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1.1 General Introduction:

Why assessing periodontal ligament (PDL) innervation to discuss

physiological integration of implants?

The study of PDL innervation and its mechanoreceptive role in tooth function

can help to improve the understanding of peri-implant innervation and its functional

role in the sensory feedback mechanism. The overall aim in this thesis was to identify

the most relevant elements in the understanding of oral mechanosensory function in

relation to oral osseointegrated implants. For this, we have first driven on the roads of

mechanoreception in teeth, searching for differences or similarities between this

function in teeth and implants.

The periodontal ligament is a unique connective tissue that surrounds the

roots of teeth and connects them with the alveolar bone (Beertsen et al1997; Berkovitz

1990). This ligament has an abundant number of periodontal mechanoreceptors

contributing to sensory feedback mechanisms (Trulsson 2005; Trulsson 2006; Jacobs

and van Steenberghe 2006; Maeda et al 1999; Jacobs and van Steenberghe 1994).

Although these structures have been extensively studied in the literature (Lambrichts

et al 1992; Linden 1990; Jacobs and van Steenberghe 1994; Long et al 1995; van

Steenberghe 1979), the real tridimensional nature of periodontal receptors intermingled

with the collagen fibres has not been appropriately explored in man. In animals, it

was described by Kannari in 1990. The spatial arrangement between collagen and

nervous fibres influences the biomechanical environment in the complex tooth-PDL-

bone, and the way loads will be sensed and transmitted to the Central Nervous

System (CNS).

According to nerve fibre distribution and dimensions, some conclusions could

be drawn about their physiological significance. In cats, thick isolated nerve fibres

that were found in the cemental part of PDL were considered putative

mechanoreceptors (Long, Loescher and Robinson 1995). Indeed, the diameter

reported (≈5µm) was in the range of nerve fibres of touch and pressure (Manzano et al

2008). Besides mechanoreceptors, other structures identified in the PDL, like

epithelial rests of Malassez and cementicles, may also have a relation to innervation.

Yet, their functional role is not yet fully understood (Haku et al 2011; Bosshardt and

Nanci, 2003; Lambrichts et al 1993; Holton et al 1986).



Chapter 1: General introduction and aims

11

It is known that tooth extraction can be compared to limb amputation leading

to some retrograde nervous degeneration (Hansen 1980). Indeed, an earlier study of

Heasman (1984) has shown that the inferior alveolar nerve (IAN) in edentulous

patients have on average 20% less myelinated nerve fibres than in dentate patients.

Although some fibre regeneration in healed extraction sockets has been reported

previously (Gunjigake et al 2006), those fibres do not seem to innervate new tissues in

which these could be functionally active and mechanically stimulated (Bonte et al

1993; Linden and Scott 1989). Interestingly, implants were found to preserve bone by

restoring a suitable biomechanical environment to the minimum load levels found in

the normal physiological condition (Lin et al 2010; Lin et al 2009). It could thus be

wondered whether implants would also influence nerve fibre regeneration by

providing them a new functional impulse.

In oral rehabilitation, clinical observations indicated that bone-anchored

prostheses in edentulous patients could transmit sensory information (Brånemark

1999) contributing to the physiological integration of artificial teeth. The term

“osseoperception” was coined by Brånemark to indicate the perception of different

external stimuli transmitted via the prosthetic limb or the anchoring implant (Jacobs

1998). Clinical observations by Haraldson and coworkers showed for the first time a

restored oral function associated with higher bite forces and better masticatory

efficiency (Haraldson and Carlsson 1977; Haraldson and Ingerval 1979a and b; Haraldson

and Carlsson 1979 and Haraldson, Carlsson and Ingervall 1979).

Later on, several studies confirmed improved tactile function in patients

rehabilitated with osseointegrated implants by comparing the tactile thresholds in

edentulous patients using conventional or bone-anchored prosthesis (Enkling et al

2012; Habre-Hallage et al 2010; Enkling et al 2010; Batista et al 2008; Enkling et al 2007; El-

Sheikh et al 2003; Jacobs et al 2001; Jang and Kim 2001; Jacobs et al 1997; Jacobs et al

1993; Jacobs and van Steenberghe 1991; Lundqvist and Haraldson 1990). Similarly, limb

amputated patients rehabilitated with a bone-anchored prosthesis supported by an

osseointegrated implant seem to have a subjectively improved ability to feel through

their prosthesis and the anchoring implant in the bone (Jacobs et al 2000; Jacobs et al

1998; Stenfelt et al 1998). This was generally described as the osseoperception

phenomenon by Lundborg et al (1996), Brånemark et al (1997), Rydevik (1997) and

Jacobs et al (1996 and 1997) (Rydevik 1998).
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Although differing in components and structures, both PDL and peri-implant

tissues provide sensory information to the CNS (Habre-Hallage et al 2012; Jacobs and

van Steenberghe 2006; Van Loven et al 2000; Jacobs and van Steenberghe 1991). The

peri-implant bone tissues might indeed possess some tactile feedback mechanisms

by load transfer (Jacobs and van Steenberghe 1993) and mechanoreceptor stimulation

in the vicinity of the peri-implant tissues such as periosteum and more distant

receptors (Jacobs and van Steenberghe 2006; Trulsson 2005; Klineberg 2005). According

to the consensus statement on osseoperception (Klineberg et al 2005), those more

distant receptors may include those located in muscle, joint, mucosal and cutaneous

tissue. The entire consensus is reproduced in table 1.1. In the framework it is stated

that “there are no data to support feedback contributions to the restoration of function

from bone, bone marrow, include vasculature within, or periosteum”. This is a

consensus statement dating back from 2005, even if other data were published later

on (Habre-Hallage et al 2012; Habre-Hallage et al 2010), the role of bone innervation is

not fully understood. In this way, the study of peri-implant bone innervation may help

in unravelling the osseoperception phenomenon by assessing the influence of local

factors in the mechanosensibility arising from osseointegrated implants in the jaw

bones.

Table 1.1: Consensus statement on Osseoperception in Klineberg et al (2005)

Consensus statement

Osseoperception may be considered to be the mechanosensibility associated with
osseointegrated implant rehabilitation. This phenomenon may be defined as: (i) the sensation

arising from mechanical stimulation of a bone-anchored prosthesis, transduced by
mechanoreceptors that may include those located in muscle, joint, mucosal, cutaneous and

periosteal tissues; together with (ii) a change in central neural processing in maintaining
sensorimotor function.

Framework:

The consensus statement was developed within the framework of recognition that:

1. Orofacial phenomena require tactile and kinaesthetic inputs and mechanosensibility is an
appropriate description for the sensation derived from a bone-anchored prosthesis, which,

together with tactile and kinaesthetic inputs, combine to allow appropriate restoration of function.

2. There are no data to support feedback contributions to the restoration of function from bone,
bone marrow, included vasculature within, or periosteum.

3. There are significant data from mechanoreceptors groups in adjacent tissues, including skin,
muscle and joints, the relative contributions of which need to be determined.

4. Sensorimotor cortical representation varies in ipsilateral and bilateral contributions and the
varied topographical representation from orofacial afferents is considered to be an indication of

the plasticity of the system in accommodation of change.
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Extraction of a tooth leads to loss of the periodontal ligament space and its

related innervation. When a subsequent implant is then placed and osseointegrated,

the original spatial arrangement of the periodontal ligament innervation is lost, while

sensory feedback is further challenged as a novel biomechanical environment is

created, with potentially higher load levels. While the tactile feedback from the

original periodontal ligament innervation helps to modulate force levels during

chewing and biting, PDL does no longer exist around osseointegrated implants. It

could therefore be questioned whether there is any remaining innervation

neighbouring the implant? And if this innervation would be present, does it express

some mechanoreceptive characteristics? And if so, is it sufficient to restore the

sensory feedback pathway?

Although histological and neurophysiological studies would be needed to

address those questions appropriately, it is a challenge to carry this out in man.

Current imaging techniques could be applied to gain more information on jaw bone

neurovascular canals and peri-implant bone. It may help to render tridimensional

visualization and characterization of peri-implant bone in order to elucidate some

features which might be of functional significance, such as bone density and

structure. Those two bone parameters are of promising diagnostic use to describe

bone tissue by means of digital intra-oral radiographs and cone beam computed

tomography, respectively. It is known that bone density cannot be accurately

predicted in CBCT images (Casseta et al 2012; Hua et al 2009); however bone structure

seems to deserve further exploitation (Huang et al 2013; Naitoh et al 2010; Liu et al

2007). In the same way, digital intra-oral imaging has shown promising results in the

determination of bone density (Sun et al 2009; Nackaerts et al 2008, 2007 and 2006).

As for jaw bone neurovascularisation, the current clinical imaging techniques

allow to study neurovascular canals, while functional magnetic resonance imaging

may further contribute to unravel the cortical response to receptor activation. The

present thesis will further focus on the radiographical visualisation of the mandibular

canal, as it can be clearly depicted on radiographic images and might help to identify

changes in the innervation after tooth extraction and implant treatment. Since after

tooth extraction some retrograde nerve degeneration may occur, it can then be

discussed what happens to the mandibular neurovascular canals (Jacobs et al 2002;

Polland et al 2001) and their appearance on radiographic images (Jacobs et al 2004).
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So far no study was found comparing mandibular canals dimensions in dentate and

edentulous mandible, whereas the degeneration of some fibres of inferior alveolar

nerve (IAN) has been clearly demonstrated in edentulous mandibles (Wadu et al 1997;

Heasman 1984; Hansen 1980).

Assuming that this nerve degeneration would lead to changes in the

mandibular canals, one could discuss that those changes could be depicted on 3D

images. However, it is important to note that great interindividual variability exist in

the mandibular canal anatomy, as well as in the composition of the inferior alveolar

nerve. The study of the mandibular canal variations is crucial when attempting to

address the neurovascular changes potentially occurring after tooth extraction and

implant placement.

All those questions should not only be studied radiologically, yet also by

histological and functional approaches in order to attempt the physiological

integration of oral osseointegrated implants. This thesis has focused on the

radiological and histological assessments.
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Aims

The main objectives of this thesis were to assess the periodontal ligament and

peri-implant bone in humans by means of histological and radiological techniques and

to study the intrabony canals by means of radio-anatomical assessments in dentate

and edentulous subjects.

Part I-Histological assessment: To identify and characterize the presence of

nerve fibres in the periodontal and peri-implant bone tissues by means of light and

electron microscopy.

 Describe the historical evolution of main concepts about PDL

mechanosensory function; identify needs for novel approaches in the

study of periodontal ligament innervation - literature review (chapter 2).

 Analyze myelinated nerve fibre distribution in human periodontal

ligament by means of light microscopy – histomorphometric study

(chapter 3).

Hypothesis: Nerve fibre dimensions and distribution in human PDL are

similar to that found in previous animal reports.

 Describe other specialized structures present in human periodontal

ligament, Epithelial Rests of Malassez (ERM) and cementicles,

discussing their relation with bone innervation – review and case report

(chapter 4).

 Identify and describe myelinated nerve fibres present around implant by

means of light microscopy (LM), electron microscopy (EM) (chapter 5).

Hypotheses: 1. Myelinated nerve fibres are present in the peri-implant

region in humans similarly to those found in animal reports.

2. Mechanoreceptor-like structures can be found in the human peri-implant

region.

 Correlate histological and radiological assessment of peri-implant bone

healing (chapter 6).

Hypothesis: Tissue parameters assessed on intra-oral radiographs and cone

beam computer tomograms are correlated to those found in

histomorphometric analyses of the same sites.
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Part II-Radio-Anatomical assessment: To assess variability of mandibular

neurovascular canals in humans. To verify influence of implant treatment on

mandibular bone resorption and neurovascular canal dimensions.

 Describe and compare neurovascular canals of human mandibles from

prehistoric, medieval and contemporary human mandibles from 7

different geographical origins to chimpanzee and gorilla mandibles by

means of cone beam computed tomography (CBCT) (chapter 7).

Hypothesis: Anatomical variability of mandibular canals can be explained by

secular, geographical and species differentiation.

 Assess bone resorption, mandibular neurovascular canals dimensions

and their changes maximum 2 years after implant rehabilitation in

edentulous patients compared to dentate patients by means of CBCT

imaging (chapter 8).

Hypothesis: Dental status and implant treatment influence bone resorption

and dimensional changes in the mandibular canal.
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Chapter 2

Periodontal ligament innervation and

mechanosensory function in teeth: a review and novel

3D-approach

Publication related to this chapter:

Corpas LS, Struys T, Politis C, Lambrichts I, Jacobs R. From old concepts to current knowledge in

periodontal ligament innervation: a literature review. (in prep)
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From the old concepts to the current knowledge in periodontal ligament

innervation: a literature review

Abstract:

Objective: This study aimed to review the literature on periodontal ligament

innervation searching for evidence-based information about mechanosensory

function in teeth. Material and Methods: Five literature reviews were used as “start-

point” of the search strategy and were used to further search on PUBMED and WEB

OF SCIENCE to find related articles, articles from the same authors and the citations

received by those reviews. Mesh terms were choosen from the terms classifying

those reviews and used in PUBMED to find relevant articles published in the last 6

years. Results: After using this search strategy, two collections were created. One in

PUBMED and another on WEB OF SCIENCE, consisting of 258 and 105 articles,

respectively. Articles from WEB OF SCIENCE were further selected on the basis of

publication date (last 6 years) and the number of citations (fifteen-most cited articles).

Next steps included the verification for duplicates between collections and articles

classification by topics. Conclusions: Mechanosensory function in teeth has not

been fully unravelled by the extensive number of researches on this field. Substantial

advances have been made, although the challenge still exists due to the complexity

to characterize the periodontal ligament. Several methods and study approaches

have been designed using microneuroradiography, electrophysiological records,

classic and ultrastructural histological techniques, immunohistochemical analyses

and psychophysical clinical tests. The knowledge generated by these several

sources is useful for a more complete understanding of the periodontal ligament

innervation and its functions. However future researches need to further study the

interrelationship of oral mechanosensory function with histomorphological features

and spatial arragement of the periodontal ligament within different species.
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Introduction

Apart from its supportive role, the periodontal ligament (PDL) is also

considered as sense organ (Hildebrand et al 1995). How this ligament can function in

this way is explained by its specialized innervation machinery. Already in the 19th

century, Linderer had described the innervation of the periodontal ligament (Lewinsky

and Stewart 1937). Since then, a large number of histological and physiological studies

have been performed in a variety of species like humans, monkeys, dogs, cats, rats,

mice, guinea-pigs, ferrets, rabbits, moles, hedgehogs and caimans. Later, in the 20th

and 21th centuries the studies on the PDL innervation have been reviewed regarding

several aspects (Trulsson 2007; Trulsson 2006; Trulsson and Johansson 2002; Lobezoo et

al 2002; Linden 1990; Maeda et al 1999; Jacobs and van Steenberghe 1994, Kannari 1990,

Maeda et al 1990, van Steenberghe 1979). The main aspects discussed were related to

the morphology, neurophysiology, trigeminal central connections and functional

significance of nerve fibres and endings in the PDL.

The main concern about PDL innervation is the feedback input provided to the

Central Nervous System (CNS) allowing it to regulate oral functions such as biting

and chewing (Svensson et al 2012; Svensson and Trulsson 2011; Svensson and Trulsson

2007; Lund and Kolta 2006; Lobbezoo et al 2002). However, to build up the knowledge

about PDL innervation physiology, information related to those mentioned aspects

need to be gathered. In 1990, Linden reported that “by analogy with the control

movement elsewhere in the body and in the view of the very large forces which can

be transmitted via the tooth to the periodontium, one would expect to find a receptor

mechanism that is capable of providing the basis of feedback control to the muscles

of mastication” (Linden 1990b). Yet, up till now, this receptor mechanism has not been

fully unravelled, notwithstanding the abundant literature available on this topic

(Trulsson 2007; Trulsson 2006; Trulsson and Johansson 2002; Lobbezoo et al 2002; Linden

1990b; Maeda et al 1999; Jacobs and van Steenberghe 1994, Kannari 1990, Maeda et al

1990, van Steenberghe 1979).

Substantial advances have been made, although the challenge still exists due

to the complexity to characterize the periodontal ligament. For that, several methods

and study approaches have been designed using microneuroradiography,

electrophysiological records, classic and ultrastructural histological techniques,
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immunohistochemical analyses and psychophysical clinical tests (Trulsson 2007;

Linden 1990a; Maeda et al 1999; Lambrichts et al 1992; Kannari 1990; van Steenberghe

1979). The knowledge generated by these several sources might be useful for a more

complete understanding of the periodontal ligament innervation and its functions.

Mechanisms of mechanoreception around teeth

Functional loading causes displacement of the tooth triggering

mechanoreceptors around the tooth. Those mechanoreceptors are specialized nerve

endings programmed to sense and codify mechanical stimuli to the CNS (Trulsson

2006; Lund and Kolta 2006). In order to understand how forces are sensed by those

receptors, studies have been conducted on different species, focused on a variety of

teeth using various scientific methods (Hildebrand et al 1995; Linden 1990b, Byers and

Dong 1989; van Steenberghe 1979). In this way, it has been difficult to draw clear

conclusions about the function of the PDL innervation, particularly in humans, since

neurophysiological as well as histological studies are complex.

The characteristics of mechanoreceptors have been studied in an effort to

describe those structures as accurate as possible and to understand their functional

significance (Jacobs and van Steenberghe 1994; Linden 1990a; van Steenberghe 1979). At

first, it is important to realize that, when describing the nerve endings, one is

addressing only the terminal portion of a nerve fibre. Studies describing nerve fibres

should therefore be distinguished from those addressing fibre endings, or nerve

endings. When studying periodontal ligament innervation, both descriptions are found

in the literature and they need to be understood to be correctly interpreted.

Morphological characteristics, distribution of nerve structures, and neurophysiological

aspects described for nerve endings can differ to a great extent from those found for

nerve fibres (Linden 1990b).

The nerve fibres carrying information related to touch and pressure have

been described in the PDL (Jacobs and van Steenberghe 1994). Those and other

periodontal nerve fibres are discussed in the first part of this review, to give a general

view about PDL innervation. In the second part, this review focused on the PDL

mechanoreceptors, their morphology, neurophysiological and functional

characteristics, as well as their central connections. In the third part, the importance
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of PDL innervation in particular treatments is discussed, while new approaches and

future challenges of PDL innervation are highlighted. Finally, in the last part of this

chapter, a 3D reconstruction of PDL is shown to propose a new approach to study

PDL innervation characteristics.

Literature search:

In this search, previous reviews were used as “start-point” of our search

strategy. Five reviews were selected (table 2.1) to further search on the database of

the search engines PUBMED and WEB OF SCIENCE.

Table2.1: Description of literature reviews used as a basis to build the search strategy

Authors Years Title

van Steenberghe D 1979 The structure and function of periodontal innervation. A review of the literature

Linden RW 1990 An update on the innervation of the periodontal ligament.

Jacobs R, van Steenberghe

D

1994 Role of periodontal ligament receptors in the tactile function of teeth: a review

Trulsson M 2006 Sensory-motor function of human periodontal mechanoreceptors

Trulsson M 2007 Force encoding by human periodontal mechanoreceptors during mastication

In the PUBMED, it was searched throughout the articles indicated as related

to the 5 selected reviews in this search engine. New articles published by the same

authors were also considered for this selection. In addition, medical subject headings

(mesh terms) were chosen from the terms classifying those reviews. On the WEB OF

SCIENCE, the search proceeded amongst the articles which had cited these reviews

as their references. The results from this search are summarized in table 2.2.

The next search was based on the mesh terms selected, as follows:

("axons"[MeSH Terms] OR "axons"[All Fields]) AND ("periodontal ligament"[MeSH

Terms] OR "periodontal ligament"[All Fields]) – 54 articles retrieved; (("jaw"[MeSH

Terms] OR "jaw"[All Fields]) AND ("mechanoreceptors"[MeSH Terms] OR

"mechanoreceptors"[All Fields])) AND ("periodontal ligament"[MeSH Terms] OR

("periodontal"[All Fields] AND "ligament"[All Fields]) OR "periodontal ligament"[All

Fields]) - 233 articles retrieved; ((((("jaw/physiology"[All Fields] OR

"jaw/innervation"[All Fields]) OR "mechanoreceptors/anatomy and histology"[All

Fields]) OR "mechanoreceptors/innervation"[All Fields]) OR
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"mechanoreceptors/physiology"[All Fields]) AND "periodontal ligament/anatomy and

histology"[All Fields]) OR "periodontal ligament/innervation"[All Fields] - 60 articles

retrieved.

The selection of articles generated by the search using mesh terms was

based on the publication date (last 6 years) and the main topic discussed. The

articles selected concerned the PDL innervation in normal health condition as well as

PDL innervation regeneration after nerve injury, tooth movement, transplantation and

reimplantation. Articles comparing PDL innervation with peri-implant innervation were

selected to be used in chapter 5. The articles excluded were those not written in

English language, or classified as not directly related to PDL innervation after reading

the abstracts.

Table 2.2: Number of articles retrieved and selected from PUBMED and WEB OF SCIENCE

related to the basic reviews

After using this search strategy, two collections were created. One in

PUBMED and another on WEB OF SCIENCE, consisting of 258 and 105 articles,

respectively. Articles from WEB OF SCIENCE were further selected on the basis of

publication date (last 6 years) and the number of citations (fifteen-most cited articles).

Next steps included the verification for duplicates between collections and articles

classification by topics (table 2.3). Those articles already referred in the reviews were

only consulted in case of any further clarification was needed.

Authors
Times cited
on PUBMED

Related reviews
on PUBMED

Related citation on
PUBMED

First author in
PUBMED

Times cited on WEB OF

SCIENCE

van
Steenberghe D

1 article
(1selected)

16 articles
(4selected)

105 articles
(20selected)

30 articles
(19selected)

36 articles
(24selected)

Linden RW
1 article

(1selected)
8 articles

(3selected)
100 articles
(83selected)

45 articles
(10selected)

11articles
(6selected)

Jacobs R, van
Steenberghe D

no article
17 articles
(6selected)

155articles
(3 selected)

22 articles
(14selected)

50 articles
(33selected)

Trulsson M
2006

no article
39 articles

(15selected)
362 articles
(33selected)

54 articles
(7selected)

34 articles
(22selected)

Trulsson M
2007

no article
33 articles

(20selected)
323 articles
(10selected)

same previous
11 articles
(4selected)
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This review aimed to revisit the main knowledge supported by the former

reviews and to add the current knowledge and trends found in the literature in the last

6 years.

Table 2.3: Topics used to classify the articles selected

Topics

Morphology (M)

Neurophysiological aspects (N)

Trigeminal/central connections (TC)

Functional significance –(FS)

General (G)

Tactile sensibility (TS)

Receptors (R)

Biochemistry/molecular (B)

Spatial arrangement (SA)

Implants (I)

Teeth (T)

I - ASSESSMENT OF PDL NERVE FIBRES

I.I Origin of the PDL innervation:

Periodontal ligament is supplied by sensory and autonomic nerves (Schroeder

Springer 1986). The nerve fibres in the periodontal ligament are from branches of the

superior or inferior alveolar nerves (Linden 1990b) which are composed of both fine

and thick fibre bundles. Most of the nerve fibres supplying the periodontal ligament

enter it in the apical region, and some course through lateral foramina in the alveolar

bone (Schroeder 1986; Hildebrand et al 1995). In this way, the periodontal ligament can

be approached from two aspects in humans as well as in other mammalian species:

first, the peripheral branches arise from the dental nerve prior to its entering in the

apical foramen. Second, the branches of the nerves traveling through the interdental

and interradicular septa penetrate through the openings (Volkman’s canals) of the

alveolar bone proper and reach the periodontal ligament at various levels laterally

(Schroeder 1986).
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in the trigeminal ganglion (Linden 1990a). Using anterograde transport technique,

Byers and Dong (1989) reported that cat periodontal receptors with cell bodies in the

trigeminal ganglion are distributed throughout the length of the root, the majority

being found in the middle portion. On the other hand, cell bodies found in the

mesencephalic nucleus had their nerve endings mostly confined in the lower half of

the root – 50% being located below the apex. Using electrophysiological techniques,

Linden and Scott (1989a) showed cell bodies in the trigeminal ganglion located in the

whole area from below the fulcrum till the apex of the tooth. Contrary to the findings

of Byers and Dong (1989), those from the mesencephalic nucleus were situated in a

discrete area of the ligament intermediate between the fulcrum and the apex of the

tooth.

This distribution pattern of cell bodies has supported the idea that PDL fibres

with cell bodies in the mesencephalic nucleus participate in the mechanoreception

mechanism used as a peripheral feedback to regulate oral function. Their specific

location near the tooth apex and the common location with cell body from muscle

spindles in the mesencephalic nucleus would corroborate for their role in muscular

reflexes. In addition, the difference in the distribution of fibres with distinct cell bodies

origins brought the idea that those fibres might be distributed according to the

mechanical loads acting in the several regions of the PDL. The contribution of PDL

nerve fibres in the muscular reflexes and the distribution of PDL mechanoreceptors

will be discussed further in this review.

I.II Characteristics and distribution of nerve fibres in the PDL

Mammalian somatosensory mechanoreceptors can be classified according to

their modality, conduction velocity, myelinization, soma diameter and other

subclasses (see: Lumpkin and Bautista 2005). The periodontal ligament contains both

myelinated and unmyelinated nerve fibres. Most nerve fibres travel in bundles

associated with blood vessels and are believed to have a vasomotor function

(Hildebrand et al 1995; van Steenberghe 1979). The afferent sensory fibres of the

peridontal ligament are between 0.5 and 1 µm in diameter when unmyelinated, and

between 1 and 16µm when myelinated (van Steenberghe 1979). In cats, a large
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proportion of the myelinated periodontal fibres are thin myelinated fibres related to

pain and temperature (Aδ-fibres) (Heasman and Beynon 1986). Nevertheless, these

may be activated by nociception and some behave like Aβ-fibres (touch and

pressure) when recorded eletrophysiologically (Hildebrand et al 1995). The Aβ-fibres

are large myelinated fibres related to mechanoreceptors of low threshold (Lumpkin

and Bautista 2005). Furthermore, it is plausible that some of the unmyelinated fibres

belong to the autonomic nervous system and participate in the vasomotor control

(van Steenberghe 1979). It is worth to note that some variability between species

occurs as has been described by Schroeder (1986).

Besides, the PDL myelinated fibres have been also described as grouped or

isolated according to the proximity with other nerves and blood vessels (Long,

Loescher and Robinson 1995; Loescher and Holland 1991). Fibres are classified as

isolated when no more than 3 myelinated fibres were found in the surroundings,

neither any blood vessels in the radius of 20µm. The percentage of all myelinated

fibres designated as isolated in the histological studies by Loescher and Holland

(1991) was 15% to 16%. According to Long, Loescher and Robinson (1995), isolated

fibres found alone in the cemental half of the ligament should be considered as

putative mechanoreceptors.

In the study of Loescher and Holland (1991), the location and frequency of

isolated myelinated and large unmyelinated fibres were similar, and they suggested

that these large unmyelinated fibres are in fact the mechanoreceptive preterminals of

isolated myelinated fibres. The majority of grouped PDL nerve fibres have been

observed in the alveolar portion of the ligament (Long, Loescher and Robinson 1995).

Just a few myelinated fibres branching off the main bundles were observed

terminating at the avascular cemental portion of the ligament (Long, Loescher and

Robinson 1995).

The nerve fibres composing the periodontal ligament plexus may not be

evenly distributed throughout the whole ligament space. Histological studies

investigating the PDL innervation have shown that this ligament is most densely

innervated at the apex of the tooth, with only a few axons extending toward the

cervical margin (Maeda et al 1987; Loescher and Holland 1991 and Kubota and Osanai

1977; Byers and Holland 1977). Nevertheless, some difference according to species
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exists. In man, the nerve supply seems to be more dense in the intermediate part of

the ligament (van Steenberghe 1979). On the other hand, in moles, the apical ligament

innervation was described to be much denser than that at the midroot region (Kubota

and Osanai 1977). Since the myelinated fibres were suggested to be thicker in the

apical than in the cervical tooth levels, Hildebrand et al (1995) concluded that those

fibres branch and taper as they course in the PDL. Whereas thin periodontal fibres

would terminate as free nerve endings, large fibres would form specialized endings of

different sizes, predominantly near the apical level (Hildebrand et al 1995).

Like the distribution of nerve fibres along the root axis, the distribution of those

fibres around the tooth root circumference was found not to be uniform. Long,

Loescher and Robinson (1995) found that approximately 30% of all the grouped

myelinated fibres were located in the mesial portion of the ligament, while between

30% to 50% of all isolated fibres were located in the distal portion. This figures

corresponds closely to the 60% of isolated fibres recorded as being locate disto-

buccally by Loescher and Holland (1991).

Regarding the distribution between alveolar and cemental portions of the PDL,

most of the neural elements were found in the lateral, alveolar compartiment of the

ligament space in the mouse incisor (Everts et al 1977), while the tooth-related or

cemental portion, was mostly avascular compartment, free of neural elements. This

is in contrast to the report by Byers (1985) who observed neural elements of the

trigeminal ganglion origin mostly in the avascular, tooth-related region in the apical

third of the ligament in the rat. It is important to note that incisors in rodents are in

continously eruption, unlike in humans. Indeed, recent studies have confirmed the

presence of innervation in the avascular cemental area of constinously erupting

teeth (Jayawardena et al 2002).

Although it is believed that the discharge characteristics of an individual

periodontal mechanoreceptors (terminal part of some myelinated fibres) may be

governed by their location within the ligament (Cash and Linden 1982), much

controversy is found in the distribution of nerve fibres and their endings. This may be

explained by the difference among species, methods and types of teeth used in the

researches.
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According to Heasman and Beynon (1986), the analysis of the physiological

function of peripheral nerve is assisted by ultrastructural analysis of axon size. In the

human periodontal ligament, fibres of the nerve plexus were found to be, on the

average, 4.5µm in diameter, with 20% of these fibres being thicker than 5.5µm (Griffin

and Spain 1972). Loescher and Holand (1991) searched for the distribution of nerve

fibres in the PDL in cats and its correlated functional significance. Once more, the

highest density of periodontal nerve fibres was reported at the tooth apex and most

were found in nerve bundles adjacent to blood vessels (figure 2.2). The diameter of

both grouped (4.72±0.22µm) and isolated (4.56±0.08µm) myelinated fibres were

similar. Similar to the studies of Griffin and Spain (1972) in humans, just 20% of the

myelinated fibres in the PDL of cats had diameter greater than 6µm, therefore

classified as Aβ fibres, whereas 36% of myelinated fibres in the inferior alveolar nerve

have been shown to be Aβ fibre (Loescher and Holand 1991).

In turn, either the periodontal ligament is not innervated by the largest

diameter fibres or alternatively fibres branch and narrow toward the periphery

(Loescher and Holand 1991). This latter suggestion is supported by the results of

electrophysiological experiments showing a reduced conduction velocity in the

peripheral section of the periodontal afferent (Loescher and Robinson 1989a; Linden and

Scott 1989). However, further studies should confirm if those larger diameter IAN

fibres can have another functional significance apart from periodontal ligament

Figure 2.2: Histological slice of human

PDL (thricome Masson) in the axial plane.

Black arrows indicate bundles of

myelinated nerve fibres near the

cemental part of the PDL.
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innervation. Moreover, myelinated fibre diameters of the inferior alveolar nerves may

vary among different animals, as shown by Heasman and Beynon (1986) and by

Heasman (1984) (table 2.4).

As seen in table 2.4, the fibre diameter distribution curves of human inferior

alveolar nerves have peaks of density in two diameter ranges (bimodal distribution),

corresponding to the Aδ (pain and temperature) and Aβ (touch and pressure) ranges.

This bimodality characteristic in humans appeared to be independent of the age and

the number of teeth present (Heasman and Beynon 1986). Rood (1978) has reported a

similar bimodal curve, peaks and diameter range, although they suggested that

mandibular tooth loss would cause atrophy of some small diameter fibres. However,

this hypothesis was refuted later by Heasman (1984) since two of their edentulous

subjects had a unimodal curve with peak in the 3-4µm range, suggesting that, if any

fibres had ondergone atrophy following tooth loss, they would have been from the

large diameter types (Heasman 1984). Furthermore, a trimodal curve has been

reported in an edentulous subject (Heasman and Beynon 1986).

Besides the myelinated nerve fibres, Heasman and Beynon (1986) stated that

the unmyelinated C-fibres are important in propagating both autonomic and pain

impulses from periodontal membranes. Measuremens of these unmyelinated fibres,

which account for over 50 per cent of the total fibres in the inferior alveolar nerve of

the cat, would be necessary to complete a functional analysis of this nerve in human

(Heasman and Beynon 1986). The small unmyelinated axons in the periodontal

ligament can be either sympathetic efferents or nocioceptor afferent axons (Loescher

and Holland 1991; Linden 1990 a). It has been reported that the sympathetic efferents

have a direct effect on periodontal blood vessels (Loescher and Holland 1991). Indeed,

Species Diameter distribution Peaks (µm) Diameter range (µm)

Man Bimodal
2-4

8-9
2-15

Cat Bimodal
2-4

8-14
1-22

Dog Unimodal 9-10 -

Sheep Unimodal - -

rabbits Unimodal - -

Table 2.4: Findings reported in Heasman and Beynon (1986)
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97% of the single, small unmyelinated axons have been observed close to

neurovascular bundles, consistent with a vasomotor role (Loescher and Holland 1991).

Jyvasjarvi et al (1988) have identified a number of functional single C-fibres

originating from the periodontal ligament. Their conduction velocities ranged between

0.3-2.5m/s (mean 1.2±0.6m/s). Some authors (Mengel et al 1992; Jyvasjarvi et al

1988) suggested that the periodontal receptors supplied by C-fibres show a

polymodal response behaviour. Indeed, C-fibres responded not only to thermal and

chemical stimuli applied to the periodontal space, but also to forces of high intensity

manually applied to the tooth crown from different directions (Mengel et al 1992).

None of the C-fibres could be excited by forces known to stimulate periodontal

mechanoreceptors associated with large diameter myelinated fibres. Mei et al (1977),

as cited by Linden (1990b) has reported on Aδ fibres showing similar properties to

those described by Jyvasjarvi et al (1988) for C-fibres. Interestingly, Sessle (2006)

reports that C-fibres appear to play an important role in shaping the adult

mechanoreceptive field properties of the low-threshold mechanoreceptors neurones

receiving large diameter mechanosensitive afferent inputs.

Although their structure show species variations, PDL nerve fibres have their

terminal portion usually like free neural endings or organized receptors described as

resembling Ruffini endings. Intermediate forms also occur between Ruffini-like

endings and free endings (Lambrichts et al 1992). According to Hildebrand et al (1995),

the combined morphological and electrophysiological data indicated that large

Ruffini-type terminals, as well as free endings, function as intermediate, rapidly-

adapting mechanoreceptors (Hildebrand et al 1995). However, later studies have

demonstrated that most of Ruffini-like endings in the periodontal ligament are actually

slowly adapting and low threshold receptors (Trulsson 2007 and 2006). These

adaptation properties will be discussed later in this chapter.

As for the distribution of the free and organized endings, the latter are more

frequently found in the apical region (van Steenberghe 1979), whereas the former can

be evenly distributed throughout the PDL. However, contradictory observations have

also been obtained by histological and electrophysiological studies. Periodontal

mechanoreceptors with their cell bodies in the mesencephalic nucleus have been

observed, histologically, to be located primarily on the distal side (Byers et al 1986),
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although eletrophysiological recordings have revealed the majority of the receptors to

be located on the labial to mesial surface (Linden and Scott 1988,1989). This pattern

appears to differ according to species and raises the question of its functional

significance. This does not mean that some of these fibres cannot be related to other

functions, such as temperature sensibility and nociception, as already reported in this

chapter. However, the respective roles of different receptors from various parts of the

periodontium cannot be deduced from histological studies alone (van Steenberghe

1979).

In view of the complex orientation of the collagen fibres in the ligament and the

presence of receptors which are bidirectionally sensitive, it is unlikely that the

relationship is that simple. If the distribution of mechanoreceptors in a tooth is

functionally relevant, the distribution pattern of the receptors might also be expected

to vary between teeth within the same animal and species. In man, Maeda et al

(1990) observed free nerve endings throughout the ligament, while specialized nerve

endings appeared located in specific regions within the ligament: Ruffini-endings

being present near the root apex and other specialized endings in the mid-region.

Considering the morphological analogies between structures which have been

described, it can be postulated that these neural endings or part of them, are

mechanoreceptors, i.e. are sensitive to mechanical stimuli applied to the teeth (van

Steenberghe 1979). Long, Loescher and Robinson (1995) observed that the distal

portion of the periodontal ligament of mandibular canine tooth in cats, is normally

under compression. Unlike the study of Cash and Linden (1982) suggesting that the

PDL mechanoreceptors in cats respond to tension forces. Nevertheless, some

receptors were found to be bidirectionally sensitive, and therefore must also respond

to compression (Hildebrand et al 1995).

Loescher and Holland (1991) concluded the controversy over the probable

morphology of the periodontal mechanoreceptors. According to the authors, some

confusion concerning the receptor morphology may have arisen from the difficulty in

predicting a three-dimensional structure from a single section. Moreover, there was

also a wide variation in what is recognized as a Ruffini ending. Halata et al (1985: as

cited by Loescher and Holland 1991) described three variants in the human knee joint

capsule and Polacek (1966: as cited by Biemesderfer et al 1978) has suggested that
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“There is only one type of

mechanoreceptor situated within the

periodontal ligament.”

Millar,Halata and Linden 1989

Ruffini ending is not a uniform group but a range that constitutes the link between

simple free endings and encapsulate endings.

II - ASSESSMENT OF PDL NERVE ENDINGS

II.I Morphology of PDL mechanoreceptors:

There has been a long debate about the morphology of the PDL

mechanoreceptors (Linden 1990b). The current view states that all PDL

mechanoreceptors in man are unencapsulated Ruffini-like endings. On the other

hand, a large variety of morphologies have been described in other animals (Trulsson

2006; Maeda et al 1999). In 1985 and 1986, Byers and collaborators (Byers 1985; Byers

et al 1986) have described encapsulated Ruffini-like endings in the rat molar and

unencapsulated in the cat periodontal ligament.

Considering the relation with physiological properties, those

mechanoreceptors have shown both rapidly and slowly adapting properties and

some association with their position along the root has been mentioned. Considering

the species divergences, those mechanoreceptors in man are considered all slowly

adapting low-threshold stretching receptors (Trulsson 2006; Maeda et al 1999). Studies

in rat and cat reported on slowly and rapidly

adapting, as well as low and high threshold

mechanoreceptors (Linden 1990a). However,

those studies affirmed that only one

morphology was found for the organized

mechanoreceptors, the Ruffini-like receptors. The different physiological properties

were related to the position of the mechanoreceptors along the root. In other words,

mechanoreceptors located in root apex are exposed to higher loads than in the mid-

root during application of same force in the tooth crown. Therefore, the

mechanoreceptors located at root apex would present low-threshold and slowly

adapting properties unlike the ones found in the mid-root. At this position, the

mechanoreceptors presented rapidly adapting properties and a high-threshold to

perceive loads applied to the tooth crown.
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“Morphologically, Ruffini endings are

characterized by extensive ramifications of

expanded axonal terminals and an association

with specialized Schwann cells, called lamellar or

terminal Schwann cells, which are categorized,

based on their histochemical properties, as non-

myelin-forming Schwann cells.”

Wakisaka et al 2000

According to Trulsson and Johansson (1996), the apparent difference in

adaptation properties observed in experiments on man and animals may be

explained by methodological factors. Periodontal afferents are very sensitive to the

direction of the tooth loading (Loescher and Robinson 1989; Trulssson et al 1992). As

such, a three-dimensional stimulation procedure is crucial to elucidate the slowly

adapting response properties of periodontal afferents. During non-optimal stimulation

conditions, a “slowly adapting” periodontal afferent can easily be mistaken as “rapidly

adapting” (Trulsson and Johansson 1996). The fact that discharge from periodontal

mechanoreceptors can be modulated by sympathetic activity complicates the picture

(Hildebrand et al 1995; Cash and Linden 1982b).

In mature rodent incisors, periodontal Ruffini-like endings, like other

mechanoreceptors,e.g. Meissner and Pacini corpuscles, are invested by Schwann

cell processes with multilayered basal laminae and high levels of non-specific

cholinesterase (Hildebrand et al 1995). Since those teeth in rodents are continuously

erupting, the PDL is continuously remodeling. How the local axons and terminals

behave during the continual periodontal remodeling is unknown (Jayawardena and

Takano 2006). It is known that resection of inferior alveolar nerve in rats resulted in a

greater eruption rate of the incisor.

In this way, the adult rat incisor

eruption is subjected to neural

influences. However, selective

sympathetic denervation caused no

effect, suggesting that the

increased eruption rate is due to

loss of sensory fibres (Boggio et al

2004).

Maeda et al (1999) made a comprehensive report on the morphology,

cytochemical features, regeneration and development of Ruffini endings in the PDL.

They reported those mechanoreceptors as the primary mechanoreceptor in the PDL,

an overview about the main results reported by Maeda and colaborators in other

studies is presented in table 2.5. Maeda et al (1999) described the PDL Ruffini

endings as displaying dendritic ramifications with expanded terminal buttons and,
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furthermore, they are ultrastructurally characterized by expanded axon terminals

filled with many mitochondria and by an association with terminal or lamellar

Schwann cells. The axon terminals of the periodontal Ruffini endings have finger-like

projections called axonal spines or microspikes, which extend into the surrounding

tissue to detect the deformation of collagen fibres. The functional basis of the

periodontal Ruffini endings is further described by histochemical analysis. Their main

conclusions can be summarized in four points (Maeda et al 1999):

1. Ruffini endings have a high potential to neuroplasticity showed by the up

regulation of some neuroproteins related to regeneration and the

development process even in adult animals.

2. Degeneration of Ruffini endings takes place immediately after nerve injury,

with the distribution and normal morphology returning to almost normal

after some days.

3. Regenerating Ruffini endings express neuropeptide Y, which is rarely

observed in animals.

4. Ruffini-endings show stage-specific configurations. Mechanical stimuli due

to tooth eruption and occlusion are prerequisite for the differentiation and

maturation of the PDL Ruffini endings.

The morphology of the large unmyelinated “receptors” and their Schwann cells

described in the study on Loescher and Holland (1991) was similar to that reported

for receptors in the periodontal ligament of rat (Byers 1985) and cats (Millar et al 1989)

and to lanceolate receptors found in the sinus hair of monkeys (Halata and Munger

1980). The finger like-projections that were seen extending into the collagen matrix

may be responsible for detecting the displacement of collagen fibres and hence the

tooth (Takahashi-Iwanaga 2001; Kannari 1990).

The Schwann cells surrounding the “receptors” were characterized by

numerous pinocytotic vesicles which have been shown to contain cholinesterase

activity (Maeda et al 1999). Similar vesicles (or caveolae) have been described on the

lamellae of Meissners and Pacinian corpuscles and in the Schwann cells lanceolate

hair receptors (Halata and Munger 1980). Loescher and Holland (1991) found no true

lamellated endings although a few axons were invested by multiple cell layers. Other

studies have described lamellated endings in the periodontal ligament of the cat,
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“Proper mechanical stimulation to the

ligament contributes to the morphological

maturation of the periodontal Ruffini endings.”

Shi et al 2005

carmen crocodylia, rat, and ferret (studies are cited in Loescher and Holland 1991). This

may reflect either a difference in the interpretation of the morphological appearance

or variability between species.

A few of the large unmyelinated axons were found encapsulated. The isolated

myelinated preterminal axons usually

had a well-defined perineural sheath

surrounding them that appeared to end

with the myelin (Maeda et al 1999). The

capsule seen around the large

unmyelinated axons may be an extension of this perineurial sheath and is unlikely to

have covered the entire receptor. Within the different species, Ruffini endings have

been described with and without capsule (Maeda et al 1999). The entire range could

be present in the periodontal ligament, but only a more extensive and three-

dimensional examination would clarify this point.

Finally, a previous study has confirmed that periodontal Ruffini endings show 

stage-specific morphological features intimately related to the timing of tooth eruption 

and occlusion (Nakakura-Ohshima et al 1995). Similarly, studies confirmed that neurons

develop with the eruption of teeth (Umemura et al 2010) and that the response

properties of rat’s PDL mechanoreceptors matured when functional molar occlusion

and transition of dietary contents from liquid to hard-diet were achieved (Nasution et al

2002). Moreover, Muramoto et al (2000) reported that the loss of occlusal stimuli,

after extracting opposing teeth, influenced the distribution and structure of the

periodontal mechanoreceptors of the rat mandibular molar.

II.II Neurophysiological aspects of PDL mechanoreceptors:

Mechanoreception function of PDL nerve fibres can be investigated by

collecting data on their adaptation properties, directional sensitivity and

discriminatory ability (van Steenberghe 1979).

Three types of adaptation properties of PDL mechanoreceptors have been

historically described, e.g. slow-adapting, rapid-adapting and spontaneous firing ones

(van Steenberghe 1979).
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Authors/year Sample Methodology Results Observations Receptors Features

Maeda et al

1987
Rat molars

NFP

sections in

three different

planes

IR clearly visualized in the 3D analysis
Densely distributed in lower half of the

alveolar socket

 Free nerve ending with a tree like ramifications tapered
around periodontal fibres some reaching the

cementoblastic layer;
 Expanded nerve terminals showing button or glove-like

shape - frequently in groups within the lower third of the
alveolar socket

Maeda 1987
Monkey(Macaca fuscata)

incisive /molar

NFP

S-100

IR NFP and IR S100: distribution

molars ≈ incisors. 

apical region in molars: IR NFP (N) < IR

S-100 (N)

Thick immunoreactive bundles entered

the periodontal ligament from through

slits at the bottom of the alveolar

socket; thinner bundles penetrated the

ligament from the lateral walls.

Densely found around root apex . In

upper incisors also densely found in

the coronal half of labial side

 Incisors-ramified in dendritic fashion-free endings
 Molar-free endings and coiled nerve endings

Sato et al

1988
Rat incisors

NFP

S-100
densely innervated IR NFP

≠ Molars. Restricted to the alveolar 

half every region.

IR S-100 (N) ≈ (N) IR NFP  

 Thick nerve bundles entered the lingual periodontal
ligament in the mid-region of the alveolar socket, and
immediately formed numerous Ruffini-like corpuscles.

 In the labial periodontal ligament, terminated in free
endings.

Maeda et al

1989
Rat incisors

S-100 and

electron

microscopy.

IR S-100

electron microscopy: Ruffini endings

displayed expanded axoplasmic spines

filled with a large number of mitochondria

and neurofilaments

Numerous Ruffini endings distributed

in the alveolus-related part of the

lingual periodontal ligament

 Some of the spines directly contacted the surrounding
collagen fibres via finger like projections. The

axoplasmic spines and Schwann sheath covered by
single or multiple layers of the basal lamina. Rounded
cells in the vicinity Ruffini-endings-IR S-100- kidney-

shaped nucleus and enveloped the axoplasmic spines
with their cytoplasmic processes.

Table 2.5: Overview main findings reported by Maeda and colaborators, Sato and colaborators and Kannari using immunohistochemistry. NFP =

Neurofilament protein; S-100= glia-specific S-100 protein; IR=immunoreactive neural elements; N=number of fibres; tSC=terminal Schawnn cells.
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Authors/year
Sample Methodology Results Observations Receptors Features

Sato et al 1989

Five Rodents upper

incisors-Guinea pig

Hamster, Mongolian

gerbil (Meriones

unguicularis) Mouse

Squirrel (Tamias

sibiricus)

NFP

S-100

fundamentally identical to that

in the rat

Lingual PDL: IR NFP Ruffini-like corpuscles

(middle region)

Labial periodontal ligament: < IR NFP (N)-

terminating among collagen fibres as free

endings.

 IR S-100 distributed in the periodontal

ligament and dental pulp of all the rodent

species examined, showing a distribution

pattern similar to the IR NFP.

Maeda et al

1990b

Rat incisors

nonspecific cholinesterase

activity light and electron

microscopic levels (terminal

Schwann cells)

Terminal Schwann cells

positive for nonspecific

cholinesterase

Ordinary Schwann cells

associated with more proximal

nerve fibres reacted negatively

Schwann cells-well-developed Golgi apparatus

and rough endoplasmic reticulum

---

Maeda et al

1990a
HUMANS

NFP

S-100

free and specialized nerve

endings (immunoreactive NFO

and S100)

No lamellated nerve terminals were found in

the human periodontal ligament

 Free endings-tree like ramification/all

tooth length

 Specialized nerve endings-ruffini endings

(expanded nerve endings in a dentritic

fashion around the root apex/coiled

endings-located at the mid-

region/spindle-shaped/expanded nerve

endings-both rarely found around tooth

apex)

Kannari 1990 Hamster incisors

immunohistochemistry for

nervous-specific proteins and

electron microscopy

electron microscopy: the

Ruffini endings displayed

expanded axon terminals filled

with large-sized mitochondria

3D reconstructions of the Ruffini endings at the

electron microscopic level revealed

complicated shapes for the axon terminals and

a characteristic relation with tSC

 lingual PDL- exclusively innervated by

Ruffini endings - alveolar half intertwined

with transverse collagen fibres

 labial periodontal ligament lacked them
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“Like the slow-adapting type II

(SAII) mechanoreceptors in the

skin, most human periodontal

mechanoreceptors (about 70%)

are active spontaneously and

discharge regularly in response to

forces applied to the teeth.”

Trulsson 2006

Rapidly adapting mechanoreceptors fire only a few nerve impulses when a

stimulus is applied or withdrawn, while slowly adapting one fires throughout the

stimulus application, but generally with a

decreasing frequency. The very slowly adapting

mechanoreceptors fire throughout the stimulus

application, even if it is maintained for hours (van

Steenberghe 1979).

Rapidly adapting mechanoreceptors have

a higher threshold level than slowly adapting ones

(van Steenberghe 1979; Linden 1990b). This has been shown in cats, dogs and men

(Linden 1990b) and could result from a more remote localization of the rapidly

adapting mechanoreceptors in the periodontal ligament (van Steenberghe 1979).

Indeed, Linden (1990a) has reported that this difference in adapting properties might

be related to the relation with adjacent structures and position of mechanoreceptor in

the ligament, rather then represent different morphological types of receptors. In turn,

PDL nerve fibre distribution and spatial arrangement might influence PDL

mechanoreceptor characteristics. The receptors with higher threshold were located

near the fulcrum portion of the tooth and those with low threshold near the apex

(Cash and Linden 1982b). This relation between the position of a mechanoreceptor in

the ligament and its response characteristics was explained by the larger

displacements at apical levels compared to the fulcrum level. In general, a few

receptors have been observed above the fulcrum (Hildebrand et al 1995, Loescher and

Robinson 1989a; Linden 1990a).

