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Summary. We analyze the problem of two clinically inseparable, repeatedly measured responses of

ordinal type by also incorporating their missingness process. In our application these are the thera-

peutic effect and extent of side effects of fluvoxamine. In case of a composite endpoint, the scientific

questions addressed can be answered only when the responses are modeled jointly. As an extension of

the methodology, several missing not at random models were fitted to a set of observed data and shown

to approximately yield the same result as their missing at random counterparts, although it affects pre-

cision. In addition, the effect of various identifying restrictions on multiple imputation is investigated. An

alternative numerical approximation method is suggested to reduce computational time.

Some Keywords: Fluvoxamine trial; Proportional odds mixed model; Missing not at random; Sensitivity

analysis; Multiple imputation.

1. Introduction

When conducting longitudinal studies, researchers have to deal with the complex structure of the

data as well as with the presence of incompleters. Also, some data types can turn out to be more

difficult to model than others. In addition, in many studies, especially in the medical realm, several

endpoints could not be regarded as separate responses but should be lumped into a single composite

endpoint.

This work is motivated by the fluvoxamine trial, comprising data with two inseparable responses of

ordinal type, measured repeatedly over time, and where for some subjects values are missing. When

modelling, the first aspect that needs to be taken into account is the longitudinal nature of the data.

Many statistical models have been developed for analyzing longitudinal data for which the random-

effects approach has been very popular for several decades (Laird and Ware (1982), Breslow and

Clayton (1993), Wolfinger and O’Connell (1993) and Engel and Keen (1994)). In the fluvoxamine

trial, after treating a patient with the drug, to characterize a patient’s condition, the therapeutic
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effect and side effects were measured simultaneously. In such a context, joint modelling is preferred

over a separate analysis of different responses given that the former also allows every outcome to have

its own random effects and the association between different outcomes is captured by the correlation

between the random effects. The strong advantage is that it enables researcher to obtain answers to

various research questions, all from the same model. A wide variety of joint modelling techniques

have already been described: Thiébaut et al. (2002), Iddi and Molenberghs (2012), Rizopoulos 2012,

Fieuws and Verbeke (2006), Fieuws et al. (2006), Fieuws et al. (2008), Horrocks and van den Heuvel

(2009), Vasdekis et al. (2014), Molenberghs and Verbeke (2005). For an excellent, relatively early

review, we refer to the work of Tsiatis and Davidian (2004). However, the joint modelling of ordinal

responses received little attention.

Since in the fluvoxamine trial, some of the patients did not appear at all scheduled ap-

pointments, as is often the case with empirical research, we had to deal with incomplete

data. From a methodological point of view, several aspects are important, first of all, the modelling

framework: selection (SeM), pattern-mixture (PMM), and shared-parameter modelling (SPM) (for an

overview, see e.g. Molenberghs and Kenward 2007). Second, the mechanisms of missingness (Rubin

(1976)): the data can be Missing Completely at Random (MCAR) when the missingness is indepen-

dent of both the observed and unobserved data; Missing at Random (MAR) when, conditional on the

observed data, missingness is independent of the unobserved measurements; Missing Not at Random

(MNAR) when MCAR and MAR do not hold. In the PMM framework, the Multiple imputation (MI,

Rubin (1978), van Buuren (2007)) technique can be applied to analyze conveniently the data.

The main idea of MI is to investigate the effect of different identifying-restrictions strategies for the

incompleters.

1.1. Fluvoxamine Trial

The data are from a multicentre study involving 315 patients that were treated by fluvoxamine for psy-

chiatric symptoms stemming from a dysregulation of serotonine in the brain. The data are discussed

in Molenberghs and Lesaffre (1994), Kenward et al. (1994), Molenberghs et al. (1997), Michiels and

Molenberghs (1997), and Molenberghs and Verbeke (2005). After their recruitment into the study,

patients were assessed at four visits. The therapeutic effect and the extent of side effects were scored

at each visit on an ordinal scale. The side effect response is coded as 1: none; 2: not interfering; 3:

interfering significantly with functionality; 4: side effects surpasses the therapeutic effect. Similarly,

the effect of therapy is recorded on a four point ordinal scale: 1: no improvement or worsening;

2: minimal improvement; 3: moderate improvement and 4: important improvement. Hence, a side

effect is present when new symptoms occur and a therapeutic effect whenever old symptoms disap-

pear. A total of 299 patients with monotone sequences have at least one measurement, including

224 completers. A summary is given in Table 1. There is also baseline covariate information for
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Table 1. Fluvoxamine Trial. Number of observations with

side and therapeutic effect categories for each of the four

time points

# Observations

Ther. Effect Week 2 Week 4 Week 8 Week 12

0 19 64 110 135

1 95 114 93 62

2 102 62 30 19

3 83 29 10 10

Side Effect Week 2 Week 4 Week 8 Week 12

0 128 144 156 148

1 128 103 79 71

2 28 17 6 7

3 15 5 2 0

each subject, including gender, age, presence of psychiatric antecedents, initial severity of the disease,

duration of the actual mental illness. Obviously, one expects that the improvement of the patient’s

condition as measured by the therapeutic effect is correlated with the side effects of the therapy, and

this association can only be studied if both outcomes are jointly modeled.

Furthermore, some of the patient profiles had one or more missing observations for the therapeutic

and side effects. Note that, as these two outcomes were measured simultaneously, if a patient has

a missing value for the therapeutic effect, he/she will also have one for side effects, and vice versa.

The patterns of the missing data are summarized in Table 2. Among the incomplete sequences, the

dropout patterns are the more common ones. There are also 2 late-entry patients. Observe that there

are 14 subjects in total without any follow-up measurements. The latter are still an integral part of the

trial, as they provide baseline information, including covariate information and baseline assessment

of severity of mental illness. The scientific questions that are posed, considering the presence of

missingness, can be formulated as follows: Can the different assumptions about the mechanism of

the missingness and also the different identifying restrictions for the missing values lead to different

results?

1.2. Joint Modelling of Ordinal Response(s) and Process of Missingness

First, we will specify a model for a single ordinal response. A special case of GLMM, which is of

particular interest to this work, is the proportional odds mixed model (POMM) for ordinal outcomes

(Agresti and Lang 1993).

