
DOCTORAL DISSERTATION

A Framework for Comparing
Query Languages in Their
Ability to Express Boolean
Queries

Doctoral dissertation submitted to obtain the degree of
Doctor of Sciences: Information Technology, to be defended by

Promoter: Prof. Dr Jan Van den Bussche

2017 | Faculty of Sciences

D/2017/2451/74

Dimitri Surinx

Abstract

When a relational database is queried, the result is normally a relation.
Some queries, however, only require a yes/no answer; such queries are of-
ten called boolean queries. In this thesis, we introduce a framework along
which we can investigate boolean queries. We introduce three natural base
modalities: testing for nonemptiness of a query; testing for emptiness; and
testing for the containment of the result of one query in the result of an-
other query. For the class of first-order queries, these three modalities
have exactly the same expressive power. For other classes of queries, e.g.,
expressed in weaker query languages, the modalities may di↵er in expres-
siveness. The expressive power under these di↵erent modalities can be
compared in several di↵erent themes, e.g., we can compare a fixed query
language F under emptiness to F under nonemptiness. We introduce four
general themes to compare the base modalities:

1. We identify crucial query features that enable us to go from one
modality to another for a fixed query language. Furthermore, we
identify semantical properties that reflect the lack of these query
features to establish separations.

2. We compare the expressive power of the base modalities by compar-
ing di↵erent query languages under fixed modalities.

3. We compare the expressive power of di↵erent query languages under
di↵erent modalities.

4. We investigate the closure of the modalities under the boolean con-
nectives.

For each of these themes, we establish subsumption as well as separation
results for well known query languages such as conjunctive queries and
navigational graph query languages.

1

Acknowledgments

First and foremost, I want to thank my advisor Jan Van den Bussche.
Jan’s enthusiasm and passion for research always made our meetings very
inspiring and a lot of fun. His guidance throughout my PhD has always
been excellent, and I have learned a lot from him.

I would also like to thank Dirk Van Gucht for giving me the inspiration
I needed to solve several of my open problems. Furthermore, I would like to
thank Dirk for giving me the opportunity to visit him at Indiana University,
which has been an unforgettable experience.

I am also grateful for my great roomies over the years. I especially
want to thank Bas Ketsman with whom I shared most of the experiences
of the PhD process.

On the other hand, I want to thank my other colleagues in my research
group for providing a stimulating work environment. In particular, I would
like to thank Jelle Hellings, with whom I have had a lot of interesting
discussions and a lot of laughs during our teaching moments.

I also would like to thank the members of my jury. The insightful
comments of Bart Kuijpers and Leonid Libkin were very helpful and greatly
improved my thesis.

Last but not least, I am indebted to my friends and family for the
continuing support. I am especially grateful to Liesbeth for her advice and
her patience during the more di�cult parts of my PhD.

3

Contents

1 Introduction 7

1.1 Publications . 12

2 Di↵erent ways of expressing boolean queries 13

2.1 Preliminaries . 13
2.1.1 Navigational graph query languages 14
2.1.2 Conjunctive queries . 18

2.2 Boolean query modalities . 19

3 Comparing di↵erent base modalities for fixed query

languages 23

3.1 Conjunctive queries. 28
3.2 Navigational graph query languages . 30

4 Comparing di↵erent query languages under fixed base

modalities 37

4.1 Navigational graph query languages under the contain-
ment modality . 39
4.1.1 Projection . 39
4.1.2 Coprojection . 49
4.1.3 Intersection . 50
4.1.4 Di↵erence . 53
4.1.5 Transitive closure . 55
4.1.6 The full relation . 55
4.1.7 Diversity . 56
4.1.8 Converse . 58

5 Comparing di↵erent query languages under di↵erent

base modalities 59

5

6 Contents

5.1 Comparing nonemptiness to containment for navigational
graph query languages . 61
5.1.1 Coprojection . 61
5.1.2 Di↵erence . 61
5.1.3 Intersection . 62
5.1.4 Converse . 64
5.1.5 Transitive closure . 65
5.1.6 Diversity . 65
5.1.7 Projection . 65

6 Closure under boolean connectives 69

6.1 Comparing containment to noncontainment. 69
6.2 Closure under conjunction . 71

6.2.1 Navigational graph query languages 71
6.2.2 Conjunctive queries . 75

7 Succinctness of converse elimination for graph query

languages under nonemptiness 79

7.1 A bisimulation result . 83

8 A monotone preservation result for containments of

conjunctive queries 105

9 Conclusion 111

9.1 Open Questions . 114
9.2 Future work . 114

10 Dutch Summery 117

Bibliography 121

1
Introduction

When a relational database is queried, the result is normally a relation.
Some queries, however, only require a yes/no answer; such queries are
often called Boolean queries. We may ask, for example, “is student 14753
enrolled in course c209?” Also, every integrity constraint is essentially a
Boolean query. Another application of Boolean queries is given by SQL
conditions, as used in updates and triggers, or in if-then-else statements of
SQL/PSM (PL/SQL) programs.

In the theory of database query languages and in finite model theory
[1, 18, 31, 30], it is standard practice to express Boolean queries under what
we call the nonemptiness modality. Under this modality, Boolean queries
are expressed in the form e 6= ; where e is a query expression in some query
language. Here, a nonempty query result is interpreted as true and empty
is interpreted as false. For example, under the nonemptiness modality,
the above Boolean query “is student 14753 enrolled in course c209?” is
expressed by the nonemptiness of the query “give all students with id 14753
that are enrolled in course c209”. The nonemptiness modality is used in
practice in the query language SPARQL. In that language, the result
of a Boolean query ASK P is true if and only if the corresponding query
SELECT * P has a nonempty result. Another example of the nonemptiness
modality in practice is given by SQL conditions of the form EXISTS (Q).

The nonemptiness modality is by no means the only natural way of
expressing Boolean queries, however. An integrity constraint is often nat-
urally expressed by a query that looks for violations; then the constraint
holds if the query returns no answers. So, here we use the emptiness modal-
ity rather than nonemptiness. This is exactly the mechanism provided by

7

8 Introduction

SQL table-checks [23]. For example, to express the integrity constraint that
an exam should be at least three hours long, we declare a table-check based
on the query retrieving all exams which last strictly less than three hours.
The query must return an empty result; otherwise an error is raised. Also
SQL conditions of the form NOT EXISTS (Q), instrumental in formulating
nonmonotone queries, obviously use the emptiness modality.

Another natural modality is containment of the form e
1

✓ e
2

, where
e
1

and e
2

are two query expressions. This Boolean query returns true on
a database D if e

1

(D) is a subset of e
2

(D).1 For example, the integrity
constraint “every student taking course c209 should have passed course
c106” is naturally expressed by e

1

✓ e
2

, where e
1

is the query retrieving all
students taking c209 and e

2

is the query retrieving all students that passed
c106. This example also illustrates the power of the containment modality:
containments give us the ability to construct nonmonotone Boolean queries
by using monotone queries.

When we use a query language that is powerful enough, such as having
the full power of first-order logic, it does not really matter which of the
above modalities we use, at least as far as expressive power is concerned.
Using first-order queries, the Boolean query {x̄ | '(x̄)} = ; can be equiv-
alently expressed by {() | ¬9x̄'(x̄)} 6= ;. Likewise, the Boolean query
{x̄ | '

1

(x̄)} ✓ {x̄ | '
2

(x̄)} can be expressed as {() | 8x̄('
1

! '
2

)(x̄)} 6= ;.
Nevertheless, the choice of modality may still be important for reasons

of e�ciency and ease of use. For example, a functional dependency (FD)
A ! B on a relation R(A,B) is readily expressed as the emptiness of a
simple conjunctive query with nonequalities that looks for violations of the
FD:

{(a, b1, b2) | R(a, b1) ^R(a, b2) ^ b1 6= b2} = ;.

Here, a nonempty query result thus corresponds to a violation of the FD.
Under nonemptiness however, FDs cannot be expressed using any mono-
tone query language such as the conjunctive queries. Hence, more powerful
query language features would have to be used, potentially harming e�-

1In this thesis, e1 ✓ e2 stands for a Boolean query which, in general, may return
true on some databases and return false on the other databases. Thus e1 ✓ e2, as
considered in this thesis, should not be misconstrued as an instance of the famous query
containment problem [14, 1], where the task would be to verify statically if e1(D) is a
subset of e2(D) on every database D. Indeed, if e1 is contained in e2 in this latter sense,
then the Boolean query e1 ✓ e2 is entirely uninteresting since it would just return true
on every database.

Introduction 9

ciency and ease of use. We thus see that the emptiness modality provides
a way to express nonmonotone queries using monotone query languages.2

A similar situation occurs for inclusion dependencies (INDs [1]), which
are easy to express as the containment of two conjunctive queries, but not
as the nonemptiness of such a query. Under the emptiness modality, INDs
are still not expressible using conjunctive queries, but become expressible
when conjunctive queries are extended with negation.

We thus find it worthwhile to investigate how the di↵erent modalities
for expressing Boolean queries compare to each other.

In this thesis, we introduce a framework along which we can investigate
Boolean queries. All the results in this thesis fit into this framework. This
framework consists of several themes.

In the first theme, we fix the query language F and vary the di↵erent
modalities. In this thesis, we identify the crucial features that enable
one modality to be expressible by another modality. Features that turn
out to be relevant are the ability to express the constant empty query;
set di↵erence; cylindrification; complementation; and tests. Ideally one
would like results that go in both ways, showing that one modality is
expressible by another modality for some family of queries F , precisely
when particular query features are available in F . This requires negative
results of the kind that one modality can express Boolean queries that the
other cannot, whenever these features are lacking. Since languages F bear
no restrictions, and thus could be very pathological, this is not possible
in general. Instead, we try to identify general semantical properties of
families of queries, such as monotonicity or additivity, that reflect a degree
of weakness or a lack of certain crucial query features. We then obtain
results that show, for example, that the nonemptiness and containment
modalities have incomparable expressive power for any family of additive
queries. Next, we apply these results to popular query languages.

First, we look at families of queries belonging to popular query lan-
guages weaker than first-order logic, in particular, the conjunctive queries
possibly extended with union. For example, we have identified tests as a
feature enabling nonemptiness queries to be transformed into containment
queries. Since the conjunctive queries are closed under tests, this general
result can now directly be applied. On the other hand, the emptiness

2Under the containment modality, A ! B is again expressible using conjunctive
queries, as e1 ✓ e2, where e1 is {(a, b1, b2) | R(a, b1) ^ R(a, b2)} and e2 is {(a, b, b) |
R(a, b)}.

10 Introduction

and containment modalities turn out to be incomparable for any family of
unions of conjunctive queries.

Second, we consider a natural algebra of operations on database rela-
tions, and consider fragments of this algebra formed by allowing only a
subset of the operations and omitting the others. By comparing the di↵er-
ent modalities for every fixed fragment, we can investigate which features
are su�cient and/or even necessary to go from one modality to another.
An ideal setting for such a study is that of navigational graph queries
[8, 44, 10]. Indeed, past research has identified a basic set of operations on
binary relations that model navigational graph queries [34, 42, 21, 32, 7].
Our results on fragments of this algebra of binary relations are particularly
satisfying in that they truly go in both ways: we show that one modality
can be expressed in terms of another modality in a given fragment precisely
when the enabling features that we identified belong to that fragment. In
Chapter 3, we focus on this first theme.

In the second theme, we fix a modality and vary the query language.
This is particularly interesting when a query language has a lot of di↵er-
ent operators that can be included or left out. The task of understanding
and comparing language fragments that include some needed features, but
omit unneeded ones, makes sense. For example, in database query pro-
cessing, we could use data structures or query optimization strategies that
work well for some operators but not for others. Moreover, some auto-
mated reasoning tasks, such as satisfiability or subsumption testing, are
decidable in some fragments but not in the full languages. Again, an ideal
setting for such a study is that of navigational graph queries [8, 44, 10].
Under the nonemptiness modality, the primitivity3 has already been char-
acterized [19, 41, 22]. It turns out, for example, that the converse operator
is not always primitive in that setting. In contrast, we show that under
(conjunctions of) containments, every operator is primitive. In Chapter 4,
we focus on this second theme.

In the third theme, we vary both the modality and the query language.
We focus on this theme in Chapter 5. Combining this with the first and
second themes, we can obtain a fine picture of the e↵ect modalities have
on the query language features and vice versa. In this thesis, we attempt
to provide such a picture for navigational graph queries. Even though
we mostly solve this question, a few comparisons remain open. It turns
out, for example, that projection under nonemptiness is not subsumed

3An operator is primitive if it always adds expressive power when it cannot be
directly constructed from other operators.

Introduction 11

by the full relation and converse under containment when union is not
present. To prove this result, we establish a preservation style result for
the more general conjunctive queries in Chapter 8. Specifically, we show
that monotone Boolean queries expressible by containments are exactly the
Boolean queries expressible by nonemptiness. Preservation theorems are
interesting in their own right and have been studied intensively in model
theory, finite model theory and database theory [15, 12, 37, 24, 3, 39].

In the fourth, and final, theme, we investigate the closure of the modali-
ties under the Boolean connectives. Indeed, since the emptiness modality is
the negation of the nonemptiness modality, comparing these two modalities
for a family of queries amounts to asking whether the emptiness modality
is closed under negation for that family. We can ask the same question
for the containment modality, and we can also consider closure under con-
junction or disjunction. Conjunctions of Boolean queries are particularly
relevant in the context of integrity constraints, where typically a list (con-
junction) of integrity constraints is specified. We are then interested in
the question whether such a list can be equivalently specified by a single
integrity constraint. Another interesting observation is that, in logic, con-
junction give us a concise and elegant way to express interesting binary
relation properties. For example, a binary relation R is a total order if and
only if it satisfies the four containments id ✓ R; R �R ✓ R; R \R�1 ✓ id;
and all ✓ R [R�1. The second chapter of Maddux his book [33] is full of
such examples.

For the navigational graph query fragments, we answer the question
completely under the nonemptiness and emptiness modality. For contain-
ment, the question remains largely open. For conjunctive queries and
unions of conjunctive queries we answer the question for the emptiness and
nonemptiness modalities. For the containment modality, we only answer
the question for conjunctive queries however. For unions of conjunctive
queries the question remains open. In Chapter 6, we focus on this fourth
theme.

Observe that the closure under conjunction of the containment modal-
ity subsumes the equality modality q

1

= q
2

, which is equivalent to q
1

✓
q
2

^ q
2

✓ q
1

, as well as to q
1

[q
2

✓ q
1

\ q
2

. Conversely, equality always
subsumes containment for any family closed under union, since q

1

✓ q
2

if
and only if q

1

[q
2

= q
2

. More generally, it becomes clear that there is
an infinitude of modalities one may consider. A general definition of what
constitutes a Boolean-query modality may be found in the formal notion of
generalized quantifier [11, 9]. In fact, questions of the same nature as the

12 Introduction

ones studied here are also being studied by logicians interested in general-
ized quantifiers. For example, Hella et al. [26] shows that for every finite
set of generalized quantifier there is a more powerful one (by moving to
more or higher-arity relations). Obviously, the value of singling out certain
generalized quantifiers for investigation in a study such as ours depends on
their naturalness as query language constructs.

On a final note, we want to remark that it would be too large of a
project to provide a complete picture for all relevant Boolean query fam-
ilies. However, we do want to provide a framework that helps to inves-
tigate them, and, furthermore, provide results for some interesting query
languages that fit into this framework.

In Chapter 7 of this thesis, we prove a more detailed result connected
to our second theme. We already mentioned that, under the nonemptiness
modality, the primitivity of operators in navigational graph queries is well
understood. In particular, we know that the converse does not always add
expressive power in the presence of projection, and can thus be eliminated.
In Chapter 7, we show that this elimination always leads to an exponential
blowup in degree.

1.1 Publications

The main results of Chapter 4 have been presented at LICS 2017 Sympo-
sium [40]. I am also a co-author of the publication [19] which provides the
starting point of Chapter 4. Chapter 7 is based on the publication [41].

2
Di↵erent ways of expressing

boolean queries

2.1 Preliminaries

A database schema � is a finite nonempty set of relation names. Every
relation name R is assigned an arity, which is a natural number. Assuming
some fixed infinite universe of data elements V , an instance I of a relation
name R of arity k is a finite k-ary relation over V , i.e., a subset of V k =
V ⇥ · · ·⇥V (k times). More generally, an instance I of a database schema
� assigns to each R 2 � an instance of R, denoted by I(R). The active
domain of an instance I, denoted by adom(I), is the set of all data elements
from V that occur in I. For technical reasons, we exclude the empty
instance, i.e., one of the relations in I must be nonempty.1 This also
implies that adom(I) is nonempty.

For a natural number k, a k-ary query over a database schema � is a
computable function that maps each instance I of � to a k-ary relation
on adom(I). Let q

1

and q
2

be two k-ary queries, we write q
1

v q
2

if
q
1

(I) ✓ q
2

(I) for any instance I of �.
When the arity of the query is not of importance, we will simply speak

of queries instead of k-ary queries. We require queries to be generic [1].

1The technical reason is that we consider Boolean queries expressed by the non-
emptiness of a query expression. On the empty instance, however, every generic query
evaluates to the empty result. But then no Boolean nonemptiness query can ever return
true on the empty instance. In order to avoid including special cases in our theorems,
it is easier to exclude the empty instance.

13

14 Different ways of expressing boolean queries

A query q is generic if for any permutation f of the universe V , and any
instance I, we have q(f(I)) = f(q(I)).

Tests, Cylindrification, Complementation Let q
1

and q
2

be queries
over a common database schema. We define the query (q

1

if q
2

) as follows:

(q
1

if q
2

)(I) =

(
q
1

(I) if q
2

(I) 6= ;;
; otherwise.

Naturally, we say that a family F of queries over a common database
schema is closed under tests if for any two queries q

1

and q
2

in F , the
query (q

1

if q
2

) is also in F .
Cylindrification is an operation on relations that, like projection, corre-

sponds to existential quantification, but, unlike projection, does not reduce
the arity of the relation [28, 29, 43]. We introduce an abstraction of this
operation as follows. For any natural number k and query q, we define the
k-ary cylindrification of q, denoted by �k(q), as follows:

�k(q)(I) =

(
adom(I)k if q(I) 6= ;;
; otherwise.

Finally, for a k-ary query q, the complement of q, denoted by qc, is
defined by qc(I) = adom(I)k� q(I). Here, � is the set di↵erence operator.

2.1.1 Navigational graph query languages

In this thesis, we will often work with graph databases, by restricting the
database schema � to only binary relation names. Any instance I of �
can be considered as a graph, where the elements of the active domain are
considered as nodes, the pairs in the binary relations are directed edges,
and the relation names are edge labels. Instances of � are henceforth
referred to as “graphs over �”.

The most basic language we consider for expressing queries is the al-
gebra N

�

. The expressions of this algebra are built recursively from the
relation names in � the primitives ; and id, using the operators composi-
tion (e

1

� e
2

) and union (e
1

[e
2

). Semantically, each expression e 2 N
�

2.1 Preliminaries 15

denotes a query in the following way. Let G be a graph over �. Then

id(G) = {(m,m) | m 2 adom(G)};
R(G) = the edge relation G(R); (for R 2 �)

;(G) = ;;
e
1

� e
2

(G) = {(m,n) | 9p : (m, p) 2 e
1

(G) ^ (p, n) 2 e
2

(G)};
e
1

[e
2

(G) = e
1

(G) [e
2

(G).

Remark 2.1. The assumption of a basic language is a point of discussion.
In principle, there is no reason to use a basic language at all: just con-
sider each and every operation to be optional. For our investigation, we
have chosen for a basic language for the following reasons. First, it lends
structure to the investigation. Without the framework provided by a basic
language, our task would include a large number of ad-hoc cases to be
settled. Furthermore, the field of relation algebras identifies composition
and union as the natural counterparts for multiplication and addition of
binary relations. Union is a very mild operation that is computationally
simple. Without composition, you can hardly say you are investigating
binary relations. Adding the neutral elements (empty for union, identity
for composition) provides the mathematically natural structure of a semi-
ring.