The spontaneously firing ones are actually considered a variant of slowly

adapting receptors (van Steenberghe 1979). These are units which fire action

potentials even when the tooth is not being moved. It was prove that this is not injury

discharge since the recordings last for hours. Actually, Linden (1990a) reported that

the cause of this spontaneous activity was unknown, and no clarification has been

found in the recent literature.

Hannam, in 1982, suggested that the spontaneous activity may be a species

difference in that it appeared to be more common in studies in rabbits and dogs than

in cats. In those last animals, spontaneous activity has been recorded in the
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trigeminal ganglion and the mesencephalic nucleus only after cutting the cervical

sympathetic trunk. Later, this spontaneous activity was abolished by cervical

sympathetic nerve stimulations (Linden 1990b). Therefore, spontaneous activity was in

part attributed to cutting of the sympathetic nerve supply to the teeth and supporting

structures during the peripheral nerve studies in cats. Another suggestion was that

the spontaneous activity was due to a constant stretch imposed by the environing

tissues on the receptor (van Steenberghe 1979).

Those neurophysiological findings were hyphothetically correlated to

histological findings (van Steenberghe 1979). Conduction velocities have been reported

in the range of respectively between 24-60 m/second (slowly adapting) and 28-

83m/second (rapidly adapting). and corresponded to the fibre diameters found in

histological studies (van Steenberghe 1979). Linden, in 1990b, reported that the PDL

mechanoreceptors have a conduction velocity range from 26-87m/second, placing

them within the A-beta group of fibres. Hildebrand et al (1995) reported that the cat

periodontal axons have conduction velocities of 25-85m/sec, with a mean of

55m/sec.

It was suggested that the slowly adapting mechanoreceptors would

correspond to organized nerve endings, while free nerve endings would be rapidly

adapting ones. Yet, the exact periodontal structures within which these receptors

were located has not been elucidated till the early 80’s (van Steenberghe 1979).

Hannam in his review in 1982 pointed out that there was no direct evidence about

receptor morphology, either for the slowly adapting or the rapidly adapting

mechanoreceptors (Linden 1990a). He suggested that a better clue to the

morphological and functional correlations could be provided by developing a

complete picture of the receptor behaviour using features such as their response to

sustained and dynamic stimuli, directional sensitivities, tonic or resting discharge and

neuronal conduction velocities. Later, several studies affirmed that all human

periodontal afferents are in fact slowly adapting receptors (Trulsson 2006; Lobbezoo et

al 2002; Maeda et al 1999; Trulsson and Johansson 1996 ).

Hannam (1982) compared the response of the slowly adapting receptor to

that of the type II skin receptor (Ruffini terminal) and the rapidly adapting units to

Meissner corpuscles and other corpuscular lamellated receptors described previously
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in the PDL of the cat and caiman. Until the exact site of the receptor was known the

idea that the two groups of physiological characteristics represented two

morphologically distict groups of receptors was pure speculation. This speculation

was confused still further by the descriptions of putative end-organs in the periodontal

ligament as well as the possibility of species differences. According to Hannam

(1982), differences in technique and standards of preparation, as well as the natural

enthusiasm for describing detail, undoubtedly contributed to this impressive array of

descriptive terms, making comparison ever difficult (van Steenberghe 1979).

If the tooth is considered to rotate about a fulcrum when force is applied to its

crown, then varying degrees of displacement of the tooth root relative to the

surrounding alveolar bone will occur. This graded displacement is greatest at the

apex and reduces towards the fulcrum for any given force. The receptors at the apex

would receive the greatest displacement and consequently the greatest stimulus.

Hence, they would appear to have a lower force threshold and would adapt slowly if

at all (Linden 1990a). The receptors near the fulcrum would receive less stimulus, that

is less displacement, for the same applied force. This could explain why they have

the higher threshold and adapt rapidly. It has been shown that slowly adapting

receptors behave more like rapidly adapting receptors if a reduced force is applied to

the tooth. This would be consistent with the displacement hypothesis. From their

studies, Linden and co-workers concluded that the response characteristics of a

receptor depend on the position of the receptor and on the rate and magnitude of

forces applied to the tooth crown.

Studying receptors located in the labial region in cats, Cash and Linden

(1982b) reported that all receptors responded maximally when the crown of the tooth

was pushed so as to stretch the labial side of the ligament. From this came the

conclusion that PDL mechanoreceptors respond maximally when that part of the

ligament in which they lie is put under tension. In this same study, the receptors were

all located between the fulcrum and the apex of the tooth. The slowly adapting

receptors appeared to be situated in the apical third of the ligament, and the rapidly

adapting receptors situated below the fulcrum of the tooth but closer to the fulcrum

than to the apex. It was suggested that there may be only one type of PDL

mechanoreceptor and that the rate of adaptation of a particular receptor might be

dependent on its location within the ligament.
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It appears that between 0.01N and 0.02N (approx.1-2g) is sufficient to evoke a

response from the majority of slowly adapting neurons (Linden 1990b). According to

Linden (1990b), Pfaffman in the cat, Hannam in the dog and Fujita in man noted that

the more rapidly adapting neurons tended to have higher thresholds than did the

slowly adapting neurons (Linden 1990b). The threshold of the more rapidly adapting

neurons were reported to be in terms of tens of grams instead of a few grams. It was

suggested that this could be due to both a morphological and a functional difference

between the two types of endings, but equally it could be due to differences in the

receptor sites (Linden 1990b).

There is a general agreement in attributing directional sensitivity to periodontal

neural receptors. To explain the concept of directional sensitivity, the response to a

given mechanical stimulus is maximal in a particular direction and it falls

progressively to zero as the force moves away from this optimal direction. Besides, it

has been suggested that the rate of force application also influences the discharge

frequency of slowly and rapidly adapting units in the periodontal ligament. Increasing

the rate of force application shortens the latency time of the first action potential.

In experimental animals, most nerve fibres involved in PDL mechanoreception

had their receptive field in one tooth. A few fibres responded to stimulation of two or

three teeth (Trulsson 1993). In humans, on the other hand, a high proportion of

individual fibre giving rise to the PDL mechanoreceptors responded to stimuli applied

to more than one tooth. This occured more often in adjacent teeth; and up to three-

five adjacent teeth could provoke action potentials in isolated fibres of the inferior

alveolar nerve. They are considered as multiple-tooth receptive fields (van

Steenberghe 1979). This seems to be due to mechanical interactions between

adjacent teeth rather than to fibre branching (Hildebrand et al 1995). It should be noted

that a force of less than 0.5Newton applied to a tooth causes a deformation of the

alveolar bone, which means that even lower forces could stimulate receptors of

neighbouring teeth through the transseptal fibre plexus, tooth contact or liquid

movement, according to van Steenberghe (1979).

In the view of the directional sensitivity of the mechanoreceptors and the

multiple-tooth character of the receptive field in humans, the periodontal message

reaching the CNS during mastication must be highly complex (Hildebrand et al 1995).



Chapter 2 : Periodontal ligament innervation and mechanosensory function in teeth

43

Studies on human mandibular teeth show that even though individual periodontal

mechanoreceptive afferents do not provide exact information regarding the direction

of a force applied to a tooth, populations of such afferents are well suited to give

detailed directional information (Trulsson et al 1992).

According to the current knowledge, the majority of the periodontal

mechanoreceptive units in man adapt slowly with low force thresholds (Trulsson et al

1992). This is in agreement with other studies in animals (Tabata and Karita 1986;

Loescher and Robinson 1989). Periodontal mechanoreceptors of posterior teeth also

exhibit directional sensitivity which implies that they respond maximally to forces

applied in a particular direction. Furthermore, rate and magnitude of the force applied

to a tooth may modify the response characteristics of the mechanoreceptors. These

characteristics can be explained on the basis of an intimate relationship between

neural endings and the environing collagen fibre bundle network (Jacobs and van

Steenberghe 1994).

According to microneurographic experiments in humans, most periodontal

mechanoreceptors (about 70%) are active spontaneously and discharge regularly

during sustained tooth loads (Trulsson 2007; Trulsson 2006) like the mechanoreceptors

in the skin, the slow-adapting type II (SA II). Due to this electrophysiological

behaviour, those receptors have been classified as slowly adapting receptors. About

half of those receptors responded to forces applied to more than one tooth and their

receptive fields were broadly tuned to the direction of force application. However,

their highest response rate occurred when stimulating one particular tooth, named

the receptor-bearing tooth by Trulsson (2007) .

From observation in humans, this author concluded that the receptor-bearing

tooth is most often an incisor or a canine, indicating a decreasing in number of

receptors in the periodontal ligaments distally along the dental arch. Byers and Dong

(1989) have previously described this characteristic in periodontal receptors of

monkey, cat and rat by means of histological techinques. This fact suggested a well-

developed mechanoreceptive innervation of the anterior part of the mouth.

Moreover, the periodontal receptors supplying the anterior and posterior teeth

differed in their capacity to signal the horizontal and vertical forces, respectively

(Trulsson 2007). There is a shift from a high sensitivity to most directions at the



Chapter 2 : Periodontal ligament innervation and mechanosensory function in teeth

44

anterior teeth to the distal-lingual direction at the molars meeting the functional

demands of anterior versus posterior teeth. In other words, the periodontal receptors

supplying the lower molar teeth were well suited to encode information about the

forces that normally imposed to the molars during mastication. Considering the

relation between discharge curve and force amplitude, normaly those receptors

showed the highest sensitivity to changes in force at forces below 1N in the anterior

teeth and 4N for posterior teeth (Trulsson 2007). They were classified as saturating

receptors and represented the large majority of periodontal receptors (80-85%).

Saturating receptors become progressively less sensitive to both the magnitude and

rate of rapid changes in force, as contact force grows in amplitude (Trulsson 2006).

Trulsson (2007) reported that most receptors efficiently encode food contact

during chewing, but due to saturation at higher forces, these receptors poorly encode

the magnitude of strong chewing forces and force changes. In contrast, the non-

saturating receptors, which exhibited a nearly linear relationship between discharge

rate and force amplitude, represented the minority among receptors found and had

the capacity to encode force and force changes at quite high forces levels (Trulsson

2007).

II.III Connections to Central Nervous System:

Anatomical studies in animals have shown that the periodontal ligament is

richly innervated by mechanoreceptors whose cell bodies are located either in the

trigeminal ganglion (TG) or in the mesencephalic (MS) trigeminal nucleus (Trulsson

2006; Linden 1990a). Both were suggested to be sensitive to stretch of the ligament

induced by tooth movement (Linden and Scott 1989a), but their thresholds, central

connections, and functional significance differ (Byers and Dong 1989).

The primary afferent neurons in the trigeminal ganglion are pseudounipolar.

Their central processes pass to the main sensory trigeminal nucleus (MSTN) while

others pass to the spinal tract of the trigeminal nucleus (STTN). The trigeminal

ganglion contains the cell bodies of a representative sample of all periodontal

mechanoreceptors ranging from the most slowly adapting to the most rapidly

adapting receptors. The mesencenphalic nucleus contains the only known group of

primary afferent neurons with their cell bodies located within the CNS. Those
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receptors respond to forces applied to tooth alone, nose, hard palate (type P) and to

opening of the mouth (muscle spindles) (Linden 1990b and van Steenberghe 1979). No

very slowly adapting mechanoreceptors were observed with cell bodies located at

MS (Linden and Scott 1989a).

The functional significance, if any, of the two distinct cell body populations of

PDL receptors is unknown (Linden 1990b). The different sites and intensity of the

stretch forces occurring during the use of different types of teeth may determine the

variations in the size and location of the TG mechanoreceptors. The different

distribution of MS receptors may contribute to their response thresholds and static

properties, which differ from those of TG receptors (Byers and Dong 1989; Trulsson

2006; Linden 1990b).

In the trigeminal ganglion, mechanoreceptors were reported to be distributed

over a much wider area of the periodontal ligament between the fulcrum and the

apex than those in the mesencephalic nucleus (Linden and Scott 1989a). The MS

mechanoreceptors were located in a discrete area of the periodontal ligament

between the fulcrum and the apex of the tooth. None was found in the apical part of

the ligament. When recording in the mesencephalic nucleus the direction of

maximum sensitivity of the mechanoreceptors were uniqually distributed around the

tooth root. The majority of neurones (over 70%) responded maximally when the area

extending from labial to mesial was under tension strains (Linden and Scott 1989a)

suggesting that most of those receptors were located at this region. On the other

hand, no predominant directional sensitivity was observed in the trigeminal ganglion.

This suggested that the mechanoreceptors with cell bodies in the trigeminal ganglion

are distributed in the periodontal ligament much more evenly around the tooth root in

the periodontal ligament.

In studies from 1988 and 1989, Linden and co-workers have shown that

populations of PDL mechanoreceptor neurons represented in the mesencephalic

nucleus do not all degenerate following tooth extraction. But since the majority of

those present do not appear to reinnervate new tissues in which they can be

mechanically stimulated, it was suggested that it was unlikely that they had any

functional role following tooth loss (Linden 1990a).
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Neurons of the MS and TG innervating the periodontium of incisor, canine

and molar teeth in monkeys and baboons were counted and mapped using the

horseradish peroxidase (Hrp), retrograde axonal transport method (Hassanali 1997).

Periodontal afferent neurons of all of these teeth were well represented in the MS,

although the incisors had a significantly higher number of labelled neurons than the

canines or molars. The periodontal MS neurons may be favourably located to make

collateral connections with the trigeminal motor nucleus for jaw reflexes. Incisors and

canines had a large and predominantly ipsilateral representation in the TG. In

contrast, molar representation in the ganglion was sparse and all labelled neurons

supplied ipsilateral teeth. The maxillary and mandibular teeth had a somatotopic

distribution within the respective maxillary (middle) and mandibular (posterolateral)

compartments of the TG. It is suggested that the anterior teeth with greater

connections to the MS and TG may impart greater sensory perception and be

involved in jaw reflexes to ensure a good occlusal relation during mastication, while

the afferent connections of the molars may initiate complex jaw reflexes during the

occlusal phase of mastication (Hassanali 1997).

In the mesencephalic trigeminal nucleus of rabbits, Passatore et al (1983)

found two types of units, namely primary afferents supplying jaw raising muscle

spindles and periodontal or gingival mechanoreceptors (Trulsson 2006). These two

groups of neurons exhibited a rostrocaudal somatotopy. Similar to the study of

Hassanali (1997), the incisors were also the most widely represented, followed by

interalveolar gingiva and molars; the axonal conduction velocity ranged between 9

and 40 m/sec and between 8 and 16 m/sec for ipsilaterally and contra laterally

projecting neurons, respectively.

The motor responses obtained by electrical stimulation of discrete areas of the

MS confirmed the presence of a high degree of segregation between the two

different populations of neurons. In fact, jaw raising movements were obtained when

stimulating the area containing the somata of spindle afferent neurons, while only jaw

opening movements were elicited by stimulation of the caudal levels of the nucleus,

where the somata of periodontal and gingival afferent neurons were located. These

data also show that the periodontal neurons whose somata are located in the MS

participate in the jaw opening reflex, just as the more numerous periodontal



Chapter 2 : Periodontal ligament innervation and mechanosensory function in teeth

47

“Mastication is a repetitive feeding

behaviour typical of mammals. It

is produced by a brainstem central

pattern generator that is subject to

conscious control and to sensory

feedback.”

Lund and Kolta 2006

mechanoreceptors whose somata are located in the TG. Soma-somatic and soma-

axon hillock gap junctions were found among the neurons of the MS, particularly in

the caudal third of the nucleus (Passatore et al 1983; Trulsson 2006).

II. IV Functional significance of nerve fibres and endings in the

PDL:

The main functional significance of PDL mechanoreceptors is found in the

masticatory function. The neurophysiological aspects of posterior and anterior teeth

together with the presence of two connections to the CNS uncover the role of those

receptors in the modulation of the trigeminal

sensory input during mastication. Masticatory

function is performed by jaw muscles that can

generate large forces across very short

distances and apply them via rigid teeth (Türker

et al 2007). To avoid any damage to teeth and

surroundings tissues, masticatory forces need to

be controlled precisely by peripheral feedback and these forces must change from

bite-to-bite depending on the properties of the bolus. The physiological significance

of PDL nerve fibres in this context have been reviewed by Türker et al (2007),

Trulsson (2007), Sessle (2006), Lund and Kolta (2006), Lobbezoo et al (2006) and

Türker (2002). In general, those fibres play a role during oral somatosensory and

motor function. A comprehensive report on this role and its functional consequences

is found in the mentioned reviews.

Lund and Kolta (2006) reviewed two fundamental features of mastication: its

centrally generated core motor program and the sensory feedback, which is

responsible for adapting the program to food properties. As described by the authors,

mastication requires the coordinated action of the muscles of the jaws, tongue, lips,

and cheeks. This coordinated action results from the interaction of an intrisic

rhythmical neural pattern and sensory feedback generated by the interaction of the

effector system (muscles, bones, joints, teeth, soft tissues) with food.

Just as individual muscles are represented at specific locations within the

motor cortex, so are the various patterns of mastication. The movements elicited by
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“Among many morphologically different

periodontal mechanoreceptors, Ruffini

ending receptor is the primary

mechanoreceptor in humans and other

mammals“

Maeda et al 1999

stimulation of anterior and posterior sites are clearly distinct, and movements evoked

from left and right cortices are mirror images of one another. The activity of most

neurons in the masticatory cortex is higher during ingestion than during mastication,

suggesting that it plays a major role in setting parameters of the first bite. It may also

contribute to the continuous modulation of the masticatory pattern, through its

extensive projections to all of the cell groups in the brainstem that are thought to

compose the central pattern generator (CPG) (Lund and Kolta 2006). This ‘masticatory

area’ (CPG) partly overlaps the representation of individual jaw, tongue and facial

muscles. To produce mastication, this region of the cortex has to be stimulated by a

long-lasting, medium frequency trains of shocks (approximatelly 10-100Hz) (Sessle

2006). Inputs from sensory receptors in the mouth and muscle spindles can also

activate the CPG. The frequency of mastication does depend on the average

stimulus frequency and voltage. In addition, many interneurons have axons that cross

the midline and these are probably responsible for the coordination between the two

halves of the CPG.

When food is taken into the mouth, it will be split into smaller pieces by the

front teeth before being moved to posterior parts of the dentition. In the initial stages

of food intake, forces are applied to the incisors in all directions. The molars, on the

other hand, grind food substances only during more forceful chewing. During the final

phase of the chewing cycle, when the lower molars on the working side approach the

intercuspal position from a posterior and lateral position, they are likely to experience

distal and lingually directed forces upon contact with the opposing upper molar teeth.

Given their directional preference for distal-lingual loading, the mechanoreceptors

supplying the lower molar teeth are well suited to encode information about the

forces that normally act on the posterior teeth during mastication (Trulsson 2006). The

lower static and dynamic sensitivity of

periodontal receptors at posterior teeth

may reflect a functional adaptation to

the faster and stronger forces that are

developed during motor activities

involving the posterior teeth (Trulsson

2006).
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These observations indicate that subjects use periodontal afferent information

to specify the level of force during the hold phase of a hold-and-split task of

masticatory function. This periodontal afferent information is generated thanks to the

tactile and reflex function of PDL mechanoreceptors (Lobbezzo et al 2006). Scientific

evidence related to the modulation of trigeminal sensory input during mastication is

also collected from studies on oral tactile function and muscular reflexes.

II.IV a Contribution of periodontal receptors to the oral tactile function

Jacobs and van Steenberghe (1994) report that the PDL nerve endings,

mainly PDL mechanoreceptors, may contribute to the exteroceptive function. Yet,

they call attention for the misinterpretation of this function as “tooth proprioception”.

Proprioceptors, such as muscle spindles or joint receptors, would be activated by

stimuli inside the body, giving information about the relative positions and movements

of the limbs (Jacobs and van Steenberghe 1994).The diameter of the afferent fibres and

their conduction velocity also argue against proprioception. Periodontal

mechanoreceptors are actually very sensitive to external forces applied to the tooth,

they have a tactile function.

Tactile function seems more or less related to PDL mechanoreceptors,

depending on the degree of mouth opening (Jacobs and vanSteenberghe 1994). The

interoclusal detection of small objects, the active threshold level, is very much

dependent on the activity of PDL mechanoreceptors, while for larger interocclusal

distances, muscle and articular receptors seem to take over. In agreement to the

conclusions of Trulsson and Johanson (1996), during functional mouth openings,

such as during food communition, periodontal mechanoreceptors play a prominent

role.

The predominant role of periodontal receptors in detecting and discriminating

forces acting on a tooth has been proven in previous studies (van Steenberghe 1979).

According to Jacobs and van Steenberghe (1994), a clear distinction should be made

between “passive” and “active” threshold in the psychophysical approach. The first is

the detection of forces applied to the teeth, and the second one, the interocclusal

detection of small objects such as strips. The active detection task is further divided

into a static and a functional threshold determination. While active threshold

determination provides means to observe a parameter of jaw motor control, the
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passive threshold determination evaluates more precisely the role of periodontal

mechanoreceptors although not in a physiological situation. In psychophysical

threshold determinations, a threshold range, rather than an absolute value exists. A

subject uses his own criteria to discriminate between stimulus and noise. The

reliability of the response is affected by the subject’s attention and psychological

attitude. Unfortunately, tactile threshold determinations are often performed without

using an appropriate psychophysical methodology. A summary of previous studies

about threshold determination of teeth is provided by Jacobs and van Steenberghe

(1994).

Human teeth are sensitive to very small forces applied to the teeth. Pfaffmann

noted that 0.01-0.02 Newton force is sufficient to evoke a response from the majority

of mechanoreceptors of the cat’s dental nerve (Linden 1990b). Although the removal

of the pulp did not change the response, an advanced periodontal breakdown is

associated with a higher threshold (Jacobs and van Steenberghe 1994). This could be

related to an increased mobility or to a partial loss of receptors. In edentulous jaws,

the performance of detection or discrimination tasks is even worse, although

edentulous patients still keep mechanoreceptors in the mucosa and the periosteum

of the jaw bone. These receptors only differ from periodontal ligament

mechanoreceptors in their receptive fields.

Thus, the ”periodontal feedback” and its exteroceptive function is not

completely lost in edentulism. When patients are rehabilitated with oral implants, the

active absolute threshold level increases compared to the natural dentition, but

remains below the threshold noted in denture wearers. The passive threshold is

about 10 to 100 times larger for edentulous patients with implant-supported

prostheses and 50 to 100 times larger for denture wearers when compared to

patients with natural teeth. The rapid elastic bone deformation during implant loading

may trigger periosteal receptors, which however remain less sensitive than

periodontal ligament receptors (Jacobs and van Steenberghe 1994).

Studies on passive threshold of teeth have made several characteristics of

periodontal mechanoreceptors become obvious. Teeth are more sensitive to lateral

than to axial forces, which might be part of a protective mechanism. Loading a tooth

labiolingually indeed results in a more pronounced deformation of the
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mechanoreceptors and a lower threshold. Furthermore, posterior teeth have higher

passive threshold values than anterior ones, which may be explained by the less

intense stimulation of individual mechanoreceptors due to anatomical and visco-

elastic differences. For the active threshold, results are quite different since the

periodontal mechanoreceptor characteristics can be masked by the activation of non-

periodontal receptors. This explains the lack of difference between active threshold

level of anterior and posterior teeth. Since the insertion of a foil between the distal

teeth is associated with a larger mouth opening, a stronger activation of muscular

and/or articular receptors occurs. This probably compensates for higher threshold

values normally observed for posterior teeth (Jacobs and van Steenberghe 1994).

II.IV b Brain stem reflexes and periodontal receptors

It is worth to note that the central connections of the PDL mechanoreceptors

are quite unique in that most of these receptors have their cell bodies in the

trigeminal mesencephalic nucleus along with the spindle cell bodies. Therefore, it has

been suggested that in the trigeminal mesencephalic nucleus, an electrical link may

exist between the cell bodies of muscle spindles and periodontal receptors (Türker

2002). The importance of peripheral feedback in controlling masticatory muscle

activity has been illustrated by the greatly reduced facilitation of the masseter muscle

after removing sensory feedback from PDL receptors (Türker 2002). When spindle

bodies were also destroyed, facilitation of jaw closing muscles disappeared almost

completelly (Türker 2002).

The spinal cord functions primarily in the transmission of neural signals

between the brain and the rest of the body but also contains neural circuits that can

independently control numerous reflexes and central pattern generators (Sessle

2006). By analogy, it is supposed that the same occurs during the oral motor function.

The spinal cord would be the trigeminal ganglion and the trigeminal mesencephalic

nucleus from where the neural signals between the brain and the rest of the oral

region would be transmitted. Furthermore, the trigeminal mesencephalic nucleus

would contain neural circuits that could independently control muscular reflexes and

the masticatory central pattern generator.
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Linden (1990) reported that intra-oral mechanoreceptors contribute to reflexes

involving the muscles of mastication and the masticatory-salivary reflex. The latter, of

course, in addition to the gustatory input from the facial and glossopharyngeal nerves

that have been shown to provide a greater stimulus than that provided by mechanical

stimulus alone (Linden 1990b). For a comprehensive account of the inhibitory and

excitatory reflex responses that may be evoked in the jaw-closing muscles in humans

when periodontal receptors are stimulated, the reader is referred to the review by

Türker (2002).

The mandible has some unique characteristics. It is the only limb to cross the

anatomic sagittal plane and articulates with the skull base by means of 2 parallel

joints. According to Lobbezoo et al (2006), those features imply that the human

trigeminal neuromotor system involves homonymous bilateral reflexes. Since high

forces can be exerted by the jaw-closing muscles versus the rather weak jaw-

opening muscles, these must be balanced by a fast cybernetic modulation. In turn,

the trigeminal reflexes demonstrate two neurophysiological particularities. Their

primary afferents have their cell bodies in the brain (nucleus mesencephalicus),

which contrasts with other limbs and they have a bilateral symmetric reflex function,

since the mandible is the only limb that crosses the midline. Another interesting

feature is that just as walking, chewing relies on a central pattern generator for

chewing, in between the supracollicular and midpontine level (van Steenberghe 1998).

Studies in monkeys have revealed that each muscle or movement is

represented multiple times within the face primary motor cortex (MI), leading to the

current view that each output zone of MI controls one of the many contextual

functions in which a muscle participates (Sessle 2006). Mastication and swallowing in

the monkey could be evoked by intra-cortical microstimulation (ICMS) not only from

the classical ‘masticatory area’ lateral to face MI but also from within the face primary

somatosensory cortex (SI). Furthermore, each of these regions disrupts chewing and

swallowing to varying degrees, indicating that each may be involved differentially in

the production and patterning of chewing and swallowing, and underscoring why

cortical damage can lead to severe clinical problems with eating and speaking in

stroke patients.
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They also underscore the importance of the somatosensory cortex as well as

motor cortex in the fine motor control of oro-facial movements. The convergence of

various inputs to cortical areas may contribute to mandibular kinaesthesia, and the

substantial number of face MI neurons receiving bilateral inputs from oro-facial

tissues is probably related to the need for bilateral sensorimotor coordination in

orofacial muscle function. Thus, both face MI and SI may use oro-facial afferent

inputs to guide, correct and control movement by the use of sensory cues prior to

movement and by using sensory information generated during movement.

van Steenberghe (1979) has concluded that the clinical implications of the

periodontal-jaw muscle reflex were questionable. They seemed to play a role in some

dysfunction syndromes. The role of periodontal receptors in the control of jaw

muscles activity, according to the author, has been overemphasized by some. Most

reflexes can be elicited by several afferent pathways, so that when one falls off, the

other take over without any major functional deficiency. This can be illustrated by the

fact that the monosynaptic reflex followed by a silent period has also been described

in edentulous subjects. The role of central neural programation in masticatory

function should also not be underrated (van Steenberghe 1979).

Concerning the functional significance of periodontal receptors, jaw-opening

reflex and silent period are interrelated (van Steenberghe 1979). Although much work

has been accomplished on the silent period, the concurrent monosynaptic reflex has

been mostly neglected. It could not be shown that periodontal receptors are the

solely origin of these reflexes. Periodontal receptors not only influence jaw muscles

activity through reflex mechanisms, but also modulate jaw muscles control through

interaction with other afferents, such as laryngeal input at the brain stem level and

muscle afferents at the cortical level (van Steenberghe 1979). The periodontal input

seems to influence the gammamotorneurons through afferents in the mesencephalic

nucleus although no coupling between cells of periodontal and muscle spindle origin

could be demonstrated in the mesencephalic nucleus (van Steenberghe 1979). It is

perhaps through one of these interactions that periodontal receptors regulate the

maximal clenching. This regulation was shown by applying local anaesthesia to the

two antagonistic teeth, seven out of nine subjects developed increased clenching

forces. Although this experiment did not allow to differentiate between the periodontal
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and pulpal receptors, it substantiates the hypothesis that these receptors have a

negative feedback on jaw closing muscles activity during maximal clenching efforts.

Visual display of the forces reached, had a stimulating effect when the periodontal

receptors were eliminated (van Steenberghe 1979).

Earlier studies on the possible involvement of high threshold periodontal

receptors in protective reflexes, preventing too strong biting forces during

mastication, have yielded conflicting results according to Hildebrand et al (1995).

Mechanical tooth stimulation in humans, cats, rabbits and rats can induce both

excitatory and inhibitory jaw-closing muscle responses. While brisk taps applied to

human incisors elicit short-latency inhibitory reflex responses in the masseter muscle,

slow pushes evoke a long-latency primarily excitatory reaction. Hence, different types

of mechanical stimuli may activate different reflex mechanisms. For example,

periodontal receptors seem to be directly involved both in reflexes of salivary

secretion and in the “jaw-opening reflex” (Hildebrand et al 1995; Linden 1990b). In

humans and rats the masseter muscle is more active than the temporal muscle

during occlusion of the incisors, but both muscles are equally active during molar

occlusion. This shows that the muscular reflexes elicited by periodontal stimuli also

depend on the type of tooth stimulated. Moreover, the reflex responses of dental

stimulation vary with the background activity – in rats, excitatory effects prevail at low

levels of background activity (Hildebrand et al 1995).

Hildebrand and coworkers (1995) continue by stating that the innervated

periodontium is most probably not the only sense organ underlying oral kinaesthesia.

Forces applied to teeth may also stimulate receptors in dentin, pulp, periosteum,

gingival mucosa and fibrous sutures, as well as in the temporomandibular joint

related muscles. The view that jaw muscle receptors may be involved is supported by

the markedly reduced acuity of oral kinaesthesia in patients with Duchene’s muscle

dystrophia. Further, the degree of jaw opening influences the excitability of cortical

neurons sensitive to tooth pressure, as observed in the cat. A corresponding

observation in humans is that the experienced hardness of a piece of rubber

increases with its size (Hildebrand et al 1995).
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II.IV c Lacking PDL mechanoreceptors - other evidence on physiological

significance of PDL mechanoreceptors

To efficiently handle the food during chewing, activation of the jaw muscles

must be coordinated to produce jaw actions that are spatially adapted to the food’s

distribution in relation to the teeth (Trulsson 2007). Although PDL receptors poorly

encode the magnitude of tooth loads during strong chewing forces (Johnsen and

Trulsson 2005), their responses are still dependent on the direction of the force

(Johnsen and Trulsson 2003). As a consequence, they can continuously encode spatial

information about tooth loads and most likely contribute to the spatial control of jaw

actions (Trulsson 2007). Indeed, the lack of coordination in chewing has been

observed following denervation of intraoral receptors including the PDL receptors.

The absence of sensory input resulted in reduced masticatory force and distorted

spatial control of jaw movements during chewing (Inoue et al 1989).

From studies in humans, it was concluded that PDL receptors of anterior and

posterior teeth contribute differently to chewing control (Trulsson 2007). The PDL

receptors of anterior teeth are crucial for the regulation of precise manipulative

actions involving application of low forces by the incisors. Thus, those PDL receptors

efficiently encode tooth load when subjects contact and gently manipulate the food

using the teeth (Trulsson 2006). On the other hand, PDL receptors of posterior teeth

are important to inform about mechanical properties of the food during chewing.

Those receptors are well suited to encode in detail the jaw movement and the

temporal changes in the chewing force that occur during the early contact phase of

each chewing cycle (Trulsson 2007). Thus, periodontal receptors may contribute to

the selection of the most appropriate motor signals, given the existent mechanical

food properties. In rabbits, blocking the information from periodontal receptors

significantly reduced the build-up speed of the masticatory force during chewing

(Hidaka et al 1997).

Lund and Kolta (2006) discussed the adaptation of the central pattern

generator (CPG) output to changes in food hardness. They reported that the increase

in electromyographic (EMG) burst is proportional to the hardness of an object. If the

nerve supplying the PDL receptors are cut, the increase in EMG activity is much less,

suggesting that periodontal afferents are responsible for some adaptation to food



Chapter 2 : Periodontal ligament innervation and mechanosensory function in teeth

56

hardness. Both periodontal and muscle spindles send important inputs to the CPG. It

seems that the two inputs may have differential effects on burst-generating neurons

because some neurons firing during jaw opening receives periodontal feedback,

while those that fire during closing are excited by spindle afferents.

In this way, it has been demonstrated that signals from PDL receptors are

used in the fine motor control of the jaw and it became clear from studies of various

patient groups that important sensory-motor functions are lost and impaired when

these receptors are removed during extraction of the teeth (Trulsson 2006; Veyrune et

al 2007). Dentate subjects choose to use hold forces large enough to achieve a stable

clasp (on average 0.6 N), but automatically avoid higher forces (>1 N) at which the

sensitivity of most receptors (the saturating receptors) to force changes is

compromised. Patients lacking periodontal receptors, such as patients using dental

prostheses supported by the oral mucosa or dental implants showed high hold force

levels. During anaesthesia of the periodontal tissues, the hold forces are

considerably increased and show greater variability (Trulsson 2006). These higher

hold forces provided a greater level of security in maintaining the clasp on the morsel

and probably stimulate alternative, less sensitive mechanoreceptors in the tissues

that are able to signal its engagement by the teeth. Furthermore, in anaesthetised

subjects, and in patients lacking periodontal receptors, the morsel frequently escaped

from the incisor edges during the biting task, indicating an impaired spatial control of

the jaw-action vector. Thus, when periodontal afferent information is lacking, patients

show a marked disturbance in the control of precisely directed, low biting forces,

suggesting that periodontal receptors play an important role in the specification of the

level, direction and point of attack of forces used to hold and manipulate food

between the teeth (Trulsson 2006).

Veyrune et al (2007) showed that preparing the same food bolus for

swallowing required a greater number of masticatory cycles and a longer duration of

mastication for complete denture wearers than for dentate subjects. In addition,

complete denture wearers failed to increase EMG activity per cycle in response to

food hardness. In general, complete denture wearers have shown greater number of

masticatory cycles, longer duration of mastication and higher total and average

muscular activities. In opposition, the masticating rate in complete denture wearers

was slightly lower than in dentate patients, and this feature remained unchanged
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independently of food hardness. Depending of food hardness, the parameters for

number of cycles, durations of mastication, total muscular activity, average muscular

activity and masticating rate ranged from 28-40 cycles in dentates and 36-57 cycles

in denture wearers; 22-31s of mastication in dentate and 30-44s for denture wearers;

18-35mVs of total muscular activity for dentate and 28-54mVs in denture wearers;

0.67-0.89 mVs average muscular activity of dentate and 0.82-1.02 mVs for denture

wearers; 1.33-1.31Hz of masticating rate in dentate and 1.21-1.30Hz in denture

wearers. Interestingly, complete denture wearer showed a higher interindividual

variability for total muscular activity than dentate subjects, suggesting that other

individual factors may explain muscular function during mastication in patients lacking

periodontal mechanoreceptors.

Animal research showed that applying force to an implant in the cat’s jaw did

not lead to action potentials in the afferent nerve while this was the case in the

canine tooth on the other side (Bonte et al. 1993). But tapping the same implant was

able to induce an inhibitory reflex in the jaw closing muscles.

In man, during clenching, tapping with a well-defined force an implant in the

upper jaw also leads to an inhibitory reflex in the jaw closing muscle as observed

through electromyography. This could not be elicited in subjects with implant-

supported bridges in both opposing jaws but clearly when periodontal ligaments

remained in the antagonistic jaw (Bonte and van Steenberghe 1991). In subjects with

single implants, masseter muscle reflexes were observed although with a higher

threshold than for teeth (Stuge et al. 1993).

Silent periods following tapping teeth together or the elicitation of the jaw jerk

reflex were not different for implant-supported bridges or for natural teeth (Haraldson

and Ingervall 1979). Also for the unloading reflex no differences were noted between

patients with implant-supported bridges or natural teeth or dentures. Indeed, it is well

established that the input for such reflexes does not originate from periodontal

mechanoreceptors (Duncan et al. 1992).The fixations of prostheses on implants hardly

influences jaw function as reflected in maximum bite force and EMG activity (van

Kampen et al. 2002; Mericske- Stern et al. 2000).

The reflex effect on jaw closing muscles was investigated in three patient

groups involving fully edentulous subjects with dentures or implant-supported fixed
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prostheses in both jaws, vs. partially edentulous subjects. Each time an upper jaw

implant was stimulated in a standardized manner while the EMG activity of the

masseter muscles was recorded. Post-stimulus EMG complexes were very

dependent on the presence of periodontal neural receptors, either in the ligament or

the gingiva (Jacobs and van Steenberghe 1995).

Indeed, to understand the muscular function during mastication is a complex

task surrounded by many hypotheses still needing to be tested. It was suggested that

due to the atrophic state of the masticatory muscles of edentulous subjects, inside a

given muscle, the active fraction of motor units may be greater in complete denture

wearers, and the muscles of denture wearers may work nearer to the maximal bite

force during mastication (Veyrune et al 2007). Therefore, this greater number of active

motor units and total EMG activity may not be necessarily associated with the

intensity of bite force. In the same way, it has been shown that edentulous subjects

have to use higher potentials of muscle activity, the percentage of maximal voluntary

contraction, than age-matched dentate subjects (Alajbeg et al 2005 and 2006). It is

important to note that studying the EMG parameters did not give any indication about

crushing of food, and masticatory efficiency needs to be known before an overall

understanding of mastication process can be achieved, as stated by Veyrune et al

(2007).

Complete denture wearers, thus patients lacking periodontal ligament,

presented both lower masticatory efficiency and lower bite force than dentate

subjects. Therefore, the increased chewing activity does not lead to a better

comminution of food bolus. Finally, the closing phase appears to be the critical

kinematic parameter differentiating denture wearers from dentate subjects. Simulated

chewing experiments in anesthetized rabbits has shown that the contribution from the

PDL mechanoreceptors stands out as the most important feedback source, since

they generated the major part of closing muscle activity (Türker 2002). In humans, the

importance of PDL mechanoreceptors can be illustrated in patients treated with

implant-supported prosthesis. Unlike subjects with healthy teeth who display bite-to-

bite variation in muscular activity, these patients chew with approximately the same

pattern of muscle activity during the whole masticatory sequence (Haraldson 1983).

The dependence of total jaw-closer muscle activity on the performance of the

peripheral receptors ensures that, should resistance between the jaws suddenly



Chapter 2 : Periodontal ligament innervation and mechanosensory function in teeth

59

yield, this positive feedback would immediately cease, hence reducing the jaw-

closing muscle activity and helping to stop the jaws from forcefully coming together

(Türker 2002). Interestingly, experiments both in animals and man indicate that the

impact forces on osseointegrated implants lead to reflex inhibition of jaw closing

muscles (van Steenberghe 1998).

Finally, the role of PDL innervation in the ethiology behind the eruption has

been proposed in the literature (Kjaer and Nolting 2009). However this discussion was

considered out of the scope of this review. A summary of the main characteristics of

PDL mechanoreceptors in humans and its functional significance is presented in

table 2.6.

II.V Periodontal neuropeptides and neural growth factors:

As it can be observed from the studies of Maeda and collaborators (table 2.5),

immunohystochemical researches frequently use neuropeptides to identify the

presence of nerve fibres and, most useful, to understand how those fibres function.

Nerve fibres immunoreactive to some neuropeptides have been found in the PDL

and could confirm observations from other studies on PDL innervation using

morphological and eletrophysiological techniques. For example, Sato et al (1988)

reported in rats that “the restricted location of the stretch receptor, Ruffini-like

corpuscle, in the lingual periodontal ligament appears to be an essential element,

because this region is regularly extended during mastication. The nervous elements

were restricted to the alveolar half of the periodontal ligament in every region; they

avoided the dental half of the periodontal ligament, which presumably moves

continuously with the tooth”. These observations are in line with eletrophysiological

studies of Linden and Scott (1989) in cats; Byers (1985) in rats; Loescher and

Holland (1991) in cats.
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Subjects Receptor characteristics author methods Functional significance

humans

- Slowly adapting

- non-saturating receptors (15-20%) and

saturating receptors (80-85%)

- Encode forces from more than 1 tooth

- Highest response rate when stimulating

one specific tooth (receptor-bearing

tooth)

- Tuned to direction of force (≠ant/post 

teeth)

- Highest sensitivity < 1N (anterior teeth)

and 4N (posterior teeth).

- Dynamic sensitivity reduced at high

forces (saturatution tendency)

- Poorly encode magnitude and force

changes at higher loads

Trulsson 2007

Microneurographic

recordings from single

nerve fibres

Disadivantage: no info

nerve ending position

At low forces:

- Control of manipulative

forces (positioning the food

between teeth and prepare

for chewing).

At high forces:

- Mechanical properties of

food

- Spatial contact dentition

and food

humans

-sensitivity to static forces and rapidly

changing forces (dynamic sensitivity)

- saturating receptors become

progressively less sensitive to both the

magnitude and rate of rapid changes in

force, as contact force grows in

amplitude.

Trulsson 2006 Microneurographic

periodontal

mechanoreceptive

information

to regulate the level of jaw

force during the hold

phase of the ‘hold-and-split’

task

humans

Functional characteristics of periodontal

receptors at threshold level are set by the

visco-elastic properties of the

surrounding tissues.

Jacobs and

van

Steenberghe

1994

Psychophysical

threshold assessment

(tactile function)

Disadvantage: activation

other receptors/method

variability (stimulus/set

up) active threshold:

interincisor distance of

5mm or more –non

periodontal receptor

play a predominant role

PDL receptors- essential for

accurate interdental

microthickness

discrimination

Absolute threshold is

remakably increased during

chewing because of the

progressive intrusion of the

tooth in its alveolus after

each chewing cycle. In the

passive discrimination tasks

teeth are more sensitive than

implants, at chewing forces,

implants and teeth seem

equally sensitive

Table 2.6: Summary of main characteristics of PDL mechanoreceptors in humans and its functional significance.
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Immunostaining for S-100 has been shown to be useful for demonstration of

neural elements in the periodontal ligament, it demonstrates the Schwann sheaths of

nerves (Maeda 1987). Moreover, S-100-immunoreactive neural elements were more

numerous in incisors than in molars (Maeda et al 1987), confirming the more densely

innervation in the anterior teeth (Trulsson 2007). Maeda et al (1989) found rounded

cells in the vicinity of Ruffini endings. Morphologically, those cells presented a

kidney-shaped nucleus and enveloped the axoplasmic spines with their cytoplasmic

processes. From morphological features, the cells in question were identified as the

K-cells described by Everts et al. (1977), as cited by the authors.

These K-cells developed Golgi apparatus and rough endoplasmic reticulum,

suggesting active synthesis of proteins. Immunohistochemistry at the electron

microscopic level revealed an intense immunoreactivity for S-100 protein in the

cytoplasm of the K-cell and led to a conclusion that the K-cells were terminal

Schwann cells associated with Ruffini endings, presumably corresponding to the

lamellar cells in the inner bulb of sensory corpuscles (Maeda et al 1989). However,

immunohistochemical studies have found no lamellated nerve endings in the human

periodontal ligament (Maeda et al 1990a).

In the PDL of rats and cats, sensory fibres were observed expressing

calcitonin gene related peptide (CGRP) and substance P (SP) receptors (Hildebrand

et al 1995), the former being more frequent than the latter. Some proportion of the

periodontal CGRP-fibres may be destinated to the gingiva. In this same way, free

periodontal endings with CGRP and SP receptors can be found, but these peptides

do not seem to be present in the Ruffini-like endings. Both CGRP and SP

immunoreactive fibres usually occurs in relation to blood vessels and can be also

located near the cementum or associated with the epithelial rest of Malassez

(Hildebrand et al 1995). A few fibres containing vasoactive intestinal peptide (VIP) and

occasional neuropeptide Y immunoreactive (NPY-IR) fibres were found in the

periodontal ligament as well. The presence of such units in association with

intraligamental blood vessels indicates that peptidergic sensory fibres may control

periodontal blood flow (Hildebrand et al 1995).

Persistent expression of GAP-43 has also been observed in fibres of free

nerve endings and Schwann sheaths around axon terminals of Ruffini endings in the
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periodontal ligament of normal adult rat molars (Maeda and Byers 1996). It is believed

that continual appearance of GAP-43 in mature animals is related to the remodelling

activity of periodontal nerves associated with dynamic reconstruction of periodontal

fibres (Jayawardena and Takano 2006). Glia-specific S-100 protein and non-specific

cholinesterase enzyme are known to be good markers for the identification of

Schwann elements of nerves. The findings of Maeda et al (1990) indicated that

nonspecific cholinesterase is a useful marker to distinguish terminal Schwann cells

from ordinary Schwann cells and that the enzyme may be synthesized in the rough

endoplasmic reticulum and conveyed toward the nerve endings. Since this enzyme

has been known to be shared by the inner bulb of Pacinian corpuscles and the

lamellar cells of Meissner's corpuscles, they are likely to have a mechanoreceptive

function in these specialized Schwann cells. Absence of staining for S100 protein

immunohistochemistry and cholinesterase reactivity of the nerve elements in the

tooth related part of the guinea pig periodontal ligament infers a lack of Schwann

elements in those endings (Jayawardena and Takano 2006). It was suggested that

Ruffini endings in guinea pig periodontal tissues have variable spatial correlation to

the surrounding fibres, implicating their diverse mechanoreceptive properties

depending on the anatomical location (Jayawardena et al 2002).

Regarding the neural growth factors, immunohistochemical analysis indicated

that axonal terminal Schwann cell components of Ruffini-like periodontal

mechanoreceptors are sensitive to members of the neurotrophin family growth

factors (Matsuo et al 2002; Hildebrand et al 1995). Whether growth factors and their

receptors are present in relation to periodontal fibres during normal maintainance

remained lagerly unknown (Hildebrand et al 1995). On the other hand, several studies

have shown that multiple neurotrophins such as glial cell line-derived neurotrophic

factor (GDNF), neurotrophin-4/5 (NT- 4/5) and brain derived neurotrophic factor

(BDNF) might play roles in the development and/or maturation of the periodontal

Ruffini endings (Ohishi et al 2009; Igarashi et al 2007; Maruyama et al 2005; Alkhamrah et

al 2003; Harada et al 2003; Hoshino et al 2003).
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III - INFLUENCE OF ORAL TREATMENS AND FUTURE

APPROACHES IN PDL INNERVATION

III.I Influence of oral treatments:

Some occlusal changes and nerve injury or trauma may occur during oral

treatments as such orthognatic surgery, orthodontic treatment and tooth

reimplantation and transplantation. Previous studies have reported on peculiar

changes in the morphology and the distribution of nerve elements in the periodontal

ligament in association with altered tooth loads, resection of inferior alveolar nerve

and regeneration of the PDL (see: Jayawardena and Takano 2006).

The loss of function after extraction of antagonist tooth may also be take into

consideration as Shi et al (2005) and Muramoto et al (2000) showed that mechanical

stimulation is required for morphological maintenance of the Ruffini endings in the

periodontal ligament of the rat incisors and molars. A reduction in the occlusal force

has induced morphological changes in the terminal morphology of the periodontal

Ruffini endings: they became smooth, unlike the irregular profiles observed in the

control group receiving normal loads. The reduced size and number of axon

terminals of periodontal Ruffini endings following reduced occlusal force and the

restoration of the morphological alteration after the re-establishment of incisor

occlusion indicated that proper mechanical stimulation is an important factor for

maintaining the morphology of mechanoreceptors (Shi et al 2005).

Using the protein gene product 9.5 (PGP 9.5) and S-100 protein

immunohistochemistry, Imai et al (2003) showed that that parts of periodontal Ruffini

endings can regenerate following inferior alveolar nerve (IAN) cross-anastomosis

with mental nerve. Hayashi et al (2000) suggested that the terminal Schwann cell is

important in the development and maturation of the periodontal Ruffini endings.

Indeed, alterations in the behaviour and distribution of Schwann cells were reported

following transection of the IAN (Atsumi et al 2000; Atsumi et al 1999). In the PDL of the

rat lower incisor, the terminal Schwann cells migrates into the tooth related-part of the

ligament during the regeneration of the PDL nerve fibres (Atsumi et al 2000).



Chapter 2 : Periodontal ligament innervation and mechanosensory function in teeth

64

Orthodontic movement

Anomalies of sensation are often associated with orthodontic tooth movement.

It is frequently reported that the pain is elicited from teeth when a normal (non-

noxious) biting force is applied to a tooth that is being moved orthodontically,

particulary in the first few days following commencement of treatment or adjustment

of orthodontic arches (Linden 1990a). Despite these commom clinical observations

there have been few, if any, studies on alteration in the periodontal

mechanoreceptor response during or following orthodontic treatment. There are

considerable data concerning the degenerative and regenerative changes that occur

when orthodontic forces are applied to the teeth. However, these studies have

concentrated on histological changes occuring in the collagen, bone and gingivae. In

1990 (see: Linden 1990a), a few studies showed that when a tooth is moved through

the bone changes take place in the innervation. Later, it has been speculated that

the periodontal nerves are involved in the inflammatory process, and release various

neuropeptides during orthodontic tooth movement (Jayawardena and Takano 2006,

Vandevska-radunovic 1999).

A transient injury-related sprouting of vessel-related CGRP immunoreactive

axons has been found in the periodontal ligament of rat and cat teeth subjected to

orthodontic treatment (Hildebrand et al 1995). Similarly, application of orthodontic

forces to cat canines induces an increased occurrence of SP immunoreactive pulpal

and periodontal axons – there is an early peak in the pulp, and a later increase in the

periodontium, the latter being most evident on the compression side. These workers

suggested that mechanical load of the periodontal ligament elicits a local SP-release,

which “activates” periodontal cells. Certainly, cellular responses in the periodontium

to mechanical forces in vivo deserve further study (Hildebrand et al 1995).

It has been reported that all the periodontal nerve elements are confined to the

alveolar related part in the periodontal ligament of continuously erupting incisors of

various rodents such as rat, mouse, guinea pig, squirrel, hamster and Mongolian

gerbil (Jayawardena and Takano 2006). However, Jayawardena and Takano (2006)

found thin nerve fibres in the tooth related part of guinea pig incisors. It raised an

intriguing question regarding how these nerves exist despite rapid remodelling and

drastic movement of the surrounding tissues associated with the eruptive movement



Chapter 2 : Periodontal ligament innervation and mechanosensory function in teeth

65

of the tooth. Besides, Piyapattamin et al (1999) reported that changing the direction

of the force applied to the PDL results in rapid and prolonged changes in the

morphology of Ruffini-like mechanoreceptors.

