in Pubmed, Emtree terms in Embase 

and free text words for LBP, fMRI, brain, sensory stimuli (e.g. touch, proprioception) and motor 

tasks were combined (see Supplemental Digital Content 2, http://links.lww.com/PHM/A521, for 

a detailed search strategy). No limitations for article type or time of publication were applied. 

 

The obtained articles were entered in EndNote. After de-duplication, two reviewers (NG and SR) 

independently screened the titles and abstracts of all retrieved articles for eligibility. Then, full-

texts of all relevant articles were screened. In case of disagreement, a third researcher (LJ) 

screened the article and consensus was reached. To be eligible, studies had to (1) include patients 

with LBP or healthy individuals with experimentally induced LBP, (2) assess brain function with 
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task-related or resting-state fMRI and (3) assess brain activation during or correlate functional 

brain outcomes with a non-nociceptive somatosensory stimulus or motor task. Studies using 

stimuli or motor tasks to explicitly induce (more) pain, to investigate the direct effect of pain on 

brain function, were excluded. Although noxious stimuli and the performance of pain-

aggravating movements may activate sensorimotor brain areas in addition to pain-related areas, 

studies using such stimuli or movements were excluded to distinguish articles on pain-evoked 

brain activation from studies on sensorimotor-evoked brain activation. Moreover, studies in 

healthy subjects with experimentally induced LBP were included only if (1) LBP was induced 

prior to fMRI scanning to create a “baseline” condition of LBP, and (2) brain activation was then 

studied during a somatosensory stimulus or motor task that did not aim to elicit (more) pain. 

Finally, articles had to be written in English, Dutch, French or German (See Table 1 for an 

overview of the eligibility criteria). 

 

As presented in Figure 1, the systematic search yielded 217 unique articles. The first phase of 

eligibility screening resulted in 22 citations. Hand-searching the reference lists of these articles 

did not yield any additional articles. Screening the full-texts of the 22 articles resulted in nine 

articles to be included. 

 

Two researchers (NG and SR) independently extracted relevant information from each article: 

(1) LBP group: type of LBP, number, age and gender of participants, (2) healthy group: number, 

age and gender of participants, (3) fMRI technique and somatosensory stimulus or motor task, 

(4) main group differences, (5) correlations and (6) remarks. The nine included studies showed 

Copyright © 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

ACCEPTED



8 
 

great variability in terms of participant‟s characteristics, fMRI (analysis) techniques, studied 

regions-of-interest (ROIs) and used somatosensory stimuli and motor tasks (See Table 2). 

 

Two researchers (NG and SR) independently assessed risk of bias in each study with the 

validated Downs and Black tool
45

 as recommended by The Cochrane Collaboration. The Downs 

and Black tool consists of 27 items rating reporting bias, external validity and internal validity 

and has high internal consistency and inter-rater reliability.
46

 Because this review only included 

observational studies, a modified version of the Downs and Black tool was employed. This 

modified version has been used in other reviews.
47,48

 Questions related to the validity of the 

methodological design associated with an intervention were omitted (items 4, 8, 9, 13, 14, 15, 17, 

19, 23, 24, 26 and 27) and case-series and case studies were not assessed on items related to a 

control group (items 5, 21, 22 and 23). Differences in scoring were discussed until consensus 

was reached. Both reviewers gave equal scores in 91% of the cases (131/144). Scores ranged 

from 45 to 85% between studies (see Table 3). Most articles scored low on external validity, as 

they provided insufficient information on the representativeness of participants who were willing 

and eligible to participate. While the majority of studies controlled for confounding factors, e.g. 

by matching groups on age and gender, only a few reported whether patients with LBP and 

healthy controls were recruited from a similar population and during a similar period. Finally, no 

study indicated if they performed analyses that were not planned a priori. Hence, none received a 

score on „data dredging‟. 
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Decreased brain activation in regions involved in higher-order sensory processing and 

motor control in low back pain 

Two task-related fMRI studies revealed that patients with chronic LBP showed decreased brain 

activation in S2 during the processing of simultaneously applied tactile and proprioceptive 

stimuli at the lumbar spine,
39

 and in supplementary motor area (SMA) and superior temporal 

gyrus (STG) during motor imagery of daily life activities.
44

 Additionally, one resting-state fMRI 

study demonstrated decreased resting-state FC in S1, SMA, M1 and cerebellar lobules IV-V in 

patients with non-specific LBP compared to healthy subjects.
42

 This decreased resting-state FC 

in M1 and cerebellar lobules IV-V correlated significantly with a worse sensorimotor 

performance (more time to perform five sit-to-stand-to-sit movements when blindfolded) in 

patients with LBP and healthy subjects combined.
42

 

 