The basic algebra N
�

can be extended by adding some of the following
features: the primitives diversity (di), and the full relation (all); and the
operators converse (e�1), intersection (e

1

\e
2

), set di↵erence (e
1

�e
2

), pro-
jections (⇡

1

(e) and ⇡
2

(e)), coprojections (⇡
1

(e) and ⇡
2

(e)), and transitive
closure (e+). We refer to the operators in the basic algebra N as basic
features; we refer to the extensions as nonbasic features. The semantics of

16 Different ways of expressing boolean queries

the extensions are as follows:

di(G) = {(m,n) | m,n 2 adom(G) ^m 6= n};
all(G) = {(m,n) | m,n 2 adom(G)};

e�1(G) = {(m,n) | (n,m) 2 e(G)};
e
1

\ e
2

(G) = e
1

(G) \ e
2

(G);

e
1

� e
2

(G) = e
1

(G)� e
2

(G);

⇡
1

(e)(G) = {(m,m) | m 2 adom(G) ^ 9n : (m,n) 2 e(G)};
⇡
2

(e)(G) = {(m,m) | m 2 adom(G) ^ 9n : (n,m) 2 e(G)};
⇡
1

(e)(G) = {(m,m) | m 2 adom(G) ^ ¬9n : (m,n) 2 e(G)};
⇡
2

(e)(G) = {(m,m) | m 2 adom(G) ^ ¬9n : (n,m) 2 e(G)};
e+(G) = the transitive closure of e(G).

All the above operators are well-established in so-called “navigational”
graph querying [34, 42, 21, 32, 7]. Composition is the analogue of the
natural join operator for binary relations and is the essential operator
for navigation along the edges of the graph. The set operators are self-
explanatory and well known from relational algebra. Converse serves as
a kind of renaming, allowing edges to be traversed backwards. Projection
allows for testing for the existence of certain nodes without having to move
to these nodes; the result is a subset of the identity relation. Coprojection
(also known as counterprojection) provides negative testing. Note that
coprojection in this thesis should not be confused with the well established
co-projection in category theory, algebraic topology, etc. The diversity
and full relations are, in a sense, the most extreme, as they allow to jump
to any other node, independent of the existence of edges in the graph.
The transitive closure operator plays the role of Kleene star for regular
expressions over graphs [2, 13]. However, note that the transitive closure
operator is not reflexive, while the Kleene star is reflexive. Although we
include transitive closure in our treatment, curiously, its presence has little
e↵ect for the questions considered in this work.

A fragment is any set of nonbasic features. We will often require that
fragments F have the following two conditions:

• F contains both projections or none of them.

• F contains both coprojections or none of them.

2.1 Preliminaries 17

We refer to these fragments as the (co)projection restricted fragments. In
our initial research, we only worked with (co)projection restricted frag-
ments. We, however, realized that these restrictions might have been to
strict. Therefore, we try to remove these restrictions where possible. If F
is a fragment, we denote by N

�

(F) the language obtained by adding the
features in F to N

�

. For example, N
�

(\) denotes the extension with inter-
section, and N

�

(\,⇡
1

,⇡
2

) denotes the extension with intersection and both
projections. Note that if we write projection without an index, we actually
mean that both projections are present. The same holds for coprojection.

Remark 2.2. We will omit the subscript � in N
�

(F) when the precise
database schema is not of importance.

Various interdependencies exist between the nonbasic features [21]:

all = di [id;

di = all� id;

e
1

\ e
2

= e
1

� (e
1

� e
2

);

⇡
1

(e) = (e � e�1) \ id = (e � all) \ id = ⇡
1

(⇡
1

(e)) = ⇡
2

(e�1);

⇡
2

(e) = (e�1 � e) \ id = (all � e) \ id = ⇡
2

(⇡
2

(e)) = ⇡
1

(e�1);

⇡
1

(e) = id� ⇡
1

(e);

⇡
2

(e) = id� ⇡
2

(e).

For example, by the third equation, when we add di↵erence, we get inter-
section for free. Hence, when we want to state that, say, intersection is
present in the language N (F), it is not su�cient to state that \ belongs to
F . To deal with this, we use the completion eF of a set of nonbasic features
F . Guided by the above equations, we define eF as the smallest superset
of F satisfying the following rules:

• if di 2 eF , then all 2 eF ;

• if all 2 eF and � 2 F , then di 2 eF ;

• if � 2 F , then \ 2 eF ;

• if \ 2 eF and id 2 eF and (�1 2 F or all 2 eF), then ⇡
1

2 eF and
⇡
2

2 eF ;

• if ⇡i 2 eF , then ⇡i 2 eF for i = 1, 2;

• if ⇡i 2 eF and ⇡
3�i 2 eF , then ⇡

3�i 2 eF for i = 1, 2;

18 Different ways of expressing boolean queries

• if ⇡i 2 eF and �1 2 F , then ⇡
3�i 2 eF for i = 1, 2;

• if � 2 F and ⇡i 2 eF , then ⇡i 2 eF for i = 1, 2.

For example, we have

^{id, all,�} = ^{id, di,�} = {id, di, all,\,�,⇡,⇡}.

It is now clear that the languages N (F) and N (eF) are equivalent in
that they can express precisely the same queries. Moreover, for any two
fragments F

1

and F
2

, call N (F
1

) subsumed by N (F
2

), denoted by N (F
1

)
N (F

2

), if every query in N (F
1

) is also expressible in N (F
2

).
It is known [21] that for every fixed database schema �, we have for

every two fragments F
1

and F
2

that

N (F
1

) N (F
2

) i↵ F
1

✓ eF
2

. (‡)

This holds for binary-relation queries. Hence the interdependencies are
complete for navigational binary-relation queries. To capture this notion,
we introduce primitivity. A feature f is primitive under binary-relation
queries if for every fragment F such that f 62 eF , N (f) 6 N (F). By (‡),
every feature is primitive under binary-relation queries. Obviously, we can
introduce such a primitivity notion for every family of Boolean queries
based on our fragments.

Remark 2.3. In the original result [21], all is not considered an opera-
tor. Furthermore, fragments never contained just a single projection or
coprojection. The result, however, can easily be generalized to include all
by observing that fragments without all are additive (see the Additivity
Lemma in Section 3.2), while fragments with all are not. Furthermore, the
restrictions for fragments regarding projection and coprojection can also
be removed by a brute-force argument.

2.1.2 Conjunctive queries

To introduce conjunctive queries (CQs) we switch over to another per-
spective for instances. Again, let V be some fixed infinite universe of data
elements V and let R be a relation name in � of arity n. An R-fact is
an expression of the form R(a

1

, . . . , an) where ai 2 V for i = 1, . . . , n.
An R-instance I is a finite set of R-facts. More generally, an instance
I of a database schema � is a union

S
R2� I(R), where I(R) denotes

2.2 Boolean query modalities 19

an R-instance. This definition for instances corresponds to the logic-
programming perspective [1]. Note that there is a one-to-one correspon-
dence between instances under the logic-programming perspective and the
perspective outlined in the beginning of Chapter 2.1. Indeed, a tuple t in
the relation I(R) can be seen as the R-fact R(t) and vice versa.

We formalize the notion of conjunctive queries as follows. A conjunctive
query is an expression of the form Q : H B where the head H is a
tuple of variables and the body B is a set of atoms over �. An atom is
an expression of the form R(v

1

, . . . , vn) where R 2 � and v
1

, . . . , vn are
variables. We denote the set of conjunctive queries over � with CQ

�

.
When the databases schema � is not of importance we will omit the �
subscript and write CQ instead. For a conjunctive query Q, HQ denotes
the head and BQ denotes the body of Q. We assume that our queries are
safe, i.e., the variables in the head are present somewhere in the body.

Semantically, for every instance I over �, Q(I) is defined as:

{f(HQ) | f is a homomorphism from Q into I}.

Here, a homomorphism f from Q into I is a function on the variables
in HQ and BQ to adom(I) such that f(BQ) ✓ I. Since our queries are
safe, and thus all the variables of HQ are present in BQ we also write that
f is a homomorphism from BQ into I. Interchangeably, we write that BQ

maps into I.

Remark 2.4. It is convenient to assume that variables are data elements
in V . Then, we can use the body of a conjunctive query as a database
instance. As a consequence, an R-atom can then be thought of as an
R-fact.

Remember that, for every two queries Q
1

and Q
2

, we write Q
1

v Q
2

if Q
1

(I) ✓ Q
2

(I) for every database instance I over �. When Q
1

and Q
2

are conjunctive queries, it is well know that Q
1

v Q
2

i↵ HQ1 2 Q
2

(BQ1).

2.2 Boolean query modalities

A Boolean query over a database schema � is a computable mapping from
instances of � to {true, false}. For any Boolean query q, define ¬q as its
negation, i.e., ¬q is true on an instance I i↵ q is false on I. Furthermore,
for any family of Boolean queries F , define ¬F as {¬q | q 2 F}.

As argued in the Introduction, Boolean queries can be naturally ex-
pressed in terms of the emptiness, or the nonemptiness, of an ordinary

20 Different ways of expressing boolean queries

query, or by the containment of the results of two queries. We call these
methods the emptiness, nonemptiness and the containment modality. Fur-
thermore, we refer to these modalities as our base modalities. Using these
modalities we can associate an array of Boolean query families to any fam-
ily of queries F on a common database schema �:

family of Boolean queries expressible in the form with

F=; q = ; q 2 F
F 6=; q 6= ; q 2 F
F✓ q

1

✓ q
2

q
1

, q
2

2 F

For F✓, it is understood that only two queries of the same arity can form
a containment Boolean query.

Remark 2.5. To simplify notation, we will introduce some extra notation
for navigational query languages. For any fragment F of nonbasic features,
we define F=;

�

, F 6=;
�

and F✓
�

to be N
�

(F)=;, N
�

(F) 6=; and N
�

(F)✓ respec-
tively. Again, we will omit the � subscript if the database schema is not
of importance.

Obviously, these are by no means the only way to express Boolean
queries from a family of queries F . We could, for example, allow Boolean
connectives within a family of Boolean queries. Indeed, we can consider
Boolean queries of the form q

1

6= ; ^ . . . ^ qn 6= ; where qi 6= ; 2 F 6=; for
i = 1, . . . , n. Furthermore, we could even combine two di↵erent families
of Boolean queries by using Boolean connectives. For example, we can
consider Boolean queries of the form q

1

6= ; ^ q
2

✓ q
3

where q
1

6= ; 2 F 6=;

and q
2

✓ q
3

2 F✓.
Our goal is to devise a framework along which we can work to investi-

gate Boolean queries. All our results in this thesis fit in this framework.
The framework consists of di↵erent themes.

In the first theme, we fix the query language and compare this lan-
guage under the di↵erent base modalities. For example, we can compare
conjunctive queries (CQ) under the emptiness and nonemptiness modal-
ity. Notice that this surmounts to checking whether CQ is closed under
negation. We devote Chapter 3 to this theme.

In the second theme, we fix one of the base modalities, and vary the
query language. This is particularly interesting when a query language
has a lot of di↵erent operators that can be included or be left out. For
example, in this theme we could compare the navigational query fragments

2.2 Boolean query modalities 21

{di} and {⇡} under the containment modality. We devote Chapter 4 to
this theme.

Remark 2.6. Note that F=; is the negation of F 6=; for any language F .
Similarly, we can introduce the negation of F✓, denoted by F 6✓, which
contains Boolean queries expressible in the form q

1

6✓ q
2

where q
1

, q
2

are
expressions in F . We do not consider F 6✓ as a base modality along with
nonemptiness, emptiness and containment. Hence, we do not consider
the noncontainment modality during themes one and two. The reason for
this is that we want to consider natural and practical modalities as build-
ing blocks for our study. However, we will consider the noncontainment
modality as a “derived” modality at a later stage in theme four.

In the third theme, we generalize the first and second theme so that
we compare di↵erent query languages under di↵erent modalities. For ex-
ample, we could compare the navigational query fragment {di} under the
nonemptiness modality to {�1} under emptiness. We devote Chapter 5 to
this theme.

In the fourth theme, we close a Boolean query family B under certain
Boolean connectives and compare the obtained language to B. For exam-
ple, we can close the family CQ 6=; under disjunction and compare this to
CQ 6=;. We devote Chapter 6 to this theme.

Remark 2.7. In the Introduction, we already mentioned that navigational
query languages provide an ideal setting for themes two and three. These
are obviously not the only languages that fit this setting. For example,
Codd his famous Relational Algebra [16] is another a suitable query lan-
guage for such a study. The reason why we choose to focus on the navi-
gational query languages is because our work initially started as a contin-
uation of a larger project on the Boolean expressive power of navigational
query languages [21, 19, 22, 41]. Nevertheless, graph databases have been
an important subject of study in theory and in practice [8, 44, 10, 6].

3
Comparing di↵erent base
modalities for fixed query

languages

The goal of this chapter is to compare the di↵erent base modalities for
fixed languages. Formally, for a particular query language F this amounts
to making six comparisons, but we can immediately get one of them out
of the way. Indeed, since A ✓ B if and only if ¬A ✓ ¬B, we only have to
investigate whether F=; ✓ F 6=;; the other direction F 6=; ✓ F=; then di-
rectly follows. This amounts to investigating when the emptiness modality
is closed under negation. Formally, a family B of Boolean queries is called
closed under negation if ¬B = B.

We first identify query features that enable the expression of one base
modality in terms of another one. We also identify general properties
that reflect the absence of these query features, notably, the properties of
monotonicity and additivity. We then observe how these properties indeed
prevent going from one modality to another.

The announced query features are summarized in the following propo-
sition. We leave out the comparison F✓ ✓ F 6=;, since we know of no other
general way of going from containment to nonemptiness than via emptiness
F✓ ✓ F=; ✓ F 6=;. This leaves four comparisons:

Proposition 3.1. Let F be a family of queries. We have:

1. F✓ ✓ F=; if F is closed under set di↵erence (�).

23

24 Comparing different modalities for fixed languages

2. F=; ✓ F 6=; if there exists k such that F is closed under

• k-ary complementation, and

• k-ary cylindrification.

3. F 6=; ✓ F✓ if

• F contains a never-empty query (one that returns nonempty on
every instance), and

• F is closed under tests, or F is closed under k-ary cylindrifica-
tion for some k.

4. F=; ✓ F✓ if F contains the empty query which always outputs the
empty relation.

Proof. In what follows, the proofs are labeled according to the numbers in
the proposition.

1. The query q
1

✓ q
2

is expressed by q
1

� q
2

= ;.

2. The query q = ; is expressed by �k(q)c 6= ;.

3. Let p be a never-empty query. Then q 6= ; is expressed by p ✓ (p if q)
as well as by �k(p) ✓ �k(q).

4. The query q = ; is expressed by q ✓ empty.

Obviously, the above proposition only provides su�cient conditions
under which we can go from one modality to another. Since the conditions
hold for any general family F , we cannot expect the literal converses of
these statements to hold in general. Indeed, one could always concoct
an artificial family F that is not closed under di↵erence but for which
F✓ ✓ F=;. This is illustrated by the following proposition.

Proposition 3.2. There exists a language F that is not closed under dif-
ference such that F✓ ✓ F=;.

Proof. Define F as the set of queries

if C then e
1

else e
2

Comparing different modalities for fixed languages 25

with C finite Boolean combinations of expressions hi ✓ hj and e
1

, e
2

, hi, hj
in {;, R, S,R [S}.

This set is not closed under di↵erence. Indeed, R 2 F and S 2 F , but
R� S is not in F .

We now show that F✓ ✓ F=;. To this end, consider the Boolean query

if C
1

then e
1

else e
2

✓ if C
2

then e
3

else e
4

in F✓. This is equivalent to the emptiness of

if C
1

^ C
2

^ e
1

✓ e
3

then ;
^ if C

1

^ C
2

^ e
1

6✓ e
3

then R [S

^ if C
1

^ ¬C
2

^ e
1

✓ e
4

then ;
^ if C

1

^ ¬C
2

^ e
1

6✓ e
4

then R [S

^ if ¬C
1

^ C
2

^ e
2

✓ e
3

then ;
^ if ¬C

1

^ C
2

^ e
2

6✓ e
3

then R [S

^ if ¬C
1

^ ¬C
2

^ e
2

✓ e
4

then ;
^ if ¬C

1

^ ¬C
2

^ e
2

6✓ e
4

then R [S.

This, in turn, is equivalent to the emptiness of

if (C
1

^ C
2

^ e
1

✓ e
3

) _ (C
1

^ ¬C
2

^ e
1

✓ e
4

) _ (¬C
1

^ C
2

^ e
2

✓ e
3

)

_ (¬C
1

^ ¬C
2

^ e
3

✓ e
4

) then ; else R [S,

which proves the proposition since this query is in F .

One approach to still find a kind of converse to the above su�cient
conditions, is to come up with general semantic properties of the queries
in a family that would basically prevent the su�cient conditions to hold.
We can then proceed to show that the di↵erent modalities become incom-
parable under these properties.

More concretely, we can observe two main themes in the su�cient con-
ditions: negation, in the forms of set di↵erence and complementation, and
global access to the database, in the forms of cylindrification and tests.
A well-known semantic property of queries that runs counter to negation
is monotonicity. For a property that prevents global access, we propose
additivity.

26 Comparing different modalities for fixed languages

Monotonicity A query q is monotone if I ✓ J implies q(I) ✓ q(J),
where I ✓ J means that I(R) ✓ J(R) for each relation name R. We have
seen that closure under negation, which typically destroys monotonicity,
allows the emptiness modality to be closed under negation, as well as the
containment modality to be subsumed by emptiness. We next show that
both fail under monotonicity. The first failure is the strongest:

Lemma 3.3. Let MON denote the family of monotone queries. The
only Boolean queries in MON=; \MON 6=; are the constant true and false
queries.

Proof. Suppose for the sake of contradiction that a nonconstant Boolean
query q = ; 2 MON=; is also in MON6=;. Then, there exists q0 2 MON 6=;

such that for any instance I, q(I) = ; i↵ q0(I) 6= ;. Since q is nonconstant,
there exist two instances I and J over � such that q(I) 6= ; and q(J) = ;.
Then, q0(I) = ; and q0(J) 6= ;. Thus since q and q0 are both in MON, we
have ; 6= q(I) ✓ q(I[J) and ; 6= q0(J) ✓ q0(I[J). Therefore, q(I[J) 6= ;
and q0(I [J) 6= ; which is clearly a contradiction.

As a corollary, we obtain:

Proposition 3.4. Let F be a family of monotone queries. If F=; contains
a non-constant query, then F=; 6✓ F 6=;.

This also implies that for every monotone family of queries F that
contains the empty query, and for MON in particular, that F✓ 6✓ F 6=;

since A=; ✓ A✓ for every family of queries A that contains the empty
query.

We next turn to the failure of going from containment to emptiness.
Whenever q is monotone, the Boolean query q = ; is antimonotone (mean-
ing that if q(I) = false and I ✓ J , also q(J) = false). However, a Boolean
containment query is typically not antimonone. The following straightfor-
ward result gives two examples.

Proposition 3.5. Let F be a family of monotone queries over a database
schema �.

1. If � contains two distinct relation names R and T of the same arity,
and the two queries R and T belong to F , then F✓ 6✓ F=;. This is
shown by the Boolean query R ✓ T .

2. If R is a binary relation name in � and the two queries R �R and R
belong to F , then F✓ 6✓ F=;.

Comparing different modalities for fixed languages 27

Proof. In what follows, the proofs are labeled according to the numbers in
the proposition.

1. The query R ✓ T is not antimonotone.

2. The query “R is transitive”, or R �R ✓ R, is not antimonotone.

Additivity A query q is additive if for every two instances I and J such
that adom(I) and adom(J) are disjoint, q(I [J) = q(I) [q(J). Addi-
tive queries (also known as “queries distributing over components”) have
been recently singled out as a family of queries that are well amenable to
distributed computation [4]. Indeed, additivity means that a query can
be separately computed on each connected component, after which all the
subresults can simply be combined by union to obtain the final result.

