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CONFIDENCE INTERVALS FOR THE CURRENT STATUS MODEL

By Piet Groeneboom and Kim Hendrickx

Delft University of Technology and Hasselt University

We discuss a new way of constructing pointwise confidence in-
tervals for the distribution function in the current status model. The
confidence intervals are based on the smoothed maximum likelihood
estimator (SMLE) and constructed using bootstrap methods. Other
methods to construct confidence intervals, using the non-standard
limit distribution of the (restricted) MLE, are compared to our ap-
proach via simulations and real data applications.

1. Introduction. Survival models are commonly used to characterize the distribution of a
variable X that is not observed directly. Depending on what information is obtained on X, different
censoring schemes arise. In this paper we consider the situation that a variable of interest is only
known to lie before or after some random censoring variable T . Each observed sample consists of a
set of n inspection times Ti (independent of the other Tj and all X ′js, j = 1, . . . , n) and n censoring
indicators ∆i = 1{Xi≤Ti}. This type of censored data is known as current status data and arises
naturally in reliability and survival studies when the status of an observational unit is only checked
at one measurement point, which happens in especially when testing is destructive. One could say
that the ith observation indicates the current status of component i at time Ti. Estimation of the
distribution function of the response variable in the current status model is harder than in right-
censored models due to the lack of observing an actual event of interest. Groeneboom and Wellner
(1992) show that the (non-parametric) maximum likelihood estimator F̂n (MLE), maximizing the
likelihood of the data given by,

`n(F ) =
n∑
i=1

∆i logF (Ti) + (1−∆i) log{1− F (Ti)},(1.1)

over all possible distribution functions F without making any additional constraints, converges
pointwise at cube-root n rate to the true distribution function F0 of X. The Kaplan-Meier estimator
(Kaplan and Meier, 1958), which is the MLE for right-censored data, converges on the contrary at
a faster square root n rate because of the fact that one has actual observations in addition to the
censored ones. In the current status model all observations are censored.

In this paper we introduce new methods for constructing pointwise confidence intervals (CIs)
for F0 at time t and compare our techniques with existing methods for interval estimation in
current status models. We assume that both X and T have continuously differentiable distribution
functions F0 and G respectively with positive derivatives f0 and g at t. From Groeneboom and
Wellner (1992), it is known that,

n1/3
{
F̂n(t)− F0(t)

}
D→ [4F0(t){1− F0(t)}f0(t)/g(t)]1/3C,(1.2)
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2 P. GROENEBOOM AND K. HENDRICKX

where C = arg mint∈R{Z(t) + t2} and Z(t) is a standard two-sided Brownian motion process,
originating from zero. To construct a confidence interval using the result given in (1.2), we therefore
need estimates of f0 and g. If one is willing to make assumptions on the underlying distribution
functions of X and T , parametric methods can be used. This was done in e.g. Keiding et al. (1996)
using Weibull models for both f0 and g. Non-parametric estimates obtained by kernel smoothing
were considered in Banerjee and Wellner (2005). The choice of the tuning parameter is however
crucial for a good performance of the confidence intervals.

Banerjee and Wellner (2005) proposed a likelihood-ratio-based method for constructing point-
wise confidence intervals for the distribution function in current status models. Starting from the
likelihood ratio statistic

LR(θ0) = 2
(

log `n(F̂n)− log `n(F̂ θ0n )
)
,

for testing the null hypothesis F0(t) = θ0, which has asymptotic distribution D characterized in
Banerjee and Wellner (2001), the authors estimate the interval by

{θ ∈ (0, 1) : LR(θ) ≤ d1−α} ,

where d1−α is the (1− α)th percentile of D. Here F̂n denotes the unconstrained MLE maximizing
(1.1) and F̂ θ0n denotes the MLE of F0 under the constrained that F0(t) = θ0. The LR-based method
avoids estimation of f0 and g since, under the null hypothesis, the limiting distribution is free of
the underlying parameters. In contrast with the situation for the MLE itself and for the SMLE,
no analytical information is available for the distribution D and the distribution D is estimated
via simulations. A short proof of the characterization of the “Chernoffian” limit distribution of
the MLE itself (without being restricted) in terms of Airy functions has recently been given in
Groeneboom et al. (2015) and the asymptotic distribution of the SMLE is just normal. So in these
cases tables of the critical values are available (for the MLE they are given in Groeneboom and
Wellner (2001)). Tables to determine the asymptotic critical values for the LR test are available in
Banerjee and Wellner (2001).

More recently, bootstrap methods for constructing confidence intervals in the current status
model have been considered. It is however proved in Abrevaya and Huang (2005) that the naive
bootstrap procedure, which simply resamples the original data will not work for pointwise confidence
intervals for the distribution function F0 if it is estimated by the MLE F̂n. A consistent model-based
bootstrap procedure was introduced in Sen and Xu (2015). Instead of resampling the (Ti,∆i), the
authors proposed resampling the ∆i from a Bernoulli distribution with success probability given by
F̃ (Ti), where F̃ is an estimator of F0 satisfying some smoothness conditions (that are not fulfilled by
the ordinary MLE F̂n). The obtained bootstrap sample (T1,∆

∗
1), . . . , (Tn,∆

∗
n) can next be used for

interval estimation. In this case one computes the MLE F ∗n in the bootstrap samples, and subtracts
the smooth distribution F̃ , generating the ∆∗i . The confidence intervals are then formed by taking[

F̂n(t)− V ∗1−α/2(t), F̂n(t)− V ∗α/2(t)
]
,

where V ∗α us the αth quantile of B values of

F ∗n(t)− F̃ (t),
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where B is the number of bootstrap samples taken. For current status and related models, some
research has been reported recommending the use of this smooth bootstrap procedure. A smooth
bootstrap calibration was used in Durot and Reboul (2010) for a goodness-of-fit-test for monotone
functions and in Groeneboom (2012) for a likelihood ratio type two-sample test for current status
data. Durot et al. (2013) used a similar approach to determine the critical value for testing equality
of functions under monotonicity constraints. The main motivation for recommending the smooth
bootstrap are the negative results by Abrevaya and Huang (2005) and Kosorok (2008) proving the
inconsistency of the naive bootstrap for generating the limiting distribution of the MLE.

Recently, it was however proved in Groeneboom and Hendrickx (2017b) that the naive boot-
strap of resampling with replacement from the data does works in case the underlying distribution
function is estimated by the SMLE or in case interest is in other functionals than the values of
the distribution function. The validity of the naive bootstrap for constructing pointwise confidence
intervals around the SMLE and for doing inferences in the current status linear regression model
Groeneboom and Hendrickx (2017a) are illustrated in Groeneboom and Hendrickx (2017b). Al-
though Durot and Reboul (2010) conjecture that the naive bootstrap fails in their setting, this
result suggests that this conjecture might be incorrect and that applications of the naive bootstrap
involving the Grenander estimator are worthy of study in further research.

Besides considering the naive or smooth bootstrap one could moreover consider resampling the
∆i from the MLE itself. Simulation studies in Durot et al. (2013) even suggest that the smooth
bootstrap does not necessarily perform better than bootstrapping from the Grenander estimator
in their setting. So far, the theoretical properties of the latter bootstrap procedure remain an
open problem. As a consequence of the positive result by Groeneboom and Hendrickx (2017b),
we conjecture that bootstrapping from the MLE might very well work for pointwise confidence
intervals in the current status model, if one uses the right functional of the model as a basis for the
intervals.

The outline of this paper is as follows. In Section 2 we introduce the current status model,
describe the construction of the Smoothed Maximum Likelihood estimator (SMLE) for the distri-
bution function and explain how the smooth bootstrap procedure can be used to construct pointwise
confidence intervals for the distribution function. The asymptotic behavior of the confidence inter-
vals is also given in Section 2 together with some details on how to improve the performance of our
intervals. Simulation studies are reported in Section 3 to demonstrate the finite sample behavior of
our confidence intervals and to compare our method with existing methods proposed by Banerjee
and Wellner (2005) and Sen and Xu (2015). In Section 4 we illustrate our methods on the Hepatitis
A dataset and the Rubella dataset. Some concluding remarks are pointed out in Section 5. An
appendix is included in Section 6 containing the proofs of our main results.

