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Abstract

Evaluating the quality of discovered process models is an important task
in many process mining analyses. Currently, several metrics measuring the
fitness, precision and generalization of a discovered model are implemented.
However, there is little empirical evidence how these metrics relate to each
other, both within and across these different quality dimensions. In order to
better understand these relationships, a large-scale comparative experiment was
conducted. The statistical analysis of the results shows that, although fitness
and precision metrics behave very similar within their dimension, some are more
pessimistic while others are more optimistic. Furthermore, it was found that
there is no agreement between generalization metrics. The results of the study
can be used to inform decisions on which quality metrics to use in practice.
Moreover, they highlight issues which give rise to new directions for future
research in the area of quality measurement.

Keywords: Process Discovery, Process Quality, Conformance Checking,
Process Metric

1. Introduction

In recent times, organizations possess a tremendous amount of data con-
cerning their customers and products. Many activities which take place in their
operational processes are being recorded in event logs [28]. Techniques from
the process mining field, which has grown steadily over the last decades, can
be applied to gain insights in these event data [27]. In recent years, a lot of
attention has been given to the discovery of process models from event logs
[11, 18, 29, 35], and subsequently, the quality measurement of these models

∗Corresponding author
Email addresses: gert.janssenswillen@uhasselt.be (Gert Janssenswillen),

ndonders93@gmail.com (Niels Donders), toon.jouck@uhasselt.be (Toon Jouck),
benoit.depaire@uhasselt.be (Benôıt Depaire)
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[1, 2, 6, 25, 26]. Assessing the quality of discovered models is essential in order
to find out whether it constitutes an appropriate representation of the process.
The quality of discovered process models has been broken down in four di-
mensions: fitness, precision, generalization and simplicity [22]. For each of the
dimensions, several metrics have been implemented, an overview of which can
be found in vanden Broucke et al. [32].

Although the existing metrics have been used to compare the performance
of process discovery algorithms [9], little research has been done concerning the
evaluation and comparison of the metrics itself. Until now, it is unclear what
the differences are between metrics within the same dimension: do they judge
discovered process models in a similar way, or do they qualify models differently?
Are some metrics more optimistic or pessimistic than others? Furthermore,
there is ongoing debate about the precise definition of certain dimensions, and
the relationships between the dimensions. Nevertheless, it is essential to know
which quality dimensions to take into account given a specific use case and which
measures are most suitable to be used.

In this paper, we conduct an empirical study, incorporating the state-of-
the-art quality metrics, with the aim to statistically analyze the relationships
between metrics within and among dimensions. The results of the experiments
indicate:

• the feasibility of the metrics, in terms of CPU-time and memory,

• whether metrics measuring the same dimension agree with each other or
not,

• whether the dimensions are related to each other, or independent from
one another,

• to which extent some metrics are more optimistic about process model
quality compared to others,

• to which extent some metrics are more sensitive to differences in process
models quality compared to others.

The next section further introduces the different dimensions and the related
metrics which are subject of the analysis. Section 3 discusses the experimental
set up. The results of the experiment are reported and discussed in Section 4.
Section 5 concludes the paper.

2. Related work

In this section, the quality dimensions are further introduced and discussed.
Subsequently, an overview is given of different metrics that have been imple-
mented. Finally, related empirical work is discussed.
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Table 1: Quality Dimensions of Discovered Process Models.

Dimension Description

Fitness A model with good fitness allows for the behavior seen in
the event log

Precision A model is precise if it does not allow for too much observed
behavior

Generalization A model should generalize and not restrict behavior to the
examples seen in the event log

Simplicity A model should be as simple as possible, and easy to un-
derstand.

2.1. Quality Dimensions

The quality of a discovered process model has been broken down into four
different quality dimensions [22], as displayed in Table 1. Firstly, the fitness
dimension measures the extent to which the discovered process model is able to
replay the behavior seen in the event log.

Secondly, the precision dimension states that the model should be precise and
not contain behavior which was not observed. When both fitness and precision
are optimized, the model contains all the recorded behavior and nothing more.

Thirdly, generalization specifies that models should generalize and not only
restrict behavior to the sample contained by the event log. In other words, a
model with high quality should also be able to replay previously unseen behavior
from the process.

Finally, it is said that, according to the Simplicity dimension, simpler models
are preferred over complex ones. On the definition of simpler models, two
different interpretations exist. On the one hand, simpler models have been
defined as models which are not overly complex, e.g., they are not extremely
large and the density of arcs is low [19]. On the other hand, some have defined
simplicity of models as understandability, which places more emphasis on the
ease of interpretation and cognitive capabilities [24].

It should be noted that an inherent trade-off between the dimensions of
precision and generalization exists, as a model can not generalize to unseen
behavior and be precise at one and the same time. Recent literature proposes
a new evaluation framework, in which the quality dimensions to be evaluated
depend on the objective of the quality measurement [16]. When one wants to
quantify whether the model is a good representation of the behavior in the event
log, the dimensions log-fitness and log-precision are proposed. Both dimensions
are defined in the same way as the traditional fitness and precision dimensions,
but their new name emphasizes that they measure the quality of a model with
respect to the log.