Both cylindrification and tests run counter to additivity. For exam-
ple, just computing adom(I) ⇥ adom(I) is not additive. Also tests of the
form (q

1

if q
2

) are not additive, since testing if q
2

is nonempty takes part
in the entire instance, across connected components. We have seen that
cylindrification (together with complementation) can be used to close the
emptiness modality under negation; moreover, cylindrification or tests suf-
fice to move from nonemptiness to containment. We next show that this
all fails under additivity.

The following lemma is of a similar nature as Lemma 3.3.

Lemma 3.6. Let ADD denote the family of additive queries. The only
Boolean queries in ADD 6=;\ADD✓ are the constant true and false queries.

Proof. Suppose for the sake of contradiction, that a nonconstant Boolean
query q 6= ; 2 ADD 6=; is also in ADD✓. Then, there exist two k-ary queries
q
1

and q
2

in ADD such that for any instance I we have q
1

(I) ✓ q
2

(I) i↵
q(I) 6= ;. Since q is nonconstant, there exist two instances I and J such
that q(I) 6= ; and q(J) = ;. Hence q

1

(I) ✓ q
2

(I) and q
1

(J) * q
2

(J).
We may assume that adom(I) and adom(J) are disjoint since queries are
defined to be generic. Therefore, since q is additive, we have q(I [J) =
q(I) [q(J) 6= ;, whence we have q

1

(I [J) ✓ q
2

(I [J). Thus we have
q
1

(I) [q
1

(J) ✓ q
2

(I) [q
2

(J). However, this implies that q
1

(J) ✓ q
2

(J)
since q

1

(J) ✓ adom(J)k and q
2

(I) ✓ adom(I)k, which is a contradiction.

28 Comparing different modalities for fixed languages

CQ✓

CQ=;

CQ 6=;

UCQ✓

UCQ=;

UCQ 6=;

Figure 3.1: These diagrams visualize Theorem 3.9. The arrows in the
diagrams depict the subsumption relation of Boolean query families.

As a corollary, we obtain:

Proposition 3.7. Let F be a family of additive queries. We have

1. If F✓ contains a non-constant query, then F✓ 6✓ F 6=;.

2. If F 6=; contains a non-constant query, then F 6=; 6✓ F✓ and F=; 6✓
F 6=;.

Remark 3.8. Additivity and monotonicity are orthogonal properties. For
example, the additive queries are closed under set di↵erence, i.e., if q

1

and
q
2

are additive, then q
1

�q
2

is additive. Thus, additive queries may involve
negation and need not be monotone. On the other hand, computing the
Cartesian product of two relations is monotone but not additive.

In the remainder of this section, we will continue our investigation on
(unions) of conjunctive queries and navigational graph query languages in
Section 3.1 and Section 3.2 respectively.

3.1 Conjunctive queries

In this brief section, we compare the three base modalities for the popu-
lar languages CQ (conjunctive queries) and UCQ (unions of conjunctive
queries). The results are summarized in Theorem 3.9 and displayed in
Figure 3.1.

Theorem 3.9. Let F be CQ or UCQ. We have:

1. F✓ 6✓ F=; and F=; 6✓ F✓.

3.1 Conjunctive queries 29

2. F=; 6✓ F 6=;.

3. F 6=; ✓ F✓.

4. F✓ 6✓ F 6=;.

Proof. In what follows, the proofs are labeled according to the numbers in
the theorem.

1. Consider the instance Z where every relation R contains exactly
one tuple (1, 1, . . . , 1) of the appropriate arity. The result of every
conjunctive query Q on Z contains exactly one tuple: (1, 1, . . . , 1).
Thus, every query in F✓ returns true on Z, whereas every query in
F=; returns false.

2. This case directly follows from Proposition 3.4.

3. This case directly follows from Proposition 3.1(3). Indeed, a CQ with
an empty body is never empty. CQs and UCQs are also closed under
tests. Indeed, let q

1

and q
2

be UCQs. Then (q
1

if q
2

) is expressed by
the UCQ consisting of the following rules. Take a rule r of q

1

and a
rule s of q

2

. Produce the rule obtained from r by adding to the body
a variable-renamed copy of the body of s. If q

1

has n rules and q
2

has m rules, we obtain nm rules. In particular, if q
1

and q
2

are CQs,
we obtain a single rule so again a CQ.

4. Let R be a relation name in the database schema, and consider the
two queries

q
1

(x, y) R(x, , . . . ,), R(y, , . . . ,);

q
2

(x, x) R(x, , . . . ,).

Here, the underscores stand for fresh nondistinguished variables (Pro-
log notation). Then q

1

✓ q
2

returns true on an instance I if and only
if the first column of R(I) holds at most one distinct element. This
Boolean query is not monotone, and thus not in F 6=;.

Remark 3.10. In the proof of Theorem 3.9(4), we make convenient use
of repeated variables in the head. For the version of CQs where this is

30 Comparing different modalities for fixed languages

disallowed, the result can still be proven by using

q
1

(x
1

, . . . , xk) R(x
1

, . . . , xk);

q
2

(x
1

, . . . , xk) R(x
1

, . . . , xk), R(xk, , . . . ,).

This does not work if R is unary; if there are two di↵erent relation names
R and T , we can use

q
1

(x) R(x, , . . . ,);

q
2

(x) T (x, , . . . ,).

These arguments only fail when the database schema consists of just one
single unary relation name, and we cannot use repeated variables in the
head. In this extreme case, both CQ✓ and CQ 6=; consist only of the
constant true query, so the subsumption becomes trivial.

3.2 Navigational graph query languages

In this section, we compare the three base modalities for the navigational
graph query languages outlined in Section 2.1.1.

The results are summarized in the following theorem. This theorem
can be seen as a version of our earlier Proposition 3.1, specialized to navi-
gational graph query language fragments. However, now, every statement
is a characterization, showing that the su�cient condition is also neces-
sary for subsumption to hold. Particularly satisfying is that, with a few
exceptions, almost the entire theorem can be proven following the simple
general results in the start of Chapter 3, as we will demonstrate below.

Theorem 3.11. Let F be a fragment of nonbasic features. We have:

1. F✓ ✓ F=; if and only if � 2 F .

2. F=; ✓ F 6=; if and only if all 2 eF and (� 2 F or ⇡
1

2 eF or ⇡
2

2 eF).

3. F 6=; ✓ F✓ if and only if all 2 eF .

4. F✓ ✓ F 6=; if and only if all 2 eF and � 2 F .

Notice that Theorem 3.11 no longer contains an adapted version for
Proposition 3.1(4). This is because the empty query is in N (F) for every
fragment F by definition, whence F=; ✓ F✓ always holds. Instead, we now

3.2 Navigational graph query languages 31

do provide in item 4 an explicit characterization for when the subsumption
from containment to nonemptiness holds.

In every part of the above theorem, the if-direction can be seen by
showing that N (F) fulfills the conditions of Proposition 3.1.

1. This follows immediately from Proposition 3.1(1).

2. When set di↵erence is present, the binary complementation of q is
expressible by all� q. Also the binary cylindrification of q is express-
ible by all � q � all. Hence, Proposition 3.1(2) readily applies with
k = 2.

When set di↵erence is not present, we have coprojection. We can
now apply Proposition 3.1(2) with k = 1. We simulate unary rela-
tions by subsets of the identity relation id. In particular, the unary
cylindrification of q is expressed by ⇡

1

(all � q) and ⇡
2

(q � all), and
unary complement is provided by coprojection.

3. We have already seen how binary cylindrification is expressible us-
ing all. Furthermore, all also provides a never-empty query. Hence,
Proposition 3.1(3) readily applies.

4. We have F✓ ✓ F=; ✓ F 6=;.

To prove the only-if directions of the theorem, we will exhibit inex-
pressibility results.

Inexpressibility results For the first part of Theorem 3.11, it is suf-
ficient to show that F✓ is not subsumed by F=; for every fragment F
without set di↵erence. Thereto, we introduce the fragment NoDi↵ which
is defined as {id, di,�1,\,⇡,+}. The completion of NoDi↵ is the maximal
fragment without set di↵erence. The following lemma establishes Theo-
rem 3.11(1) by exhibiting, for every fragment F , a Boolean query in F✓

but not in NoDi↵=;.

Lemma 3.12. Let R be a relation schema. Then the Boolean query “R is
transitive”, formally, R �R ✓ R, is neither in NoDi↵=; nor in NoDi↵ 6=;.

Proof. Over the single relation name R, consider the complete directed
graph on three nodes K

3

, and a graph B in the form of a bow tie, i.e.,
two K

3

copies with one shared node. (Both K
3

and B are displayed in
Figure 3.2.) There is a self-loop at every node. It is known [21] that K

3

32 Comparing different modalities for fixed languages

(K
3

)

(B)

Figure 3.2: K
3

and bow tie graphs.

and B are indistinguishable by Boolean queries in NoDi↵ 6=; [19, Proposi-
tion 5.6(1)]. This implies that both graphs are also indistinguishable by
Boolean queries in NoDi↵=;. However, K

3

is transitive while B is not.

The only-if directions of the remaining parts of Theorem 3.11 all revolve
around the fragment NoAll = {id,�1,�,+}, whose completion is the largest
fragment without the full relation all. This fragment lacks the only two
features (di and all) that allow to jump from one connected component to
another. Hence we obtain the following:

Additivity Lemma. Every binary-relation query in N (NoAll) is addi-
tive.

Proof. Let e be an expression inN (NoAll), and letG andH be graphs such
that adom(G)\adom(H) = ;. We must show that e(G[H) = e(G)[e(H).
We proceed by structural induction on e. The case where e is a relation
name is trivial and the case where e is id is clear.

3.2 Navigational graph query languages 33

If e is of the form e�1

1

, then

e�1

1

(G [H)

= {(y, x) 2 adom(G [H)2 | (x, y) 2 e
1

(G [H)}
⇤
= {(y, x) 2 adom(G [H)2 | (x, y) 2 e

1

(G) [e
1

(H)}
= {(y, x) 2 adom(G [H)2 | (x, y) 2 e

1

(G)}
[{(y, x) 2 adom(G [H)2 | (x, y) 2 e

1

(H))}
⇤⇤
= {(y, x) 2 adom(G)2 | (x, y) 2 e

1

(G)}
[{(y, x) 2 adom(H)2 | (x, y) 2 e

1

(H))}
= e�1

1

(G) [e�1

1

(H).

The equality marked with a single * follows from the induction hypothesis
(IH). Furthermore, the equality marked with ** holds because e

1

(G) ✓
adom(G)2, e

1

(H) ✓ adom(H)2, and adom(G) \ adom(H) = ;.
If e = e

1

[e
2

, then

e
1

[e
2

(G [H) = e
1

(G [H) [e
2

(G [H)
⇤
= e

1

(G) [e
1

(H) [e
2

(G) [e
2

(H)

= (e
1

[e
2

)(G) [(e
1

[e
2

)(H).

The equality marked with a * follows from the IH.
If e = e

1

� e
2

, then

(x, y) 2 e
1

� e
2

(G [H)

i↵ 9z : (x, z) 2 e
1

(G [H) ^ (z, y) 2 e
2

(G [H)
⇤
i↵ 9z : (x, z) 2 e

1

(G) [e
1

(H)

^ (z, y) 2 e
2

(G) [e
2

(H)

i↵ 9z : ((x, z) 2 e
1

(G) _ (x, z) 2 e
1

(H))

^ ((z, y) 2 e
2

(G) _ (z, y) 2 e
2

(H))
⇤⇤
i↵ 9z : ((x, z) 2 e

1

(G) ^ (z, y) 2 e
2

(G))

_ ((x, z) 2 e
1

(H) ^ (z, y) 2 e
2

(H))

i↵ (x, y) 2 e
1

� e
2

(G) _ (x, y) 2 e
1

� e
2

(H).

The equivalence marked with a single * follows from the IH. Further-
more, the equivalence marked with ** holds because e

1

(G) ✓ adom(G)2,

34 Comparing different modalities for fixed languages

e
1

(H) ✓ adom(H)2, and adom(G) \ adom(H) = ;. Indeed, because of
this observation we can drop the cases (x, z) 2 e

1

(G) ^ (z, y) 2 e
2

(H) and
(x, z) 2 e

1

(H) ^ (z, y) 2 e
2

(G).
If e = e

1

� e
2

, then

e
1

� e
2

(G [H) = e
1

(G [H)� e
2

(G [H)
⇤
= (e

1

(G) [e
1

(H))� (e
2

(G) [e
2

(H))
⇤⇤
= (e

1

(G)� e
2

(G)) [(e
1

(H)� e
2

(H))

= (e
1

� e
2

)(G) [(e
1

� e
2

)(H).

The equivalence marked with a single * follows from the IH. Furthermore,
the equivalence marked with ** holds because e

1

(G) ✓ adom(G)2, e
1

(H) ✓
adom(H)2, and adom(G) \ adom(H) = ;.

If e = e+
1

then e+
1

(G [H) = (e
1

(G) [e
1

(H))+ by induction. Now
since adom(G) \ adom(H) = ; we also have that (e

1

(G) [e
1

(H))+ =
e+
1

(G) [e+
1

(H).

The Additivity lemma allows an easy proof for Theorems 3.11(2) and
3.11(3), as we will next demonstrate. Furthermore, several other results
will hinge upon the Additivity Lemma.

Remark 3.13. The Additivity Lemma also follows from the additivity of
connected stratified Datalog¬ [5].

For the second part of Theorem 3.11, we must prove that F=; is not
subsumed by F 6=; for every fragment F without all, as well as any fragment
having neither di↵erence nor coprojection. The latter case is clear. Indeed,
di↵erence and coprojection are the only two nonmonotone operators. Thus
N (F) is monotone, whence Proposition 3.4 proves the result.

For a fragment F without all but possibly with di↵erence or coprojec-
tion, we have that N (F) is additive. Hence, Proposition 3.7 establishes
both the second and third parts of Theorem 3.11 when all 62 F .

Finally, for the fourth part of Theorem 3.11, we must prove that F✓ is
not subsumed by F 6=; for every fragment F without all or without set dif-
ference. The case without set di↵erence already follows from Lemma 3.12.
The case without all already follows from Theorem 3.11(2).

Remark on regular path queries The fragment {+} corresponds to a
well known family of graph queries called regular path queries (RPQ) [17].
Thus, Theorem 3.11 directly gives us the following corollary.

3.2 Navigational graph query languages 35

Corollary 3.14. Let RPQ be the family of regular path queries. We have:

1. RPQ=; 6✓ RPQ 6=;;

2. RPQ 6=; 6✓ RPQ✓;

3. RPQ✓ 6✓ RPQ=;;

4. RPQ✓ 6✓ RPQ 6=;.

4
Comparing di↵erent query
languages under fixed base

modalities

The goal of this chapter is to compare di↵erent query languages under the
same base modality. Formally, for particular sets C of query languages, we
want to answer the following questions:

1. F 6=;
1

?

✓ F 6=;
2

2. F=;
1

?

✓ F=;
2

3. F✓
1

?

✓ F✓
2

for every F
1

and F
2

in C such that F
1

6= F
2

.
As mentioned in Section 2.2, these questions are particularly interesting

when a query language has a lot of di↵erent operators that can be included
or be left out. The navigational graph query languages introduced in
Section 2.1.1 are of this nature. In the remainder of this chapter, we will
focus on these navigational graph query languages.

First, we look at F 6=;
1

?

✓ F 6=;
2

. This question has already been answered
for (co)projection restricted fragments [21, 22]. Before we state this result,
we first need the following definition.

37

38 Comparing different languages under fixed modalities

For every fragment F , define bF as:

• The set obtained from F where we add ⇡ and remove �1, if �1 2 eF ,
\ 62 eF and + 62 eF ;

• The set F otherwise, i.e., if �1 62 eF , \ 2 eF or + 2 eF .

The answer to question one can then be summarized as follows.

Theorem 4.1 ([21, 19, 22, 41]). Let F
1

and F
2

be (co)projection restricted
fragments. If � contains at least two edge labels, then:

F 6=;
1�
✓ F 6=;

2�
i↵ F

1

✓ fF
2

or cF
1

✓ fF
2

.

If � contains only one edge label, then F 6=;
1�
✓ F 6=;

2�
if one of the following

conditions hold:

1. F
1

✓ fF
2

;

2. cF
1

✓ fF
2

;

3. + 2 F
1

, + 62 F
2

, F
1

✓ ^{⇡, di,+} and F
1

� {+} ✓ fF
2

;

Remark 4.2. In the original results [21, 19, 22, 41], all is not a considered
operator. However, Theorem 4.1 can be generalized to include all by using
the same reasoning as in the proof of Theorem 6.3.

Next, we look at F=;
1

?

✓ F=;
2

. This question can easily be reduced to
question one. Indeed, this readily follows from the fact that q 2 F 6=; i↵
¬q 2 F=;. We thus have the following corollary.

Corollary 4.3. Let F
1

and F
2

be fragments. Then, F=;
1

✓ F=;
2

i↵ F 6=;
1

✓
F 6=;
2

.

In the remainder of this chapter we are going devote our attention to

F✓
1

?

✓ F✓
2

. The result can be summarized as follows.

Theorem 4.4. Let F
1

and F
2

be fragments. Then, F✓
1

✓ F✓
2

i↵ F
1

✓ fF
2

.

Note that the fragments in Theorem 4.4 are not restricted, i.e., we also
have results for fragments that contain one of the projections or one of the
coprojections. By Theorem 4.4, subsumption among fragments under the
containment modality behaves the same as subsumption for path queries.
This is not obvious since we have already seen that under nonemptiness
subsumption behaves very di↵erently (cfr. Theorem 4.1).

4.1 Navigational graph query languages under containments 39

4.1 Navigational graph query languages under
the containment modality

In this section, we will investigate the expressive power of the various nav-
igational features under the containment modality. Instead of working
with just single containments, we work with the more general finite con-
junctions of containments. For every fragment F , the family of Boolean
queries expressible by finite conjunctions of containment statements using
expressions from N (F) is denoted by F^✓.

Our main result is the following:

Theorem 4.5. For every two fragments F
1

and F
2

, we have F^✓
1

✓ F^✓
2

if

and only if F
1

✓ fF
2

. Furthermore, every separation can already be obtained
with just a single containment.

Theorem 4.4 is a direct corollary since all separations can already be
obtained with just a single containment.

We call a nonbasic feature f primitive (under conjunctions of contain-
ments) if for every fragment F such that f /2 eF , we have {f}^✓ 6✓ F^✓. In
other words, just the feature, combined with the basic features, is enough
to express some Boolean query that is not expressible without using the
feature. We can then reformulate the above theorem as saying that ev-
ery nonbasic feature is primitive. Next, we devote one section to every
nonbasic feature.

4.1.1 Projection

We will first focus on the primitivity of the first projection. Up to comple-
tion, there are three maximal fragments lacking ⇡

1

: {�,⇡
2

,+}, {di,⇡
2

,+},
and {di,�1,+}.

Let us first deal with {�,⇡
2

,+}. We show:

Proposition 4.6. Let R be a relation name. The Boolean query ⇡
1

(R2) �
R ✓ R � ⇡

1

(R) is not in {�,⇡
2

,+}^✓.

To prove this proposition it su�ces to reason only on the two graphs
G

1

(top) and G
2

(bottom) shown in Figure 4.1.

Lemma 4.7. Let e be a union-free expression in N (�,⇡
2

). Then e is
equivalent to ;, id, R, R2, ⇡

2

(R), ⇡
2

(R), ⇡
2

(R2), ⇡
2

(R2), ⇡
2

(R)�R, ⇡
2

(R)�
R, ⇡

2

(R2) � ⇡
2

(R), ⇡
2

(⇡
2

(R2) � ⇡
2

(R)) on the two graphs G
1

and G
2

.