The proofs of our results are rather non-trivial and use techniques totally different from the
techniques used in Banerjee and Wellner (2005) and Sen and Xu (2015). The latter fact is not
unexpected, since the intervals are based on recently developed smooth functional theory (see, for
example, Groeneboom and Jongbloed (2015)) and deal with asymptotically normal limits instead
of the non-standard limits for the (restricted) MLE. We hope that the present paper serves the
purpose of making these techniques more widely known. Rcpp scripts for all methods, discussed
here (also the methods of Banerjee and Wellner (2005) and Sen and Xu (2015)) are available in
Groeneboom (2015).
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2. Pointwise confidence intervals in the current status model. Consider an i.i.d sample
X1, . . . , Xn with distribution function F0, where the distribution corresponding to F0 has support
[0,M ] and let F0 have a density f0 staying away from zero on [0,M ]. The observations in the current
status model are (T1,∆1 = 1{X1≤T1}), . . . , (Tn,∆n = 1{Xn≤Tn}) where the Ti are independent of
all X ′js and have a distribution G with Lebesgue density g with a support that contains [0,M ].
We assume that g stays away from zero on [0,M ] and has a bounded derivative g′. In this section
we develop a method for confidence interval estimation for F0(t) when t is an interior point of
[0,M ] and f0 has a continuous derivative at t. We estimate F0(t) by the Smoothed Maximum
Likelihood estimator (SMLE) obtained by first estimating the MLE F̂n and then smoothing this
using a smoothing kernel, i.e.,

F̃nh(t) =

∫
K
(
t− x
h

)
dF̂n(x),(2.1)

where K is an integrated kernel,

K(u) =

∫ u

−∞
K(x) dx,

and where h is a chosen bandwidth. Here dF̂n represents the jumps (“masses”) of the discrete
distribution function F̂n and K is one of the usual kernels, used in density estimation (i.e. K is a
probability density with support [−1, 1] which is symmetric and twice continuously differentiable
on R). We use the notations Kh and Kh to denote the scaled versions of K and K respectively,
given by:

Kh(u) = h−1K(u/h) and Kh(u) = K(u/h).

It is well-known that the MLE F̂n can be characterized as the left continuous slope of the convex
minorant of a cumulative sum diagram formed by the point (0, 0) and i∑

j=1

wj ,
i∑

j=1

f1j

 , i = 1, . . . ,m,

where the wj are weights, given by the number of observations at point T(j), assuming that T(1) <
· · · < T(m) (m being the number of different observations in the sample) are the order statistics
of the sample (T1,∆1), . . . , (Tn,∆n) and where f1j is the number of ∆k equal to one at the jth
order statistic of the sample. When no ties are present in the data (as is indeed the case in our
simulations due to continuity assumptions of g, but is often not satisfied in real data examples),
wj = 1,m = n and f1j = ∆(j), where ∆(j) corresponds to T(j).

From Groeneboom et al. (2010) (Theorem 4.2 p. 365) it follows that,

n2/5
{
F̃nh(t)− F0(t)

}
D−→ N(β, σ2),

where

β =
c2f ′0(t)

2

∫
u2K(u) du and σ2 =

F0(t){1− F0(t)}
cg(t)

∫
K(u)2 du.(2.2)

In the remainder of this Section we first introduce a procedure for interval estimation based
on a smooth bootstrap resampling scheme and next elucidate some adjustments to improve the
performance of the bootstrap confidence intervals.
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2.1. The smooth bootstrap. We obtain a bootstrap sample (T1,∆
∗
1), . . . , (Tn,∆

∗
n) by keeping

the Ti in the original sample fixed and by resampling the ∆∗i from a Bernoulli distribution with
probability F̃nh(Ti). The following bootstrap 1− α interval is suggested:

(2.3)
[
F̃nh(t)− U∗1−α/2(t), F̃nh(t)− U∗α/2(t)

]
,

where U∗α(t) is the αth quantile of B values of

Znh(t) = F̃ ∗nh(t)−
∫

Kh(t− u) dF̃nh(u).

Here F̃ ∗nh(t) is the SMLE in the bootstrap sample defined in the same way as in (2.1) but with F̂n
replaced by F̂ ∗n , i.e. the MLE in the bootstrap sample.

Under the model assumptions stated at the beginning of this section, we have the following
main result showing that n2/5Znh(t) converges to a normal distribution with the same asymptotic
variance as the SMLE. The proof of this result can be found in the Appendix. Some theoretical
aspects of the bootstrap MLE F̂ ∗n , important for proving our main result, are given in Subsection
2.2 below.

Theorem 2.1. Let h = hn ∼ cn−1/5, and let σ2 be given by (2.2),then:

n2/5
{
F̃ ∗nh(t)−

∫
Kh(t− u) dF̃nh(u)

}
D−→ N(0, σ2),

given the data (T1,∆1), . . . , (Tn,∆n), almost surely along sequences (T1,∆1), (T2,∆2), . . . .

Note that we can write,∫
Kh(t− u) dF̃nh(u) =

∫
Kh(t− u)

{∫
Kh(u− v)dF̂n(v)

}
du.

=

∫ ∫
K((t− v)/h− w)K(w) dwdF̂n(v).

In practice we therefore have to compute the convolution kernel K̃, defined by:

K̃(x) =

∫
K(x− w)K(w) dw.(2.4)

A picture of the functions K, K and K̃ is given in Figure 1 using the triweight kernel defined by:

K(u) =
35

32

(
1− u2

)3
1[−1,1](u).

Remark 2.1. Note that we subtract the integrated SMLE using the original data instead of
the SMLE itself in the definition of Znh(t) due to the bias of the SMLE F̃nh(t). This is in line
with the method proposed by Sen and Xu (2015) where the authors subtract the SMLE instead of
the MLE of the original data for constructing confidence intervals around the MLE. One needs to
introduce an additional level of smoothing in order to construct valid intervals using the smooth
bootstrap procedure.
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Fig 1: (a) triweight kernel K : x 7→ 35
32(1 − x2)31[−1,1](x) , (b) integrated triweight kernel K : x 7→∫ x

−∞K(w) dw and (c) the convolution K̃ : x 7→
∫
K(x− w)K(w) dw.

2.2. Asymptotic properties of the smooth bootstrap. It is well-known that the L2-distance be-
tween the MLE F̂n in the original sample and the true distribution function F0 is of order n−1/3

(see e.g. van de Geer (2000) example 7.4.3). In the proof of Theorem 2.1 we need the following
result

(2.5)

∫ t+h

t−h

{
F̂ ∗n(x)− F̃nh(x)

}2
dx = O∗p

(
hn−2/3

)
,

where O∗p
(
hn−2/3

)
means that for all ε > 0 and almost all sequences (T1,∆1), (T2,∆2), . . . , there

exists an M > 0 such that

P ∗n

{∫ t+h

t−h

{
F̂ ∗n(x)− F̃nh(x)

}2
dx ≥Mhn−2/3

}
< ε,

for all large n. Here P ∗n denotes the conditional probability measure given (T1,∆1), . . . (Tn,∆n).
Note that (2.5) does not follow from a conditional global bound on the L2-distance between the
MLE F̂ ∗n in the bootstrap sample and the SMLE F̃nh in the original sample of order n−1/3 and that
this is a refinement of the usual Hellinger distance calculations.

By using the so-called “switch-relation” which reduces the study of the MLE F̂ ∗n to the study of
an inverse process (see e.g. Groeneboom and Jongbloed (2014) p. 320) we show in the Appendix
that

E∗n

{
F̂ ∗n(t)− F̃nh(t)

}2
≤ Kn−2/3 ∀t ∈ [0,M ],(2.6)

where E∗n denotes the conditional expectation given (T1,∆1), . . . (Tn,∆n). From this result it follows
that (2.5) holds.

In the remainder of this section we describe techniques to improve the confidence intervals defined
in (2.3) by (a) considering estimation of the variance, (b) taking into account the boundary effects
of kernel estimates and (c) estimating the asymptotic bias β defined in (2.2).



INTERVALS FOR THE CURRENT STATUS MODEL 7

2.3. Studentized confidence intervals. Usually the performance of the bootstrap confidence in-
tervals works best if one uses a pivot, obtained by Studentizing. In each bootstrap sample we
therefore estimate the variance σ2 defined in (2.2), apart from the factor cg(t), which drops out in
the Studentized bootstrap procedure, by,

S∗nh(t) = n−2
n∑
i=1

Kh(t− Ti)2
(

∆∗i − F̂ ∗n(Ti)
)2
.(2.7)

The variance estimate defined in (2.7) is inspired by the fact that the SMLE F̃nh is asymptotically
equivalent to the toy estimator,

F̃ toynh (t) =

∫
Kh(t− x) dF0(x) +

1

n

n∑
i=1

Kh(t− Ti){∆i − F0(Ti)}2

g(Ti)
,

which has sample variance

Sn(t) =
1

n2

n∑
i=1

Kh(t− Ti)2 (∆i − F0(Ti))
2

g(Ti)2
.

We next compute

W ∗nh(t) =
F̃ ∗nh(t)−

∫
Kh(t− u) dF̃nh(u)√
S∗nh(t)

.

Let Q∗α(t) be the αth quantile of B values of W ∗nh(t), where B is the number of bootstrap samples.
Then the following bootstrap 1− α interval is suggested:

(2.8)
[
F̃nh(t)−Q∗1−α/2(t)

√
Snh(t), F̃nh(t)−Q∗α/2(t)

√
Snh(t)

]
,

where Snh(t) is the variance estimate in the original sample obtained by replacing ∆∗i − F̂ ∗n(Ti)
in (2.7) by ∆i − F̂n(Ti). Note that we do not need an estimate of the density g in each of the
observations Ti as a consequence of the fact that g(u) is close to g(t) for u ∈ [t−h, t+h]. If, on the
contrary, one wants to consider Wald-type confidence intervals for the distribution function based
on the asymptotic normality results of the SMLE, estimation of g is inevitable.