However, when the objective is to quantify whether the discovered model is
a good representation of the underlying process, i.e. the system, the dimensions
system-fitness and system-precision are suggested. The latter two dimensions
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are thus suggested to replace the generalization dimension. The term system
refers to the real, underlying process. It defines the actual way work can be
done and it is generally unknown. The event log is regarded as a sample of the
system behavior.

By making the dimensions to quantify contingent on the objective of the mea-
surement, trade-offs between dimensions are removed and explicitly translated
into a trade-off between objectives. The proposed framework in Janssenswillen
et al. [16] accommodates for the fact that different ambiguous and contradict-
ing definitions exist for generalization. The empirical results indicated that the
generalization metrics were negatively correlated, suggesting that they are not
measuring a singular aspect of model quality. As a result, a comparative study
of the behavior of existing metrics is imperative.

2.2. Quality metrics

In this paper, the behavior of state-of-the-art quality metrics is analyzed
using a varying set of models and event logs, starting from the original quality
paradigm. As the focus of this paper lies exclusively on the fit between model
and log, only the first three dimensions are discussed, i.e. fitness, precision
and generalization. Indeed, simplicity focuses only on the model, and does not
relate to the event log. Making a model simpler is sometimes also view as a
preprocessing-step which can be performed after the other quality criteria are
checked on [10]. An overview of the existing metrics can be found in Table 2,
which is based on the overview given in vanden Broucke et al. [32]. Most research
has been attributed to fitness and precision metrics, while only a limited amount
of work is available on generalization.

2.2.1. Fitness

Fitness was one of the first quality dimensions for which metrics were im-
plemented. The first metrics were rather coarse-grained and naive and directed
to a specific set of models. Afterwards more advanced, fine-grained metrics for
Petri Nets have become available. An overview of the metrics in given in Table 2
and more detailed descriptions are provided below.

• The Parsing Measure metric [35] is defined as the percentage of correctly
parsed traces in the event log, and is therefore a quite coarse-grained
metric.

• The Continuous Parsing Method [35] is slightly more fine-grained as
it records errors and then continues parsing. As such, it is defined as the
percentage of successfully parsed events. As well as the Parsing Measure,
it expects a heuristics net as input.

• The Completeness metric as described in Greco et al. [13], is defined
in the same way as the Parsing Measure, with the only difference that it
expects a workflow schema as input. Consequently, Completeness is also
a coarse-grained, naive metric.
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• The Partial Fitness - Complete metric, originally defined in de Medeiros
[7], is similar to the Continuous Parsing Method, to the extent that it ex-
pects a heuristics net and it is a fine-grained metric. However, it does
not only count activities which can be parsed but also punishes for tokens
which are left behind. As a result, the range of possible values for this
metrics extends from −∞ to 1.

• The Token Based fitness metric [23] is one of the first fitness metrics for
Petri Nets, and is specifically based on their execution semantics. In order
to quantify fitness, the event log is replayed on a Petri Net representation
of the discovered model, during which penalties are given when tokens
are missing to execute the next transition. Likewise, penalties are allo-
cated for tokens which remain in the model after replaying. Despite the
straightforwardness of this metric, it has a few disadvantages. Firstly, the
reliance on tokens creates a strong representational bias: two Petri Nets
which are trace equivalent but have a different composition of places and
transitions can have different values for this metric. Furthermore, due to
state space explosion, the calculation of the values might be problematic,
especially in the presence of silent transitions.

• The Proper Completion metric [23] is the Petri-net based alternative
to the Parsing Measure and Completeness metric, as it is defined as the
percentage of traces without any missing of remaining tokens after trace
replay. It can thus be regarded as a coarse-grained, naive version of Token
Based Fitness.

• The Behavioral Recall metric [12] relies on a technique which induces
so-called negative events. These are events which are supposed to be not
allowed at a certain point in the process. Inducing negative events requires
the configuration of considerably more parameters compared to the other
metrics, which require a higher amount of background knowledge about
the algorithm. This also make the metric more sensitive, as there are
many more factors to take into account.

• The Behavioral Profile Conformance Metrics defined in Weidlich et al.
[34] are a set of metrics which relate to different constraints imposed by
a model, such as precedence relations and co-occurence of activities. It
is therefore fundamentally different as the other metrics quantify fitness
with a single value.

• The Alignment-Based Fitness metric [26] compares sequences of ac-
tivities. Each sequence of activities in the log is aligned to an execution
sequence in the model based on a certain cost-configuration for insertions
and deletions. The fitness for a single case is then determined based on
the cost of the optimal alignment for that case, while the overall fitness of
an event log with respect to a model, is the average of the fitness values
for all the cases. Performance issues might exist, as the optimal alignment
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for each trace in the event log needs to be found, which is computationally
expensive.

2.2.2. Precision

While a few early precision metrics exist, most research on the precision
dimension originated later compared to fitness. Recently, new metrics have
been developed which combine existing approach or introduce new ones. An
overview of the metrics in given in Table 2 and more detailed descriptions are
provided below.

• The Soundness metric [13] can be regarded as the precision counterpart
of the Completeness fitness metric. It is defined as the number of traces in
a model which is also part of the model. As for Completeness, a workflow
schema is expected as input.