Consider a longitudinal outcome of ordinal type. Let Yij be the jth measurement of ith subject

(i = 1, . . . , N , j = 1, . . . , ni) with values r = 1, . . . , R. Independence across subjects is further
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Table 2. Fluvoxamine Trial. Missing data patterns for side and therapeu-

tic effects where ’x’ denotes an observed measurement and ’?’ a missing

longitudinal response

Patient Week 2 Week 4 Week 8 Week 12 # Observations

1 x x x x 224

2 x x x ? 18

3 x x ? ? 26

4 x ? ? ? 31

5 ? ? ? ? 14

6 ? ? ? x 1

7 ? x x x 1

assumed. We first define R indicator variables as:

Wr,ij =

 1 if Yij = r,

0 otherwise.

Evidently, these are redundant but any subset of R− 1 components is not. Group the dummies into

vectors W ij for a specific subject i and occasion j, and further into W i for all dummies across all

occasions for subject i. We further assume a multinomial distributionW ij ∼ multinomial(πij), with

πij = (π1,ij , . . . , πr,ij , . . . , πR,ij). The multinomial distribution at a given occasion is determined by

the modelling choice made for the ordinal outcome. The probabilities can be written as:

πr,ij =


κ1,ij if r = 1,

κr,ij − κr−1,ij if 1 < r < R,

1− κR−1,ij if r = R,

where, assuming proportional odds:

κr,ij =
exp

(
ξ0r + x

′
ijξ + z

′
ijbi

)
1 + exp

(
ξ0r + x′

ijξ + z
′
ijbi

) .
Here, ξ01 ≤ . . . ≤ ξ0(R−1) are intercepts, ξ fixed regression coefficients, bi a vector of normally

distributed random effects, and xij (zij) the design vector for the fixed (random) effects at occa-

sion j. Second, to deal with missingness, the subject-specific outcomes are summarized into a vector

Y i = (Yi1, Yi2, . . . , Yini
)′ with observed (Y o

i ) and missing components (Y m
i ). In addition, for each

measurement j, we define the missing data indicator as follows:

Rij =

 1 if Yij is observed,

0 otherwise.

Then, the Rijs can be grouped into a vector of missing data indicators Ri = (Ri1, Ri2, . . . , Rini
)′,

which is evidently of the same length as Y i.
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To incorporate the missingness process into the modelling of an ordinal response, a joint model

is built by describing the joint density f(Y i,Ri) of vectors Y i and Ri. A very flexible way forward

is by considering a mixed model for both outcomes and to allow the random effects in these to be

correlated. This allows for joint modelling of outcomes of a different nature and does not alter the

interpretation of the parameters in the sub-models for individual outcomes. This approach has been

applied already by Fieuws and Verbeke (2006) and Iddi and Molenberghs (2012), but not yet in

combination with ordinal outcomes.

For the case of an ordinal outcome, a POMM is assumed, as described before, while for the binary

missing data indicator a GLMM is assumed. Note also that the covariates in both models may, but

do not need to be the same. Let b1i and b2i be the vectors of random effects for the first and second

responses, respectively. A joint model is now obtained by assuming a joint distribution for both sets

of random effects b1i and b2i. More specifically, it will be assumed that bi = (b1i, b2i)
′ is normally

distributed with zero mean and covariance matrix G; the latter contains components to model the

association within each outcome sequence separately, as well as to model the association between

sequences. It will also be assumed that, conditionally on bi, the vectors Y i and Ri are independent,

i.e., we assume that their association is completely captured by the association between the random

effects.

Often a general unstructured matrix G is assumed, but specific restrictions can be imposed as

well. For example, perfect correlations between some of the elements in b1i and those in b2i would

lead to a joint model in which the random effects are shared between the two outcomes (Molenberghs

and Verbeke 2005). Evidently, this is equivalent to sharing components between b1i and b2i.

The estimation and inferences for all parameters in this joint model are based on standard likeli-

hood theory.

Further, an extension can be made to two or more ordinal outcomes. If all of them were measured

simultaneously, such as the therapeutic effect and the side effects from the fluvoxamine trial, the

missing data indicator will be common to all outcomes, e.g., in the fluvoxamine trial, R1i ≡ R2i ≡ Ri.

Considering as an example Table 2 of the fluvoxamine trial, we can distinguish two patterns of

missingness, monotone and non-monotone. The former corresponds to the so-called dropouts –the

subject was excluded from the study before completion–, the latter to the late entries –some of the

initial response measurements were missing.

When restricting missingness to dropouts, the missing indicator Ri takes the form of (1, . . . , 1, 0,

. . . , 0)’ and therefore can be aggregated into the occasion of the last observed measurement Di:

Di =
ni∑
j=1

Rij .

Now, assume that we model the outcome yi and the missingness ri via two different sets of parameters:

θ and ψ, respectively. Also, assume a common set of covariates xi, consisting of the union of the



6 A. Ivanova, G. Molenberghs and G. Verbeke

covariates influencing the two processes. Then, f(yi, ri|xi,θ,ψ) is the joint density of measurement

and missingness as described before. Different factorizations of this joint density lead to different

frameworks.

The selection model (SeM; Rubin 1976, Little and Rubin 2002) is based on the following factor-

ization of the joint density: f(yi, ri|xi,θ,ψ) = f(yi|xi,θ)f(ri|xi,yi,ψ).

An alternative framework is the so-called pattern-mixture modelling (PMM; Little 1993, 1994):

f(yi, ri|xi,θ,ψ) = f(yi|xi, ri,θ)f(ri|xi,ψ). PMM can be seen as a mixture of different populations,

characterized by the given pattern of missingness.

Further, instead of using SeM and PMM frameworks, the outcome and missingness processes can

be jointly modelled using a shared-parameter model (SPM; Wu and Carroll 1988, Follmann and Wu

1995, Little 1995, Njagi et al. 2014, Creemers et al. 2010), where the existence of a vector of shared

parameters bi is assumed: f(yi, ri|xi, bi,θ,ψ) = f(yi|xi, bi,θ)f(ri|xi, bi,ψ).

A taxonomy of missing data mechanisms was introduced by Rubin (1976) and further devel-

oped by Little and Rubin (2002). It is based on the following conditional density of the miss-

ing process Ri: f(ri|xi,y
o
i ,y

m
i ,ψ) and is easily developed in the selection setting. As a result,

three types of missing data mechanism have been defined (Verbeke and Molenberghs 2000, Fitzmau-

rice et al. 2004, Molenberghs and Kenward 2007): Missing Completely at Random (MCAR)

when the missingness is independent of both observed and unobserved data, which corresponds

to the factorization f(ri|xi,y
o
i ,y

m
i ,ψ) = f(ri|xi,ψ), Missing at Random (MAR) when con-

ditional on the observed data the missingness is independent of the unobserved measurements,

f(ri|xi,y
o
i ,y

m
i ,ψ) = f(ri|xi,y

o
i ,ψ), andMissing Not at Random (MNAR) when neither MCAR

nor MAR applies. Here, the conditional density will abide to the general form: f(ri|xi,y
o
i ,y

m
i ,ψ).

