Proposing a model to investigate the impact of interconnection technology on shading damage by TFPV modules

J. Carolus ${ }^{1,2}$, W. Van De Sande ${ }^{1}$, T. Vandenbergh ${ }^{1,}$ K. Bakker3,4, M. Meuris ${ }^{2}$ and M. Daenen ${ }^{1,2}$ jorne.carolus@uhasselt.be

${ }^{1}$ Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium en, Belgium
${ }^{3}$ ECN Solliance, High Tech Campus 21, 5656 AE Eindhoven, The Netherland ${ }^{4}$ Delft University of Technology, Photovoltaic Materials and Devices, 2628 CD Delft. The Netherlands

RESULTS

CONCLUSIONS

> A model to simulate the electrical properties of a CIGS TFPV module is proposed;
> It is observed that the interconnection technology might impact possible shading damage;

- Future work includes the verification and optimization of the model.

REFERENCES

> STMicroelectronics, "How to choose a bypass diode for a silicon panel junction box"
> Silverman et al., "Shadows from People and Tools Can Cause Permanent Damage in Monolithic Thin-Film Photovoltaic Modules"
> Sun et al., A Physics-Based Compact Model for CIGS and CdTe Solar Cells: From Voltage-Dependent Carrier Collection to LightEnhanced Reverse Breakdown