2.4. Boundary correction. It is well-known that kernel density and distribution estimators with-
out boundary correction are generally inconsistent at the boundary of the support [0,M ]. We
therefore use the boundary correction method proposed in Groeneboom and Jongbloed (2014), and
define the SMLE as

F̃
(bc)
nh (t) =

∫ {
K
(
t− x
h

)
+ K

(
t+ x

h

)
−K

(
2M − t− x

h

)}
dF̂n(x).(2.9)

The boundary corrected version of Z∗nh(t) is defined by:

Z
(bc)∗
nh (t) = F̃

(bc)∗
nh (t)−

∫
{Kh(t− x) + Kh(t+ x)−Kh(2M − t− x)} dF̃ (bc)

nh (x).

The result of Theorem 2.1 remains valid under this boundary correction. We also have the following
lemma.
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Lemma 2.1. Let the boundary corrected estimate F̃
(bc)
nh be defined by (2.9), and let K̃h be defined

by:

K̃h(u) = K̃(u/h), u ∈ R.

where the convolution kernel K̃ is defined by (2.4). Moreover, let 0 < h ≤M/3. Then:∫
{Kh(t− x) + Kh(t+ x)−Kh(2M − t− x)} dF̃ (bc)

nh (x)

=

∫ {
K̃h(t− x) + K̃h(t+ x)− K̃h(2M − t− x)

}
dF̂n(x).(2.10)

From Lemma 2.1, it follows that we can write,

Z
(bc)∗
nh (t) =

∫
{Kh(t− x) + Kh(t+ x)−Kh(2M − t− x)} d

(
F̂ ∗n − F̃

(bc)
nh

)
(x)

=

∫
{Kh(t− x) + Kh(t+ x)−Kh(2M − t− x)} dF̂ ∗n(x)

−
∫ {

K̃h(t− x) + K̃h(t+ x)− K̃h(2M − t− x)
}
dF̂n(x)

The proof of Lemma 2.1 is given in the Appendix. A picture of the MLE, together with the
SMLE, both corrected and uncorrected for boundary effects is shown in Figure 2(a) for a sample
from the truncated exponential distribution on [0,2] (See Section 3 for a detailed description of the
model). Figure 2(b) presents the boundary corrected and uncorrected integrated SMLE and clearly
shows the improvement of the boundary correction.
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Fig 2: Truncated exponential samples: (a) F0 (black, solid), the MLE (blue,dashed-dotted), the
SMLE with boundary correction (red, solid) and the SMLE without boundary correction (red,
dashed) and (b) F0 (black, solid), the integrated SMLE with boundary correction (red, solid) and
the integrated SMLE without boundary correction (red, dashed); n = 1000 and h = 2n−1/5.
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2.5. Bias estimation. When constructing confidence intervals around the SMLE, one should
take into account the bias of the SMLE. Note that this matter does not occur for confidence in-
tervals around the MLE, as in Sen and Xu (2015), since the asymptotic distribution of the MLE
is symmetric around zero. Direct estimation of the asymptotic bias β defined in (2.2) requires a
consistent estimate of the second derivative f ′0 of the distribution function F0. Although it is pos-
sible to estimate f ′0 consistently (see e.g.Groeneboom and Jongbloed (2015) p. 243), our computer
experiments demonstrated that it is very difficult to estimate the bias term sufficiently accurately.
We therefore propose to use an adaptive bandwidth h = h(t) in order to improve the performance
of the SMLE-based CIs. When h is monotone increasing and continuous in t, then the SMLE F̃nh(t)
is also monotone increasing and continuous in t. The effect of the adaptive bandwidth will be
elucidated further in Section 3.

3. Simulations. In this section we illustrate the finite sample behavior of the SMLE-based CIs
introduced in Section 2. We also compare our CIs with the likelihood-ratio based CIs proposed by
Banerjee and Wellner (2005) and the CIs introduced in Sen and Xu (2015). The latter CIs are both
constructed around the MLE. We use two simulation examples to analyze the effect of Studentizing
and the choice of the kernel K on the behavior of our SMLE-based CIs. We propose a criterion for
bandwidth selection and illustrate how undersmoothing the bandwidth can improve the behavior
of the CIs.

In the first simulation setting both the event times and censoring times are sampled from a
Uniform(0,2)-distribution. Since the derivative of the uniform density equals zero, the SMLE is an
unbiased estimate of the uniform distribution function and no bias correction is needed. In the
next simulation set-up, we consider the model where we generate the event times from a truncated
exponential distribution on [0,2] and take Uniform(0,2)-censoring times.

For sample sizes n = 100, 500, 1000 and 2000 we generated 5000 data sets from both models.
The boundary correction described in Section 2.4, is used each time the SMLE is considered. The
number of bootstrap samples within each simulation run equals B = 1000.

Table 1 shows the coverage percentage, i.e. the number of times (out of the 5000 simulation runs)
that F0(t) is not in the 95% CIs, and the average length of the 95% CIs around F0(t) for the uniform
model and t = 1. We use the bandwidth h = cn−1/5, where the constant c = 2.0 corresponds to the
length of the interval [0, 2]. We consider two different choices for the kernel, the triweight kernel
and the Epanechnikov kernel and compare the results of our SMLE-based CIs (2.8) with the results
for the MLE-based methods of Banerjee and Wellner (2005) and Sen and Xu (2015).

Table 1
Uniform samples

Studentized SMLE-based CI (2.8) Banerjee-Wellner Sen-Xu
Triweight Epanechnikov Triweight Epanechnikov

n CP L CP L CP L CP L CP L

100 0.0326 0.2799 0.0358 0.2376 0.0486 0.3897 0.0568 0.4620 0.0470 0.4625
500 0.0472 0.1473 0.0454 0.1276 0.0504 0.2311 0.0636 0.2532 0.0580 0.2536

1000 0.0626 0.1072 0.0600 0.0928 0.0498 0.1846 0.0654 0.2024 0.0596 0.2028
2000 0.0494 0.0827 0.0502 0.0710 0.0414 0.1466 0.0516 0.1598 0.0482 0.1599

CP: Coverage proportion, L = average length (α = 0.05).

For each point ti = 0.02, 0.04, . . . , 2 Figure 3(a) presents the coverage proportions for the Studen-
tized SMLE-based CIs (2.8) using the Epanechnikov kernel and the triweight kernel and illustrates
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that the choice of the kernel has only a small effect on the coverage proportions. The average length
of the CIs, shown in Figure 3(b) is smaller for the intervals constructed with the Epanechnikov ker-
nel.
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Fig 3: Uniform samples: (a) Proportion of times that F0(ti), ti = 0.02, 0.04, . . . is not in the 95%
CI’s and (b) average length of the CIs in 5000 samples using 1000 bootstrap samples with the
Epanechnikov kernel (black,solid) and the triweight kernel (blue, dashed) for the Studentized SMLE-
based CIs (2.8). h = 2n−1/5.

A picture of the proportion of times that F0(ti), ti = 0.02, 0.04, . . . , 2 is not in the 95% CIs for
n = 1000 is shown in Figure 4(a-c) for the uniform model. The average length of our CIs based on
the SMLE (both classical CIs (2.3) (result not shown) and Studentized CIs (2.8)) remains smaller
than the average lengths of the Banerjee-Wellner and Sen-Xu CIs based on the MLE for all points t,
as is shown in Figure 4(d). For the uniform samples our SMLE-based method does not suffer from
bias effects; the coverage of the different intervals is comparable for time points in the middle of
the interval [0,2], but becomes rather bad at the boundary of the interval for the Banerjee-Wellner
and Sen-Xu intervals. Figure 4 is obtained with the results for the Epanechnikov kernel. Similar
comparisons were obtained when the triweight kernel was used. Figure 4(a) also shows that the
classical SMLE-based CIs (2.3) are slightly anti-conservative near the left boundary of the interval
and have a coverage that is less good than the Studentized CIs (2.8). Similar conclusions are also
observed for the exponential samples.

In contrast to the MLE-based intervals, the SMLE-based intervals in the exponential setting are
subjected to bias effects. A picture of the asymptotic bias β defined in (2.2) is shown in Figure 5,
the function β = β(t) is scaled by a factor 1000−2/5 and therefore its magnitude corresponds to
the quantity that should be subtracted from the estimated SMLE-based CIs in order to construct
unbiased confidence intervals based on n = 1000 observations. Accurate procedures to handle the
bias are hard to obtain and still need more investigation in further research. We propose to use
a combination of a local bandwidth, minimizing an estimate of the Mean Squared Error together
with undersmoothing in order to reduce the bias effects when constructing confidence intervals
around the SMLE. Undersmoothing can be used to correct for bias when the bootstrap is used
to construct confidence intervals. As argued by Hall (1992), undersmoothing has the advantage
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Fig 4: Uniform samples: Proportion of times that F0(ti), ti = 0.02, 0.04, . . . is not in the 95%
CI’s in 5000 samples using the Epanechnikov kernel and 1000 bootstrap samples for (a) classical
SMLE-based CIs (2.3) (blue, dashed) and Studentized SMLE-based CIs (2.8) (black, solid), (b)
Banerjee-Wellner CIs (blue, dashed) and Studentized SMLE-based CIs (2.8) (black, solid) and (c)
Sen-Xu CIs (blue, dashed) and Studentized SMLE-based CIs (2.8) (black, solid). (d) The average
length for the SMLE-based CIs (2.8) (black, solid), Banerjee-Wellner CIs (red, dashed) and Sen-Xu
CIs (blue, dashed-dotted). n = 1000 and h = 2n−1/5.

that direct estimation of the bias is no longer necessary and can improve coverage accuracy of the
CIs as well as result in narrower intervals. An improvement of the performance of bootstrap-based
CIs around the SMLE as a consequence of undersmoothing is also observed in Groeneboom and
Jongbloed (2014), Section 9.5. (see e.g. Figure 9.19 on p.272).