Also, it was shown that, under the MAR assumption for modelling under the separability condi-

tions of the parameters θ and ψ, the inference for these parameters based on likelihood is valid. This

property is known as ignorability , and brings us to the so-called direct likelihood analysis.

Another method for incorporating missingness into the data analysis is multiple imputation (MI)

that was formally introduced by Rubin (1978), who later published a comprehensive overview (Rubin

1987). For the continued development of the MI procedure we refer to sources such as Rubin and

Schenker (1986), Little and Rubin (2002), Schafer (2003), and van Buuren (2007). In Verbeke and

Molenberghs (2000), Molenberghs and Verbeke (2005), Molenberghs and Kenward (2007), Carpenter

and Kenward (2013) where several classical and more advanced MI techniques are described.

The main idea behind MI is to replace each missing measurement by a number of imputed values,

say M . These values are drawn from the distribution that incorporates the uncertainty about the

value to impute. Then, each one of the M imputed data sets is analyzed separately by using standard

procedures for complete data and the results of the analysis combined into a single one. In Rubin’s

framework (1987), the imputations are drawn from the posterior distribution of the missing given
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the observed values.

As in selection modelling, a sensitivity analysis can also be conducted within the pattern-mixture

family. When investigating the structure of longitudinal data, we can conclude that the non-

completers stand out from the completers, especially in the case of early dropouts. Hence, it is

common to borrow information from other or even from all available patterns. For example, the

identifying restriction termed complete case missing values (CCMV), proposed by Little (1993), can

be assumed. Here, the unavailable information is always borrowed from the completers. For this

strategy to be stable there should be a sufficiently large number of completers. Alternatively, the

nearest identified pattern can be used. This restriction is referred to as neighboring case missing

values or NCMV (Verbeke and Molenberghs 2000, Molenberghs and Kenward 2007). However, using

information only from one pattern can be insufficient, and hence, one can base the identification on all

available patterns for which the previous component is identified. This restriction is called available

case missing value (ACMV; Verbeke and Molenberghs 2000) and also corresponds to MAR, whereas

CCMV and NCMV are MNAR restrictions.

In contrast to Rubin’s MI based on joint modelling of multiple longitudinal processes, Full Con-

ditional Specification (FCS) factorizes the multivariate distribution into a set of conditional densities

f(yj |y1, . . . , yj−1) for each variable Yj . Strictly speaking, the conditional densities do not guarantee

the existence of a joint distribution of all variables. However, if we start from the well-specified joint

distribution, then the conditional ones can be straightforwardly derived from it. The key assump-

tion of FCS is ignorability – the conditional densities for Y m
j given Y o

j do not depend

on missing patterns– but the method can be easily extended to MNAR when specifying

the number of identifying restrictions.

As to the choice of the number of imputations, the early literature suggests that a small number M

of imputations, generally in the 3–5 range, is adequate because the larger the number of imputations

the smaller the increase in efficiency (Rubin and Schenker 1986, Rubin 1987). However, recent publi-

cations pointed out that small M values lead to results that are affected by Monte Carlo error: using

the same M , the point and precision estimates may vary considerably if the MI analysis is repeated

with a different set of imputations (White et al. 2011, van Buuren 2012), especially when outcomes

are non-Gaussian and/or focus is on hypothesis testing. Hence, a larger number of imputations is

preferable.

2. Analysis of Fluvoxamine Trial

2.1. Direct Likelihood Analysis

Recall from Section 1.1 that the study encompasses four time points, at each one of which side effects

and therapeutic effect are assessed on a 4-point ordinal scale. Note that the missing-data patterns

occurring are mostly of the monotone type. For this reason we exclude the two non-monotone
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sequences.

Let Y kij be the score for patient i at time point j, k = 1, 2 for therapeutic and side effects. The

proportional odds logistic regression with random intercept for the kth response can be expressed as

follows:

logit[P (Y kij ≤ r)] = ξk,0r + bki + ξk,11t1ij + ξk,12t2ij + ξk,13t3ij + ξk,2X1i

+ . . .+ ξk,5X4i, (1)

where t1ij , t2ij , and t3ij are dummies corresponding to weeks 4, 8, and 12, respectively. Clinically, one

cannot separate therapeutic effect from side effects, because the former refers to the disappearance of

existing symptoms, whereas the latter corresponds to emerging symptoms. To capture the association

between the responses, various assumptions about the distribution of the random effects can be made.

We will model this association through the following assumptions for the random effects: b1i

b2i

 ∼ N

 0

0

 ,

 g11 g12

g12 g22

 . (2)

The fit is presented as Model 0 in Tables 3 and 4. This analysis is performed under ignorability.

2.2. Analysis under Missing Not at Random Assumption

Next, we perform a sensitivity analysis under MNAR. Without loss of generality, we assume that the

missingness process can be modeled using the same set of covariates as the two outcomes of scientific

interest. The following logistic regression can be specified for the missing indicator:

logit[P (Di > j)] = ξ3,0 + b3i + ξ3,11t1ij + ξ3,12t2ij + ξ3,13t3ij + ξ3,2X1i + . . .+ ξ3,5X4i. (3)

Let the side and therapeutic effects be modeled as in (1). To capture the association between (1) and

(3), we consider the following options:

(1) allowing b3i to be pairwise correlated with b1i and b2i (Model 1);

(2) shared modelling by considering random effects for both outcomes b1i and b2i, shared with the

missing indicator, scaled by factors λ1 and λ2. This corresponds to Model 2 in Tables 3 and 4.

Hence, the logistic regression for the missing data indicator takes the following form:

logit[P (Di > j)] = ξ3,0 + λ1b1i + λ2b2i + ξ3,11t1ij + ξ3,12t2ij + ξ3,13t3ij + ξ3,2X1i

+ . . .+ ξ3,5X4i;

(3) modelling the association between missingness and every outcome by including two extra random

intercepts: b3i for the therapeutic effect and b4i for the side effects. Further, the missingness

process will be associated with the outcomes through these shared random intercepts b3i and
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b4i, which are again included using scale factors λ3 and λ4. Then, the model for the missingness

process can be written as follows:

logit[P (Di > j)] = ξ3,0 + λ3b3i + λ4b4i + ξ3,11t1ij + ξ3,12t2ij + ξ3,13t3ij + ξ3,2X1i

+ . . .+ ξ3,5X4i.