• The (Advanced) Behavioral Appropriateness metric [23] is a footprint-
based metric which compares follows and precedes relationships. It is
rather coarse-grained and computationally expensive, as it requires a state
space exploration.

• The Behavioral Specificity metric [12] uses the induction of negative
events. It is defined as the percentage of correctly classified negative
events, i.e. events that should not be able to happen because they were
regarded as negative, and which are indeed not allowed in the model.

• The ETC Precision metric [20] uses the notion of escaping arcs in a
prefix automaton to measure precision. However, this approach cannot
cope with non-fitting event logs.

• The Alignment-Based Precision metric [26] builds on the same con-
cepts as the Alignment Based Fitness, as it is calculated based on an
aligned event log. This means that each non-fitting trace is replaced with
the execution trace of the model to which it was aligned. Then, for each
state, the metric compares the number of different activities that have
occurred to the total number of activities possible in the model. When
this ratio is low, it suggests that the model is imprecise.

• The (weighted) Behavioral Precision metric [31] is also based on the
induction of negative events. Here, precision is defined as the ratio be-
tween the number of True Positive events - observed events which can
be replayed - on the one hand, and all positive events on the other hand
- all events which can be replayed by the model, both observed and not
observed - on the other hand. When only observed events can be replayed
by the model, the model is precise. Note that it differs from Behavioral
Specificity in that the latter metric takes into account which events are
negative, while Behavioral Precision does not take this into account.
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• The One Align Precision metric [2] is based on the ETC-precision met-
ric [20]. While ETC precision cannot be used for non-fitting event logs,
One Align allows the computation of the ETC-precision metric by first
aligning the event log with the model. The name One Align stems from
the fact that, when multiple optimal alignments exist, only one is taken
into account

• The Best Align Precision metric [2] is similar to the One Align metric,
but it takes into account all the optimal alignments which exist.

2.2.3. Generalization

Indisputably, the generalization dimension has received the least attention.
Nevertheless, a few metrics have been developed, some of which very recently.
An overview of the metrics in given in Table 2 and more detailed descriptions
are provided below.

• The Alignment Based Probabilistic metric [26] is related to the work
on Alignment Based Fitness and Alignment Based Precision, and attempts
to estimate the probability that a new unobserved case can be replayed
by the current model, using bayesian statistics.

• The Frequency of use metric [3] is a generalization metric defined for
process trees which estimates the generalization by looking at the frequen-
cies of executions in the process tree. When certain parts of the process
tree are infrequent, the tree is regarded as overfitting, and thus has a lower
generalization.

• The Behavioral Generalization metric [31] was introduced in the lit-
erature related to negative events. In this case, the presence of negative
events can be used to measure generalization, as it provides a distinction
about which events the model should be able to replay, and which it should
not. In particular, generalization is defined here as the ratio between the
number of allowed generalizations on the one hand, and the total number
of generalizations - on the other hand. The set of generalizations is defined
as the events which are nor observed nor classified as negative. Allowed
generalizations are the subset of generalizations which are allowed be the
model. The more generalizations are allowed, the higher the generalization
metric will be.

2.3. Related empirical work

Literature on evaluating and comparing quality metrics is limited, although
some works should be noticed. In Rozinat et al. [22], metrics were compared
at a very small scale. However, as this is one of the earliest works on process
model quality, most of those metrics have become obsolete. The metrics based
on negative events were incorporated in a comparison in De Weerdt et al. [8],
but also here only a small set of example models was used. Nevertheless the
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authors concluded that not all metrics are one-dimensional and some suffer from
computational inefficiency.

Experiments on a much larger scale were done in De Weerdt et al. [9], al-
though the objective of this research was to compare the performance of discov-
ery algorithms. Therefore, no conclusions on the relationship between metrics
within and among dimensions were drawn. Finally, in vanden Broucke et al.
[30], metrics were compared within dimensions. Here, the hypothesis that the
average of different metrics within each dimension were equal was rejected.
Nonetheless, no further analyses on their relationship were done.

Compared with the existing literature, the contribution of this paper is that
the state-of-the-art quality metrics are evaluated on a large set of event logs
and models. The focus is not to compare discovery algorithms, but rather to
compare the measurements of the quality metric itself. The gained insights can
then be used to make an informed decision on which quality metrics to use for
the evaluation of discovered process models.

3. Methodology

The methodology used in this paper is based on the framework for comparing
process mining algorithms presented in Weber et al. [33]. In particular, the
experiment encompasses the steps listed below. Each of these is discussed in
more detail in the remainder of this section. The summary of the experiment
can be found in Table 3 and a schematic overview is given in Figure 1. 1

Step 1. Generation of systems

Step 2. Determine of number of execution paths

Step 3. Generation of logs

Step 4. Model Discovery

Step 5. Quality Measurement

Step 6. Empirical Analysis

3.1. Generation of systems

As a first steps, systems are generated which are to act as ground truth
process models. The systems were generated using the methodology described
in Jouck and Depaire [17]. As input for this generation, different population
parameters had to be set, such as the distribution for the number of leaf nodes,
the distribution for the type of operator nodes and the probability for silent and
duplicate tasks. Table 4 shows the used population parameters for each of the
15 systems. For more information on how these parameters are used to generate
the process tree, we refer to Jouck and Depaire [17].