3.1. Bandwidth selection. We use a bootstrap procedure to select the optimal local bandwidth
at time point t. The selection criterion is based on minimizing the Mean Squared Error (MSE)

MSE(h) = E{F̃nh(t)− F0(t)}2.(3.1)
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Fig 5: Truncated exponential samples: Bias for a sample of size n = 1000, h = 2n−1/5.

Since F0 is unknown in practice, we select, for each time point t, the constant ĉt,opt which minimizes

M̂SE(c) = B−1
B∑
b=1

{F̃ b
m,cm−1/5(t)− F̃nh̃0(t)}2(3.2)

where F̃ b
m,cm−1/5 is the SMLE in a bootstrap sample (T ∗1 ,∆

∗
1), . . . , (T

∗
m,∆

∗
m) of size m < n, where the

T ∗i are sampled from a kernel estimator for the distribution function G of the censoring variable
T and where the ∆∗i are sampled from a Bernoulli distribution with probability F̃nh0(T ∗i ). Here
F̃nh0 denotes the SMLE in the original sample (of size n) using the bandwidth h0 = c0n

−1/5 for
some constant c0 and B equals the number of bootstrap samples. A similar procedure to select the
constant c when interest is in point estimation of F0(t) is proposed in Groeneboom et al. (2010).
For each time point t, we next choose the bandwidth

ĥt,opt = ĉt,optn
−1/4,

where we use undersmoothing to reduce the bias effect in constructing CIs for F0(t).
An important point is the fact that we have to use subsampling, i.e. bootstrapping with a smaller

sample size, for estimating the right bandwidth in a reasonable fashion, as argued convincingly in
Hall (1990). In the present case, we tookm = 100. If one does not use subsampling, the bias/variance
comparison is not done in the right way, whereas our present scheme, taking m = 100 versus the
original sample size n = 1000, seemed to give a reasonable estimate of the MSE, as was borne out
by a comparison with the real MSE. We estimated MSE(c) on a grid c = 0.05, 0.10,. . ., 5, for a
sample of size n = 1000 by a Monte Carlo experiment with N = 1000 simulation runs by

M̃SE(c) = N−1
N∑
j=1

(F̃ j
n,cn−1/5(t)− F0(t))

2,(3.3)

where F̃ j
n,cn−1/5(t) is the estimate of F0(t) in the jth simulation run, j = 1, . . . , N . Figure 6(a)

compares the values of c minimizing the Monte-Carlo estimate of MSE (3.3) with the values of c
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minimizing the bootstrap MSE (3.2) as a function of t, and illustrates that the bootstrap MSE is
a good estimate of (3.1).

Figure 6(b) compares the proportion of times that F0(ti), ti = 0.02, 0.04, . . . is not in the 95%
Studentized SMLE-based CI’s (2.8) for the truncated exponential model when a fixed bandwidth
h = 2n−1/5 is used with the proportion obtained when a local bandwidth is used. We use the
bandwidth h(t) = (0.3412 + 0.1280t)n−1/4 which corresponds to the least squares regression line
through the points (t, cn−1/4) where c is the value minimizing (3.3) at timepoint t. An improvement
in the coverage probabilities of the CIs is seen at the left end (i.e. the region where the bias is
most prominent), indicating that it is indeed possible to obtain good CIs if undersmoothing in
combination with a local optimal bandwidth is considered. The coverage proportions for the MLE-
based methods of Banerjee and Wellner (2005) and Sen and Xu (2015) (results not shown) are
similar to the proportions obtained for the uniform samples. Under our regularity conditions, our
SMLE-based CIs have a better behavior than the MLE-based intervals near the boundary of the
intervals in terms of coverage proportions and in the middle of the interval in terms of the length
of the intervals.
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c
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Fig 6: Truncated exponential samples: (a) optimal bandwidth h at timepoint t0 = 0.02, 0.04, . . . , 2

obtained by the minimizer of M̃SE (red, solid) using N = 1, 000 Monte-Carlo runs and M̂SE
(black, dashed) using B = 1000 bootstrap runs of size m = 100 and h0 = 2n−1/5. (b) Proportion
of times that F0(ti), ti = 0.02, 0.04, . . . is not in the 95% Studentized SMLE-based CI’s (2.8)
in 5000 samples using 1000 bootstrap samples with bandwidth h = 2n−1/5 (blue, dashed) and
h(t) = (0.3412 + 0.1280t)n−1/4 (black, solid); n = 1000.

The CIs for one sample of size n = 1000 are shown in Figure 7 and Figure 8. Note that the
Sen-Xu CIs do not have monotone bounds. One may wonder if one really wants to use the MLE
for estimating the distribution function, if one resamples from the SMLE as in Sen and Xu (2015)
since one uses smoothness conditions that allow to estimate the distribution function at a faster
rate than the convergence rate of the MLE. The pointwise CIs around the SMLE change smoothly
over the interval whereas MLE-based intervals change in discrete steps.

4. Real data analysis.
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Fig 7: Uniform samples: F0 (red solid). (a) Studentized SMLE-based CI (2.8), (b) Banerjee-Wellner
CI and (c) Sen-Xu CI based on one sample of size n = 1000 using 1000 bootstrap samples. In (a)
the SMLE (blue, solid) is given and in (b,c) the MLE (blue, step function) is given; h = 2n−1/5.
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Fig 8: Truncated exponential samples: F0 (red solid). (a) Studentized SMLE-based CI (2.8), (b)
Banerjee-Wellner CI and (c) Sen-Xu CI based on one sample of size n = 1000 using 1000 bootstrap
samples. In (a) the SMLE (blue, solid) is given and in (b,c) the MLE (blue, step function) is given.
h(t) = (0.3412 + 0.1280t)n−1/4 for SMLE-based CI and h = 2n−1/5 for Sen-Xu CI.

4.1. Hepatitis A. Keiding (1991) considered a cross-sectional study on the Hepatitis A virus
from Bulgaria. In 1964 samples were collected from schoolchildren and blood donors on the presence
or absence of Hepatitis A immunity. In total n = 850 individuals ranging from 1 to 86 years old
were tested for immunization. It is assumed that, once infected with Hepatitis A, lifelong immunity
is achieved. We are interested in estimating the sero-prevalence for Hepatitis A in Bulgaria. We
constructed confidence intervals at timepoints t1 = M/100, t2 = 2M/100, . . . ,M where M = 86 is
the largest observed age using the Studentized SMLE-based CIs (2.8) described in Section 2 using a
local bandwidth h(ti) = (0.5M+1.5ti)n

−1/5. A picture of the CIs together with the likelihood-ratio
based CIs of Banerjee and Wellner (2005) and the CIs of Sen and Xu (2015) is given in Figure 9. The
estimated prevalence of Hepatitis A at the age of 18 is 0.51, about half of the infections in Bulgaria
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happen during childhood. The length of the CIs is smallest for our SMLE-based CIs and largest for
the Sen-Xu CIs. The latter CIs have left and right end points that are not monotone increasing in
age, a property that is not shared by the other two CIs which have monotone increasing bounds.
In contrast to the Banerjee-Wellner CIs, the bounds of our SMLE based CIs are not increasing by
construction.
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Fig 9: Hepatitis A data: (a) Studentized SMLE-based CI (2.8), (b) Banerjee-Wellner CI and (c)
Sen-Xu CI based on n = 850 observations using 1000 bootstrap samples. In (a) the SMLE (red,
solid) is given and in (b,c) the MLE (red, step function) is given. h(t) = (43 + 1.5t)n−1/5 for
SMLE-based CI and h = 86n−1/5 for Sen-Xu CI.

4.2. Rubella. Keiding et al. (1996) considered a current status data set on the prevalence of
rubella in 230 Austrian males older than three months. Rubella is a highly contagious childhood
disease spread by airborne and droplet transmission. The symptoms (such as rash, sore throat, mild
fever and swollen glands) are less severe in children than in adults. Since the Austrian vaccination
policy against rubella only vaccinated girls, the male individuals included in the dataset represent
an unvaccinated population and (lifelong) immunity could only be acquired if the individual got the
disease. We are interested in estimating the time to immunization (i.e. the time to infection) against
rubella using the SMLE. We constructed CIs at timepoints t1 = M/100, t2 = 2M/100, . . . ,M
where M = 80.1178 is the largest observed age, using CIs defined in (2.8) with the boundary
correction described in Section 2 and a local bandwidth h(ti) = (0.25M + ti)n

−1/5 if ti ≤ 20 and
h(ti) = h(20) + 2(ti−20)n−1/5 else. The bandwidth choice is based on the fact that most infections
occurred before the age of 20 years and a larger bandwidth is needed in the range [20,M] to obtain
plausible estimates. The SMLE increases steeply in the ages before adulthood which is in line with
the fact that rubella is considered as a childhood disease. As can be seen from Figure 10, our
CIs and the Banerjee-Wellner CIs are favored over the Sen-Xu intervals due to their remarkable
non-increasing behavior and their large width in the region up to 20 years. A further discussion of
statistical aspects of this data set can be found in Banerjee and Wellner (2005) and Groeneboom
and Jongbloed (2014).