See Model 3 in Tables 3 and 4.

These models exhibit the following hierarchical relationships: the most complex model is model 3,

containing model 1 as a sub-model, with model 2 a further sub-model of the latter. For more details

about model-specific variance-covariance matrices of the random effects structure, see Supplementary

Materials B, matrices (4)–(6). The most complex model 3 is overspecified, but can be used as a basis

for sensitivity analysis, and as a resource to select identified sub-models.

Model 1 had computational issues and was further discarded. Models 2 and 3 were implemented

in the NLMIXED procedure of SAS 9.4, where numerical integration adaptive Gaussian quadrature

was used with Q = 10. We paid special attention to fitting Model 3 given its complexity. The results

will be discussed in Section 2.3.

When comparing the fitted models of Tables 3 and 4, we observe that the parameter estimates

for the fixed effects of the therapeutic and the side effects are approximately the same for all three

models. As to the random part, Model 2 yields slightly larger estimates than Model 0, whereas

Model 3 generates slightly lower estimates than Model 0. The similarity of the results for Model 0

under MAR and Models 2 and 3 under MNAR confirms the observation of Molenberghs et al. (2008).

These authors showed a strong connection between the MNAR model fit and the MAR model fit.

The most important conclusion was that the MNAR model fitted to a set of observed data can be

reproduced by a MAR counterpart, which is in our case Model 0. However, sometimes it happens

that the parametric MAR model does not properly fit the observed data. It is therefore of interest to

fit a sufficiently different MNAR model to ensure a good fit to the observed data and then examine

the corresponding MAR version. In addition, these authors concluded that the MNAR and MAR

models produce different predictions for unobserved outcomes, given the observed ones.

Further observations concern the standard errors of the estimates: given that the missing data

mechanism is incorporated, the standard error estimates of all parameters increase compared to those

of the model under MAR. It means that Models 2 and 3 are less efficient than Model 0, and in case

of prediction the uncertainty will be larger.

2.3. Additional Investigation of Model 3

Implementing Model 3 leads to some computational problems due to its complexity. Here, the ther-

apeutic and side effects are modeled jointly as described in Section 2.1 and, to add the missingness

process to this joint modelling, two extra random intercepts: b3i for the therapeutic effect, and b4i for
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Table 3. Fluvoxamine Trial. Response-specific parameter estimates (s.e.) of

the regression coefficients. Model 0: model with two outcomes only; Model

2: model with two random intercepts both of which are shared with missing

data indicator; Model 3: model with four random intercepts of which two are

shared with missing data indicator

Est. (s.e.) Est. (s.e.) Est. (s.e.)

Effect Par. Model 0 Model 2 Model 3

Therapeutic Effect

int. 0 ξ1,00 −2.16 (1.18) −2.25 (1.23) −2.27 (1.23)

int. 1 ξ1,01 1.03 (1.18) 0.93 (1.26) 0.91 (1.26)

int. 2 ξ1,02 3.42 (1.19) 3.33 (1.31) 3.31 (1.32)

time (week = 4) ξ1,11 2.07 (0.20) 2.04 (0.20) 2.04 (0.20)

time (week = 8) ξ1,12 3.60 (0.25) 3.55 (0.25) 3.55 (0.25)

time (week = 12) ξ1,13 4.48 (0.28) 4.42 (0.29) 4.42 (0.29)

antecedents ξ1,2 −0.31 (0.34) −0.35 (0.34) −0.35 (0.34)

age/30 ξ1,3 −0.18 (0.37) −0.20 (0.38) −0.20 (0.38)

duration/100 ξ1,4 −0.87 (0.77) −0.87 (0.78) −0.85 (0.78)

initial severity ξ1,5 −0.27 (0.21) −0.25 (0.22) −0.24 (0.22)

RI sd.
√
d11 2.35 (0.18) 2.37 (0.19) 1.88 (0.41)

RI sd.
√
g33 — — 1.45 (0.50)

Side Effects

int. 0 ξ2,00 −1.71 (1.68) −2.16 (1.83) −1.83 (1.84)

int. 1 ξ2,01 3.29 (1.69) 2.81 (1.87) 3.17 (1.89)

int. 2 ξ2,02 5.64 (1.72) 5.15 (2.01) 5.62 (2.05)

time (week = 4) ξ2,11 0.74 (0.23) 0.66 (0.23) 0.65 (0.23)

time (week = 8) ξ2,12 1.58 (0.26) 1.45 (0.26) 1.45 (0.26)

time (week = 12) ξ2,13 1.64 (0.27) 1.48 (0.27) 1.48 (0.27)

antecedents ξ2,2 −0.12 (0.49) −0.22 (0.50) −0.25 (0.51)

age/30 ξ2,3 −1.56 (0.54) −1.58 (0.57) −1.68 (0.58)

duration/100 ξ2,4 −3.97 (1.08) −3.95 (1.11) −3.96 (1.12)

initial severity ξ2,5 0.74 (0.30) 0.83 (0.32) 0.79 (0.32)

RI sd.
√
g22 3.39 (0.30) 3.47 (0.34) 2.29 (0.57)

RI sd.
√
g44 — — 2.66 (0.49)

Missing Indicator

int. ξ3,0 — −2.90 (0.99) −3.59 (1.36)

time (week = 4) ξ3,11 — 0.93 (0.36) 1.25 (0.43)

time (week = 8) ξ3,12 — 1.17 (0.37) 1.70 (0.51)

time (week = 12) ξ3,13 — 0.97 (0.40) 1.61 (0.58)

antecedents ξ3,2 — 0.34 (0.29) 0.45 (0.36)

age/30 ξ3,3 — 0.39 (0.30) 0.54 (0.38)

duration/100 ξ3,4 — 1.67 (0.50) 2.09 (0.69)

initial severity ξ3,5 — −0.32 (0.16) −0.41 (0.20)
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Table 4. Fluvoxamine Trial. Common parameter estimates (s.e.)

of the regression coefficients. Model 0: model with two outcomes

only; Model 2: model with two random intercepts both of which are

shared with missing data indicator; Model 3: model with four ran-

dom intercepts of which two are shared with missing data indicator

Est. (s.e.) Est. (s.e.) Est. (s.e.)