40 Comparing different languages under fixed modalities

Figure 4.1: The graphs used to prove Proposition 4.6.

Proof. Table 4.1, 4.2 and 4.3 together show that ;, id, R, R2, ⇡
2

(R), ⇡
2

(R),
⇡
2

(R2), ⇡
2

(R2), ⇡
2

(R) �R, ⇡
2

(R) �R, ⇡
2

(R2) � ⇡
2

(R), ⇡
2

(⇡
2

(R2) � ⇡
2

(R))
is closed under composition, di↵erence and the second projection on the
two graphs G

1

and G
2

. This directly proves our lemma.

Observe that conjunctions of containments reduce to emptiness state-
ments when di↵erence is present.

Proposition 4.8. Let F be a fragment with set di↵erence. Then every
Boolean query in F^✓ can be expressed as the emptiness of an expression
in N (F).

We are now ready to prove Proposition 4.6.

Proof of Proposition 4.6. Let us denote the query ⇡
1

(R2) �R ✓ R � ⇡
1

(R)
by Q. Suppose for the sake of contradiction that Q is expressible in {�,
⇡
2

,+}^✓. Hence, by Proposition 4.8 there exists e = ; in {�,⇡
2

,+}=; that
expresses Q. In the remainder of the proof, we will only work with G

1

and
G

2

, whence we can replace + with unions of compositions. By Lemma 4.7
we may assume that e is a union of expressions in the list: ;, id, R,
R2, ⇡

2

(R), ⇡
2

(R), ⇡
2

(R2), ⇡
2

(R2), ⇡
2

(R) � R, ⇡
2

(R) � R, ⇡
2

(R2) � ⇡
2

(R),
⇡
2

(⇡
2

(R2) � ⇡
2

(R)). All expressions in this set are nonempty on G
1

and
G

2

simultaneously except ;. Hence, e = ; cannot distinguish G
1

and G
2

.
This, however, contradicts that Q(G

1

) is false and Q(G
2

) is true.

Next we turn our attention to deal with the fragment {di,�1,+}. We
show the following proposition.

Proposition 4.9. Let R be a relation name. The Boolean query R �
⇡
1

(R) ✓ id is not in {di,�1,+}^✓.

4.1 Navigational graph query languages under containments 41

T
ab

le
4.
1:

T
h
e
li
st

of
ex
p
re
ss
io
n
s
;,

id
,
R
,
R

2

,
⇡
2

(R
),
⇡
2

(R
),
⇡
2

(R
2

),
⇡
2

(R
2

),
⇡
2

(R
)�

R
,
⇡
2

(R
)�

R
,
⇡
2

(R
2

)�
⇡
2

(R
),

⇡
2

(⇡
2

(R
2

)
�
⇡
2

(R
))

is
cl
os
ed

u
n
d
er

co
m
p
os
it
io
n
u
p
to

eq
u
iv
al
en

ce
on

th
e
gr
ap

h
s
in

F
ig
u
re

4.
1.

�
R

R
2

⇡
2
(R

)
⇡
2
(R

)
⇡
2
(R

2
)

R
R

2
;

R
;

⇡
2
(R

)
�
R

R
2

;
;

R
2

;
R

2

⇡
2
(R

)
⇡
2
(R

)
�
R

;
⇡
2
(R

)
;

⇡
2
(R

2
)

⇡
2
(R

)
⇡
2
(R

)
�
R

R
2

;
⇡
2
(R

)
;

⇡
2
(R

2
)

;
;

⇡
2
(R

2
)

;
⇡
2
(R

2
)

⇡
2
(R

2
)

R
R

2
⇡
2
(R

2
)
�
⇡
2
(R

)
⇡
2
(R

)
;

⇡
2
(R

)
�
R

;
;

⇡
2
(R

)
�
R

;
⇡
2
(R

)
�
R

⇡
2
(R

)
�
R

R
2

;
⇡
2
(R

)
�
R

;
;

⇡
2
(R

2
)
�
⇡
2
(R

)
⇡
2
(R

)
�
R

;
⇡
2
(R

2
)
�
⇡
2
(R

)
;

;
⇡
2
(⇡

2
(R

2
)
�
⇡
2
(R

))
⇡
2
(R

)
�
R

R
2

⇡
2
(R

2
)

⇡
2
(R

)
⇡
2
(R

2
)

�
⇡
2
(R

2
)

⇡
2
(R

)
�
R

⇡
2
(R

)
�
R

⇡
2
(R

2
)
�
⇡
2
(R

)
⇡
2
(⇡

2
(R

2
)
�
⇡
2
(R

))

R
⇡
2
(R

)
�
R

R
2

;
⇡
2
(R

)
�
R

⇡
2
(R

)
�
R

R
2

;
;

;
;

R
2

⇡
2
(R

)
⇡
2
(R

)
�
⇡
2
(R

)
⇡
2
(R

)
�
R

;
⇡
2
(R

2
)
�
⇡
2
(R

)
⇡
2
(R

2
)

⇡
2
(R

)
⇡
2
(R

)
;

⇡
2
(R

)
�
R

;
⇡
2
(R

)

⇡
2
(R

2
)

;
;

;
;

⇡
2
(R

2
)

⇡
2
(R

2
)

⇡
2
(R

2
)

⇡
2
(R

)
�
R

⇡
2
(R

)
�
R

⇡
2
(R

2
)
�
⇡
2
(R

)
⇡
2
(R

)

⇡
2
(R

)
�
R

;
;

;
;

⇡
2
(R

)
�
R

⇡
2
(R

)
�
R

⇡
2
(R

)
�
R

R
2

;
⇡
2
(R

)
�
R

;
⇡
2
(R

2
)
�
⇡
2
(R

)
⇡
2
(R

2
)
�
⇡
2
(R

)
⇡
2
(R

)
�
R

;
⇡
2
(R

2
)
�
⇡
2
(R

)
;

⇡
2
(⇡

2
(R

2
)
�
⇡
2
(R

))
⇡
2
(R

)
;

⇡
2
(R

)
�
R

;
⇡
2
(⇡

2
(R

2
)
�
⇡
2
(R

))

42 Comparing different languages under fixed modalities

T
ab

le
4.2:

T
h
e
list

of
exp

ression
s
;,

id,
R
,
R

2,
⇡
2 (R

),
⇡
2 (R

),
⇡
2 (R

2),
⇡
2 (R

2),
⇡
2 (R

)�
R
,
⇡
2 (R

)�
R
,
⇡
2 (R

2)�
⇡
2 (R

),
⇡
2 (⇡

2 (R
2)�

⇡
2 (R

))
is

closed
u
n
d
er

d
i↵
eren

ce
u
p
to

equ
ivalen

ce
on

th
e
grap

h
s
in

F
igu

re
4.1.

�
id

R
R

2
⇡
2 (R

)
⇡
2 (R

)
⇡
2 (R

2)

id
;

id
id

⇡
2 (R

)
⇡
2 (R

)
⇡
2 (R

2)

R
R

;
R

R
R

R
R

2
R

2
R

2
;

R
2

R
2

R
2

⇡
2 (R

)
;

⇡
2 (R

)
⇡
2 (R

)
;

⇡
2 (R

)
⇡
2 (R

2)�
⇡
2 (R

)

⇡
2 (R

)
;

⇡
2 (R

)
⇡
2 (R

)
⇡
2 (R

)
;

⇡
2 (R

)

⇡
2 (R

2)
;

⇡
2 (R

2)
⇡
2 (R

2)
;

⇡
2 (R

2)
;

⇡
2 (R

2)
;

⇡
2 (R

2)
⇡
2 (R

2)
⇡
2 (R

)
⇡
2 (R

2)�
⇡
2 (R

)
⇡
2 (R

2)

⇡
2 (R

)�
R

⇡
2 (R

)�
R

;
⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

)�
R

;
⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

2)�
⇡
2 (R

)
;

⇡
2 (R

2)�
⇡
2 (R

)
⇡
2 (R

2)�
⇡
2 (R

)
;

⇡
2 (R

2)�
⇡
2 (R

)
⇡
2 (R

2)�
⇡
2 (R

)

⇡
2 (⇡

2 (R
2)�

⇡
2 (R

))
;

⇡
2 (⇡

2 (R
2)�

⇡
2 (R

))
⇡
2 (⇡

2 (R
2)�

⇡
2 (R

))
⇡
2 (R

)
⇡
2 (R

2)
⇡
2 (R

)

�
⇡
2 (R

2)
⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

2)�
⇡
2 (R

)
⇡
2 (⇡

2 (R
2)�

⇡
2 (R

))

id
⇡
2 (R

2)
id

id
⇡
2 (⇡

2 (R
2)�

⇡
2 (R

))
⇡
2 (R

2)�
⇡
2 (R

))

R
R

⇡
2 (R

)�
R

⇡
2 (R

)�
R

R
R

R
2

R
2

R
2

R
2

R
2

R
2

⇡
2 (R

)
⇡
2 (R

2)
⇡
2 (R

)
⇡
2 (R

)
⇡
2 (R

2)
⇡
2 (R

2)�
⇡
2 (R

)

⇡
2 (R

)
;

⇡
2 (R

)
⇡
2 (R

)
⇡
2 (R

)
;

⇡
2 (R

2)
⇡
2 (R

2)
⇡
2 (R

2)
⇡
2 (R

2)
⇡
2 (R

2)
;

⇡
2 (R

2)
;

⇡
2 (R

2)
⇡
2 (R

2)
⇡
2 (R

)
⇡
2 (R

2)�
⇡
2 (R

)

⇡
2 (R

)�
R

⇡
2 (R

)�
R

;
⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

)�
R

;
⇡
2 (R

)�
R

⇡
2 (R

)�
R

⇡
2 (R

2)�
⇡
2 (R

)
;

⇡
2 (R

2)�
⇡
2 (R

)
⇡
2 (R

2)�
⇡
2 (R

)
;

⇡
2 (R

2)�
⇡
2 (R

)

⇡
2 (⇡

2 (R
2)�

⇡
2 (R

))
⇡
2 (R

2)
⇡
2 (⇡

2 (R
2)�

⇡
2 (R

))
⇡
2 (⇡

2 (R
2)�

⇡
2 (R

))
⇡
2 (⇡

2 (R
2)�

⇡
2 (R

))
;

4.1 Navigational graph query languages under containments 43

Table 4.3: The list of expressions ;, id, R, R2, ⇡
2

(R), ⇡
2

(R), ⇡
2

(R2),
⇡
2

(R2), ⇡
2

(R) �R, ⇡
2

(R) �R, ⇡
2

(R2) �⇡
2

(R), ⇡
2

(⇡
2

(R2) �⇡
2

(R)) is closed
under the second projection up to equivalence on the graphs in Figure 4.1.

e ⇡
2

(e)
; ;
id id
R ⇡

2

(R)
R2 ⇡

2

(R2)
⇡
2

(R) ⇡
2

(R)
⇡
2

(R) ⇡
2

(R)
⇡
2

(R2) ⇡
2

(R2)
⇡
2

(R2) ⇡
2

(R2)
⇡
2

(R) �R ⇡
2

(R2)
⇡
2

(R) �R ⇡
2

(R2) � ⇡
2

(R)
⇡
2

(R2) � ⇡
2

(R) ⇡
2

(R2) � ⇡
2

(R)
⇡
2

(⇡
2

(R2) � ⇡
2

(R)) ⇡
2

(⇡
2

(R2) � ⇡
2

(R))

1 2 3
(H)

(idn)
1 2

. . .
n

Figure 4.2: Graphs used in the proof of Proposition 4.9.

To prove this proposition it su�ces to reason on the three finite graphs
called K

3

, H and id
3

. The graphs H and id
3

are shown in Figure 4.2.
The edges in these graphs are all understood to be labeled by the same
relation name R. Note that K

3

is the complete graph (with loops) on 3
nodes shown in Figure 3.2; in general we use Kn to denote the complete
graph on n nodes. On a complete graph, every path query invariant under
isomorphisms can return only ;, id, di, or all. Given the connection with
the 3-variable fragment of first-order logic mentioned earlier, the following

44 Comparing different languages under fixed modalities

lemma is obvious.

Lemma 4.10. On the class of complete graphs with at least 3 nodes, every
expression in N (di,�1,�) is equivalent to ;, id, di or all.

For expressions in N (di,�1) in particular, the outcome on K
3

may
determine the complete behavior on all graphs, in the sense of the following
lemma.

In the proof, and also later in the proof of Proposition 4.18, we fre-
quently use monotonicity (cf. Section 3).

Lemma 4.11. Let e be an expression in N (di,�1). We have:

1. If e(K
3

) = ; then e ⌘ ;;

2. If e(K
3

) = di(K
3

) then e ⌘ di;

3. If e(K
3

) = id(K
3

) then e ⌘ id.

Proof. In what follows, the proofs are labeled according to the numbers in
the lemma.

1. Let G be a graph. There is a natural number n � 3 such that
G ✓ Kn. By Lemma 4.10, we have e(Kn) = ;. Hence, because e is
monotone, also e(G) = ;.

2. We can write e = [ni=1

ei as a union of union-free expressions, since
union distributes over composition and converse. By Lemma 4.10,
there must exist i such that ei(K3

) is equal to di(K
3

). Furthermore,
for every j = 1, . . . , n, ei(K3

) cannot equal id(K
3

) or all(K
3

). If
ej(K3

) = ;, then ej ⌘ ; by the previous case.

So, we may assume that ej(K3

) = di(K
3

) for j = 1, . . . , n. Take
such an ej . We know ej 6⌘ id so ej can be written as H

1

� . . . � Hl

with Hk 2 {R,R�1, di}. Indeed, this is possible since (R � S)�1 ⌘
S�1 � R�1. If l � 2, the first composition already yields all on K

3

.
Indeed, R�1(K

3

) = R(K
3

) = all(K
3

) and R2(K
3

) = di � R(K
3

) =
R � di(K

3

) = di2(K
3

) = all(K
3

). Composing all(K
3

) with all(K
3

) or
di(K

3

) is again all(K
3

). Thus ej(K3

) = all(K
3

) which is impossible.

Hence, l = 1. Here, H
1

has to be di, because R(K
3

) = R�1(K
3

) =
all(K

3

).

3. This case is similar to the previous case.

4.1 Navigational graph query languages under containments 45

Let us now look at the outcome of expressions on the graph id
3

.

Lemma 4.12. Let e 6⌘ ; be a union-free expression in N (di,�1).

1. If di occurs in e, then di(id
3

) \ e(id
3

) 6= ;;

2. If di does not occur in e, or it occurs at least twice, then id(id
3

) \
e(id

3

) 6= ;.

Proof. In what follows, the proofs are labeled according to the numbers in
the lemma.

1. Write e = q
1

� di � q
2

where q
1

is di-free. Note that q
1

or q
2

may be
id. Since di-free expressions can be evaluated in a loop, (1, 1) is in
q
1

(id
3

), whence (1, 2) is in q
1

� di(id
3

). Furthermore, if there is an
odd number of di occurrences in q

2

, (2, 3) 2 q
3

(id
3

), and otherwise
(2, 2) 2 q

2

(id
3

). Indeed, every di-free sub expression can be evaluated
in a loop, and on every di application, one can jump from 2 to 3 and
vice versa. We may thus conclude that (1, 2) or (1, 3) is in e(id

3

).

2. If e contains no di applications, then e = Rn on id
3

for some positive
n, since e is not equivalent to ; and id

3

is symmetrical. Hence,
e(id

3

) = R(id
3

) = id(id
3

).

If e contains at least two di applications, then we can write e =
q
1

� di � q
2

� di � q
3

so that q
1

and q
3

are di-free. Now (1, 1) is in
q
1

(id
3

) and in q
3

(id
3

). Hence, (1, 2) 2 q
1

� di(id
3

) and (3, 1) and
(2, 1) in di � q

3

(id
3

). When di occurs an odd number of times in
q
2

, then (2, 3) 2 q
3

(id
3

); when it occurs an even number of times,
(2, 2) 2 q

2

(id
3

). We may thus conclude that (1, 1) 2 e(id
3

).

We next look at the outcome of expressions on the graph H. The make
the proof more readable we also use composition on the level of edges, e.g.,
(1, 2) � (2, 3) = (1, 3) and (1, 1) � (1, 2) � (2, 4) = (1, 4).

Lemma 4.13. Let e 6⌘ ; be a union-free expression in N (di,�1).

1. If e 6⌘ di and di occurs exactly once in e, then id(H) \ e(H) 6= ;;

2. If e 6⌘ id and e is di-free, then di(H) \ e(H) 6= ;.

Proof. In what follows, the proofs are labeled according to the numbers in
the lemma.

46 Comparing different languages under fixed modalities

1. Write e = e
1

� di � e
2

where e
1

and e
2

are di-free. One of e
1

or e
2

may be id, but not both, since e 6⌘ di. We will now consider all the
possible scenarios for e

1

and e
2

. Note that on H, every nonempty di-
free expression q can be evaluated in a loop, i.e., (1, 1), (3, 3) 2 q(H).

• If e
1

= q
1

�R, where q
1

is di-free, then (1, 1)�(1, 2)�(2, 1)�(1, 1) 2
q
1

�R � di � e
2

(H). Hence (1, 1) 2 e
1

� di � e
2

(H).

• If e
2

= R�1 � q
2

, where q
2

is di-free, then (1, 1) � (1, 2) � (2, 1) �
(1, 1) 2 e

1

� di �R�1 � q
2

(H). Hence (1, 1) 2 e
1

� di � e
2

(H).

• If e
1

= R�1�R�n and e
2

= id, where n may be zero, then (2, 1)�
(1, 1) � (1, 2) 2 R�1 �R�n � di(H). Hence (2, 2) 2 e

1

� di � e
2

(H).

• If e
1

= id and e
2

= Rn � R, where n may be zero, then (2, 1) �
(1, 1) � (1, 2) 2 di �Rn �R(H). Hence (2, 2) 2 e

1

� di � e
2

(H).

• If e
1

= R�1�R�n and e
2

= Rm�R, where n and m may be zero,
then (2, 1)�(1, 1)�(1, 3)�(3, 3)�(3, 2) 2 R�1�R�n�di�Rm�R(H).
Hence (2, 2) 2 e

1

� di � e
2

(H).

• If e
1

= q
1

� R � R�1 � R�n, where n may be zero, then (1, 1) �
(1, 2) � (2, 3) � (3, 3) � (3, 1) 2 q

1

�R �R�1 �R�n � di(H). Hence
(1, 1) 2 e

1

� di � e
2

(H).

• If e
2

= Rn � R � R�1 � q
2

, where n may be zero, then (3, 1) �
(1, 1) � (1, 2) � (2, 3) � (3, 3) 2 di � Rn � R � R�1 � q

2

(H). Hence
(3, 3) 2 e

1

� di � e
2

(H).

2. There are three possibilities.

• If e can be written as q
1

� R � R�1 � q
2

, where q
1

and q
2

may
be id, then (1, 1) � (1, 2) � (2, 3) � (3, 3) 2 q

1

� R � R�1 � q
2

(H).
Hence, (1, 3) 2 e(H).

• If e = Rn � R where n may be zero, then (1, 1) � (1, 2) 2 Rn �
R(H). Hence (1, 2) 2 e(H).

• If e can be written as R�1 � q where q may be id, then (2, 1) �
(1, 1) 2 R�1 � q(H). Hence (2, 1) 2 e(H).

We are now ready to prove Proposition 4.9.

Proof of Proposition 4.9. Let us denote the Boolean query R � ⇡
1

(R) ✓ id
by Q. Suppose for the sake of contradiction, that the conjunction e

1

✓

4.1 Navigational graph query languages under containments 47

f
1

^ · · · ^ en ✓ fn expresses Q. We assume that no containment is trivial
(a trivial containment is always true). Notice that Q(K

3

) = false. Thus
there exists 1 i n such that ei(K3

) 6✓ fi(K3

). Hence fi(K3

) 6= all(K
3

).
In the remainder of the proof, we will only work on the graphs K

3

, H and
id

3

, whence we can replace + with unions of compositions. We know that
fi(K3

) is either ;, id(K
3

), or fi(K3

) = di(K
3

). We will now cover each of
these scenarios and obtain a contradiction.