Reinnervation of replaced and transplanted teeth

Tooth replantation has been a subject of interest for centuries. Already Hunter

(1773) and Younger (1886) found that a vital periodontal ligament is necessary for

successful replantation (see: Hildebrand et al 1995). Based on experimental studies in

animals, some workers concluded that ankylosis and root resorption, major problems

after replantation, can be prevented if the tooth is replanted with the periodontal

ligament. Studies in monkey, dog and man clearly showed that the success of

replantation depends critically on the presence of a vital periodontal ligament. In the

case of a young teeth epithelial root sheath of Hertwig must be included. The fact

that a grossly normal periodontal membrane can be re-established after replantation

evoked the question if the periodontium and the pulp become reinnervated

(Hildebrand et al 1995).

Tooth autotransplantation or replantation is a routine procedure, that is used

for treatment of tooth agenesis or traumatic tooth loss (Hildebrand et al 1995). Both in

experimental animals and in man, tooth removal and replantation is followed by

pulpal revascularization and reinnervation. The success rate is highest if the donor

tooth has not completed its root formation. In general, replanted human teeth regain

sensitivity within months after surgery. In experimental animals, axonal regeneration

regularly takes place to autotransplanted or replanted teeth. The density of pulpal

axons in autotransplanted monkey incisor teeth is similar to that in normal teeth, but it

does not necessarily mean that a normal function has been reestablished. Axons

regrowing toward a replanted tooth do not show the abnormal sprouting seen after

other types of tooth injury. The replanted teeth exhibit a marked divergence in pulpal

healing, and the pulpal nerve density never reaches the normal levels (Hildebrand et al

1995). Replanted cat canines redevelop functional periodontal axons, but their

response properties remain subnormal, even 1 year after surgery (Loescher and

Robinson 1991a).

Electrophysiological investigations on cats have shown that the periodontal

mechanoreceptors supplying the lower canine are reinnervated within 12 weeks of
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sectioning the inferior alveolar nerve but have altered discharge characteristics

(Loescher and Holland 1991b; Loescher and Robinson 1989b). The mechanoreceptors

responded with raised mean force thresholds and reduced maximum discharge

frequencies, and they adapted more rapidly. These changes may have arisen from

alterations in the structure of the receptor or from an alteration in the distribution of

the receptors within the ligament (Loescher and Holland 1991a).

Wakisaka et al (2000) reviewed the morphological and cytochemical

characteristics of periodontal Ruffini ending under normal and regeneration

processes. Following nerve injury, the periodontal Ruffini endings of the rat incisor

ligament can regenerate more rapidly than Ruffini endings in other tissues. During

regeneration, terminal Schwann cells associated with the periodontal Ruffini endings

migrate into regions where they are not found under normal conditions. Also during

regeneration, alterations in the expression level of various bioactive substances

occur in both axonal and Schwann cell elements in the periodontal Ruffini endings.

Neuropeptide Y, which is not detected in intact periodontal Ruffini endings, is

transiently expressed in their regenerating axons. Growth-associated protein-43

(GAP-43) is expressed transiently in both axonal and Schwann cell elements during

regeneration, while this protein is localized in the Schwann sheath of periodontal

Ruffini endings under normal conditions (Wakisaka et al 2000).

As the importance of axon-Schwann cell interactions has been proposed,

further investigations are needed to elucidate their molecular mechanism particularly

the contribution of growth factors during the regeneration as well as development of

the periodontal Ruffini endings. Takahashi-Iwanaga et al (1997) described that the

tips of the axon branches-together with their Schwann sheaths-became attenuated

and projected into tight bundles of collagen, indicating their susceptibility to

mechanical deformations of the surrounding tissue. Margins of the axon terminals

were conspicuously ruffled with long tongue-like projections of Schwann cells. The

Schwann cell tongues twined around collagen bundles in their distal portions, and

associated closely with fine axon projections in their proximal portions, suggesting

their involvement in the mechanical transmission of stimuli to axon terminals

(Takahashi-Iwanaga et al 1997).
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III.II Future research approaches in the PDL studies:

From previous studies, one can conclude that mechanoreceptors have their

morphology, location, distribution and neurophysiological characteristics direct

related to the biomechanical environment within they are located. van Steenberghe

(1979) suggested that the tactile threshold characteristics of mechanoreceptors are

set by their binding with the environing visco-elastic tissues. The interrelation

between structures inside the PDL has been cited several times as important feature

to understand the transduction of mechanical stimuli by the periodontal ligament

mechanoreceptors. The mechanotransduction might not be a function of sensory

nerve fibres alone, but rather a function which many other cells in the PDL may take

part.

To understand and identify the co-adjuvants of this special oral function, the

spatial arrangement of PDL has been further investigated (Naveh et al 2013; Lin et al

2013; Naveh et al 2012a). Better understanding of the PDL's biomechanical behavior

under physiologic and traumatic loading conditions might enhance the understanding

of the PDL's biologic reaction in health and disease. As commented by Jayawardena

and Takano (2006), exploring the distribution pattern of nerves in relation to other

structures within the periodontal ligament of various species should be important to

understand their roles within the ligament.

Fill et al (2011) explain that from a biomaterials perspective, the PDL is a

complex, fibre-reinforced substance that responds to force in a viscoelastic and

nonlinear manner. The PDL consists of 53–74% collagen fibres and 1-2% blood

vessels and nerve endings that are embedded into an amorphous

muccopolysaccharide matrix. Fibrous collagen elements resist tensile forces and the

highly hydrated viscous ground substance into which fibrous proteins are embedded

forms the extracellular matrix. The ground substance is responsible for the PDL's

viscoelastic properties when subject to loading. Also, the PDL's cellular response to

mechanical loading results in a metabolic response (remodeling of the ground

substance and fibrous tissue). This tissue responds rigidly to rapid deformations

(mastication) while deforming elastoplastically when subjected to low-grade

continuous forces (orthodontic movements). These PDL's mechanical properties are
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essential parameters for understanding the mechanical behavior of a tooth root and

surrounding tissues (Fill et al 2011).

Several factors may affect the mechanical properties of the PDL (Fill et al

2011). To cite some, the geometric configuration of the periodontium, size and shape

of tooth root, the regional differences and thickness of PDL, age, ethnicity, race,

gender, genetics, dental environment, overall physical health, diet, type of loading

and material mechanics. There is such variability in these parameters that it may be a

possibility that each individual PDL (i.e., from every single tooth) has its own distinct

biomechanical behaviour—much like the uniqueness of a fingerprint, as suggested

by Fill et al (2011). Therefore, to reproduce or predict the biomechanical behaviour of

the PDL remains a complex task.

For understanding the stress and strains acting in the PDL, the spatial

arrangement should be studied in order to find if there is any pattern in this geometric

characterist of the PDL. Several functional characteristic of PDL mechanoreceptors

do not have to be properties of the receptor itself, but could be due to their

connection with the adjacent tissues. For example, the PDL mechanoreceptors are

able to sense loads through its intimate contact with the surrounding collagen fibres

(Lambrichts et al 1992). As the properties of the collagen fibres alters within the PDL

regions, it supports the idea that their adaptation properties depend on the location of

the mechanoreceptors within this ligament (Jacobs and van Steenberghe 1994, Linden

and Millar 1988).

Knowledge on the basic structure-function relations of tooth-PDL-bone system

have a direct implications for better understanding pathological and theraupetic

processes in orthodontics, periodontics and jaw bone regeneration (Naveh et al

2012b). According to Naveh et al (2012a), much still remains to be learned about the

responses to load and the factors that control them in the teeth-PDL-bone system.

Such knowledge is relevant to study phenomena such as abfraction, the manner in

which dental implants function even in the absence of PDL-like tissue and the

implications to bone remodelling of the movements imposed during orthodontics

interventions (Naveh et al 2012a).

To conclude, future knowledge in the mechanosensory function of the PDL

may be derived from researches related to mechanosensing and



Chapter 2 : Periodontal ligament innervation and mechanosensory function in teeth

69

mechanotransduction functions of cells (Rahman et al 2011; Hitomi et al 2009; Page et al

2004; Welsh et al 2002; Gillespie and Walker 2001). It is known that many cellular

reactions are controlled or mediated by mechanical forces (in:

http://www.mechanobiology.nl/). Cells probe the mechanical properties of their

environment and subsequently transduce this information accurately into a specific

molecular response: mechanical cues can determine the fate of stem cells, modulate

the function of entire tissues and play a key role in various pathologies. Cells also

alter their motility and metabolic functions depending on the mechanics of their

surroundings. Strikingly, cells are not passive observers of the mechanical properties

– many cells actively manipulate their surroundings either by the generation of new

extracellular or pericellular materials or, even by exerting forces on the outside world

(in: http://www.mechanobiology.nl/).

Treatment involving regeneration of periodontal tissues should consider the

role of mechanical loads in the molecular systems of those tissues. The molecular

systems might be controlled by macroscopic mechanical stimuli (Ariga et al 2011).

Application of mechanical loads is known to affect some molecular association and

chemical reactions, causing variation of optical properties, sometimes resulting in

self-healing functions or capture and release of molecules under macroscopic

mechanical motions. The use of macroscopic mechanical stimuli to drive molecular

systems has been considered to control of nanosystems at the nanoscale on

demand. According to Ariga et al (2011), accessing nanoscience and

nanotechnology from the macroscopic world might reveal the great potential of

nanoscale and molecular systems. The ability of cells to convert a mechanical

stimulus into a electrical signal (mechanotransduction) is a example of how evolution

has built sophisticated mechanisms which bridge the nano and macro scales (Ariga

et al 2011).

In several mechanosensory systems, a transduction channel can detect

deflection of an external structure relative to an internal structure such as deformation

of the skin, oscillation of a hair cell bundle (Ariga et al 2011). The probability of a

channel opening varies depending on tensional perturbations of the corresponding

elements caused by the deflection. To be able to predict those tensional

perturbations the biomechanical environment should be first macroscopically

represented. In this way, the next research searched for 3D reconstructions of
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histological slices in the literature. In addition, a 3D reconstruction of the the PDL is

presented in an attempt to better visualize the PDL neurovascularization.

IV - Three Dimensional Reconstruction of Human Periodontal

Ligament Structures using Light Microscopy Imaging

Three dimensional images make it easier to comprehend the complicated

structures, having an influence on Anatomical and Physiological approach for

teaching, learning and researching. Three dimensional models are constantly used to

study effects of mechanical loading on anatomical structures in vitro (Rahimi et al

2005). Anatomy and physiology have been frequently revisited through the lens of 3D

imaging and modelling techniques (Cifor et al 2011; Cifor et al 2009), hence the

periodontal ligament, a relevant structure for dental research, might also appear

under those spotlights (Naveh et al 2012b). Revealing the spatial arrangement of

structures within the periodontal ligament can further our understand of its normal as

well as abnormal function (Naveh et al 2012a). In addition, it can help to unreveal its

biomechanical behaviour which is of special interest for several research areas in

dentistry (Naveh et al 2013) .

Knowledge about the periodontal ligament is to be applied in most of dental

specialities. To cite a few examples, the PDL response to loads is a key player in the

study of tooth movement during eruption and orthodontic treatment, PDL

regeneration is one of the main goals of any periodontological treatment, tooth

reimplantation or transplantation, and finally, the local distribution of forces through

the PDL might influence prosthetic design (Naveh et al 2013; Archangelo et al 2012;

Naveh et al 2012a and b). Besides, in edentulous patients, the PDL is missing and the

oral function of those individuals must be interpreted as a novel physiological

situation. It means that the occlusal loads, before transmitted to the bone via the

teeth supported by the PDL, are now transmitted via the dental prostheses supported

by mucosa or osseointegrated implants directly to the bone.
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Untangling the periodontal ligament by 3D modelling techniques

modelling of the periodontal ligament possible?

Three-dimensional (3D) reconstruction of anatomical structures can give

additional insight into the morphology , interrelation and function of these structures

(Hofman et al 2009). Histological tissue samples can be stained to show tissue

composition and imaged with high spatial resolution. However, many of these studies

have also been limited since observations on 2D histological sections are susceptible

to artefacts, e.g. related to the direction and location of the histological slices

al 2010). Histological three dimensional (3D) knowledge is commonly an extrapolation

of two dimensional (2D) observations. This knowledge is relevant to understand how

structures are distributed around in the PDL and as such

and are sensed by the PDL. This section aims to develop 3D reconstruction

technique using histological slices, encouraging the application of 3D histological

reconstruction on further studies as a new approach to understand the biomechanical

behaviour of the PDL. This

of limited cross-sectional planes on conventional 2D histological techniques.

Note that standard 2D image processing techniques will hardly provide 3D

information from sections, except for the

The figure below show

2.4). After analysing those slices it becomes clear that structures composing the PDL

changes constantly along the histological slices, e.g. in position, size, shape and how

they are intermingled within the collagen

Figure 2.3: 3D true dimension X 2D representation in histological slices.
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modelling of the periodontal ligament possible?

dimensional (3D) reconstruction of anatomical structures can give

additional insight into the morphology , interrelation and function of these structures

Histological tissue samples can be stained to show tissue

maged with high spatial resolution. However, many of these studies

have also been limited since observations on 2D histological sections are susceptible

to artefacts, e.g. related to the direction and location of the histological slices

Histological three dimensional (3D) knowledge is commonly an extrapolation

of two dimensional (2D) observations. This knowledge is relevant to understand how

structures are distributed around in the PDL and as such to reveal how loads act

the PDL. This section aims to develop 3D reconstruction

technique using histological slices, encouraging the application of 3D histological

reconstruction on further studies as a new approach to understand the biomechanical

behaviour of the PDL. This 3D histological visualization can overcome the drawbacks

sectional planes on conventional 2D histological techniques.

Note that standard 2D image processing techniques will hardly provide 3D

information from sections, except for the volume fraction value (figure 2.3

The figure below shows serial slices of the same region within the PDL (figure

). After analysing those slices it becomes clear that structures composing the PDL

changes constantly along the histological slices, e.g. in position, size, shape and how

they are intermingled within the collagen fibres.

3D true dimension X 2D representation in histological slices.
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Is the 3D

dimensional (3D) reconstruction of anatomical structures can give

additional insight into the morphology , interrelation and function of these structures

Histological tissue samples can be stained to show tissue

maged with high spatial resolution. However, many of these studies

have also been limited since observations on 2D histological sections are susceptible

to artefacts, e.g. related to the direction and location of the histological slices (Sigal et

Histological three dimensional (3D) knowledge is commonly an extrapolation

of two dimensional (2D) observations. This knowledge is relevant to understand how

reveal how loads act on

the PDL. This section aims to develop 3D reconstruction

technique using histological slices, encouraging the application of 3D histological

reconstruction on further studies as a new approach to understand the biomechanical

3D histological visualization can overcome the drawbacks

sectional planes on conventional 2D histological techniques.

Note that standard 2D image processing techniques will hardly provide 3D

volume fraction value (figure 2.3).

region within the PDL (figure

). After analysing those slices it becomes clear that structures composing the PDL

changes constantly along the histological slices, e.g. in position, size, shape and how

3D true dimension X 2D representation in histological slices.
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The aim of this article is to describe the possible applications and limitations of

a 3D imaging technique in the study of the periodontal ligament.

Material and Methods:

Using light microscopy, 3D reconstructions of human periodontal ligament

where perform from digitized 2D histological images. The data sample included

human material obtained from cadaver (3 anterior teeth). These specimens were

fixed in formaldehyde, decalcified, dehydrated and embedded in paraffine. Thin

histological slices (6 µm) were obtained and stained with Trichrome staining of

Masson.

Thin sections (6 µm) were used for the analysis of fibres distribution

presented at chapter 3 and for the 3D reconstruction in the last part of chapter 2.

Ultra-thin sections (0.5µm) were used for the image analysis using transmission

electron microscopy to confirm the presence of myelinated nerve fibres (MNF). Only

a few slices were prepare for it. Because of this, I now removed the ultra-thin from

the thesis since they were not used in the 3D reconstruction, but actually done in

order to confirm the appearance of MNF on light microscopy.

Figure 2.4: Histological slice of human PDL (thricome Masson) in the axial plane. Arrows in the same

color represents similar structures observed in the different slices.The yellow contour shows the area

containing collagen fibres.
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Digitizing:

Using a Mirax Scan (Carl Zeiss Micro imaging GmbH, Germany), high-

resolution digital data records were produced (figure 2.5). First, all images were

analysed at 50x using a software image analysis (Mirax Viewer) in order to identify

myelinated nerve fibres, epithelial rests of malassez (ERM), cementicles and their

morphology and interrelation. In total 300 slices were scanned and analysed at Mirax

Viewer to identify myelinated nerve fibres, epithelial rests of Malassez (ERM),

cementicles, their morphology and interrelation.

After digitizing images, these were open on Mirax Viewer and the region of

interest was select and exported as tiff images generating files of ~ 400MB (figure

2.6).

Those images were observed on Photoshop, and the follow steps were done:

STEP 1 - Image size, changed to 300dpi and 8000 pixels; STEP 2 - Load a stack of

those images for further alignment ; STEP 3 - Image registration : using scale and

Figure 2.5: Axial slice of canine
tooth and its support tissues. High-
resolution digital data (MRXS extension)
records were produced using Mirax Scan
(Carl Zeiss Micro imaging GmbH,
Germany).

Figure 2.6: The region of interest (ROI) was selected and exported in tiff extension from MiraxViewer
in order to align the slices on Adobe Photoshop. Image size and resolution (11655X9140 pixels/50dpi
/304MB) were change to 8000 X8370 pixels/ 300dpi/196MB. Arrow - periodontal ligament (PDL).
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rotation – scaling was needed to be able to align the images as the inherent

deformation from histological technique do not allow for registration using only

rotation and translation; STEP 4 - Images saved as tiff, generating files of ~168MB.

Then, images were prepared to be visualized for 3 different goals. First for

image sequence visualization, second for image observation and measurements of

number of nerve fibres (chapter 3) and the third for segmentation and 3D model

reconstruction. As it is described below:

1.Image sequence:

STEP 1 - Image size changed to 5MB to allow visualization on Image J

(National Institutes of Health)

STEP 2 - Import image sequence on Image J

2.Image observation and measurements:

STEP 1 - PDL delimination (segmentation). STEP 2 - Demarcation and

labelling of observed structures in layers at photoshop, allow comparison with

other images (figure 2.7).

3. Segmentation and 3D model

STEP 1 - After segmentation of PDL, bone and tooth root were segmented

generating images illustrated in figure 2.8.

STEP 2 - Registration: After selecting and exporting the ROI, a global

alignment was done using Adobe Photoshop CS4 (Adobe Systems, USA). A stack of

slices were loaded using several layers and the alignment were executed using

rotation and scale tools. This scale tool performed an elastic transformation on the

slices.

STEP 3 - 3D Model: Six types of structures were segmented on 15 slices :

blood vessels, isolated fibres and group fibres in the PDL, root and pulp. The

segmentation was done on each image separately by drawing with a pen in a tablet

PC and then saved in a lower resolution (1322X1322/300dpi/5MB). Each structure

type at the low resolution images were labelled by colours (figure 2.9) using

Reconstruct software (Synapse Web, KristenM. Harris, PI,

http://synapses.clm.utexas.edu/) before using the 3D Model reconstruction tool.
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The segmentation on Reconstruct software was done by

the sections to specify the structure profiles on each slice. Each structure profile

received a label, and all profiles which shared the same label belong to the same 3D

object. This allowed the 3D objects to be extracted from section

together all the profiles with the same label.

Figure 2.8: Axial slice of canine
red, arrows indicate the layers created at Adobe Photoshop.

Figure 2.7: Three histological slices after segmentation of tooth root, represented in
red, PDL (purple) and alveolar bone (brown).

Figure 2.9: Segmented image prepared for 3D reconstruction. Pulp is represented in green, root

in purple; PDL-white; Blood vessels

fibres – in green ( black arrows

: Periodontal ligament innervation and mechanosensory function in teeth

egmentation on Reconstruct software was done by tracing lines within

the sections to specify the structure profiles on each slice. Each structure profile

received a label, and all profiles which shared the same label belong to the same 3D

object. This allowed the 3D objects to be extracted from section files by grouping

together all the profiles with the same label.

Axial slice of canine tooth and its support tissues. Segmentation of PDL in
red, arrows indicate the layers created at Adobe Photoshop.

Three histological slices after segmentation of tooth root, represented in
red, PDL (purple) and alveolar bone (brown).

Segmented image prepared for 3D reconstruction. Pulp is represented in green, root

white; Blood vessels-red; grouped myelinated nerve fibres - blue; isolated nerve

black arrows).
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tracing lines within

the sections to specify the structure profiles on each slice. Each structure profile

received a label, and all profiles which shared the same label belong to the same 3D

files by grouping

tooth and its support tissues. Segmentation of PDL in

Three histological slices after segmentation of tooth root, represented in

Segmented image prepared for 3D reconstruction. Pulp is represented in green, root

blue; isolated nerve
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Figure 2.11: Image sequence after registering digital histological slices. Note that nerve and
vessels branches and take several direction along the slices. Some collagen
branching blood vessel (black arrows).

: Periodontal ligament innervation and mechanosensory function in teeth

Figure 2.10: Three dimensional
model of apex region of mandibular human
canine and its related blood vessels (red) and
nerve fibres (blue-grouped fibres; green
isolated fibres) at PDL.

Image sequence after registering digital histological slices. Note that nerve and
vessels branches and take several direction along the slices. Some collagen fibres can be seen crossing a
branching blood vessel (black arrows).

: Periodontal ligament innervation and mechanosensory function in teeth
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Three dimensional
model of apex region of mandibular human
canine and its related blood vessels (red) and

grouped fibres; green-

Image sequence after registering digital histological slices. Note that nerve and
s can be seen crossing a
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Results

Three-dimensional models and image sequence visualization of some PDL

structures could be obtained with light microscopic 2D images of a PDL from a

human canine tooth (figure 2.10).

The 3D model showed numerous blood vessels and a number of myelinated

nerve fibres around the tooth apex. Grouped and myelinated nerve fibres could be

detected together with numerous blood vessels. Yet, isolated nerve fibres were seen

in less amount and having a more tortuous trajectory compared to grouped

myelinated nerve fibres. The image sequence visualization allow to scroll easily

through out the histological slices and to follow the structures within the tissue as well

as its alterations along its length, facilitating 3D extrapolations (figure 2.11).

Discussion

Although 2D histological slices have a great impact on quantification and

visualization of data, 3D volume reconstruction from these 2D slices is required in

order to fully appreciate anatomical structures (Bagci and Bai 2008). Three

dimensional images make it easier to comprehend complex structures and can

influence teaching, learning and researching approaches related to Anatomy and

Physiology. Several research fields have been involved in the development of new

imaging techniques which can provide three dimensional descriptions of anatomical

structures and biological tissues (Thiele et al 2013; Lidke and Lidke 2012; Cifor et al

2011). In addition, the knowledge of the structure of biological specimens is critical to

understanding their functions at all scales and is crucial in biosciences to

complement biomechanical and biochemical studies (Thiele et al 2013; Jayo and

Parsons2012; Rahimi et al 2005).

Substantial progress has been made in the medical field, yet a detailed

description of some oral structures are still lacking a 3D characterization. Those oral

structures include the periodontal ligament, a soft tissue mainly composed by

connective tissue and some other particular components. This tissue, which is highly

responsible for tooth support and mechanosensory function, has a complex spatial

arrangement important to be determined. This spatial arrangement is relevant to

identify the loads acting on this tissue during oral function (Naveh et al 2012a).

In this study, continous and non-continuous blood vessels, as well as grouped

and isolated myelinated nerve fibres were reconstructed around the tooth apex. The
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lack of continuity between the same structures in the different sections may be

caused by an alteration in the running direction avoiding the structure to be depicted

in all histological sections. This creates a gap between sections illustrated by the

absence of connection of vessels or fibres at same position in different sections. Yet,

this gap may be also consequence of a space between section due to the loss of

material during histological preparation. Besides, although the complete tooth was

cut into consecutive slices, not all consecutive slices could be used for analysis and

reconstruction. Some slices did not show a good image quality due to inherent

limitations to the histological preparation (e.g.: slice deformation; over-staining and

other artifacts). In turn, this has influenced in the discontinuity of some structures,

and is one of limitations that are needed to overcome to be able to obtain better 3D

reconstructions from histological slices.

The more tortuous trajectory of isolated nerve fibres illustrated by our 3D

model illustrates the typical description of 2D morphological studies which reported

that these fibres are more frequently in the cemental related part of the PDL than the

grouped nerve fibres. Thus, those fibres may run from the alveolar related part,

probably branching from grouped myelinated fibres and acquiring a more commonly

a tortuous trajectory.

Computer-based 3D visualizations reconstructed from sectional images

represent a valuable tool in biomedical research and medical diagnosis. Particularly

with those imaging technique that provide virtual sections, such as CT and MRI, 3D

reconstructions have become routine (Feuerstein et al 2011; Dauguet et al 2007).

Reconstructions from physical sections, such as those used in histological

preparations, have not experienced an equivalent breakthrough, due to inherent

shortcomings in sectional preparation that impede automated image-processing and

reconstruction (Cifor et al 2011; Streicher et al 1997).

Three major obstacles are noticed to automated 3D reconstruction from serial

physical sections: misalignment, distortion and staining variation. In our study, the

dimensional distortion and the heterogenous pigmentation were the main challenges

since they considerably increased the time spent on registration and segmentation of

images. Since histological slices changed smoothly from slice to slice and the section

distortions induced by the preparation process were local in nature, accurate

alignment of these slices could only be achived by using elastic registration methods,

similarly to Bagci and Bai (2008).



Chapter 2 : Periodontal ligament innervation and mechanosensory function in teeth

79

To understand the arrangement and distribution of intra-epithelial vessels and

their function, Cerri et al (2004) used light microscopy to create a computer 3D

reconstruction of the blood capillaries of the enamel organ of rat molar. Besides light

microscopy, other images techniques have been applied on 3D reconstruction of

physical slices, such as orthogonal plane fluorescence optical sectioning microscopy

(Hofman et al 2009), scanning transmission electron microscopy (de Jonge et al 2010)

and confocal scanning laser microscopy (Buda et al 2009).

Kannari (1990) has presented a computarized 3D reconstruction of PDL

Ruffini endings of hamster incisors. They used 20 electron micrographs at 1.0µm

intervals which were enlarged and printed on glossy papers. Several fibre terminals

of Ruffini endings were serially traced on a graph paper. Information on the outline of

the fibre terminals and their Schwann sheaths was serially input into a 3D graphic

analytic system based on three fiducial points for reconstruction. A surface-model

from this system showed the shape of the fibre terminals and their relationship to the

terminal Schwann cells. Two types of fibre terminals were mingled in one Ruffini

ending, the plate-like terminals, more numerous, and the knob-type.

Streicher et al (1997) proposed a new method for 3D reconstruction using

external markers for realignment of the sectional images and for geometric correction

of distortion. Besides, a self-adapting dynamic thresholding technique was used to

compensate for artifactual staining variation. It is important to highlight that the

images used in our study were not prepared to be used in computerized approach.

Those were data collected for conventional 2D observations. As the acquisition

processes of different 2D histological images are performed independently, slice

misalignment and deformation is often unavoidable. The deformation varies from

section to section and non-cohorent distortions may exists in consecutive

sections.Therefore, our data only allowed us to give the first steps on this technique

and identify the main drawbacks needed to be overcome in future histological

preparations for a computerized approach.

Simulations based on finite elements methods are in part replacing

biomechanical measurements of loading of biological tissues, such as bone, teeth

and ligaments by certain force systems (Rahimi et al 2005). Finite elements models

are used to calculate force/deflection diagram and are applied in the dental field to

study the biomechanics of oral implants, orthodontic tooth movements, or design and
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verification of mechanical properties of prosthetic partial dentures and bridges (Rahimi

et al 2005).

A critical review revealed that significant variations exists, some of six order of

magnitude, in the PDL’s elastic constant and mechanical properties (Fill et al 2011).

One key factor to realistc and validated simulations is the precise reconstruction of a

specimen and its segmentation into the materials it is composed of (Rahimi et al 2005).

Rahimi et al (2005) presented a FE model generation based on different imaging

modalities including microscopic images of histological serial sections, µCT scans as

well as CT-and MRI-images of different specimens. The contours of the different

structures were determined using interactively specified interpolation points.

In this way, future researches should use mutual information from histological

and other images modalities for 3D reconstruction aimed to generate high quality

finite element meshes of PDL. Furthemore, to depict the real 3D arrangement of

PDL might improve the knowledge about this structure, as well as it may facilitate to

visualise abd understand PDL function and importance to the oral system.

Conclusions:

Mechanoreceptors in the PDL have been described according to their

morphology, neurophysiological aspects, spatial arrangement and functional

significance and as such to permit the understanding of the mechanosensory function

in teeth. Similar efforts should be made to describe mechanoreception around

implants. It has been confirmed that most functions regarded as those of the

mechanoreceptors in the PDL are partially restored after implant treatment.

Psychophysical tests, masticatory efficiency, as well as bite force assessments

showed the appropriate scientific evidence for such observation.

Three-dimensional volume reconstruction from 2D histological slices may have

great potential in visualising the complex PDL anatomy, spatial arrangement and

interrelationship among the different PDL structures. The present study is the first to

histologically visualise 3D human periodontal ligament structures. Further research is

needed to adapt histological slicing for refined 3D histological imaging. Future

approaches should combined information from different imaging techniques, such as

histological and radiological 3D reconstructions.
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These factors can limit our understanding of periodontal, peri-implant and

newly formed bone at biomechanical level. Further improvement on periodontal, peri-

implant and bone tissue researches should allow a more objective and standardized

analysis of these tissues. Focus should also be put on human bone and tissue

innervation.
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Histomorphological study of myelinated nerve fibres in the periodontal ligament of

human canine

Abstract

Objective: The aim of this study was to compare the distribution of myelinated nerve

fibres in the PDL around human canine tooth to the distribution previously described

in animals. Material and Methods: A human mandibular canine was donated with

the surrounding PDL and alveolar bone to the Department of Anatomy (University

Hasselt). After embedding into paraffin block, the canine was horizontally cut in 6µm

thin serial sections. At root levels of 0.3, 1.5, 3, 4.5 and 6 mm from apex, five slices

at each level were selected and then, the number of myelinated nerve fibres was

evaluated at each slice. Some slices were selected to perform immunocytochemistry

enabling the ultrastructural description of the neural structures. Results: The

distribution of myelinated fibres varied not significantly from apical to coronal level,

with a total number of 38 at 0.3 mm from the apex, 25 at 1.5 mm, 25 at 3 mm, 31 at

4.5 mm and 32 at 6 mm. Mesial and buccal regions were typically more densely

innervated (P < 0.01) except at the 3mm level. The average density of myelinated

nerve fibres increased closer to the apex. However, the average diameter did not

show any significant differences among quadrants or root levels (P > 0.05). The

average diameter of myelinated fibres ranged from 5.3 to 8.0 µm. No linear

correlation between average diameter and average density was found (P = 0.1).

Grouped myelinated axons were twice as common as isolated ones, with the

innervation being rather close to the alveolar bone. Isolated myelinated axons were

observed to group around large blood vessels. Furthermore, other special structures

such as cementicles and epithelial rests of Malassez were identified in close relation

to the nerve fibres. Conclusion: The present results in humans confirmed previous

observations in animals indicating a denser innervation by grouped myelinated nerve

fibres at tooth apex intertwined with transverse collagen fibres and closer to the

alveolar bone than to the cemental part of the PDL. It also revealed more densely

innervated mesial and buccal sites of the human canine.
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Introduction

The periodontal ligament (PDL) is part of the complex supporting structures

around the tooth being highly involved in oral physiological actions, such as tooth

support, protection, load distribution to bone and sensory feedback. This periodontal

sensory feedback is strongly related to the existence of myelinated nerve fibres

owing specialized terminals, such as Ruffini endings in the PDL (Jacobs et al 1992;

Jacobs and van Steenberghe 1994; Lobbezoo et al 2002; Byers 1985; Byers et al 1986;

Millar et al 1994). The rich PDL innervation guarantees a rapid and efficient

conduction of action potentials along axons (Nave and Trapp 2008). Morphological

investigations with various histological techniques have revealed that specialized

endings, such as Ruffini-like endings, are the primary mechanoreceptor in the PDL.

In general, they were classified as a low-threshold type II stretch mechanoreceptor,

though its development, distribution and morphology vary among species, tissue and

tooth types (Maeda et al 1999).

Contrary to cutaneous Ruffini endings, PDL Ruffini endings lack a distinct fibrous

capsule (Byers 1985 and Maeda et al 1989). Other common features of PDL Ruffini

endings were: 1. their concentration in the region where PDL fibres are most

stretched when during tooth function and 2. their morphology was related to the

location within the ligament, e.g. in dense collagenous tissue they showed extensive

arborisation, while it was rarely seen in loose connective tissue near the blood

vessels (Maeda et al 1999). Ultrastructurally, two types of Ruffini endings were

usually present in the PDL: type 1 are Ruffini endings which possess a lamellar

Schwann cells and expanded nerve endings equipped with extensions penetrating

surrounding tissues and type 2 which are thinner, less branched Ruffini endings with

a fewer extensions, less elaborate Schwann cells, and less basal lamina (Byers

1985).

The location of PDL mechanoreceptors is believed to be related to the load

distribution within this ligament (Linden 1990, Cash and Linden 1982) and is of

functional significance (Long et al 1995). Considering the region between the tooth

fulcrum and apex, the highest displacement during tooth loading occurs at the region

closer to the tooth apex (Cash and Linden 1982). Therefore, this would be a better

location for a more efficient function of PDL mechanoreceptors. In this location the
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mechanoreceptors can be activated during lower force application than if they are

located near the fulcrum. Indeed, the apical third of the tooth root was found to be the

most densely innervated in several studies (Loescher and Holland 1991; Long et al

1995; Sato et al 1992; Maeda et al 1987), mainly by slowly-adapting low-threshold

mechanoreceptors (Trulsson 2006; Trulsson and Johansson 1996; Trulsson et al 1992;

Loescher and Robinson 1989). According to Maeda et al (1999), the region around the

tooth apex receives a rich innervation of both types 1 and 2 Ruffini endings, while the

middle region appears to contain abundant type 2 periodontal Ruffini endings.

The distribution of myelinated nerve fibres may reflect the distribution of PDL

mechanoreceptors along the tooth root. This hypothesis is based on two

considerations about the PDL Ruffini endings in animals. Firstly, since PDL Ruffini

endings are actually terminal parts of myelinated nerve fibres (Long et al 1995;

Loescher and Holland 1991), the highest number of these fibres are to be expected

near to the tooth apex than to its fulcrum. Secondly, the more extensive arborisation

seen in type 1 Ruffini endings, mostly located near the tooth apex than in the middle

region, would allow those fibres to be more frequently seen at this region. Indeed, it

has been reported in several animals that the majority of mechanoreceptors are

located nearer to the tooth apex (Cash and Linden 1982) than to its fulcrum. It has

been postulated that these receptors are subjected to some form of viscous coupling

to the stimulus and that the variation in the nature of PDL mechanoreceptors activity

may be due to the spatial location of the receptors within the periodontal tissues

(Cash and Linden 1982).

However contradictory results have been reported in the literature (for review

Linden 1990; Maeda et al 1999). By immunohistochemistry, nerve fibres were found to

be densely distributed in the apical third of the PDL of dog incisors and canines (Sato

et al 1992). Nevertheless, the nerve fibre endings have been also described evenly

around the tooth root (Cash and Linden 1982) or concentrated in the mid-way between

the tooth apex and the cervical margin (Loescher and Holland 1991), similarly to

electrophysiological studies in cats. Cash and Linden (1982) reported that PDL

mechanoreceptors equally distributed along the tooth root of cat canines. On the

other hand, Linden and Scott (1989) described most of mechanoreceptors located in

the whole area of the ligament between the fulcrum and the canine apex in cats
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(Linden and Scott 1989). Differences in distribution along the tooth root have been

found regarding the adaptation features of those fibres, being slowly adapting more

densely found at the tooth apex (Cash and Linden 1982) or to the origin of the cell

bodies of those nerve fibres in the trigeminal ganglion or mesencephalic nucleus

(Linden and Scoot 1989).

In humans, similar contradictory observations have been done, since most of

mechanoreceptors have been described in the apical third of the ligament, as well as

in the intermediate area between apex and cervical region (Fukuda and Tazaki 1994;

Cash and Linden 1982). It is evident that human studies are more unlikely to produce

true physiological records than animal studies. Thus, it is more complex to correlate

morphological and functional characteristics of mechanoreceptors found in humans.

To date, the knowledge on the distribution of the myelinated nerve fibres in the

human PDL is far from complete. The purpose of the present study was to unravel

the number and distribution of myelinated nerve fibres in the PDL of a human canine.

Material and Methods

The following experiment was carried out according to the local ethical

guidelines, on a patient who had donated his body to the Department of Anatomy

(University Hasselt). One periodontally healthy permanent mandibular canine with its

surrounding PDL and alveolar bone tissues was collected 5 days post-mortem from a

Caucasian 73- year’s man.

Light Microscopy Observation

The specimens were fixed in 10% formalin solution for 3 days and decalcified in

5% nitric acid, followed by dehydration through a graded concentration of ethanol

and embedded in paraffin. In total 2003 thin serial sections with a thickness of 6 μm 

were horizontally sectioned using a Reichert microtome (Reichert, Wien, Austria),

then mounted, cleared in xylol, stained with the Masson trichrome stain and finally

digitized by a high resolution Mirax Scan (Carl Zeiss Micro imaging GmbH,

Germany). Observations were performed by two previously trained observers using a

dedicated image software package (Mirax Viewer 1.1, Göttingen, Germany). The

magnification used was of 50× and the visualization was performed in a 30 inch LCD

monitor (Apple Inc., Cupertino, USA). Within all the digitized sections scanned for



Chapter 3 : Distribution of nerve fibres in the periodontal ligament

94

observations, five sections at five root levels (0.3, 1.5, 3, 4.5 and 6 mm from the apex

respectively) were randomly selected and averaged to quantify the diameter, number

and density (number/area) of myelinated nerve fibres in the human PDL of a canine

tooth.

To determine the number and diameter of myelinated axons around the tooth

circumference, at each root level, the PDL was divided into four quadrants, named

buccal, distal, lingual and mesial (Figure 1a). The area of each region and the lesser

diameter of myelinated nerve fibres were manually selected and measured with a

dedicated image software package (Mirax Viewer 1.1, Göttingen, Germany). To

prevent the distortion which occurs when a nerve fibre is cut obliquely during the

biopsy, the lesser diameter was considered as a better parameter which can

represent the diameter of non-circular fibres. The fibres partially at the borderline

between two regions were excluded.

Besides, sections from different levels were used to compare apical (sections at

0.3mm from the apex), intermediate (1.5mm, 3.0mm and 4.5mm) and fulcrum

(6.0mm) regions regarding to diameter range and distribution by quadrants (mesial,

distal, buccal and lingual regions). Similarly to Heasman and Beynon (1986) in the

IAN, the diameter distribution was determined among the different root levels and

quadrants.

Finally, the myelinated axons were classified into two groups (Figure 3.1b-c) as

described by Loescher and Holland (1991) and Long et al (1995): grouped axons,

which were those either adjacent to blood vessels or in a bundle with 3 or more other

nerve fibres and isolated axons, which existed more than 20µm from a blood vessel

and not in a bundle with more than 3 other fibres.
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Figure 3.1. Horizontal section of the canine root with the projected line used for histomorphometrical

evaluation of four quadrants of the periodontal ligament (B=buccal; D=distal; L=lingual; M=mesial;

IA=isolated myelinated axons; GA=grouped myelinated axons).

Immunocytochemistry

Immunocytochemical stainings were performed using the peroxidase

EnVision System (DakoCytomation, Glostrup, Denmark). The sections were

deparaffinised and washed for 30 min at 4°

(PBS). Non-specific binding sites were blocked with 3% normal goat serum in PBS.

After washing in PBS, the sections were incubated with the primary mouse

monoclonal antibody against the neurofilament protein (Abcam, Cambridge,

1 hour, washed again, and incubated for 30 min with goat anti

peroxidase-conjugated secondary antibodies. A highly sensitive diaminobenzidine

chromogenic substrate system was used to visualize the peroxidase. After mounting

in an aqueous mounting medium (Aquatex, Merck, Darmstadt, Germany), the tissue

was examined using a photomicroscopy equipped with an automated camera (Nikon

Eclipse 80i, Nikon Co., Japan). Control tissues were subjected to the same

immunoperoxidase staining, wi

Statistical Analysis

The distribution of nerve

observed through graphics created using JMP stats

package (version 2.8.1) was used for statistical analysis. Data were analyzed by

descriptive statistics and presented as mean (SD). The two
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evaluation of four quadrants of the periodontal ligament (B=buccal; D=distal; L=lingual; M=mesial;

IA=isolated myelinated axons; GA=grouped myelinated axons).

Immunocytochemical stainings were performed using the peroxidase

EnVision System (DakoCytomation, Glostrup, Denmark). The sections were

and washed for 30 min at 4°C in 0.01 M phosphate buffered saline

specific binding sites were blocked with 3% normal goat serum in PBS.

After washing in PBS, the sections were incubated with the primary mouse

monoclonal antibody against the neurofilament protein (Abcam, Cambridge,

1 hour, washed again, and incubated for 30 min with goat anti-mouse horseradish

conjugated secondary antibodies. A highly sensitive diaminobenzidine

chromogenic substrate system was used to visualize the peroxidase. After mounting

aqueous mounting medium (Aquatex, Merck, Darmstadt, Germany), the tissue

was examined using a photomicroscopy equipped with an automated camera (Nikon

Eclipse 80i, Nikon Co., Japan). Control tissues were subjected to the same

immunoperoxidase staining, with omission of the primary antibody.

The distribution of nerve fibres diameters in the different root regions was

observed through graphics created using JMP stats-software. A statistical software R

) was used for statistical analysis. Data were analyzed by

descriptive statistics and presented as mean (SD). The two-way ANOVA test (α = 
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EnVision System (DakoCytomation, Glostrup, Denmark). The sections were
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After washing in PBS, the sections were incubated with the primary mouse

monoclonal antibody against the neurofilament protein (Abcam, Cambridge, UK) for

mouse horseradish

conjugated secondary antibodies. A highly sensitive diaminobenzidine

chromogenic substrate system was used to visualize the peroxidase. After mounting

aqueous mounting medium (Aquatex, Merck, Darmstadt, Germany), the tissue

was examined using a photomicroscopy equipped with an automated camera (Nikon

Eclipse 80i, Nikon Co., Japan). Control tissues were subjected to the same

s diameters in the different root regions was

A statistical software R

) was used for statistical analysis. Data were analyzed by

way ANOVA test (α = 
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0.05) allowed multiple comparisons between the five root levels and four quadrants.

Pearson's correlation was used to

diameter of myelinated nerve fibres at five root levels.

Results

The PDL tissue examined around the canine sample was healthy and normal.

The tooth, from the tip of the crown to the root apex, measured 22 mm

the tooth root, from the apex to the alveolar crest, measured approximately 13 mm

(Figure 3.2). Thus, considering the fulcrum of this tooth being situated in the mid

of its alveolar support, our study has considered for investigation th

between the fulcrum and the apex of the tooth

were located maximum at 6mm from the apex.

Figure 3.2. Schematic diagram of the canine sample measurement (G=gingiva; AC=alveolar crest;
PDL=periodontal ligament).

The average number of myelinated axons in the PDL at level of 0.3 mm from

apex was 38, sharing approximately 25.2% of five root levels, followed by 6 mm from

apex with 21.2%, 4.5 mm from apex 20.5% , 3 mm and 1.5 mm

16.6% (figure 3.3).

Chapter 3 : Distribution of nerve fibres in the periodontal ligament

0.05) allowed multiple comparisons between the five root levels and four quadrants.

Pearson's correlation was used to compare the average density and average

diameter of myelinated nerve fibres at five root levels.

The PDL tissue examined around the canine sample was healthy and normal.

The tooth, from the tip of the crown to the root apex, measured 22 mm

the tooth root, from the apex to the alveolar crest, measured approximately 13 mm

considering the fulcrum of this tooth being situated in the mid

our study has considered for investigation th

between the fulcrum and the apex of the tooth as the histological section

were located maximum at 6mm from the apex.

Schematic diagram of the canine sample measurement (G=gingiva; AC=alveolar crest;

The average number of myelinated axons in the PDL at level of 0.3 mm from

apex was 38, sharing approximately 25.2% of five root levels, followed by 6 mm from

apex with 21.2%, 4.5 mm from apex 20.5% , 3 mm and 1.5 mm
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0.05) allowed multiple comparisons between the five root levels and four quadrants.

compare the average density and average

The PDL tissue examined around the canine sample was healthy and normal.

The tooth, from the tip of the crown to the root apex, measured 22 mm in length, and

the tooth root, from the apex to the alveolar crest, measured approximately 13 mm

considering the fulcrum of this tooth being situated in the mid-way

our study has considered for investigation the tooth area

s the histological sections observed

Schematic diagram of the canine sample measurement (G=gingiva; AC=alveolar crest;

The average number of myelinated axons in the PDL at level of 0.3 mm from

apex was 38, sharing approximately 25.2% of five root levels, followed by 6 mm from

apex with 21.2%, 4.5 mm from apex 20.5% , 3 mm and 1.5 mm with the same
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Figure 3.3. Pie chart of average number of myelinated axons in the periodontal ligament of the human
canine sample at five root levels.

The average density (mm

distance from the apex, while the lowest value occurred at a distance of 6mm

apex (figure 3.4). Furthermore, there were buccal peaks and mesial peaks of density

distribution at all levels (P < 0.01) except at 3 mm lev

Figure 3.4. Average density of myelinated axons in different quadrants per level. Asterisks indicate the
statistical difference (α<0.05) of density within each level. At 0.3mm and 4.5mm level, both the buccal 
and mesial density were significantly higher than the lingu
buccal density was significantly higher than the lingual and distal density, while the mesial density was
only significantly higher than the distal density; at 3mm level, no significant differences in density were
found within four quadrants; at 6mm level, both the buccal and mesial density showed significant
differences compared with the lingual density.
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Pie chart of average number of myelinated axons in the periodontal ligament of the human
canine sample at five root levels.

The average density (mm2) of myelinated axons was highest at a 0.3 mm

distance from the apex, while the lowest value occurred at a distance of 6mm

). Furthermore, there were buccal peaks and mesial peaks of density

distribution at all levels (P < 0.01) except at 3 mm lev

Average density of myelinated axons in different quadrants per level. Asterisks indicate the
statistical difference (α<0.05) of density within each level. At 0.3mm and 4.5mm level, both the buccal 
and mesial density were significantly higher than the lingual and distal density; at 1.5mm level, the
buccal density was significantly higher than the lingual and distal density, while the mesial density was
only significantly higher than the distal density; at 3mm level, no significant differences in density were
found within four quadrants; at 6mm level, both the buccal and mesial density showed significant
differences compared with the lingual density. Significant codes: * P<0.01,

·
0.05<P<0.1
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Pie chart of average number of myelinated axons in the periodontal ligament of the human

) of myelinated axons was highest at a 0.3 mm

distance from the apex, while the lowest value occurred at a distance of 6mm from

). Furthermore, there were buccal peaks and mesial peaks of density

distribution at all levels (P < 0.01) except at 3 mm lev

Average density of myelinated axons in different quadrants per level. Asterisks indicate the
statistical difference (α<0.05) of density within each level. At 0.3mm and 4.5mm level, both the buccal 

al and distal density; at 1.5mm level, the
buccal density was significantly higher than the lingual and distal density, while the mesial density was
only significantly higher than the distal density; at 3mm level, no significant differences in density were
found within four quadrants; at 6mm level, both the buccal and mesial density showed significant

0.05<P<0.1
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As shown in Table 3.1, the

canine ranged from 5.3 to

difference in four quadrants or at five root levels (P > 0.05). Pearson’s correlation

indicated that there was no linear correlation between average diameter and av

density (r² = 0.12).

Table 3.1. Average diameter of myelinated axons in the periodontal ligament of the

human canine sample (µm)

Quadrants
0.3mm

Mean S.D. Mean S.D.

Mesial 6.1 2.0 7.0

Lingual 5.9 2.1 5.3

Distal 6.6 1.9 5.6

Buccal 6.3 2.0 5.9

No statistical differences were found in four quadrants per level (

The graphics on figure 3.5

sections from different levels used to compare apical,

regions. The fibre diameters range

presented a unimodal distribution with peaks frequenly found

for the lingual side which peak was found between 8

Figure 3.5. Number of nerve per diameter

apical
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1, the mean diameter of myelinated axons in the P

canine ranged from 5.3 to 8.0 µm. The mean diameter did not show any significant

difference in four quadrants or at five root levels (P > 0.05). Pearson’s correlation

indicated that there was no linear correlation between average diameter and av

1. Average diameter of myelinated axons in the periodontal ligament of the

1.5mm

Mean S.D.

3mm

Mean S.D.
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Mean S.D.
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5.3 1.7 8.0 1.8 6.1 1.8

5.6 1.5 7.8 2.1 6.8 1.7

5.9 2.2 7.1 2.1 6.3 2.3

No statistical differences were found in four quadrants per level (α= 0.05)

graphics on figure 3.5 shows diameter range and distribution by quadrants

ections from different levels used to compare apical, intermediate and

diameters ranged between 2-15µm. The diameter distribution

presented a unimodal distribution with peaks frequenly found around

for the lingual side which peak was found between 8-9µm (figure 3.6
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diameter of myelinated axons in the PDL of this

diameter did not show any significant

difference in four quadrants or at five root levels (P > 0.05). Pearson’s correlation

indicated that there was no linear correlation between average diameter and average

1. Average diameter of myelinated axons in the periodontal ligament of the

6mm

Mean S.D.

6.9 2.5

7.4 3.5

5.9 1.8

6.4 2.5

= 0.05)

shows diameter range and distribution by quadrants

intermediate and fulcrum

The diameter distribution

around 5-6µm, except

(figure 3.6).

between the fulcrum and the apical region of the tooth root.

fulcrum



Chapter

Figure 3.6
mesial and distal regions between the fulcrum and the apical region of the tooth root

Although the diameter range was between 2

illustrate that the highest concentration of

few number of nerve fibres larger than 10µm.