Effect Par. Model 0 Model 2 Model 3

Therapeutic Effect & Side Effects

Cov. RI’s g12 0.96 (0.64) 1.17 (0.67) 1.09 (0.67)

Therapeutic Effect & Missing Indicator

RI sd.
√
g11 — 2.37 (0.19) —

RI sd.
√
g33 — — 1.45 (0.50)

Scale λ1 — −1.13 (0.07) —

Scale λ3 — — −0.53 (0.40)

Side Effects & Missing Indicator

RI sd.
√
g22 — 3.47 (0.34) —

RI sd.
√
g44 — — 2.66 (0.49)

Scale λ2 — −0.23 (0.05) —

Scale λ4 — — −0.50 (0.20)

the side effects are included. Further, the missingness process will be associated with the outcomes

through these shared random intercepts b3i and b4i, which are included using scale factors λ3 and λ4.

Using the SAS procedure NLMIXED, we fit a joint POMM–POMM–GLM model by relying on

numerical integration. In NLMIXED, not only several integration techniques are available,

but also a number of optimization algorithms. Having experienced problems with the default

quasi-Newton optimization algorithm, we replaced it by the more stably converging Newton-Raphson

algorithm. Further, given the latter, a numerical sensitivity analysis for different integral approxima-

tions was performed. Here, we investigated the influence on model fit not only stemming from the

approximation method but also the a priori selected number of quadrature points. More precisely,

we initiated the model fitting using adaptive Gaussian quadrature approximation for Q = 3, 5, 10.

The difference between adaptive and non-adaptive Gaussian quadrature is that for the former the

quadrature points are appropriately centered and scaled in a way that more quadrature points lie

in the region with high probability mass, while for the latter the quadrature points are centered at

zero for each of the random effects, and the current random-effects covariance matrix is used as scale

matrix (Molenberghs and Verbeke 2005). Clearly, the adaptive Gaussian quadrature approximation

is much more time consuming. Subsequently we switched to non-adaptive Gaussian quadrature, and

fitted the model for Q = 10, 20. The results are summarized in Tables 5 and 6.

The following observations can be made. Within the adaptive Gaussian quadrature approximation,



12 A. Ivanova, G. Molenberghs and G. Verbeke

there is a minor difference in the parameter estimates (except for some intercepts), also in one of the

standard errors, between Q = 5 and Q = 10. This is also confirmed in terms of log-likelihood. The

deviation between the fit for Q = 3 and Q = 5, 10 is much more visible both in terms of the estimates

and the log-likelihood value (the−2log-likelihood is higher). Switching to non-adaptive approximation

and comparing the point and precision estimates and −2log-likelihood, we reach practically the same

fit for Q = 10 and Q = 20. These approximations are also numerically close to the adaptive Gaussian

quadrature approximation with Q = 10, and hence, based on the previous comparison, they are also

similar to those of the same method but with Q = 5. However, the most important advantage of

replacing the adaptive approximation by the non-adaptive one is the gain in computation time. As all

mentioned modifications of model fitting were applied using the same computer platform, a similar

way of programming, and the same starting values, we can make a fair comparison of computation

times. We observed that almost without losing any quality of the model fit, we can switch from

adaptive to non-adaptive Gaussian quadrature, both with Q = 10. As a result, the computation

time decreased from more than 81 hours to approximately 1 hour. However, in the context of the

fluvoxamine data and the model considered, adaptive quadrature with Q = 5 is a feasible technique:

the quality of the approximation is almost the same as with the latter method and the computation

time is a little over 5 hours, which is not unreasonable.

In addition, we investigated whether we can reduce the computation time even more when using

as starting parameters for non-adaptive Gaussian approximation with Q = 20 the estimated values

from the same procedure but with Q = 10. However, we observed that this was not a promising

route: the model fit was almost the same as for Q = 10 and the implementation ran at approximately

the same speed.

Given that the models considered have a likelihood basis, they can be compared using likelihood

ratio or related tests when they are nested, or using information criteria when they are not. How-

ever, because data are incomplete, one should also investigate the sensitivity of inferences drawn to

necessarily non-verifiable assumptions about the predictive distribution, i.e., the distribution of the

unobserved data, given observed data, covariates, and the missing data mechanism. Indeed, models

with the same or similar fit to the observed data can strongly differ in terms of the predictive dis-

tribution (Molenberghs et al., 2008). Verbeke, Molenberghs, and Beunckens (2008) presented formal

and informal model selection and model assessment tool for such cases. The fact that we present

several models with differing assumptions about the relationships between outcome and missingness

processes can be seen as a component of such a sensitivity analysis.

2.4. Multiple Imputation and Sensitivity Analysis

Multiple imputation, at least in its basic form (Rubin 1978) requires the missingness mechanism to

be MAR. That is why we started our investigation with the ACMV method that works under MAR.
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Table 5. Fluvoxamine Trial. Response-specific parameter estimates (s.e.) of the regression coefficients

of Model 3 with four random intercepts, two of which are shared. The results are listed for adaptive

(Q=3, 5, 10) and non-adaptive Gaussian quadrature (Q=10, 20)

Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

Adaptive Non–Adaptive

Effect Par. Q = 3 Q = 5 Q = 10 Q = 10 Q = 20

Therapeutic Effect

int. 0 ξ1,00 −1.68 (1.24) −2.21 (1.23) −2.27 (1.23) −2.21 (1.25) −2.26 (1.23)

int. 1 ξ1,01 1.52 (1.28) 0.97 (1.26) 0.91 (1.26) 0.97 (1.28) 0.92 (1.26)

int. 2 ξ1,02 3.94 (1.36) 3.37 (1.32) 3.31 (1.32) 3.37 (1.34) 3.31 (1.31)

time (week = 4) ξ1,11 2.05 (0.20) 2.04 (0.20) 2.04 (0.20) 2.05 (0.20) 2.04 (0.20)

time (week = 8) ξ1,12 3.57 (0.25) 3.55 (0.25) 3.55 (0.25) 3.56 (0.25) 3.55 (0.25)

time (week = 12) ξ1,13 4.44 (0.29) 4.42 (0.29) 4.42 (0.29) 4.43 (0.29) 4.42 (0.29)

antecedents ξ1,2 −0.35 (0.34) −0.35 (0.34) −0.35 (0.34) −0.34 (0.34) −0.35 (0.34)

age/30 ξ1,3 −0.28 (0.38) −0.21 (0.38) −0.20 (0.38) −0.20 (0.38) −0.20 (0.38)

duration/100 ξ1,4 −0.86 (0.78) −0.86 (0.78) −0.85 (0.78) −0.86 (0.78) −0.85 (0.78)

initial severity ξ1,5 −0.34 (0.22) −0.25 (0.22) −0.24 (0.22) −0.25 (0.22) −0.24 (0.22)