1All the systems, logs, models and quality measurements can be found online and
are available to be used for other experiments: https://github.com/gertjanssenswillen/

processquality/.
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Figure 1: Schematic overview of experimental setup.
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Table 3: Experimental setup.

Step Characteristic Value

1 Number of systems 15

3 Completeness Levels 100%, 75%, 50%, 25%

Noise levels 0%, 5%, 10%, 15%

Number of logs 1200 logs

4 Discovery algorithms Heuristics[35]

Inductive[18]

ILP [29]

Alpha Miner [28]

Flower Miner

Number of models 6000 models

5 Fitness Token Based Fitness [23]

Behavioral Recall [12]

Alignment Based Fitness [26]

Precision Alignment Based Precision [26]

Behavioral Precision [31]

One Align Precision [2]

Best Align Precision [2]

Generalization Alignment Based Generalization [26]

Behavioral Generalization [31]

In terms of parameters, two groups of systems were generated: systems
of moderate complexity (MP1-MP10) and systems of high complexity (MP11-
MP15). This is inspired by the findings in De Weerdt et al. [9], where it was
found that process discovery algorithms perform differently when the process
behavior is complex (real life event logs) instead of more elementary process
behavior (artificial event logs). As such, the obtained values for the quality
metrics are expected to be more widespread over the range from zero to one.
Complexity in this context is related to the mix of constructs which are used
in the systems as well the number of leave nodes. Systems with a higher com-
plexity have more leave nodes, and thus activities, and have a higher proportion
of more advanced constructs, such as loops and inclusive choice. Moreover,
the probability of long-term dependencies and duplicate tasks is higher. For
example, MP1 to MP10 contain models with on average 15 visible activities,
while the other populations contain models with on average 20 visible activities.
Furthermore, only one model population among the first group has long-term
dependencies (i.e. MP9), while four out of five of the more complex populations

11



have this property.
Note that only a single system was generated from each of the model popu-

lation. Therefore, it is not possible to draw any conclusions about the impact
of the parameters, and thus the type of models, on the experiment. Relating
the behavior of process quality metrics to characteristics of the process is out
of the scope of this paper. Rather, the population parameters were set in this
way to include a wide variety of process models in the analysis. As a result,
the selection of a single system for each model population does not hamper the
results of this study.

3.2. Determine the number of execution paths

In order to further increase the variability in the event data, and thereby
bringing about the discovery of a large set of different models, logs with a
different level of completeness and noise are generated in the next step. To be
able to target the completeness of event logs, the number of execution paths in
each of the systems needs to be calculated first. The algorithm introduced in
Janssenswillen et al. [15] was used. In this calculation, loops were only allowed to
be iterated over a maximum number of three times, to avoid an infinite number
of paths. While this appears to be restrictive, the number of paths is only used
as a reference point to create logs with a differing level of completeness. Both
completeness and noise as a characteristic of the event log will not be used
explicitly during the analysis.

3.3. Generation of logs

For each of the systems, event logs with a certain level of completeness and
noise have been simulated. For completeness, 4 levels were considered: 100%,
75%, 50%, and 25%. These percentages measure how many of the different
paths in the system, as calculated in the previous step, have been observed
in the event log. Thus, for a model with 100 unique paths, a log with 75%
completeness is one where 75 of the unique paths in the system have been seen.

Analogously, 4 different noise levels were considered: 0%, 5%, 10%, 15%. A
log with 15% of noise means that 15% of the cases contain noise. The types
of noise that where induced are described in Jouck and Depaire [17]. For each
of the systems (15) and each of the noise (4) and completeness (4) levels, 5
different logs were generated. This amounted to a total of 15 · 4 · 4 · 5 = 1200
logs.

3.4. Model discovery

Afterwards, the simulated logs were used for the discovery of process mod-
els. For each log, five different process discovery algorithms were applied: the
Alpha Miner [28], the Heuristics Miner [35], the Inductive Miner [18], the ILP
miner [29] and the Flower Miner. Note that the goal of the experiment is not
to evaluate the performance of these miners. However, a variety of mining algo-
rithms has been selected in order to avoid algorithm-specific biases. The main
goal of the process discovery step is thus to provide a large variety of models
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of which the quality can be measured by different metrics. Each of the algo-
rithms returned a Petri Net, of which the quality is measured in the next step.
ProM 6.5 was used for the discovery of the process models. Default values were
used for all parameters. In total, 1200 logs · 5 algorithms = 6000 models were
discovered.

3.5. Quality Measurement

The metrics which were used for quality measurement in this experiment
are indicated in the last column of Table 2. The metrics were selected first and
foremost based on their expected type of model input, as all discovery algo-
rithms used return a Petri Net. Furthermore, the initial coarse-grained metrics
such as Proper Completion and (Advanced) Behavioral Appropriateness are not
included. While Behavioral Precision was included, Behavioral Specificity was
not considered, as it is defined slightly different compared to other precision
metrics, as stated in vanden Broucke et al. [32]. Since the discovery algorithms
used do not guarantee a perfect fitness, also ETC-precision is not taken into
account.