Figure 3.7. Distribution of nerve
between the fulcrum and the apical region of the tooth

Grouped nerve fibres composing coarse nerve

vicinity of blood vessels (figure 3.8

isolated nerve fibres. Neurovascular structures appeared

alveolar bone creating an inter

alveolar bone.

distal

buccal
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Figure 3.6. Number of nerve per diameter in the buccal, lingual,
mesial and distal regions between the fulcrum and the apical region of the tooth root

Although the diameter range was between 2-15µm, the graphics in the figure 3.7

illustrate that the highest concentration of fibres was between 3µm and 10µm, with a

s larger than 10µm.

Distribution of nerve fibre diameter in the buccal, lingual, mesial and distal regions
the apical region of the tooth root.

s composing coarse nerve bundles were mostly found in the

(figure 3.8) and seemed to branch frequently

. Neurovascular structures appeared to enter

alveolar bone creating an inter-digitising relationship between PDL structures and

lingual mesial
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Number of nerve per diameter in the buccal, lingual,
mesial and distal regions between the fulcrum and the apical region of the tooth root.

µm, the graphics in the figure 3.7

s was between 3µm and 10µm, with a

diameter in the buccal, lingual, mesial and distal regions

bundles were mostly found in the

frequently originating

and/or leave the

relationship between PDL structures and

mesial
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The number of isolated myelinated axons was only half as many as that of

grouped ones (table 3.2). The grouped myelinated axons were frequently observed

at the alveolar-related part of the PDL, with a proportion of 83%, while the rest were

present in the vicinity of the cementum. The isolated axons at alveolar- related part

held 61%, though the number of isolated myelinated axons was still less than that of

the grouped ones.

Table 3.2. Average number of grouped and isolated myelinated axons in the
periodontal ligament (PDL) of the human canine sample at five root levels

Groups

0.3mm

ARP

CRP

1.5mm

ARP

CRP

3mm

ARP

CRP

4.5mm

ARP

CRP

6mm

ARP

CRP

Total

ARP

CRP

GA

IA

Total

25

5

30

6

2

8

14

5

19

3

3

6

10

8

18

1

6

7

21

3

24

4

3

7

19

6

25

4

3

7

89

27

116

18

17

35

ARP=alveolar related part of PDL; CRP=cementum related part of the PDL; GA=grouped axons;

IA=isolated axons

Three histological sections presented a relationship between myelinated

axons and blood vessels in the buccal PDL at the coronal level (level of 10 mm from

apex) (figure 3.8). The isolated myelinated fibre showed a tendency to move towards

grouped fibres around large blood vessels from the bottom upwards.
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Figure 3.8. One bundle of grouped myelinated nerve fibres distributed in the mesial quadrant at
coronal level of the canine root.
solid circles indicate examples of isolated myelinated axons (BV=blood vessel; from a to c=from
bottom upward). (a) A group of three myelinated fibres were accompanied by a larger blood vess
while an isolated myelinated axon was accompanied by a smaller blood vessel. (b) When the smaller
blood vessel concoursed with a distant blood vessel, the isolated myelinated axon gradually joined the
previous grouped ones. (c) Finally the isolated mye
grouped myelinated axons, achieving a new innervation.

A

B

C
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One bundle of grouped myelinated nerve fibres distributed in the mesial quadrant at
coronal level of the canine root. Dotted circles indicate examples of grouped myelinated axons, and
solid circles indicate examples of isolated myelinated axons (BV=blood vessel; from a to c=from
bottom upward). (a) A group of three myelinated fibres were accompanied by a larger blood vess
while an isolated myelinated axon was accompanied by a smaller blood vessel. (b) When the smaller
blood vessel concoursed with a distant blood vessel, the isolated myelinated axon gradually joined the
previous grouped ones. (c) Finally the isolated myelinated axon became a large bundle of one
grouped myelinated axons, achieving a new innervation.
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One bundle of grouped myelinated nerve fibres distributed in the mesial quadrant at
Dotted circles indicate examples of grouped myelinated axons, and

solid circles indicate examples of isolated myelinated axons (BV=blood vessel; from a to c=from
bottom upward). (a) A group of three myelinated fibres were accompanied by a larger blood vessel,
while an isolated myelinated axon was accompanied by a smaller blood vessel. (b) When the smaller
blood vessel concoursed with a distant blood vessel, the isolated myelinated axon gradually joined the

linated axon became a large bundle of one



Chapter

Neurofilament immunoreactivity was demonstrated by the
immunocytochemistry (figure 3.9
vessel were clearly visualized in the section stained for neurofilament protein.

Figure 3.9. Immunocytochemical image of myelinated nerve fibres (as indicated by arrows)
with an antibody against the neurofiment protein. The brown colour is caused by the diaminobenzidine
staining via the secondary antibody (BV=blood vessels).

Discussion

The PDL innervation plays a primary role in oral tactile function, allowing

feel a 1-gram loading or to detect interocclusal strips of 20 µm

This extremely sensitive system ma

refining the central masticatory pattern
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Neurofilament immunoreactivity was demonstrated by the
y (figure 3.9). The myelinated nerve fibres around a blood

lized in the section stained for neurofilament protein.

Immunocytochemical image of myelinated nerve fibres (as indicated by arrows)
with an antibody against the neurofiment protein. The brown colour is caused by the diaminobenzidine
staining via the secondary antibody (BV=blood vessels).

PDL innervation plays a primary role in oral tactile function, allowing

gram loading or to detect interocclusal strips of 20 µm (Jacobs et al 1992)

This extremely sensitive system may thus allow modulating motor

the central masticatory pattern (Lund and Kolta 2006).

Figure 3.10. Richly
the periodontal ligament (PDL): grouped
and isolated myelinated nerve fibres
related or not with a blood vessel were
present in the PDL, mainly in the apical
region. Arrows identify grouped myelinated
axons in the vicinity of blood vesse
(BV=blood vessels; AB=alveolar bone).
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Neurofilament immunoreactivity was demonstrated by the
The myelinated nerve fibres around a blood

lized in the section stained for neurofilament protein.

Immunocytochemical image of myelinated nerve fibres (as indicated by arrows) labelled
with an antibody against the neurofiment protein. The brown colour is caused by the diaminobenzidine

PDL innervation plays a primary role in oral tactile function, allowing one to

(Jacobs et al 1992).

motor function or even

Richly innervated area in
the periodontal ligament (PDL): grouped
and isolated myelinated nerve fibres
related or not with a blood vessel were
present in the PDL, mainly in the apical
region. Arrows identify grouped myelinated
axons in the vicinity of blood vessels
(BV=blood vessels; AB=alveolar bone).
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Literature on a description of PDL innervation mainly covers papers on small

animal PDL (Byers 1985; Byers et al 1986; Kizior 1968; Kannari 1990; Sato et al 1992;

Loescher and Holland 1991; Loescher et al 1993; Long et al 1995; Maeda et al 1989). Three

types of nerve endings were identified under electron microscopy, including free

nerve endings (originating from myelinated and unmyelinated nerve fibres), Ruffini-

like endings (mostly found at apical part of the PDL) and lamellate corpuscles

(Lambrichts et al 1992; Fukuda and Tazaki 1994; Byers and Maeda 1997).

In our study, coarse nerve fibre bundles were mostly found in the vicinity of blood

vessels (figure 3.10), branching frequently (figure 3.8). This finding has been

reported in previous studies by Lambrichts et al. (1992) and Fukuda & Tazaki (1994)

in humans. It is important, however, to stress that only the tooth related parts of

human PDL were observed. The present study confirmed this finding by serial

sections on a complete human PDL.

The number and density of myelinated axons at the apical region was the highest

among the five different root levels. From the 151 myelinated nerve fibres identified

in the study, 38 (25%) were found at 0.3mm distance from the tooth apex. This is in

agreement with previous studies in humans showing that the tooth apical third is

more innervated by nerve fibres and specialized endings (Fukuda and Tazaki 1994,

Lambrichts et al 1992, Maeda et al 1999) than other two thirds.

However previous studies in cats (Long et al 1995, Loescher and Holland 1991), rats

and monkeys (Byers and Dong 1989) have found a larger number of nerve fibres than

the present investigation. This may be explained by difference in the histological

techniques and samples used. In our study, nerve fibres were identified and included

in the analysis when it had a clear appearance of myelinated nerve fibres for the

histological technique applied. It means a blue line forming the outside rounded

structure, an inside rounded brown structure representing the nucleus and a white

area in between those two rounded structures. Any doubt in considering the structure

seen as a nerve fibre was discussed between the two trained observers.

While two previous studies on the innervation of cat canines (Kizior et al 1968;

Loescher and Holland 1991) and other in rat molars (Byers 1985) pointed out that apical

fibres were generally larger than the coronal ones. The present study did not find
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significant difference on the diameter between the evaluated levels and quadrants.

Whether this discrepancy reflects differences on the diameter distribution in the PDL

of animals and humans or not remains to be determined on larger samples and

controlled studies.

Similarly to our results, Long et al (1995) have found the distribution of nerve

fibres around the tooth circumference to be non-uniform. In agreement with the study

of Linden and Scott (1989) in cats, the highest number of fibres in our study was

found in the buccal and mesial region, whereas Long et al (1995) found it to be at

distal and mesial regions at the tooth apex. The lingual region was the most sparsely

innervated region in cats (Long et al 1995), whereas in humans this region showed

higher concentration of nerve fibres of larger diameter (8-9µm) than the other regions

(5-6µm). Nevertheless, no linear relationship between the average diameter and the

average density was observed.

The diameter range (2-15µm) found in this study is in agreement with previous

studies on the distribution of myelinated nerve fibres in the inferior alveolar nerve by

Heasman and Beynon (1986) and Rood (1978), also in humans. Heasman and

Beynon reported a bimodal curve with peaks of 2-4µm and 8-9µm. It shows that

myelinated nerve fibres within these diameter range are more frequent in the alveolar

inferior nerve, clearly representing two groups of fibres in a physiological

classification; the first range represents fibres involved in pain and temperature

sensory function (fibres Aδ – 1-5µm) and the second, touch and pressure (fibres Aβ 

– 5-12µm) (Manzano et al 2008). Yet, we found a unimodal curve with peaks mostly

found within the 5-6µm range in the PDL of all tooth regions and quadrants, except

by the lingual. In this way, the myelinated fibres in the range of 5-6µm are not the

most frequently seen in the alveolar inferior nerve, whereas they are the ones which

innervate the PDL. Fibres larger than 12µm are considered Aα associated to afferent 

nerves from muscle and from Golgi tendons organs. It is interesting to note that

although fibres ranging from 2-15µm have been reported in the literature no report is

made about the function of fibres > 12 µm in the PDL.

Regarding the classification of grouped and isolated fibres proposed by Loescher

and Holland (1991), the number of grouped axons was twice as large as that of

isolated ones. Both grouped and isolated myelinated axons were frequently observed
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in the alveolar related part of the PDL (table 3.2), unlike the previous findings in cats

(Loescher and Holland 1991).In those animals, isolated fibres were situated

predominantly in the cemental half of the ligament. It is probable that the alveolar half

of the PDL is more prone to have a denser innervation than the cemental half due to

the more extensive nutrient supply coming from alveolar bone. The function of these

myelinated axons may be directly or indirectly related to the remodelling of

periodontal tissue. The image sequence (figure 3.8) shows a dynamic relationship

between neural structures and blood vessels suggesting that the isolated myelinated

axon had a tendency to move towards large-diameter blood vessels.

Interestingly, the number of isolated fibres was greatest at 3mm from root apex,

similarly to Long et al (1995). From all fibres observed at this level, 56% were

isolated, being 24% found in the cemental half. It was suggested that this highest

number of isolated fibres at this level may reflect the distribution of

mechanoreceptors (Long et al 1995). Indeed, electrophysiological recordings located

the majority of the receptors at 3mm and 4mm from the root apex (Loescher and

Robinson 1989). The percentage of myelinated fibres designated as isolated in our

study was 29%, thus higher than the 15-16% previously reported by Loescher and

Holland (1991) and Long et al (1995).

Conclusions:

Although limited to the lower canine, the present study is the first serial section

approaching at the light microscopy level performed in humans. In this study most of

myelinated nerve fibres in the PDL of human canine tooth was found grouped in the

vicinity of blood vessels. Those fibres were mostly seen at the alveolar part of the

PDL and the highest density was found at the apical third. No functional distinction

could be made from the size of those fibres since the diameter range presented may

be related to several sensory functions. In all levels and quadrant, fibres larger than

10µm were found, although in a few number. The function of those fibres in the PDL

has not been found in the literature.

Interesting observations could be made regarding the 3mm level which was

considered the intermediate region between apex and tooth fulcrum. Firstly, isolated

fibres were found in higher concentration than the grouped ones at this level.
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Secondly, it showed the highest concentration of isolated fibres in the cemental half

of the PDL than the other levels. Moreover, this level presented a more uniform

density distribution among quadrants, whereas in all the other levels buccal and

mesial quadrants were the most densely innervated. Further information should be

acquired to find any potential links between morphological characters and

physiological functions of myelinated nerve fibres in humans.
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Other PDL special structures:

Epithelial Rests of Malassez

and Cementicles
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report. J Med Case Rep. 2010; 19;4:328.
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Introduction

The epithelial rests of Malassez (ERM) are development residues of epithelial

root sheath of Hertwig (ERSH) in the PDL (Becktor et al 2007). ERM are histologically

described as a fold of outer and inner enamel epithelium formed during tooth

development (Korkmaz et al 2011). It is found in the inner zone of the PDL near the

root cementum. Once root formation is completed, the ERSH become penetrated by

several collagen bundles of PDL, resulting in a fenestrated ERM network that

surrounds the tooth (Haku et al 2011). In this way, those structures should not be seen

as isolated groups of cells, but rather as a network, similar to a fishnet surrounding

the root (Rincon et al 2006).

The reason why ERM persist in the periodontal ligament years after the

completition of the dentition is unknown (Hildebrand et al 1995). These cells are part of

the normal structures within the periodontal ligament and it is believed that they play

an important functional role that needs further investigation (Rincon et al 2006). It was

demonstrated that the ERM cells were distributed in the PDL in a network-shaped

manner along the root surface and in the furcation region. The distribution of ERM

was observed to be more prominent in teeth with incomplete root formation (Becktor

et al 2007).

Cementicles are mineralized structures that either freely reside in the

periodontal ligament or adhere to the root surface (Schroeder 1986). True cementicles

consist of a collagenous matrix intermixed with a non-collagenous ground substance.

The presence of cementicles and ectopic enamel deposits on the root may

compromise plaque and calculus removal. Despite the relative frequency and clinical

relevance of radicular enamel deposits and cementicles, their etiology and nature are

unknown (Bosshardt and Nanci 2003).

In the first part of this chapter, the morphology and function of ERM and

cementicles (figure 4.1) is discussed based in the existing literature. In the second



part, a case report is presented about ERM structure after tooth autotransplantation.

Figure 4.1: The red arrow indicates a cementicle in (A) and ERM in (B).Black arrow

in (A) shows a myelinated nerve fibre in the surroundings of the cementicles.

Part I - Literature review

Epithelial Rests of Malassez

The ERM can be identified easily as small clumps of epithelial cells within the

periodontal ligament, closely to the radicular cementum surface

has been assumed that these islands of epithelial cells are important for the

formation and resorption of cementum and for the prevention of ankylosis. Their main

function would be to prevent root resorption and to maintain the width of the PDL,

thereby preventing ankylosis

ERM occurs during experimental tooth movement

cells produce prostaglandin E2

osteoclasts which stimulate bone breakdown and bone remodelling

The role of ERM in preventing calcifi

study comparing vertebrate ankylosis

periodontium (McIntosh et al

was free of ERSH and ERM and

Whereas in the crocodilian and mouse, root size and shape were developed from

ERSH, and in connection with disintegration of the

ligament was established (McIntosh et al
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part, a case report is presented about ERM structure after tooth autotransplantation.

The red arrow indicates a cementicle in (A) and ERM in (B).Black arrow

in (A) shows a myelinated nerve fibre in the surroundings of the cementicles.
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The ERM can be identified easily as small clumps of epithelial cells within the

periodontal ligament, closely to the radicular cementum surface (Rincon et al 2006)

has been assumed that these islands of epithelial cells are important for the

and resorption of cementum and for the prevention of ankylosis. Their main

function would be to prevent root resorption and to maintain the width of the PDL,

thereby preventing ankylosis (Fujiyama et al 2004). It was reported that proliferation of

rs during experimental tooth movement (Talic et al 2003). In porcine, ERM
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osteoclasts which stimulate bone breakdown and bone remodelling

in preventing calcification and ankylosis of has been illustrated in a

study comparing vertebrate ankylosis-type attachment and mammalian “tru

(McIntosh et al 2002 ). That study demonstrated that the root of a gecko

M and at the same time connected to bone via ankylosis.
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part, a case report is presented about ERM structure after tooth autotransplantation.

The red arrow indicates a cementicle in (A) and ERM in (B).Black arrow

in (A) shows a myelinated nerve fibre in the surroundings of the cementicles.

The ERM can be identified easily as small clumps of epithelial cells within the

Rincon et al 2006). It

has been assumed that these islands of epithelial cells are important for the

and resorption of cementum and for the prevention of ankylosis. Their main

function would be to prevent root resorption and to maintain the width of the PDL,

. It was reported that proliferation of

. In porcine, ERM

which is capable of activating

osteoclasts which stimulate bone breakdown and bone remodelling (Kale et al 2004).

cation and ankylosis of has been illustrated in a

type attachment and mammalian “true”

the root of a gecko

connected to bone via ankylosis.

Whereas in the crocodilian and mouse, root size and shape were developed from

into ERM the periodontal
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Fujiyama et al (2004) found that denervation led to dento-alveolar ankylosis

with a decrease in the width of the periodontal spaces. Interestingly, with

regeneration of the Malassez epithelium 10 weeks after the denervation, the

periodontal space width showed a correspondingly significant increase. These

findings suggested that the Malassez epithelium may be involved in the maintenance

of periodontal space and that it might be indirectly associated to the sensory

innervation. In addition, the denervation activated root resorption of the coronal root

surface and the consequently resorbed lacunae were repaired by cellular cementum.

It was suggested that Malassez epithelium may negatively regulate root resorption

and also induce acellular cementum formation (Fujiyama et al 2004). Additionally,

orthodontic root resorption has been regarded as an exaggerated response to loss of

PDL homeostatic control, possibly mediated by the epithelial rests of Malassez (Kat et

al 2003).

The general morphological characteristics of the ERM have been previously

described by Rincon et al (2006). They suggested that one of the functional roles of

the ERM may lie not only in maintaining the normal periodontal function and cellular

elements, but also contributing to the periodontal regeneration. In agreement with

previous observations in animals (Rincon et al 2006, Peters et al 1995), a later

investigation in humans (Becktor et al 2007) showed that the ERM were not randomly

distributed cell clusters in the PDM, but appeared as an almost continuous chain of

epithelial cells with regular breaks forming a network around the root. However, the

ERM were described as a heterogeneous population of cells, in both cats and

humans (Tadokoro et al 2002; Kvinnsland et al 2000). The epithelial cells seems to be

intimately associated with non-epithelial, immunocompetent cells, e.g. macrophages

and/or dendritic like cells. It has been suggested that epithelial and non-epithelial cell

probably communicate with each other, as well as with the surrounding fibroblasts 

(Tadokoro et al 2008).

Under transmission electron microscopy (TEM) analysis, the ERM

demonstrated the presence of tonofilaments and desmosomes. The tonofilaments

were bound together into bundles called tonofibrils. These did not appear to be in

direct contact with the cementum. The presence of tonofilaments, desmosomes and

a basal lamina, with hemidesmosomes surrounding the cell rests, confirmed the

epithelial nature of these cells. The average distance from the cementum to the
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epithelial cells was measured in three regions – apical (21 µm), middle radicular (33

µm), and cervical (41 µm) – indicating a coronal migration away from the root surface

(Valderhaug et al 1967; Rincon et al 2006). The ultrastructural characteristics

differentiated the epithelial nature of these cells from fibroblasts and cementoblasts of

the periodontium (Rincon et al 2006). Regarding differences between species, the

ultrastructure of ERM from rat periodontal ligament sections resembles that of

humans and other animals (Hamamoto et al 1989).

The ERM have a propensity to differentiate (Yamasaki and Pinero 1989) and to

proliferate upon various kinds of stimuli (Tadokoro et al 2002) and they have been

implicated in a number of dental pathologies (Cerri et al 2009; Ten Cate 1972). They

have been observed to be associated with inflammatory developmental or neoplastic

stimuli, developmental cyst formation, such as the gingival or lateral periodontal cyst

(Ten Cate 1972), inflammatory cysts, odontogenic tumors and apical migration of the

pocket ephitelium (Spoughe 1980). The continued tooth eruption is dependent on

remodelling activity in the PDL, and ERM might participate in this process (Becktor et

al 2007). However, the exact factors responsible for this phase of tooth eruption are

unknown. In order to contribute to this phase of tooth eruption, the periodontal

membrane must be provided with two types of regulatory mechanisms: one is a

calcification mechanism for differentiation of osteogenic cells for bone production and

the other is a non-calcification mechanism for maintaining a fixed space. Recently, an

investigation reported that ERM modulate cell proliferation and apoptosis, and inhibit

differentiation by reducing the expression of specific proteins under mechanical

stretching (Haku et al 2011). Further description of the protein expression,

neuropeptides, extracellular matrix and cell surface proteins in ERM are provided by

Haku et al (2011) and Rincon et al (2006).

Furthermore, ERM play an important role in the distribution of fibrous and

neural elements in the PDL (Kjaer and Nolting 2009). Ruffini-like receptors and free

nerve endings were reported closely apposed to those epithelial rests (Lambrichts et al

1993). Lambrichts et al (1993) suggested that the epithelial rests may function as

targets for developing periodontal axons, and that the periodontal axonal/epithelial

cells complexes might have a mechanoreceptive function. Similarly Heyeraas et al

(1993) reported that protein gene product 9.5 (PGP-9.5) and calcitonin gene related

peptide (CGRP) immunoreactive axon terminals are associated with periodontal
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epithelial rests of Malassez (Hildebrand et al 1995). The PGP-9.5 is a marker for

mature nerve fibres, considered as a general neurochemical marker. CGRP is a

neuropeptide (Fristad et al 1994; Gunjigake et al 2006) widely expressed in sensory

neurons. This neurochemical marker plays also important roles in nerve function

(Fristad et al 1994) and repair when axons are severed (Li et al 2004, Sample et al 2011).

In humans, Lambrichts et al (1993) described that the ERM appeared as oval

and round clusters of cells in sections cut perpendicular to the root axis. In

longitudinal sections the epithelial cells were arranged in strands. Myelinated nerve

fibres with average diameter of 5µm, lost their myelin sheaths in the vicinity of the

ERM and reached them as unmyelinated preterminal axons (figures 4.2-4.3). These

neural structures sometimes surrounded the ERM. A more complete ultrastructural

information is provided for the myelinated and unmyelinated fibres found in the

vicinity of ERM in Lambrichts et al (1993). The axons mostly faced the epithelial cells

while Schwann cells were usually located towards the outer connective tissue. A

dramatic decrease in the number of ERM is reported after the second decade of life,

resulting in a low incidence of ERM in adult periodontal ligament (Reeve and Wetz

1962). In line with this, Gonçalves et al (2008) and Cerri et al (2009) suggested that

epithelial cell death by apoptosis may be, at least in part, responsible for the

reduction in the number of rests of Malassez according to age. Furthermore, the

intracellular calcium ion concentration was found to be differently regulated during

tooth development and in adult PDL (Korkmaz et al 2011). On the other hand,

Lambrichts et al (1993) did not had a significantly higher density of ERM in the

sample obtained from patients younger than 20 years old.
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functions. For them, different factors should be discussed to clarify the etiology

behind eruption: influence from innervation of the periodontal membrane; influence

from the epithelial layer of Malassez; the periodontal fibres, cells, and the

surrounding alveolar bone. In the other hand, they describe that tooth resorption is a

normal process in the primary dentition, but a pathological process in the permanent

dentition. Differences between periodontal membranes surrounding primary root

surfaces and permanent root surfaces may be important in our understanding

differences in resorption patterns.

Table 4.1: Summary reported ERM functions from Kjael and Nolting (2009).

Functions ERM

Protect root surface from resorption processes

Healing after reimplantation

Prevent dento-alveolar ankylosis

Reorganization of the membrane during eruption and tooth
movement

Related to cementum repair

The association between neural and ectodermal structures has been related to

mechanoreception and target function for nerve growthing (Lambrichts et al 1993).

During growth the budding nerve fibre seeks its target epithelial cell either by

chemotropism or random searching and recognition (Lambrichts et al 1993). Nerve

growth factor receptors were observed in the epithelial rests of dental follicle of

unerupted human third molars (Lambrichts et al 1993). Nerve growth factor receptors

were also observed in pinocytotic vesicles in the membrane of Schwann cells

ensheathing Ruffini-like endings in the PDL of rats (Byers 1990). In guinea pigs PDL,

this association was found to be site specific and only seen in the presence of

cementum (Jayawardena and Takano 2006).

Recent studies involving experimental denervation have reported that the

distribution of the cell rests of Malassez is regulated by sensory innervation of the

periodontal ligament (Fujiyama et al 2004; Yamashiro et al 2000). Yamashiro et al.
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(2000) and Fujiyama et al (2004) claimed that the cell rests of Malassez may play a

role in maintenance of the width of the periodontal space by preventing root

resorption and ankylosis, based on the observations that denervation of the inferior

alveolar nerve resulted in decreased cell rests of Malassez followed by dento-

alveolar ankylosis in the molar periodontal ligament of rats.They also observed a

significant retrieval of the width of the periodontal ligament with restoration of

epithelium cell clusters associated with nerve regeneration.

Awareness of such a relationship within the periodontal ligament is important

for the success of regeneration therapy in the periodontium. Further research is

needed to clarify the nature of interactions and the bioactive molecules involved.

Several studies have investigated the expression of different types of proteins by the

ERM (Shimonishi et al 2007; Mizuno et al 2005; Rincon et al 2005; Mouri et al 2003). These

proteins can be broadly classified into a number of groups, such as cytokeratins and

neuropeptides, as well as extracellular matrix and cell-surface proteins including a

variety of growth factors, cytokines and extracellular matrix-degrading proteinases.

Observations from studies using cytokeratins confirmed the epithelial phenotype of

those cells (Rincon et al 2006). A number of neuropeptides, including calcitonin gene-

related peptide (CGRP), protein gene product 9.5 (PGP 9.5), substance P (SP),

vasoactive intestinal peptide (VIP), tyrosine receptor kinase A (TrkA) – a high-affinity

receptor of nerve growth factor – and parathyroid hormonerelated protein (PTHrP)

may be expressed by the ERM (Tadokoro et al 2002). Using PGP 9.5, Tadokoro et al

(2002) demonstrated that Malassez epithelium not only exhibits neuroendocrine cells,

but additionally that the neuroendocrine cells represent Merkel-like cells.

Extracellular matrix and cell-surface proteins such as growth factors and

cytokines were also expressed by the ERM (Rincon et al 2005; Hasegawa et al 2003).

Some of matrix macromolecules expressed by ERM include amelogenin and

enamelin, glycosaminoglycans, hyaluronic acid, dermatan sulphate, chondroitin

sulphate and type IV collagen fibronectin, laminin and laminin-5 . Interestingly, these

cells also synthesize several proteins more commonly associated with mesenchymal

tissues rather than epithelial tissues, such as osteopontin, bone sialoprotein and

osteoprotegerin. Other proteins expressed by the ERM include cell-surface

molecules, such as calbindin D28 (which are vitamin D-dependent calcium-binding

proteins) and epidermal growth factor receptor, growth factors such as epidermal
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growth factor and bone morphogenetic proteins 2 and 4, various cytokines, including

interleukin-1α, interleukin-6, interleukin-8 and granulocyte–macrophage colony-

stimulating factor (GM-CSF), βdefensin (BD-1) and prostaglandins E and F. It is 

noteworthy that the ERM can express a number of bone/cementum-related proteins

which could implicate them in a regenerative role of the PDL (Rincon et al 2006).

Rincon et al (2006) suggests 4 putative functions of the epithelial cell rests of

Malassez in periodontal regeneration. 1. Maintainance of PDL space (synthesis of

hyaluronate, proteoglycans and type IV collagen); 2. Osteopontin synthesis acting as

an aid for cementum repair , and mineralized tissue formation on root surface; 3.

Bone sialoproteinsynthesis acting as adhesion molecule and initiator of

mineralization of root surface and 4. Absence of these cells in regeneration of

tissues may account for some lack of predictable funcional outcomes. It is important

to highlight that both bone sialoprotein (BSP) and osteopontin (OPN) may have a role

in recruiting and maintaining selective cells at the root surface, an equally important

role may be related to the control of mineralization along the root surface.

Cementicles

True cementicles consists of a collagenous matrix intermixed with a

noncollagenous ground substance (Bosshardt and Nanci 2003). Despite the relative

frequency and clinical relevance of cementicles, their etiology and nature are still

unknown. The literature about this PDL structure is scarce and just a few studies

were found discussing cementicles distribution and function. Holton et al (1986)

determined the prevalence and distribution of attached cementicles on different root

surfaces in 415 extracted human incisors, canines, premolars and molars.

Cementicles were seen on approximately 50% of the canines and molars and on

fewer than 50% of the other teeth. These structures were most frequently found in

the middle and apical thirds of canine roots and in furcation region of molars.

Although epithelial rests of Malassez have been implicated in the formation of

cementicles (Schroeder et al 1986), the characterization of the cells that initially are

involved in cementicle formation is poor. Structurally, there is a close resemblance of

cementicles with root cementum suggesting an involvement of cementoblasts in their

formation. Although morphologically resembling their normal tissue counterparts,
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biochemical compositions of the cementicles are entirely unknown. Bone sialoprotein

(BSP) and osteopontin (OPN) were detected in the cementicles, mainly associated

with the interfibrillar ground substance (Bosshardt and Nanci 2003). These two NCPs

are typically found in bone and cementum and may, like in their normal tissue

counterparts, play a role in the mineralization (Bosshardt and Nanci 2003).

Two types of matrix deposit have been described: a cementicle like structure

and the “true” cementicles. The first is represented by a round and concentrically

arranged lamellae and a more homogeneously structured matrix deposit in the

connective tissue. On the other hand, in the second type, lamellation is less

prominent and smaller coalesced matrix subunits were seen. Common to both matrix

structures is that they lack collagen fibrils. However, the surrounding matrix is 

collagenous in nature. Bosshardt and Nanci (2003) suggested that cementicles-like

are associated to the ectopic deposition of enamel. Collagen-free cementum-like and

enamel-like calcifications were consistently present in the periodontal ligament 

adjacent to ectopic enamel deposits. Their coexistence suggests a causal

connection. True cementicles occurred independently of ectopic enamel formation

and resembled acellular extrinsic fibre cementum in structure and composition. 

Kodaka and Debari (2002) examined afibrillar cementum (AFC) and

cementicle-like structures (CLS) in human teeth by scanning electron microscopy and

energy-dispersive X-ray microanalysis. They described that the large masses of

afibrillar cementum in the enamel fissures often enclosed cementicle-like structures

with concentric appositional rings, while some of the independent cementicle-like

structures contained cell- or ameloblast-like remnants in the core surrounded by a

few or many concentric appositional rings. They suggested that some or many of the

calcified epithelial cells will grow into cementicles and cementicle-like structure (CLS)

surrounded by concentric appositional rings and then become their cores.
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Part II - Proliferation of epithelial rests of Malassez following

auto-transplantation of third molars: a case report

The periodontal ligament (PDL) is the dense fibrous connective tissue which

connects the cementum-covered surface of the root with the alveolar bone (Berkovitz

2004). Its main function lies in preventing damage to the dental tissues during

mastication. It consists, in part, of thick collagen bundles, called Sharpey's fibres that

run from the alveolar wall into the cementum and are responsible for resisting the

displacing masticatory forces. Other functions which are addressed to the cells in the

PDL are the formation, maintenance and repair of the alveolar bone and cementum.

It has already been described that the alveolar bone can adapt its shape according to

the needs during root development (Yamashiro et al 2003). This is an important feature

when looking at auto-transplantation where this process will be responsible for

remodelling the new alveolar socket to the shape of the transplanted tooth.

Furthermore, the periodontal ligament has rich sensory innervations (Heyeraas et al

1993) and a close relationship with the mechanoreceptors and the epithelial rests of

Malassez (ERM) has been detected (Lambrichts et al 1993). ERM are the remnants of

the epithelial root sheath of Hertwig (ERSH), a fold of the outer and inner enamel

epithelium formed during tooth development. Once root formation is completed, the

ERSH becomes penetrated by several collagen bundles of the PDL, resulting in a

fenestrated network that surrounds the tooth. The precise function of the ERM is not

known yet, but it is believed that they are involved in preventing root resorption and

maintaining the width of the periodontal ligament, thereby preventing ankylosis

(Fujiyama et al 2004). As it is reported that proliferation of ERM occurs during

experimental tooth movement (Talic et al 2003), the aim of this study was to

investigate whether an auto-transplantation could also act as a trigger for this

epithelial proliferation.

Case presentation

A 21-year-old Caucasian woman presented multiple caries and inflammatory

parodental cysts (IPCs). One of the IPCs was located in the lower jaw near molar 37.

A histopathological examination revealed that the cyst was predominantly surrounded
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by granulation tissue although the local presence of Malpighian epithelium could be

found. On the periphery it was surrounded by an inflammatory infiltrate which

consisted mainly of lymphocytes, plasmocytes and neutrophilic polymorphonuclear

cells. The outermost lining consisted of a dense compact connective tissue and no

signs of malignant degeneration could be detected.

Two weeks later, the IPCs were enucleated after incision and trepanation of

the bone. We decided to extract teeth 15, 37, 45 and 47 because of multiple and

severe carious lesions. As the patient had a substantial loss of molars, the intra-

osseous teeth 18 and 48 were extracted carefully and transplanted into position 36

and 47, respectively. The procedure was done as atraumatically as possible with no

visible damage to the periodontal ligament of the extracted teeth. No problems were

encountered during surgery and the auto-transplantation was a success. After four

months, an X-ray was taken of the upper and lower jaw (figure 4.4) with a Siemens

Orthoceph 10E operated at 70 kV and 15 s of irradiation.

Figure 4.4: X-ray of the upper and lower jaw four months after surgery. Teeth 18 and 48 were
extracted carefully and transplanted into position 36 and 47, respectively (marked by circles and
arrows).
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Two years later, the patient requested a partial extraction of the lower jaw

teeth because of recurrent infections. As a result of renewed progressive caries of

the two auto-transplanted teeth, she agreed with the removal of the auto-transplanted

elements. The teeth were collected with her informed consent and the approval of the

ethical board.

The extracted auto-transplanted teeth were immediately immersed and

conserved in formol. The tissue of interest was collected by removing the PDL from

the mid-cervical part of the teeth and it was fixed a second time in 2% glutaraldehyde

in 0.05 M cacodylate buffer (pH 7.3). The fixative was gently aspirated with a glass

pipette and the specimens were post-fixed in 2% osmium tetroxide, put through a

dehydrating series of graded concentrations of acetone and embedded in araldite

according to the conventional method. Semi-thin sections (0.5 μm) were stained with 

a solution of thionin and methylene blue (0.1 aqueous solution) for light microscopy.

Ultra-thin sections (0.06μm) were mounted on 0.7% formvar-coated grids, stained 

with uranyl acetate and lead citrate and examined in a Philips EM 208 transmission

electron microscope operated at 80 kV.

From a light microscopic examination of the semi-thin sections, we concluded

that the ERM of the transplanted teeth were slightly larger than in normal PDL. A

mean value of 20 cells was counted in the transplanted tissue in contrast to a mean

value of 10 cells in normal/control PDL (figure 4.5). We also noted

compartmentalization of collagen bundles in the PDL (arrows in figure 4.6).
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Figure 4.5: Light microscopic images of epithelial rests of Malassez (ERM). (a-b) ERM of a normal
human periodontal ligament with an average of 10 cells to 1 ERM. (c-d) ERM of a transplanted human
periodontal ligament with an average of 20 cells to 1 ERM.

Figure 4.6: Light microscopic image of the compartmentalization of collagen fibres that occurs after
autotransplantation (arrow).
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From transmission electron microscope (TEM) analysis we concluded that the

auto-transplantation was successful because fully developed blood vessels appeared

in the PDL (figure 4.7a). The lumen was surrounded by mature endothelial cells

which were firmly connected to each other with tight junctions (arrows in figure 4.7a).

In the periphery, the blood vessels were supported by smooth muscle cells (asterisks

in figure 4.7a). The enlargement of the ERM seen with the light microscope was

confirmed by the TEM images (figure 4.7b). The epithelial cells formed typical

clusters which were separated by bundles of collagen fibres. The epithelial nuclei

were large, predominantly euchromatic and irregular in shape. The ERM were lined

by a basal lamina (arrow in figure 4.7b). Another interesting feature was the

innervation of the ERM. Some fine neurites made contact with the ERM (figure 4.8).

These were characterized by the presence of neurofilaments in the cytoplasm

(asterisks in figure 4.8). Apart from these neurites, fully matured myelinated nerve

fibres (arrow in figure 4.8) accompanied by their Schwann cells were another feature

of the successful regeneration of the PDL.

Figure 4.7: Electron microscopic
images of the transplanted PDL. (a)
Shows fully developed blood
vessels. (b) Shows the electron
microscopic aspect of the enlarged
ERM.
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Figure 4.8: Electron microscopic image of the re-innervation of the ERM in the autotransplanted PDL.

Discussion

The specific morphological features which could be detected on the

ultrastructural level can be regarded as typical for ERM and are confirmed in the

recent literature (Tadokoro 2009; Cerri et al 2009; Tadokoro et al 2002). ERM cells

produce prostaglandin E2 (Brunette et al 1979) and prostaglandin E2 is capable of

activating osteoclasts which stimulate bone breakdown and bone remodelling (Kale et

al 2004).

In auto-transplantation, the alveolar bone around the implantation-site

normally has to be remodelled to provide a good fit for the implanted tooth. Bone

breakdown is a process involved in this remodeling and it can be stimulated by

increased prostaglandin E2 secretion by the ERM. This could explain why the ERM in

the PDL of transplanted teeth are enlarged. It is also possible that the ERM in PDL of

transplanted teeth remain enlarged when the remodeling process has finished. This

implies that transplanted teeth will always have more mobility in the jaw than normal

teeth because of the increased prostaglandin E2 secretion.

In addition to the expected bone remodeling, the PDL also needs to be

remodelled. The compartmentalization of the collagen bundles can be seen as a

consequence of this process. Furthermore, following auto-transplantation, the need

for re-innervation of the PDL is of significant value. As ERM play an important role in
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the distribution of the fibrous and neural elements in the PDL (Kjaer and Nolting 2009),

the enlargement of ERM detected after auto-transplantation could be seen as an

attempt to direct PDL remodeling and re-innervation. The innervation of the ERM

suggests that this whole process is directed by the nervous system.

Conclusion

Since this case report has shown that an enlargement of ERM in case of tooth

auto-transplantation, it is suggested that the ERM might be involved in the

remodelling and re-innervation process of PDL. In turn, one of the key elements

necessary for a successful auto-transplantation might be the conservation of the

periodontal ligament.
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Bone innervation around osseointegrated implants: literature review and report of

histological findings in humans

Abstract

Objective: The aim of the present study was to review the literature about

peri-implant innervation and to describe nerve fibres around osseointegrated implants

in humans. Material and Methods: Twelve mechanically failed-implants, partially or

fully osseointegrated, retrieved from 10 patients were collected from 3 dental centers

over a period of 5 years. The implants were removed with a trephine bur and

immediately immersed in 2% glutaraldehyde or 10% formalin solution. Semi-thin

sections (0.5μm) were stained with thionin methylene blue for light microscopical 

analysis and digitized using a high resolution scan. Observations were done by a

trained observer at a magnification of 50X. In addition, an ultrastructural analysis was

performed on serial ultra-thin sections (0.06μm) using transmission electron 

microscopy. Results: Both myelinated and unmyelinated nerve fibres could be

identified inside the Haversian canals of the osteonal bone near the implant threads.

Myelinated fibres were also located at the woven bone around the implant. However,

no nerve endings could be observed around the implants. Conclusions: This study

showed for the first time the presence of nerve fibres in the peri-implant bone.

Previous studies in animals showed that those fibres participate in the process of

bone modeling and remodeling. Nevertheless, the role of peri-implant bone

innervation in the osseoperception phenomenon cannot be ruled out since the

mechanism of mechanoreception in bone is not fully understood.
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Introduction

Osseointegration is a well-documented phenomenon responsible for the

biological integration between bone tissue and titanium implants (Albrektsson et al

1986). Apart from integrating biologically, osseointegrated implants are at the same

time physiologically incorporated (Hagberg et al 2008; van Steenberghe 2000). Studies

on physiological integration of oral and skeletal osseointegrated implants (Jacobs

1998; Gallagher et al 2008) claim the existence of a peri-implant innervation influencing

the oral function. However, reviewing the literature, it can be concluded that the role

of this innervation in the physiological integration of implants remains only partially

understood (Jacobs 1998; Jacobs and van Steenberghe 2006).

It is commonly known that an extensive nerve supply is present throughout the

bone tissue (Mach et al 2002; Serre et al 1999; Buma et al 1995; Herskovits et al 1990;

Martin and Burr 1989). Both myelinated and unmyelinated nerve fibres have been

found in the periosteum, bone cortex, Haversian systems, Volkmann’s canals,

marrow spaces (Mach et al 2002; Buma et al 1995; Lambrichts 1998), and in healed

bone after tooth extraction (Gunjigake et al 2006; Mason and Holland 1993; Hansen

1980). Moreover, some studies have shown that both sympathetic and sensory fibres

are involved in the innervation of the skeleton (Mach et al 2002; Sample et al 2008;

Rubin and Rubin 2008). Understanding the sympathetic and sensory components of

bone innervation might contribute to unravel their influence on bone dynamics and

sensory function (Buma et al 1995). It is clear that the innervation of bone has a

functional role in bone physiology; e.g. bone growth, bone remodeling and bone

repair (Sample et al 2008; Herskovits et al 1990). Previous studies involving sensory

bone innervation have focused on bone pain in injury and disease (Mach et al 2002;

Castaneda-Corral et al 2011) and stimulus perception via osseointegrated implants

(Jacobs and van Steenberghe 2006). Nevertheless, the physiological role of bone

innervation remains a matter of debate. Further clarification about bone innervation

can be found in the review by McCredie (2007).

Regarding osseointegrated implants, the changes in bone innervation

patterns, associated with implant placement have been firstly reported by Sawada et

al (1993) and Buma et al (1995). The presence of nerve fibres involved in bone

remodeling and growth at the interface between living and necrotic bone tissue has
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shown that nerve fibres can regenerate after implant placement (Sawada et al 1993;

Buma et al 1995). Whether there are sensory receptors, acting as peri-implant

mechanoreceptors, remains to be determined. Yet any potential indication in that

direction might help to understand the osseoperception phenomenon after implant

rehabilitation. Indeed, osseoperception refers to the recovery of sensory function in

implant rehabilitated patients (Jacobs and van Steenberghe 2006; Trulsson 2005;

Klineberg et al 2005), which accounts for a better physiological integration of

prostheses. In this way, patients rehabilitated with osseointegrated implants seem

subjectively not much impaired in their masticatory and other oral functions (Abarca et

al 2006), notwithstanding their lack of information from periodontal mechanoreceptors

impairing fine motor control (Trulsson 2007; Trulsson 2006; Trulsson 2005).

Several studies confirm the improved oral function of those patients compared

to conventional prosthetic rehabilitation (Jacobs and van Steenberghe 2006; van der Bilt

2011; Lundqvist and Haraldson 1992; Lundqvist and Haraldson 1990; Haraldson and

Ingervall 1979; Haraldson et al 1979; Haraldson and Carlsson 1977). However, the

physiological mechanisms for the osseoperception phenomenon remain to be

elucidated. While electrical stimulation of implants resulted in a clear sensory

response (Zhu et al 2009; Van Loven et al 2000; Bonte et al 1993), evidence on

perception after mechanical implant stimulation is scarce. Only very recently, Habre-

Hallage et al (2012) proved that pure mechanical stimulation of an implant could be

perceived at the sensory cortex using functional magnetic resonance imaging (fMRI).

Previous studies on peri-implant innervation (see tables 5.1 and 5.2) may help to

explain this osseoperception phenomenon (Wada et al 2001; Ysander 2001; Wang et al

1998; Buma et al 1995; Weiner et al 1995; Sawada et al 1993). Nerve fibres could be

detected using different implant surfaces and loading approaches in different

animals. Although those studies indicated some factors that might influence the peri-

implant innervation, so far no study has been reported in humans. Therefore, the

overall aim of the present study was to identify and describe nerve fibers found

around osseointegrated implants in humans by means of light and transmission

electron microscopy. In addition, a literature review on peri-implant innervation was

carried out to position the present findings.
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Authors Year Aim Sample Methods

Sawada
et al

1993 Identify tissue reactions and responses of nerve fibres
to implantation (chronological alternations in pattern
of innervation in the healing socket X implant sites)

 Dog mandibles

 unloaded

 Immunohistochemistry-neurofilament protein
(NFP)

 Stain: haematoxylin-eosin

Buma
et al

1995 Describe the distribution of the fibres that
contain calcitonin gene-related protein peptide
(CGRP) in normal bones and in bones that are
remodelling after insertion of implant

 Goat tibias

 Loaded after 3 weeks

 Routine histology

 Stain: hematoxylin and eosin

 Fluorescence microscopy

 Immunocytochemistry – CGRP and B-50/GAP-43

 Analysis: at 1 ; 6 and 12 weeks healing
Weiner

et al
1995 Survey peri-implant region for axonal elements  12 implants (hydroxyapatite coated) - 3

dog mandibles

 Loaded and unloaded

 Immunohistochemistry-NFP

 Stain: hematoxylin

Wang
et al

1998 Investigate the characteristics, quantity and the
chronological changes of nerve tissues around 3
kinds of implant materials

 10 mongrel dogs

 Single-crystal sapphire, TiO2 and HA-
coated implant

 Control: not implanted, (analysis: 3
months after extraction)

 Unloaded? (not specified in the article)

 Analysis: 3 days, 1 week, 1 month and 3 months
after implantation

 Light microscopy and histomorphometry

 Nerve tissue (histological slices) was reconstructed

 Stain: Urea-silver nitrate

Wada
et al

2001 Examine the effects of occlusal forces on the
distribution of NFP-positive nerve fibres in the
tissue of peri-implant bone

 3 mongrel dogs

 Bilateral 2
nd

/3
rd

/4
th

mandibular
premolars and the 1

st
molar

 4 screw type implants

 Load and unload implants

 Two types of surfaces: Anode Oxidized
Titanium Alloy (AOT)] surface or a Ti-6Al-
4V [Hydroxyapatite-coating (HAC)

 Loaded 3 months after implantation

 Analysis: 6 months after implantation

 Immunohistochemistry –NFP

 Stain: labelled-streptavidin-biotin method

Ysander
et al

2001 Describe a model and the results of histological
and neuropeptide investigation in remodelled
bone incorporating osseointegrated
intramedullary titanium fixtures.

 18 rat femurs

 Commercially pure titanium rods

 Unloaded implants

 8 weeks after implantation

 Microscopic and immunohistochemical (CGRP)
observations

 confocal, fluorescent, bright-field, and phase microscopy

 Light and fluorescent photomicroscopy

 Stain: Avidin-Biotin Complex (ABC) and chromagen/
hematoxylin or methyl green

Table 5.1: Summary of previous animal studies on peri-implant bone innervation.
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Author Main findings Remains unclear

Sawada et
al

 1 and 2 weeks after implantation - NFP-immunopositive nerve fibres (granulation tissue)

 4 weeks after the implantation - distribution and number of nerve fibres - almost identical
to bone marrow of the edentulous area

After osseointegration:

 no significant changes in the distribution pattern of
NFP-positive nerves

 no incidence of regeneration of sensory receptors
After fibro-osseointegration:

 a number of nerve fibres NFP-immunopositive
penetrated into a thick layer of fibrous connective
tissue

Buma et al  2 types of fibres : fairly thick fibres in nerves showing no varicose structures / free
running fibres with varicose appearance

 Fibres CGRP-positive in all nerves

 Small branches enter the cortical bone

 Associated with blood vessels located at the Volkmann’s canals

 Fairly thick nerve or thick branch enter the medullary space through the nutrient canals

 At 1 week: no positive staining with CGRP in the endosteal necrotic bone/ no
immunostaining for B50/GAP43 antibody/ stained nerves outside necrotic bone

 At 6 weeks: immunoreactivity where vascularisation was restored

 CGRP-positive fibres at the transition between necrotic and revascularizing areas

 Control bone occasionally found CGRP-positive fibres

 Bone with implant showed many varicose fibres in almost all remodeling cavities

 Blindly endings with thick parts of the structures directed towards the implant

 At 12 weeks: proliferated nerve fibres disappeared/ pre-operative situation restored –
bone innervated with sparse CGRP-positive fibres

 Exact nature and function of nerve fibres observed in
bone tissue

 Nature of chemical factors involved in the regulatory
process of cellular activity during bone remodeling

Weiner et al  Two to three labelled sites per section in the peri-implant region were commonly found

 No particular distribution

 More common in connective tissue

 In larger Haversian systems

 No label in the lamellar bone or smaller Haversian systems

 Role of axons in proprioception*

 Clinical and functional significance of findings

Wang et al  After 3 days: nerve fibre degeneration  Nerve fibres might originate from what innervated the

Table 5.2: Summary of main findings in previous animal studies on peri-implant bone innervation.

*although mechanoreception would be a more suitable term –for further clarification see Jacobs and van Steenberghe 1994 (Jacobs R, van Steenberghe D. Role of periodontal ligament receptors

in the tactile function of teeth: a review. J Periodontal Res. 1994 May;29(3):153-67.) Review.
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 After 1 week: nerve fibre regeneration

 After 1 week and 1 month: different pattern of bone formation around different materials

 After 1 week and 3 months: different distribution of nerve tissue around different
materials (reconstructed image)

 3 months after extraction: bone marrow shows fatty changes

 Negative correlation bone contact ration and nerve density

PDL before tooth extraction

 Osteoblasts may influence secondarily the distribution
of nerve fibres in the peri-implant area

 Relation between quantitative difference of nerve fibres
detected around different implant materials and
sensation differences

Wada et al  NFP-positive nerve fibres did not come into direct contact with the surface of the implant

 No differences between load and unload or between implant surfaces material

 NFP-positive fibres more frequently observed at 200µm from implant interfaces in the
loaded implants

 Free nerve endings and tree-like ramification

 Present under the screw-threaded region or in the bone marrow space

 Origin and role of nerve fibres in the peri-implant tissue

Ysander et
al

 Upregulation of CGRP during bone remodelling –no significant inflammatory reaction

 Cellular concentration of CGRP increased in association with osseointegration

 Bone marrow cells resembling osteoclast and activated monocytes or macrophages were
CGRP-positive in higher density in osseointegrated specimens (neuropeptide activity of
activated bone marrow cells participating in the remodelling of bone around the implant
threads)

 New and normal bone adjacent to and fully occupying the space between fixture threads

 Normal innervation in remodelled bone – small nerve fibres with the antibody Protein
Gene Product 9.5 (PGP 9.5)

 No difference in the neural density of operated bone when compared to the contralateral
unoperated bone

 Changes outside the time period of the study/ methods not sensitive enough to reveal
small changes in nerve density and/or activity

 Exact functional relationship between neuropeptides
and bone remodelling

 Influence of loading of implants on nerve density and/or
activity

Table 5.2: Summary of main findings in previous animal studies on peri-implant bone innervation.
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Material and Methods

A. Sample

The total sample of this study consisted of 12 partially or fully osseointegrated

implants of 10 patients, collected in 3 dental centers in Belgium (UZLeuven

(University Leuven and University Hospitals Leuven), Leuven, Belgium; ZOL (East

Limburg Hospital), Genk, Belgium; Private Clinic, Leuven, Belgium) over a period of 5

years.