RI sd.
√
g11 1.93 (0.41) 1.87 (0.40) 1.88 (0.41) 1.93 (0.42) 1.89 (0.41)

RI sd.
√
g22 1.37 (0.54) 1.46 (0.48) 1.45 (0.50) 1.37 (0.58) 1.43 (0.51)

Side Effects

int. 0 ξ2,00 −1.70 (1.77) −1.80 (1.82) −1.83 (1.84) −0.93 (2.35) −1.83 (1.83)

int. 1 ξ2,01 3.23 (1.82) 3.20 (1.87) 3.17 (1.89) 4.13 (2.48) 3.18 (1.88)

int. 2 ξ2,02 5.64 (1.98) 5.63 (2.03) 5.62 (2.05) 6.64 (2.71) 5.62 (2.04)

time (week = 4) ξ2,11 0.66 (0.23) 0.66 (0.23) 0.65 (0.23) 0.66 (0.23) 0.65 (0.23)

time (week = 8) ξ2,12 1.46 (0.26) 1.45 (0.26) 1.45 (0.26) 1.46 (0.26) 1.45 (0.26)

time (week = 12) ξ2,13 1.49 (0.27) 1.48 (0.27) 1.48 (0.27) 1.49 (0.27) 1.48 (0.27)

antecedents ξ2,2 −0.22 (0.49) −0.24 (0.50) −0.25 (0.51) −0.42 (0.52) −0.25 (0.50)

age/30 ξ2,3 −1.64 (0.55) −1.67 (0.57) −1.68 (0.58) −1.91 (0.62) −1.67 (0.57)

duration/100 ξ2,4 −3.91 (1.08) −3.96 (1.11) −3.96 (1.12) −4.02 (0.96) −3.96 (1.13)

initial severity ξ2,5 0.75 (0.31) 0.78 (0.32) 0.79 (0.32) 0.70 (0.36) 0.77 (0.32)

RI sd.
√
g33 2.35 (0.46) 2.39 (0.54) 2.29 (0.57) 2.37 (0.45) 2.32 (0.56)

RI sd.
√
g44 2.40 (0.48) 2.50 (0.50) 2.66 (0.49) 2.67 (0.40) 2.64 (0.50)

Missing Indicator

int. ξ3,0 −3.67 (1.37) −3.61 (1.37) −3.59 (1.36) −3.82 (1.41) −3.61 (1.37)

time (week = 4) ξ3,11 1.24 (0.43) 1.25 (0.43) 1.25 (0.43) 1.25 (0.43) 1.25 (0.44)

time (week = 8) ξ3,12 1.69 (0.51) 1.70 (0.51) 1.70 (0.51) 1.70 (0.50) 1.71 (0.51)

time (week = 12) ξ3,13 1.60 (0.58) 1.62 (0.58) 1.61 (0.58) 1.62 (0.57) 1.62 (0.58)

antecedents ξ3,2 0.45 (0.37) 0.45 (0.37) 0.45 (0.36) 0.49 (0.37) 0.45 (0.37)

age/30 ξ3,3 0.55 (0.38) 0.54 (0.38) 0.54 (0.38) 0.59 (0.38) 0.54 (0.38)

duration/100 ξ3,4 2.10 (0.70) 2.10(0.70) 2.09 (0.69) 2.10 (0.67) 2.10 (0.69)

initial severity ξ3,5 −0.39 (0.20) −0.41 (0.20) −0.41 (0.20) −0.38 (0.21) −0.41 (0.20)
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Table 6. Fluvoxamine Trial. Common parameter estimates (s.e.) of the regression coefficients of

Model 3 with four random intercepts, two of which are shared. The results and comutation time are

listed for adaptive (Q=3, 5, 10) and non-adaptive Gaussian quadrature (Q=10, 20)

Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

Adaptive Non–Adaptive

Effect Par. Q = 3 Q = 5 Q = 10 Q = 10 Q = 20

Therapeutic Effect & Side Effects

Cov. RI’s g12 1.05 (0.64) 1.06 (0.66) 1.09 (0.67) 0.88 (0.71) 1.07 (0.68)

Therapeutic Effect & Missing Indicator

RI sd.
√
g22 1.37 (0.54) 1.46 (0.48) 1.45 (0.50) 1.37 (0.58) 1.43 (0.51)

Scale λ1 −0.58 (0.45) −0.49 (0.35) −0.53 (0.40) −0.56 (0.49) −0.54 (0.41)

Side Effects & Missing Indicator

RI sd.
√
g44 2.40 (0.48) 2.50 (0.50) 2.66 (0.49) 2.67 (0.40) 2.64 (0.50)

Scale λ4 −0.58 (0.22) −0.57 (0.23) −0.50 (0.20) −0.51 (0.17) −0.52 (0.20)

-2ll 3981.0 3975.4 3974.3 3973.7 3974.2

CPU 42:07 5:07:30 81:26:54 1:00:04 15:23:35

Given that current computational facilities support larger numbers of M to be used at minimal cost

(except maybe for very large datasets), it seems reasonable to choose M in such a way that the final

analysis is reproducible, i.e., if one wants to repeat the analysis for the same M then essentially the

same results will be generated. Hence, all MI methods implemented by us were ran for M = 20

imputations. In the Supplementary Materials A, we show that M = 10 returns essentially the same

results.

The ACMV analysis was implemented as follows: first the procedure MI (SAS 9.4) is used for the

imputations, then every completed data is analysed using procedure NLMIXED for the joint modelling

of the therapeutic and side effects with the general assumption for the covariance matrix (2), and

finally the results of the separate analysis are combined into a single one using the MIANALYZE

procedure.

Further, one might want to examine how the MAR and MNAR models differ in their prediction

of unobserved data. Another interesting point is how the results depend on the way the multivariate

distribution of the longitudinal process is treated. To compare the results of the analysis, given the

different hypotheses about the identifying restriction for missing data, we will perform a sensitivity

analysis for the multiple imputation (Carpenter et al. 2013).