Each of the metrics was calculated for each model against the event log it
was discovered from. The resulting values are the input for the experimental
analysis. All calculations were performed using the benchmarking framework
CoBeFra [32]. In total, 6000 models ·9 metrics = 54000 metrics were computed.

3.6. Empirical Analysis

The obtained values are thereafter statistically analyzed. In particular, the
metrics are investigated on three desirable properties: feasibility, validity and
sensitivity.

3.6.1. Feasibility

One should be able to assess the quality of a model within a reasonable
amount of time and without excessive memory capacity. In order to test this,
the calculations are performed with a limited, though not unreasonable amount
of resources. In particular, a maximum working memory of 1Gb is used and
computations are not allowed to last more than one hour.

3.6.2. Validity

The validity of the metrics is assessed, i.e. whether they measure what they
are supposed to measure. In order to do this, the relationships between metrics
within and among dimensions are analyzed by means of a correlation analysis
and a factor analysis.

The analysis of correlations reveals whether metrics within a specific dimen-
sion are positively correlated with each other or not. Furthermore, by examining
the correlations across different dimensions, the relations between the dimen-
sions will become clear.

Secondly, an Exploratory Factor Analysis (EFA) [14] is conducted. Since
the set of dimensions is not unanimously accepted in literature, an Exploratory
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Factor Analysis (EFA) is chosen instead of a Confirmatory Factor Analysis.
This allows non a priori specified factors to be found. In order to decide on the
number of factors to construct, a scree plot is be composed to find the number
of factors that explain the most variability in the data. In order to make the
factors more interpretable, a rotation has been applied. A Promax rotation
is chosen [5]. This is an oblique, non-orthogonal rotation, which assumes that
factors are possibly correlated. Since it is not clear whether dimensions (or their
implementations) are orthogonal or not, an oblique rotation is the safest option.

3.6.3. Sensitivity

Finally, the sensitivity of the metrics is investigated. Both the analysis of
factors and correlations implicitly assume that the relations between different
metrics are the same for the complete range of values, i.e. they behave the same
for models with good quality as well as for models with bad quality. Nonetheless,
it is not impossible that metrics agree on the precision of very precise models,
while they judge the precision of less precise models differently. By comparing
all metrics pairwise, it becomes clear whether some metrics are more pessimistic
than others. Furthermore, it clarifies whether certain metrics observe differences
between models where others do not, and thus are more sensitive.

For each pair of metrics within a dimension, the relationship is analyzed by
drawing a scatter plot and fitting a Lowess smoothing line onto it [4]. This
smoothing line can then be compared to the diagonal. For example, when the
smoothing line approximates the diagonal, the two metrics at hand score models
equally. However, when the smoothing line falls below the diagonal, the y-axis
metric is more pessimistic. When it sits above the diagonal, the y-axis metric
is more optimistic. Moreover, when the slope of the Lowess curve significantly
differs from the diagonal, it can be said that there is a difference in sensitivity.
I.e. when the Lowess curves turns toward a specific metric, it can be said that
this metric becomes less sensitive to differences in quality compared to the other
metric.

4. Results

The median log size of the generated event logs was 10,704 events, with
an overall minimum of 247 and a maximum of 530,203. Each log contained
3,649 cases on average, while the average number of distinct activity sequences
was 545. It should be noted that for the logs generated from systems with a
moderate complexity, the median log size was only 5,670 events, while for logs
with a high complexity, this was 13,904 events.

4.1. Feasibility

During the computation of the metrics, it turned out that some of the com-
putations could not be completed because of excessive requirements in memory
or CPU time. For each computation 1Gb of working memory was available
and computations were aborted after 1 hour. Figure 2 gives an overview of the

15



Figure 2: Missing values by metric and system complexity.

computations that were not complete. This shows that precision metrics suf-
fered more from this problem, in particular the Alignment Based metrics. By
comparing the number of missing values conditioned on the complexity of the
system from which the logs were simulated, as was defined earlier, it is clear
that more problems occurred for the systems with a higher complexity. For
Alignment Based Precision and Best Align Precision, the percentage of missing
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values increases to 50% for systems with high complexity.
It should be noted here that these problems are not only caused by (the

implementation of) the metrics itself, but also by the quality of the models
which are discovered. The colors in Figure 2 show the distribution of the missing
values among the different miners. It is clear the the missing values are not
spread randomly among the miners, but instead, some of the miners create
models for which quality measurement by some of the metrics gets unfeasible.
For example, the problems with Alignment Based Precision and Best Align
Precision are mainly related to models discovered by the Flower Miner, ILP
miner and Heuristics Miner. This can be explained because these algorithms
tend to discover models which allow for too much behavior (cfr. Figure 5). As
a result, it is computationally hard to find the optimal alignment between the
log and the model. On the other hand, the Behavioral Precision metric has no
problem with finding a value for these models, while One Align Precision mainly
has a problem with models from the Heuristics Miner.

It can thus be concluded that, when the complexity of the behavior is high,
some of the metrics are not suitable to use in practice in combination with
certain discovery algorithms. In particular, for models which contain a large
number of different activity execution sequences, metrics which rely on align-
ments experience difficulties to measure the precision.