To guarantee histological observations of peri-implant tissues with healthy

osseointegration, the majority of implants were retrieved because of mechanical

failure. Yet, as mechanical failure is not frequently observed, implants retrieved as a

result of extensive bone loss were also included and subjected to the histological

analysis if a sufficient amount of healthy osseointegration was observed in the apical

part of the implant. The study protocol was approved by the Ethical Committees of

UZLeuven (protocol: S55446) and ZOL (protocol: 08/052L) and all patients gave their

informed consent allowing the failed implant to be included in the study.

More information about the type of implants retrieved and the clinical

information is provided in table 5.3. The amount of bone tissue was in the range of

0.5 to 1.0mm around implant retrieved. Those implants presented a surface

roughness in the range of 0.68µm to 1.4µm (Wennenberg and Albrektsson 2009).

B. Specimen processing and histological analysis

To examine peri-implant bony tissues with healthy osseointegration, a

histological analysis was performed. The implants were removed with a trephine bur

and immediately immersed in 2% glutaraldehyde in 0.05 M cacodylate buffer (pH 7.3)

or formaldehyde (10% formalin solution).
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Table 5.3: Information patients, clinical status, type of prostheses, surgery and

implant retrieved. Conv=conventional; M=male; F=female.

After fixation, the specimens were decalcified in 10% EDTA, dehydrated

through a graded concentration of acetone and embedded in araldite. Subsequently,

the specimens were sectioned, using a bone microtome (Reichert Ultracut E

microtome (Reichert, Wien, Austria)) and further processed for light microscopical

and ultrastructural analysis. Semi-thin sections (0.5μm) were stained with thionin 

methylene blue (0.1% aqueous solution) for light microscopy, and finally digitized

using a high resolution Mirax Scan (Carl Zeiss Micro imaging GmbH, Germany).

Observations were done by a trained observer at a magnification of 20X, 40X and

100X with a 30 inch LCD monitor (Apple Inc., Cupertino, USA), using a dedicated

image software (Mirax Viewer 1.1, Göttingen, Germany). To assess the

ultrastructural characteristics, serial ultra-thin sections (0.06μm) were mounted on 

implant age
gend

er

date
remove

d
type

Additional
information

site (jaw and
location)

reason failure
surgery

type
load

time in
function

Rehabilitation
Type

1 65 M
10 01
2008

osseotite

Nobel
3.75/10m

m
13 FRACTURE conv conv 10 YEARS

fixed
prosthesis

2 65 M
10 01
2008

osseotite
Nobel

3.75/10m
m

14 FRACTURE conv conv 10 YEARS
fixed

prosthesis

3 65 M
10 01
2008

osseotite
Nobel

3.75/10m
m

SINUS
REGION 15

FRACTURE conv conv 10 YEARS
fixed

prosthesis

4 56 F
07 01
2008

NSGroov
y

Nobel
3.75/13m

m
35 Bone loss conv conv 6 months crown

5 71
18 12
2007

NSGroov
y

Nobel
5.0/10mm

35 Bone loss conv conv 6 months crown

6 - - nov/08 - - - FRACTURE conv conv -
fixed

prosthesis

7 73 M nov/08 branemark
15mm

14 FRACTURE conv conv 14 years
fixed

prosthesis

8 76 M
28 09
2009

branemark 13 e 8mm 14/15 Bone loss conv conv 17 years
fixed

prosthesis

9 77 M
mei-
2011

branemark 15mm 16 or 14 or 12 Bone loss conv conv 16 years
fixed

prosthesis

10 - -
09 11
2009

OSSEOSPEE
D

ASTRA
4.0/11mm - FRACTURE - - - -

11 79 F mrt/10
OSSEOSPEE

D
ASTRA 31 Bone loss -

IMME
DIATE

10 YEARS fixed

12 56 M jun/10
OSSEOSPEE

D
- 12 Bone loss

IMMED
IATE

IMME
DIATE

~10 Years fixed
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0.7% formvar-coated grids, contrasted with uranyl acetate and lead citrate and

subsequently examined in an EM 208 S® transmission electron microscope (Philips,

Eindhoven, The Netherlands) operated at 80 kV.

The diameter of 24 myelinated nerve fibres were measured in order to

estimate the mean diameter of nerve fibres observed in the study sample. Bearing in

mind the limited sample size and the diversity in human bone material, from which

implants were retrieved, inferential statistics were considered irrelevant. Instead, only

descriptive data reporting was carried out.

Results

In all specimens, bone tissue formation near the implant interface was

observed. The areas with no direct bone contained either bone marrow or fibrous

tissue. Woven bone, lamellar bone and marrow could be found in our study sample

(figure 5.1). Bone tissue around implants presented osteons, Haversian canals and

osteocytes, all of this being similar to cortical bone (figures 5.2 and 5.3).

Only few nerve fibres could be identified, most of them being myelinated and

located in the Haversian systems near the implant threads (figures 5.4 and 5.5).

Myelinated and unmyelinated nerve fibres could be identified inside the Haversian

canals of the osteonal bone around the implants. Although those fibres were in close

proximity to the implant interface (figure 5.4), no direct contact was observed

between the nerve fibres and the implant interface. Myelinated fibres were identified

by a thick blue envelop in the vicinity of Schwann cells. The thick and thin myelinated

nerve fibres observed in the present study had an average diameter of 5.13µm

(values ranging from 2.49-9.14µm and sd=1.84).
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Figure 5.1: Photomicrograph of human peri-implant bone showing the presence of fibrous tissue,
osteocytes, bone lamellae, osteons and Haversian canals (stain: thionin methylene blue).

Figure 5.2: Photomicrographs (A) and (B) showing the presence of osteons (white arrows) and
osteocytes (black arrows) close to the implant region (stain: thionin methylene blue).
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Figure 5.3: Higher magnification of osteons (white arrow) and osteocytes (black arrows) observed in
figure 5.2B. Top right image indicates the region selected for the higher magnification (stain: thionin
methylene blue).

Figure 5.4: (A) Photomicrographs of osteonal bone around implant showing the proximity of the
Haversian canals (black arrows) to the implant surface (stain: thionin methylene blue). (B) and (C)
Myelinated fibres (black arrows) observed at the higher magnification image of Haversian canals in A
(stain: thionin methylene blue). Those fibres are observed as rounded structures with dark-blue color
at the periphery and light-blue at the center

A
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Figure 5.5: Light (A) and transmission electron microscopy (B) of human peri-implant bone tissue
showing myelinated fibres (black arrows) embedded within the extracellular matrix. Schwann’s cells
(S) were found surrounding the axons with associated collagen fibres. (C)Transmission electron
microscopic image of an unmyelinated nerve fiber adjacent to a Schwann cell (A) Stain: thionin
methylene blue and (B) and (C) contrasted with: uranyl acetate and lead citrate.

Discussion

This study showed the presence of both myelinated and unmyelinated nerve

fibres in human bone around titanium implants. Similar to previous studies conducted

in dog mandibles (Wada et al 2001; Weiner et al 1995), nerve fibres were found in the

Haversian canals which were located in the vicinity of the implant cavity. A minimum

distance of 55µm between the Haversian canal containing nerve fibres and the

implant cavity was observed in our study. These results correspond to the 60µm

distance previously described by Weiner et al (1995). As reported by Wada et al

(2001), these nerve fibres did not reach the implant. Although a connective tissue

lacuna has been found adjacent to the implant, the presence of nerve fibres at this

location could not be confirmed, similar to findings of Weiner et al (1995).

S

S

C
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Previous studies already reported the presence of nerve fibres in the peri-

implant bone in animals (Wada et al 2001; Ysander 2001; Wang et al 1998; Buma et al

1995; Weiner et al 1995; Sawada et al 1993). Those studies suggest that peri-implant

innervation is similar to that found in an unoperated bone or in the healed extraction

socket (Ysander 2001; Buma et al 1995; Sawada et al 1993). In addition, similar events,

associated with changes in the nerve fibre density during bone modeling, are

described for both extraction socket healing and osseointegration process (Gunjigake

et al 2007; Wang et al 1998; Mason and Holland 1993; Sawada et al 1993; Hansen 1980).

The low occurrence of nerve fibres, observed in this study, is further supported by the

low density of nerve fibres (0.03% to 0.07%) found 6 months after implant placement,

reported by Wada et al (2001).

Wang et al (1998) suggest that loaded implants present higher density of

nerve fibres when compared to unloaded implants. Furthermore, these implants

presented more fatty changes in the peri-implant bone than the loaded ones. Hence,

both nerve fibre density and loading approach would influence bone modeling, as

suggested by the authors. However, more research is necessary to draw clear

conclusions about the influence of loading on peri-implant innervation. Such a

comparison was not possible in our sample since all implants were already loaded for

more than 6 months.

According to Wang et al (1998) and Wada et al (2001), implant surfaces

influence at the same time nerve fibre density and bone-to-implant contact ratio.

However, nerve fibre density shows a negative correlation with bone contact ratio in

unloaded implants. The highest nerve density (1.87µm/mm2) has been found in

implant surfaces with a bone contact ratio around 8.40%. On the other hand, the

lowest nerve density (0.83µm/mm2) was associated with implant surfaces where

bone contact ratio was around 78.09% (Wang et al 1998). Yet, more researches are

needed to further study the influence of different implant-related variables, namely

loading protocols or implant surfaces, on the bone modeling and innervation.

In our study, thick and thin myelinated nerve fibres were identified with a

general mean diameter around 5.13µm (values ranging from 2.49-9.14µm). Within

this diameter range, they may represent fibres of type Aβ, Aγ, Aδ or B, according to 
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the Erlanger-Gasser classification, or type II or III, in the Lloyd’s classification

(Manzano et al 2008). As such, their function can be related to that of afferent and

efferent autonomic nerve fibres, as well as of the afferent somatic nerve fibres, e.g.

touch perception and pressure. The morphology of Ruffini-like mechanoreceptors as

described in mammal and human in the periodontal ligament (Maeda et al 1999;

Lambrichts et al 1992; Kannari 1990) could not be shown in the present histological

study on human peri-implant bone. Nevertheless, the presence of some nerve fibres

structurally resembling mechanoreceptors has been previously shown in animal bone

(Lambrichts 1998). One hypothesis would be that the morphology of

mechanoreceptors varies amongst species, whereas, most importantly, the

mechanoreception mechanism may vary according to the tissues in which those

nerve fibres are confined.

While tactile function becomes impaired after tooth extraction, the improved

oral function of edentulous patients after implant rehabilitation has been supported by

numerous evidences (Lundqvist and Haraldson 1992; Lundqvist and Haraldson 1990;

Lundqvist and Haraldson 1984). The possible role of inferred PDL remnants and of

other nerve fibres/receptors located in the bone or surrounding tissues has been

discussed in previous studies (Jacobs and van Steenberghe 2006; Trulsson 2005; Jacobs

et al 2002; Jacobs 1998; Jacobs and van Steenberghe 1995; Bonte et al 1993; Bonte and

van Steenberghe 1991; Linden and Scott 1989b). However, depending on the stimulus

and the design of the animal or human study, several conclusions, and mainly

hypotheses, can be drawn. Using electrophysiological records after tooth extraction

in cats, the study of Linden and Scott (1989b) showed that at least some

mechanoreceptors which originally innervated the periodontal ligament are still

present in the edentulous bone. This is shown by electrical stimulation of the

edentulous ridge yielding an activation of nerve fibres with cell bodies in the

mesencephalic nucleus. Yet, no activation was found in the mesencephalic nucleus

or in the trigeminal ganglion after mechanical stimulation of the edentulous ridge

(Linden and Scott 1989b) or implants (Bonte et al 1993). However osseointegrated

implants influenced the reflex effects of jaw-closing muscles in cats. Bonte et al

(1993) report inhibition of electrical activity if sufficient forces are applied either to the

tooth or to the implant. On the other hand, no similar inhibitory reflex has been found
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in humans in the absence of teeth (Jacobs and van Steenberghe 1995; Bonte and van

Steenberghe 1991).

In the natural dentition, periodontal ligament nerve fibres having their cell

bodies located at the mesencephalic nucleus are associated with specialized

mechanosensory feedback during oral function (Linden and Scott 1989a). Since those

fibres do not respond to mechanical stimulation, even though still present after tooth

extraction, this function is expected to remain impaired after oral implant

rehabilitation. Indeed, studies evaluating load perception threshold on implants and

teeth found that this function, although better than in a fully edentulous condition,

remains impaired on osseointegrated implants (Jacobs and van Steenberghe 1993).

However, very important is the recent observation of Habre-Hallage et al. (2012).

This group was the first to demonstrate a sensory cortical response in humans after

pure mechanical implant stimulation. They underlined the role of central plasticity

occurring after tooth extraction and implant rehabilitation, which may allow some

functional adaptation controlled by other areas in the central nervous system.

Although the present study could not identify specialized sensory receptors in

the peri-implant tissues, the diameter of myelinated nerve fibres observed in the

present research suggested that these fibres might be involved in the transmission of

pressure and touch stimuli (Manzano et al 2008). Knowledge derived from studies

about mechanoreceptors located in the human periodontal ligament should be

applied in future immunohistochemical studies to unravel sensory function in bone

tissue after implant placement. Indeed, studies in periodontal ligament have shown

that immunoreactivity to neurofilament protein (NFP), S-100 antibody and unspecific

cholinesterase acetilcolinase are related to Ruffini-like mechanoreceptors in the

periodontal ligament (Maeda et al 1999; Kannari 1990). Up till now, studies on bone

innervation are more advanced in describing the function of nerve fibres in the bone

remodeling and in transmission of nociceptive stimuli. Future studies should focus on

the molecular process taking place during mechanical stimuli in mandible

rehabilitated with implants, as well as in the dentate and edentulous jaw bone.

Peri-implant tissue has been investigated from several aspects; e.g. density of

nerve fibres (Wada et al 2001; Buma et al 1995; Weiner et al 1995; Sawada et al 1993),



Chapter 5: The peri-implant innervation: literature review and findings

145

collagen fibre and osteon orientation (Traini et al 2009; Neugebauer et al 2006), bone-

implant contact and effects of implant materials in nerve conduction (Onur et al 2006).

Nevertheless, the innervation patterns for sensory nerve fibres involved in the tactile

function have never been demonstrated after implant placement. From

psychophysical studies, it is known that an improved tactile function can be expected

in edentulous patients after implant rehabilitation (Jacobs and van Steenberghe 2006;

Lundqvist and Haraldson 1984). Furthermore, evidence related to masticatory function

and central stimulation reinforces the role of peri- implant bone innervation in the

physiological integration of implants (Habre-Hallage et al 2012; van der Bilt 2011; Kimoto

et al 2008; Yan et al 2008).

The present study describes for the first time peri-implant innervation in

humans. This implies that the present discussion has to oppose the human findings

to the state-of-the-art on animal findings. After implant insertion into the tibia of the

goat, Buma et al (1995) described necrosis and subsequent dynamic neural

sprouting and reinnervation associated with the process of bone formation. The

remodeled bone became reinnervated 6 weeks after implant placement with nerve

distribution becoming similar to the normal bone after 12 weeks. This study

supported the close relationship between vascularization and innervation, once nerve

regeneration was observed in areas where vascularization has been restored.

In a dog model, Wang et al (1998) have reported nerve fibre degeneration 3

days after implant installation, followed by regeneration at day 7.

Immunohistochemical studies using NFP have shown the presence of NFP-positive

nerves in the bone marrow, Haversian canals or associated with fibrous connective

tissue (Wada et al 2001; Weiner et al 1995; Sawada et al 1993), although with no

particular distribution (Weiner et al 1995). By using protein gene product 9.5 (PGP 9.5)

in rat femurs, Ysander et al (2001) have reported no significant difference in the

neural density between the osseointegrated site and the unoperated contralateral

bone. Similarly, Sawada et al (1993) have observed no significant changes in the

distribution pattern of NFP-positive nerves or incidence of regeneration of sensory

receptors after osseointegration.
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Nevertheless, Ysander et al (2001) have reported changes in the neuropeptide

activity of bone marrow cells participating in bone remodelling around the implant

threads. According to the authors, the cellular concentration of calcitonin gene

related peptide (CGRP) increases in association with osseointegration. CGRP is a

widely expressed constituent of sensory neurons which plays an important role in

nerve function and repair when axons are severed. In addition, CGRP seems also

involved in bone remodelling (Li et al 2004; Konttinen et al 1996). Compared to the

contralateral control side, bone marrow cells resembling osteoclast and activated

monocytes or macrophages were CGRP-positive in higher density in osseointegrated

specimens, mainly where the remodeling process had not yet been finalized (Ysander

et al 2001). Those findings may indicate a true relationship between nervous system,

bone remodeling and osseointegration process, also reported by other authors

(Konttinen et al 1996; Buma et al 1995). Yet, no study has been found discussing

differences in nerve fibre morphology, distribution pattern or molecular processes

related to the several aspects involved in implant rehabilitation.

Irrespective of all those evidences, it has to be admitted that from all

vertebrate senses, touch/tactile function is the least understood at the molecular level

(Welsh et al 2002) making the connection between morphology and function a

complex matter to unravel using the histological techniques available. It has been

postulated that the core components of mechanosensors are ion channels. Such

channels could convert mechanical energy directly into an electrical signal; this could

account for the very high speed response of mechanosensors (Welsh et al 2002). The

understanding of tactile function at the molecular level might help to identify nerve

fibres involved in the osseoperception phenomenon. The exact origin of nerve fibres

identified in the present study could not be determined. Therefore, in line with the

conclusion by Buma et al (1995), detailed tracer studies are needed to evaluate the

exact nature of the fibres demonstrated in the present study.

The debate on peri-implant bone innervation is stimulated by the technical

difficulties inherent in the application of neurohistological techniques to hard tissue

such as bone. One should keep in mind that the osseoperception phenomenon, in

implants and normal bone needs further exploration. Future studies should approach
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the perspectives on improving bone innervation around implants, its applicability and

advantage over the current techniques.

Conclusions

The present report is the first to describe the presence, size and location of

peri-implant bone innervation in human jaw bone. Nerve fibres could be detected

inside newly formed bone. Both myelinated and unmyelinated nerve fibres were

observed in the peri-implant bone, localized in the Haversian canals, also those close

to the bone-implant interface.
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Peri-implant bone tissue assessment by comparing the outcome of intra-oral

radiograph and cone beam computed tomography analyses to the histological

standard.

Abstract:

Objectives: The present study aims to identify radiographic methods revealing data

that are most representative for the true peri-implant bone as assessed by histology.

Materials and methods: Eighty implants were placed in 10 minipigs. To assess

matching between different images modalities, measurements conducted on intra-

oral digital radiographs (IO), cone beam (CBCT) and histological images were

correlated using Spearman’s correlation. Paired tests (Wilcoxon test) were used to

check changes on bone parameters after 2 and 3 months healing. Results:

Significant correlations were found between bone defect depth on IO and histological

slices (r=+0.70, p<0.01), as well as on CBCT images and histological slices (r=+0.61,

p<0.01). CBCT and IO images deviate respectively 1. 20 and 1.17mm from the

histology regarding the bone defect. No significant correlations were detected

between fractal analysis on CBCT, intra-oral radiography and histology. For bone

density assessment, significant but weak correlations (r=+0.50, p<0.01) were found

for intra-oral radiography versus histology. Significant marginal bone level changes

could be observed after 3 months of healing using intra-oral radiography.

Conclusions: This study allowed linking radiographic bone defect depth to the

histological observations of the peri-implant bone. Minute bone changes during a

short-term period could be followed up using digital intra-oral radiography.

Radiographic fractal analysis did not seem to match histological fractal analysis.

CBCT was not found reliable for bone density measures, but might hold potential with

regard to structural analysis of the trabecular bone.
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Introduction

Radiographic analyses are commonly used in implant dentistry as an

important diagnostic tool for treatment planning and follow-up (Laurell & Lundgren

2009; Misch et al 2008; Vercruyssen et al 2008; Ribeiro-Rotta et al 2007; Parel et al 2004;

BouSerhal et al 2002; Floyd et al 1999; Brånemark et al 1997). During treatment planning,

bone quantity and quality need to be determined (Song et al 2009; Turkyilmaz et al

2007; Turkyilmaz et al 2006), whereas for treatment follow-up, analysis of implant

stability, marginal bone level and bone implant contact are applied (Alsaadi et al 2007;

Aranyarachkul et al 2005; Atsumi et al 2007; Friberg et al 2000; Meredith 1998). Follow-up

analysis aims to assess osseointegration and detect signs of failing integration at an

early stage. Marginal bone loss and loss of bone-to-implant contact (e.g. by

marsupialisation) may indeed negatively influence implant success (Qian et al 2012;

Snauwaert et al. 2000; Isidor 1997; Misch 1990). Several criteria to analyze oral implants

radiologically have been proposed by different authors (Thoma et al 2013; Pikner 2008;

Albrektsson et al. 1986; Schnitman and Shulman 1979). In general, radiological success

criteria are defined by a minimum marginal bone loss and absence of peri-implant

radiolucency (Qian et al 2012; Pikner 2008).

Intra-oral radiography have been widely used to reveal changes around

implants, mainly due to its considerable advantages, e.g. low costs, readily

availability, good patient tolerance, user friendliness and ability to provide high-

resolution images for accurate measures at the implant sites (Jacobs & van

Steenberghe 1997; Tyndall and Brooks 2000; Pikner 2008; Hermann et al 2001; Isidor 1997).

Nevertheless, to detect a continuous bone loss, it is important that changes in the

bone level can be reliably measured by radiological assessment. Intra-oral

radiographic measures have proven to estimate the marginal bone level closer to

reality (gold standard histological assessment) when compared to clinical probing in

an animal study (Isidor 1997b).

Despite their widespread use, intra-oral radiographs may also suffer from the

inherent 2D nature, with anatomical superposition and geometric distortion, limiting

the visibility of intraosseous defects and their changes over time (Patel et al 2009a;

Tyndall & Brooks 2000). On 2D images, unfavorable marginal bone level or absence

of osseointegration can be hidden by superimposition (Isidor 1997 b). Furthermore, to
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detect non-osseointegration, the presence of a soft tissue layer adjacent to the

implant surface should be made visible radiologically. Yet, intra-oral radiographs

cannot always achieve this considering limits in spatial and contrast resolution

(Jacobs & van Steenberghe 1997; Pikner 2008). Furthermore, the 2D nature prevents

evaluating the buccal and lingual bone levels.

Cone beam computer tomography (CBCT) might overcome some of the

limitations of intra-oral radiographs (Patel et al 2009a; Patel 2009b; Patel et al 2009 c).

Indeed, three-dimensional imaging may allow examining the implant and its

surrounding tissues in several orthogonal planes, while having the possibility to scroll

through the slices to visualize the 3D anatomy. However, marginal bone level

measurements on CBCT images have never been validated. This is necessary,

considering that CBCT images can indeed contribute to an increased spatial

resolution, yet the accuracy and precision of technique might be hampered by image

resolution and artifacts generated by implant material.

It is important to note that an appropriate radiological examination not only

aims to follow marginal bone level changes, but also monitor other modifications in

the marginal bone. Thanks to development of digital image processing, some minute

changes in the bone, which up till now remained radiologically invisible, became

noticeable. Bone density (Nackaerts et al 2006; Lee et al 2007; Nackaerts et al 2008) and

structure (Huang et al 2013; Couture et al 2003; Dougherty & Henebry 2001; Lindh et al

1996; Mish et al 1999; Wilding et al 1995) can be cited as two other features helping to

measure objectively morphological and physical changes in the bone. Hence, other

methods should become clinically available to allow radiologists and surgeons to

determine precisely bone changes by means of radiological images. However, the

application of these new technologies (digital intra-oral radiography and CBCT) and

the clinical validity of new bone parameters still need to be tested.

Therefore, this study aims to analyze the marginal bone level measured on

CBCT images and to evaluate some bone characteristics (bone density and fractal

features) on CBCT and intra-oral radiograph images using histological slices as gold

standard. Furthermore, it will be evaluated if those analyses can radiologically detect

bone remodelling. This will be approached using intra-oral radiography by comparing
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bone level, density and structure at implant placement and 2 and 3 months after

implant healing in an animal model. Thus, the following hypotheses were formulated:

1) tissue parameters assessed on intra-oral radiographs and cone beam
computer tomograms match those found in histomorphometric analyses of the same
sites. (Part I: Matching);

2) radiographic changes in peri-implant tissue parameters are noticeable after
3 months of healing (Part II: Short follow up).

3) IO radiographic density of peri-implant bone varies among implant neck,
threads and apical regions (Part III: Intra-oral radiographic density)

4) IO radiographic density of bone before implant placement can predict
marginal bone loss after 3 months healing (Part III: Intra-oral radiographic density)

Material & Methods:

Material:

Ten Göttingen male mini-pigs were used as experimental animals. Ethical

approval was obtained from the local ethical committee for laboratory animal science

(Biomedical Science Group, KU Leuven). A total of 80 implants were placed in upper

and lower jaw. In each of the 4 quadrants, the last premolar and first molar were

extracted 3 months prior to the start of the study. At baseline, 2 implants were placed

in each jaw, and four additional implants were placed 2 months after the first implant

installation. The animals were then sacrificed one month later. Surgical procedures

were performed under general anaesthesia following a standardized protocol (crestal

incision, progressive widening osteotomy site, tapping, and submerged healing).

Eighty implants were used to conduct the correlation between radiological and

histological images and forty implants were observed at the follow up part of the

study (figure 6.1).
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Figure 6.1: Study design overview. M (mesial side); D (distal side); B (buccal side); L (lingual side).
Images on BL (bucco-lingual) direction were used to check matching between different image
modalities while images on MD (mesio-distal) direction were used to proceed follow-up
measurements.

Methods:

Part I: Matching

In this part of the study, measurements on intra-oral radiographs and on CBCT

were compared to the same measurement on histological images derived from the

same sections of the same specimen using similar orientation and region of interest

(ROI) (figure 6.2).
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Figure 6.2: Methodological design (Part I: Matching). Image direction is indicated by letters on the
right bottom of the images. MD= mesio-distal direction; BL=bucco-lingual direction. Only images taken
on the same direction were used for matching purposes. Numbers on the left top indicate the slice
thickness. Histological slices thickness had a slice thickness ranging from 20 to 30 µm.

Digital Intra-oral radiography

After a pilot testing with dry pig jaws in water as a soft tissue simulator,

radiographic images were taken using the Planmeca Prostyle Intra® radiation tube

(Planmeca, Helsinki, Finland) at 70kV, 8mA and 0.16s. Intra-oral digital radiography

was performed on all samples after animal sacrifice with the VistaScan®

phosphorplate technique (Dürr Dental, Bietigheim-Bissingen, Germany) related

DBSwin® software (Dürr Dental). Jaw bone segments including the implants were

inserted in a wooden box for standard projection geometry (figure 6.3). This box was

designed including an aluminium step wedge, a film holder and an opening to fit a

rectangular collimator, as described in detail previously (Nackaerts et al 2006). The
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wedge consisted of nine steps, gradually increasing

to standardize radiographs and to allow densitometric analysis.

Figure 6.3: Wooden box for standardized radiography. Left image: Aluminium wedge is included in all
radiographs . Right image: Collimator fits cover box.

Intra-oral digital radiographs of each specimen were taken after animal

sacrifice in two different cutting directions revealing the bucco

distal regions around the implants

images (bucco-lingual direction of view) and also used at the follow up section of the

study (mesio-distal of view). Images accepted to further analysis should clearly show

threads on both implant surfaces.

Cone Beam Computed Tomography

The same sample obtained after the animal sacrifice was used to obtain the

CBCT images using the Accuitomo 3D (Morita, Kyoto, Japan). The exposure

parameter settings selected after a pilot test included: 65kV, 1.5mA

360° turn. Images were reconstructed with a slice thickness of 0.125mm and a

cutting direction for histological matching (figure

Peri-implant bone characterization: bone structure and density

wedge consisted of nine steps, gradually increasing with 1.3mm and it was included

to standardize radiographs and to allow densitometric analysis.

Wooden box for standardized radiography. Left image: Aluminium wedge is included in all
radiographs . Right image: Collimator fits cover box.

oral digital radiographs of each specimen were taken after animal

sacrifice in two different cutting directions revealing the bucco-lingual and mesio

distal regions around the implants. These images could be correlated to histological

lingual direction of view) and also used at the follow up section of the

distal of view). Images accepted to further analysis should clearly show

threads on both implant surfaces.

Cone Beam Computed Tomography

The same sample obtained after the animal sacrifice was used to obtain the

CBCT images using the Accuitomo 3D (Morita, Kyoto, Japan). The exposure

parameter settings selected after a pilot test included: 65kV, 1.5mA

360° turn. Images were reconstructed with a slice thickness of 0.125mm and a

cutting direction for histological matching (figure 6.2).
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with 1.3mm and it was included

Wooden box for standardized radiography. Left image: Aluminium wedge is included in all

oral digital radiographs of each specimen were taken after animal

lingual and mesio-

hese images could be correlated to histological

lingual direction of view) and also used at the follow up section of the

distal of view). Images accepted to further analysis should clearly show

The same sample obtained after the animal sacrifice was used to obtain the

CBCT images using the Accuitomo 3D (Morita, Kyoto, Japan). The exposure

parameter settings selected after a pilot test included: 65kV, 1.5mA, 17.5 s and a

360° turn. Images were reconstructed with a slice thickness of 0.125mm and a
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The DICOM images from the CBCT were exported and saved to be analyzed

using dedicated software (Image J, US National Institutes of Health, Bethesda,

Maryland, USA; Axiovision, Carl Zeiss MicroImaging GmbH, Jena, Germany).

Histological images

The tissue samples with the implants were fixed in a CaCO3-buffered formalin

solution and dehydrated in an ascending series of ethanol concentrations over 18

days. Embedding was performed by infiltration and polymerisation of

methylmetacrylate. Sectioning of the samples was done with a diamond saw (Leica

SP1600, Wetzlar, Germany) in the mesio-distal direction. The sections were reduced

to a final thickness of 20 to 30 µm by grinding and polishing (Exakt 400 CS grinding

device, Exakt Technologies Inc., Germany). Up to 10 sections were prepared per

sample and the middle one was selected. These sections were stained with a

combination of Stevenel’s blue and Von Gieson’s picrofuchsin, visualising

mineralised bone tissue (red) and non-mineralised tissue (blue-green).

Histological examinations were performed under the light microscope (Leitz

Laborlux S, Wetzlar, Germany) at a magnification of x40. The assessments of the

histomorphometrical proportions were performed by means of a high-sensitivity

colour video camera (AxioCam MRc5, Zeiss, Göttingen, Germany) mounted on the

light microscope and by means of a colour image analyzing software package

(Axiovision 4.0, Zeiss, Göttingen, Germany).

Due to technical limitations, histological sections were made in the mesio-

distal direction providing bucco-lingual view of bone and implant, whereas the initial

intra-oral radiographic views (in vivo) showed these structures in a mesio-distal view.

At sacrifice intra-oral radiographs were taken in both directions, as such to enable

matching with histology and comparison over time. For CBCT, reconstructions in both

directions also guaranteed a perfect match with histological and intra-oral

radiographs

Measurements

First, the corresponding cross-sectional CBCT image to be used selected: one

sectional image to correspond to the histological image and the other to correspond

to the intra-oral radiograph (figure 6.4).

A B C
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1. Bone defect depth

Bone defect depth is the distance (mm) of the crater-shaped marginal bone

defect. The Axiovision software was used to evaluate intra-oral radiographs, CBCT

and histological images (figure 6.4).

2. Peri-implant bone fraction

By means of the Axiovision software, the bone fraction (percentage of bone)

around the implant could be measured on histological images, CBCT and intra-oral

radiographs. This bone fraction was measured in a zone of 100 μm around the 

implant (figure 4).

3. Fractal analysis

Fractal Analysis was used to detect changes in the bone structure or

geometry. Image J software using the box-count function was applied to all 3 image

modalities. The region of interest (ROI, 4x1 mm²) consisted of the bone around the

implant from the first thread to the last thread.

Figure 6.4: Regions of interest (ROI) at matching part: on intra-oral (A), CBCT (B) and histological (C)
images. Bone defect depth (lines); Bone fraction (contour line around implant) and Fractal analysis
(rectangle).

After selecting the ROI, this area was transformed in a binary image and noise

was removed applying a despeckle tool on Image J. After this the fractal box count

function was used on the same software. A graphic and a fractal dimension number

were automatically generated and the latter was used as fractal dimension result for

further statistical analysis.
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Part II: Follow up

At this part of the study, some bone parameters were analysed to detect

possible changes over the time (baseline, 2 months and 3 months healing) using

standardized digital intra-oral radiographs.

Digital Intra-oral radiography

At baseline, the intra-oral digital radiography was performed on all samples

with the VistaScan® phosphorplate technique (Dürr Dental, Bietigheim-Bissingen,

Germany) with related DBSwin® software (Dürr Dental). Right and left premolar

region of upper and lower jaws were radiographed. Rinn XCP® (Dentsply Rinn, Elgin,

Illinois, USA) film-holding instruments were adapted to contain an aluminium step

wedge to standardize radiographs and to allow densitometric analysis. The wedge

consisted of nine steps, gradually increasing by 1.3mm. At the time of implant

surgery, individualized impression moulds (Kerr Compound Sticks, Kerr Corporation,

Paris, France) were made for each minipig and attached to a bite block to

standardize the geometrical conditions of the radiographs (figure 6.5).

Figure 6.5: Individualized positioning device (adapted from the Rinn XCP position device, see
Nackaerts et al 2006) for standardized follow-up radiography, using a film-holder with aluminum step
wedge and occlusal key in green stent. Left image: Film-holder with occlusal green stent and
phosporplate positioned; Right image: Tube view of the device showing the occlusal stent, step wedge
and phosphor plate.

The use of the paralleling technique, complemented with a positioning holder,

minimized image enlargement and geometric distortion of the radiographs.
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Radiographs were taken at implant placement, after 2 months and 3 months healing

(figure 6.6).

Measurements

1. Marginal bone level

Marginal bone level analysis was conducted using DBSWIN (Dürr Dental,

Bietigheim-Bissingen, Germany). After scanning, the perio filter was used and the

distance between implant top and the first implant-bone contact was measured at the

baseline and after 2 and 3 months of healing (figure 6.6).

2. Bone density

Custom-made software which converts grey values into millimetre aluminium

equivalent (mm Al eq) values was used. This software was previously described and

thoroughly tested in vitro (see: Sun et al 2009; Nackaerts et al 2006). This measurement

was conducted only on intra-oral radiographs as these were the images taken with

aluminium step wedge. The region of interest (2.0mm2) was the bone around the

implant neck (figure 6.6). This result generated aluminium equivalent density (AED)

values of the bone as showed in intra-oral images.

3. Fractal analysis

The same approach as described earlier was used (figure 6.6). A smaller ROI

(2.0mm2) was chosen as not all follow-up clinical images revealed the entire length of

the implant.

Part III: Intra-oral radiographic density 1

The main objective of this part was to determine aluminum equivalent density

(AED) values of peri-implant bone at implant neck, threads and apical regions, and

evaluate whether AED values at baseline could predict bone loss after 3 months

healing. The intra-oral radiographic images analyzed were taken at baseline and 3

months after healing as explained before. Bone density was measured as mentioned

at follow up section. The region of interest was the bone around the implant neck,

threads and apex (figure 6.7). Those measurements were conducted on images
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taken at 3 months healing.

values of the bone as showed in Intra

A

A

C

A

B

B

Figure 6.7: Part III measurements.
bone density measurements. B
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This result generated aluminium equivalent density (AED)

values of the bone as showed in Intra-oral images.

C D

Figure 6.6: Part II (follow
close-up shows ROI for bone density method.
Aluminium wedge (white arrow) was used as a
reference for bone density measurements.
up shows marginal bone level method. Notice
implant top was used as reference point.
shows ROI for fractal analysis.

Part III measurements. A: Aluminium wedge was used as a reference for
B-D:.ROI implant neck (B), threads (C) and apical (D).
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This result generated aluminium equivalent density (AED)

Part II (follow-up) measurements. A:
up shows ROI for bone density method.

Aluminium wedge (white arrow) was used as a
reference for bone density measurements. B: close-
up shows marginal bone level method. Notice
implant top was used as reference point. C: close-up

l analysis.

Aluminium wedge was used as a reference for
.ROI implant neck (B), threads (C) and apical (D).
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To evaluate whether AED values at baseline could predict bone loss after 3

months healing, the mean bone density at the three levels was used to calculate total

bone density at baseline. Bone loss after 3 months healing was calculated in IO

radiographs by subtracting the marginal bone level after 3 months from the marginal

bone level at baseline.

Statistics

For statistical analysis, Statistica software (Statistica version 6, StatSoft Inc.,

Tulsa, OK, USA) was applied with the level of significance set at 0.05. Nonparametric

Spearman’s tests allowed comparing radiographic methods to the histological

standard. Friedman test for comparison of dependent data and Wilcoxon matched

pairs test was applied to search for significant differences among baseline, 2 and 3

months healing period. Furthermore, Kruskal-Wallis with Bonferoni correction were

used to compare the radiographic density among implant regions, Pearson

correlation tests were used to check the correlation between bone losses after 3

months healing to the AED values at the baseline. In addition, a linear regression

analysis was used to verify if AED at baseline could explain the bone loss after 3

months healing.

Results

Part I: Matching

Results showed statistically significant correlations in bone defect depth

between intra-oral radiographic images and histological slices (r=0.70, p<0.01) as

well as between CBCT images and histological slices (r=0.61, p<0.01) (table 6.1).

However, intra-oral radiographs and CBCT images yielded a bone defect depth mean

underestimation of 1.17mm and 1.20mm, respectively, compared to the histological

slices. Higher marginal bone levels (>1.5mm) on histological images accounted for

higher mean deviations on intra-oral (2.27mm) and CBCT images (2.16mm) when

compared with lower (<1.5mm) marginal bone levels (-0.002mm and 0.04mm

deviation on intra-oral and CBCT images, respectively). For the peri-implant bone

fraction, a weak and not significant correlation was found between mean results
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obtained on CBCT and on histological images. Furthermore, no significant

correlations were detected between fractal analysis as evaluated on CBCT, intra-oral

radiography and histology.

Table 6.1: Correlation coefficients between different methods.

Measurement Correlation Correlation coefficient r

Bone Defect Depth CBCT x Histology 0.61*

CBCT x Intra-oral 0.64*

Histology x Intra-oral 0.70*

Bone Fraction CBCT x Histology 0.28

Fractal analysis CBCT x Histology 0.34

CBCT x Intra-oral -0.04

Histology x Intra-oral -0.19

*Statistically significant (p<0.05)

Part II: Follow up

When monitoring changes over time using intra-oral radiography, 2 and 3

months evaluation period allowed visualising peri-implant marginal bone level and

density changes, with a significant peri-implant bone loss as established by a more

apical position of marginal bone level after 2 months (1,20mm) and 3 months

(1,75mm) of healing compared to the baseline bone level (0 mm) (table 6.2).

Table 6.2: Follow-up measurements (baseline, 2 months and 3 months healing). Number of cases,
mean, confidence interval, standard deviation (SD), minimum and maximum is described below.

a, b
difference between means marked with same letter were statistically significant (p<0.01)

BASELINE
METHODS N Mean 95% CI SD Minimum Maximum

Marginal Bone Level (mm) 40 0.00a 0,09 - 0,42 0.50 0 2.45
Bone Density (mmAl eq) 39 5.25 4,51 - 6,21 2.61 0.30 11.55
Fractal Analysis (D) 39 1.72b 1,69 - 1,74 0.07 1.47 1.82

2 MONTHS
METHODS N Mean 95% CI SD Minimum Maximum

Marginal Bone Level (mm) 38 1.20a 1,09 - 1,89 1.21 0 4.55
Bone Density (mmAl eq) 36 5.92 5,04 - 6,85 2.68 0.60 10.80
Fractal Analysis (D) 36 1.71 1,67 - 1,72 0.06 1.53 1.84

3 MONTHS
METHODS N Mean 95% CI SD Minimum Maximum

Marginal Bone Level (mm) 37 1.75a 1,37 - 2,25 1.37 0 4.75
Bone Density (mmAl eq) 37 5.62 5,25 - 6,45 1.88 2.80 9.85
Fractal Analysis (D) 37 1.67b 1,63 - 1,68 0.09 1.39 1.84
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No significant changes of AED were found after 3 months, despite the higher

values compared to baseline. Although not statistically significant, an increase of

bone density and decrease fractal dimension could be detected after 3 months of

osseointegration (table 6.2).

AED was significantly, although weakly, correlated to bone defect depth and

marginal bone level changes. No correlation was found with peri-implant bone

volume. AED values lower than 5mmAleq at baseline showed marginal bone level

changes greater than 2.0mm after 3 months healing (figure 6.8).

Figure 6.8: Graphic showing mean (SD) bone loss (in mm) after 3 months healing with the
sample classified according to baseline bone density.

Part III: Intra-oral radiographic density

The bone tissue around implant threads and apical region showed a

significantly higher radiographic density (AED) than around implant neck (figure 6.9

and table 6.3).
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Figure 6.9: Box-plot showing the mean, sample distribution and 95%CI of AED at different
implant levels.

Table 6.3: Aluminum density equivalent values of peri-implant bone at implant neck, threads
and apical regions (p=0, 0001)

AED was significantly, although weakly, correlated to bone loss. AED values

lower than 5mmAleq at baseline showed a bone loss greater than 2.0mm after 3

months healing (figure 6.10 and table 6.4).
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Figure 6.10: The graphic (A) indicates a cutting value of AED at the baseline to predict the bone loss
after 3 months healing. The linear regression analysis, represented in graphic (B), was used to verify
this observation.
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Table 6.4: Linear regression analysis bone loss X AED baseline.

Term Coefficient 95% CI SE p

Intercept 3,749 2,80 to 4,70 0,47 <0.0001

Slope -0,3543 -0,53 to -0,18 0,08 0,0002

bone loss = 3.749 - 0.3543AED baseline

Discussion

This study compared changes in bone parameters measured on histological

and radiological images obtained after 3 months of implant placement. Variables

considered in the study were: bone defect depth, peri-implant bone fraction, marginal

bone level, bone density and bone structure (fractal analysis). The study design

allowed comparing these variables to verify the possible link of various radiographic

analyses to the true histological standard of the peri-implant bone tissues, as well as

to evaluate changes over time.

Marginal bone level and bone defect depth values obtained on intra-oral

radiography and CBCT images were lower than the values obtained on histological

images. Caulier et al (1997) concluded that histological marginal bone level

measurements are 0.85 mm more apical than on intra-oral radiographs. Zybutz et al

(2000) reported that intra-oral radiographs underestimate the marginal bone level

around teeth by approximately 1.4 mm compared to direct bone measurements

during surgical procedures. In the present study, this underestimation varied from

1.17 mm (bone defect depth intra-oral radiograph) to 1.20 mm (bone defect depth

CBCT). However, fifty percent of the deviations where smaller than 0.5mm, being not

considered clinically significant. Besides, CBCT images were more reliable to identify

some cases of extensive bone loss (figure 6.11).

Marginal bone level greater than 1.5mm was considered the “cut off point” of

this research (boundary between “problematic” and “non-problematic” cases). Both

image modalities achieved high specificity and an average sensitivity (table 6.5)

using histological measurements as true results. However, more than marginal bone
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level should be observed when evaluating implant failure or success (Esposito et al

2009; Esposito et al 2009b; Esposito et al 1997).

Table 6.5: Sensitivity and specificity IO and CBCT tests. Table shows number of positive and
negative cases on IO and CBCT images considering marginal bone level greater than 1.5mm as
positive result.

Figure 6.11: Examples of intra-oral (A), histological (B) and CBCT (C) images of same
specimen.

It is important to consider the shortcomings in the present study design, e.g.

differences in slices thickness & orientation, when the final goal is to try to match

intra-oral radiographs with histological standards. Nevertheless, it is worthy to be

noted that histological bone defect depth measurements were significantly correlated

with all radiographic measures (table 6.1). Interestingly, total marginal bone loss after

3months were significantly higher for lower density bones at baseline, indicating that

more bone loss occurred for lower density bone (figure 6.8). This observation

corresponds well to those reported by Nackaerts et al (2008), who observed a

tendency towards bone loss when having a lower bone quality. The finding also

confirms the outcome of 5 other studies (Mohammad et al 2003; Payne et al 1999;

Taguchi et al 2005; Takaishi et al 2005; Yoshihara et al 2004).

IMAGE
S

<1.5mm (test
negative)
(n° cases)

> 1.5mm (test
positive)

(n° cases)

False
positive

False
negative Sensitivity

Specificity

IO 48 29 6 22 67% 84%

CBCT 44 33 7 20 69% 82%

HISTO 32 45 - - - -
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Several methods have been used to determine the radiographic density of

bone tissue, e.g. direct use of gray values, linear transformation of the attenuation

coefficient (Hounsfield units), digital image subtraction and the use of a aluminum

step wedge. The step wedge is used as an image internal reference to calculate the

aluminum equivalent density of the bone. This method has shown a high precision,

accuracy and diagnostic specificity in previous studies (Sun et al 2009; Nackaerts et al

2008).

The bone density range obtained with the custom-made software (5.13 –7.28

mmAl eq) is in agreement with the mean values (5.7 mmAl eq) found in a previous

study (Nackaerts et al 2008) using the same custom-made software. A significant

correlation was found between the bone density measured on 2D radiographic

images and peri-implant bone fraction assessment on histological slices (r=+0.50).

The significant correlation between the radiographic bone density and peri-implant

bone fraction on histological slices and the corresponding changes in density and

bone level over time, may suggest that the use of a dedicated bone density tool with

Al wedge, may be advocated to detect bone changes. Furthermore, a previous study

(Nackaerts et al 2006) reports that this custom-made software was able to detect an

actual change in bone mineralization of 6.6%. This is a crucial value to consider, as

previous studies reported that 30-53% of the bone needed to be removed before a

difference could be noted radiographicaly (Dreyer 1993).

AED might be a promising diagnostic tool to predict bone tissue response to

titanium implants. An increased bone loss (>2mm) seems more likely to occur at low

density bones(<5mmAleq). Distinct bone densities were found around the implant

neck, threads and apical levels. Radiographic bone density was found lower at

implant neck than in the other two levels. This difference may be explained by the

more intense bone remodeling around implant neck since this region has a higher

stress/strain concentration. Yet, for a more precise analysis of osseointegration,

further studies are needed to better diagnose the absence of bone formation around

implants by means of radiographic images.

In the present study, the fractal analysis method was unable to detect

significant changes or to provide a result matching among histological, intra-oral

radiograph and CBCT images. Although this method has been developed and has
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prove to show some correlation with the actual bone status (Benhamou et al 2001;

Caligiuri et al 1994; Chung et al 1994; Faulkner & Pocock 2001; Fazzalari & Parkinson

1996; Feltrin et al 2004; Geraets & van der Stelt 2000; Heo et al 2002; Jolley et al 2006;

Majumdar et al 1999; Parkinson & Fazzalari 2000; Updike & Nowzari 2008; Wagle et al

2005), it remains a mathematical process with plenty of outcome measure points.

This latter presume creates a big gap between this high end fractal analysis and the

true histological gold standard. Indeed, according to our knowledge no study could

ever prove a true matching. One could however think of this method as a kind of

structural analysis, especially when CBCT imaging comes into play. Indeed, as

density values of CBCT are unstable, a three-dimensional structural analysis method

might be considered as a valid alternative to measure bone quality (Hua et al 2009).

There is indeed a tendency towards a matching bone structural pattern, even when

simply matching histological and cone beam CT slices, which might be objectified

and automated by advanced image analysis methods (figure 6.12).

In this perspective, there is a need to develop new dedicated analysis

methods for bone quality assessment using CBCT. The results of the present study

may have applications for implant follow-up in daily dental practice as well as in

animal research designs to allow for refined non-invasive monitoring of the peri-

implant bone level during healing and osseointegration.

Conclusions

Within the limits of an animal study it can be concluded that:

1. Significant correlations could be observed between the bone level histologically
assessed and the bone level measured on IO radiographs, and CBCT images.

2. On average CBCT and IO images deviated respectively 1,20 and 1,17mm from the
histological bone level, with 50% having a deviation of less than 0.5mm on both
images modalities.

3. Tissue parameters as measured on intra-oral radiographs correlate significantly
with some histomophormetric parameters. However, such correlation could not be
established for CBCT images.

4. An increased bone loss (>2mm) seemed more likely to occur at low density
bones(<5mmAleq).

5. Radiographic fractal analysis did not seem to match histological fractal analysis.

6. CBCT was not found reliable for bone density measures, but might hold potential
with regard to structural analysis of the trabecular bone
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Figure 6.12: Examples of CBCT slices corresponding to the histological slice
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of the same specimen.
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Examples of CBCT slices corresponding to the histological slice
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Comparative anatomy of neurovascular canals and tooth roots in mandibles of

modern humans and great apes

ABSTRACT

Objectives: Mandibular anatomy has been constantly revisited by means of state-

of-the-art imaging technologies such as Cone Beam Computed Tomography (CBCT).

Yet, neurovascular canals located inside the mandible, together with the roots of the

teeth supported by this jaw bone, have scarcely been discussed regarding their

average dimensions and variability within the human and non-human primate

populations. Materials and methods: The present paper reported on the anatomical

variability of mandibular neurovascular canals (mandibular, incisive and lingual

canals) and tooth roots of 160 modern humans and great apes (Homo, Pan and

Gorilla). The Kruskal–Wallis Non-Parametric test and Dunn’s All Pairs for Joint Ranks

were applied to compare the variability of mandibular canals and root lengths among

the different groups. Multivariate analysis searched for redundant information, any

patterning in the sample, and whether groups could be differentiated by the studied

variables. Results and conclusions: The anatomical variability within mandibles of

anatomically modern humans from different period of time and regions, besides

within mandibles of human and non-human primates, contributed to an overview

about neurovascular canal anatomy and the relation with adjacent tooth roots. The

longer root length was not associated to smaller distances to neurovascular canals.