Above-mentioned brain regions are important in different aspects of sensorimotor control. S1 

processes unimodal sensory signals and integrates them with motor signals to guide movement.
49

 

S2 integrates bilateral, multimodal sensory inputs
50

 and is key in sensorimotor integration 

through its connections with premotor planning areas.
51,52

 The STG contributes to the kinesthetic 

perception of joint movements
53,54

, higher-order sensory integration, and the formation of a body 

schema.
55-57

 The SMA is crucial for adequate motor planning,
58-61

 whereas M1 controls 

movement execution by generating motor commands. Finally, the cerebellum is considered 

important for sensorimotor and postural control,
62-64

 as it co-ordinates the acquisition of sensory 

signals on which motor systems depend.
62 
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Taken together, these results could suggest a reduced sensorimotor-related brain activation and 

decreased resting-state FC in higher-order sensory processing and motor regions in patients with 

LBP. In these studies, it was proposed that a decreased brain activation in these regions might 

negatively affect sensorimotor behavior in patients with LBP through e.g., a down-regulated 

higher-order processing of multimodal (e.g. tactile and proprioceptive) sensory signals 

originating in the spine, a disrupted body schema of the trunk and impoverished motor 

planning.
39,44

 However, Pijnenburg et al. (2015) were the only researchers who directly 

correlated functional brain outcomes with sensorimotor performance. Therefore, above-

mentioned putative mechanisms warrant further study. 

 

Cortical reorganization in the primary and secondary somatosensory cortices in low back 

pain 

Two studies revealed changes in the cortical representation of the lumbar spine in patients with 

long-lasting LBP.
40,44

 Lloyd et al. (2008) reported that patients with chronic LBP who show 

aberrant pain-related illness behavior displayed a medially shifted S1 activation during tactile 

vibration at the lower back compared to healthy controls and well-coping patients with LBP.
40

 

This was consistent with previous findings of a medially shifted lumbar spine representation in 

S1 in patients with chronic LBP compared to healthy subjects.
65

 Moreover, Hotz-Boendermaker 

et al. (2016) revealed that the cortical representations of three lumbar vertebrae in S2 (not in S1) 

was blurred in patients with chronic LBP, whereas clearly distinct representations in S2 were 

found in healthy subjects.
44

 The difference in findings of a reorganized lumbar spine 

representation in S1
40,65

 compared to in S2
44

 could be explained by the nature of the applied 

stimuli, i.e. painful
65

 and intense
40

 versus non-painful
44

. 

Copyright © 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

ACCEPTED



11 
 

 

Taken together, these findings might suggest a reorganized lumbar spine representation in S1 and 

S2 in patients with chronic LBP. Bearing in mind that these regions are important for 

(multi)sensory processing,
49,50

 these results might corroborate behavioral findings of an impaired 

trunk perception and reduced lumbosacral tactile and proprioceptive acuity in patients with 

LBP.
16,18,20,29

 Moreover, since adequate sensory processing and integration are indispensable for 

optimal motor control,
26-28

 a reorganized lumbar spine representation may disturb spinal and 

postural control in patients with LBP. However, none of the studies above assessed trunk 

perception, tactile sensitivity, proprioceptive acuity or motor control. Consequently, direct 

conclusions on the behavioral implications of a reorganized trunk representation in S1 and S2 in 

LBP cannot be drawn. 

 

Increased brain activation in low back pain as maladaptive response 

Four task-related  and two resting-state fMRI studies revealed patterns of increased 

sensorimotor-related brain activation in patients with LBP.
36,38,40-42,44 

Interestingly, these patterns 

were found in studies using a whole-brain approach
40,41 

and studies using predefined ROIs during 

fMRI analysis.
38,42,44

 

 

Patients with chronic LBP showed increased brain activation during the appliance of pressure on 

their thumbnail in contralateral S1, bilateral S2 and ipsilateral inferior parietal lobule and 

cerebellum compared to healthy controls, who only activated S2 contralaterally.
38

 Moseley 

(2004a) reported a similar result in his case study, where a patient with chronic LBP displayed 

widespread activation in S1, ACC, insula, parietal association areas and frontal cortices during 
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abdominal muscle contractions. Furthermore, patients with chronic LBP exhibited widespread 

increased FC during motor imagery of daily life activities across the majority of the motor 

imagery network compared to healthy controls.
44

 This network consisted of left SMA, inferior 

parietal lobule and thalamus and bilateral M1, superior parietal lobules, supramarginal gyri, 

putamina, middle and inferior frontal gyri and insulae.
66

 Interestingly, no group differences were 

found in a control region, suggesting that the increased motor imagery-driven FC in LBP was 

task-specific and not due to an overall enhanced FC.
44

 Additionally, patients with non-specific 

LBP demonstrated increased resting-state FC in lobule VI of the cerebellar vermis and right 

superior and middle frontal gyri compared to healthy subjects.
42

 Finally, compared to elderly 

with non-disabling chronic LBP, elderly with disabling chronic LBP exhibited increased resting-

state FC in the medial prefrontal cortex.
36

 