5. Concluding remarks. In this paper we presented a method for confidence interval estima-
tion for the distribution function of a random variable which cannot be observed completely due
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Fig 10: Rubella data: (a) Studentized SMLE-based CI (2.8), (b) Banerjee-Wellner CI and (c) Sen-
Xu CI based on n = 230 observations using 1000 bootstrap samples. In (a) the SMLE (red, solid)
is given and in (b,c) the MLE (red, step function) is given. h(t) = (0.25M + t)n−1/5 if t ≤ 20 and
h(t) = h(20) + 2(t− 20)n−1/5 else for SMLE-based CI and h = 80.12n−1/5 for Sen-Xu CI.

to current status censoring. The CIs are based on a smooth bootstrap procedure. Unfortunately,
a rather negative feeling on the usefulness of bootstrap methods in this context is created by the
results in Abrevaya and Huang (2005) and Kosorok (2008), showing that the classical bootstrap can
not be used in reproducing the “Chernoffian” limit distribution of the MLE in current status mod-
els and of the Grenander estimator in monotone density estimation. The result in Sen et al. (2010)
showing that even resampling from the Grenander estimator itself will not result in a consistent
bootstrap has further contributed to this negative image of the bootstrap.

A positive bootstrap result, on the other hand was derived in Sen and Xu (2015) showing that
one can in fact reproduce the Chernoffian limit distribution if one resamples from a smooth estimate
of the distribution function, such as the smoothed maximum likelihood estimator (SMLE). But we
meet a familiar paradox in the field here: if one introduces smoothness conditions (which is also done
in the conditions of limit theorems for the MLE), then one can usually achieve better convergence
rates than the MLE achieves. For example, under the smoothness conditions of Groeneboom et al.
(2010), the SMLE achieves rate n2/5 (familiar from density estimation), whereas the MLE only
achieves rate n1/3 (familiar from histogram estimation). The authors of Sen and Xu (2015) however
use bootstrapping by resampling the indicators ∆∗i from the SMLE, while keeping the observation
times Ti fixed in combination with intervals around the MLE instead of the smooth estimate from
which the resampling is done. It seems more natural to construct confidence intervals on the basis
of the SMLE instead of the MLE and this is indeed what we propose in the current paper. We have
shown that the procedure, based on the SMLE, gives a consistent bootstrap, and has considerably
smaller intervals than the intervals in Banerjee and Wellner (2005), who used LR tests, based on
the (restricted) MLE, or Sen and Xu (2015) who used intervals, based on the MLE rather than the
SMLE.

We showed in this article that the intervals based on the SMLE can be constructed in such a
way that one gets a better boundary behavior, provided the necessary smoothness conditions are
satisfied. The simulations also showed, not unexpectedly, that the Studentized CIs were better than
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the non-Studentized bootstrap CIs. In contrast to the unbiased MLE, the squared bias and variance
for the SMLE are of the same order. We therefore found in our simulations that the performance of
our CIs increases considerably if we subtracted the (unobserved) bias in the construction of the CIs.
In practice it is of course not possible to subtract the real bias. However, our simulations showed
a remarkable improvement of the behavior of the CIs if one uses a local bandwidth in combination
with undersmoothing instead of one global bandwidth of order n−2/5. We propose a bandwidth
selection criteria based on the smooth bootstrap procedure developed in this paper and apply the
concept of undersmoothing to reduce the bias effect when constructing confidence intervals around
the SMLE. Further research related to the development of criteria to decide on how to adapt the
bandwidth in order to handle the bias are worth studying in further research.

Rcpp scripts for producing the pictures of this paper and doing simulations can be found in
Groeneboom (2015).
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6. Appendix.

6.1. Proof of Theorem 2.1. We denote the bootstrap sample by (T1,∆
∗
1), . . . , (Tn,∆

∗
n). Note that

the sample is produced by keeping the Ti fixed and drawing the ∆∗i from a Bernoulli distribution
with probability F̃nh(Ti) at each ith draw. Let Gn be the empirical measure of T1, . . . , Tn and let
P∗n denote the empirical measure of (T1,∆

∗
1), . . . , (Tn,∆

∗
n). We write

n−1
n∑
i=1

f(Ti,∆
∗
i ) =

∫
f(u, δ∗) dP∗n(u, δ∗).

for some bounded function f : [0,M ]×{0, 1} → R. Note that for any bounded function h : [0,M ]→
R

n−1
n∑
i=1

h(Ti) =

∫
h(u) dP∗n(u, δ∗) =

∫
h(u) dGn(u).

Finally let P ∗n denote the conditional probability measure, given (T1,∆1), . . . , (Tn,∆n) and note
that

P ∗n (∆∗i = 1) = F̃nh(Ti) i = 1, . . . , n.(6.1)

For the proof of Theorem 2.1 we use the so-called “switch relation”, which reduces the study of F̂ ∗n
to the study of an inverse process. To this end, we define the process W ∗n by:

W ∗n(t) = n−1
n∑
i=1

∆∗i 1{Ti≤t}.
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and the process (in a) U∗n by:

(6.2) U∗n(a) = argmin{t ∈ R : W ∗n(t)− aGn(t)}.

Then, taking an = F̃nh(t), we get the switch relation:

P ∗n

{
n1/3{F̂ ∗n(t)− F̃nh(t)} ≥ x

}
= P ∗n

{
F̂ ∗n(t) ≥ an + n−1/3x

}
= P ∗n

{
U∗n(an + n−1/3x) ≤ t

}
,

(6.3)

Now, let Un be defined by

Un(a) = inf{x ∈ R : F̃nh(x) ≥ a}, a ∈ (0, 1).(6.4)

We have the following result.

Lemma 6.1. There are positive constants C1 and C2, such that, almost surely, for all x > 0
and all large n:

P ∗n

{
n1/3 |U∗n(a)− Un(a)| ≥ x

}
≤ C1e

−C2x3 .

Note that, in the unconditional setting, this is Theorem 11.3 in Groeneboom and Jongbloed
(2014). Let E∗n denote the conditional expectation, given (T1,∆1), . . . , (Tn,∆n), it follows from
Lemma 6.1 and the switch-relation that

E∗n

{
F̂ ∗n(t)− F̃nh(t)

}2
≤ Kn−2/3 ∀t ∈ [0,M ],(6.5)

which moreover implies that

‖F̂ ∗n − F̃nh‖2 = O∗p

(
n−1/3

)
,(6.6)

where O∗p
(
n−1/3

)
means that for all ε > 0 and almost all sequences (T1,∆1), (T2,∆2), . . . , there

exists an M > 0 such that

P ∗n

{
n1/3‖F̂ ∗n − F̃nh‖2 ≥M

}
< ε,

for all large n. We also have, similarly:

(6.7)

∫ t+h

t−h

{
F̂ ∗n(x)− F̃nh(x)

}2
dx = O∗p

(
hn−2/3

)
,

conditionally on (T1,∆1), (T2,∆2), . . . . See p. 320 of Groeneboom and Jongbloed (2014) for the
relation of Lemma 6.1 to these last statements. We now give the proof of Theorem 2.1, using the
result of Lemma 6.1. The proof of Lemma 6.1 is given at the end of this section.

Proof of Theorem 2.1. Define the functions

ψt,h(u) =
Kh(t− u)

g(u)
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and

ψ̄∗t,h(u) =


ψt,h(τi), if F̃nh(u) > F̂ ∗n(τi), u ∈ [τi, τi+1),

ψt,hs), if F̃nh(u) = F̂ ∗n(s), for some s ∈ [τi, τi+1),

ψt,h(τi+1), if F̃nh(u) < F̂ ∗n(τi), u ∈ [τi, τi+1),

where the τi are the points of jump of F̂ ∗n . By the convex minorant interpretation of F̂ ∗n we have,∫
ψ̄∗t,h(u)

{
δ∗ − F̂ ∗n(u)

}
dP∗n(u, δ∗) = 0.

This implies that,

0 =

∫
ψ̄∗t,h(u)

{
δ∗ − F̂ ∗n(u)

}
dP∗n(u, δ∗)

=

∫
ψt,h(u)

{
δ∗ − F̂ ∗n(u)

}
dP∗n(u, δ∗) +

∫ {
ψ̄∗t,h(u)− ψt,h(u)

}{
δ∗ − F̂ ∗n(u)

}
dP∗n(u, δ∗)

=

∫
ψt,h(u)

{
δ∗ − F̃ ∗nh(u)

}
d(P∗n − P ∗n)(u, δ∗)

+

∫
ψt,h(u)

{
F̃ ∗nh(u)− F̂ ∗n(u)

}
dP∗n(u, δ∗)

+

∫ {
ψ̄∗t,h(u)− ψt,h(u)

}{
δ∗ − F̂ ∗n(u)

}
dP∗n(u, δ∗),

where we write d(P∗n−P ∗n) instead of dP∗n in the last equality as a result of (6.1). Using integrating
by parts we have,

F̃ ∗nh(t)−
∫

Kh(t− u) dF̃nh(u) =

∫
ψt,h(u)

{
F̂ ∗n(u)− F̃nh(u)

}
dG(u).