If fi(K3

) = ;, then fi ⌘ ;, by Lemma 4.11. Since Q(id
3

) = true, it
must be that ei(id3) ✓ fi(id3). Thus ei(id3) = ;, whence ei is equivalent to
; by Lemma 4.12. This, however, contradicts that ei ✓ fi is not trivial.

If fi(K3

) = di(K
3

), then fi ⌘ di by Lemma 4.11. Write ei = [mj=1

gj
with gj union-free. Since ei ✓ fi is not trivial, there has to exist 1 j m
such that gj 6⌘ di. If gj ⌘ id, then certainly ei(id3) 6✓ di(id

3

) = fi(id3). The
only case left to consider is that gj 6⌘ di and gj 6⌘ id. If gj contains zero or
more than two di applications, then ei(id3) \ id(id

3

) 6= ; by Lemma 4.12,
whence we have ei(id3) 6✓ di(id

3

) = fi(id3). This, however, contradicts
that Q(id

3

) = true. On the other hand, if gj contains exactly one di
application, then ei(H) \ id(H) 6= ; by Lemma 4.13, whence we have
ei(H) 6✓ di(H) = fi(H). This, however, contradicts that Q(H) = true.

If fi(K3

) = id(K
3

), then fi ⌘ id by Lemma 4.11. Again write ei =
[mj=1

gj with gj union-free. Since ei ✓ fi is not trivial, there has to exist
1 j m such that gj 6⌘ id. If gj contains at least one di application, then
gj(id3) \ di(id

3

) 6= ; by Lemma 4.12, whence we have ei(id3) 6✓ id(id
3

) =
fi(id3). However, this contradicts that Q(id

3

) = true. On the other hand,
if gj is di-free, then gj(H) \ di(H) 6= ; by Lemma 4.13, whence we have
ei(H) 6✓ id(H) = fi(H). However, this contradicts that Q(H) = true.

Finally, we are free to deal with the fragment {di,⇡
2

,+}. First, we
show that ⇡

2

(and thus also ⇡
2

) can be eliminated in this fragment on K
3

,
H and id

3

.

Lemma 4.14. Let e be an expression in N (di). Then ⇡
2

(e) is equivalent
to ; or id on the three graphs K

3

, H and id
3

.

Proof. In this proof, whenever we write “equivalent” we mean equal on
the three graphs K

3

, H and id
3

. We proceed by induction on e. In the
base case, ⇡

2

(;) = ; and ⇡
2

(R) = ⇡
2

(di) = id on all three graphs.
If e = e

1

[e
2

, then ⇡
2

(e
1

[e
2

) = ⇡
2

(e
1

) [⇡
2

(e
2

). By induction ⇡
2

(e
1

)
and ⇡

2

(e
2

) are equivalent to id or ;. Clearly, ⇡
2

(e
1

) [⇡
2

(e
2

) is equivalent
to ; only when both ⇡

2

(e
1

) and ⇡
2

(e
2

) are equivalent to ;. In all other
cases, ⇡

2

(e
1

) [⇡
2

(e
2

) is equivalent to id.

48 Comparing different languages under fixed modalities

If e = e
1

�e
2

, then ⇡
2

(e
1

�e
2

) = ⇡
2

(⇡
2

(e
1

)�e
2

). By induction ⇡
2

(⇡
2

(e
1

)�
e
2

) equals ⇡
2

(id � e
2

) = ⇡
2

(e
2

) or ⇡
2

(; � e
2

) = ;.

We may thus conclude that N (di,⇡
2

,+) ⌘ N (di,+) on K
3

, H and id
3

.
Therefore, R � ⇡

1

(R) ✓ id is not expressible in {di,⇡
2

,+}^✓ by Proposi-
tion 4.9.

Proposition 4.15. Let R be a relation name. The Boolean query R �
⇡
1

(R) ✓ id is not in {di,⇡
2

,+}^✓.

Now we reduce the primitivity of ⇡
2

to ⇡
1

. First, we show that we can
pull converse up from the edge labels to the top.

Lemma 4.16. Let F be a fragment and let F 0 be F where ⇡i is replaced
by ⇡

3�i and ⇡i is replaced by ⇡
3�i. Let e be an expression in N (F) and let

e0 be the expression obtained by replacing every R application with R�1.
Then, there exists an expression h 2 N (F 0) such that e0 ⌘ h�1.

Proof. We prove this by structural induction on the expression e. In the
base case, e0 = e�1.

Suppose e = e
1

� e
2

. Then, e0 = e0
1

� e0
2

. By induction, there exists h
1

and h
2

in N (F 0) such that e0
1

� e0
2

⌘ h�1

1

� h�1

2

. The result now follows
from the fact that h�1

1

� h�1

2

⌘ (h
2

� h
1

)�1.
Suppose e = e

1

⇧ e
2

where ⇧ 2 {[,�}. Then, e0 = e0
1

⇧ e0
2

. By induction
there exists h

1

and h
2

in N (F 0) such that e0
1

⇧ e0
2

⌘ h�1

1

⇧ h�1

2

. The result
now follows from the fact that h�1

1

⇧ h�1

2

⌘ (h
1

⇧ h
2

)�1.
Suppose e = ⇡i(e1). Then e0 = ⇡i(e0

1

). By induction there exists h
1

in
N (F 0) such that ⇡i(e0

1

) ⌘ ⇡i(h
�1

1

). The result now follows from the fact
that ⇡i(h

�1

1

) ⌘ ⇡
3�i(h1) ⌘ ⇡

3�i(h1)�1.
Suppose e = e+

1

. Then e0 = e0+
1

. By induction there exists h
1

in
N (F 0) such that e0+

1

⌘ (h�1

1

)+. The result now follows from the fact that
(h�1

1

)+ ⌘ (h+
1

)�1.

Before we can reduce the primitivity of ⇡
2

to ⇡
1

, we need the following
lemma.

Lemma 4.17. Let R be relation name, let F be a fragment and let F 0

be F where ⇡i is replaced by ⇡
3�i and ⇡i is replaced by ⇡

3�i. If e
1

✓
f
1

^ . . .^ en ✓ fn 2 F^✓ then e0
1

✓ f 0
1

^ . . .^ e0n ✓ f 0
n 2 F 0^✓ where e0i and

f 0
i are obtained from ei and fi respectively by replacing R by R�1.

4.1 Navigational graph query languages under containments 49

Figure 4.3: Graph used in the proof of Proposition 4.18.

Proof. By Lemma 4.16 there exists expressions h
1

, g
1

, . . . , hn, gn in F 0^✓

such that e0
1

✓ f 0
1

^ . . . ^ e0n ✓ f 0
n ⌘ h�1

1

✓ g�1

1

^ . . . ^ h�1

n ✓ g�1

n . The
result now follows from the fact that h�1

1

✓ g�1

1

^ . . . ^ h�1

n ✓ g�1

n ⌘ h
1

✓
g
1

^ . . . ^ hn ✓ gn.

Armed with the previous lemma, the primitivity of ⇡
2

follows from the
following two observations:

• By using the same notation as in Lemma 4.17, (R � ⇡
2

(R2))0 ✓
(⇡

2

(R) �R)0 is equal to R�1 � ⇡
2

(R�1 �R�1) ✓ ⇡
2

(R�1) �R�1 which
is equivalent to ⇡

1

(R2) �R ✓ R � ⇡
1

(R).

• Similarly, (⇡
2

(R) �R)0 ✓ id0 is equal to ⇡
2

(R�1) �R�1 ✓ id which in
turn is equivalent to R � ⇡

1

(R) ✓ id.

4.1.2 Coprojection

First, we focus on the primitivity of the first coprojection. Up to comple-
tion, there are three maximal fragments lacking ⇡

1

: {�,⇡
2

,+}, {di,⇡
2

,+}
and {di,�1,\,+}.1

For the first fragment, {⇡
1

}^✓ 6✓ {�,⇡
2

,+}^✓ follows directly from

Proposition 4.6, since ⇡
1

2]{⇡
1

}. For the second fragment, {⇡
1

}^✓ 6✓
{di,⇡

2

,+}^✓ follows directly from Proposition 4.15 for the same reason.
We now have our hands free for the fragment {di,�1,\,+}. We are

going to show:

Proposition 4.18. Let R be a relation name. The Boolean query ⇡
1

(R) ✓
⇡
1

(R � ⇡
1

(R)) is not in {di,�1,\,+}^✓.
1Note that we do not have to consider fragments that contain ⇡2 as well as ⇡. Indeed,

⇡2(⇡1(e)) ⌘ ⇡2(e).

50 Comparing different languages under fixed modalities

To prove this proposition it su�ces to reason on the complete graph
K

3

and the graph G in Figure 4.3.

Lemma 4.19. For every Boolean query Q 2 {di,�1,\,+}^✓, Q cannot be
true on G and false on K

3

simultaneously.

Proof. Let Q be e
1

✓ f
1

^ · · ·^ en ✓ fn 2 {di,�1,\,+}^✓. Suppose for the
sake of contradiction that Q(G) is true and Q(K

3

) is false. Since Q(K
3

) =
false there exists 1 i n such that ei(K3

) 6✓ fi(K3

). Hence fi(K3

) 6=
all(K

3

). In the remainder of the proof, we will only work on the graphs
K

3

, K
4

and G, whence we can replace + with unions of compositions.
Since path queries in N (di,�1,\) are monotone, we have fi(K3

) ✓
fi(G) ✓ fi(K4

). This is used a number of times in the remainder of the
proof.

Since fi(K3

) 6= all(K
3

), the only possibilities for fi(K3

) are id(K
3

),
di(K

3

), and ;.
If fi(K3

) = id(K
3

), then also fi(K4

) = id(K
4

) by Lemma 4.10. Hence,
fi(G) \ di(G) = ;. Since Q(K

3

) = false, we have ei(K3

) 6✓ fi(K3

), so
ei(K3

)\di(K
3

) 6= ;, whence we also have ei(G)\di(G) 6= ;. Thus ei(G) 6✓
fi(G) which contradicts that Q(G) = true.

If fi(K3

) = di(K
3

), then this case is analogous to the previous case.
Finally, if fi(K3

) = ;, then also fi(K4

) = ; by Lemma 4.10, whence
we also have fi(G) = ;. Since Q(K

3

) = false, we have ei(K3

) 6✓ ;. Hence
also ei(G) 6✓ ;, which contradicts that Q(G) = true.

Proposition 4.18 is a corollary of Lemma 4.19 since ⇡
1

(R) ✓ ⇡
1

(R �
⇡
1

(R)) is true on G and false on K
3

simultaneously.
The primitivity of ⇡

2

follows from Lemma 4.17 and the following ob-
servation. By using the same notation as in Lemma 4.17, (⇡

2

(R))0 ✓
(⇡

2

(⇡
2

(R) � R))0 is equal to ⇡
2

(R�1) ✓ ⇡
2

(⇡
2

(R�1) � R�1), which in turn
is equivalent to ⇡

1

(R) ✓ ⇡
1

(R � ⇡
1

(R)).

4.1.3 Intersection

Up to completion, the unique maximal fragment lacking intersection is
{di,⇡,�1,+}. We now show:

Proposition 4.20. Let R be a relation name. The Boolean query R2\R ✓
id is not in {di,⇡,�1,+}^✓.

4.1 Navigational graph query languages under containments 51

1 2 3
(`

2

)

Figure 4.4: Graph used in the proof of Proposition 4.20.

To prove this proposition it su�ces to reason on the finite graphs K
3

from Figure 3.2 and id
3

from Figure 4.2, and the graph `
2

shown in Fig-
ure 4.4. We begin by showing that on these three graphs, projection and
coprojection can be eliminated.

Lemma 4.21. Let e be an expression in N (di,⇡,�1). Then, ⇡i(e), for
i = 1, 2, is equivalent to ; or id on the three graphs K

3

, `
2

and id
3

simul-
taneously.

Proof. In this proof, whenever we write “equivalent” we mean equal on the
three graphs K

3

, `
2

and id
3

. We proceed by induction on e. In the base
case, ⇡i(;) = ; and ⇡i(R) = ⇡i(R�1) = ⇡i(di) = id on all three graphs.

If e = ⇡j(e1), then ⇡i(⇡j(e1)) ⌘ id � ⇡j(e1). By induction ⇡j(e1) is
equivalent to id or ;, whence id� ⇡j(e1) also.

If e = e
1

[e
2

, then ⇡i(e1 [e
2

) = ⇡i(e1) [⇡i(e2). By induction ⇡i(e1)
and ⇡i(e2) are equivalent to id or ;. Clearly, ⇡i(e1)[⇡i(e2) is equivalent to
; only when both ⇡i(e1) and ⇡i(e2) are equivalent to ;. In all other cases,
⇡i(e1) [⇡i(e2) is equivalent to id.

If e = e
1

� e
2

, there are two cases:

• Clearly, ⇡
1

(e
1

� e
2

) = ⇡
1

(e
1

� ⇡
1

(e
2

)). By induction, ⇡
1

(e
1

� ⇡
1

(e
2

))
equals ⇡

1

(e
1

� id) = ⇡
1

(e
1

) or ⇡
1

(e
1

� ;) = ;.

• Clearly, ⇡
2

(e
1

� e
2

) = ⇡
2

(⇡
2

(e
1

) � e
2

). By induction ⇡
2

(⇡
2

(e
1

) � e
2

)
equals ⇡

2

(id � e
2

) = ⇡
2

(e
2

) or ⇡
2

(; � e
2

) = ;.

Note that, since ⇡(e) ⌘ id� ⇡(e), the above lemma also holds for ⇡(e).
We next look at the outcome of expressions on the graph `

2

.

Lemma 4.22. Let e be a union-free expression in N (di,�1).

1. If e is di-free, e 6⌘ id and e 6⌘ ;, then e(`
2

) \ di(`
2

) 6= ;;

2. If di occurs exactly once in e and e 6⌘ di, then e(`
2

) \ id(`
2

) 6= ;.

52 Comparing different languages under fixed modalities

Proof. In what follows, the proofs are labeled according to the numbers in
the lemma.

1. Since `
2

is symmetrical, the converse operator does nothing and we
can write e = Rk, with k positive since e 6⌘ id. If k is odd, clearly
(1, 2) 2 Rk(`

2

). If k is even, (1, 2) 2 Rk�1(`
2

) so (1, 3) 2 Rk(`
2

).

2. First, we describe some outcome results for Rn on `
2

:

• If n is odd, then (1, 2), (2, 1), (2, 3) and (3, 2) are in Rn(`
2

);

• If n is even, then (1, 1) and (2, 2) are in Rn(`
2

);

• If n > 1 is even, then (1, 3) and (3, 1) are in Rn(`
2

).

Now write e as Rn � di � Rm, where n and m may be zero (but not
both).

• If n and m are both odd, then (2, 1) � (1, 3) � (3, 2) 2 Rn � di �
Rm(`

2

). Hence (2, 2) 2 e(`
2

).

• If n is even and m is odd, then (1, 1) � (1, 2) � (2, 1) 2 Rn � di �
Rm(`

2

), whence (1, 1) is also in e(`
2

).

• If n is odd and m is even, then this case is symmetrical to the
previous case.

• If n is even and m is even, then n or m is strictly greater than
one. If n > 1, then (1, 3) � (3, 1) � (1, 1) 2 Rn � di � Rm(`

2

),
whence (1, 1) is in e(`

2

). The case m > 1 is symmetrical.

We can now give the proof of Proposition 4.20.

Proof of Proposition 4.20. Let us denote the Boolean query R2 \ R ✓ id
by Q. Observe that Q is false on K

3

but true on `
2

and id
3

.
Suppose for the sake of contradiction that the conjunction e

1

✓ f
1

^
· · · ^ en ✓ fn expresses Q. We assume no containment is trivial, in the
sense that ei ✓ fi are not equivalent to true or false.

Since Q(K
3

) = false, there exists 1 i n such that ei(K3

) 6✓ fi(K3

).
In particular, fi(K3

) 6= all(K
3

). In the remainder of the proof we will only
work on the graphs K

3

, id
3

and `
2

, whence we can replace + with unions
of compositions. Furthermore, by Lemma 4.21, we can eliminate ⇡ and ⇡.
So we may assume that ei and fi are in N (di,�1). Since fi(K3

) 6= all(K
3

)
the three possibilities for fi(K3

) are ;, id(K
3

) or di(K
3

). We will now cover
these three possibilities and obtain a contradiction.

4.1 Navigational graph query languages under containments 53

If fi(K3

) = di(K
3

), then fi ⌘ di by Lemma 4.11. Write ei = [mj=1

gj
with gj union-free. Since ei ✓ fi is not trivial, there has to exists 1
j m such that gj 6⌘ di. If gj contains exactly one di application, then
ei(`2)\ id(`2) 6= ; by Lemma 4.22, whence we have ei(`2) 6✓ di(`

2

) = fi(`2).
This, however, contradicts that Q(`

2

) = true. On the other hand, if gk is
di-free or has more than one di application, then ei(id3) \ id(id

3

) 6= ; by
Lemma 4.12, whence ei(id3) 6✓ di(id

3

) = fi(id3). This, however, contradicts
that Q(id

3

) = true.
If fi(K3

) = id(K
3

), then fi ⌘ id by Lemma 4.11. Again write ei =
[mj=1

gj with gj union-free. Since ei ✓ fi is not trivial, there has to ex-
ist 1 j m such that gj 6⌘ id and gj 6⌘ ;. If gj is di-free, then
gj(`2) \ di(`

2

) 6= ; by Lemma 4.22, whence ei(`2) 6✓ id(`
2

) = fi(`2). This,
however, contradicts that Q(`

2

) = true. On the other hand, if gj contains
at least one di application, then gj(id3)\di(id3) 6= ; by Lemma 4.12, whence
ei(id3) 6✓ id(id

3

) = fi(id3). This, however, contradicts that Q(id
3

) = true.
Finally, if fi(K3

) = ;, then fi ⌘ ;. Since Q(id
3

) = true, we have
ei(id3) ✓ fi(id3) = ;. Thus ei(id3) = ;, whence ei is equivalent to ; by
Lemma 4.12 (we can again write ei as a union of union-free expressions).
This, however, contradicts that ei ✓ fi is not trivial.

4.1.4 Di↵erence

Up to completion, the unique maximal fragment lacking di↵erence is {\,⇡,
di,�1,+}, which we denote by NoDi↵. We show the following proposition.

Proposition 4.23. Let R be a relation name. The Boolean query id ✓
R2 � (R2 �R) �R2 is not in NoDi↵^✓.

To prove this proposition, it su�ces to reason on the complete graph
K

3

and the bow tie graph B shown in Figure 3.2.

Lemma 4.24. Every expression in N (NoDi↵) is equivalent to ;, id, di,
R, R \ di or all on K

3

and B simultaneously.

Proof. In this proof all equivalences are meant to hold on K
3

and B
only. We proceed by structural induction on the expression e. For e 2
{;, id, di, R} the result is trivial. Note that we do not have to consider
transitive closure, since on a fixed finite number of graphs, one can replace
the transitive closure operator by a finite union of compositions.