Geographically, anatomical features which characterize some populations could be

related to potential surgical and pathological risks. After comparing to mandibles of

great apes, the incisive canal is suggested to be a feature unique to the human

mandibles.
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INTRODUCTION

The anatomy of the mandible and lower teeth has being extensively studied in

several research fields. Nevertheless, little has been discussed about the

neurovascular canals located inside the mandible and the roots of teeth supported by

this jaw bone. Knowledge is scarce about their average dimensions and variability

within human and non-human primate population. Apart of its multidisciplinary

application, this knowledge may also add relevant considerations of clinical

applicability.

Mandibular anatomy has been extensively revisited by means of advanced

imaging technologies such as Cone Beam Computed Tomography (CBCT) (Oliveira-

Santos et al 2011; De Vos et al 2009; Greenstein et al 2008; Spoor et al 2000). This image

technique generates high quality image with a three dimensional (3D) visualization

(Liang et al 2010) leading to a more complete anatomical information (Vandenberghe et

al 2010; Jacobs et al 2002). In this way, maxillary and mandibular anatomy has been

carefully addressed in the recent literature adding better descriptions of

neurovascular structures (for review Jacobs et al 2007). Mandibular anatomy has been

revisited by 3D imaging with a focus on the mental foramen (Greenstein et al., 2006),

mandibular canal (Oliveira-Santos et al 2012; Kim et al 2009; Levine et al 2007), incisive

canal (Jacobs et al. 2002; Romanos et al. 2009), lingual canal (Liang et al 2006; Liang et

al 2007; Katakami et al 2009), as well as to other less frequently observed anatomical

variations such as bifid canals (Oliveira-Santos et al 2011b; Kuribayashi et al 2010; Naitoh

et al 2009a; Rouas et al 2007; Clayes and Wackens 2005), double mental foramina

(Oliveira-Santos et al., 2011; Orhan et al.,2011), anterior loop (Kuzmanovic et al 2003;

Mraiwa et al., 2003), lateral canal (Katakami et al 2009) and buccal canals (Fuakami et al

2011).

The position of those canals is of paramount importance since they harbour

nerves and vessels and any damage induced through surgery or implantology might

lead to permanent impairment of those neurovascular structures (Morris et al 2010;

Colella et al 2007; Renton et al 2010; Liang et al 2008). For instance, any nerve damage

during mandibular surgery can result in sensory disturbances (Juodzbalys et al

2011;Tay and Zuniga 2007; Walton 2000; Poort et al 2009; Abarca et al 2006; Dao et al

1998), expressed by a variety of symptoms ranging from altered sensation to pain
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(Sessle 2006). As long term sensory disturbances are unlikely to be successfully

treated (Bagheri et al 2010; Ziccardi et al 2007), they have a negative impact on the

patient’s morbidity and quality of life (Venta et al 1998; Abarca et al 2006). Prevention is

obviously the better approach to avoid such perioperative complication (Froum et al

2011; Hegedus et al 2006); therefore, knowledge on mandibular canal anatomy and its

variability (for review: Liang et al 2008; Gintaras et al 2010 ; Kingsmill et al 1999) is crucial

for a precise and safe surgical planning (Quevedo et al 2011; Rosano et al 2009;

Guerrero et al 2006. Van Assche et al 2007).

Although the mandibular form may reflect functional adaptation to forces

experienced during mastication (Plavcan and Daegling 2006), the mandibular

neurovascular canal has been considered the most stable structure guiding

mandibular development (Curien et al 2011; Captier et al 2006) and as such, it may be a

relevant structure to indicate intra and interspecific patterning related to mandibular

anatomy. However, the variations related to nerves are considered cranial discrete

traits of the human skull (Hanihara and Ishida 2001a). This means that they may result

from a process of adaptation to various environmental and subsistence patterns as

well as random drift by population size, network and isolation, resulting in the

development of regional frequency patterns (reviewed and discussed by Hanihara and

Ishida 2001b,c,d). Dimension variability such as canal diameter and proximity to root

apices can be cited as relevant features to the surgical planning, e.g. larger canals

closer to root apices are high risk factors for inferior alveolar nerve injuries (Kovisto et

al 2011). However, whether there is a regional or any other trend on this canal trait is

still to be determined and can certainly be useful for successful clinical diagnosis and

treatment prognosis in the dental practice.

This study investigated the anatomical variability of mandibular neurovascular

canals and root lengths of humans and great apes (Homo, Pan and Gorilla). In this

chapter, it is reported the anatomical variability of mandibular neurovascular canals

and tooth roots from a geographically distributed sample of contemporary humans

compared to medieval and prehistoric humans, likewise compared to gorillas and

chimpanzees. The crossing of information generated by an intra and interspecific

approaches may yield useful outcomes for clinical and research applications.
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MATERIAL AND METHODS

Material

The study sample consisted of 160 mandibular radiological images from

modern humans (Homo sapiens sapiens), chimpanzees (Pan paniscus) and gorillas

(Gorilla gorilla graueri). Modern human group comprised of adult mandibles from

three periods of time: prehistory, the middle ages and contemporary times. The

contemporary sample was composed of adult mandibles from 7 geographical

locations: Brazil, China, Congo, Greenland, India, Indonesia, and Belgium. The

sample size is showed in table 7.4.

The mandibular data sets of Brazilian and Belgian populations were patients’

CBCT images taken for preoperative treatment planning. All the patients gave their

informed consent for this examination while consulting the Department of

Periodontology of University Hospitals (KULeuven, Belgium) and the private clinic

Dental Radiology Rubens Raymundo (Rio de Janeiro, Brazil). The remaining

mandibular datasets consisted of dry adult mandibles provided by the Royal Belgian

Institute of Natural Sciences (Brussels, Belgium), from the department of Basic

Medical Sciences (University Hasselt, Belgium) and from the Royal Museum for

Central Africa (Tervuren, Belgium).

Methods

The CBCT images of Belgian and Brazilian groups were taken using i-CAT

CBCT scanner (I-CAT®,   Imaging Sciences International, Hatfield,  PA,  USA) and 

NewTom CBCT scanner (NewTom 3G®, Quantitative Radiology, Verona, Italy),

respectively. As for the dry mandibles, images were acquired by means of 3D

Accuitomo CBCT (J.Morita, Kyoto, Japan). All axial, sagittal and coronal images

were carefully examined under standardized viewing conditions. Linear

measurements were performed using i-Dixel (J.Morita, Kyoto, Japan) and MVE (Dr.

Jürgen Abel, Neuss, Germany) software tools. The characteristics of each CBCT

system used are shown in table 7.1. The smallest voxel size of each system was

used in this study.
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The measurements applied were related to neurovascular canals- mandibular,

incisive and lingual canals - and to tooth roots, e.g. root length of mandibular canine,

second premolar and third molar. The linear measurements using CBCT images

have been reported as accurate and reliable in previous studies (Liang et al 2010;

Loubele et al 2008; Loubele et al 2007). In addition, the interobserver agreement

expressed by the correlation coefficient, was higher than 95% (r=0.98, p<0.0001) in

our pilot study.

Lingual canals were considered those bony canals found at the middle anterior

region of the mandible, lateral canals were those located to right or left side of this

middle region. Mandibular canal was the bony canal running from mental foramen till

mandibular foramen at the mandibular ramus. Incisive canal was considered the

anterior extension of the mandibular canal after passing the mental foramen.

The continuous measurements related to mandibular canal were: canal

diameter (MC), mental foramen diameter (MF), vertical distance from the canal to

root apex of third molar (DA38) and premolar (DA35) and their root lengths (RL38/

RL35), from cement-enamel junction to the apex (figure 7.1).

Table 7.1: Characteristics of CBCT systems.
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Figure 7.1: Cross-sectional images of mandibular canal at molar (A) and pre-molar (B)
regions and of mental foramen (C). The first image at left (A) shows the measurements conducted at
molar region, RL 38: root length 38; DA38: distance canal to root apex 38; MC38: mandibular canal
diameter at molar region. The image (B) shows the measurements conducted at premolar region, RL
35: root length 35; DA35: distance canal to root apex 35; MC35: mandibular canal diameter at molar
region. In image (C) it is shown a cross-sectional image of mental foramen (MF).

Besides these continuous measurements, categorical variables such as

presence of bifid mandibular canal and anterior loop (figure 7.2) were also reported.

For the incisive canal, continuous variables were: diameter at start point (IC) and

below the canine tooth (IC33), vertical distance of the incisive canal to the root apex

(DA33) and lower canine root length (RL33) (figure 7.3).

The presence of the incisive canal, the number of bifurcations, its end-point

and the connection to the lingual canals were the categorical variables described. At

the lingual canal (LC), measurements consisted of buccal (DB) and lingual canal (DL)

diameters, canal length (CL) and total bone width below the canal (BW) (figure 7.4).

A graphic representation of all these measurements has been presented before by

Liang et al (2009). Furthermore, the lingual canal was divided into midline and lateral

canals, being described as midline lingual canal when localized at the mandibular

middle line and as lateral lingual canal when deviating to left or to right side of the

mandible. The lingual canals were also categorized as upper, middle or lower canal,

according to its vertical position related to the genial tubercles.
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Figure 7.2: Image (A) shows the oblique reconstruction of CBCT volume at region of
premolars. In this reconstruction the anterior loop of the mandibular canal can be clearly observed
before the start of the incisive canal. The appearance of this anterior loop in a cross-sectional view is
shown in image (B).

Figure 7.3: Image (A) shows the cross-sectional view of incisive canal at its start point and
image (B) the cross-sectional view of the incisive canal below the canine tooth (IC33), at this image
were measured the root length of the canine (RL33) and the distance canal to root apex (DA33).
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Figure 7.4: Cross-sectional views from the lingual canal. Images (A), (B) and (C) show the
measurement of bone width (BW), canal length (CL) and lingual canal diameter (buccal and lingual),
respectively.

Figure 7.5: Examples of different mandibles included in the study. The 3D reconstructions of
CBCT volumes obtained from Chinese, Javanese, Eskimo and Congolese mandibles illustrate the
morphological variability frequently seen in the mandibular bone.

Firstly, intraspecific variability was assessed by determining the secular and

geographical variability in humans. Human mandibles from prehistoric, medieval and

contemporary periods in Belgium were compared to assess secular variability.

Contemporary human mandibles from 7 geographical locations, corresponding to 4

continents, namely Africa, America, Asia and Europe, were used to assess

geographical variability. In this way, Congolese, Brazilian, Indian, Chinese, Javanese

and Belgian mandibles were included in this analysis together with Eskimo
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mandibles, the most isolated population in the sample, completing the Contemporary

dataset (figure 7.5). Secondly, interspecific variability was determined by comparing

contemporary human and great ape mandibles. In this analysis, mandibles from the

different geographical locations were grouped in the human group, and then

compared to mandibles of chimpanzees and gorillas.

Statistical methods:

To avoid data clustering, just one side of the mandible was chosen for

statistical analyses. All data were gathered and statistically analyzed using JMP 8

(SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513, USA) for

Windows Software Version 7, choosing a 5% level of significance. Descriptive 

statistics were used to describe variability within groups. The Kruskal–Wallis Non-

Parametric test and Dunn’s All Pairs for Joint Ranks were applied to identify which

variables differ between groups. For categorical variables, the Contingency Analysis

and Chi-Square tests were applied to define how responses distribute differently

between groups. Principal component analysis (PCA) on correlations and linear

discriminate analysis (LDA) were conducted in order to identify any redundant

information, patterning in the sample, and whether the groups could be differentiated

by the studied variables.

Results

The results showed significant differences in the dimensions of neurovascular

canals and tooth roots in primates. Intra and interspecific analyses revealed that

neurovascular mandibular canals, root lengths and the distance between these

structures can vary significantly among humans from different eras, geographical

locations and within primates.

The mental foramen, incisive canal and lingual canal showed significantly

different dimensions in the secular variability analysis. Contemporary group showed

significantly larger mental foramen (median/25%-75% interquartiles: 4.1mm/3.4-

4.6mm) compared to Medieval (3mm/2.4-3.7mm) and Prehistoric (2.6mm/1.7-3.4mm)

groups. The same trend was observed for the incisive canal at its start point and for

the lingual canal length (table 7.2). For the root lengths, the Contemporary group

presented a significantly longer second premolar (14mm/13.4-16.5mm) than the
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Prehistoric group (11mm/9.4-12.2mm); in addition to a longer canine (16mm/13.8-

17.8mm) than the Medieval group (12mm/10.5-15.8mm).

Table 7.2: Medians and 25% and 75% interquartiles (mm) of incisive canal and lingual canal length in
the secular variability analysis. Note that no incisive canal could be measured at this point in the
Prehistoric group. Medians connected with the same letter were statistically significant. IC=incisive
canal; N=number

Geographical variability showed significant results for mandibular canal,

mental foramen and incisive canal. In Brazilian (1.6mm/1.1-2.1mm) and Belgian

(1.8mm/1.6-2.1mm) groups, mandibular canal diameter at second premolar was

significantly smaller than in Indian group (2.5mm/2.2-3.0mm). Although presenting

small dimensions for the mandibular canal, Belgian group showed the largest mental

foramen (4.1mm/3.4-4.6mm) in the geographical sample. It was significantly larger

than Indian (2.9mm/2.4-3.7mm) and Chinese (3mm/2.6-3.1mm) groups. Similarly to

the mental foramen, the Belgian group showed an incisive canal (3mm/2.1-3.1mm) at

its start point, just after the mental foramen, significantly larger than most of the

groups considered in the geographical sample.

In Chinese and Javanese groups the longest second premolars were

observed, measuring in average 17mm, while in Brazilian and Congolese groups,

premolars measured between 15-16mm and in Belgian, Indian and Eskimo, between

13-14mm. The Eskimo group presented shorter canine root lengths ( around 12mm)

as opposed to an overall range of 14-16mm in the geographical sample.

In general, the mandibular canal was observed closer to the root apices than

incisive canal, with a large variability within groups for both canals. Contrary to the

secular analysis, the geographical sample yielded significant results on these

distances. The longest distances were observed in Eskimo group at molar

(8.0mm/5.6-9.2mm) and canine (13mm/9.7-18.9mm) regions, being significant longer

compared to Congolese (0.7mm/0.0-2.0mm) and Javanese (1.3mm/0.71-1.55mm),

IC (start) Canal Length

GROUP N Median 25% 75% N Median 25% 75%

CONTEMPORARY (Belgian) 18 3.0a 2.1 3.1 25 3.9a 2.7 6.0

MEDIEVAL 16 1.6a 1.3 2.0 31 2.3a 1.6 4.5

PREHISTORIC . . . . 11 3.0 2.3 4.8
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at molar region, and to Javanese (3.2mm/2.3-5.9mm) and Belgium (3.5mm/2.0-

5.8mm) at the canine region. Apart from Eskimo group, the overall distance range in

the geographical sample was found in between 0.7 to 3.8 mm at molar region and

3.2 to 6.5mm at canine region.

Human, Chimpanzee and Gorilla groups showed significant differences in the

dimensions of the mandibular canal, mental foramen, incisive canal, lingual canal and

in the bone width at anterior region. Gorilla group showed significant higher medians

for the mandibular canal, lingual canal length and bone width than Human and

Chimpanzee groups (table 7.3).

Table 7.3: Medians and 25% and 75% interquartiles (mm) mandibular canal, lingual canal
length and bone width in the interspecific analysis. Medians connected with the same letter were
statistically significant. N=number

On the other side, Human group showed significant larger mental foramen

(3.3mm/2.7-4.0mm) compared to Chimpanzee (2.1mm/1.7-2.7mm) and Gorilla

(2.1mm/1.9-2.9mm). Although no incisive canal could be observed in the Gorilla

group and a few were presented in Chimpanzee, significant results were found

between Human (IC/start: 1.9mm/1.6-2.6mm) and Chimpanzee (IC/start: 0.9mm/0.8-

1.1mm) groups. For the root lengths, the longest third molar was observed in the

Gorilla group (13mm/10.1-14.8mm), whereas the Human group presented the

longest second premolar (14.5mm/13.4-16.4mm) and Chimpanzee, the longest

canine (18.1mm/15.4-21.9mm).

No statistically significant results were found for the categorical variables,

although interesting findings could be observed in our sample. Bifid mandibular

canals and anterior loop were anatomical variations most frequently observed in the

Gorilla, Medieval, Prehistoric and Brazilian groups (Table 7.4). No bifid canal or

anterior loop could be observed in Chimpanzee. Anterior loop was mostly seen in

Medieval, Prehistoric, Chinese and Indian groups.

MC38 Canal Length Bone Width

GROUP N Median 25% 75% Median 25% 75% Median 25% 75%

HUMANS 94 2.6c 2.2 3.0 3.9c 3.0 5.3 12.5b 11.0 14.0

CHIMPANZEE 18 2.8 2.4 3.8 3.0bc 1.9 3.6 9.6b 8.7 11.1

GORILLA 8 3.5c 3.5 4.0 5.6b 3.6 8.6 18.4b 16.1 24.3
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Table 7.4: Overview sample size and frequency (%) of bifid mandibular canal and its anterior
loop in the study sample. N=number

Group Sample size
Bifid Mandibular Canal

%(N)

Anterior Loop

%(N)

BRAZILIAN 20 25 (5) 5 (1)

INDIAN 27 3.7(1) 14.8 (4)

BELGIAN 21 4.8(1) 0

CHINESE 8 0 25 (2)

CONGOLESE 8 0 0

JAVANESE 7 0 0

ESKIMO 5 0 0

RAPANUI 2 0 0

TASMANIAN 1 0 0

MEDIEVAL 21 33.3 (7) 52.3 (11)

PREHISTORIC 5 20 (1) 20 (1)

CHIMPANZEE 20 0 0

GORILLA 15 40 (6) 0

Interestingly, incisive canal was present in 100% of Contemporary Belgian

group, whereas just 86% in the Medieval and 40% in the Prehistoric groups. Incisive

canal was observed in all geographic groups and ended mostly at midline in all

groups, but Congolese, Eskimo and Belgian groups. In the Congolese group, this

canal ended frequently at the premolar region, as for the Eskimo, the canine region

was the end position of all 5 specimens. Interestingly, when visible, most of incisive

canal bifurcations were found at the canine and first premolar region. Moreover, the

incisive canal was mostly connected to lingual canal in Chinese and Indian groups.

Different distributions were observed in the lingual canal, related to vertical and

horizontal position (Table 7.5).

Regarding to the horizontal position, this canal was mostly found at midline in

Human group, whereas it was frequently found in the midline and left position in

Gorillas and Chimpanzee groups. Vertically, it was more frequently observed above

the superior genial tubercle in the Contemporary group, in contrast to a more middle

position in the Medieval, Prehistoric, Chimpanzee and Gorilla groups. Most of human
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mandibles, although coming from different geographical locations, presented lingual

canals located above and below the genial tubercles. Only the Indian group

presented the highest percentage of middle canals compared to upper and lower

positions. The greatest number of extra lingual canals was found in the geographical

dataset, mainly in Javanese, Indian and Brazilian. In Javanese mandibles, a high

number of extra lingual canals was found in the view of its small sample size (table

7.5). A higher number of extra lingual canals were also observed in the Medieval and

Chimpanzee groups.

Table 7.5: Overview sample size and frequency of midline and lateral canals (horizontal location of the
canals). The lingual canal location variable determined if the canal was situated upper, lower or at the
same level as the genial spine (vertical location canals).

Group
Sample

Size

total n
Lingual
Canals

Lingual Canal (horizontal
location)

%(N)

Lingual Canals (vertical
location) %(N)

LEFT MIDLINE RIGHT LOWER MIDDLE UPPER

BRAZILIAN 20 38
15.8
(6)

76.3
(29)

7.9
(3)

47.4
(18)

10.5
(4)

42.1
(16)

INDIAN 27 47
14.9
(7)

72
(34)

12.8
(6)

31.9
(15)

40.4
(19)

27.6
(13)

BELGIAN 21 32
12.5
(4)

78.1
(25)

9.4
(3)

25
(8)

18.7
(6)

56.2
(18)

CHINESE 8 16
18.7
(3)

75
(12)

6.2
(1)

56.2
(9)

6.2
(1)

37.5
(6)

CONGOLESE 8 19
26.3
(5)

52.6
(10)

21
(4)

36.8
(7)

5.3
(1)

57.9
(11)

JAVANESE 7 28
35.7
(10)

46.4
(13)

17.8
(5)

53.6
(15)

35.7
(10)

10.7
(3)

ESKIMO 5 14
21.4
(3)

64.3
(9)

14.3
(2)

57.1
(8)

28.6
(4)

14.3
(2)

MEDIEVAL 21 49
22.4
(11)

63.3
(31)

14.3
(7)

36.7
(18)

57.1
(28)

6.1
(3)

PREHISTORIC 5 16
12.5
(2)

68.7
(11)

18.7
(3)

25
(4)

62.5
(10)

12.5
(2)

CHIMPANZEE 20 78
35.9
(28)

35.9
(28)

28.2
(22)

29.5
(23)

37.2
(29)

33.3 (26)

GORILLA 15 28
42.8
(12)

35.7
(10)

21.4
(6)

21.4
(6)

57.1
(16)

21.4
(6)

Multivariate analysis showed variable redundancies, patterning in data

sample and that some groups could be differentiated by variables (figures 7.6 to

7.10). Loading plots generated by principal component analysis (figures 7.6 and 7.7)
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confirmed that variables related to the same structure provide similar information for

data characterization, e.g. variables related to teeth presented similar loading in the

same factor, showing similar importance to explain sample variability. In spite of a

high distribution overlapping, some sample patterning was revealed by this analysis

in the intra and interspecific approaches (figure 7.6).

Figure 7.6: Principal component analysis score plots. The graphics show the loading and
score plots from secular and geographical analyses
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Figure 7.7: Principal component analysis score plots. The graphics show the loading and
score plots from interspecific analyses.

Discriminant analysis could differentiate medieval and contemporary

mandibles amongst humans from different period of time (figure 7.8). Furthermore,

Eskimo mandibles could be differentiated from other geographically distributed

human mandibles (figure 7.9). Finally, a differentiation between primates was

possible, without overlapping in their distributions (figure 7.10). Furthermore,

Brazilian and Belgian mandibles also showed no distribution overlapping with Indian

and Congolese mandibles (figure 7.9).
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Figure 7.8: Linear discriminant analysis canonical plot. The graphics show the canonical plot
in secular analysis.
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Figure 7.9: Linear discriminant analysis canonical plot. The graphics show the canonical plot
in geographical analyses.
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Figure 7.10: Linear discriminant analysis canonical plot. The graphics show the canonical plot
in interspecific analyses.
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Discussion

This study has evaluated anatomical variability of mandibular neurovascular

canals and tooth roots searching for differences and similarities within humans from

different period of time, regions and within primates. The morphology of

neurovascular canals and their relation with adjacent tooth roots revealed some

clinical and research applications.

The anatomical variations pointed in this study might also result from

differences in growth rate and remodelling at key locations on the mandible that take

place from before birth until adulthood. For instance, mental foramen, a milestone

structure associated to mandibular growth (Park et al 2010), showed significant

differences between groups in all three study approaches. This foramen is located at

one of the six functional units (growth units) of mandible (Curien et al 2011; Park et al

2010), therefore it is exposed to the influence of the environment and more prone to

variability. On the other hand, mandibular canal showed a lower variability among

groups, as expected for a more stable unit of mandibular growth (Curien et al 2011).

The average diameter for mental foramen, for mandibular canal and for incisive canal

were similar to previous literature reports in contemporary humans (Gintaras et al

2010; Neiva et al 2004; Jacobs et al 2002). The mental foramen and incisive canal in

modern humans not only presented an increase through time within humans, but

were also larger than in great apes.

Yet, no similar report about the mental foramen was found in the literature. In

spite of being constantly addressed as a descriptor of divergences among fossil

mandibles and extant animals (Plavcan and Daegling 2006; Royer et al 2009; Humphrey

et al 1999), unlike the present research, previous studies have investigated

differences of mental foramen position (for review: Robinson and Williams 2010).

Nevertheless, similar efforts to describe contemporary variability from a historical

perspective has been reported before by Reich et al (2011) in an attempt to

understand atrophy of the mandibular residual alveolar ridge following tooth loss.

As in previous observations (Dean and Vesey 2008), the average root length

found in contemporary humans was between 11mm and 13mm in third molars,

between 13-16mm in second premolars and 13-17mm in canines. Interestingly, tooth

roots showed an increase of 1 to 3mm from prehistoric to contemporary period of
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time. Although previous studies have reported differences in tooth crown and

mandibular sizes in modern humans (for review: Humphrey et al 1999), through our

literature search only few studies (Kupczik and Hublin 2010; Fukase and Suwa 2010;

Royer et al 2009; Smith et al 1989; Smith et al 1986 ) could be found approaching root

length variability over time.

By means of micro-computed tomography, Kupczik and Hublin (2010)

reported a third molar root length (12.8mm) similar to our results, although shorter

than in earlier humans (Aterian) and Neanderthals. In contrast, Fukase and Suwa

(2010) found a longer canine in a modern Japanese population compared to

prehistoric Jomon japanese. Yet, recent studies (Plavcan and Daegling 2006; Kupczik

and Dean 2008) have addressed tooth root variability among species and they raised

the discussion around the relation between tooth root size and mandibular size.

Further comparison with our results could not be made since the mandibular size was

not taken into consideration in our analysis. According to Dean and Vesey (2008),

root growth differs between tooth types in both pattern and rate and between taxa. In

our study, the third molar root was longer in gorillas, while the longest canine was

found in chimpanzees, as well reported by Kupczik and Dean (2008), whereas the

longest second premolar was observed in modern humans.

The longest tooth roots of contemporary mandibles were associated with a

slightly smaller distance to the neurovascular canals comparing to mandibles of

anatomically modern humans from medieval time. However, the same was not true

within contemporary human mandibles from different regions. The longest tooth root

in Congolese mandibles, in the molar region did not imply the smallest distances to

the canals, neither in Brazilian mandibles, in the canine region. Hence, it is

suggested that the relation of neurovascular mandibular canals with adjacent tooth

roots might be influenced either by biomechanical factors or by some other features

that might be genetically regulated.

Furthermore, considering the high variability of these distances within groups,

it is suggested that the relation between tooth roots and neurovascular canals might

be physiologically determined. This suggests that many factors may influence this

distance, like those factors influencing physiological loads and their distribution inside

the mandibular bone, e.g. type of occlusion, trabecular bone geometry, canal



Chapter 7 : Variability of mandibular neurovascular canals

200

corticalization, and bone morphology. This physiologically determined distance

should be used as a guide to define the safety margin for dental implant placement in

the mandibular bone. According to our results, this safety margin would be around

2.67 to 7.61mm for the canine region. Kovisto et al (2011) has reported an average

distance between 1.51 and 3.43mm in the premolar and molar region, the posterior

teeth being located closer to canal than anterior teeth. In this way, the reported safety

margin of 1.0mm (Bavitz et al 1993) to 2.0mm (Froum et al 2011) between dental

implant and nerve bundle should be reconsidered regarding other functional,

morphological and structural characteristics. Some individuals might need greater

distances between tooth and canal in order to impose lower stresses on mandibular

neurovascular structures. In this case, a high risk for sensory disturbances can be

expected when this distance cannot be maintained, e.g. after placement of a dental

implant.

However, biomechanical studies involving mandibular bone structure are

needed to confirm a correlation between canal-to-root distances and load distribution

in the mandible. Furthermore, clinical studies should verify the correlation between

the incidence of neurosensory disturbances after implant treatment and distance

between implants and the surrounding neurovascular canals. Recently, a correlation

between bone trabeculation and canal corticalization was proposed (Oliveira-Santos et

al 2011; Naitoh et al 2009), and it is clear that further correlations of these features with

canal-tooth distances should also be assessed.

Apart from distance canal-to-root, some other characteristics presented by the

different groups from the geographical sample were interpreted according to potential

risk it could imply to surgical procedures (table 7.6). For example, the presence of a

wider incisive canal, mostly branching, suggested that the canine region can be a risk

area for nerve trauma and injury. Other high risk features consisted of the presence

of bifid mandibular canal and anterior loop, large foramen and high number of lingual

canals.
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Table 7.6: Geographical trends and surgical risk prediction based on study
observations.

Features related to
potential surgical

risks

Brazilian Belgian Indian Chinese Javanese Congolese

Large canals X
(incisive)

X
(mandibular)

X
(mandibular)

Long roots X X X

Large mental
foramen

X

Small distances
root to canal

X X X

Bifid canal X X X

Anterior loop X X X

Since the prevalence of bifid canals (Kuribayashi et al 2010; Naitoh et al 2009b;

Rouas et al 2007; Claeys and Wackens 2005); and anterior loop (Oliveira-Santos et al

2011b; Neiva et al 2004) are contradictory in the literature, the geographical variability

demonstrated in this study is likely to explain the lack of agreement among studies.

Besides, the high risk of tumour spreading associated to a neurovascular network

established by the intrabony canals (Fanibunda and Matthews 2000; Fanibunda and

Matthews 1999; Trikeriotis et al 2008) should be investigated since our results indicated

a high number of extra lingual canals and more anteriorly extended incisive canals in

humans, also reported previously by De Andrade (De Andrade et al 2001).

As expected, more differences were observed in the interspecific than in the

intraspecific analysis. The largest bone width at anterior regions of gorillas was

followed by the longest lingual canal and highest prevalence of lateral canals. Most

interestingly, no gorillas and just a few chimpanzees presented on incisive canal,

whereas high incidence was observed in modern humans, in agreement with Mraiwa

et al (2003). We suggest that the highest prevalence of lateral canals in great apes,

as well as the highest prevalence of incisive canal in modern humans might be

related to some morphological and functional characteristics of those two different

taxa, e.g. the superior transverse torus or simian shelf in great apes and a protruding

mentum osseum or chin in anatomically modern humans.

In fact, the simian shelf, which is a lingual protuberance responsible to provide

a more robust mandible, characterizes great apes’ mandibles (Gröning et al 2012). On

the other hand, the chin is a feature unique to modern humans that was speculatively

related to our speech ability (Ichim et al 2007), although other hypotheses explain it by
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the functional and biomechanical significance of the mental protuberance (Gröning et

al 2012; Achermann 2004; Schwartz and Tattersall 2000). In this way, the incisive canal

might be related to the emergence of the mental protuberance in humans.

Furthermore, morphology and function must be likewise responsible for divergences

in the lingual canal position since its foramina are close to muscle attachments.

Those muscles are intimately involved in the function and support of the tongue and

its associated soft tissues (Silverstein et al 2000).

Although some patterning could be identified by multivariate analysis, the

redundant information and the overlapping of population distributions suggested that

further observations should be made considering other parameters. This can help to

better explain population variability on mandibular neurovascular canals and tooth

roots, consequently, providing a better differentiation of populations by those

parameters. Mandibular canal, root lengths and mental foramen could clearly

differentiate mandibles from different historical periods suggesting further

investigations in other to better correlate those findings with other physiological

factors. According to Rak et al (2007), modern humans, chimpanzees, orang-utans,

and many other primates share the morphology of mandibular ramus which differs

from that of gorillas, so that the gorilla anatomy must represent a unique condition,

and its appearance must represent an independently derived morphology. Indeed,

gorillas did not share the same dimensions for tooth root and mandibular canals with

humans, neither with chimpanzees. However, unlike the morphology of mandibular

ramus, humans also did not share the same dimensions for tooth roots and

mandibular canals with chimpanzees.

Finally, we believe that future collaborations bringing together the multiple

research areas involving mandibular anatomy and physiology will result in a better

understanding of morphological variations and their clinical and research

applications.
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Conclusions

This study could describe the significant variability of neurovascular canals

and tooth roots in modern humans and great apes. Tooth root, mental foramen and

incisive canal presented a high variability for mandibles from different periods of time,

geographical origins and species. Similar mandibular canal diameters and canal-to-

root distances are expected over the time in humans, whereas more variability may

be expected for the lingual canal length. Differences in geographical origin and

species may account for a high variability in the mandibular canal diameter and

canal-to-root distances in primates.
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Dimensional changes of the mandibular bone and neurovascular canals after tooth

extraction and implant treatment: 2-year follow-up study

ABSTRACT

Objectives: The aim of this study was to compare the anatomy of mandibular

jaw bone and neurovascular canals in dentate and edentate mandibles after implant

treatment. Materials & methods: Twenty four patients needing implant treatment

were selected to take part in this study. All patients were selected at the Maxillo-

Facial Surgery department of East Limburg Hospital (ZOL, Genk, Belgium). Twelve

patients composed the dentate group, whereas the edentulous and total extraction

groups comprised 6 patients each. Cone beam computed tomography scans were

taken as part of their clinical treatment. Two-dimensional measurements included the

mental foramen (MF) diameter, mandibular (MC), incisive (IC) canal for their diameter

and spatial relation within the jaw bone (distance to the borders) at different

mandibular regions. Statistical analyses were carried out with repeated measures

analysis, paired t-test and one way Anova and Tukey-Kramer HSD (honestly

significant difference). Least square regression analyses were conducted to check

any association between the dimensions of the mandibular bone and the

neurovascular canals. Results: Most anatomical structures presented only slight

dimensional changes after the one-year follow-up period of this study. Furthermore,

dentate and edentulous groups showed comparable ranges of the neurovascular

canal diameters. Statistically significant changes over time only occurred for the

upper distance of the incisive canal in the total extraction group (p=0.04) and for the

total bone length at the anterior region of the edentulous group. Conclusions: The

study suggested that although there is a significant resorption of mandibular bone

after tooth extraction, no significant changes occured in neurovascular canals.

.
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Introduction

Many studies have reported the consequences of tooth loss and associated

residual ridge resorption (Blahout et al 2007, Carlsson 2004; Jaul et al., 1980; Hirai et al.,

1993; Klemetti, 1996; Tallgren 1972). It is well accepted that mandibular bone

undergoes resorption after tooth extraction as a result of the mandibular bone

remodeling. In general, bone remodeling can be defined as a process where bone

gradually alters its morphology in an attempt to adapt to any new external load (Isidor

2006). Already in 1892, Wolff formulates his theory based on a direct link between

mechanical loading and bone adaptation (Coelho et al 2009; Mullender et al 1995).

Wolff’s law implies that resorption can take a place due to certain decrease in

magnitude of mechanical load. On the other hand, bone deposition could be caused

by a certain increase in mechanical load (Dunlop et al 2009; Doblare et al 2002). The

post-extraction remodeling of the adult mandible has been widely addressed

previously and recently as well (Panchbhai 2013; Mahnama et al 2013; Canger and

Celenk 2012; Chrcanovic et al 2011; Reich et al 2011 Unger et al 1992; Bras et al 1983;

Atwood 1979; Mercier and Lafontant 1979; Enlow et al 1976; Pietrokovski et al 1976; Berg et

al 1975; Carlsson et al 1969).

Scientific endeavours have indeed confirmed that mechanical loads decrease

extensively in completely edentulous patients and affect the morphology and material

properties of their mandibular bone (Schwartz –Dabney and Dechow (2002); Klemetti

(1996). In fact, complete denture wearers present both lower masticatory efficiency

and lower bite force than dentate subjects. The maximum bite force was reported to

be only 20–40% of that of persons with a full natural dentition (Trulsson et al 2012). In

the past, several studies were conducted to estimate resorption rate of jaw bones

related to the dental status (Carlsson and Pearson 1967, Atwood 1971, Tallgren 1972). As

such, the classical studies of Tallgren (1972) have quantitatively shown the

mandibular, and maxillar, bone resorption in edentulous patients after 13.5- 25 years

of complete dentures wear. The average reduction of 9-10mm and 2-3.5mm was

reported for anterior mandible and anterior maxilla, respectively, during 25 years of

wearing complete dentures (Tallgren 1972), with highest resorption rate being reported

in the first year of edentulism (around 7mm).



Chapter 8 : Mandibular neurovascular canals: influence of dental status and implant

212

According to previous studies, implant rehabilitation in edentulous patients

results in a lower residual ridge resorption, mainly in cases that a fixed prosthesis or

overdenture is supported by 4 implants (de Jong et al 2010; von Wowern and Gotfredsen

2001; Jacobs et al 1992). After implant treatment, the mandibular bone receives a new

functional recruitment, unlike that existing in either natural dentition or complete

edentulous status. Compared to patients with a conventional denture, the maximum

bite force of patients with a mandibular denture supported by implants was found to

be 60–200% higher (Trulsson et al 2012). By supporting a lower complete denture with

implants, a beneficial effect on the preservation of the peri-implant bone has been

observed (de Jong et al 2010; Kordatzis et al 2003; Wright et al 2002; Jacobs et al 1992). In

turn, implant rehabilitation, unlike complete dentures, can sustain mandibular

mechanical loads closer to the physiological thresholds needed to maintain the

residual bone ridge. However, it is not known if rehabilitation with implants

immediately after complete tooth extraction would reduce the high resorption rates

reported in the first years of edentulism (Tallgren 1972, Jacobs et al 1992).

It is important to note that apart from the two cited remodeling scenarios (e.g.

resorption and deposition), there are also two different types of phenomenological

description of bone remodeling, known as “surface” and “internal” remodeling (Lin et

al, 2009). Schwartz –Dabney and Dechow (2002) suggested that cortical

microstructural changes accompany ridge resorption following edentulism. In an early

study, those authors showed significant material property variation within human

dentate mandibles, some of which were associated with function. They found that

mandibular cortical bone in edentulous mandibles differed from that of dentate

mandible in cortical thickness, elastic and shear moduli, anisotropy, and orientation of

the axis of maximum stiffness (Schwartz –Dabney and Dechow 2002). Whereas the

mandibular bone resorption results most likely from surface remodeling, the internal

process of bone resorption might be responsible for morphological changes in the

internal structures of the mandible. Therefore, it is likely that those morphological

changes may affect the mandibular canal walls after total tooth extraction. However,

there is no consensus about the relation of mandibular canal morphology and the

dental status (Jacobs et al 2007; Jacobs et al 2004; Jacobs et al 2002; Polland et al 2001;

Xie et al 1997).
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Considering that the lack of mechanical stimulation results in surface and

internal bone remodeling, we hypothesize that edentulism might be associated not

only to changes in the mandibular bone morphology, but also to that in the

mandibular canals. In addition, the influence of implants on bone resorption and

mandibular canal changes was investigated up to 2 years after implant rehabilitation

in the mandible and compared to that found in dentate mandibles.

Material and Methods

Patients

The study protocol was approved by the Ethical Committees of East Limburg

Hospital (ZOL, Genk, Belgium) (protocol: 08/052L) and all patients gave their

informed consent allowing their images to be included in the study. Sixty-two

consecutive patients, edentulous or undergoing total tooth extraction, were

preliminarily selected at the Maxillo-Facial department of ZOL. After 2 years, 24 out

of 62 patients had a second CBCT taken due to treatment reasons and were finally

included in the study. They were allocated in 3 groups, based on their treatment

needs, as follow: Group Total Extraction consisted of patients who had a initial

dentate mandible, however, due to periodontal and endodontic complications, a total

tooth extraction was planned; Group Edentulous comprised images of patients who

had edentulous mandible and were seeking implant rehabilitation; in Group Dentate

was allocated patients who had a dentate mandible and multiple implants planned in

the maxillae.

The Dentate group comprised of 12 patients, 7 completely dentate and 5

partially dentate (at least till second premolar at one side), Edentulous group

consisted of 6 patients, from those, two patients have received 4 implants to support

fixed prosthesis, two patients received 2 implants to support an overdenture and the

others patients received 6 implants to support a fixed prosthesis. In the Total

extraction group, 3 patients received 4 implants and 3 others received 6 implants to

support a fixed prosthesis. The antagonist arch for the dentate group comprised

fixed prosthesis supported by implants, and for the edentulous and total extraction

group, natural dentition, complete dentures and implant-supported prostheses.
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Image Acquisition

Our study analysed preoperative cone beam computed tomography (CBCT)

datasets obtained with CBCT system GALILEOS® (Sirona Dental Systems,

Bensheim, Germany). All patients gave their informed consent to use their CBCT data

in the study. After 2 years, patients who had a second CBCT image taken from 6

months to 2 years after surgery were finally selected to comprise the total sample of

images observed in the study.

Cone beam computed tomography (CBCT) images were taken prior to

surgery, as part of the clinical treatment in order to obtain 3D information and perform

treatment planning. For all patients, image acquisition parameters of the GALILEOS®

CBCT unit were set to 85kv and 28mAs with a scan time of 14 seconds and 2.6

seconds of actual exposure time. The field-of-view (FOV) was 15cm in diameter and

12cm in height and the obtained voxel size was 0.29mm. According to literature, the

effective dose of radiation generated by such protocol would be approximately 84μSv 

corresponding to an average of 4 panoramic images (Pauwels et al 2012). Each CBCT

dataset was exported as DICOM files using the software provided with the CBCT

system (Sidexis, Sirona Dental Systems, Bensheim, Germany) for import and

analysis in a customized software platform (developed by KU Leuven, Leuven,

Belgium) for quantitative analysis (2D and 3D) of jaw bone over time.

Image Analysis

The goal was to establish a reproducible and precise protocol to measure the

rates of horizontal and vertical changes in dimensions after tooth extraction and

implant rehabilitation in the mandible. First, two CBCT scans were matched using a

rigid registration algorithm (based on mutual information), allowing superimposing

and switching views of those specific CBCT datasets. Once the two CBCT scans

were registered, a para-axial plane (blue line) was defined through the maxillary arch 

and used to generate a panoramic overview with cross-sectional reconstructions

(perpendicular to the para-axial plane) (figure 8.1). The software used allowed for

adjustment of the viewing conditions in the baseline and follow-up images

simultaneous, but independently at both images. The centre level (L) and band-width



Chapter 8 : Mandibular neurovascular canals

(W) were individually determined for each pair

artefacts, inherent of CBCT technology, cause

allow defining standard values for all images.

Figure 8.1: CBCT reconstruction views

line (A) for panoramic (B) and cross

Figure 8.2: Oblique reconstruction of
measured at cross-sectional slices, relat
measurements related to mental foramen (MF). Slices 2
incisive (IC) canal, respectively.

A

Slices 2-4 (MC)

andibular neurovascular canals: influence of dental status and implant

(W) were individually determined for each pair of CBCT datasets, since scatter and

artefacts, inherent of CBCT technology, caused intensity inhomogeneity

tandard values for all images.

CBCT reconstruction views used in the image analysis. Blue line represents the reference

line (A) for panoramic (B) and cross-sectional (C) 2D views.

Oblique reconstruction of mandibular anterior region showing the location of the regions
sectional slices, related to the mental foramen. Slice1 indicates region of

measurements related to mental foramen (MF). Slices 2-4 and 5-6 were used for mandibular (MC) and

B

Slice 1 (MF)

4 (MC) Slices 5-6 (IC)

: influence of dental status and implant
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datasets, since scatter and

intensity inhomogeneity and did not

Blue line represents the reference

the location of the regions
Slice1 indicates region of

used for mandibular (MC) and

C
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Table 8.1: Detailed description of measurements conducted in the mental foramen region, at 4
mandibular canal regions and 3 incisive canal regions.

Anatomical Structures N Measurements Abbreviations

MF-mental foramen

1 diameter mental foramen (MF) MF

2 distanceMF to upper ridge MF dist sup

3 distance MF to lower border MF dist inf

4 bone width above MF width sup mf

5 bone width below MF width inf mf

6 total bone length total length

MC-mandibular
canal

1 diameter vertical mandibular canal MC length

2 diameter horizontal mandibular canal MC width

3 distance to the superior border of the mandible upper dist

4 distance to the inferior border of the mandible lower dist

5 distance to the anterior region vest dist

6 distance to the posterior region lingual dist

7 total bone length total bone length

8 total bone width total bone width

9 thickness cortical bone upper ridge cortical upper

10 thickness cortical bone lower border cortical lower

11
thickness cortical bone vestibular above the

canal
cortical vest above

12 thickness cortical bone lingual above the canal cortical ling above

13
thickness cortical bone vestibular below the

canal
cortical vest below

14
thickness cortical bone lingual below the

canal
cortical lingual

below

IC-incisive canal

1 diameter vertical mandibular canal MC length

2 diameter horizontal mandibular canal MC width

3 distance to the superior border of the mandible upper dist

4 distance to the inferior border of the mandible lower dist

5 distance to the anterior region vest dist

6 distance to the posterior region lingual dist

7 total bone length total bone length

8 total bone width total bone width

9 thickness cortical bone upper ridge cortical upper

10 thickness cortical bone lower border cortical lower

11
thickness cortical bone vestibular above the

canal
cortical vest above

12 thickness cortical bone lingual above the canal cortical ling above

13
thickness cortical bone vestibular below the

canal
cortical vest below

14
thickness cortical bone lingual below the

canal
cortical lingual

below
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The measurements of vertical and horizontal diameters and distances to upper

ridge and lower border of the mandible were carried at 2 mandibular neurovascular

canals, e.g. mandibular canal and incisive canal, and at the mental foramen, besides

the measurements of mandibular length and width, all of them at the reconstructed

cross-sectional images. At baseline (pre) and follow-up (post) images, 4 cross-

sectional slices at 5mm, 10mm, 15mm and 20mm posterior to the mental foramen

(MF) were observed for the mandibular canal and 3 slices at 2mm; 4mm and 6mm

anterior to MF, for the incisive canal. The detailed description of measurements done

is found in table 8.1 and figures 8.2-8.5. Fifteen percent of measurements were

repeated 3 months after the first measurements to test the intraobserver reliability.

The following questions were formulated in our study:

1.Do mandibular neurovascular canals undergo changes after total tooth

extraction?

2.Are dimensional changes in the mandibular neurovascular canals correlated

to mandibular dimensional changes?

3. Do those changes influence the spatial positioning of mandibular canals

related to mandibular borders?

4. Are those changes related to change in the mandibular cortical thickness?

5. Are mandibular changes depicted by CBCT images similar to those

reported in the literature?

Statistic analysis

All data were collected and statistically analyzed using JMP 8 (SAS Institute

Inc., SAS Campus Drive, Cary, North Carolina 27513, USA) for Windows Software

Version 7, choosing a 5% level of significance. Across Groups analysis corresponded 

to a repeated measures analysis where two F-tests determine whether the across-

groups values were different: Mean Difference tests if the change across the pair of

responses is different in among groups and Mean- Mean tests if the average

response for a subject is different in different groups. When mean-difference tests

showed significant results, paired t-test was used to compare differences between
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baseline (pre) and follow-

Kramer HSD (honestly significant difference) were used to determine which groups

were different between each other. Least square regression analys

to check for any association between mandibular bone and neurovascular canals

dimensions. The intraclass correlation was computed as

between the first and second

Figure 8.3: Cross-sectional slices pre (A) and post (B) in the mental foramen region of Group Dentate.
(C) shows the measurements done at this region. The numbers here are correspondent to those
table 8.1.

Figure 8.4: legend page 222.
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-up (post) measurements. One way Anova and Tukey
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any association between mandibular bone and neurovascular canals

he intraclass correlation was computed as a measure of agreement

between the first and second measurements done by the same observer.

sectional slices pre (A) and post (B) in the mental foramen region of Group Dentate.
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(post) measurements. One way Anova and Tukey-

Kramer HSD (honestly significant difference) were used to determine which groups

were different between each other. Least square regression analysis was conducted

any association between mandibular bone and neurovascular canals

a measure of agreement

measurements done by the same observer.

sectional slices pre (A) and post (B) in the mental foramen region of Group Dentate.
(C) shows the measurements done at this region. The numbers here are correspondent to those in
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Figure 8.4: Cross-sectional slices from the mandibular canal of Group Dentate from pre (A) and post
(B) CBCT datasets. (C) show measurements
measurement at the mandibular canal of Edentulous group
in (F).The numbers here are correspondent to those at table 1.
total bone width.

D E

A B

C D

andibular neurovascular canals: influence of dental status and implant

sectional slices from the mandibular canal of Group Dentate from pre (A) and post
(B) CBCT datasets. (C) show measurements number 1 to 8. (D) and (E) show pre and post slices for
measurement at the mandibular canal of Edentulous group and the measurements
in (F).The numbers here are correspondent to those at table 1. White lines were used
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Figure 8.5: Cross-sectional slices from the

incisive canal of Group Dentate from pre (A)

and post (B) CBCT datasets. (C) and (D

pre and post slices for measurement at the

incisive canal of Edentulous group.
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sectional slices from the mandibular canal of Group Dentate from pre (A) and post
. (D) and (E) show pre and post slices for

ements 9 to 13 are shown
White lines were used to measure the

sectional slices from the

incisive canal of Group Dentate from pre (A)

datasets. (C) and (D) show

pre and post slices for measurement at the

incisive canal of Edentulous group.
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Results

Our results showed that most of anatomical structures presented only slightly

dimensional changes after the follow-up period of this study. The measurement pre

and post and the mean dimensional changes in the mandibular and incisive canal by

region measured are shown in tables 8.2 and 8.3. No statistical significant difference

was found over the follow-up time within the groups. Considering that material

properties are variable along the mandible, the results were reported by slice

measured representing different positions at posterior and anterior regions. A high

ICC coefficient (0.89) was found after repeating 15% of measurements.

Table 8.2: Mean pre and post measurements of mandibular canal length and width in each group by
mandibular region (5mm/10mm/15mm/20mm). Diff = mean dimensional changes in the mandibular
canal over the time by group and mandibular region. Mean diff = overall mean difference in each
group. sd= standard deviation.

Mandibular region

5MM 10MM 15MM 20MM Mean diff

PRE POS diff PRE POS diff PRE POS diff PRE POS diff -

MC
length

DENTATE 3,4 3,2 -0,3 3,5 3,3 -0,2 3,1 3,1 0,0 4,0 3,5 -0,4 -0,2

sd 0,8 0,9 0,5 0,9 0,7 0,6 0,6 0,8 0,5 1,2 0,8 0,9 0,6

EDENTATE 3,1 2,8 -0,4 2,9 2,8 -0,1 2,8 2,8 0,1 3,1 3,4 0,3 0,0

sd 1,3 1,2 0,4 0,4 0,5 0,2 0,7 0,6 0,2 0,7 0,4 0,3 0,3

TOTAL EXTRACTION 3,2 3,0 -0,2 3,1 2,8 -0,3 3,6 2,8 -0,8 2,8 2,6 -0,2 -0,4

sd 0,7 0,9 0,7 0,8 0,6 0,5 1,1 1,2 0,9 0,5 0,4 0,3 0,6

MC
width

DENTATE 2,8 2,9 0,0 2,7 2,7 0,0 2,8 2,8 0,0 3,0 2,9 -0,1 0,0

sd 1,1 1,1 0,3 0,7 0,7 0,2 0,8 0,8 0,2 0,7 0,8 0,4 0,3

EDENTATE 2,7 2,7 -0,1 2,4 2,3 0,0 2,5 2,3 -0,2 3,2 2,7 -0,5 -0,2

sd 0,9 0,9 0,1 0,3 0,3 0,4 0,3 0,4 0,5 0,8 1,0 0,9 0,5

TOTAL EXTRACTION 3,0 2,9 -0,1 2,5 2,6 0,0 2,6 2,4 -0,3 2,7 2,6 -0,1 -0,1

sd 3,3 2,8 0,7 5,2 4,6 0,8 3,7 3,0 0,9 1,9 1,2 0,8 0,8
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Table 8.3: Mean pre and post measurements of incisive canal length and width in each group by
mandibular region (5mm/10mm/15mm/20mm). Diff = mean dimensional changes in the incisive canal
over the time by group and mandibular region. Mean diff = overall mean difference in each group. sd=
standard deviation.