So we find,

F̃ ∗nh(t)−
∫

Kh(t− u) dF̃nh(u)

=

∫
ψ̄∗t,h(u)

{
δ∗ − F̂ ∗n(u)

}
dP∗n(u, δ∗)−

∫
ψt,h(u)

{
F̃nh(u)− F̂ ∗n(u)

}
dG(u)

=

∫
ψt,h(u)

{
δ∗ − F̃nh(u)

}
d(P∗n − P ∗n)(u, δ∗)

+

∫
ψt,h(u)

{
F̃nh(u)− F̂ ∗n(u)

}
d(Gn −G)(u, δ∗)

+

∫ {
ψ̄∗t,h(u)− ψt,h(u)

}{
δ∗ − F̂ ∗n(u)

}
dP∗n(u, δ∗)

= AI +AII +AIII .

To study the asymptotic distribution of

n2/5
{
F̃ ∗nh(t)−

∫
Kh(t− u) dF̃nh(u)

}
,
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we therefore have to analyze the three terms AI , AII and AIII . We start with AI and prove:

n2/5
∫
ψt,h(u)

{
δ∗ − F̃nh(u)

}
d(P∗n − P ∗n)(u, δ∗)

D−→ N
(
0, σ2

)
(6.8)

where σ2 is defined in (2.2). Define

Znh,i = n−3/5ψt,h(Ti)
{

∆∗i − F̃nh(Ti)
}
.

The left hand side of (6.8) can then be expressed as
∑n

i=1 Znh,i. Conditionally on (T1, X1), . . . , (Tn, Xn),
Znh,i has mean zero and variance

σ2nh,i = n−6/5ψ2
t,h(Ti)F̃nh(Ti)

{
1− F̃nh(Ti)

}
Therefore, along almost all sequences (T1,∆1), (T2,∆2) . . . ,

n∑
i=1

σ2nh,i = n−1/5
∫
ψ2
t,h(u)F̃nh(u)

{
1− F̃nh(u)

}
dGn(u)

= n−1/5
∫
ψ2
t,h(u)F̃nh(u)

{
1− F̃nh(u)

}
dG(u) + o(1)

=

∫ 1

−1
K2(u)F̃nh(t+ hu)

{
1− F̃nh(t+ hu)

}
g(t+ hu)du+ o(1)

→ F0(t){1− F0(t)}
cg(t)

∫
K2(u)du = σ2.

where we use the a.s. convergence of Fnh(t)→ F0(t) in the last line. By the Lindeberg-Feller CLT,
we have,

n∑
i=1

Znh,i
D−→ N

(
0, σ2

)
.

This proves (6.8).
We next consider AII . From the fact that the integrand is the product of h−1 times the fixed

bounded continuous function u 7→ K((t−u)/h)/g(u) and the class of functions of bounded variation
F̂ ∗n − F̃nh which have entropy with bracketing of order ε−1 for the L2-distance and are of order
O∗p(n

−1/3) for the L2-distance, again conditionally on ω = (T1,∆1), (T2,∆2), . . . , it follows that AII
is of order O∗p(h

−1n−2/3). As a consequence, we have for h � n−1/5,

AII =

∫
ψt,h(u)

{
F̃nh(u)− F̂ ∗n(u)

}
d(Gn −G)(u) = o∗p(n

−2/5)(6.9)

We finally study the term AIII . Using similar arguments as in the proof of Lemma A.4 in
Groeneboom et al. (2010), there exists a positive constant C such that∣∣ψ̄∗t,h(u)− ψt,h(u)

∣∣ ≤ Ch−2 ∣∣∣F̂ ∗n(u)− F̃nh(u)
∣∣∣(6.10)
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for all u such that f̃nh = F̃ ′nh is positive and continuous in a neighborhood around u. By (6.1), we
can write,

AIII =

∫ {
ψ̄∗t,h(u)− ψt,h(u)

}{
δ∗ − F̃nh(u)

}
d(P∗n − P ∗n)(u, δ∗)

+

∫ {
ψ̄∗t,h(u)− ψt,h(u)

}{
F̃nh(u)− F̂ ∗n(u)

}
dGn(u).(6.11)

It is clear that ∫ {
ψ̄∗t,h(u)− ψt,h(u)

}{
δ∗ − F̃nh(u)

}
d(P∗n − P ∗n)(u, δ∗)

= o∗p

(∫
ψt,h(u)

{
δ∗ − F̃nh(u)

}
d(P∗n − P ∗n)(u, δ∗)

)
,

which is o∗p(n
−2/5) by (6.8). For the second term on the right-hand side of (6.11) we get by (6.10)

and (6.7): ∣∣∣∣∫ {ψ̄∗t,h(u)− ψt,h(u)
}{

F̃nh(u)− F̂ ∗n(u)
}
dGn(u)

∣∣∣∣
≤ Ch−2

∫ t+h

t−h

{
F̃nh(u)− F̂ ∗n(u)

}2
dGn(u) = O∗p

(
h−1n−2/3

)
= O∗p

(
n−7/15

)
.(6.12)

The proof of Theorem 2.1 now follows by (6.8),(6.9) and (6.12).

In the next section we give the proof of Lemma 2.1 about the boundary corrected version of the
SMLE.

6.2. Proof of Lemma 2.1.

Proof. We have:∫
{Kh(t− u) + Kh(t+ u)−Kh(2M − t− u)} dF̃ (bc)

nh (u)

=

∫ M

u=0
{Kh(t− u) + Kh(t+ u)−Kh(2M − t− u)} f̃ (bc)nh (u) du.

If t ∈ [h,M − h] we get, noting that Kh(t+ u) = Kh(2M − t− u) = 1, if t ∈ [h,M − h],∫ M

u=0
{Kh(t− u) + Kh(t+ u)−Kh(2M − t− u)} f̃ (bc)nh (u) du

=

∫ M

u=0
Kh(t− u)f̃

(bc)
nh (u) du

=

∫ M

u=0
Kh(t− u)

∫
{Kh(u− v) +Kh(u+ v) +Kh(2M − u− v)} dF̂n(v) du

=

∫ {∫ M

u=0
Kh(t− u) {Kh(u− v) +Kh(u+ v) +Kh(2M − u− v)} du

}
dF̂n(v)

=

∫ {
K̃h(t− v) + K̃h(t+ v)− K̃h(2M − t− v)

}
dF̂n(v)
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The last transition follows from integration by parts and the symmetry of the kernel K:∫ M

u=0
Kh(t− u) {Kh(u− v) +Kh(u+ v) +Kh(2M − u− v)} du

= [Kh(t− u) {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)}]Mu=0

+

∫
Kh(t− u) {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)} du

=

∫
Kh(t− u) {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)} du

=

∫
{Kh(t− v − hw) + Kh(t+ v − hw)−Kh(2M − t− v − hw)}K(w) dw

= K̃h(t− v) + K̃h(t+ v)− K̃h(2M − t− v).

if t ∈ [h,M − h].
We likewise get, if t ∈ [0, h],∫ M

u=0
{Kh(t− u) + Kh(t+ u)−Kh(2M − t− u)} f̃ (bc)nh (u) du

=

∫ M

u=0
{Kh(t− u) + Kh(t+ u)− 1} f̃ (bc)nh (u) du

=

∫ M

u=0
{Kh(t− u) + Kh(t+ u)− 1}

·
∫
{Kh(u− v) +Kh(u+ v) +Kh(2M − u− v)} dF̂n(v) du

=

∫ {
K̃h(t− v) + K̃h(t+ v)− K̃h(2M − t− v)

}
dF̂n(v).

In the last transition we use integration by parts again:∫ M

u=0
{Kh(t− u) + Kh(t+ u)− 1}

· {Kh(u− v) +Kh(u+ v) +Kh(2M − u− v)} du
= [{Kh(t− u) + Kh(t+ u)− 1} {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)}]Mu=0

+

∫ M

u=0
{Kh(t− u)−Kh(t+ u)} {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)} du

=

∫ M

u=0
{Kh(t− u)−Kh(t+ u)} {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)} du,

where we use Kh(−v) + Kh(v) = 1 in the last equality (which follows from the symmetry of K).
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Furthermore,∫ M

u=0
{Kh(t− u)−Kh(t+ u)} {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)} du

=

∫ t/h

w=−1
K(w) {Kh(t− v − hw) + Kh(t+ v − hw)− 1} dw

−
∫ 1

w=t/h
K(w) {Kh(−t− v + hw) + Kh(−t+ v + hw)− 1} dw

=

∫ t/h

w=−1
K(w) {Kh(t− v − hw) + Kh(t+ v − hw)− 1} dw

+

∫ 1

w=t/h
K(w) {Kh(t+ v − hw) + Kh(t− v − hw)− 1} dw

=

∫ 1

w=−1
K(w) {Kh(t− v − hw) + Kh(t+ v − hw)− 1} dw

=

∫
K(w) {Kh(t− v − hw) + Kh(t+ v − hw)−Kh(2M − t− v − hw)} dw

= K̃h(t− v) + K̃h(t+ v)− K̃h(2M − t− v),

again using the relation Kh(x) + Kh(−x) = 1.
The case t ∈ [M − h,M ] is treated similarly.