Suppose e = e
1

[e
2

. The only nontrivial cases are e
1

= id and e
2

=
R \ di; e

1

= id and e
2

= R; and e
1

= di and e
2

= R. In the first case,

54 Comparing different languages under fixed modalities

id [(R \ di)(K
3

) = R(K
3

) and id [(R \ di)(B) = R(B). In the second
case, id [R(K

3

) = R(K
3

) and id [R(B) = R(B). In the third case,
di [R(K

3

) = all(K
3

) and di [R(B) = all(B).
Suppose e = ⇡i(e1). If e

1

⌘ ;, then ⇡i(e1)(B) = id(B) and ⇡i(e1)(K3

)
= id(K

3

). In any other case, ⇡i(e1)(K3

) = ; and ⇡i(e1)(B) = ;, since for
any g 2 {id, di, R,R \ di, all}, we have ⇡i(g)(K3

) = ⇡i(g)(B) = ;.
Suppose e = e

1

\e
2

. Then the only nontrivial case occurs where e
1

⌘ R
and e

2

⌘ id. Here, R \ id(K
3

) = id(K
3

) and R \ id(B) = id(B) since K
3

and B both contain all self-loops.
Suppose e = e

1

�e
2

. Since composing with ; results in ;, and composing
with id does nothing, we may focus on e

1

, e
2

2 {di, R,R\di, all}. It is clear
that R \ di(K

3

) ✓ ei(K3

) and R \ di(B) ✓ ei(B). Hence (R \ di) � (R \
di)(K

3

) ✓ e
1

� e
2

(K
3

) and (R \ di) � (R \ di)(B) ✓ e
1

� e
2

(B). Therefore,
since (R \ di) � (R \ di)(K

3

) = all(K
3

) and (R \ di) � (R \ di)(B) = all(B),
we obtain e

1

� e
2

(K
3

) = all(K
3

) and e
1

� e
2

(B) = all(B).
The case e = e�1

1

is trivial since all of the possible intermediate results
are symmetrical.

We are now ready to prove the crucial lemma that directly implies
Proposition 4.23. Indeed, Proposition 4.23 is a corollary of Lemma 4.25,
since id ✓ R2 � (R2�R) �R2 is false on K

3

and true on B simultaneously.

Lemma 4.25. For every Boolean query Q 2 NoDi↵^✓, Q cannot be false
on K

3

and true on B simultaneously.

Proof. It su�ces to show that a single containment e
1

✓ e
2

is never false on
K

3

and true on B simultaneously. Indeed, this behavior is then preserved
under conjunction.

By Lemma 4.24, e
1

and e
2

are equivalent to ;, id, di, R, R \ di or all
on K

3

and B simultaneously. From now on, equivalences are understood
to be on K

3

and B only. We may assume that e
1

6⌘ ; and e
2

6⌘ all, since
otherwise, the query expressed by e

1

✓ e
2

is the trivial true query.
If e

2

is ;, id or di, then by Lemma 4.24 we have e
1

(K
3

) ✓ e
2

(K
3

) i↵
e
1

(B) ✓ e
2

(B). Hence the query e
1

✓ e
2

cannot distinguish K
3

and B.
If e

2

⌘ R, then again by Lemma 4.24 we have e
1

(K
3

) ✓ R(K
3

) i↵
e
1

(B) ✓ R(B), except for the case where e
1

⌘ di or e
1

⌘ all. However, in
these cases, e

1

(K
3

) ✓ e
2

(K
3

).
If e

2

⌘ R \ di, then again by Lemma 4.24 we clearly have e
1

(K
3

) ✓
R \ di(K

3

) i↵ e
1

(B) ✓ R \ di(B) except maybe for the case where e
1

⌘ di.
However, in that case, again, e

1

(K
3

) ✓ e
2

(K
3

).

4.1 Navigational graph query languages under containments 55

4.1.5 Transitive closure

It seems obvious that transitive closure must be primitive, as it is the only
operator that is not first-order definable. However, we want to establish
primitivity across all fragments and all vocabularies. Thereto, we would
ideally like to find a Boolean query over a single relation name that is
not first-order expressible, but is expressible as a containment statement
e ✓ f with e and f in N (+). Obvious candidates, such as connectivity or
cyclicity, seem not expressible in this manner, however. In other contexts,
transitive closure may even not be a primitive operator. For example,
every Boolean query over a single relation name that is expressible as the
nonemptiness of an expression in N (di,⇡,+) is already expressible without
using transitive closure [22].

Nevertheless, we have found that the simple Boolean query “every node
lies on a cycle” satisfies our needs:

Proposition 4.26. Let R be a relation name. The Boolean query id ✓ R+

is not first-order expressible.

It follows that transitive closure is primitive. Proving this proposition
is an exercise in Hanf locality [31], which requires finding the right graphs.
We found the graphs G`

1

and G`
2

shown in Figure 4.5. In G`
1

, every node
lies on a cycle, but not in G`

2

. Yet, for every natural number k and every
` > k, the graphs G`

1

and G`
2

have the same k-neighborhood types with the
same multiplicities, as summarized in Figure 4.6. Since first-order logic is
Hanf-local, this implies that the Boolean query id ✓ R+ is not first-order
expressible.

4.1.6 The full relation

Up to completion, the unique maximal fragment lacking all is {�1,�,+},
which we denote by NoAll. We now show:

Proposition 4.27. Let R be a relation name. The Boolean query all ✓ R
is not in NoAll^✓.

This proposition can easily be proven by using the additivity of path
queries expressible in N (NoAll) (Lemma 3.2).

Proof of Proposition 4.27. Denote the Boolean query all ✓ R by Q. Let
G

1

and G
2

be two disjoint graphs, each consisting of just a single self-loop.
Observe that Q is true on G

1

and G
2

but false on G
1

[G
2

.

56 Comparing different languages under fixed modalities

z

x`

x
2

x
1

y`

y
2

y
1

m
1

m
2

m` n
1

n
2

n` q o
1

o
2

o` p
1

p
2

p`

z0
x0`

x0
2

x0
1

y0`

y0
2

y0
1

m0
1

m0
2

m0
` n0

1

n0
2

n0
` q0 o0

1

o0
2

o0` p0
1

p0
2

p0`

Figure 4.5: Graphs G`
1

(top) and G`
2

(bottom) used in the proof of Propo-
sition 4.26.

Suppose for the sake of contradiction that the conjunction e
1

✓ f
1

^
· · ·^en ✓ fn expresses Q. Since Q(G

1

[G
2

) = false, there exists 1 j n
such that ej(G1

[G
2

) 6✓ fj(G1

[G
2

). By additivity, ej(G1

) [ej(G2

) 6✓
fj(G1

) [fj(G2

). Hence, ej(G1

) 6✓ fj(G1

) or ej(G2

) 6✓ fj(G2

), which
contradicts that Q is true on both G

1

and G
2

.

4.1.7 Diversity

Up to completion, there are two maximal fragments that lack diversity:
{�1,�,+} and {�1, all,⇡,\,+}. We show that in neither fragment, the
Boolean query di ✓ ; (“there is only one node”) is expressible as a con-
junction of containments.

The fragment {�1,�,+} has set di↵erence, so using Proposition 4.8,
we can invoke our previous work on nonemptiness queries. Indeed, it has

4.1 Navigational graph query languages under containments 57

k k

k � 1 � j j < k k

k k � 1 � jj < k

j < k k

k j < k

k k

Figure 4.6: k-neighborhood types. The white node indicates the center of
the neighborhood. Except for the bottom type, each type occurs exactly
once in G`

1

and in G`
2

with ` > k (and letting j range from 0 to k � 1).
The bottom type occurs exactly 6`� 4k + 1 times in both graphs.

already been shown [19, Proposition 5.4(1)] that the Boolean query di = ;
can not be expressed as the emptiness of an expression in N (�1,�,+).

For the other fragment, we show:

Proposition 4.28. The Boolean query di ✓ ; is not in {�1, all,⇡,\,+}^✓.

First, we prove the following simple lemma:

Lemma 4.29. The graphs id
1

and K
3

are indistinguishable in {�1, all,⇡,
\,+}^✓.

Proof. Every expression in N (�1, all,⇡,\,+) is equivalent to id, all or ; on
id

1

and K
3

simultaneously, which immediately implies the proposition.
The above claim is readily verified by induction. Indeed, the base case

is trivial, and the induction step readily follows since the set {all, id, ;} is
closed under all operators in the fragment.

Proposition 4.28 is a direct corollary of Lemma 4.29 since di ✓ ; is true
on id

1

and false on K
3

simultaneously.

58 Comparing different languages under fixed modalities

Figure 4.7: Graphs used in the proof of Proposition 4.30.

4.1.8 Converse

Up to completion, the unique maximal fragment that lacks converse is
{di,�,+}. We show:

Proposition 4.30. Let R be a relation name. The Boolean query R2 �
R�1 �R ✓ R [R2 is not in {di,�,+}^✓.

To prove this proposition it su�ces to reason only on the two graphs
G

1

(top) and G
2

(bottom) shown in Figure 4.7. We recall:

Lemma 4.31 ([19, Proposition 6.6]). e(G
1

) 6= ; implies e(G
2

) 6= ; for
every expression e in N (di,�).

With this lemma in hand we can now prove Proposition 4.30.

Proof of Proposition 4.30. Let us denote the Boolean query R2�R�1�R ✓
R[R2 by Q. Observe that Q is true on G

1

but false on G
2

. Suppose for the
sake of contradiction that Q is in {di,�,+}^✓. Then by Proposition 4.8, Q
is also expressible as e = ; with e inN (di,�,+). Reasoning only on the two
finite graphs G

1

and G
2

, we may assume e does not use transitive closures,
as we can replace these by unions of compositions. By assumption, e(G

1

)
is empty but e(G

2

) is not. Equivalently, e0(G
1

) 6= ; but e0(G
2

) = ;, with e0

the expression all�(all�e�all). This, however, contradicts Lemma 4.31.

5
Comparing di↵erent query
languages under di↵erent

base modalities

The goal of this chapter is to compare the di↵erent base modalities for dif-
ferent languages. Formally, for particular languages F

1

,F
2

and modalities
M

1

,M
2

in {6=;,=;,✓} we want to answer the following question:

FM1
1

?

✓ FM2
2

Just as in Chapter 3, we only have to answer one of F=;
1

?

✓ F 6=;
2

and

F 6=;
1

?

✓ F=;
2

, since A ✓ B i↵ ¬A ✓ ¬B for every two families of Boolean
queries A and B.

Just as in Chapter 4, this question is interesting for the navigational
graph query languages introduced in Section 2.1.1. In the remainder of
this chapter, we will focus on the case where C are subsets of the set of
navigational graph query fragments.

First, we compare 6=; to =; for (co)projection restricted fragments.

Theorem 5.1. Let F
1

and F
2

be (co)projection restricted fragments. Then

F 6=;
1

✓ F=;
2

i↵ F 6=;
1

✓ F 6=;
2

and F 6=;
2

= F=;
2

.

Proof. The if direction follows by the transitivity of ✓. For the only if
direction suppose that F 6=;

2

6✓ F=;
2

or F 6=;
1

6✓ F 6=;
2

. In the former case, the
proof follows from the proof of Theorem 3.11(2). Indeed, there is already

59

60 Comparing different languages under different modalities

a separating query within the most basic language. For the latter case, we
may assume that F 6=;

2

= F=;
2

. Hence there is nothing to prove.

Next, we compare ✓ to =; and ✓ to 6=; for unrestricted fragments.

Theorem 5.2. Let F
1

and F
2

be fragments. Then, we have:

1. F✓
1

✓ F=;
2

i↵ F✓
1

✓ F✓
2

and F✓
2

= F=;
2

;

2. F✓
1

✓ F 6=;
2

i↵ F✓
1

✓ F✓
2

and F✓
2

= F 6=;
2

.

The proof of this theorem is analogous to the proof of Theorem 5.1.
Here, we could drop the restrictions on the projections and coprojections
since the expressive power of the containment modality has completely
been characterized for all fragments.

In the remainder of this chapter we devote our attention to comparing
6=; to ✓. We conjecture the following:

Conjecture 5.3. Let F
1

and F
2

be (co)projection restricted fragments.

Then, F 6=;
1

✓ F✓
2

i↵ F 6=;
1

✓ F 6=;
2

and F 6=;
2

✓ F✓
2

.

We prove this conjecture for the most part in Section 5.1. The only
open cases revolve around the fragments F

1

and F
2

where F
1

= {⇡},
F
2

✓ {�1, di,+} and all 2 fF
2

. In particular, if it would be true that

{⇡} 6=; 6✓ {di,�1,+}✓ (⇧)

then Conjecture 5.3 would be entirely resolved. Although we have not
been able to prove the equation marked with (⇧), we have been able to
prove it for the union-free subfragment of {all,�1}✓ ✓ {di,�1,+}✓. To do
this, we observe that queries in N (all,�1) are expressible in CQ and show a
monotone preservation theorem for CQ✓. Using a similar strategy to prove
(⇧), without transitive closure on the right hand side, already involves a
jump to the much more expressive UCQ with nonequalities.

We leave the comparison of emptiness to containment open. Note that
this question is a more di�cult version of comparing di↵erent fragments
under containments. Indeed, to establish separations in this case, we have
to use emptiness expressions instead of full containments. Since emptiness
are special containments of the form e ✓ ; for graph query languages, we
thus have less power to establish the separations.

5.1 Comparing nonemptiness to containment for graph queries 61

5.1 Comparing nonemptiness to containment
for navigational graph query languages

This section is devoted to proving Conjecture 5.3 for nearly all fragments.
The if direction clearly holds by the transitivity of ✓. For the only-if
direction we consider its contrapositive. So, suppose that F 6=;

2

6✓ F✓
2

or F 6=;
1

6✓ F 6=;
2

. In the former case, the proof follows from the proof of
Theorem 3.11(3). Indeed, there is already a separating query within the
most basic language. So, we have the following:

Proposition 5.4. Let F
1

and F
2

be (co)projection restricted fragments. If

F 6=;
2

6✓ F✓
2

then F 6=;
1

6✓ F✓
2

.

Now we may assume that F 6=;
2

✓ F✓
2

and F 6=;
1

6✓ F 6=;
2

. By Theo-

rem 3.11(3), all 2 fF
2

. Thus, if � 2 F
2

, then F✓
2

= F 6=;
2

by Theo-
rem 3.11(4), whence there is nothing to prove. Hence, we do not have
to consider languages with di↵erence. Furthermore, we do not have to
consider any sublanguage either since we are only trying to prove negative
results here.

Since F 6=;
1

6✓ F 6=;
2

there must be at least one feature f 2 F
1

that

is missing in fF
2

. We devote one section to each f and try to show that
{f}6=; 6✓ F✓

2

. In some cases this will not su�ce, i.e., we need more features
to establish the separation, while in a few cases, on the other hand, the
result is still open.

5.1.1 Coprojection

In this section, we have a look at the case where coprojection is missing.
Here, the largest F

2

we have to consider is {di,�1,\,+}. LetG be the graph
in Figure 4.3 and K

3

be the complete graph with three nodes. Notice that
⇡
1

(R) 6= ; is true on G and false on K
3

. By Lemma 4.19, this is not
possible in {di,�1,\,+}✓. Hence we have the following:

Proposition 5.5. Let R be a relation name. The Boolean query ⇡
1

(R) 6= ;
is not in {di,�1,\,+}✓.

5.1.2 Di↵erence

In this section, we have a look at the case where di↵erence is missing. Here,
the largest F

2

we have to consider is NoDi↵. Let B be the bow tie and K
3

62 Comparing different languages under different modalities

Figure 5.1: The graphs used to prove Proposition 5.7.

be the complete graph with with three nodes both displayed in Figure 3.2.
Notice that R2 � R 6= ; is true on B and false on K

3

. By Lemma 4.25,
this is not possible in NoDi↵✓. Hence we have the following:

Proposition 5.6. Let R be a relation name. The Boolean query R2�R 6=
; is not in NoDi↵✓.

5.1.3 Intersection

In this section, we have a look at the case where intersection is missing.
Here, the largest F

2

we have to consider is {di,⇡,�1,+}. We are going to
show:

Proposition 5.7. Let R be a relation name. The query R \ id 6= ; is not
in {di,⇡,�1,+}✓.

To prove this proposition it su�ces to reason on the graphs A
1

(left)
and A

2

(right) shown in Figure 5.1.

Lemma 5.8. Let e be an expression in N (di,�1). On A
1

and A
2

, e is
equivalent to ;, id, di, R or all simultaneously.

Proof. We prove this lemma by structural induction on e. For id, di and
R this is trivial. For R�1 note that A

1

and A
2

are symmetrical.
Suppose e = e

1

[e
2

. Then the only troublesome cases are:

• e
1

= id and e
2

= R or vice versa. Here, e
1

[e
2

(A
1

) = all(A
1

) and
e
1

[e
2

(A
2

) = all(A
2

).

• e
1

= R and e
2

= di or vice versa. Here, e
1

[e
2

(A
1

) = R(A
1

) and
e
1

[e
2

(A
2

) = R(A
2

).

5.1 Comparing nonemptiness to containment for graph queries 63

Suppose e = e
1

�e
2

. Since composing with ; results in ;, and composing
with id does nothing, we may focus on e

1

, e
2

2 {di, R, all}. It is clear that
R\di(A

1

) ✓ ei(A1

) and R\di(A
2

) ✓ ei(A2

). Hence (R\di)�(R\di)(A
1

) ✓
e
1

� e
2

(A
1

) and (R \ di) � (R \ di)(A
2

) ✓ e
1

� e
2

(A
2

). Therefore, since
(R \ di) � (R \ di)(A

1

) = all(A
1

) and (R \ di) � (R \ di)(A
2

) = all(A
2

), we
obtain e

1

� e
2

(A
1

) = all(A
1

) and e
1

� e
2

(A
2

) = all(A
2

).

For expressions inN (di,�1), the outcomes on A
1

and A
2

may determine
the complete behavior on all graphs, in the sense of the following lemma.

Lemma 5.9. Let e be an expression in N (di,�1).

1. If e(A
1

) = ; then e ⌘ ;.

2. If e(A
1

) = id(A
1

) then e ⌘ id.

3. If e(A
2

) = R(A
2

) then e ⌘ R.

4. If e(A
2

) = di(A
2

) then e ⌘ di.

5. If e(A
1

) = di(A
1

) then e(A
2

) = di(A
2

) or e(A
2

) = R(A
2

).

The proof of Lemma 5.9 can be proven using the same technique as
in the proof of Lemma 4.11. We are now ready for the proof of Proposi-
tion 5.7.

Proof of Proposition 5.7. Let Q be the Boolean query R\ id 6= ;. Suppose
for the sake of contradiction that Q is expressed by e

1

✓ e
2

2 {di,�1}✓.
In the remainder of the proof we will only work on the graphs A

1

and
A

2

, whence we can replace + with unions of compositions. Notice that
Q(A

1

) = false. Thus, e
1

6✓ e
2

(A
1

), whence we have e
2

(A
1

) 6= all(A
1

).
Then, we know that e

2

(A
1

) is equal to ;, id(A
1

) or di(A
1

) by Lemma 5.8.
We will now cover each of these scenarios and obtain a contradiction.

If e
2

(A
1

) = ;, then e
2

⌘ ; by Lemma 5.9. Since Q(A
1

) is false,
e
1

(A
1

) 6= ;. Furthermore, since e
1

is monotone, e
1

(A
2

) 6= ;, whence we
have e

1

(A
2

) 6✓ e
2

(A
2

). This, however, contradicts that Q(A
2

) = true.
If e

2

(A
1

) = id(A
1

), then e
2

⌘ id by Lemma 5.9. Since Q(A
1

) is false,
e
1

(A
1

)\ di(A
1

) 6= ;. Furthermore, since e
1

is monotone, e
1

(A
2

)\ di(A
2

) 6=
;, whence we have e

1

(A
2

) 6✓ e
2

(A
2

). This, however, contradicts that
Q(A

2

) = true.
Finally, if e

2

(A
1

) = di(A
1

), then e
2

(A
2

) = di(A
2

) or e
2

(A
2

) = R(A
2

)
by Lemma 5.9. Suppose that e

2

(A
2

) = di(A
2

), then by Lemma 5.9, e
2

⌘

64 Comparing different languages under different modalities

Figure 5.2: Graphs used in the proof of Proposition 5.10.

di. Since Q(A
1

) is false, e
1

(A
1

) \ id(A
1

) 6= ;. Furthermore, since e
1

is
monotone, e

1

(A
2

) \ id(A
2

) 6= ;, whence we have e
1

(A
2

) 6✓ e
2

(A
2

). This,
however, contradicts that Q(A

2

) = true. On the other hand, suppose that
e
2

(A
2

) = R(A
2

). Since Q(A
2

) = true, e
1

(A
2

) equals ; or R(A
2

). In both
cases, e

1

(A
1

) ✓ e
2

(A
1

) by Lemma 5.9. This, however, contradicts that
Q(A

1

) = false.