 

Up to now, it remains unclear whether these patterns of increased brain activity in LBP indicate 

(1) a diffuse, non-specific recruitment of brain regions during task performance due to loss of 

neural specialization (i.e. “dedifferentiation”)
67,68

 or (2) a compensatory increase in brain 

activation to support performance
69-71

. Results from Moseley (2004a) support the 

“dedifferentiation” hypothesis. In this study, contracting specific abdominal muscles initially 

induced widespread brain activation.
41

 Interestingly, this motor-evoked activation reduced 

markedly after the patient received pain physiology education, although quality of task 

performance remained unchanged.
41

 This might suggest that the initially diffuse over-activation 

was non-functional and irrelevant for performing the motor task.  

In contrast, results of Vrana et al. (2015) may support the second “compensation” hypothesis. 

In this study, patients with LBP showed diffusely spread increases in motor imagery-driven FC 
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compared to pain-free controls.
44

 However, motor imagery performance did not differ between 

groups, suggesting that, although patients with LBP had retained their ability to perform motor 

imagined movements, they needed extra neural resources to preserve performance compared to 

controls.
44

 

Compensatory increases in brain activation may initially be adaptive. This was evident in the 

study of Lloyd et al. (2008). They revealed that well-coping patients with chronic LBP activated 

the right PCC and left posterior parietal lobe more during intense tactile stimulation at the 

lumbar spine compared to patients with chronic LBP showing abnormal pain-related illness 

behavior.
40

 Interestingly, this increased sensory-evoked activation correlated significantly with 

lower levels of catastrophizing in the well-coping patients, suggesting a neural mechanism of 

successful adjustment to and coping with pain.
40

 However, compensatory mechanisms of over-

activation may become maladaptive over time, thereby potentially leading to sensorimotor 

impairments. This was suggested by Buckalew et al. (2010), who showed an increased resting-

state FC in the medial prefrontal cortex in elderly with disabling chronic LBP compared to peers 

with non-disabling chronic LBP. The medial prefrontal cortex is suggested to be involved in 

expectation and top-down inhibition of negative emotions
72-74

 and inhibits motor planning areas 

when activated.
75

 The authors suggested that suppressing negative emotions and expectations of 

pain in patients with disabling chronic LBP could activate the medial prefrontal cortex, thereby 

inhibiting motor planning and inducing disability over time.
36 

 

Unfortunately, none of the studies mentioned above decisively showed whether the increased 

brain activation patterns in LBP indicate a dedifferentiated brain activation during sensorimotor 

processing or a compensatory increase in brain activity to preserve sensorimotor behavior. This 
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question could be solved by correlating functional brain outcomes with sensorimotor behavior, 

with positive correlations indicating a compensatory increased brain activation and negative 

correlations supporting the dedifferentiation hypothesis.
71

 However, only two included studies 

correlated brain function (i.e. resting-state FC) with sensorimotor behavior, respectively in 

patients with LBP and healthy controls combined, and in elderly with disabling and non-

disabling chronic LBP combined.
 36,44

 Thus, more studies that directly correlate functional brain 

outcomes with sensorimotor behavior in patients with LBP are urgently needed to elucidate the 

neural correlates of sensorimotor impairments in LBP. For instance, studying brain activation 

during the processing of proprioceptive signals (e.g., by applying muscle vibration during 

fMRI
76

) and correlating this with proprioceptive use during postural control, could clarify the 

neural underpinnings of postural control deficits in patients with LBP. 

 

Neuroimaging studies could also unravel the causal relationship between sensorimotor-related 

brain changes and LBP. Unfortunately, all included studies were cross-sectional. Moreover, only 

two of the nine studies investigated, and did not find, correlations between brain function (i.e. 

resting-state FC) and duration of LBP (total amount of months with LBP)
36

, and between 

sensorimotor performance and LBP intensity.
44

 Therefore, until confirmed by longitudinal 

research, a bidirectional relationship between functional brain changes and LBP can be 

hypothesized. First, ongoing LBP might lead to maladaptive, widespread brain changes that 

could predispose patients to further pain chronification. Alternatively, sensorimotor-related brain 

changes might already be present prior to the emergence of LBP.
77

 For example, altered brain 

activation patterns in regions involved in higher-order sensory processing and motor planning, 

present prior to LBP, might negatively affect trunk movement patterns, thereby inducing hyper- 
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or hypo-activity of trunk muscles.
78