Overall, the percentage of missing values was 11.69%. For 2952 (49.2%)
models all values were obtained, i.e. for all 9 metrics. Only these complete
observations are used in the remainder of the analysis.Since the missing values
are related to specific type of models (i.e. imprecise) models, it would be unfair
to use partial observations in the analysis.

4.2. Validity

The spread of the obtained values for each of the metrics can be observed
in Figure 3. Each grey point depicts one observation, i.e. a value for a quality
metric concerning a specific log and a specific model. The darker points in the
figure indicate the mean value for each metric.

For the fitness metrics, it can be seen that the distributions of the observation
are similarly distributed, save some minor exceptions. For example, there are
no instances for which Token Based Fitness was lower than 0.125. Furthermore
it is clear that the mass of the distribution for Behavioral Recall and Token
Based Fitness is mostly close to one, while values for Alignment Based Fitness
are slightly more uniformly spread.

Concerning the precision metrics, the mean values are rather different from
one another, Behavioral Precision being a lot more pessimistic than Alignment
Based Precision. Furthermore it can be seen that certain metrics have denser
areas, with lots of observations, notably Alignment Based Precision and One
Align Precision in the vicinity of 1. On the contrary, such dense areas do not
exists for Behavioral Precision and Best Align precision.

Finally, the spread of values for the generalization metrics are quite differ-
ent. Alignment Based Generalization has a left skewed distribution with most
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Figure 3: Distribution of values for different quality metrics

values close to 1. There are only a few values lower than 0.25. The spread of
observations for Behavioral Generalization on the other hand does not contains
gaps, and is much more evenly spread.

These first high level results indicate there are differences within each of the
dimensions. However, to get a detailed view of their differences, one needs to
connect all observations related to a specific log and model. In the next sections,
additional insights are gained using correlation analysis and factor analysis.

4.2.1. Correlation analysis

In order to analyze the relations between the different metrics within and
among dimensions, the correlation coefficients were computed, which are visual-
ized in Figure 4. Some very interesting remarks can be made. When considering
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Figure 4: Correlation matrix.

metrics within each dimension, there is a clear difference between fitness and
precision on the one hand, and generalization on the other hand. Firstly, it is
very clear that all fitness metrics are highly correlated with each other, with for
each pair a correlation higher than 0.80. The same is true for precision, although
some of these correlations here are slightly lower. For generalization metrics,
the situation is different however. Here, no relationship is found between the
two metrics. The main reason for this is possibly the lack of variability for
Alignment Based Generalization, as was already indicated in Figure 3. As a
result, all correlation coefficients for this metric are close to zero.

When looking at relations across dimensions, two important results should
be noted. Firstly, there are substantial negative correlations between fitness
metrics and precision metrics. As such, models with a good fitness typically
have a low precision, and vice versa. Secondly, Alignment Based Generalization
is not correlated with either fitness or precision metrics, while Behavioral Gener-
alization behaves like a fitness metric. Indeed, the latter is positively correlated
with fitness metrics and negatively correlated with precision metrics.

Note that the negative correlation between fitness and precision metric is
not necessarily a characteristic of the metrics itself. The conceptual analysis in
Buijs [3] shows that both dimensions are theoretically independent from each
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other. The negative correlations which were found are possibly related to the
different process discovery algorithms.

In particular, a correlation analysis for each of the algorithms individually
showed that for mostly positive correlations were found between fitness and
precision metrics, except for the models discovered by the flower miner and to
a lesser extent the alpha miner.

Figure 5 visualizes how discovered models are distributed in terms of their
mean fitness and precision value, i.e. average over the different metrics. The
saturation of the colors indicate where the mass of the discovered models is
located for each algorithm. The colored lines represent a linear regression be-
tween mean fitness and mean precision for each of the algorithms.2 The dashed
line represents the negative linear regression for all miners combined, which is
a result from the correlations in Figure 4.

The flower models were not the only reason to find an overall negative cor-
relation, as this was still the case when the flowers models were omitted from
Figure 4. Rather, it can be observed that it is the result of combining the search
space of the different algorithms, which typically are slightly more focused to-
wards either precision, or towards fitness. For instance, the alpha miner tends
to find models which have a high precision, but a lower fitness, while the ILP
miner finds models with the reverse characteristic. The combination of those
leads to a perceived negative correlation. As a result, it can be stated that
the fitness and precision dimensions are not negatively correlated per defini-
tion, which is in agreement with the theoretical foundations of the dimension.
Rather, their relationship depends on which discovery algorithms are taken into
consideration.

This analysis shows that the metrics that have been implemented tend to
agree which each other within each dimensions, except for the generalization
metrics. In the next paragraph, a factor analysis is conducted to delve further
into these complex relationships.

4.2.2. Factor analysis

In order to further investigate the relationship between metrics within an
across quality dimensions, an Exploratory Factor Analysis was done [14]. In
order to decide on the number of factors to construct, a scree plot was composed
to find the appropriate number of factors which explain the most variability in
the data. this suggested that 2 or 3 factors would be most suitable. A factor
analysis with 2 factors was chosen, based on the observation that a third factor
did not have any significant loadings. As was stated in Section 3, a Promax
rotation was used to increase the interpretability of the factors. As this is an
oblique, non-orthogonal rotation, it allows for the fact that factors might be
correlated.