Mandibular region

2MM 4MM 6MM Mean diff

PRE POS diff PRE POS diff PRE POS diff -

IC length

DENTATE 2,9 2,6 -0,2 2,6 2,3 -0,3 2,7 2,5 -0,2 -0,2

sd 1,0 1,1 0,4 0,9 0,8 0,4 1,0 1,0 0,5 0,4

EDENTATE 2,5 2,0 -0,5 1,8 1,5 -0,4 2,0 1,9 0,0 -0,3

sd 0,6 0,7 0,5 0,6 0,7 0,3 0,7 0,8 0,1 0,3

TOTAL EXTRACTION 1,8 1,6 -0,2 2,0 1,9 -0,1 1,7 1,5 -0,2 -0,2

sd 0,6 0,5 0,3 0,8 1,0 0,5 0,4 0,5 0,2 0,3

IC width

DENTATE 2,4 2,3 -0,1 1,9 1,9 0,0 2,3 2,1 -0,2 -0,1

sd 0,8 0,9 0,2 0,5 0,5 0,3 0,6 0,5 0,5 0,3

EDENTATE 2,1 1,9 -0,2 1,9 1,6 -0,3 1,3 1,3 0,0 -0,2

sd 0,5 0,5 0,2 0,6 0,6 0,4 0,5 0,5 0,0 0,2

TOTAL EXTRACTION 1,7 1,4 -0,4 2,0 1,7 -0,3 1,7 1,6 -0,1 -0,3

sd 5,5 5,6 0,2 5,5 4,1 1,5 0,2 0,3 0,3 0,7

The observation time was in average 12 months in the dentate group, 16

months for the edentate group and 19 months for the total extraction group. The

highest differences were found in the total extraction and edentulous groups and for

the upper distance of neurovascular canals (tables 8.6 and 8.7) and total bone length

anterior and posterior regions (tables 8.4 and 8.5). However, statistically significant

results were only found for the total bone length at the anterior region of the

edentulous group (p=0.04) (table 8.5) and the differences in the upper distance of the

incisive canal in the total extraction group (p=0.04) (table 8.7). Table 8.4 and 8.5

show the results for the mandibular bone dimensional changes at anterior and

posterior regions. The differences in the positioning of the neurovascular canals

related to the mandibular borders are shown in tables 8.6 and 8.7.
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Table 8.4: Mean pre and post measurements of total bone length and width at posterior mandible in
each group by mandibular region (5mm/10mm/15mm/20mm). Diff = mean dimensional changes over
the time by group and mandibular region. Mean diff = overall mean difference in each group. sd=
standard deviation.

Mandibular region

5MM 10MM 15MM 20MM
Mean
diff

PRE POS diff PRE POS diff PRE POS diff PRE POS diff -

total
bone
length

DENTATE 28,9 28,9 0,0 28,1 28,1 0,0 26,9 26,5 -0,4 26,4 26,2 -0,2 -0,2

sd 3,6 3,6 0,1 4,2 4,1 0,3 2,6 2,9 1,5 3,0 3,1 0,8 0,7

EDENTATE 21,2 20,4 -0,8 20,1 19,0 -1,1 18,2 18,0 -0,3 19,3 18,7 -0,6 -0,7

sd 7,2 7,1 1,4 7,0 6,8 1,4 7,2 7,2 0,6 7,3 7,4 0,6 1,0

TOTAL
EXTRACTION

23,0 22,5 -0,5 21,8 21,1 -0,7 21,0 21,2 0,2 21,8 21,8 0,0 -0,3

sd 5,2 4,8 1,5 5,2 4,7 1,4 4,4 4,3 0,6 4,6 4,6 0,3 1,0

total
bone
width

DENTATE 12,1 12,0 -0,1 13,0 13,0 0,0 14,2 14,2 0,0 16,0 16,0 0,0 0,0

sd 2,0 2,0 0,3 2,0 2,0 0,3 1,9 2,0 0,3 1,9 2,1 0,2 0,3

EDENTATE 11,6 11,6 0,0 12,7 12,6 -0,1 13,6 13,3 -0,3 14,6 14,6 -0,1 -0,1

sd 3,0 3,0 0,2 3,3 3,3 0,3 3,6 3,5 0,5 4,0 3,9 0,3 0,3

TOTAL
EXTRACTION

11,5 11,1 -0,3 12,7 12,5 -0,2 13,9 13,9 0,0 14,8 14,7 -0,1 -0,2

sd 3,9 3,8 0,4 4,2 3,8 0,6 4,2 4,2 0,4 4,8 4,6 0,2 0,4

Table 8.5: Mean pre and post measurements of total bone length and width at anterior mandible in
each group by mandibular region (5mm/10mm/15mm/20mm). Diff = mean dimensional changes over
the time by group and mandibular region. Mean diff = overall mean difference in each group. sd=
standard deviation.

Mandibular region

2MM 4MM 6MM Mean diff

PRE POS diff PRE POS diff PRE POS diff -

total bone length

DENTATE 30,4 30,4 0,0 31,1 31,0 -0,1 31,8 31,7 0,0 0,0

sd 3,49 3,52 0,40 3,26 3,13 0,22 2,93 2,96 0,21 0,3

EDENTATE 21,8 20,6 -1,2 22,1 21,7 -0,5 22,7 21,8 -0,9 -0,9

sd 7,5 7,6 1,1 7,8 7,9 0,5 8,2 8,3 1,0 0,9

TOTAL EXTRACTION 24,9 23,5 -1,3 25,9 23,1 -2,8 26,6 24,0 -2,6 -2,23

sd 5,9 5,6 1,7 6,1 5,7 2,3 6,0 5,7 2,0 2,0

total bone width

DENTATE 11,2 11,3 0,1 11,5 11,5 0,0 11,9 11,9 0,0 0,0

sd 2,11 2,14 0,22 1,74 1,86 0,35 1,76 1,82 0,25 0,3

EDENTATE 11,5 11,5 0,1 11,5 11,6 0,1 12,0 11,9 -0,1 0,0

sd 3,1 3,1 0,3 3,1 3,1 0,3 3,3 3,3 0,2 0,9

TOTAL EXTRACTION 11,7 11,8 0,1 12,0 12,0 0,1 12,3 12,3 0,0 0,0

sd 3,8 3,5 0,4 3,8 3,8 0,1 2,9 2,9 0,1 2,0
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Table 8.6: Mean pre and post measurements of mandibular canal distance to the mandibular borders
in each group by mandibular region (5mm/10mm/15mm/20mm). Diff = mean dimensional changes
over the time by group and mandibular region. Mean diff = overall mean difference in each group.
Vest=vestibular; dist= distance. sd= standard deviation.

Mandibular region

5MM 10MM 15MM 20MM
Mean
diff

PRE POS diff PRE POS diff PRE POS diff PRE POS diff -

upper
dist

DENTATE 16,8 17,1 0,3 16,9 16,8 0,0 14,9 14,4 -0,6 13,1 12,5 -0,6 -0,2

sd 2,7 2,7 0,6 2,7 2,8 0,3 2,6 2,5 1,4 3,3 3,1 1,3 0,9

EDENTATE 8,2 7,7 -0,5 6,8 6,0 -0,7 6,3 6,1 -0,2 5,7 5,4 -0,3 -0,5

sd 5,2 5,3 1,4 5,7 5,7 1,3 5,0 4,8 0,7 4,5 4,7 0,8 1,0

TOTAL
EXTRACTION

10,2 9,8 -0,4 8,6 8,5 -0,1 9,3 9,7 0,5 9,0 8,9 -0,1 0,0

sd 3,0 2,7 1,7 3,0 2,4 1,4 3,2 3,2 0,8 2,8 2,8 0,4 1,1

lower
dist

DENTATE 8,5 8,5 0,0 7,7 7,9 0,2 7,3 7,4 0,2 6,8 6,9 0,1 0,1

sd 1,2 1,2 0,4 1,4 1,6 0,4 1,1 1,2 0,4 1,1 1,3 0,7 0,5

EDENTATE 9,1 9,3 0,2 8,4 8,5 0,1 8,0 8,1 0,1 8,0 8,0 0,0 0,1

sd 2,3 2,4 0,3 2,1 2,1 0,3 2,0 2,1 0,4 2,0 1,9 0,3
0,3

TOTAL
EXTRACTION

7,8 7,9 0,1 7,1 7,3 0,2 6,3 6,6 0,3 6,4 6,5 0,1 0,2

sd 2,0 2,1 0,4 2,0 2,2 0,4 2,2 2,2 0,3 1,9 1,9 0,3 0,3

vest
dist

DENTATE 3,5 3,7 0,2 4,8 4,7 -0,1 5,2 5,3 0,1 5,4 5,6 0,2 0,1

sd 0,6 0,6 0,5 0,9 1,0 0,2 1,0 1,1 0,3 1,0 0,8 0,2 0,3

EDENTATE 4,4 4,5 0,1 5,2 5,3 0,1 5,1 5,4 0,4 5,6 5,6 0,0 0,1

sd 1,2 1,2 0,2 1,3 1,4 0,1 1,3 1,4 0,5 1,3 1,4 0,3 0,3

TOTAL
EXTRACTION

3,9 3,9 0,0 4,1 4,1 0,0 4,3 4,4 0,1 4,6 4,9 0,2 0,1

sd 1,4 1,5 0,3 1,5 1,6 0,3 1,3 1,4 0,5 1,2 1,0 0,4 0,4

lingual
dist

DENTATE 4,4 4,2 -0,2 3,0 3,2 0,1 2,6 2,6 0,0 2,4 2,5 0,1 0,0

sd 1,5 1,6 0,3 1,0 1,0 0,3 0,9 0,7 0,5 0,9 0,8 0,4 0,4

EDENTATE 3,9 3,8 -0,1 3,5 3,5 0,0 4,2 3,9 -0,3 3,6 4,0 0,3 0,0

sd 1,5 1,6 0,3 1,1 1,1 0,2 1,3 1,2 0,4 1,2 1,4 0,6
0,4

TOTAL
EXTRACTION

2,9 2,3 -0,6 2,7 3,0 0,3 2,3 2,5 0,2 2,0 2,2 0,2 0,0

sd 6,8 6,4 0,7 7,2 6,7 0,6 6,9 6,4 0,7 6,4 6,1 0,4 0,6
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Table 8.7: Mean pre and post measurements of incisive canal distance to the mandibular borders in
each group by mandibular region (5mm/10mm/15mm/20mm). Diff = mean dimensional changes over
the time by group and mandibular region. Mean diff = overall mean difference in each group. Dist=
distance. sd= standard deviation.

Mandibular region

2MM 4MM 6MM Mean diff

PRE POS diff PRE POS diff PRE POS diff -

upper dist

DENTATE 16,9 16,9 0,0 18,3 18,5 0,2 20,1 20,2 0,1 0,1

sd 2,7 2,8 0,2 2,0 2,1 0,4 2,5 2,7 0,2 0,3

EDENTATE 7,9 8,0 0,1 9,2 8,8 -0,5 10,9 10,3 -0,6 -0,2

sd 5,7 5,6 1,2 6,3 6,5 0,5 6,3 6,5 0,7 0,8

TOTAL EXTRACTION 12,7 10,8 -1,9 13,9 12,2 -1,8 16,0 14,8 -1,2 -1,2

sd 4,4 3,8 2,2 4,0 3,3 1,9 4,4 3,9 1,5 1,9

lower dist

DENTATE 10,1 10,4 0,3 9,5 9,8 0,3 8,7 8,7 0,0 0,2

sd 1,4 1,3 0,5 1,9 2,2 0,5 1,9 1,8 0,3 0,4

EDENTATE 10,9 10,8 0,0 10,5 10,8 0,3 9,1 9,2 0,2 0,1

sd 2,7 2,6 0,8 2,8 2,9 0,4 2,5 2,5 0,2 0,4

TOTAL EXTRACTION 8,2 8,2 0,0 7,6 7,8 0,2 8,3 8,3 0,0 0,1

sd 2,9 2,9 0,7 2,9 3,0 0,3 2,0 2,0 0,1 0,4

vest dist

DENTATE 2,9 2,8 0,0 3,5 3,7 0,2 3,9 4,2 0,3 0,1

sd 1,0 1,0 0,3 1,2 1,2 0,2 1,0 1,0 0,6 0,4

EDENTATE 3,2 3,1 0,0 3,4 3,6 0,2 3,4 3,5 0,1 0,1

sd 1,2 1,2 0,1 1,3 1,3 0,3 1,2 1,2 0,2 0,2

TOTAL EXTRACTION 3,5 3,8 0,3 3,9 3,8 -0,1 4,9 5,0 0,1 0,1

sd 1,2 1,3 0,4 1,2 1,2 0,4 1,6 1,7 0,1 0,3

lingual dist

DENTATE 4,8 5,1 0,2 4,6 4,7 0,2 4,1 4,3 0,2 0,2

sd 1,7 1,6 0,5 2,1 2,0 0,4 1,7 1,7 0,3 0,4

EDENTATE 5,2 5,4 0,2 4,9 5,3 0,5 6,1 6,2 0,1 0,2

sd 1,3 1,4 0,3 1,5 1,7 0,6 1,8 1,9 0,2 0,4

TOTAL EXTRACTION 4,4 4,5 0,1 3,9 4,5 0,7 3,2 3,5 0,3 0,3

sd 6,9 6,8 0,3 7,4 6,1 1,5 2,2 2,1 0,3 0,7

Least square regression analysis showed significant association between total

bone length and neurovascular canal diameter (length), for both incisive and

mandibular canals. Least square regression equation produced the best, or most

accurate predictions for neurovascular length given the total mandibular length. This

regression equation (or line of best fit) is depicted graphically in figures 8.6-8.7.
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Figure 8.6: The regression line fitted to the scatter plot of values of mandibular canals (mc) and bone
length in all dentate mandibles.

Figure 8.7: The regression line fitted to the scatter plot of values of incisive canals (IC) and bone
length in all dentate mandibles.

Besides, small not statistically significant differences were observed in cortical

thickness over the time. Those results are shown in table 8.8 for posterior regions

and table 8.9 for anterior region.
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Table 8.8: Mean pre and post measurements of cortical thickness at posterior region in each group by
mandibular region (5mm/10mm/15mm/20mm). Diff = mean dimensional changes over the time by
group and mandibular region. Mean diff = overall mean difference in each group. sd= standard
deviation.

Mandibular region

5MM 10MM 15MM 20MM Mean diff

PRE POS diff PRE POS diff PRE POS diff PRE POS diff -

cortical
upper

DENTATE 1,1 1,5 0,4 1,9 2,0 0,1 1,5 1,7 0,2 1,2 1,4 0,1 0,2

sd 1,3 1,7 0,9 3,8 3,8 0,2 1,2 1,6 0,4 1,9 1,8 0,7 0,6

EDENTATE 2,4 2,1 -0,3 2,7 2,2 -0,5 2,1 2,1 0,0 2,3 2,2 0,0 -0,2

sd 1,5 1,3 0,6 1,5 1,2 0,6 1,2 1,5 0,5 1,3 1,3 0,6 0,6

TOTAL
EXTRACTION

2,2 2,2 0,0 1,9 1,9 0,0 3,3 3,2 -0,1 2,2 2,2 0,0 0,0

sd 1,0 0,5 0,9 1,3 0,9 0,8 1,8 1,7 0,4 1,2 1,2 0,3 0,6

cortical
lower

DENTATE 4,4 4,5 0,0 4,8 4,8 0,0 4,6 4,8 0,2 4,5 4,5 0,0 0,0

sd 0,8 0,8 0,3 0,9 0,8 0,3 0,9 1,0 0,2 0,9 0,8 0,2 0,3

EDENTATE 4,4 4,4 0,0 3,9 4,2 0,4 4,2 4,5 0,3 4,5 4,6 0,1 0,2

sd 1,1 1,1 0,2 0,9 1,0 0,5 1,1 1,2 0,3 1,1 1,1 0,2 0,3

TOTAL
EXTRACTION

3,6 3,7 0,2 3,3 3,5 0,3 3,6 3,6 0,0 3,4 3,4 0,0 0,1

sd 1,0 1,0 0,2 0,9 1,0 0,5 0,9 0,9 0,2 0,9 1,0 0,1 0,3

cortical
vest

above

DENTATE 2,7 2,8 0,1 3,1 3,4 0,3 3,3 3,5 0,1 3,7 3,7 0,0 0,2

sd 0,7 0,8 0,3 1,4 1,4 0,7 0,4 0,5 0,3 0,7 0,7 0,2 0,3

EDENTATE 2,7 2,8 0,2 2,5 2,9 0,4 3,5 3,5 0,0 3,8 3,7 0,0 0,2

sd 0,6 0,8 0,3 0,7 0,6 0,5 1,0 1,0 0,3 1,1 1,0 0,3 0,3

TOTAL
EXTRACTION

2,4 2,8 0,4 2,8 3,0 0,2 3,4 3,4 -0,1 3,0 3,5 0,5 0,3

sd 0,7 0,8 0,3 0,8 0,9 0,5 0,9 1,1 0,4 0,7 0,9 0,5 0,3

cortical
lingual
above

DENTATE 2,7 2,9 0,2 2,7 2,9 0,3 3,0 3,0 0,1 3,0 3,3 0,3 0,2

sd 0,5 0,5 0,3 0,7 0,8 0,4 0,6 0,7 0,2 0,6 0,6 0,5 0,4

EDENTATE 2,6 2,8 0,2 3,3 3,2 -0,1 3,0 2,8 -0,3 2,5 2,6 0,1 0,0

sd 0,9 1,0 0,3 1,0 0,9 0,4 0,9 0,8 0,4 0,8 0,9 0,5 0,4

TOTAL
EXTRACTION

2,8 3,0 0,2 2,8 3,2 0,4 2,9 3,0 0,1 2,6 3,1 0,5 0,3

sd 0,7 0,7 0,3 0,7 0,8 0,4 1,0 0,9 0,5 0,8 1,0 0,5 0,4

cort
vest

below

DENTATE 3,2 3,5 0,4 3,5 3,6 0,1 3,3 3,5 0,2 3,4 3,5 0,1 0,2

sd 0,5 0,5 0,4 0,4 0,4 0,2 0,5 0,4 0,2 0,5 0,6 0,2 0,3

EDENTATE 2,8 2,9 0,1 2,8 2,9 0,1 3,2 3,2 0,0 3,1 3,0 -0,1 0,0

sd 0,8 0,8 0,2 0,9 1,0 0,1 1,1 1,2 0,2 1,0 1,1 0,3 0,2

TOTAL
EXTRACTION

2,9 3,1 0,2 3,0 3,1 0,1 2,9 3,0 0,1 3,0 3,0 0,0 0,1

sd 0,7 0,9 0,4 0,7 0,7 0,2 0,6 0,7 0,2 0,7 0,7 0,2 0,2

cort
lingual
below

DENTATE 3,3 3,4 0,1 3,2 3,3 0,1 3,0 3,1 0,0 3,0 3,2 0,2 0,1

sd 0,5 0,7 0,3 0,3 0,4 0,3 0,8 0,8 0,1 0,3 0,5 0,4 0,3

EDENTATE 3,1 3,2 0,1 3,0 2,9 -0,1 2,6 2,6 0,0 2,9 2,7 -0,2 0,0

sd 1,0 1,0 0,2 1,0 1,0 0,2 0,7 0,7 0,1 0,8 0,8 0,4 0,2

TOTAL
EXTRACTION

3,4 3,4 0,0 2,9 2,7 -0,2 2,5 2,7 0,2 2,3 2,4 0,0 0,0

sd 1,1 1,0 0,2 0,8 0,9 0,3 0,7 0,8 0,3 0,7 0,8 0,4 0,3
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Table 8.9: Mean pre and post measurements of cortical thickness at anterior region in each group by
mandibular region (5mm/10mm/15mm/20mm). Diff = mean dimensional changes over the time by
group and mandibular region. Mean diff = overall mean difference in each group. Cort=cortical; vest=
vestibular. sd= standard deviation.

Mandibular region

2MM 4MM 6MM Mean diff

PRE POS diff PRE POS diff PRE POS diff -

cortical upper

DENTATE 1,3 1,3 0,1 1,0 1,1 0,1 0,7 0,8 0,1 0,1

sd 1,6 1,6 0,3 1,5 1,5 0,3 0,6 0,7 0,3 0,3

EDENTATE 2,5 2,2 -0,3 1,8 1,9 0,1 1,6 1,4 -0,2 -0,1

sd 1,8 1,7 0,4 0,7 0,8 0,7 0,7 0,9 0,7 0,6

TOTAL EXTRACTION 3,7 2,8 -0,9 2,9 2,3 -0,6 3,0 3,8 0,8 -0,2

sd 1,8 1,7 1,1 1,0 1,1 1,3 2,2 3,0 1,4 1,3

cortical lower

DENTATE 4,6 4,8 0,2 5,0 5,0 0,0 4,9 5,0 0,0 0,1

sd 0,8 0,9 0,3 0,8 0,8 0,1 1,2 1,2 0,1 0,2

EDENTATE 3,8 4,2 0,3 4,2 4,5 0,3 4,0 4,2 0,1 0,2

sd 1,5 1,5 0,2 1,3 1,3 0,2 1,0 1,0 0,2 0,2

TOTAL EXTRACTION 3,4 3,7 0,3 3,4 3,4 0,0 4,1 4,1 0,0 0,1

sd 1,3 1,4 0,2 1,2 1,4 0,3 1,1 1,1 0,2 0,2

cortical vest above

DENTATE 2,4 2,7 0,3 2,6 2,7 0,1 2,3 2,3 0,0 0,1

sd 0,5 0,6 0,2 0,6 0,8 0,3 0,6 0,5 0,2 0,2

EDENTATE 2,6 2,7 0,1 3,0 3,2 0,2 2,4 2,5 0,1 0,1

sd 1,0 0,9 0,8 0,8 0,8 0,1 0,7 0,7 0,1 0,4

TOTAL EXTRACTION 2,4 2,5 0,1 2,2 2,7 0,5 2,1 2,0 -0,1 0,1

sd 0,9 0,8 0,6 0,6 0,7 0,3 0,6 0,6 0,4 0,4

cortical lingual above

DENTATE 2,9 2,9 0,0 2,7 2,8 0,1 2,7 2,9 0,2 0,1

sd 0,5 0,7 0,3 0,6 0,6 0,3 0,6 0,7 0,3 0,3

EDENTATE 2,1 2,3 0,2 2,1 2,3 0,2 2,3 2,3 0,0 0,1

sd 1,0 1,1 0,4 0,8 0,7 0,4 0,8 0,8 0,2 0,3

TOTAL EXTRACTION 2,4 2,6 0,2 2,5 2,6 0,1 2,2 2,3 0,1 0,1

sd 0,6 0,6 0,3 0,7 0,6 0,5 0,7 0,9 0,6 0,5

cort vest below

DENTATE 3,0 3,3 0,2 3,2 3,3 0,1 3,1 3,2 0,2 0,1

sd 0,5 0,6 0,3 0,4 0,4 0,1 0,4 0,5 0,2 0,2

EDENTATE 2,2 2,3 0,1 2,5 2,7 0,2 2,5 2,6 0,1 0,1

sd 0,8 0,8 0,2 0,8 0,8 0,2 0,7 0,7 0,2 0,2

TOTAL EXTRACTION 2,9 3,1 0,2 3,2 3,3 0,1 3,0 3,1 0,1 0,1

sd 0,9 0,9 0,2 0,9 1,0 0,3 0,9 1,0 0,2 0,2

cort lingual below

DENTATE 3,1 3,7 0,5 3,6 3,6 0,0 4,0 4,0 0,0 0,1

sd 0,4 0,7 0,7 0,7 0,8 0,3 0,8 0,7 0,4 0,5

EDENTATE 2,9 2,9 0,0 3,0 3,2 0,1 3,5 3,6 0,1 0,1

sd 1,3 1,4 0,6 1,3 1,3 0,3 1,2 1,3 0,4 0,4

TOTAL EXTRACTION 2,6 2,7 0,0 3,0 3,1 0,2 3,1 3,1 0,0 0,1

sd 1,0 1,1 0,2 0,7 0,9 0,3 0,9 0,9 0,2 0,2

Table 8.10 shows the results of mental foramen dimensions and the distance

between mandibular and canal borders at the mental foramen region. No statistical
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significant differences were found within the follow-up time. The distance from the lower

border were maintained over the time (figure 8.8) and total bone length reduction was

correspondent to the decrease in the distance between the mental foramen and the upper

border of the mandible (figure 8.9).

Table 8.10: Mean pre and post measurements of mental foramen (mf) and the distance from mf
foramen borders to the upper (mf dist sup) and lower (mf dist inf) mandibular border. Diff = mean
dimensional changes over the time by group. Dist= distance. sd= standard deviation.

Group
mf
pre

mf
post

diff
mf dist

sup pre
mf dist

sup post
diff

mf dist
inf pre

mf dist inf
post

Mean
diff

dentate 3,7 3,7 0,0 13,0 13,0 0,0 13,1 13,1 0,1

sd 0,9 1,0 0,3 3,2 3,2 0,9 1,2 1,1 0,2

edentulous 2,7 2,6 -0,2 5,4 5,0 -0,4 12,8 12,8 -0,1

sd 0,9 0,9 0,2 4,9 4,8 0,9 3,4 3,4 0,2

total extraction 2,7 2,5 -0,2 7,1 5,8 -1,3 14,4 14,3 0,0

sd 0,7 0,7 0,3 2,7 2,8 1,3 3,1 3,1 0,3

Figure 8.8: Dimensional changes at mental foramen region at each group. mf=mental foramen; dist sup=
distance mental foramen to the upper border of the mandible; dist inf= distance mental foramen to the lower
border of the mandible; width 1= total mandibular width above the mental foramen; width 2 = total mandibular
width below the foramen; total length=total mandibular bone length at anterior region.
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Figure 8.9: The regression line fitted to the scatter plot of values of upper distance difference (diff) and

total bone length MF difference in all dentate mandibles.

The resorption rates (mm bone loss/year) was calculated for each group, however, no

statistical significant differences were found. Those results are presented figure 8.10 and

tables 8.11 and 8.12.

Figure 8.10: Mean posterior and anterior resorption rates in dentate, edentulous and total extraction
groups. Lines indicate mean, standard deviation and 95%confidence interval.
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Least square regression equation:

MF upper distance diff (mm) = -0,131621 + 0,7030195*Total

bone length MF diff (mm)

p<,0001
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Table 8.11: Means for Oneway Anova of resorption rate (mm/year) for mandibular posterior region
(p=0.39).

Level Number Mean
Std

Error
Lower
95%

Upper
95%

dentate 12 -0,15 0,17 -0,50 0,20

edentulous 6 -0,52 0,24 -1,01 -0,02

total
extraction

6 -0,12 0,24 -0,61 0,37

Table 8.12: Means for Oneway Anova of resorption rate (mm/year) for mandibular anterior region
(p=0.05).

Level Number Mean Std
Error

Lower
95%

Upper
95%

dentate* 12 -0,03 0,28 -0,61 0,56

edentulous 6 -0,60 0,40 -1,43 0,24

total
extraction*

6 -1,29 0,40 -2,12 -0,46

*dentate x total extraction group (p=0.04)

Discussion

The present study has shown by means of CBCT images that only few

changes occur in the mandibular neurovascular canals after tooth extraction. This

was shown by the subtle changes observed in patients followed for 1 year and 7

months after tooth extraction and implant treatment. The mandibular bone

dimensional alterations during the observational period did not influence the

dimensions, neither the positioning, of the neurovascular canals inside this jaw bone.

Moreover, the similar canal diameters found for the dentate and edentulous patients,

for both the incisive canal and mandibular canal, further suggested that

neurovascular canals do not undergo significant alterations in edentulous mandibles.

According to our results, the mandibular bone length was related to the length

of neurovascular canals, in the posterior and anterior region of the mandible.

Therefore, the average bone loss for both regions could be calculated for the

edentulous group in order to be compared to previous study (Tallgren 1972). This
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allowed us to suggest the possible range of years of edentulism of those patients,

since this information could not be reliably gathered in the study. Using the least

square regression equation presented in figures 8.6 and 8.7, the mean bone loss for

the edentulous group was found around 6mm, for the anterior region, and 4mm at the

posterior regions. This bone resorption at anterior region corresponded to patients

within 7 years of edentulism, according to the study of Tallgren (1972).

It is worth to note that the mandibular bone resorption found might be

influenced by the implant treatment received by the patients participating in our study.

The resorption rate (mm bone loss/year) of edentulous patients was compared to

rates reported previously, although such extrapolation is limited as earlier studies

were carried on two dimensional projection images (Sağlam 2002; Batenburg et al 1997; 

Tallgren 1972). Tallgren (1972) reported a resorption rate of 0.68mm/year between 3

years and 7 years edentulism. Although we have found a lower resorption rate

(0.59mm/year) for edentulous patients, this difference might be caused by the

different years of edentulism and not only by the implant treatment. Interestingly, the

resorption rate for a period of one year after extraction was reported to be around

2.54mm/year, almost double the resorption rate found in our study for a similar

observation period. In fact, the resorption rate of patients undergoing total extraction

was found to be around 1.3mm/year. This suggests that implant treatment may

reduce mandibular resorption rate after total tooth extraction.

Using the same CBCT system of the present study, Sheikhi et al (2012) and

Ganguly et al (2011) evaluated the accuracy of linear measurements in ideal and

rotate position, as well as in simulated clinical conditions. The mean difference

between physical measurements and radiographic measurements was lower than

0.2mm (Sheikhi et al 2012). Besides, strong inter and intra observer agreement has

been reported to this CBCT system (Sheikhi et al 2012; Ganguly et al 2011), in

agreement with our study. Cone beam images allow for a 3D visualization of the

mandibular bone in a higher image resolution compared to previous images

techniques, such as panoramic and cephalometric images used in similar previous

studies (Sağlam 2002; Batenburg et al 1997; Tallgren 1972) . Additionally, cone beam

images overcome the drawback of structures overlapping and magnification inherent

to projection images. This can be responsible for some disagreement among the
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results previously found in the mandibular bone loss. The large inter-individual

variability further limited comparison across studies.

On the other hand, even not using the same imaging technique, the thickness

of the cortical bone of the mandible was in agreement with previous studies and was

maintained over the observation time. Similarly, Katranji et al (2007) reported no

difference of cortical thickness between dentate and edentulous mandible. In general,

the changes in the dimensions of the mandibular structures were not clinically

significant regarding the mandibular canal diameter and positioning, as well as for the

cortical thickness. In healthy patients, the neurovascular canals seemed to maintain

their original position related to the mandibular borders, but to the upper mandibular

border. Yet, this change in upper distance was directly related to the mandibular

bone resorption, and not resorption of canal walls. According to Polland et al (2001),

the wall of the mandibular canal was similar in dentate and edentulous mandibles,

and was highly perforated.

Although previous studies have suggested that myelinated nerve fibres are

degenerated after tooth extraction (Heasman and Beynon 1986; Hansen 1980), no study

was found reporting on changes in the mandibular canal dimensions over time after

tooth extraction. However, no difference in the course and distribution of the inferior

alveolar nerve has been found earlier in the study of Kieser et al (2005). The fibre

diameter distribution curves of human inferior alveolar nerves are often bimodal

distribution with peaks in the Aδ (pain and temperature) and Aβ (touch and pressure) 

ranges. The bimodality characteristic appeared to be independent of the age and the

number of teeth present (Heasman and Beynon 1986). However Heasman and Beynon

(1986) suggested that, if any fibres had ondergone atrophy following tooth loss, they

would have been from the large diameter types, those representing touch and

pressure. In turn, those innervating the periodontal ligament and teeth. It has been

reported that edentulous jaw did not contain any large size axons, compared with the

dentulous jaw (Nonaka et al 2003). Interestingly, large fibres are not the most found in

the alveolar inferior nerve (Heasman 1984) suggesting that most of IAN fibres might

maintain their functional significance in the bone physiology, even after total tooth

extraction.
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It can be concluded that the neurovascular canals do not undergo clinically

significant changes after tooth extraction. Future studies should be conducted in

larger and more homogeneous samples during longer follow-up period, besides

considering the influence of other factors, such as type of treatment, in the

mandibular bone loss over the time. In further studies, the relation between structures

will be revisited in the mandible, as such alveolar bone loss indices, influence of bone

quality classification and neurovascular bone corticalization.

Conclusions:

1. The study suggested that no significant changes of neurovascular canals occurs

after tooth extraction.

2.Although mandibular bone loss could be observed over time, no association was

found with dimensional changes in the neurovascular canals.

3.The length of neurovascular canals was positively related to the mandibular bone

length in the anterior and posterior region.

4.Subtle changes, not clinically significant, were observed in the position of the

mandibular canals and cortical thickness after tooth extraction and implant

treatment.

5.Although using a different imaging technique, our study showed some similar

results as previously reported in the literature concerning cortical thickness, bone

loss and neurovascular dimensions. However, the resorption rate of mandibular bone

after implant treatment in the first years after tooth extraction were lower than those

reported in literature.
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I. General discussion and conclusions

After extraction, teeth can be replaced by dental implants. Those are titanium

screws that are placed inside the bone and which will integrate to jaw bone due to

bone formation around the implant surface. This prosthetic replacement of teeth is

comparable to other prosthetic replacements elsewhere in the body, since tooth loss

can be also considered as a limb amputation. The utmost goal of any prosthetic

rehabilitation is to recover function approaching normal physiological conditions. In

this way, patients would be able to feel their prosthesis as part of their body, rather

than interpret it as a foreign body. Thus, dental implants should be incorporated in

the body allowing natural functioning, such as natural teeth, in order to be considered

physiologically integrated.

During tooth extraction, a large number of sensory fibres are damaged. Since

the target organ is removed, it is possible that the axonal sprouting of the damaged

nerve fibres may result in the formation of a traumatic neuroma rather than a guided

regeneration that occurs when the nerve is transected (Mason and Holland 1993).

However, previous studies showed that the initial degeneration is followed by a nerve

fibre proliferation that ends after the socket healing is complete, reaching similar

levels of “normal” bone.

After implant placement, the innervation pattern of nerve fibres involved in

bone remodeling and repair have been found similar to that found in healed socket

(Sawada et al 1993; Buma et al 1995; Ysander et al 1995; Gunjigake et al 2006; Mason and

Holland 1993). Electrophysiological techniques (Linden and Scott 1988) have shown

that mechanoreceptive fibres represented in the mesencephalic nucleus were still

present within the bone 6 months after tooth extractions; however those fibres could

not be mechanically stimulated. Linden and Scott (1988) concluded that the majority

of those fibres do not appear to reinnervate new tissues in which they can be

mechanically stimulated, which implies that the nerve endings were present deep

within the alveolar bone. Similarly, Bonte et al (1993) could not find any response in

the trigeminal ganglion after mechanical stimulation of dental implants, though an

inhibitory reflex in temporal muscle has been observed. However, a recent study

(Habre-Hallage et al 2012) demonstrated that punctate mechanical stimulation of oral

implants activates both primary and secondary cortical somatosensory areas.
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This cortical activation may represent the underlying mechanism of

osseoperception (Habre-Hallage et al 2012), and might happen by activating the

remaining fibres with cell bodies in the mesencephalic nucleus described by Linden

and Scott (1989) after extraction socket healing. Another mechanism underlying

osseoperception might be the way mechanical forces are sensed and codified in

bone. For example, mechanoreception in implants may be an adaptation of existing

function in bone. It is not a mechanosensory function identical to what happens in

teeth, but rather a new mechanoreception process, which is part of the bone

adaptation to new mechanical demands after implant rehabilitation.

From chapter 2, one can conclude that mechanoreceptors have their

morphology, location, distribution and physiological characteristics directly related to

the biomechanical environment within they are located. After tooth extraction, the

degeneration of those mechanoreceptors takes place since those fibres seem to not

innervate new tissues in which they could be mechanically stimulated (Linden and

Scott 1989). One hypothesis is that implant placement would be able to stimulate

fibres located deep in the alveolar bone whose cell bodies are located at the

mesencephalic nucleus. Besides, implants may also stimulate nerve regeneration by

restoring functional significance of nerve fibres. This nerve regeneration has also

been suggested for specialized nerve endings after trauma at IAN, and may also

occur at peri-implant region. However, no specialized endings have been

demonstrated in this region in previous studies, neither in chapter 5.

In that chapter, no intimate contact was noted between implant and nerve

fibres. One cannot affirm that the implant would be responsible for the new functional

significance of those fibres, since their function could not be determined in the

present study. It has not been prove yet by previous studies if implants can improve

or stimulate nerve regeneration. Whether implants can influence nerve fibres or not,

they seem not to impair nerve fibres as shown by the study of Onur et al (2006) and

the proximity of implants and anterior mandibular canals of patients observed in

chapter 8. A close spatial interrelation between implants and the incisive canal (and

its branches), indicates that nerve fibres from those canals might be innervating the

peri-implant region (figure 9.1).
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histological slices obtained for the study of myelinated nerve fibres distribution in the

periodontal ligament, presented in chapter 3.

PDL is a complex, fibre-reinforced substance that responds to force in a

viscoelastic and nonlinear manner. The PDL consists of 53–74% collagen fibres and

1-2% blood vessels and nerve endings that are embedded into an amorphous

muccopolysaccharide matrix. Fibrous collagen elements resist tensile forces and the

highly hydrated viscous ground substance into which fibrous proteins are embedded

forms the extracellular matrix. The ground substance is responsible for the PDL’s

viscoelastic properties when subject to loading. Also, the PDL’s cellular response to

mechanical loading results in a metabolic response, e.g. remodeling of the ground

substance and fibrous tissue (Fill et al 2011).

Although 2D histological slices have great impacts on quantification and

visualization of clinical and research data, 3D volume reconstruction from these 2D

slices is required in order to fully appreciate anatomical structures. Further

approaches should combine information from different imaging techniques, such as

histological and radiological 3D reconstructions.

Periodontal ligament and peri-implant bone are directly related to the

distribution of mechanical loads in the jaw bones. Nevertheless, those structures

differ in their components and physiological characteristics. In this thesis, both

structures were assessed by means of histological images in chapters 3-5. The

discussion aimed to highlight their importance for mechanoreception function.

In chapters 3 and 4, original research was conducted related to the distribution

of nerve fibres and the function of other specialized structures found within human

PDL. In chapter 3, it was observed that PDL nerve fibres were evenly distributed

along the root of a human canine, with slightly higher concentration at the tooth apex.

However this observation was done in one canine and further extrapolation should be

made with caution. Yet, findings are in agreement with previous study in animals

(Loescher and Holand 1991). Besides, the fibre diameter range of 5-8µm was similar to

that reported in the inferior alveolar nerve and in the PDL in humans (Heasman and

Beynon 1986; Griffin and Spain 1972). Interestingly, those fibres did correspond to the

ones that were reported to degenerate in the IAN after tooth extraction (Heasman

1984). However, this range is not the most commonly found in the IAN of humans
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(Heasman and Beynon 1986; see table 4: chapter 2), suggesting that most of myelinated

nerve fibres of IAN maintain their functionality after tooth extraction.

Other PDL structures were assessed in Chapter 4 in order to identify their

influence in the PDL function and relation to the PDL innervation. A brief literature

review was conducted to identify the current information about the epithelial rests of

Malassez and cementicles. The function of those structures remains unclear in the

literature, although several researches pointed out their importance for the PDL

maintenance, regeneration and prevention of ankylosis. Furthermore, the intimate

relation of those structures with PDL nerve fibres has been demonstrated. The case-

report of tooth autotransplantation in Chapter 4 added new evidence to the relation

between ERM, PDL innervation and regeneration in humans. Future studies should

further assess the ERM morphological alterations reported in this chapter, as well as,

the role of ERM in periodontal regeneration and its association to PDL innervation.

Osseointegration and osseoperception are two important concepts in the field

of implant dentistry (Brånemark et al 1997). Both are relevant processes during

successful oral implant rehabilitation. Osseointegration stands for bone tissue

formation around implants, creating a direct bone-implant contact, while

Osseoperception deals with the peripheral feedback arising from osseointegrated

implants evoking brain activation after mechanical stimulation (Jacobs and van

Steenberghe 2006; Trulsson 2005; Klineberg 2005). It is believed that nerve fibres found

within peri-implant bone may act as mechanoreceptors during load application on

implants. In this way, studying the peri-implant bone innervation may help in

unravelling the osseoperception phenomenon and assessing the related clinical

impact of this phenomenon.

Peri-implant bone innervation might be influenced by several factors e.g.

implant surface and functional load application. Studies on bone response to titanium

implant have 3 main focuses: 1) describe the osseointegration process, 2) report the

percentage of bone-implant contact and 3) determine or compare the factors

influencing this process as such surgical technique, implant surface, shape and

loading approaches. Unfortunately, regarding bone innervation and nerve tissue

regeneration after implant rehabilitation, the literature is still scarce (Ysander et al 2001).
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The osseointegration process is frequently described without any reference to tissue

re-innervation as part of a successful osseointegration.

To address the clinical relevance of osseoperception phenomenon, one

should understand the link amongst osseoperception, physiological integration,

patient satisfaction/adaptation and implant success. Osseoperception, the perception

of mechanical stimulus via osseointegrated implants, contributes to the physiological

integration of the implanted prosthesis leading to better patient satisfaction and

adaptation to the treatment. However some patient-centered aspects should be

considered to assess the implant success, namely physiological and psychological

impact of the treatment (Papaspyridakos et al 2012). Up till now, no clinical protocol is

available to predict or improve the physiological impact of implant treatment. A

physiologically integrated implant should be understood as an implant considered as

being part of the body and, therefore, it would contribute to maintain the functional

equilibrium of the oral system.

This physiological integration has been addressed by functional,

psychophysical, neurophysiological and histological studies (Habre et al 2012; Habre et

al 2011; Jacobs and van Steenberghe 2006; Lambrichts 1998). Evidence from these studies

may strengthen the role of osseointegrated implants in the peripheral feedback

mechanism during oral function. However, several aspects involved in oral

physiology are not similar between patients with natural teeth and patients

rehabilitated with osseointegrated implants. For example, unlike patients with natural

teeth, who display bite-to-bite variation in jaw muscles activity, implant patients chew

with approximately the same pattern of muscle activity during the whole masticatory

function (Turker et al 2007).

Nevertheless, functional findings and psychophysical studies have reported an

improved oral function in implant rehabilitated patients compared to conventionally

rehabilitated patients. Functional studies show a higher bite force and a better

masticatory efficiency for implant patients (Haraldson and Carlsson 1977; 1979). In the

same way, psychophysical studies report markedly lower tactile thresholds in those

patients. Whereas clinically health dentate patients can perceive micro-thickness

from 8-20µm (Siirla and Laine 1969; Jacobs and van Steenberghe 1991), this tactile

threshold is found around 50µm for implant rehabilitated patients and 150µm patients
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wearing mucosa-supported prosthesis. However, these differences between implant-

supported prosthesis and mucosa-supported prosthesis are less pronounced for the

tactile threshold related to load application. Whereas patients with a natural dentition

can perceive down to 2 grams (g) of occlusal load, once wearing total mucosa-

supported prosthesis and implant-supported prosthesis, this threshold increases to

150g and 100g, respectively (Jacobs and van Steenberghe 1993).

Since tactile threshold for load perception is remarkably higher for implant

rehabilitated patients compared to patients with a natural dentition, considerable

amount of occlusal overload is less prone to be perceived by implant rehabilitated

patients. This fact should be highlighted when establishing patient occlusion after

implant rehabilitation. High precision tools for occlusion determination might be

required in order to avoid overload on the implant-bone complex, mainly in cases

where immediate loading approach is being applied. In those cases, avoiding initial

overload will be crucial to the process of implant osseointegration (Klineberg et al

2012). Moreover, it may also play a role in the maintenance of this osseointegration

and of the balance in the oral musculoskeletal system.

Besides scientific evidences on the perception of mechanical stimulus via

osseointegrated implants provided by functional and psychophysical tests (Trulsson et

al 2012; Enkling et al 2010; Batista et al 2008; Jacobs and van Steenberghe 2006; Mericske-

Stern et al 2000; Hämmerle et al 1995; Jacobs and van Steenberghe 1993; Jacobs and van

Steenberghe 1991), scientific evidences are also provided by neurophysiological

studies, namely functional resonance magnetic imaging (Habre-Hallage et al 2012; Yan

et al 2008; Lundborg et al 1996), neural recordings (Trulsson 2005) and evoked related

potentials (Van Loven et al 2000) studies. However, the conclusions generated by

those studies are still unclear regarding the location of the main receptors

responsible for mechanoreceptive function in implant rehabilitated patients. Similar

doubt was faced in the earlier studies related to mechanoreceptive function present

in natural dentition.

Clinical and experimental studies on the effect that sympathetic and sensory

denervation have on bone dynamics, have suggested a role for the nervous system

in bone blood flow, fracture repair and maintenance of bone tissue, regeneration and

osteopathology (Herkovitz et al 1995). Reports on bone mechanosensibility function
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can be found in the literature older than the osseointegrated implants, although not

receiving this specific denomination. Firstly, Leriche (1930) announced that bone

contained nerves fibres which supply both marrow and bone tissue and originated of

sympathetic system and from the brain and spinal cord. In this way, they would

mediate pain as well as position and space perception (Herkovitz et al 1995). Following

this same idea, Miller and Kasahara (1963) report that myelinated nerve fibres found

in the trabeculae of the epiphysis and metaphysis and on the under surface of the

articular cartilage probably play a role in position sense and give information

concerning pressure and movement in the internal structures of the ends of long

bones.

The role of the bone innervation in the feedback controlling oral function

remains unclear. Unfortunately, histological studies have been unsuccessful in

demonstrating the involvement of these fibres in the tactile function, similarly to

mechanoreceptors in the periodontal ligament. Actually, sensory function allowing

force and pressure feedback, as such provided by specialized mechanoreceptors in

the periodontal ligament, might not rely on mechanoreceptors in the peri-implant

bone. However, neurophysiologic and functional findings in implant patients provide

scientific evidences that a physiological adaptation occurs after implant treatment and

this feedback might happen in a different pathway. These evidences can be found in

studies showing brain neuroplasticity after implant rehabilitation (Habre-Hallage et al

2012; Yan et al 2008; Lundborg et al 1996), as well as higher chewing efficiency, bite

force, better food manipulation ability and lower active and passive tactile threshold

(Svensson et al 2013; Trulsson et al 2012; Jacobs and van Steenberghe 2006; Trulsson and

Gunne 1998; Jacobs and van Steenberghe 1993 Haraldson et al 1979; Haraldson and Carlsson

1977) compared to edentulous patients rehabilitated with conventional prosthesis.

According to Sessle (2006), the modulatory mechanisms underlying these

neuroplastic changes are still unclear, but do not appear to be accounted for by

morphological changes (e.g. collateral sprouting) in the uninjured low-threshold

mechanosensitive afferent endings in the trigeminal brainstem complex or by

alterations in certain central inhibitory circuits or pre-synaptic regulatory processes.

The neuromuscular system can be reflexly influenced by the afferent inputs into the

brainstem from receptors that signal pain, touch, joint position, muscle stretch or
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“A key question in the perspective of the

phenomenon of osseoperception is

whether the transfer of forces through the

implants to the bone could modify the

peripheral input to the trigeminal

motoneurone pool.”

van Steenberghe 1998

tension, etc. Reflex responses in jaw muscle have been demonstrated in some

human subjects with mechanical stimulation of implant-supported prostheses.

Electrophysiological studies in cats (Linden and Scott 1988) showed that implant

stimulated by purely mechanical loads generate response in the trigeminal ganglion

but not at the mesencephalic nucleus. In

the periodontal ligament, fibres with cell

bodies at the mesencephalic nucleus are

considered responsible for the sensory

feedback during oral function in dentate

subjects (Linden and Scott 1989). Hence, this

function is expected to remain impaired in

implant oral rehabilitation. Indeed, studies evaluating passive threshold on implants

and teeth, found that this function, although better than in a fully edentulous

condition, remains impaired when mechanically stimulating implants (Jacobs and van

Steenberghe 1993). On the other hand, the research group in Habre et al (2012) is the

first to demonstrate a sensory cortical response in humans after purely mechanical

implant stimulation. Those findings (Habre et al 2012) confirmed that central plasticity

occurs after implant rehabilitation, which may allow some functional adaptation

controlled by other areas in the central nervous system, the central projection

trajectories are no more the same observed in normal oral status.

In chapter 5, we addressed the mechanosensibility in implants by reviewing

previous studies about peri-implant innervation. Besides, an original research was

conducted in humans searching for mechanoreceptors in osseointegrated implants.

Although our study could confirm the presence of nerve fibres in the peri-implant

region in humans, and their diameter range corresponded to those carrying touch

and pressure information, no clear conclusion could be made about the function of

those nerve fibres. Nevertheless, techniques limitations should also be considered

since they may also impair the histological description of nerve fibres. A single

histological technique is not able to depict all types of nerve fibres associated with a

tissue. In our study, we used light microscopy for initial identification of neural

structures, electron microscopy was used to confirm the presence of nerve fibres and

when any structure similar to mechanoreceptors was observed in the histological

slices in order to confirm our findings.
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Although no differences have been found in the nerve density after implant

osseointegration, the influence in nerve fibre proliferation, molecular and structural

changes have been reported by Ysander et al (2001) and Wang et al (1998),

respectively. Ysander et al (2001) found a higher neuropeptide activity in marrow

cells associated with bone remodeling during osseointegration, whereas Wang et al

(1998) observed more fatty changes in the marrow of edentulous site compared to

the implant site. Besides, the bone with implant has shown many varicose fibres in

almost all remodeling cavities (Lambrichts 1998; Buma et al 1995).