 Such suboptimal trunk movement patterns may in turn lead 

to excessive lumbar movements beyond the normal range of mechanical stability,
79

 abnormal 

loading of the lumbar spine and (recurrence of) LBP. A recent longitudinal behavioral study 

supports this latter causal direction.
13

 In this study, young pain-free individuals who 

predominantly used ankle muscle proprioception instead of lumbosacral proprioceptive signals 

during postural control showed an increased risk of developing or maintaining LBP within two 

years.
13

 However, longitudinal neuroimaging studies that directly investigate associations 

between brain function, sensorimotor behavior and LBP are highly needed to clarify the causality 

between sensorimotor-related functional brain changes and LBP. 

 

Do we need to think outside the “pain matrix” box when observing individuals with low 

back pain? 

Three included studies used the “pain matrix” concept to design the experiments, analyze the 

obtained fMRI data and/or interpret study results.
37,38,41

 The “pain matrix” has been described as 

a network of brain areas that are involved in different aspects of pain perception, such as 

sensory-discriminative aspects (S1, S2, insula, thalamus), affective-attentional aspects 

(amygdala, ACC, posterior parietal and prefrontal cortices), motor responses to pain (SMA, 

cerebellum, striatum) and top-down inhibition of pain (periaqueductal gray) (for reviews, see 

80,81
). In the past, researchers have proposed that the conscious perception of pain arises from 

“pain matrix” activity during the processing of nociceptive inputs.
80,81

 Some authors even 

suggested to use “pain matrix” activity to objectively measure whether or not patients actually 

experience pain.
82

 However, caution might be needed when using the “pain matrix” concept to 

set up experiments, analyze and interpret fMRI data in LBP research. 
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For example, some studies considered LBP as the result of persistent abnormal pain processing, 

similar to e.g., fibromyalgia and irritable bowel syndrome. This might have influenced the 

experimental set-up and fMRI analysis. For instance, Giesecke et al. (2004) and Gay et al. (2014) 

narrowed their search volume to only “pain-related” brain regions. They based their selection on 

a previous study on pressure pain sensitivity in healthy subjects
83

 and previous fMRI studies 

showing increased brain responses to painful stimuli in patients with LBP
32,84

, respectively. 

However, as many of these “pain-related” regions are also shown to play an important role in 

sensorimotor control (e.g. S1
49

; S2
50-52

; M1; SMA
58,59,61

; cerebellum
62

; STG
53,54

), they cannot be 

viewed as merely “pain-specific” regions. This was evident in some of the included studies. 

While Giesecke et al. (2004) and Gay et al. (2014) considered SMA, M1, inferior parietal lobule, 

thalamus, basal ganglia, middle frontal gyrus and insula as “pain-related”, two other studies 

viewed the same regions as “sensorimotor-related”.
39,44

 Therefore, findings of increased sensory- 

or motor-evoked brain activation in these brain regions in patients with LBP might suggest an 

altered sensorimotor processing in LBP, in addition to abnormal pain processing. 

 

Second, new insights support that the functional significance of the “pain matrix” needs to be 

reinterpreted (for reviews, see 
85,86

). For instance, studies showed that several “pain matrix” 

regions are not solely activated during nociceptive stimulation, but also during non-nociceptive 

somatosensory, auditory and visual stimulation (e.g., S2, insula and ACC).
87

 This indicates that 

any type of stimulus, independent of the modality, can elicit the majority of brain responses to 

nociceptive stimuli.
87

 Moreover, “pain matrix” responses to nociceptive stimuli are larger when 

the presented stimuli are novel and unpredictable.
88

 Finally, patients with congenital analgesia 
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(or insensitivity to pain) appear to activate the same “pain matrix” regions as healthy subjects 

during the presentation of noxious stimuli that were perceived as painful by the healthy 

subjects.
89

  

Taken together, these recent findings suggest that the “pain matrix” does not merely present a 

cortical representation of pain. However, it might serve as a defensive salience detection system 

that detects, processes, orients attention towards and reacts upon salient sensory inputs.
85,86

 As 

such, both nociceptive and non-nociceptive stimuli could trigger responses in the salience 

detection system if their salience content is sufficiently high, e.g. because they contrast greatly 

from their surroundings, are entirely new or diverge from expectations based on previous 

experiences.
85,86 

 

Thus, findings of increased sensorimotor-evoked brain activation within regions of the so-called 

“pain matrix” in LBP might need to be reappraised. Giesecke et al. (2004) interpreted increased 

sensory-evoked brain activation in S1, S2, inferior parietal lobule and cerebellum (parts of the 