Since at the end of the study, as a number of patients dropped out, the variability of side effects

and therapeutic effect turned out to be insufficient to include both variables into the MI analysis.

Given the fact that with high side effects a reasonable therapeutic effect is absent, we decided to

remove the last (i.e., the 5th) measurement of the therapeutic effect in the MI analysis.
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Based on the joint density for the observed and missing data, we will perform the MI analysis given

identifying restrictions MI 1–3. MI 4 is an identifying restriction based on a conditional distribution

f(yj |y1, . . . ,yj−1), where for each variable Y j we assume it to be the same for Y o
j and Y m

j :

(MI 1) under MAR: available cases missing value (ACMV) method.

(MI 2) under MNAR: neighboring case missing values (NCMV). In this method, for the imputed missing

values of variable Y j , we estimated the posterior density based on the patterns for which Y j is

observed and Y j+1 is missing. The mentioned principle for identifying Y j can be extended to

larger numbers of patterns: the patterns for which Y j is observed and Y j+k is missing.

(MI 3) under MNAR: complete case missing value (CCMV).

(MI 4) under MAR: the Full Conditional Specification (FCS; van Buuren 2007) method was applied.

Here, it was assumed that, if the patient left the study, all his/her “after dropout” measurements

are equal to the overall mean.

All aforementioned modifications of the MI analysis (MI 1–4) where implemented in SAS (SAS 9.4)

in the same way as described in the beginning of this section. The results for the point and precision

estimates are listed in Table 7. We note that FCS and ACMV are closest to each other in terms of

estimates and precision estimates. This is to be expected, given their MAR basis. CCMV generates

approximately the same results except for the category-specific intercepts: they are slightly different

but have almost the same precision as with FCS and ACMV.

When compared with CCMV, FCS, and ACMV, NCMV generates slightly different approxima-

tions for the fixed effects and also for the standard deviations of the random intercepts. However, the

largest difference lies in the estimation of the covariance between the random intercepts of the two

responses: for NCMV the covariance is much higher. It can be explained by NCMV: here, we defined

the posterior density by the neighboring patterns, which by nature are more similar to each other,

hence, the higher correlation between the joint responses. The precision estimates of all parameters

for NCMV are approximately the same as for the other methods.

3. Discussion

In this article, we proposed an application of the joint modelling of composite endpoint method on

the fluvoxamine trial, a study with two longitudinal ordinal outcomes where not all patients remained

in the study. Since the therapeutic and side effects were measured simultaneously, they were regarded

as components of a composite endpoint and had to be modelled jointly. Then, we extended our model

by incorporating missingness in various ways to estimate the effect on the results.

After applying several MNAR models, we concluded that they yield approximately the same fit as

their MAR counterpart but with a slightly higher uncertainty. This ensures that the corresponding

MAR version properly fits the observed data. For simplicity, the models formulated include only
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Table 7. Fluvoxamine Trial. Parameter estimates (s.e.) of the regression coefficients for

available case missing value (ACMV), neighboring case missing value (NCMV), complete

case missing value (CCMV) and full conditional specification (FCS) multiple imputation. All

are performed for M = 20 imputations

Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

Effect Par. ACMV NCMV CCMV FCS

Therapeutic Effect

int. 0 ξ1,00 −2.03 (1.14) −2.27 (1.13) −1.96 (1.10) −2.00 (1.08)

int. 1 ξ1,01 1.01 (1.15) 0.56 (1.13) 1.13 (1.10) 1.06 (1.08)

int. 2 ξ1,02 3.40 (1.16) 2.75 (1.13) 3.55 (1.10) 3.45 (1.10)

time (week = 4) ξ1,11 1.99 (0.19) 1.74 (0.18) 2.06 (0.19) 2.01 (0.19)

time (week = 8) ξ1,12 3.50 (0.24) 2.60 (0.21) 3.62 (0.24) 3.52 (0.24)

time (week = 12) ξ1,13 4.32 (0.27) 3.86 (0.25) 4.41 (0.27) 4.34 (0.27)

antecedents ξ1,2 −0.27 (0.31) −0.65 (0.32) −0.24 (0.32) −0.24 (0.31)

age/30 ξ1,3 −0.13 (0.36) −0.37 (0.35) −0.03 (0.35) −0.11 (0.34)

duration/100 ξ1,4 −0.75 (0.72) −1.13 (0.74) −0.64 (0.72) −0.73 (0.71)

initial severity ξ1,5 −0.29 (0.20) −0.09 (0.20) −0.35 (0.19) −0.31 (0.19)

RI sd.
√
g11 2.24 (0.17) 2.34 (0.17) 2.25 (0.16) 2.24 (0.17)

Side Effects

int. 0 ξ2,00 −0.72 (1.55) −1.25 (1.57) −0.44 (1.48) −0.94 (1.57)

int. 1 ξ2,01 3.87 (1.53) 2.78 (1.59) 4.29 (1.49) 3.72 (1.57)

int. 2 ξ2,02 6.54 (1.55) 4.90 (1.63) 6.84 (1.53) 6.48 (1.59)

time (week = 4) ξ2,11 0.76 (0.23) 0.42 (0.21) 0.91 (0.22) 0.78 (0.22)

time (week = 8) ξ2,12 1.51 (0.24) 0.59 (0.23) 1.69 (0.25) 1.52 (0.24)

time (week = 12) ξ2,13 1.59 (0.26) 0.80 (0.23) 1.71 (0.25) 1.62 (0.25)

antecedents ξ2,2 −0.03 (0.45) −0.52 (0.46) 0.07 (0.44) 0.01 (0.46)

age/30 ξ2,3 −1.49 (0.49) −1.37 (0.50) −1.47 (0.47) −1.50 (0.49)

duration/100 ξ2,4 −3.81 (0.99) −4.74 (1.02) −3.48 (0.95) −4.00 (1.00)

initial severity ξ2,5 0.52 (0.28) 0.71 (0.27) 0.44 (0.26) 0.56 (0.27)

RI sd.
√
g22 3.10 (0.30) 3.26 (0.29) 3.08 (0.26) 3.19 (0.28)

Common parameter

Therapeutic Effect & Side Effects

Cov. RI’s g12 0.83 (0.53) 2.58 (0.66) 0.86 (0.53) 0.90 (0.57)



Missing Data in Joint Modelling of Ordinal Responses 17

random intercepts. They can be extended to models with more complex random effect structures,

e.g., models with random intercepts and random slopes. Potentially, this may increase complexity of

convergence as well as computation time. We paid specific attention to the complexity of the POMM–

POMM–GLMMNARmodel. We found that an acceptable model fit and reasonable computation time

can be obtained for non-adaptive Gaussian quadrature numerical approximation with Q = 10. Also,

adaptive quadrature with Q = 5 is feasible in the context of the study. While adaptive quadrature

with a sufficiently large number of quadrature points is recommended, the achieved accuracy and

numerical feasibility will depend on the application at hand.