Other techniques such as immunohistochemistry use immunoreactive

substances to unravel the physiological role of nerve fibres located in the bone

tissue. Mach et al (2002) show that the mineralized bone, the bone marrow and the

periosteum receive innervation from both unmyelinated and myelinated sensory

neurons, which would presumably include A-β, A-δ and C fibres, all of which could 

conduct sensory input from the periphery to the central system. Previous reports

have suggested that in addition to the afferent role that sensory neurons play in

conveying nociceptive information from mineralized bone, these may regulate bone

metabolism together with sympathetic fibres that innervate a mineralized bone (Mach

et al 2002). To better understand bone innervation and its influence in the

mechanosensory function, the role of nerve fibres found in the peri-implant region

should be characterized according to the same parameters studied for those fibres

found in the PDL. In turn, peri-implant innervation should address the morphology of

nerve endings, distribution of nerve fibres and endings, their central connections,

neurophysiological aspects, as well as the biomechanical environment in which they

are confined.

The study of osseoperception should focus on the functional significance of

this phenomenon, such as it has been done in the study of the mechanosensory

phenomenon in teeth. In this way, the clinical application of osseoperception can be

determined for oral implants. It is suggested that the ability to perceive loads through

osseointegrated implants allow those to be well integrated into the oral functions,

before relied on natural teeth. The physiological integration of the implant prosthesis

is the most important consequence of an optimized osseoperception after implant

rehabilitation. This is mainly required for a better masticatory function and adaptation

of the patient to the artificial tooth. Identifying the elements that influence
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“The physiology and biology of skeletal

and alveolar bone are supported by a

dynamic and complex milieu.”

Lin et al (2012)

osseoperception is the first step to determine which of them can be controlled

clinically as such osseoperception can be optimized in implant treatment. The

literature may give some suggestions about how this optimization can be obtained.

For example, it is known that, in man, tapping an implant in the upper jaw leads to an

inhibitory reflex in the jaw closing muscle as observed through electromyography

(Bonte and van Steenberghe 1991). However, this inhibitory reflex in the jaw closing

muscle, as well as the post-stimulus EMG complexes, was very dependent on the

presence of periodontal neural receptors, either in the ligament or the gingiva (Jacobs

and van Steenberghe 1995, Bonte and van Steenberghe 1991). Thus apparently the

maintenance of some remaining teeth may help in the prosthetic integration and

patient’s adaptation.

There is an agreement between animal and human data that tapping an

implant only elicits a reflex in jaw closing muscles if some part of the natural dentition

remains. Thus the latter is probably

triggered by vibrations caused by the tap

and conveyed through bone conduction. In

turn, the nerve fibres histologically

observed at the implant-to-bone interface

cannot elicit a jaw reflex. It raises the question about the functional significance of

those fibres for the implant treatment. Other suggestions could be that they are

involved in the mechanoreception and remodeling processes in bone. Yet, to test this

hypothesis more studies are needed about how those processes occur in association

with bone innervation. In this way, further application of this knowledge can be

suggested in the clinical practice.

In case those fibres are involved in the perception of mechanical loads through

oral implants, they might influence the hold-and-split task of masticatory function. An

improved ability to perceive loads would allow a better motor control according to the

characteristics of the food. However, it is not known how this ability of perceiving

loads can be improved. One suggestion would be by a specialized training on oral

motor control after prosthetic rehabilitation. Besides, this improvement could be also

possible by stimulating the regeneration of nerve fibres in the peri-implant bone or

when some remnants of PDL mechanoreceptors would be present. If the latter

hypothesis is correct, another question would be how to stimulate this regeneration?
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If the first hypothesis would be the right one, immediate implant placement would be

more likely to have regenerated mechanoreceptors than delayed placement. In this

way, immediate implant placement would improve physiological integration of

implants due to a better mechanosensory function.

PDL mechanoreception is a complex function which components are

specialized engines that has built up their distribution and morphology according to

the biomechanical conditions endure throughout patient’s life. Taking this into

consideration, it is hard to believe that such a specialized engine would survive after

tooth extraction, either regenerate after implant placement.

It has been reported that large nerve fibres undergo degeneration after tooth

extraction (Tang et al 2008), corresponding to the calibre of nerve fibres found around

a canine in chapter 3. Nerve degeneration caused by loss of the tooth is an important

reason for the jaw bone resorption. Mechanical loading is the primary factor in bone

remodeling and can also maintain innervation (Tang et al 2008).

The characterization of the peri-implant bone in humans in chapter 5 allowed

us to determine if bone density and structure can be determined applying the newest

imaging techniques of clinical use. The possibility to describe those bone parameters

precisely would help to simulate this biomechanical environment allowing to assess

strain/stress around implants (Lin et al 2012). Bone density is related to bone turn over

and remodeling process, whereas bone structure is related to bone geometry and

load distribution.

In chapter 6, we showed that bone density cannot be accurately determined in

CBCT images. This radiographic bone parameter, however, is suggested as a

feasible feature to be used for the assessment of bone density in intra-oral

radiographs. This chapter showed a strong association between bone density before

implant placement and bone loss after 3 months healing in animals. Similar clinical

studies should be conducted to further confirm this relation in humans. Concerning

bone structure, more information can be visualised in CBCT images as showed by

figure 6.12 in chapter 6. However, this information could not be expressed

numerically by means of fractal analysis. This means that more research is still

needed till bone parameters as density and structure can be determined by means of

radiographic images used in clinical practice. The images below show clearly that
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even though more bone trabeculae can be visualized on CBCT slices (figure 9.2),

they do not seem to match with the trabeculae morphology identified in histological

slices. This difference is explained by divergences in methods to obtain the images,

as such the image resolution, cutting direction and slice thickness. In turn, the

current images techniques used in clinical practice are of limited application for the

study of the mechanoreception in implants.

The study of bone density and structure, in chapter 6, brought the expectation

to be able to correlate them with any possible alteration in the mandibular canal. In

case those properties would be reliably detected in CBCT images, this correlation

could be done in chapter 8. This hypothesis was also supported by the observation of

Tang et al (2008) that “besides preventing implants from excessive occlusal loads,

the sensory nerve successfully established can enhance bone formation via its effect

on bone cells.” Wadu et al (1997) showed that the radiographic appearance of

mandibular canal is related to trabecular number, distribution and pattern around the

canal. Radiographic appearance of the mandibular canal has been recently related to

trabecular bone volume (Bertl et al 2013) and trabecular classification (Oliveira-Santos

2012). In this way, such bone characteristics could be associated to the mandibular

canal’s radiographic appearance. Unfortunately, the actual state of imaging

technology did not allow a reliable measure of those bone features. However, the

question about the radiographic appearance of the mandibular canal related to

changes in the alveolar bone might be relevant to study influence of implants in the

oral physiology.

In chapters 7 and 8, mandibular canal variability was studied, since large

variations of those canals have been reported before. In chapter 7, this variability was

studied and could be partially explained by differences in species and geographical

position. Mandibular canal dimensions were directly related to mandibular bone size.

This relation may explain the differences in size inside the secular sample. In chapter

8, CBCT imaging technique was used to study the influence of implant treatment on

jaw bone and mandibular canal changes related to the oral status. Although, the

mandibular canal has a large variability within the population, the oral status was not

confirmed as a factor influencing mandibular canal dimensional changes. Finally, our

results suggested that implant treatment may decrease bone resorption in the first

year after tooth extraction.



II. Conclusions

The knowledge on periodontal ligament (PDL) and peri

innervation is relevant to explain the mechanisms underlying the oral function.

Although differing in their components and structures, both tissues may play an

important role in fine oral motor control, providing sensory feedback to the Central

Nervous System (CNS). Although our hypotheses were in part confirmed, future

studies are needed in other to morphologically and functionally describe the

physiological integration of implants.

Figure 9.2: Manual segmentation of trabecular space and registration of

corresponding histological and CBCT slices.
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This thesis addressed several aspects related to the osseoperception

phenomenon and discussed the related clinical impact on osseointegrated implant

treatment. Future researches on mechanosensory function in teeth and implants

should address the cellular and molecular processes underlying this function. A

better description of the tridimensional arrangement of PDL could further explain how

loads are transmitted within a bone and translated into neural processes.

In the same way, the 3D arrangement of bone will influence the transmission

of loads around the peri-implant bone. More reliable description of peri-implant bone

structure and density may explain part of the biomechanical properties of bone. This

understanding will help to understand the mechanosensory function in implants.

To investigate the possible role of peri-implant innervation in the

mechanosensory function, peri-implant nerve fibres should be further investigated in

the light of their cellular and molecular processes, neurophysiological aspects,

morphological characteristics, distribution and central connections.



Summary

Samenvatting
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Summary:

This thesis is composed of 2 literature reviews and 6 scientific studies focusing
on the mechanosensory function related to periodontal ligament (PDL) and peri-
implant region. The scientific research first started with the exploration of PDL nerve
fibre distribution in humans (1) and the investigation of special PDL structures,
namely the epithelial rests of Malassez (ERM) (2). This was followed by the
histological search for mechanoreceptors in the peri-implant tissue of humans (3).
Besides these histological approaches, more clinically accessible tools were
investigated as possible indication for physiological changes of bone, especially
dental radiographs which are daily used in clinic. Thus, morphological aspects of peri-
implant bone were assessed by cone beam computed tomography (CBCT) and intra-
oral (IO) radiography, using histological imaging as gold-standard (4). Finally, the
influence of implant treatment on mandibular anatomy and innervation was
investigated using 3D CBCT images. For this, the variability of neurovascular canals
in the mandibular bone had first to be addressed (5, 6).

PDL innervation and mechanoreceptors have been extensively described
according to their morphology, neurophysiological aspects, spatial arrangement and
functional significance (chapter 2). Yet, researches exploring the 3D reconstruction of
the PDL and mechanoreception function at cellular and molecular levels are expected
to further our understanding of mechanosensory function in teeth. Three-dimensional
volume reconstruction from 2D histological slices showed some potential in
visualising the complex PDL anatomy, spatial arrangement and interrelationship
among the different PDL structures (chapter 2).

Regarding nerve fibre distribution in human PDL, bundles of nerve fibres were
mostly found at the alveolar related part of the PDL and in the vicinity of blood vessels
(chapter 3). The highest number of fibres was found at the buccal and mesial region
as well as at the root apex. The diameter of PDL fibres ranged between 2-15µm, and
those that were myelinated and in the range of 5-6µm were most frequently seen in
the human PDL. Overall, the lingual region showed higher concentration of nerve
fibres of larger diameter (8-9µm). The highest concentration of isolated fibres was
found at the intermediate region between apex and tooth fulcrum, and this in the
cemental part of the PDL.

Other PDL special structures such as ERM and cementicles have been
described in the literature, however their role in the PDL function is not fully
understood (chapter 4). An altered ERM morphology after tooth autotransplantation
suggested that this structure is related to PDL regeneration. Additional studies are
needed to confirm this finding and to research the likely influence of this finding in
PDL regeneration treatments.

For the first time in humans, myelinated and unmyelinated nerve fibres were
shown in the peri-implant bone mostly localized in the Haversian canals close to the
bone-implant interface (chapter 5). However in this study, no structure even
resembling a mechanoreceptor was observed in the peri-implant region, which does
not explain why some PDL mechanoreceptor functions are partially restored after
implant treatment. Therefore, the exact location and mechanism of the structures that
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would be responsible for those functions remains mostly unknown in fully implant
rehabilitated patients.

Regarding peri-implant bone tissue estimations, significant correlations could
be observed between bone levels histologically assessed and bone levels measured
on IO radiographs and CBCT images (chapter 6). Tissue parameters as measured on
IO radiographs correlate significantly with some histomorphometric parameters.
However, such correlation could not be established for CBCT images. An increased
bone loss (>2mm) seemed more likely to occur at low density bones (<5mmAleq). No
reliable information about geometrical arrangement of trabecular bone could be
obtained from radiographic images since IO and CBCT fractal analysis did not
correlate to histological fractal analysis.

Using 3D CBCT scans, the anatomical variability of neurovascular canals of
the mandible was addressed, not only between modern humans from different time-
periods and different geographical regions, but also between mandibles of human
and non-human primates. This contributed to an elaborate overview about
neurovascular canal anatomy and the relation with adjacent tooth roots (chapter 7).
Geographically, anatomical features which characterize some populations could be
related to potential surgical and pathological risks. Furthermore, the incisive canal is
suggested to be a unique feature of human mandibles (chapter 7). Considering some
study limitations, this thesis suggested that neurovascular canals do not change
significantly after tooth extraction and that the resorption rate of mandibular bone
after implant treatment in the first years after tooth extraction seemed to be about
50% less than the rate reported in literature (chapter 8).

To conclude, PDL and peri-implant tissue were assessed to understand the
underlying mechanisms of osseoperception influencing the oral implant rehabilitation.
A special focus was also given to the innervation of those tissues, their functional
relation and spatial arrangement with other adjacent structures.
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Samenvatting:

Dit proefschrift bestaat uit 2 literatuurstudies en 6 wetenschappelijke
onderzoeken gericht op de mechanosensorische functie gerelateerd aan het
parodontale ligament (PDL) en de peri-implantaat regio. Het wetenschappelijk werk
begon met het verkennen van de distributie van PDL zenuwvezels bij de mens (1) en
met het onderzoek naar bijzondere PDL structuren, namelijk de epitheliale resten
van Malassez (ERM) (2). Vervolgens werd een histologische zoektocht ondernomen
naar mechanoreceptoren in het peri-implantaat weefsel van de mens (3). Naast deze
histologische aanpak, werden meer bruikbare klinische tools onderzocht als mogelijke
indicatoren voor fysiologische veranderingen van bot, en meer bepaald dental
radiografieën die dagelijks in de tandheelkundige praktijk gebruikt worden. Zo werden
meer morfologische aspecten van het peri-implantaat bot beoordeeld aan de hand
van intra-orale (IO) en cone beam computed tomography (CBCT) radiografie, met als
gouden standaard de histologische beeldvorming (4). Tenslotte, werd de invloed van
de implantaat behandeling op de onderkaak anatomie en innervatie onderzocht aan
de hand van 3D CBCT beelden. Hiervoor moest eerst devariabiliteit van
neurovasculaire kanalen in de onderkaak aangekaart worden (5,6).

PDL innervatie en mechanoreceptoren werden tot nu toe reeds uitgebreid
beschreven op basis van hun morfologie, neurofysiologische aspecten, ruimtelijke
rangschikking en functionele betekenis (hoofdstuk 2). Toch wordt verwacht dat
onderzoeken die de 3D-reconstructie van het PDL en die de mechanoreceptor-functie
ervan op cellulair en moleculair niveau verkennen, ons een beter begrip van
mechanosensorische functie in tanden kan bijbrengen. Driedimensionale volume
reconstructie van 2D histologische coupes toonde effectief potentieel aan in het
visualiseren van de complexe PDL anatomie, de ruimtelijke rangschikking en
verwevenheid tussen de verschillende PDL structuren (hoofdstuk 2).

Met betrekking tot de zenuwvezel verdeling in het menselijke PDL werden
zenuwvezelbundels meestal gevonden in het alveolaire deel van het PDL en in de
nabijheid van bloedvaten (hoofdstuk 3). Het hoogste aantal vezels werd gevonden op
de buccale en mesiale regio’s, alsmede aan de wortel apex. De diameter van PDL
vezels varieerde tussen 2-15 µm, waarvande gemyeliniseerde vezels in het bereik
van 5-6 µm het vaakst voorkomen. De linguale regio vertoonde over het algemeen de
hoogste concentratie aan zenuwvezels van grotere diameter (8-9μm) i. Het hoogste 
aantal geïsoleerde vezels werd gevonden in het intermediaire gebied tussen apex
en tand rotatiepunt, en dit ter hoogte van het cement-gedeelte van het PDL.

Andere bijzondere PDL structuren zoals ERM en cementicles werden in de
literatuur reeds beschreven, maar hun rol in de PDL functie is nog niet volledig
begrepen (hoofdstuk 4). Een veranderde ERM morfologie na tand autotransplantatie
suggereert dat deze structuur gerelateerd is aan PDL regeneratie. Bijkomende
studies zijn nodig om dit te bevestigen en om de waarschijnlijke invloed ervan te
onderzoeken in PDL regeneratie- behandelingen.

Voor het eerst bij mensen, werden niet-myeliniseerde en gemyeliniseerde
zenuwvezels in het peri-implantaat bot gelokaliseerd, vooral ter hoogte van de
Haverse kanalen dichtbij het bot-implantaat grensvlak (hoofdstuk 5). In deze studie
werden er weliswaar geen enkele structuren die ook maar op mechanoreceptoren
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gelijken, waargenomen in de peri-implantaat regio, wat dus geen verklaring geeft
waarom sommige PDL mechanoreceptor functies gedeeltelijk worden hersteld na
behandeling met implantaten. Hierdoor blijft de exacte locatie en werking van de
structuren die verantwoordelijk zijn voor deze functies nog vrijwel onbekend in
volledig implantaat gerehabiliteerde patiënten.

Op het gebied van de berekening van peri-implantaat botweefsel, konden
significante correlaties waargenomen worden tussen het botniveau dat histologisch
geëvalueerd werd en het bot datopgemeten werd op CBCT en IO röntgenfoto’s
(hoofdstuk 6). Bepaalde weefselparameters opgemeten op IO röntgenfoto’s
correleren significant met enkele histomorfometrische parameters. Weliswaar kon
een dergelijke correlatie niet worden vastgesteld voor CBCT beelden. Een verhoogd
botverlies (> 2 mm) leek vaker op te treden bij beenderen met lage dichtheid
(<5mmAleq). Geen betrouwbare informatie over de geometrische configuratie van
trabeculair bot kon worden verkregen van de radiografische beelden aangezien IO
en CBCT fractaal-analyse niet bleek te correleren met de histologische fractaal-
analyse.

Aan de hand van 3D CBCT opnames, werd de anatomische variabiliteit van
de neurovascularisatie binnen onderkaken aangekaart, niet alleen voor de moderne
mens uit verschillende tijdsperiode en tussen verschillende geografische regio's,
maar ook tussen menselijke en niet-menselijke primaten.Dit heeft bijgedragen tot een
uitgebreid overzicht van de neurovasculaire kanaal anatomie en de relatie met
aangrenzende tandwortels (hoofdstuk 7). Geografisch worden sommige anatomische
kenmerken gerelateerd aan mogelijke chirurgische en pathologische risico's. Verder
blijkt het incisale kanaal een uniek kenmerk te zijn van de menselijke onderkaak
(hoofdstuk 7). Uitgaande van een aantal methodologische beperkingen, suggereert
dit proefschrift dat neurovasculaire kanalen niet significant veranderen na het trekken
van tanden en dat de botresorptie ratio na behandeling met implantaten in het
mandibulaire bot in de eerste jaren na het trekken van tanden 50% minder was dan
wat reeds beschreven werd in de literatuur(hoofdstuk 8).

Tot slot, PDL en peri-implantaat weefsel werden beoordeeld om de
onderliggende mechanismen van osseoperceptie te begrijpen. Ook werd een
bijzondere aandacht besteed aan de innervatie van deze weefsels, hun functionele
relatie en ruimtelijke rangschikking met andere aangrenzende structuren.



References



References

259

References:

Batista M, Bonachela W, Soares J. Progressive recovery of osseoperception as a
function of the combination of implant-supported prostheses. Clin Oral Implants
Res 2008; 19:565-9.

Beertsen W, McCulloch CA, Sodek J. The periodontal ligament: a unique,
multifunctional connective tissue .Periodontol 2000 1997; 13:20-40.

Berkovitz BK. The structure of the periodontal ligament: an update. Eur J Orthod
1990;12:51-76.

Bertl K, Heimel P, Reich KM, Schwarze UY, Ulm C. A histomorphometric analysis of
the nature of the mandibular canal in the anterior molar region. Clin Oral Investig.
2013 Mar 20. [Epub ahead of print]

Bonte B, Linden RW, Scott BJ, van Steenberghe D. Role of periodontal
mechanoreceptors in evoking reflexes in the jaw-closing muscles of the cat. J
Physiol 1993; 465:581-94.

Bonte B, van Steenberghe D. Masseteric post-stimulus EMG complex following
mechanical stimulation of osseointegrated oral implants.J Oral Rehabil 1991;
18:221-9.

Bosshardt DD, Nanci A. Immunocytochemical characterization of ectopic enamel
deposits and cementicles in human teeth. Eur J Oral Sci 2003; 111:51-9.

Brånemark PI, Rydevik B, Skalak R. Osseointegration in skeletal reconstruction and
joint replacement. Quintessence publishing Co Inc, Carol Stream, III.1997.

Brånemark PI. Osseoperception and musculo-skeletal function. In: Williams E,
Rydevik B, Johns R, Brånemark P-I (eds). Osseoperception and musculoskeletal
function. Gothenburg: Institute of Applied Biotechnology 1999: 6-10.

Buma P, Elmans L, Oestreicher AB. Changes in innervation of long bones after
insertion of an implant: immunocytochemical study in goats with antibodies to
calcitonin gene-related peptide and B-50/GAP-43. J Orthop Res 1995; 13:570-7.

Cassetta M, Stefanelli LV, Di Carlo S, Pompa G, Barbato E. The accuracy of CBCT in
measuring jaws bone density. Eur Rev Med Pharmacol Sci 2012; 16:1425-9.

Enkling N, Heussner S, Nicolay C, Bayer S, Mericske-Stern R, Utz KH. Tactile
sensibility of single-tooth implants and natural teeth under local anesthesia of the
natural antagonistic teeth. Clin Implant Dent Relat Res 2012; 14:273-80.

Enkling N, Utz KH, Bayer S, Stern RM. Osseoperception: active tactile sensibility of
osseointegrated dental implants. Int J Oral Maxillofac Implants 2010; 25:1159-67.

Enkling N, Nicolay C, Utz KH, Jöhren P, Wahl G, Mericske-Stern R. Tactile sensibility
of single-tooth implants and natural teeth. Clin Oral Implants Res 2007; 18:231-6.

El-Sheikh AM, Hobkirk JA, Howell PG, Gilthorpe MS. Changes in passive tactile
sensibility associated with dental implants following their placement. Int J Oral
Maxillofac Implants 2003; 18:266-72.

Fill TS, Toogood RW, Major PW, Carey JP. Analytically determined mechanical
properties of, and models for the periodontal ligament: critical review of literature.
J Biomech 2012 3; 45:9-16.

Griffin CJ, Spain H. Organization and vasculature of human periodontal ligament
mechanoreceptors. Arch Oral Biol 1972; 17:913-21.

Gunjigake KK, Goto T, Nakao K, Konoo T, Kobayashi S, Yamaguchi K. Correlation
between the appearance of neuropeptides in the rat trigeminal ganglion and
reinnervation of the healing root socket after tooth extraction. Acta Histochem
Cytochem 2006; 39:69-77.



References

260

Habre-Hallage P, Bou Abboud-Naman N, Reychler H, van Steenberghe D, Jacobs R.
Assessment of changes in the oral tactile function of the soft tissues by implant
placement in the anterior maxilla: a prospective study. Clin Oral Investig 2010;
14:161-8.

Habre-Hallage P, Abboud-Naaman NB, Reychler H, van Steenberghe D, Jacobs R.
Perceptual changes in the peri-implant soft tissues assessed by directional
cutaneous kinaesthesia and graphaesthesia: a prospective study. Clin Implant
Dent Relat Res 2011; 13:296-304.

Habre-Hallage P, Dricot L, Jacobs R, van Steenberghe D, Reychler H, Grandin CB.
Brain plasticity and cortical correlates of osseoperception revealed by punctate
mechanical stimulation of osseointegrated oral implants during fMRI. Eur J Oral
Implantol 2012; 5:175-90.

Haku K, Muramatsu T, Hara A, Kikuchi A, Hashimoto S, Inoue T, Shimono M.
Epithelial cell rests of Malassez modulate cell proliferation, differentiation and
apoptosis via gap junctional communication under mechanical stretching in vitro.
Bull Tokyo Dent Coll 2011; 52:173-82.

Hämmerle CH, Wagner D, Brägger U, Lussi A, Karayiannis A, Joss A, Lang
NP.Threshold of tactile sensitivity perceived with dental endosseous implants and
natural teeth. Clin Oral Implants Res 1995; 6:83-90.

Hansen HJ. Neuro-histological reactions following tooth extractions. Int J Oral Surg
1980; 9:411-26.

Haraldson T, Carlsson GE. Bite force and oral function in patients with
osseointegrated oral implants.Scand J Dent Res 1977; 85:200-8.

Haraldson T, Carlsson GE, Ingervall B. Functional state, bite force and postural
muscle activity in patients with osseointegrated oral implant bridges. Acta Odontol
Scand 1979; 37:195-206.

Haraldson T, Ingervall B. Muscle function during chewing and swallowing in patients
with osseointegrated oral implant bridges. An electromyographic study.Acta
Odontol Scand 1979 a; 37:207-16.

Haraldson T, Ingervall B. Silent period and jaw jerk reflex in patients with
osseointegrated oral implant bridges. Scand J Dent Res 1979 b; 87:365-72.

Haraldson T, Carlsson GE. Chewing efficiency in patients with osseointegrated oral
implant bridges. Swed Dent J 1979; 3:183-91.

Heasman PA. The myelinated fibre content of human inferior alveolar nerves from
dentate and edentulous subjects. J Dent 1984; 12:283-6.

Heasman PA, Beynon AD. Myelinated fibre diameters of human inferior alveolar
nerves. Arch Oral Biol 1986; 31:785-7.

Herkovitz MS, Singh, Sandhu HS. Innervation of bone. In: Hall BK (ed). Bone matrix
and bone specific products. CRC Press. 1991: 166-185.

Holton WL, Hancock EB, Pelleu GB Jr. Prevalence and distribution of attached
cementicles on human root surfaces. J Periodontol. 1986; 57:321-4.

Hua Y, Nackaerts O, Duyck J, Maes F, Jacobs R. Bone quality assessment based on
cone beam computed tomography imaging. Clin Oral Implants Res 2009; 20:767-
71.

Huang Y, Van Dessel J, Liang X, Depypere M, Zhong W, Ma G, Lambrichts I, Maes
F, Jacobs R. Effects of Immediate and Delayed Loading on Peri-Implant
Trabecular Structures: A Cone Beam CT Evaluation. Clin Implant Dent Relat Res
2013 Apr 2. doi: 10.1111/cid.12063.



References

261

Jacobs R, van Steenberghe D. Comparative evaluation of the oral tactile function by
means of teeth or implant-supported prostheses. Clin Oral Implants Res 1991;
2:75-80.

Jacobs R, van Steenberghe D. Comparison between implant-supported prostheses
and teeth regarding passive threshold level. Int J Oral Maxillofac Implants 1993;
8:549-54.

Jacobs R, van Steenberghe D. Role of periodontal ligament receptors in the tactile
function of teeth: a review.J Periodontal Res 1994; 29:153-67.

Jacobs R, van Steenberghe D. Qualitative evaluation of the masseteric poststimulus
EMG complex following mechanical or acoustic stimulation of osseointegrated oral
implants. Int J Oral Maxillofac Implants 1995; 10:175-82.

Jacobs R, Olmarker K, Rydevik B, Brånemark P-I and van Steenberghe D.
Comparison of the vibrotactile threshold for limb amputees with bone-anchored
and conventional socket prostheses. (SIROT 7th World Congress, Amsterdam)
1996.

Jacobs R, van Steenberghe D, Brånemark P-I and Rydevik B. Evaluation of
osseoperception following mechanical stimulation of osseointegrated implants. J
Dent Res 1997 76:375.

Jacobs R, Bou Serhal C, van Steenberghe D. The stereognostic ability of natural
dentitions versus implant-supported fixed prostheses or overdentures. Clin Oral
Investig 1997; 1:89-94.

Jacobs R. Neurological versus psychophysical assessment of osseoperception. In:
Jacobs R. (ed) Osseoperception. Leuven KULeuven.1998:75-88.

Jacobs R, Brånemark R, Olmarker K, Rydevik B, van Steenberghe D, Brånemark PI.
Evaluation of the psychophysical detection threshold level for vibrotactile and
pressure stimulation of prosthetic limbs using bone anchorage or soft tissue
support. Prosthet Orthot Int 2000; 24:133-42.

Jacobs R, Wu CH, Goossens K, Van Loven K, van Steenberghe D. Perceptual
changes in the anterior maxilla after placement of endosseous implants. Clin
Implant Dent Relat Res 2001; 3:148-55.

Jacobs R, Mraiwa N, van Steenberghe D, Gijbels F, Quirynen M. Appearance,
location, course, and morphology of the mandibular incisive canal: an assessment
on spiral CT scan. Dentomaxillofac Radiol 2002; 31:322-7.

Jacobs R, Mraiwa N, van Steenberghe D, Sanderink G, Quirynen M. Appearance of
the mandibular incisive canal on panoramic radiographs. Surg Radiol Anat 2004;
26:329-33.

Jacobs R, van Steenberghe D. From osseoperception to implant-mediated sensory-
motor interactions and related clinical implications. J Oral Rehabil 2006; 33:282-
92.

Jang KS, Kim YS. Comparison of oral sensory function in complete denture and
implant-supported prosthesis wearers. J Oral Rehabil 2001; 28:220-5.

Kannari K.Sensory receptors in the periodontal ligament of hamster incisors with
special reference to the distribution, ultrastructure and three-dimensional
reconstruction of Ruffini endings.Arch Histol Cytol 1990; 53:559-73.

Keller D, Hämmerle CH, Lang NP. Thresholds for tactile sensitivity perceivedwith
dental implants remain unchanged during a healing phase of 3 months. Clin Oral
Implants Res 1996; 748-54.

Klineberg IJ, Trulsson M, Murray GM. Occlusion on implants - is there aproblem? J
Oral Rehabil 2012; 39:522-37.



References

262

Klineberg I. Introduction: from osseointegration to osseoperception. The functional
translation. Clin Exp Pharmacol Physiol 2005; 32:97-9.

Klineberg I, Calford MB, Dreher B, Henry P, Macefield V, Miles T, Rowe M, Sessle B,
Trulsson M. A consensus statement on osseoperception. Clin Exp Pharmacol
Physiol 2005; 32:145-6.

Lambrichts I, Creemers J, van Steenberghe D. Morphology of neural endings in the
human periodontal ligament: an electron microscopic study. J Periodontal Res
1992; 27:191-6.

Lambrichts I, Creemers J, van Steenberghe D. Periodontal neural endings intimately
relate to epithelial rests of Malassez in humans. A light and electron microscope
study. J Anat 1993;182 :153-62.

Lambrichts I. Histological and ultrastructural aspects of bone innervation. In: Jacobs
R. (ed) Osseoperception. Leuven: KULeuven 1998:13-20.

Lin D, Li Q, Li W, Swain M. Dental implant induced bone remodeling and associated
algorithms. J Mech Behav Biomed Mater 2009; 2:410-32.

Lin D, Li Q, Li W, Duckmanton N, Swain M. Mandibular bone remodeling induced by
dental implant. J Biomech 2010 19; 43:287-93.

Linden RW, Scott BJ. The site and distribution of mechanoreceptors in the
periodontal ligament of the cat represented in the mesencephalic nucleus and
their possible regeneration following tooth extraction. Prog Brain Res1988;
74:231-6.

Linden RW, Scott BJ. The effect of tooth extraction on periodontal ligament
mechanoreceptors represented in the mesencephalic nucleus of the cat. Arch Oral
Biol 1989; 34:937-41.

Linden RWA. An update on innervation of the periodontal ligament. Eur J Orthod
1990; 12:91-100.

Liu SM, Zhang ZY, Li JP, Liu DG, Ma XC. [A study of trabecular bone structure in the
mandibular condyle of healthy young people by cone beam computed
tomography]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2007; 42:357-60.

Loescher AR, Holland GR. Distribution and morphological characteristics of axons in
the periodontal ligament of cat canine teeth and the changes observed after
reinnervation.Anat Rec 1991; 230:57-72.

Long A, Loescher AR, Robinson PP. A quantitative study on the myelinated fiber
innervation of the periodontal ligament of cat canine teeth J Dent Res 1995;
74:1310-1317.

Lundborg G, Brånemark P-I and Rosen B. Osseointegrated thumb prosthesis: a
concept for fixation of digit prosthetic devices. J Hand Surg 21-A:216-221.

Lundqvist S, Haraldson T. Oral function in patients wearing fixed prosthesis on
osseointegrated implants in the maxilla. Scand J Dent Res 1990; 98:544-9.

Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, et al. Origins
of skeletal pain: sensory and sympathetic innervation of the mouse femur.
Neuroscience 2002; 113:155-66.

Maeda T, Ochi K, Nakakura-Ohshima K, Youn S, Wakisaka S. The Ruffini ending as
the primary mechanoreceptor in the periodontal ligament: Its morphology,
cytochemical features, regeneration, and development. CROBM 1999:307-327.

Manzano GM, Giuliano LM, Nóbrega JA. A brief historical note on the classification of
nerve fibers. Arq Neuropsiquiatr 2008; 66:117-9.

Mason AG, Holland GR.The reinnervation of healing extraction sockets in the ferret.J
Dent Res 1993; 72:1215-21.



References

263

Mericske-Stern R, Venetz E, Fahrländer F, Bürgin W. In vivo force measurements on
maxillary implants supporting a fixed prosthesis or an overdenture: a pilot study. J
Prosthet Dent 2000; 84:535-47.

Miller RM, Kasahara M. Observations on the innervation of human long bones. Anat
Rec 1963; 145: 13-23.

Nackaerts O, Jacobs R, Devlin H, Pavitt S, Bleyen E, Yan B, Borghs H, Lindh C,
Karayianni K, van der Stelt P, Marjanovic E, Adams JE, Horner K. Osteoporosis
detection using intraoral densitometry. Dentomaxillofac Radiol 2008; 37:282-7.

Nackaerts O, Jacobs R, Horner K, Zhao F, Lindh C, Karayianni K, van der Stelt P,
Pavitt S, Devlin H. Bone density measurements in intra-oral radiographs. Clin
Oral Investig 2007; 11:225-9.

Nackaerts O, Jacobs R, Pillen M, Engelen L, Gijbels F, Devlin H, Lindh C,
Nicopoulou-Karayianni K, van der Stelt P, Pavitt S, Horner K. Accuracy and
precision of a densitometric tool for jaw bone. Dentomaxillofac Radiol 2006;
35:244-8.

Naitoh M, Aimiya H, Hirukawa A, Ariji E. Morphometric analysis of mandibular
trabecular bone using cone beam computed tomography: an in vitro study. Int J
Oral Maxillofac Implants 2010; 25:1093-8.

Oliveira-Santos C, Souza PH, de Azambuja Berti-Couto S, Stinkens L, Moyaert K,
Rubira-Bullen IR, Jacobs R. Assessment of variations of the mandibular canal
through cone beam computed tomography. Clin Oral Investig 2012; 16:387-93.

Onur MA, Sezgin A, Gurpinar A, Sommer A, Akca K, Cehreli M. Neural response to
sandblasted/acid-etched, TiO-blasted, polished, and mechanochemically
polished/nanostructured titanium implant surfaces. Clin Oral Implants Res
2006;17:541-7.

Papaspyridakos P, Chen CJ, Singh M, Weber HP, Gallucci GO. Success criteria in
implant dentistry: a systematic review. J Dent Res 2012; 91:242-8.

Polland KE, Munro S, Reford G, Lockhart A, Logan G, Brocklebank L, McDonald
SW. The mandibular canal of the edentulous jaw. Clin Anat 2001; 14:445-52.

Rydevik B. Amputation prostheses and osseoperception in the lower and upper
extremity. In: Brånemark P-I, Rydevik B, Skalak R (eds). Osseointegration in
skeletal reconstruction and joint replacement. Quintessence publishing Co Inc,
Carol Stream, III. 1997

Rydevik B. The role of osseoperception in limb amputees with bone-anchored
prostheses. In: Jacobs R. (ed) Osseoperception. Leuven KULeuven.1998:47-59.

Sawada, M., Kusakari, H., Sato, O., Maeda, T. & Takano, Y. Histological investigation
on chronological changes in peri-implant tissues, with special reference to
response of nerve fibres to implantation. The Journal of the Japanese
Prosthodontic Society 1993; 37:144–158

Seeman E. From Density to Structure: Growing Up and Growing Old on the Surfaces
of Bone. J Bone Miner Res 1997; 12: 509–52.

Sessle BJ. Mechanisms of oral somatosensory and motor functions and their clinical
correlates. J Oral Rehabil 2006; 33:243-61.

Siirilä HS, Laine P. Occlusal tactile threshold in denture wearers. Acta Odontol Scand
1969; 27:193-7.

Stenfelt S, Jacobs R, Olmarker K, Rydevik B, Brånemark P-I. A technique for
determination of vibrotactile force threshold levels in patients with orthopaedic
osseointegrated implants. In: Jacobs R. (ed) Osseoperception. Leuven KULeuven
1998:105-123.



References

264

Sun Y, De Dobbelaer B, Nackaerts O, Loubele M, Yan B, Suetens P, Politis C,
Vrielinck L, Schepers S, Lambrichts I, Horner K, Devlin H, Jacobs R. Development
of a clinically applicable tool for bone density assessment. Int J Comput Assist
Radiol Surg 2009; 4:163-8.

Svensson KG, Grigoriadis J, Trulsson M. Alterations in intraoral manipulation and
splitting of food by subjects with tooth- or implant-supported fixed prostheses. Clin
Oral Implants Res 2013; 24:549-55.

Tang L, Chen Y, Wang Y, Liang X, Zhang N. Peripheral nerve may regulate the jaw
bone resorption after tooth extraction. Med Hypotheses 2008; 71:414-7.

Trulsson M, Gunne HS. Food-holding and -biting behavior in human subjectslacking
periodontal receptors. J Dent Res 1998; 77:574-82.

Trulsson M. Sensory-motor function of human periodontal mechanoreceptors. J Oral
Rehabil 2006; 33:262-73.

Trulsson M. Sensory and motor function of teeth and dental implants: a basis for
osseoperception. Clin Exp Pharmacol Physiol 2005; 32:119-22.

Trulsson M, van der Bilt A, Carlsson GE, Gotfredsen K, Larsson P, Müller F, Sessle
BJ, Svensson P. From brain to bridge: masticatory function and dental implants. J
Oral Rehabil 2012; 39:858-77.

Türker KS, Sowman PF, Tuncer M, Tucker KJ, Brinkworth RS. The role of periodontal
mechanoreceptors in mastication. Arch Oral Biol 2007; 52:361-4.

Van Loven K, Jacobs R, Swinnen A, Van Huffel S, Van Hees J, van Steenberghe D.
Sensations and trigeminal somatosensory-evoked potentials elicited by electrical
stimulation of endosseous oral implants in humans. Arch Oral Biol 2000; 45:1083-
90.

van Steenberghe D. The structure and function of periodontal innervation. A review of
the literature.J Periodontal Res. 1979; 14:185-203.

van Steenberghe D; Trigeminal reflexes elicited by means of endosseous implants.
In: Jacobs R. (ed) Osseoperception. Leuven KULeuven.1998:157-167.

Wada S, Kojo T, Wang YH, Ando H, Nakanishi E, Zhang M, Fukuyama H, Uchida Y.
Effect of loading on the development of nerve fibres around oral implants in the
dog mandible.Clin Oral Implants Res 2001; 12:219-24.

Wadu SG, Penhall B, Townsend GC. Morphological variability of the human inferior
alveolar nerve. Clin Anat 1997; 10:82-7.

Wang, Y.-H., Kojo, T., Ando, H., Nakanishi, E., Yoshizawa, H., Zhang, M.,
Fukuyama, H., Wada, S., Uchida, Y. Nerve regeneration after implantation in peri-
implant area. A histological study on different implant materials in dogs. In:
Jacobs R. (ed) Osseoperception. Leuven KULeuven1998:3-11.

Yan C, Ye L, Zhen J, Ke L, Gang L. Neuroplasticity of edentulous patients with
implant-supported full dentures. Eur J Oral Sci 2008; 116:387-93.

Ysander M, Brånemark R, Olmarker K, Myers RR. Intramedullary osseointegration:
development of a rodent model and study of histology and neuropeptide changes
around titanium implants. J Rehabil Res Dev 2001; 38:183-90.

.



265

Curriculum vitae

Livia Corpas was born on April 24th 1978 in Rio de Janeiro, Brazil. At the end

of 1998, Lívia obtained her bachelor in Dentistry and, later in 2000, her specialized

diploma in Prosthetics, both at the Federal University of Rio de Janeiro. Between

2001 and 2004 she worked as assistant professor at the Prosthetic departments of

the Federal University of Rio de Janeiro, the University of Grande Rio and the

University Veiga de Almeida (Rio de Janeiro / Brazil), besides participating and

lecturing in specialized courses. After several years of clinical practice, she continued

her academic training with a Master of Oral Rehabilitation at the University of São

Paulo in Bauru (FOB/USP; Brazil, 2003-2005) and a Master of Medical Imaging at

the Catholic University of Leuven (KULeuven; Belgium, 2007), where 1 year earlier

she was selected for a PhD-granted programme for Latin American students (SBA-

Selective Bilateral Agreement). Her PhD trajectory started in 2007 at the Oral

Imaging Centre (KULeuven) where she focused on the study of physiological

integration of oral implants and on new imaging methods to approach the topic.

Since 2012, Livia is a scientific collaborator at the Prosthetic unit of the Dept. of Oral

Health Sciences, KU Leuven where she is involved in research projects, more

specifically on the integration of new digital technologies in the dental practice. Since

2010, Livia also teaches courses at Advimago (Centre for Advanced Oral Imaging) in

Brussels on digital dentistry and 3D imaging. Lívia is reviewer for Brazilian and other

international journals, author and co-author of international publications. She was a

finalist for the Research Award of the International Association of Dentomaxillofacial

Radiology (IADMFR) in 2009 and 2013, while she received a "Research Fellowship"

for the European Academy of Dentomaxillofacial Radiology (EADMFR 2012) for a

scientific collaboration project between universities in Brazil, Belgium and Spain.

Articles in internationally peer-reviewed journals:

1. Corpas LS, Jacobs R, Quirynen M, Huang Y, Naert I, Duyck J. Peri-implant
bone tissue assessment by comparing the outcome of intra-oral radiograph
and cone beam computed tomography analyses to the histological standard.
Clin Oral Implants Res 2011; 22:492-9. (see chapter 6)



266

2. Huang Y, Corpas LS, Martens W, Jacobs R, Lambrichts I. Histomorphological
study of myelinated nerve fibres in the periodontal ligament of human canine.
Acta Odontol Scand 2011; 69:279-86. (see chapter 3)

3. Struys T, Schuermans J, Corpas LS, Politis C, Vrielinck L, Schepers S,
Jacobs R, Lambrichts I. Proliferation of epithelial rests of Malassez following
auto-transplantation of third molars: a case report. J Med Case Reports 2010;
19;4:328. (see chapter 4)

4. Duyck J, Corpas LS, Vermeiren S, Ogawa T, Quirynen M, Vandamme K,
Jacobs R, Naert I. Histological, histomorphometrical, and radiological
evaluation of an experimental implant design with a high insertion torque. Clin
Oral Implants Res 2010; 21:877-84. (related to chapter 6)

5. Vandenberghe B, Corpas LS, Bosmans H, Yang J, Jacobs R. A
comprehensive in vitro study of image accuracy and quality for periodontal
diagnosis. PART 1: The influence of X-ray generator on periodontal
measurements using conventional and digital receptors. Clin Oral Investig
2011; 15:537-49.

6. Berti SA, Couto Souza PH, Jacobs R, Lambrichts I, Corpas LS, Arruda EP,
Martins WD, Westphalen FH, Tolazzi AL. Spontaneous resolution of a central
giant-cell granuloma after incisional biopsy: a case report. J Oral Maxillofac
Surg 2009; 67:1543-7.

7. Liang X, Jacobs R, Corpas LS, Semal P, Lambrichts I. Chronologic and
geographic variability of neurovascular structures in the human mandible.
Forensic Sci Int 2009 10; 190:24-32.

8. Liang X, Jacobs R, Hassan B, Li L, Pauwels R, Corpas LS, Souza PC,
Martens W, Shahbazian M, Alonso A, Lambrichts I. A comparative evaluation
of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT)
Part I. On subjective image quality. Eur J Radiol 2010; 75:265-9.

9. Calderon P dos S, Kogawa EM, Corpas LS, Lauris JR, Conti PC. The
influence of gender and bruxism on human minimum interdental threshold
ability. J Appl Oral Sci 2009; 17:224-8.

10.Liang X, Lambrichts I, Corpas LS, Politis C, Vrielinck L, Ma GW, Jacobs R.
Neurovascular disturbance associated with implant placement in the anterior
mandible and its surgical implications: literature review including report of a
case. Chin J Dent Res 2008; 11: 56-64.

Presentations at international scientific conferences:

1. Corpas, LS, Nackaerts O, ROCKENBACH, M. I., Duyck, Joke, Jacobs, R.
Radiographic and histological density of peri-implant bone in animal study In:
IADR general session, 2012, Foz do Iguaçu. 90th General Session and
Exhibition of the IADR/ IADR Latin American regional meeting, 2012. p.120.



267

2. Corpas, LS, Lambrichts, I., Semal, P., Collaert B, Quirynen, Marc, Jacobs, R.
Periodontal and peri-implant tissues: morphological and structural aspects
related to oral function In: XXIIIrd congress of International Society of
Biomechanics, 2011, Brussels. ISB2011, 2011. p.24.

3. Huang Y, Corpas, LS, ZHANG, G., Maes F, Lambrichts, I., Jacobs, R. Three
dimensional reconstruction of Mallassez ephitelial rests using light microscopic
imaging. In: 18th International Congress of DentoMaxillofacial Radiology,
Hiroshima,. 2011. p.199.

4. Corpas, LS, Huang Y, Zang G, Maes F, Lambrichts I, Jacobs R. Three
Dimensional Reconstruction of Human Periodontal Ligament Structures using
Light Microscopic Imaging In: 12th European Congress of Dento-Maxillo-
Facial Radiology, Istanbul, 2010.

5. Corpas, LS., Huang Y, Collaert B, Vrielinck L, Zang G, Struys T, Lambrichts I,
Jacobs R. Presence of myelinated nerve fibers in the periodontal ligament , peri-
implant bone and bone substitute materials, ITI Symposium, Switzerland 2010.

6. Corpas, LS, Jacobs, R., Lambrichts, I., Naert, Ignace, Quirynen, Marc, Duyck, J.
Peri-implant bone tissue assessment during osseointegration by comparing the
outcome of 6 radiographic analysis methods to the histological standard In: 17th
International Congress of Dentomaxillofacial Radiology Imaging in Perspective,
2009, Amsterdam. 17th International Congress of Dentomaxillofacial
Radiology Imaging in Perspective, 2009.

7. Liang X, Jacobs R, Hassan B, Li L, Pauwels R, Corpas, LS, Couto Souza, Paulo
H., Martens W, Shahbazian M, Alonso A, Lambrichts I. A comparative evaluation
on subjective image quality of cone beam computed tomography (CBCT) and
multi-slice CT (MSCT) In: 17th International Congress of Dentomaxillofacial
Radiology Imaging in Perspective, 2009, Amsterdam. 17th International
Congress of Dentomaxillofacial Radiology Imaging in Perspective, 2009.

8. Liang X, Jacobs R, Corpas, LS, Semal P, Gilissen E, Lambrichts I. Characteristic
comparative anatomy of the nasopalatine canal using CBCT imaging. In: 11th
Congress of the European Academy of Dento-Maxillo-Facial Radiology, 2008,
Budapest. 11th Congress of the European Academy of Dento-Maxillo-Facial
Radiology, 2008.

9. Corpas, LS, Liang X, Semal P, Lambrichts I, Jacobs R. Modern human variability
in mandibular neurovascularization and its evolutionary aspects. In: 11th
Congress of the European Academy of Dento-Maxillo-Facial Radiology, 2008,
Budapest. 11th Congress of the European Academy of DentoMaxilloFacial
Radiology, 2008.

10.Liang X, Jacobs R, Semal P, Corpas, LS, Martens W, Raymundo Junior, R,
Lambrichts I. Modern human variability of neurovascular structures in the anterior



268

mandible In: 16th International Congress of Dentomaxillofacial Radiology
Imaging in Perspective, 2007, Beijing. 16th International Congress of
Dentomaxillofacial Radiology Imaging in Perspective, 2007.

Presentations at other conferences and symposia:

Corpas, LS. The use of CBCT and optical scanning in imaging diagnosis, 2013.
Ribeirão Preto; Event: 35a Jornada Odontológica de Ribeirão Preto, Institution:
University of São Paulo/ Dentistry Faculty of Ribeirão Preto.

Corpas, LS. Optimalisatie CBCT, 2013. Kortrijk; Event: Studieclub, Institution:
Verbond der Vlaamse Tandartsen.

Corpas, LS. Diagnostic imaging for Implant Dentistry, 2013. São Paulo; Event:
invited lecturer- Specialization of Implantology; Institution: São Leopoldo Mandic
(Dentistry Faculty)

Corpas, LS. Digital solutions for Implant Dentistry, 2012. Curitiba; Event: invited
lecturer- Master Implantology; Institution: ILAPEO (Latin American Institute of Dental
Research and Education)

Corpas, LS. Basic concepts of CBCT in Dentistry, 2012. Langdorp; Event:
Studieclub, Institution: Verbond der Vlaamse Tandartsen.

Vandenberghe B, Corpas, LS. Les empreites optiques, 2011. Brussels; Event :
Congrès de la Societe de Medecine Dentaire; Institution: Societe de Medecine
Dentaire

Corpas, L.S. Use of Cone Beam Computed Tomography in Implant Dentistry,
2010. Gramado; Event: VIII CONABRO; Instution: ABRO (Brazilian association of
Oral Maxillofacial Radiology)

Jacobs, R., Corpas, LS. The osseoperception phenomenon: an anatomical and
physiological integration, 2007. Bauru; Event: Digital Imaging, Implantology.
Institution: FOB/USP (São Paulo University/ Dental school Bauru)

Corpas, LS. Experience as brazilian phd student at KULeuven. 2012. Leuven;
Event: Visit ABRUEM (Brazilian Association of State Universities) Institution:
KULeuven

Corpas, LS. Sharing experience as foreign student at KULeuven, 2008 Leuven;
Event: Meeting schorlarship programme Selective Bilateral Agreement (SBA-grant
program for Latin America); Institution: KULeuven


	cover thesis WG 2.pdf
	First page of thesis.pdf
	1-title page 2.pdf
	2.0-Doc chapter 1 INTRO-AIMS.pdf
	2.1-capa part I.pdf
	3-DocPART1 chapter 2.pdf
	4.0-DocPART1 chapter 3.pdf
	5.0-DocPART1 chapter 4.pdf
	6-DocPART1 chapter 5.pdf
	7.0-capa part 2.pdf
	7-DocPART2 Chapter 6.pdf
	8-DocPART2 Chapter 7.pdf
	9-DocPART2 Chapter 8.pdf
	10-Doc chapter 9 General discussion.pdf
	11.0-Summarycapadentro.pdf
	11.1-Summary samenvatting.pdf
	12.0 -references.pdf
	12.1 - list of references.pdf
	13- cv.pdf