“pain matrix”) in patients with LBP as ”augmented pain processing”, although the sensory 

stimuli were non-noxious and applied at a pain-free body site (thumbnail). Moreover, Moseley 

(2004a) stated that abdominal muscle contractions activated regions of the “pain matrix” (S1, 

ACC, insula, parietal and frontal cortices) in a patient with LBP, even though she did not 

perceive the motor task as painful. Taken together, these findings of increased sensorimotor-

evoked brain activation may indicate that patients with LBP are over-responsive/over-attentive 

towards salient sensory inputs that signal possibly back-threatening events and require action, 

thereby inducing over-generalized motor responses to protect the spine. Such protective 

responses have been identified in patients with LBP, i.e. they appeared to over-activate lumbar 

Copyright © 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

ACCEPTED



18 
 

paravertebral and abdominal muscles during normal trunk and limb movements and during 

walking.
78,90-92

 Protective motor responses may initially be adaptive. However, they often lose 

their protective function over time, e.g., through a vicious cycle of decreased lumbar movement 

and increased muscular stress, which induces (more) pain and disability and reduces physical 

activity further.
93

 Recent work supports that increased brain responses to non-nociceptive 

stimuli, leading to over-generalized protective motor responses, may induce LBP.
77

 However, 

longitudinal studies are highly needed to clarify the causality between sensorimotor-related 

functional brain changes and LBP. Such studies could also help to optimize LBP management, 

which nowadays mainly targets symptoms and musculoskeletal dysfunctions (vs. addressing 

brain changes) with e.g., massage, lumbar traction or manipulation, but has no to only small-

modest effects (e.g. reviews 
94-97

). 

 

Targeting functional brain changes in patients with low back pain with therapy 

The included studies revealed overall that patients with LBP display altered patterns of brain 

activation related to somatosensory processing and motor performance. Interestingly, studies 

have shown that maladaptive functional brain changes are reversible with treatment (e.g., with 

motor training).
98,99

 Therefore, more efforts are being made to develop interventions that target 

brain changes in patients with LBP. The current review on the association between functional 

brain changes and sensorimotor behavior in patients with LBP may provide additional insights 

into which interventions could be valuable in the management of LBP. 

 

First, performing motor-imagined movements might help to restore disrupted brain activation 

patterns in LBP.
44

 Motor imagery activates largely the same brain regions as motor 
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execution
100,101

 without requiring the patient to actually perform the movements. Therefore, it 

can be particularly advantageous in anxious or fearful patients. Motor imagery has already been 

proven effective to improve trunk dynamics in ballet dancers with LBP,
102

 and to diminish pain 

and to improve movement in patients after lumbar surgery.
103

 However, future studies 

investigating the effect of graded motor imagery training on brain activation patterns in patients 

with LBP are needed. Moreover, studying the effect of “kinesthetic imagery” (imaging the 

sensations of muscular contraction, relaxation and stretching during specific movements) in 

patients with LBP might be valuable.
104 

Second, Moseley (2004a) highlighted the potential of pain physiology education to normalize 

brain activation during motor performance (e.g., by reducing the perceived threat related to the 

motor task
41) 

in addition to its proven effect on reducing pain and improving physical 

performance in LBP.
105 

Third, the importance of improving pain coping strategies in patients with LBP was revealed by 

Lloyd et al. (2008). In this study, well-coping patients with chronic LBP showed increased 

sensory-evoked brain activation in PCC and posterior parietal lobe, which correlated with lower 

catastrophizing scores.
40

 In contrast, patients with chronic LBP who showed poor pain coping 

were not able to activate these brain regions, and reported higher current pain scores and higher 

levels of catastrophizing and depression.
40

 Coping strategies can be improved with cognitive 

behavioral therapy, which has already been proven effective on the long-term in patients with 

non-specific LBP.
106 

 

In addition to above-mentioned strategies, other top-down and bottom-up interventions have 

been shown promising to improve pain and function and normalize brain changes in patients 
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with LBP (for recent reviews, see 
107-110

). For example, specific motor control training of trunk 

muscles normalized cortical reorganization in M1 and trunk muscle recruitment patterns in 

patients with LBP,
99

 while sensory discrimination training (or recognizing the location and type 

of different stimuli) significantly improved pain and functioning in LBP.
108

 Moreover, peripheral 

magnetic stimulation of deep abdominal muscles restored M1 intracortical inhibition 

mechanisms and improved postural control in LBP.
111

 Finally, well-considered combinations of 

different top-down and bottom-up interventions may yield additive effects in the treatment of 

LBP. For example, providing education on pain physiology prior to specific motor control 

exercises may reduce cortical over-activation during the exercises.
41

 Peripheral electrical 

stimulation combined with transcranial direct current stimulation over M1, or combining 

peripheral magnetic stimulation of trunk muscles with motor control training might reduce pain 

more and improve motor learning.
111,112

 However, further studies are imperative to optimize the 

evidence-based management of LBP. 