Given the assumptions behind the posterior distribution of the dropouts, different modifications

of MI analysis were introduced. As such assumptions are partly untestable, conducting a sensitivity

analysis is primordial. Starting with the basic MI analysis in its MAR form (Rubin 1978) and

then extended to MNAR, under a suite of the identifying restrictions (Verbeke and Molenberghs

2000, Molenberghs and Kenward 2007, van Buuren 2007), we concluded that, based on the performed

sensitivity analysis, in the context of the fluvoxamine trial, inferences regarding some parameters can

be modified by some identifying restrictions. After comparing all MI analysis performed, we conclude

that the largest difference in inference is for NCMV and is due to the much larger estimates of

the covariance between the random intercepts of the two responses. This can be explained by the

definition of the posterior density as it considers neighboring patterns which are bound to be similar.

The guideline for choosing the number of imputations is to render the final analysis reproducible,

which is not always the case for a small number of imputations (White et al. 2011, van Buuren 2012).

Hence, a sufficiently large number of imputations is advised (e.g., M = 20) and supported by the

currently available computational power.
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Table 8. Fluvoxamine Trial. Parameter estimates (s.e.) of the regression coefficients for

available case missing value (ACMV), neighboring case missing value (NCMV), complete

case missing value (CCMV) and full conditional specification (FCS) multiple imputation. All

are performed for M = 10 imputations

Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

Effect Par. ACMV NCMV CCMV FCS

Therapeutic Effect

int. 0 ξ1,00 −1.98 (1.10) −2.29 (1.12) −2.09 (1.08) −2.04 (1.11)

int. 1 ξ1,01 1.06 (1.11) 0.54 (1.12) 0.99 (1.07) 1.04 (1.12)

int. 2 ξ1,02 3.44 (1.12) 2.69 (1.13) 3.39 (1.09) 3.45 (1.13)

time (week = 4) ξ1,11 2.00 (0.19) 1.72 (0.18) 2.07 (0.19) 2.02 (0.19)

time (week = 8) ξ1,12 3.48 (0.25) 2.60 (0.20) 3.62 (0.23) 3.53 (0.24)

time (week = 12) ξ1,13 4.32 (0.27) 3.84 (0.24) 4.40 (0.27) 4.36 (0.27)

antecedents ξ1,2 −0.28 (0.31) −0.62 (0.32) −0.21 (0.31) −0.24 (0.32)

age/30 ξ1,3 −0.12 (0.35) −0.39 (0.35) −0.01 (0.34) −0.11 (0.35)

duration/100 ξ1,4 −0.69 (0.72) −1.29 (0.72) −0.83 (0.70) −0.85 (0.72)

initial severity ξ1,5 −0.30 (0.19) −0.07 (0.19) −0.32 (0.19) −0.30 (0.20)

RI sd.
√
g11 2.23 (0.17) 2.32 (0.17) 2.23 (0.17) 2.29 (0.17)

Side Effects

int. 0 ξ2,00 −0.85 (1.51) −1.17 (1.53) −0.50 (1.46) −1.02 (1.57)

int. 1 ξ2,01 3.75 (1.50) 2.90 (1.54) 4.23 (1.48) 3.68 (1.58)

int. 2 ξ2,02 6.42 (1.54) 5.04 (1.55) 6.77 (1.52) 6.35 (1.64)

time (week = 4) ξ2,11 0.75 (0.23) 0.43 (0.20) 0.89 (0.21) 0.76 (0.21)

time (week = 8) ξ2,12 1.50 (0.26) 0.62 (0.22) 1.69 (0.24) 1.52 (0.24)

time (week = 12) ξ2,13 1.61 (0.26) 0.84 (0.22) 1.77 (0.23) 1.61 (0.25)

antecedents ξ2,2 −0.03 (0.44) −0.52 (0.48) 0.11 (0.45) 0.06 (0.44)

age/30 ξ2,3 −1.49 (0.50) −1.45 (0.50) −1.48 (0.48) −1.52 (0.48)

duration/100 ξ2,4 −3.87 (1.01) −4.81 (1.03) −3.60 (0.96) −4.09 (0.99)

initial severity ξ2,5 0.55 (0.27) 0.72 (0.27) 0.46 (0.26) 0.58 (0.27)

RI sd.
√
g22 3.12 (0.30) 3.28 (0.26) 3.11 (0.28) 3.19 (0.26)

Common parameter

Therapeutic Effect & Side Effects

Cov. RI’s g12 0.84 (0.53) 2.57 (0.63) 0.81 (0.54) 1.02 (0.60)
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B. Variance-Covariance Matrices of Random-Effects Structures

Model 1: The b3i are pairwise correlated with b1i and b2i, leading to:

G =


g11 g12 g13

g12 g22 g23

g13 g23 g33

 (4)

Model 2: The random intercepts for both outcomes, b1i and b2i, are shared with the missing-data

indicator, and scaled by factors λ1 and λ2.

G =


g11 g12 λ1g11

g12 g22 λ2g22

λ1g11 λ2g22 λ2
1g11 + λ2

2g22 + 2λ1λ2g12

 (5)

Model 3: The random intercepts are b3i for therapeutic effect and b4i for side effects; missingness
is associated with the outcomes through b3i and b4i and included with scale factors λ3 and λ4,
respectively.

G =

(
g11 + g33 + 2g13 g12 + g14 + g23 + g24 λ1g13 + λ1g33 + λ2g14 + λ2g34

g12 + g14 + g23 + g24 g22 + g44 + 2g24 λ1g23 + λ1g34 + λ2g24 + λ2g44

λ1g13 + λ1g33 + λ2g14 + λ2g34 λ1g23 + λ1g34 + λ2g24 + λ2g44 λ2
1
g33 + λ2

2
g34 + 2λ1λ2g34

)
(6)