In the remaining subsection we prove Lemma 6.1 needed in the proof of Theorem 2.1.

6.3. Proof of Lemma 6.1. In the proof of Lemma 6.1 we use the following (Dvoretsky-Kiefer-
Wolfowitz-type) inequality from Banerjee et al. (2016).

Lemma 6.2 (Lemma 8.1 of Banerjee et al. (2016)). Let F be a distribution function on R with
a density f supported on [0, 1] and bounded away from zero on [0, 1]. Let Fn be the empirical distri-
bution function associated with a sample of n observations from F and let F−1n be the corresponding
empirical quantile function. With c a lower bound for f , we then have

P

(
sup
t∈[0,1]

|F−1n (t)− F−1(t)| > x

)
≤ 4 exp(−2nc2x2)

for all n and x > 0.

Proof of Lemma 6.1. We follow notation, introduced in Section 4.1 of Banerjee et al. (2016),
but now applied to a bootstrap sample (T1,∆

∗
1) . . . , (Tn,∆

∗
n). Just as in the proof of the corre-

sponding Theorem 11.3 in Groeneboom and Jongbloed (2014), Doob’s inequality and exponential
centering play an important role in the proof.

Moreover, we prove the equivalent statement

P ∗n
{∣∣U∗n(a)− Un(a)

∣∣ > x
}
≤ c1 exp

{
−c2nx3

}
,(6.13)
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almost surely, for all large n, and constants c1, c2 > 0 and all x ∈ (n−1/3,M ]. To see that this is
equivalent, first note that

P ∗n

{
n1/3

∣∣U∗n(a)− Un(a)
∣∣ > x

}
= P ∗n

{∣∣U∗n(a)− Un(a)
∣∣ > n−1/3x

}
,

so, if (6.13) holds, we get:

P ∗n

{
n1/3

∣∣U∗n(a)− Un(a)
∣∣ > x

}
≤ c1 exp

{
−c2x3

}
,

for all x > 0. Next note that for x ∈ [0, n−1/3]

c1 exp
{
−c2nx3

}
≥ c1 exp {−c2} ≥ 1,

if c1 ≥ ec2 . So we can always adapt the constants in such a way that the inequality is satisfied for
x ∈ [0, n−1/3].

Furthermore, for x ∈ [1,M ], we can write:

c1 exp
{
−c2nx2

}
≤ c1 exp

{
−(c2/M)nx3

}
So for x ∈ [1,M ], we only need an inequality with x2 in the exponent on the right-hand side,
and can use Lemma 6.2 to our advantage (see below). Finally, for x > M , the probability on the
left-hand side of (6.13) is zero.

Let Λ∗n : [0, 1]→ [0, 1] be defined by Λ∗n(0) = 0, and

Λ∗n(i/n) = n−1
∑
j≤i

∆∗j , i = 1, . . . , n,

and by linear interpolation at other points of [0, 1]. Furthermore, let λ∗n be the left-continuous slope
of the greatest convex minorant of Λ∗n. Then:

F̂ ∗n(Ti) = λ∗n(i/n) = λ∗n(Gn(Ti)),

where Gn is the empirical distribution function of the observations T1, . . . , Tn and F̂ ∗n is the MLE
in the bootstrap sample.

We define analogously λ̃n = F̃nh ◦G−1, and

Λ̃n(t) =

∫ t

0
λ̃n(u) du =

∫ t

0
F̃nh

(
G−1(u)

)
du, t ∈ [0, 1].

Moreover, we define:

Vn = λ̃−1n .(6.14)

With these definitions we have:

Un = G−1 ◦ λ̃−1n = G−1 ◦ Vn,(6.15)

where Un is defined by (6.4). By the model assumptions at the beginning of Section 2 for F0 and
G, and the almost sure convergence of F̃nh and its derivative to F0 and f0, respectively, uniformly



INTERVALS FOR THE CURRENT STATUS MODEL 25

on [0,M ] (using the suggested boundary correction near 0 and M), we may assume that there is
a constant c > 0 such that λ̃′n(t) ≥ c for all t ∈ [0, 1] and all large n, and that therefore, using a
Taylor expansion, we get:

Λ̃n(t)− Λ̃n(Vn(a)) ≥
(
t− Vn(a)

)
a+ 1

2c
(
t− Vn(a)

)2
,(6.16)

for all t, a ∈ [0, 1].
We similarly define

V ∗n (a) = argminu∈[0,1]{Λ∗n(u)− au},

where argmin denotes the smallest location of the minimum. Note that, analogously to (6.15), we
have for U∗n as defined by (6.2):

U∗n = G−1n ◦ V ∗n .(6.17)

By the transition of Un and U∗n to Vn and V ∗n , respectively, the range of Un and U∗n is changed from
[0,M ] to [0, 1]. We now prove:

P ∗n
{∣∣V ∗n (a)− Vn(a)

∣∣ > x
}
≤ c1 exp

{
−c2nx3

}
,(6.18)

almost surely, for all large n, and constants c1, c2 > 0 and all x ∈ (n−1/3, 1]. Note that the probability
on the left-hand side of (6.18) is zero if x > 1.

Define

ε∗i = ∆∗i − F̃nh(Ti), i = 1, . . . , n.

Then:

Λ∗n(i/n) = n−1
∑
j≤i

ε∗j + n−1
∑
j≤i

F̃nh
(
G−1n (j/n)

)
= n−1

∑
j≤i

ε∗j +

∫ i/n

0
F̃nh

(
G−1n (u)

)
du, i = 1, . . . , n,

using the piecewise constancy of G−1n .
This gives:

P ∗n
{∣∣V ∗n (a)− Vn(a)

∣∣ > x
}

≤ P ∗n
{

min
i: |Vn(a)−i/n|>x

{Λ∗n(i/n)− a i/n} ≤ Λ∗n(Vn(a))− aVn(a)

}
≤ P ∗n

{
min

i: |Vn(a)−i/n|>x

{
D∗n(i/n)−D∗n (Vn(a)) + 1

2c
(
in−1 − Vn(a)

)2} ≤ 0

}
,

where D∗n is defined by D∗n = Λ∗n − Λ̃n and where we use (6.16) in the last step. Define

B∗n(t) = D∗n(t)−
∫ t

0

{
F̃nh

(
G−1n (u)

)
− F̃nh

(
G−1(u)

)}
du.
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Then:

B∗n(i/n) = n−1
∑
j≤i

ε∗i .

Moreover, the event {
∣∣V ∗n (a)− Vn(a)

∣∣ > x} is contained in the union of the events

En1 =

{
sup

u: |Vn(a)−u|>x

{∫ u

Vn(a)

{
F̃nh

(
G−1(t)

)
− F̃nh

(
G−1n (t)

)}
dt− c

4
(u− Vn(a))2

}
≥ 0

}
and

En2 =

{
sup

i: |Vn(a)−i/n|>x
{B∗n(Vn(a))−B∗n(i/n)− c

4
(in−1 − Vn(a))2} ≥ 0

}
.

We have, by the mean value theorem and the bounded differentiability of F̃nh,∣∣∣∣∣
∫ u

Vn(a)

{
F̃nh

(
G−1(t)

)
− F̃nh

(
G−1n (t)

)}
dt

∣∣∣∣∣ ≤ c′∣∣u− Vn(a)
∣∣ sup
t∈[0,1]

∣∣G−1n (t)−G−1(t)
∣∣.

for a constant c′ > 0. Hence we get from Lemma 6.2 in the original space:

Pn(En1) ≤ Pn

{
sup
t∈[0,1]

∣∣G−1n (t)−G−1(t)
∣∣ ≥ cx

4c′

}
≤ 4 exp

{
−Knc2x2

}
≤ 4 exp

{
−Kc2n1/3

}
,

(6.19)

for some K > 0 and x ∈ (n−1/3,M ]. This means that we may assume that, almost surely, the
complement of En1 is satisfied for all large n and all x ∈ (n−1/3, 1]. So we now turn to P ∗n(En2).

We have:

P ∗n(En2) ≤
∑
k≥1

P ∗n

(
sup

i: |Vn(a)−i/n|∈(kx,(k+1)x]

{
B∗n (Vn(a))−B∗n(i/n)− c

4
(i/n− Vn(a))2

}
≥ 0

)

≤
∑
k≥1

P ∗n

(
sup

i: |Vn(a)−i/n|≤(k+1)x
{B∗n (Vn(a))−B∗n(i/n)} ≥ c

4
k2x2

)
.