 

Methodological considerations and future studies 

The following section discusses methodological considerations regarding functional brain 

research in LBP, including the recruitment of participants, the preprocessing of resting-state 

fMRI data, the added value of combining structural and functional brain imaging techniques and 

the need for longitudinal studies. 

 

First, only three studies accounted for possible confounding factors during the recruitment of 

participants.
36,38,43

 Buckalew et al. (2010) excluded individuals with disorders with well-known 

effects on brain function (e.g. diabetes, depression, anxiety or multiple sclerosis) and subjects 
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who were or had been taking psychotropics. Giesecke et al. (2004) asked participants to 

discontinue the intake of antidepressants up to four weeks before the tests and excluded patients 

who were taking long-term opioid medication. Shi et al. (2015) only included participants who 

had no psychiatric illnesses or did not take any drugs within the last month. However, in the 

other six studies, medication use nor the presence of psychiatric/neurological disorders was 

questioned, despite a wealth of studies demonstrating their effect on brain function.
113-116

 Thus, 

future studies should screen participants more rigorously for confounding factors. Additionally, 

to obtain more homogenous groups of patients with ongoing LBP, researchers might also 

consider subgrouping individuals with LBP, e.g., based on recurrent versus chronic LBP. 

However, since considerable heterogeneity exists even within the subgroup of patients with 

chronic LBP (e.g. in terms of pain duration, psychosocial profile and potential underlying 

mechanisms), a more thorough clinical examination of patients with LBP prior to inclusion 

might be warranted. 

Second, the preprocessing of resting-state fMRI data differed between studies. Gay et al. 

(2014) determined resting-state FC by calculating bivariate correlations between the time series 

of two ROIs, whereas Buckalew et al. (2010) used a seed-based approach. Pijnenburg et al. 

(2015) analyzed resting-state fMRI data with two different techniques: (1) independent 

component analysis that decomposed fMRI data into spatially independent resting-state 

networks
117

 of which the sensorimotor network was retained for final analysis and (2) FC density 

mapping to calculate long- and short-range FC density in the sensorimotor network
118

. The 

differences in preprocessing hampered the integration of findings on resting-state FC in LBP 

across studies. 
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Third, only one study combined structural (high-resolution anatomical imaging and diffusion 

tensor imaging) and functional MRI techniques (resting-state fMRI) to investigate brain 

alterations in LBP.
36

 Future studies incorporating different structural and functional 

neuroimaging techniques are imperative to improve our in-depth understanding of neural 

alterations associated with impaired sensorimotor behavior in patients with LBP. 

Fourth, because of the relatively small number of participants in the included studies (ranging 

from one to 45), results should be generalized with caution.  

Finally, future studies might consider using graph theory to analyze brain function and 

structure from a network perspective. Graph theory differs from more traditional approaches that 

examine individual components of the brain, such as cortical regions, by quantifying different 

topological properties of functional and structural brain networks. In this way, graph theory can 

be used to study the efficiency of information transfer between brain regions. To the best of the 

author‟s knowledge, only one study used graph theory, thereby revealing a disrupted white 

matter network organization (i.e. decreased local efficiency and increased connectivity degree in 

M1) in patients with non-specific LBP compared to healthy controls.
119

 Moreover, this study 

showed a significant correlation between decreased global efficiency and a worse sensorimotor 

performance in the patients with LBP.
119 

 

Conclusions 

This review revealed the presence of functional brain changes associated with sensorimotor 

behavior and at rest in patients with long-lasting LBP compared to healthy subjects. Patients with 

LBP demonstrated decreased sensorimotor-evoked brain activation and a reorganized lumbar 

spine representation in brain regions involved in higher-order sensory processing and motor 
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control compared to healthy subjects. These results could support behavioral findings of a 

disturbed body schema of the trunk, reduced lumbosacral tactile and proprioceptive acuity, 

impaired sensorimotor performance and postural control deficits in LBP. Additionally, patients 

with LBP showed widespread increases in brain activation during non-nociceptive external (i.e. 

pressure) as well as bodily-induced stimuli (i.e. motor tasks) in regions of the so-called “pain-

matrix”. In the past, these findings were often interpreted as abnormal pain processing in LBP. 