2Note that is was not possible to draw a regression line for the Flower Miner, since each
of these models had a fitness equal to one.
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Figure 5: Relation between mean fitness and precision for different discovery algorithms,
averaged over different fitness and precision metrics, respectively. The saturation of the color
indicates the mass of the observations. Colored lines resemble the correlation between mean
fitness and precision for each algorithm. The dashed lines resembles the correlations for all
miners combined.
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Table 5: Quality assessment factor analysis.

(a) Communality and MSA-value per metric

Metric Communality MSA

Alignment Based Fitness 0.7426 0.8221

Alignment Based Generalization 0.0085 0.0609

Alignment Based Precision 0.7260 0.7819

Best Align 0.7292 0.8481

Behavioral Generalization 0.7590 0.9112

Behavioral Precision 0.7154 0.8170

Behavioral Recall 0.9160 0.6994

One Align 0.9950 0.7906

Token Based Fitness 0.8920 0.7539

(b) Overall quality summary.

Characteristic Value

Total Communality 0.7204

KMO 0.7838

RMSR 0.0370

Bartlett’s p-value 0.0000

The quality of the factor analysis can be assessed using Table 5. The Kaiser-
Meyer-Olkin statistic [14], which displays the proportion of variation between
the different metrics, was equal to 0.7838, which is adequate. The Measures
of Sampling Adequacy (MSA), which depict this proportion for each of the
metrics individually are also quite high for most metrics. Only the Alignment
Based Generalization has a remarkably low value for this metric. However,
this does not pose problems, as the overall KMO value is high enough. The
Root Mean Squared Residual is equal to 0.0370, and thereby well below the
suggested maximum of 0.06 [21]. The Bartlett’s test of Sphericity was done to
test whether the correlation matrix was equal to a unity matrix, and thus factor
analysis would be useless. However, this hypothesis was rejected with a p-value
smaller than 0.0001.

The communalities for each of the specific metrics, shown in Table 5, show
the proportion of variance for each of the metrics that is explained by the factor
[14]. This shows that for the majority of the metrics more than 70% of the
variance is explained by the factors. Also here, the Alignment Based Gener-
alization is the only metric for which almost none of the variance is explained
by the factors. Nonetheless, it can be concluded that the quality of the factor
analysis is good and it is meaningful to interpret the factors.

The loadings of the factors that were found are shown in Figure 6 for each
of the classical dimensions separately. It is clear that Factor 1 and Factor 2
represent the fitness and precision dimensions, respectively. All three fitness
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Figure 6: Factor loadings for a factor analysis with 3 factors and promax rotation.
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metrics have a loading of more than 0.80 on the first factor. However, also the
Behavioral Generalization metric has a considerably high loading on this factor.
This means that, to a certain extent, it behaves in the same way as fitness
metrics.

Subsequently, it can be seen that all precision metrics load reasonably high
on Factor 2. As such, this factor seems to resemble the concept of precision.
Behavioral Generalization is negatively loaded on this factor, but the loading is
too small to attach any meaning onto it.

Furthermore, it is important to observe that Alignment Based Generalization
did not have significant loadings on any of the factors, and this did not change
when the number of factors was increased. This is striking, due to the fact
that there is very little variance among the values obtained by this metric, as
was shown in Figure 3. More specifically, the interquartile range is only 0.0028,
between 0.9972 and 1.0000. As such, one would expect it to be very easy to
explain a substantial part of the variance.

The fact that Behavioral Generalization has a high loading on the fitness-
factor confirms the conclusion that was found earlier based on the correlation
matrix. However, the relationship between fitness and generalization should
not appear eccentric. A model with a good generalization is able to replay
unobserved behavior. As a result, it appears logical that such a model can
also replay observed behavior. The other way around, a model that cannot
replay observed behavior, is unlikely to be able to replay unobserved but realistic
behavior. The conceptual relationship between fitness and generalization is also
discussed in Janssenswillen et al. [16], which stated that they are the same when
the event log is noise-free and complete.

It can thus be concluded that both fitness metrics and precision metrics
agree with each other, respectively. As a result, the validity of these metrics
is approved. On the other hand, generalization metrics do not measure the
same thing. The fact that one of the generalization metrics, i.e. Behavioral
Generalization, loads reasonably high on the fitness-factor is expected to a cer-
tain extend. The Alignment Based Generalization metric seems to be a very
insensitive metric, as the variance is very low.

4.3. Sensitivity

The analysis of correlations and factors implicitly assume that the relations
between different metrics are similar along the whole range, i.e. as well for
models with a high quality as for models with a low quality. However, it is not
impossible that some metrics tend to be more optimistic or more pessimistic.
Moreover, metrics might undoubtedly agree on models with a very good or very
bad fitness, but might judge models with intermediate fitness differently.

In order to examine the relationships between metrics on a more local level,
scatter plots were drawn for each pair of metric in each dimension. Upon these,
Lowess Smoothing lines were fitted [4]. The distance and difference in slope of
the Lowess Smoothing in relationship with the diagonal line shows which of the
two metric is more sensitive and more optimistic or pessimistic.
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(a) Lowess Smoothings for Fitness.
(b) Lowess Smoothings for Gener-
alization.