5.1.4 Converse

In this section, we have a look at the case where converse is missing. Here,
there are two cases: ⇡ 2 fF

2

or ⇡ 62 fF
2

. In the former case, the largest F
2

we have to consider is {⇡,\,+,�}, which we do not have to consider due
to the presence of di↵erence.

On the other hand, if ⇡ 62 fF
2

, then F
2

is contained in {�,\,+} or
{di,+}. Indeed, adding any other feature to F

2

adds �1 or ⇡. Since we do
not have to consider {�,\,+}, we focus on {di,+}.

Proposition 5.10. Let R be a relation name. The query R2�R�1�R2 6= ;
is not in {di,+}✓.

Proof. Let Q be the query R2 � R�1 � R2 6= ;. Let G
1

be the top and
G

2

be the bottom graph in Figure 5.2. Since our graphs are finite, the
set {(e(G

1

), e(G
2

)) | e 2 N (di,+)} is finite. Hence, it can be computed
by a computer program. Thus, we can also compute {(e

1

✓ e
2

(G
1

), e
1

✓
e
2

(G
2

)) | e
1

, e
2

2 N (di,+)}. We have verified that (true, false) is not in
this set. Therefore, Q is not in {di,+}✓ since Q is true on G

1

and false on
G

2

.

5.1 Comparing nonemptiness to containment for graph queries 65

5.1.5 Transitive closure

In this section we have a look at the case where transitive closure is missing.
Here, the largest F

2

we have to consider is {di,�,�1}, which we do not
have to consider due to the presence of di↵erence. Hence, for transitive
closure there is nothing to prove.

5.1.6 Diversity

In this section, we have a look at the case where diversity is missing. Here,
the largest F

2

we have to consider is {�1, all,⇡,\,+}. Let id
1

be a single
self-loop displayed in Figure 4.2 and K

3

be the complete graph with three
nodes displayed in Figure 3.2. Notice that di 6= ; is false on id

1

and true
on K

3

. By Lemma 4.29, this is not possible in {�1, all,⇡,\,+}✓. Hence
we have the following:

Proposition 5.11. Let R be a relation name. The Boolean query di 6= ;
is not in {�1, all,⇡,\,+}✓.

5.1.7 Projection

In this section, we have a look at the case where one of the projections is
missing. Here, the largest F

2

we have to consider is {di,�1,+}. Unfortu-
nately, we have not been able to prove Conjecture 5.3 for {di,�1,+} and
most of its subfragments. However, we have been able to prove results for
certain subsets of F

2

✓. These results are summarized in Propositions 5.12
and 5.13. The following proof was suggested to us by Jelle Hellings [27].

Proposition 5.12. Let R be a relation name. The Boolean query R �
⇡
1

(R) � di �M � di �M � di � ⇡
2

(R) �R 6= ; where M = ⇡
2

(R) � ⇡
2

(R2 � di)
is not in {di,+}✓.

Proof. Let Q be the query R � ⇡
1

(R) � di �M � di �M � di � ⇡
2

(R) �R 6= ;
where M = ⇡

2

(R) � ⇡
2

(R2 � di). Let G
1

be the left and G
2

be the right
graph in Figure 5.3. Using the same brute-force method as outlined in the
proof of Proposition 5.10 we can establish that no query in {di,+}✓ can
be false on G

1

and true on G
2

. Therefore, Q is not in {di,+}✓ since Q is
false on G

1

and true on G
2

.

Notice that we have used projection as well as diversity to establish
the separation in Proposition 5.12. The case without using diversity in the
separating query is still open.

66 Comparing different languages under different modalities

Figure 5.3: Graphs used in the proof of Proposition 5.12.

Figure 5.4: The Boolean query in Proposition 5.13 matches this graph
pattern.

Next, we turn our attention to results where only projection is needed
to establish separation.

Proposition 5.13. Let R be a relation name. The Boolean query

⇡
1

(R4�⇡
2

(⇡
1

(R4)�R))�⇡
1

(R5�⇡
2

(⇡
1

(R5)�R))�⇡
1

(R6�⇡
2

(⇡
1

(R6)�R)) 6= ;

is not expressible by e
1

✓ e
2

where e
1

and e
2

have one of the following
properties:

1. e
1

and e
2

are binary relation queries where e
1

is monotone and e
2

is
additive.

2. e
1

and e
2

are both union-free expressions in N (all,�1).

The query in the above proposition seems rather complicated. However,
it simply matches the graph pattern in Figure 5.4.

5.1 Comparing nonemptiness to containment for graph queries 67

Since expressions in N (�1,+) are monotone as well as additive, we
directly we have the following corollary:

Corollary 5.14. Let R be a relation name. The Boolean query

⇡
1

(R4�⇡
2

(⇡
1

(R4)�R))�⇡
1

(R5�⇡
2

(⇡
1

(R5)�R))�⇡
1

(R6�⇡
2

(⇡
1

(R6)�R)) 6= ;

is not in {�1,+}✓.

To prove Proposition 5.13 we first need several technical lemmas:

Lemma 5.15. Let e
1

and e
2

be binary relation queries. If e
1

is monotone,
e
2

is additive and e
1

✓ e
2

is not constant, then e
1

✓ e
2

is not monotone.

Proof. Since e
1

✓ e
2

is not constant, there exist two domain disjoint in-
stances G

1

and G
2

such that e
1

(G
1

) ✓ e
2

(G
1

) and e
1

(G
2

) 6✓ e
2

(G
2

). Since
e
1

is monotone, e
1

(G
1

) [e
1

(G
2

) ✓ e
1

(G
1

[G
2

). Furthermore, since e
2

is
additive, e

2

(G
1

[G
2

) = e
2

(G
1

) [e
2

(G
2

). Hence, we have

e
1

(G
1

[G
2

) ✓ e
2

(G
1

[G
2

)) e
1

(G
1

) [e
1

(G
2

) ✓ e
2

(G
1

) [e
2

(G
2

).

The right hand containment is not possible, since G
1

and G
2

are domain
disjoint and e(G) ✓ adom(G)2 for any graph G and expression e. There-
fore, e

1

(G
1

[G
2

) 6✓ e
2

(G
1

[G
2

), whence e
1

✓ e
2

is not monotone.

We have a similar lemma for union-free expressions in N (�1, all).

Lemma 5.16. Let e
1

and e
2

are union-free expressions in N (�1, all). If
e
1

✓ e
2

is monotone, then it is expressible in {�1, all}6=;.

Lemma 5.16 directly follows from Theorem 8.1. Indeed, this is because
union-free expressions in N (�1, all) are expressible by (unsafe) CQs.

Using Lemma 5.16 we can finally prove Proposition 5.13.

Proof of Proposition 5.13. Let Q be the Boolean query

⇡
1

(R4�⇡
2

(⇡
1

(R4)�R))�⇡
1

(R5�⇡
2

(⇡
1

(R5)�R))�⇡
1

(R6�⇡
2

(⇡
1

(R6)�R)) 6= ;.

It is know that Q is not in {di,�1,+} 6=; [21, Proposition 5.2].
(1) Suppose for the sake of contradiction that e

1

✓ e
2

2 {di,�1,+}✓
expresses Q where e

1

is monotone and e
2

is additive. By Lemma 5.15, e
1

✓
e
2

has to be constant since Q is monotone. However, this is a contradiction,
since Q is not constant.

68 Comparing different languages under different modalities

(2) Suppose for the sake of contradiction that e
1

✓ e
2

2 {all,�1}✓
expresses Q where e

1

and e
2

are both union-free. Since Q is monotone,
e
1

✓ e
2

is in {�1, all} 6=; by Lemma 5.16. Since {�1, all} 6=; is subsumed by
{�1, di,+} 6=;, we have obtained a contradiction.

6
Closure under boolean

connectives

In Section 2.2, we already observed that the question whether F=; is sub-
sumed by F 6=; is equivalent to whether F 6=; is closed under negation. A
next logical step is to consider the logical negation of F✓. To this end,
consider the noncontainment modality: F 6✓ contains the queries express-
ible in the form q

1

* q
2

with q
1

and q
2

k-ary queries in F . In Section 6.1,
we compare noncontainment to containment. We do not have to com-
pare noncontainment to the other modalities since A ✓ B if and only if
¬A ✓ ¬B.

Besides closure under negation, we have closure under conjunction. A
family B of Boolean queries is closed under conjunction if for every pair of
Boolean queries q

1

and q
2

in B, also q
1

^ q
2

belongs to B. We investigate
this in Section 6.2.

6.1 Comparing containment to noncontainment

The goal of this chapter is to determine whether F✓ is closed under nega-
tion for fixed query languages F . Formally, for particular query languages
F , we want to answer the following question:

F✓ ?

✓ F 6✓.

For all family of queries F , we can infer F 6✓ ✓ F✓ if F 6✓ ✓ F 6=; ✓ F✓.
The first inequality is equivalent to F✓ ✓ F=;. Hence, from Proposi-

69

70 Closure under boolean connectives

tion 3.1 we can infer that the containment modality is closed under nega-
tion if F has set di↵erence, contains a never-empty query, and has tests or
cylindrification. An alternative route could be taken using F 6✓ ✓ F 6=; ✓
F=; ✓ F✓, which can be done if F has set di↵erence, complementation
and cylindrification, and contains the empty query. Both routes suggest
that closure under negation for the containment modality requires quite a
strong query language. We will confirm this in the paragraphs below by
showing that it does not hold for CQs or UCQs (as may be expected), and
that it holds only for graph query language fragments that include both
set di↵erence and all.

In terms of a general negative result, we can only o↵er the straight-
forward inference that F 6✓ 6✓ F✓ whenever F is additive and contains the
empty query, and F 6=; contains a non-constant query. Indeed, using the
empty query we have F 6=; ✓ F 6✓, and Proposition 3.7 yields F 6=; 6✓ F✓,
whence we also have F 6✓ 6✓ F✓.

Turning to conjunctive queries, (U)CQ 6✓ 6✓ (U)CQ✓ follows immedi-
ately from the instance Z used in the proof of Theorem 3.9. On Z, every
Boolean query in UCQ✓ returns true, whereas the constant false query is
easily expressed in CQ 6✓.

For the navigational graph query language fragments, closure under
negation of the containment modality can be characterized as follows.

Theorem 6.1. Let F be a fragment. Then, F 6✓ ✓ F✓ i↵ all 2 eF and
� 2 F .

The if-direction directly follows from the general observations made in
the beginning of this Section 6.1. To prove the only-if direction, recall
that N (NoAll) is additive. Hence, NoAll 6✓ 6✓ NoAll✓ also follows from the
general observations made above. So, the only thing left to show is that
NoDi↵ 6✓ ✓ NoDi↵✓. Let B be the bow tie and K

3

be the complete graph
with three nodes both displayed in Figure 3.2. Notice that all 6✓ R is true
on B and false on K

3

. By Lemma 4.25, this is not possible in NoDi↵✓.
Hence, we have the following:

Lemma 6.2. Let R be a relation schema. Then the Boolean query “R is
not the full relation”, formally, all * R, is not in NoDi↵✓.

6.2 Closure under conjunction 71

6.2 Closure under conjunction

The goal of this chapter is to investigate the conjunctive closure of Boolean
query families. Formally, for particular Boolean query families B, we want
to answer the following question:

B^ ?

✓ B

where B^ = {q
1

^ . . . ^ qn | n 2 N ^ qi 2 B for i = 1, . . . , n}, the finite
conjunctive closure of B.

In the remainder of this section we will work with Boolean query fam-
ilies that stem from conjunctive queries and the navigational query lan-
guages (introduced in Section 2.1.1) under the base modalities.

For the navigational graph query languages, we will only consider the
(co)projection restricted fragments, and check whether they are closed un-
der conjunction in Section 6.2.1.

For (unions of) conjunctive queries, we will check whether the empti-
ness and nonemptiness modalities are closed under conjunction in Sec-
tion 6.2.2. Furthermore, for conjunctive queries we also consider the
same question under the containment modality. For unions of conjunc-
tive queries, on the other hand, we leave this question open.

6.2.1 Navigational graph query languages

For the navigational graph query language fragments, which all include
the union operation, closure under conjunction of the emptiness modality
is trivial, since (q

1

= ;) ^ (q
2

= ;) is equivalent to q
1

[q
2

= ;. For the
nonemptiness modality, we can characterize closure under conjunction as
follows.

Theorem 6.3. Let F be a (co)projection restricted fragment. Then, F 6=;
�

is closed under conjunction if and only if

• either all 2 eF , or

• the database schema � consists of a single binary relation name and
F ✓ {+}.

Proof. For the if-direction, we have two cases. If eF has all then we can
directly express (e

1

6= ;) ^ (e
2

6= ;) by e
1

� all � e
2

6= ;. If F ✓ {+} and
� is a singleton {R}, the language N

�

(F) is very simple. It is easy to see

72 Closure under boolean connectives

1 32 4 75 6

Figure 6.1: Graphs used to prove Lemma 6.5 and Theorem 6.12.

that for every expression e in this language there exists a natural number
k such that e 6= ; is equivalent to Rk 6= ;. The conjunction of e

1

6= ; and
e
2

6= ; is then expressed using the maximum of the two numbers.
For the only-if direction, we also have two cases. First, if eF does not

have all and � is not a singleton, we can apply the following:

Lemma 6.4. For two binary relation names R and T , the Boolean query
“both R and T are nonempty”, formally, R 6= ;^T 6= ;, is not in NoAll 6=;.

Proof. Denote the Boolean query R 6= ; ^ T 6= ; by q, and suppose q
belongs to NoAll 6=; as e 6= ;. Let G = {R(a, b)} and H = {T (c, d)}. Since
q(G) = q(H) = false and q(G [H) = true, we have e(G) = ;, e(H) = ;
and e(G [H) 6= ;. By the Additivity Lemma, however, e(G [H) =
e(G) [e(H) = ;, a contradiction.

The second case is that eF does not have all and F * {id,+}. Then eF
must contain at least one of the features: converse, projection, or intersec-
tion. The case with intersection is covered by the following:

Lemma 6.5. For every binary relation name R 2 �, the Boolean query
R2 \R 6= ; ^R3 \R 6= ; is not in NoAll 6=;.

Proof. Denote the Boolean query R2 \ R 6= ; ^ R3 \ R 6= ; by q, and
suppose q belongs to NoAll 6=; as e 6= ;. Let G be the left and H be the
right graph in Figure 6.1. Since q(G) = q(H) = false and q(G[H) = true,
we have e(G) = ;, e(H) = ; and e(G[H) 6= ;. By the Additivity Lemma,
however, e(G [H) = e(G) [e(H) = ;, a contradiction.

The case with converse is covered by the following:

Lemma 6.6. For every binary relation name R 2 �, the Boolean query
R2 �R�1 �R3 6= ; ^R3 �R�1 �R2 6= ; is not in NoAll 6=;.

6.2 Closure under conjunction 73

Figure 6.2: Graphs used for the proof of Lemma 6.6.

Before we can prove this we need the following technical lemma.

Lemma 6.7 ([25]). There is no homomorphism from G
1

to G
2

and vice
versa, where G

1

and G
2

are the top and bottom graphs of Figure 6.2.

The lemma follows from the fact that di↵erent directed paths of the
same length are cores which are not comparable with respect to homomor-
phisms [25].

We are now ready for the proof of Lemma 6.6.

Proof of Lemma 6.6. Denote the Boolean queries R2 � R�1 � R3 6= ; and
R3 �R�1 � R2 6= ; by q

1

and q
2

respectively. Consider the graphs G
1

and
G

2

shown at the top and bottom of Figure 6.2. For every graph G, we
have q

1

(G) = true i↵ there is a homomorphism G
1

! G, and similarly for
q
2

and G
2

. Hence, q
1

(G
2

) = false and q
2

(G
1

) = false by Lemma 6.7.
On the other hand, q

1

^q
2

(G
1

[G
2

) = true. Now suppose that q
1

^q
2

is
expressed by e 6= ; 2 NoAll 6=;. Then, e(G

1

) = e(G
1

) = ; and e(G
1

[G
2

) 6=
;. By the Additivity Lemma, however, e(G

1

[G
2

) = e(G
1

)[e(G
2

) = ;, a
contradiction.

This lemma also covers the case with projection. Indeed, both con-
juncts are in {�1} 6=;, which is known to be subsumed by {⇡} 6=; (cf. Theo-
rem 4.1). Hence, the lemma also gives a conjunction of {⇡} 6=; queries that
is not in NoAll 6=;.

74 Closure under boolean connectives

Under the containment modality, we can only o↵er the following general
result:

Proposition 6.8. Let F be a fragment. If � 2 F , then F✓ is closed under
conjunction.

Indeed, we can express e
1

✓ e
2

^ e
3

✓ e
4

as (e
1

� e
2

) [(e
3

� e
4

) ✓ ;.
At this point we have not been able to prove the converse of the above
proposition, although we conjecture that set di↵erence is indeed necessary.
The challenge is to find a conjunction of Boolean queries in NoDi↵✓ that
is not in NoDi↵✓. Even though we have not been able to find such a
conjunction, we have been able to prove that certain subfragments NoDi↵✓

are not closed under conjunction.

Proposition 6.9. Let R be a relation name. The Boolean query R3 ✓
id ^R2 ✓ R is in {di,�1,+}✓.

Proof. Let Q be the Boolean query R3 ✓ id ^R2 ✓ R, id
1

be the graph in
Figure 4.2 and c

2

= {R(1, 2), R(2, 3)} (the bottom graph in Figure 4.1).
Suppose for the sake of contradiction that e

1

✓ e
2

2 {di,�1,+}✓ expresses
Q. Then, e

2

(K
3

) equals all(K
3

), di(K
3

), id(K
3

) or ;(K
3

) by Lemma 4.10.
In the remainder of the proof we will only work on the graphs K

3

, c
2

, c+
2

and id
2

, whence we can replace + with unions of compositions. We will
now cover each of these scenarios and obtain a contradiction.

If e
2

(K
3

) = all(K
3

), then e
1

(K
3

) ✓ e
2

(K
3

). We have thus obtained a
contradiction, since Q(K

3

) = false.
If e

2

(K
3

) = id(K
3

), then e
2

⌘ id by Lemma 4.11. Since Q(c
2

) = false,
e
1

(c
2

) 6✓ e
2

(c
2

), whence we have e
1

(c
2

) \ di(c
2

) 6= ;. Therefore, e
1

(c+
2

) \
di(c+

2

) 6= ;. We have thus obtained a contradiction, since Q(c+
2

) = true.
The case where e

2

(K
3

) = di(K
3

) is analogous.
If e

2

(K
3

) = ;, then e
2

⌘ ;. Clearly, when e
1

6⌘ ;, then e
1

(id
2

) 6= ;. We
have thus contained a contradiction, since Q(id

2

) = true.

Unfortunately, we cannot generalize this result to include coprojection.
This is because every query e

1

✓ e
2

^ e
3

✓ id, such that e
1

(G) 6= ;
if e

3

(G) 6✓ id(G), does not work to establish separation. Indeed, then
e
1

✓ e
2

^ e
3

✓ id is equivalent with e
1

✓ e
2

� ⇡
1

(all � (e
3

\ di)).
Next we look at another subfragment of NoDi↵✓ that is not closed

under conjunction.

Proposition 6.10. Let R be a relation name. The Boolean query R3 ✓
; ^R2 ✓ R is not expressible in {\, id,⇡,�1 ,+}✓.