However, findings of this review support an urgent need to reinterpret these results. Specifically, 

they may indicate that patients with long-lasting LBP are over-responsive to sensory inputs that 

potentially signal danger to the body, thereby inducing maladaptive, over-generalized motor 

responses to protect the spine. Hence, functional brain changes associated with sensorimotor 

behavior may lead to (recurrences of) LBP. However, longitudinal studies are crucial to elucidate 

the causality between functional brain changes, sensorimotor behavior and LBP and to 

investigate the effect of targeted training interventions addressing these specific brain changes in 

patients with LBP.  
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Figure legends 

 

Fig. 1 Preferred Reporting Items for Systematic reviews and Meta-Analyses flow chart of the 

study selection process 
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Table 1. Eligibility criteria 

 Inclusion criteria  Exclusion criteria 

Population  Patients with non-specific LBP 

 Healthy subjects with 

experimentally induced LBP 

  Animals 

Instrument  Task-related fMRI with a 

somatosensory stimulus or motor 

task 

 Resting-state fMRI correlated with 

a somatosensory stimulus or 

motor task 

  EEG, MEG, SPECT, PET, fNIRS 

 Structural MRI  

Outcome  Brain activity or FC during a 

somatosensory stimulus or motor 

task 

 Resting-state FC correlated with a 

somatosensory stimulus or motor 

task 

  Brain activity or FC during painful 

stimulus 

 Resting-state FC before and after 

eliciting (more) pain, without 

correlations with somatosensory 

stimulus or motor task 

Article type   Clinical report 

 Full-text 

  Systematic review, meta-analysis, 

letter  

 Abstracts, posters 

Language  English, Dutch, German, French   All other languages 

LBP= low back pain, fMRI= functional magnetic resonance imaging, EEG= electroencephalography, 

MEG= magnetoencephalography, SPECT= single-photon emission computed tomography, PET= 

positron emission tomography, fNIRS= functional near-infrared spectroscopy, FC= functional 

connectivity 
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Table 2. Summary of evidence on fMRI changes during somatosensory processing or motor performance in subjects with LBP 

Author, 
year 

LBP group  Control group fMRI, stimulus and 
motor task 

Main findings on group differences Correlations Remarks 

Buckalew et 
al. 201036 

 Disabling chronic 
LBP, 4F/4M, 74±6 
y 

 Non-disabling 
chronic LBP, 
2F/6M, 75±7 y 

NA RS, physical 
performance  

Disabling LBP: ↑ FC of medial PFC 
Non-disabling LBP: ↑ FC of lateral 
PFC 
Physical performance: no difference 

No correlation 
between FC and 
physical 
performance 

PCC as seed 
region in RS-
fMRI data 
analysis 

Gay et al.  
201437 

Healthy with 
induced LBP, 
17F/7M, 22±4 y 

NA RS, before and 
after spinal 
manipulation, 
mobilization and 
touch 

FC changes common to three stimuli 
between L PCC - L ant insula, L post 
insula - L PAG, L S1 - R post insula 
Stimuli-dependent FC changes 
between R S1 - R ant insula, R S1 - R 
PAG, R ant insula - L PCC 

Small correlations 
between FC and 
pain intensity and 
between FC and 
pressure pain 
sensitivity  

Only “pain-
related” 
regions and 
descending 
pain 
modulatory 
region (PAG) 
analyzed  

Giesecke et 
al. 200438 

Chronic non-
specific LBP, 8F/3M, 
44±13 y  

Healthy  
4F/7M, 41±7 y 

Task-related, 2 kg 
pressure on L 
thumb 

LBP: ↑ activation in R S1, L&R S2, L 
cerebellum and L inferior parietal 
lobe  
Healthy: ↑ activation in R S2  

NA Only “pain-
relevant” 
regions 
analyzed 
 

Hotz-
Boender-
maker  
et al. 201639 

Chronic non-
specific LBP, 5F/8M, 
39±15 y 

Healthy  
5F/9M, 42±18 y 

Task-related, 
manual pressure 
on 3 lumbar 
vertebrae  

LBP: ↓ activation in L&R S2, blurred 
representation of vertebrae in S2 
Healthy: distinct representations of 
vertebrae in S2 

 NA Only S1 and S2 
analyzed 

Lloyd et al. 
200840 

 

Chronic non-
specific LBP with 

 low degree of 
pain-related 
illness behavior, 
n=15, 46±13 y 

 high degree of 

Healthy  
9F/8M, 31±8 y 

Task-related, tactile 
vibration at lumbar 
spine 

LBP with low illness behavior 

 vs. healthy: ↑ activation in L 
superior parietal lobe, extrastriate 
cortex, fusiform gyrus 

 vs. LBP with high illness behavior: 
↑ activation in R PCC, R extra-
striate cortex, L post parietal lobes  

LBP with low 
illness behavior: 
negative 
correlation 
between 
activation in R 
PCC, L post 

NA 
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pain-related 
illness behavior, 
n=13, 44±12 y 