(c) Lowess Smoothings for Precision.

Figure 7: Lowess Smoothings for pairs of metrics within the dimensions Fitness, Precision
and Generalization

In Figure 7a, Lowess Smoothing lines are shown which describe the rela-
tionships between the fitness metrics. When the smoothing line approximates
the diagonal, the two metrics at hand score models equally. However, when
the smoothing line falls below the diagonal, the y-as metric is more pessimistic.
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When it sits above the diagonal, the y-as metric is more optimistic. Moreover,
when the direction of the Lowess curve significantly differs from the diagonal,
i.e. it is remarkably steep or flat, it can be said that there is a difference in
sensitivity. I.e. when the Lowess curves turns toward a specific metric, as is the
case in the lower left of Figure 7a, it can be said that this metric becomes less
sensitive compared to the other metric.

In Figure 7a it can be seen that the smoothing line between Behavioral recall
and Alignment Based Fitness is close to the diagonal, which indicates a good
correspondence. When models have a higher fitness, Behavioral Recall and
Alignment Based Fitness score models equally, while Behavioral Recall stays
more optimistic as fitness decreases. Although Token Based Fitness and Align-
ment Based Fitness agree on models with perfect fitness, Token Based Fitness
appears to be more optimistic than Alignment Based Fitness when the fitness of
a model lowers. Token Based Fitness seems to be far less sensitive, as the gap
between the Lowess curve and the diagonal increases when Alignment Based
Fitness goes to zero. Moreover, Token Based Fitness also seems to be more
optimistic than Behavioral Recall. However, for models with a good fitness, the
two metrics correspond nearly perfect.

The same Lowess smoothing lines for precision metrics are shown in Figure
7c. Compared to Alignment Based Precision, Best Align and One Align have a
perfect correspondence most of the time, although the latter are more pessimistic
when models are scored very high by Alignment Based Precision. When this is
the case, Best Align seems to be very insensitive, as the Lowess curve gets nearly
horizontal. Behavioural Precision appears to score models more pessimistic on
their preciseness compared to Alignment Based Precision in all of the cases.

Best Align correlates very well with One Align for almost all models, al-
though One Align is slightly more optimistic. Compared to Behavioral Preci-
sion, Best Align score models equivalently when precision is moderate. How-
ever, when Best Align returns a high precision value, Behavioral Precision is
less pessimistic and less sensitive. On the other hand, when Best Align scores
the precision of a model to be very low, Behavioral Precision tends to be more
optimistic. Finally, it can be observed that One Align returns more optimistic
precision values than Behavioral Precision, except towards the extremes of the
range.

At last, Figure 7b shows the relation between the two generalization metrics.
In accordance with earlier results, most values for Alignment Based Generaliza-
tion are in the vicinity of one. As a result, this metric is very insensitive and
always more optimistic than Behavioral Generalization. However, the factor
analysis shows that these metrics do not measure the same aspect in any case.

5. Conclusions and future work

In the context of process discovery, being able to evaluate the quality of
obtained process models as a representation of the process at hand is essential.
In order to do this, different quality dimensions were introduced and for each
of the dimensions several metrics were implemented. However, only limited
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empirical evidence exists on the behavior of these metrics and their relationships
both within and across different quality dimensions. Nonetheless, the feasibility,
validity and sensitivity of quality metrics are important aspects that need to be
considered. In this paper, a large experiment was conducted in order to evaluate
these characteristics.

It was found that, in general, metrics within the fitness and precision dimen-
sion, respectively, largely agree with each other. Nonetheless, several differences
in sensitivity were found on a local scale which should certainly be taken into
account when deciding on which metric to use. For instance, Token Based Fit-
ness is for more insensitive when fitness is low and tends to be more optimistic
compared to Behavioral Recall and Alignment Based Fitness. As to their fea-
sibility, it can be said that all metrics which are based on alignments suffer
from computational difficulties when the amount of behavior which can be re-
played by the model is high. Based on this, it can be advised to use Behavioral
Recall for measuring fitness. For measuring precision, One Align Precision is
most suitable. Although it uses alignments and is therefore less slightly feasi-
ble, it is certainly more sensitive for differences in quality than its Behavioral
counterpart.

No agreement was found between the generalization metrics taken into ac-
count. The Alignment Based Generalization was identified as a very insensi-
tive metric with extremely little variance. On the other hand, the Behavioral
Generalization appeared to have a strong relation with fitness, which can be
corroborated with the conceptual definitions of the quality dimensions.

As most research is focused on the performance and effectiveness of process
discovery algorithms, existing literature on the performance of quality metrics
itself is limited. Although this paper only scratches the surface, it indicates that
there is room for improvement and increased understanding in this area. Future
research could be focused on the precise relationship between event log size or
other event log characteristics and the feasibility of quality metrics. Moreover,
the relation between generalization and fitness should be further investigated.
In particular, it should be made clear when their metrics agree and when they do
not, and whether this is according to their definition. Finally, further research is
needed to find why certain metrics are more sensitive than others, and whether
this related to certain characteristics of the behavior, for instance in terms of
work-flow patterns.
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