Using the piecewise linearity of B∗n, we get

B∗n (Vn(a)) = B∗n

(
bnVn(a)c

n

)
+

(
Vn(a)− bnVn(a)c

n

)
ε∗bnVn(a)c+1,

where bnVn(a)c denotes the integer part (“floor”) of nVn(a). Hence,

P ∗n(En2) ≤
∑
k≥1

P ∗n

((
Vn(a)− bnVn(a)c

n

)
ε∗bnVn(a)c+1 ≥

c

8
k2x2

)

+
∑
k≥1

P ∗n

 sup
i: |Vn(a)−i/n|≤(k+1)x

 ∑
j≤nVn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8
k2x2

 .(6.20)
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The Markov inequality implies that for all θ > 0, k ≥ 1, a ∈ [0, 1] and x ∈ (n−1/3, 1],

P ∗n

{(
Vn(a)− bnVn(a)c

n

)
ε∗bnVn(a)c+1 ≥

c

8
k2x2

}
≤ exp

{
−θc

8
k2x2

}
E∗n exp

{
θ

(
Vn(a)− bnVn(a)c

n

)
ε∗bnVn(a)c+1

}
,

where E∗n denotes the expectation under P ∗n . Since ε∗i ∈ [−1, 1] for all i, we have exp(αε∗i ) ≤
K exp(α2) for all α ∈ R and K ≥ exp(1) and therefore, with θ = ck2x2n2/16, we obtain

P ∗n

((
Vn(a)− bnVn(a)c

n

)
ε∗bnVn(a)c+1 ≥

c

8
k2x2

)
≤ K exp

(
−θc

8
k2x2 +

θ2

n2

)
≤ K exp

(
−c

2k4x4n2

256

)
.

Using that k4 ≥ k for all k ≥ 1 and nx ≥ 1 for all x ∈ (n−1/3, 1), we conclude that for all a ∈ [0, 1]
and x ∈ (n−1/3, 1)∑

k≥1
P ∗n

((
Vn(a)− bnVn(a)c

n

)
ε∗bnVn(a)c+1 ≥

c

8
k2x2

)

≤ K
∑
k≥1

exp

(
−c

2kx3n

256

)
≤ K exp

(
−c

2x3n

256

)∑
k≥0

exp

(
−c

2kx3n

256

)
≤ K ′ exp(−K2nx

3),(6.21)

with any finite K ′ that satisfies K ′ ≥ K
∑

k≥0 exp
(
−c2k/256

)
and K2 ≤ c2/256. This takes care

of the first term on the right of (6.20).
We now consider the second term on the right of (6.20). Just as in the proof of Theorem 11.3 in

Groeneboom and Jongbloed (2014), we use Doob’s submartingale inequality, this time conditionally
on (T1,∆1), . . . , (Tn,∆n). This gives:

P ∗n

 sup
i: |Vn(a)−i/n|≤(k+1)x

 ∑
j≤nVn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8
k2x2


≤ 2 exp

(
−θnc

8
k2x2

)
sup

i: |Vn(a)−i/n|≤(k+1)x
E∗n

exp

θ
 ∑
j≤nVn(a)

ε∗j −
∑
j≤i

ε∗j

 .
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Suppose i/n < Vn(a). Then we get:

logE∗n

exp

θ
 ∑
j≤nVn(a)

ε∗j −
∑
j≤i

ε∗j

 = logE∗n

exp

θ
 ∑
i<j≤nVn(a)

ε∗j


=

∑
i<j≤nVn(a)

log
{

exp
{
θ{1− F̃nh(Tj)}

}
F̃nh(Tj) + exp

{
−θF̃nh(Tj)

}
{1− F̃nh(Tj)}

}

= n

∫ Vn(a)

i/n
log

{
exp

{
θ{1− F̃nh(G−1n (t))}

}
F̃nh(G−1n (t))

+ exp
{
−θF̃nh(G−1n (t))}

}{
1− F̃nh(G−1n (t))

}}
dt

Since log(1 + x) ≤ x, this is bounded above by:

n

∫ Vn(a)

i/n

{
exp

{
θ{1− F̃nh(G−1n (t))}

}
F̃nh(G−1n (t))

+ exp
{
−θF̃nh(G−1n (t))}

}{
1− F̃nh(G−1n (t))

}
− 1

}
dt

≤ n
∫ Vn(a)

Vn(a)−(k+1)x

{
exp

{
θ{1− F̃nh(G−1n (t))}

}
F̃nh(G−1n (t))

+ exp
{
−θF̃nh(G−1n (t))}

}{
1− F̃nh(G−1n (t))

}
− 1

}
dt,

= n

∫ Vn(a)

Vn(a)−(k+1)x

{ ∞∑
i=2

θi

i!
{1− F̃nh(G−1n (t))}iF̃nh(G−1n (t))

+
∞∑
i=2

θi

i!
(−1)iF̃nh(G−1n (t))i

{
1− F̃nh(G−1n (t))

}}
dt,

= n

∞∑
i=2

θi

i!

∫ Vn(a)

Vn(a)−(k+1)x

{
{1− F̃nh(G−1n (t))}iF̃nh(G−1n (t))

+ (−1)iF̃nh(G−1n (t))i
{

1− F̃nh(G−1n (t))
}}

dt,

if i/n < Vn(a) and |Vn(a)− i/n| ≤ (k + 1)x. Since Vn(a) ∈ [0, 1], the integrand,

{1− F̃nh(G−1n (t))}iF̃nh(G−1n (t)) + (−1)iF̃nh(G−1n (t))i
{

1− F̃nh(G−1n (t))
}
,
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is bounded by 1/2, we get,

P ∗n

 sup
i: |Vn(a)−i/n|≤(k+1)x

 ∑
j≤nVn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8
k2x2


≤ 2 exp

(
−θnc

8
k2x2

)
sup

i: |Vn(a)−i/n|≤(k+1)x
E∗n

exp

θ
 ∑
j≤nVn(a)

ε∗j −
∑
j≤i

ε∗j


≤ 2 exp

(
−θnck

2x2

8
+
n(k + 1)x

2

∞∑
i=2

θi

i!

)

for all x ∈ (n−1/3, 1), k ≥ 1, a ∈ [0, 1] and θ > 0. Therefore, with θ = log(1 + ck2x
4(k+1)), we arrive at,

P ∗n

 sup
i: |Vn(a)−i/n|≤(k+1)x

 ∑
j≤nVn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8
k2x2


≤ 2 exp

(
n(k + 1)x

2

{
ck2x

4(k + 1)
−
(

1 +
ck2x

4(k + 1)

)
log

(
1 +

ck2x

4(k + 1)

)})
Following Pollard (1984), in his discussion of Bennett’s inequality on p. 192, we introduce the
function B, defined by B(0) = 1/2 and

B(u) = u−2{(1 + u) log(1 + u)− u}.

Making the change of variables uk = ck2x/(4(k + 1)), we can write,

P ∗n

 sup
i: |Vn(a)−i/n|≤(k+1)x

 ∑
j≤nVn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8
k2x2

 ≤ 2 exp

(
− nc2k4x3

32(k + 1)
B(uk)

)
.

Since uk varies over a finite interval [0,M ′] and therefore B(uk) stays away from zero on [0,M ′],
we find that,

∑
k≥1

P ∗n

 sup
i: |Vn(a)−i/n|≤(k+1)x

 ∑
j≤nVn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8
k2x2


≤ K1

∑
k≥1

exp

(
− nc2k4x3

32(k + 1)

)
≤ K1 exp

(
−nc

2x3

64

)∑
k≥0

exp

(
− c2k4

32(k + 1)

)
≤ K2 exp

(
−K3nx

3
)
.

for appropriate K1,K2 and K3. Combining this with (6.19) and (6.21), it follows that

P ∗n
{∣∣V ∗n (a)− Vn(a)

∣∣ > x
}
≤ c1 exp{−nc2x3)

for all large n, almost surely along (T1,∆1), . . . for constants c1, c2 > 0 and x ∈ (n−1/3, 1].
We now prove that (6.13) also follows by considering the transition of Vn and V ∗n to Un and U∗n.

By (6.15) and (6.17) we get:

U∗n(a)− Un(a) = G−1n ◦ V ∗n (a)−G−1 ◦ Vn(a),
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and hence: ∣∣U∗n(a)− Un(a)
∣∣ ≤ sup

t∈[0,1]

∣∣G−1n (t)−G−1(t)
∣∣+ k1

∣∣V ∗n (a)− Vn(a)
∣∣,

where

k1 = 1/ inf
x∈[0,M ]

g(x).

From Lemma 6.2 we get in the original space:

Pn

{
sup
t∈[0,1]

∣∣G−1n (t)−G−1(t)
∣∣ ≥ x/2} ≤ 4 exp

{
−Kn1/3

}
,

for some K > 0 and x ∈ (n−1/3,M ]. So we may assume that, almost surely,
∣∣G−1n (t)−G−1(t)

∣∣ < x/2,

for all large n and all x ∈ (n−1/3, 1]. By the foregoing proof, we also have:

P ∗n
{
k1
∣∣V ∗n (a)− Vn(a)

∣∣ ≥ x/2} ≤ c1 exp
{
−c2nx3/

(
8k31
)}
.

This proves the result.
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