LBP with high illness behavior  

 vs. healthy and LBP with low 
illness behavior: S1 activation 
medially shifted 

parietal lobes and 
catastrophizing  

Moseley 
2004a41 

 

Disabling chronic 
LBP, 1F, 36 y 

NA Task-related, 
abdominal muscle 
contraction  

Before pain education: activation in 
S1, ACC, insula, parietal association 
and frontal cortices 
After pain education: ↓ activation in 
all regions, except for S1  

NA NA 

Pijnenburg 
et al. 201542 

 

Chronic non-
specific LBP, 
11F/6M, 33±8 y 
 

Healthy  
12F/5M, 32±8 y 

RS, duration to 
perform 5 sit-to-
stand-to-sit 
movements when 
blindfolded 

LBP: ↓ FC in L SMA, M1, S1 and 
cerebellar lobules IV-V + ↑ FC in R 
middle frontal gyrus, superior 
frontal gyrus, lobule VI of vermis + 
worse sensorimotor performance 

Total group: 
negative 
correlation 
between FC of 
cerebellar lobules 
IV-V, M1 and task 
performance 

Only 
sensorimotor 
network 
analyzed 

Shi et al. 
201543 

 

Healthy with 
induced LBP, 
11F/17M, age 
range 22-30 y 

NA Task-related, real 
and sham 
acupuncture at 
knee 

Acupuncture vs. baseline: 
deactivation in somatosensory and 
limbic system, pain matrix, DMN, 
thalamus + activation in M1, S1, 
SMA, insula, midcingulate cortex 
Sham versus. baseline: deactivation 
in insula, frontal operculum, M1 + 
activation in somatosensory, limbic 
and attentional systems, DMN, 
thalamus, cerebellum, lateral 
occipital gyrus 

NA NA 

Vrana et al. 
201544 

Chronic non-
specific LBP, 
4F/11M, 40±14 y 

Healthy  
9F/5M, 34±13 y 

Task-related, motor 
imagery  

LBP: ↓ activity in L SMA and R STG, 
↑ task-related FC in majority of 
motor imagery-network  
Healthy controls: ↑ task-related FC 
in thalamus  
Motor imagery performance: no 
difference 

NA Only motor 
imagery-
related regions, 
STG and 
primary 
auditory cortex 
in FC analysis 

Copyright © 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

ACCEPTED



43 
 

Abbreviations: LBP= low back pain, F= female, M= male, y= years, RS-fMRI= resting-state fMRI, fMRI= functional magnetic resonance imaging, ↑= 
increased, ↓= decreased, FC= functional connectivity, PFC= prefrontal cortex, S1= primary somatosensory cortex, S2= secondary somatosensory cortex, 
M1= primary motor cortex, SMA= supplementary motor area, STG= superior temporal gyrus, DMN= default mode network, PCC= posterior cingulate 
cortex, ACC= anterior cingulate cortex, ant= anterior, post= posterior, L= left, R= right 
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Table 3. Risk of bias in included articles (cfr. modified Downs and Black tool45,47,48) 

 

Vrana 
et al. 

201544 

Giesecke et 
al. 200438 

Hotz-Boender-
maker et al. 201639 

Lloyd et 
al. 

200840 

Moseley 
2004a41 

Shi et 
al. 

201543 

Pijnen-burg 
et al. 201542 

Buckalew et 
al. 201036 

Gay et 
al. 

201437 

Reporting          

Aims described 1 0 1 1 1 0 1 1 1 

Outcomes described 1 1 1 1 1 1 1 1 1 

Patients’ characteristics 1 1 0 0 1 0 1 1 1 

Distribution of 
confounders 

1 1 1 1 NA NA 1 1 1 

Main findings 1 1 1 1 0 1 1 0 1 

Random variability of 
findings 

1 1 1 1 0 1 1 1 1 

Actual p-values reported 0 0 1 1 0 1 1 1 0 

Validity          

Those asked to 
participate 
representative 

1 1 0 0 0 0 0 0 1 

Those willing to 
participate 
representative 

0 0 0 0 0 0 0 0 1 

Bias          

Data dredging 0 0 0 0 0 0 0 0 0 

Appropriate statistical 
analysis 

1 1 1 1 1 1 1 1 1 

Accurate outcome 
measures 

1 1 1 1 1 1 1 1 1 

Confounding          

Groups recruited from 
similar population 

1 0 0 0 NA NA 0 1 NA 
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 NA= not applicable 

 

Groups recruited over 
same time 

0 0 0 0 NA NA 0 0 NA 

Adjusted for confounding 1 1 1 0 NA NA 1 1 1 

Total (%) 73% 60% 60% 53% 45% 55% 67% 67% 85% 
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