6.2 Closure under conjunction 75

Proof. Let Q be the Boolean query R3 ✓ ; ^ R2 ✓ R, id
1

be the graph
in Figure 4.2, and c

2

= {R(1, 2), R(2, 3)} (bottom graph in Figure 4.1).
Suppose for the sake of contradiction that e

1

✓ e
2

2 {\, id,⇡,�1 ,+}✓
expresses Q. In the remainder of the proof we will only work on the
graphs c

2

, c+
2

and id
1

, whence we can replace + with unions of compositions
Remember that ei(id1) = R(id

1

) unless ei ⌘ ; for i = 1, 2. Therefore,
if e

2

6⌘ ; then e
1

(id
1

) ✓ e
2

(id
1

). We may thus conclude that e
2

⌘ ;.
Furthermore, if e

1

(c
2

) = ;, then e
1

✓ e
2

does not express Q since Q(c
2

) =
false. On the other hand, if e

1

(c
2

) 6= ;, then e
1

(c+
2

) 6= ; since the language
is monotone. Hence, e

1

✓ e
2

does not express Q since Q(c+
2

) = true.

Unfortunately, we cannot include coprojection here either. Every query
of the form e

1

✓ e
2

^ e
3

✓ ;, such that e
1

(G) 6= ; if e
3

(G) = ;, does not
work to establish separation. Indeed, then e

1

✓ e
2

^ e
3

✓ ; is equivalent
with e

1

✓ e
2

� ⇡
1

(all � e
3

).

6.2.2 Conjunctive queries

Under nonemptiness, both CQ and UCQ are clearly closed under conjunc-
tion. The construction is the same as the one used to express tests (proof
of Theorem 3.9(3)).

Under emptiness, note that this modality is closed under conjunction if
and only if the nonemptiness modality is closed under disjunction. This is
clearly the case for UCQs (precisely because they are closed under union).
For CQs closure under disjunction is captured by the following theorem.

Theorem 6.11. Let � be a database schema. Then, CQ
�

6=; is closed under
disjunction if and only if � only contains at most two unary relations and
no other n-ary relation names with n � 2.

Proof. First, assume that � only contains unary relations, say U
1

, . . . , Un.
Then, Boolean queries in CQ

�

6=; are equivalent to finite conjunctions of
queries that test whether the intersection

T
U2A U is nonempty for some

A ✓ �. Thus, if � only contains two unary relations, say U
1

and U
2

, then
CQ

�

6=; only contains four Boolean queries.

• U
1

and U
2

are both nonempty;

• U
1

is nonempty;

• U
2

is nonempty;

76 Closure under boolean connectives

• U
1

\ U
2

is nonempty;

Now consider q : q
1

6= ; _ q
2

6= ; where q
1

and q
2

are both conjunctive
queries over U

1

and/or U
2

. Then q is equivalent to one of the following:

• U
1

and U
2

are both nonempty;

• U
1

is nonempty;

• U
2

is nonempty;

• U
1

\ U
2

is nonempty;

• U
1

or U
2

is nonempty.

The first four queries are respectively expressed by () U
1

(x), U
2

(y), ()
U
1

(x), () U
2

(x) and () U
1

(x), U
2

(x). The last query, on the other
hand, is equivalent to the constant true query since the empty instance is
not allowed and there are only two relation names. We may thus conclude
that q is also in CQ 6=; as desired.

On the other hand, if � contains at least three unary relations, say
U
1

, U
2

and U
3

, then we can consider the CQs q
1

= () U
1

(x), U
2

(x)
and q

2

= () U
3

(x). Clearly, q
1

_ q
2

6= ; cannot be expressed by the
conjunction of intersection tests.

Finally, suppose that � contains an n > 1-ary relation name. The
queries q

1

= () R3�R�1�R2 and q
2

= () R2�R�1�R3 are isomorphic
to a query over � since we can transform them by replacing R(x, y) with
R(z, . . . , z, x, y). So we may assume that q

1

and q
2

are expressible in CQ
�

.
Suppose now that q

1

6= ; _ q
2

6= ; is expressible by a nonemptiness q 6= ;
in CQ 6=;. Notice that q

1

6= ; _ q
2

6= ; ⌘ q
1

[q
2

6= ;, whence it is a
UCQ. Since q v q

1

[q
2

, we have by the Sagiv–Yannakakis theorem [38]
that, either q v q

1

or q v q
2

. This, however, implies that q
1

(Bq2) 6= ;
or q

2

(Bq1) 6= ;. Hence, there is a homomorphism from Bq1 to Bq2 or vice
versa. This contradicts Lemma 6.7 since Bq1 and Bq2 are isomorphic to
the top and bottom graphs in Figure 6.2 respectively.

When � contains a binary relation, the result already follows from tech-
nical considerations regarding principal filters in the lattice of cores [25].
Indeed, a Boolean CQ is a principal filter and the disjunction of two
Boolean CQs corresponds to the union of two principal filters. The re-
sult then follows from the fact that the union of two principal filters of
incomparable cores is not principal.

6.2 Closure under conjunction 77

Finally, we have a look at CQs under containment. We are going to
show:

Theorem 6.12. Let � be a database schema. Then, CQ
�

✓ is closed under
conjunction if and only if � only contains one unary relation and no other
n-ary relation names with n � 2.

We first establish the following lemma.

Lemma 6.13. There is no homomorphism from G
1

to G
2

and vice versa,
where G

1

and G
2

are the left and right graphs of Figure 6.1.

Proof. There cannot be homomorphism from G
2

to G
1

since there is a
path of length 3 in G

2

but not in G
1

.
Suppose for the sake of contradiction that there is a homomorphism

h : G
1

! G
2

. Then h has to map 1 to 4 or 1 to 5 since only in 4 and 5
there start paths of length 2. In the former, 3 has to be mapped to 6 and
in the latter 3 has to be mapped to 7. However, (4, 6) and (5, 7) are not
in G

2

. So such a homomorphism cannot exist.

We are now ready for Theorem 6.12.

Proof of Theorem 6.12. First, suppose that � = {U} where U is unary.
We show that in this case CQ

�

✓ only contains two Boolean queries:

1. Q
1

: true

2. Q
2

: (x, y) U(x), U(y) ✓ (x, x) U(x).

Suppose that e
1

✓ e
2

2 CQ
�

✓ where e
1

and e
2

have heads (x
1

, . . . , xn)
and (y

1

, . . . , yn) respectively. If e
1

✓ e
2

is not the constant true Boolean
query, there exists an instance A such that e

1

(A) 6✓ e
2

(A). Then, there
exists i, j such that xi 6= xj and yi = yj since (a, . . . , a) 2 Q(I) for any
CQ over �, any instance I over �, and any a 2 adom(I). Therefore, for
any instance I with at least two elements in adom(I), e

1

6✓ e
2

(I). Thus,
e
1

✓ e
2

is equivalent to Q. We may thus conclude that CQ
�

✓ is closed
under conjunction.

On the other hand, suppose that � contains at least two unary relations
U
1

and U
2

. We now show that Q : U
1

✓ U
2

^U
2

✓ U
1

is not in CQ
�

✓. Sup-
pose for the sake of contradiction that Q is expressed by e

1

✓ e
2

in CQ
�

✓.
Let I

1

= {U
1

(1)} and I
2

= {U
2

(2)}. Clearly, Q(I
1

) = Q(I
2

) = false,
whence we have e

1

(I
1

) 6= ; and e
1

(I
2

) 6= ;. Thus, there is a homomor-
phism from Be1 into I

1

and Be1 into I
2

. Therefore, Be1 = ;. Then, due to

78 Closure under boolean connectives

safety of CQs, the head of e
1

is empty. Hence, Q is equivalent to e
2

6= ;,
which is monotone. This, however, is a contradiction since U

1

= U
2

is not
monotone.

Finally, suppose that � contains at least one nonunary relation R.
Define

• Q
1

as (x, y) R(x, z, , . . . ,), R(z, y, , . . . ,), R(x, y, , . . . ,)

• Q
2

as (x, y) R(x, z
1

, , . . . ,), R(z
1

, z
2

, , . . . ,), R(z
2

, y, , . . . ,),

R(x, y, , . . . ,)

We now show that Q : Q
1

✓ Q
2

^ Q
2

✓ Q
1

is not in CQ
�

✓. Let G
1

and G
2

be the left and right graphs in Figure 6.1 respectively. Clearly,
we can identify BQ1 with G

1

and BQ2 with G
2

. Suppose for the sake of
contradiction that e

1

✓ e
2

2 CQ
�

✓ expresses Q. We first show that there is
no homomorphism from G

1

into Be1 . Suppose there is a homomorphism h
from G

1

into Be1 . Clearly, e1(G2

) 6= ; since Q(G
2

) = false. Hence, there is
a homomorphism f from Be1 into G

2

. Then, f �h is a homomorphism from
G

1

to G
2

, which contradicts Lemma 6.13. Analogously, we can establish
that there is no homomorphism from G

2

into Be1 .
Since there is no homomorphism from G

1

and G
2

into Be1 , Q1

(Be1) = ;
and Q

2

(Be1) = ;, whence we have Q(Be1) = true. Thus, also e
1

(Be1) ✓
e
2

(Be1). Since Be1 is the body of e
1

, we have that e
1

v e
2

. This is a
contradiction since Q is not the constant true query.

The question whether unions of conjunctive queries under the contain-
ment modality are closed under conjunction is still open.

7
Succinctness of converse

elimination for graph query
languages under

nonemptiness

In Chapter 4, we have investigated the second theme where di↵erent query
languages are compared under the same fixed base modality. In par-
ticular, we investigated this theme for navigational query languages for
each of the three base modalities. For nonemptiness, the result is out-
lined in Theorem 4.1 for (co)projection restricted fragments. Therefore,
for (co)projection restricted fragments F , where eF contains neither inter-
section nor transitive closure, this theorem tells us that Boolean queries
in F 6=; are also in bF 6=;, and thus e↵ectively eliminating converse (at the
expense of adding projection). We refer to this phenomenon as converse
elimination. Furthermore, we say that a fragment F admits converse elim-
ination if �1 2 F , \ 62 eF and + 62 F . By Theorem 4.1, there thus exists
a function that translates expressions e 2 N (F) to equivalent expressions
e0 2 N (bF) for (co)projection restricted fragments F that admit converse
elimination.

In the main result of this chapter, we prove that converse elimination
always leads to at least an exponential blowup in degree. The degree of
an expression e, denoted by degree(e), is the maximum depth of nested
applications of composition, projection and coprojection in e. For example,

79

80 Succinctness of converse elimination under nonemptiness

the degree of R �R is 1, while the degree of both R � (R �R) and ⇡
1

(R �R)
is 2. Intuitively, the degree of e corresponds to the quantifier rank of the
standard translation of e into FO3. Formally, the succinctness result for
converse elimination can then be summarized as follows.

Theorem 7.1. Let F be a (co)projection restricted fragment that admits
converse elimination. Furthermore, let h be a function that maps expres-
sions in e 2 N (F) to equivalent expressions e0 2 N (bF). If f : N! N is a
function such that for every e 2 N (F) we have degree(h(e)) f(degree(e)),
then f 6= o(2n).

To prove Theorem 7.1 we will employ invariance results under the no-
tion of bisimulation below. In essence, this notion is based on the notion of
bisimulation known from arrow logics [35]. This notion has been adapted
to our setting [20]. We recall the basic definitions.

Let G = (G, a, b) denote a marked graph, i.e., a graph G with a, b 2
adom(G). For a set of features F , N (F)k denotes the set of expressions in
N (F) of degree at most k.

In what follows, we are only concerned with bisimulation results re-
garding N (�, di). The following is an appropriate notion of bisimulation
for this language.

Definition 7.2 (Bisimilarity). Let k be a natural number and let G

1

=
(G

1

, a
1

, b
1

) and G

2

= (G
2

, a
2

, b
2

) be marked graphs. We say that G

1

is bisimilar to G

2

up to depth k, denoted G

1

'k G

2

, if the following
conditions are satisfied:

Atoms a
1

= b
1

if and only if a
2

= b
2

; and (a
1

, b
1

) 2 G
1

(R) if and only if
(a

2

, b
2

) 2 G
2

(R), for every R 2 �;

Forth if k > 0, then, for every c
1

in adom(G
1

), there exists some c
2

in
adom(G

2

) such that

(G
1

, a
1

, c
1

) 'k�1

(G
2

, a
2

, c
2

) and (G
1

, c
1

, b
1

) 'k�1

(G
2

, c
2

, b
2

);

Back if k > 0, then, for every c
2

in adom(G
2

), there exists some c
1

in
adom(G

1

) such that

(G
1

, a
1

, c
1

) 'k�1

(G
2

, a
2

, c
2

) and (G
1

, c
1

, b
1

) 'k�1

(G
2

, c
2

, b
2

).

We also say that there is a bisimulation of depth k between G

1

and
G

2

if G
1

'k G

2

.
Recall the following adequacy theorem for bisimulations.

Succinctness of converse elimination under nonemptiness 81

Y

W

T

y1 y2 ym ym+1

x1 x2 z2
z1

w1 w2 wm wm+1wm
2 +1

ym
2 +1

t1 t2 tm tm+1tm
2 +1

u
1

u
2

um um+1

U

V

W 0

x0
1 x0

2

z0
2

z0
1

w0
1

w0
2

w0
m w0

m+1

v
1

v
2

vm vm+1

vm
2 +1

um
2 +1

w0
m
2 +1

Figure 7.1: Graphs Gm
1

(top) and Gm
2

(bottom) used to establish the ex-
ponential blowup during converse elimination in Theorem 7.1.

Theorem 7.3 ([20]). Let k be a natural number; and let G
1

= (G
1

, a
1

, b
1

)
and G

2

= (G
2

, a
2

, b
2

) be marked graphs. We have, G
1

'k G

2

i↵ (a
1

, b
1

) 2
e(G

1

), (a
2

, b
2

) 2 e(G
2

) for every e 2 N (�, di)k.

Intuitively, this proposition tells us that marked graphs are indistin-
guishable by k-degree path queries i↵ these graphs are bisimilar up to
depth k.

To show Theorem 7, we will establish the following bisimulations be-
tween the classes of graphs Gm

1

and Gm
2

displayed in Figure 7.1:

Theorem 7.4. For every pair (a
1

, b
1

) 2 adom(Gm
1

)2 there exists another
pair (a

2

, b
2

) 2 adom(Gm
2

)2 such that (Gm
1

, a
1

, b
1

) 'm/2�1

(Gm
2

, a
2

, b
2

).

We will prove this theorem in Section 7.1.
Armed with the bisimulations in Theorem 7.4, we are finally ready to

prove Theorem 7.1.

Proof of Theorem 7.1. Let a function f : N ! N be given as in the state-
ment of Theorem 7.1. Now suppose for the sake of contradiction that
f(n) = o(2n). Let Q be the path query R2 � (R � R�1)+ � R2. Define Gn

as the class of graphs with an active domain of size at most n and define
Qn as the expression Q where every subexpression of the form f+ in Q is

82 Succinctness of converse elimination under nonemptiness

replaced with [ni=1

f i. Note that expressions of the form f+ are equivalent
to the expression [ni=1

f i when we only consider graphs in Gn. Therefore
Qn is equivalent to Q on Gn. Notice that if we carefully arrange the compo-
sitions in f i, we obtain that degree([ni=1

f i) = degree(f) + dlog
2

ne. Hence
we can conclude that degree(Qn) = dlog

2

ne+ 3.
We now show that f(degree(Qn)) = o(n). Since f(n) = o(2n), we have

by definition that limn!1 f(n)/2n = 0. Notice that degree(Qn) goes to
infinity as n goes to infinity. Therefore, we have that

lim
n!1

f(degree(Qn))/2
degree(Qn) = 0

as well. We now show that this last limit implies that f(degree(Qn)) =
o(n):

0 = lim
n!1

f(degree(Qn))

2degree(Qn)
= lim

n!1

f(dlog
2

ne+ 3)

2dlog2 ne+3

� lim
n!1

f(dlog
2

ne+ 3)

16n
� 0

Notice that Qn is an expression in N (�1), whence by assumption h(Qn)
is an expression in N (⇡). We now show that there exists a natural number
k such that for every m � k, h(Q

3m+7

) is an expression in N (⇡)m/2�1

.
Since f(degree(Qn)) = o(n), also f(degree(Q

3m+7

)) = o(3m+ 7). Fur-
thermore, we may conclude that f(degree(Q

3m+7

)) = o(m/2 � 1) since
o(3m+ 7) = o(m/2� 1). Thus by definition,

lim
m!1

f(degree(Qn))/(m/2� 1) = 0.

Hence

8" > 0, 9k 2 N, 8m 2 N : m � k) f(degree(Q
3m+7

))

m/2� 1
< ".

Hence if we set " = 1, we can find a k such that for every m � k we
have f(degree(Q

3m+7

))/(m/2�1) < 1, or equivalently f(degree(Q
3m+7

)) <
m/2 � 1. This implies that degree(h(Q

3m+7

)) < m/2 � 1 for any m � k
since it is given that degree(h(Qn)) f(degree(Qn)) for any n. Thus we
may conclude that h(Q

3m+7

) is an expression in N (⇡)m/2�1

for any m � k.
Now let m be a multiple of four, greater then k, and let Gm

1

be the
top and Gm

2

be the bottom graph in Figure 7.1. Since |adom(Gm
1

)| =
|adom(Gm

2

)| = 3m+7, we know that Q
3m+7

agrees with Q on Gm
1

and Gm
2

.

7.1 A bisimulation result 83

Thus Q
3m+7

(Gm
1

) 6= ; since Q(Gm
1

) is nonempty. Furthermore, because
h(Q

3m+7

) is equivalent to Q
3m+7

at the level of Boolean queries, it must
be that h(Q

3m+7

)(Gm
1

) 6= ;. Thus let (a
1

, b
1

) 2 h(Q
3m+7

)(Gm
1

). By Theo-
rem 7.4 there exists (a

2

, b
2

) such that (Gm
1

, a
1

, b
1

) 'm/2�1

(Gm
2

, a
2

, b
2

).
Then by Theorem 7.3 also (a

2

, b
2

) 2 h(Q
3m+7

)(Gm
2

). However, since
Q(Gm

2

) is clearly empty, Q
3m+7

(Gm
2

) as well as h(Q
3m+7

)(Gm
2

) should be
empty. We have thus obtained a contradiction. Thus we may conclude
that f 6= o(2n).

7.1 A bisimulation result

In this section, we prove Theorem 7.4. For the remainder of this section
let m > 4 be an integer multiple of four, let Gm

1

be the graph at the top
and Gm

2

be the graph at the bottom in Figure 7.1. It is important to note
that these graphs have the displayed form only when m is a multiple of
four.

Before we move to the proof of Theorem 7.4, we introduce some termi-
nology. We say that a pair (x, y) 2 adom(Gm

1

)⇥ adom(Gm
2

) is valid if the
following conditions hold:

• if x 2 {yi, wi, ti} then y 2 {ui, vi, w0
i};

• if x = x
1

then y = x0
1

;

• if x = x
2

then y = x0
2

;

• if x = z
1

then y = z0
1

;

• if x = z
2

then y = z0
2

.

Intuitively, the pair (x, y) is valid if x and y are displayed in the same
column in Figure 7.1, so formally, instead of saying that (x, y) is valid,
we also say that x and y are in the same column. Moreover, we extend
this terminology for nodes x and y belonging to the same graph, with the
obvious meaning.

Definition 7.5. A 4-tuple (a
1

, b
1

, a
2

, b
2

) 2 adom(Gm
1

)2 ⇥ adom(Gm
2

)2 is
valid if the following conditions hold:

(a) (a
1

, a
2

) and (b
1

, b
2

) are valid;

84 Succinctness of converse elimination under nonemptiness

(b) (a
1

, b
1

) 2 Gm
1

if and only if (a
2

, b
2

) 2 Gm
2

; and a
1

= b
1

if and only if
a
2

= b
2

. Note that this is the Atoms condition for bisimilarity;

(c) if a
1

= x
2

, b
1

= y
2

and a
2

= x0
2

, then b
2

= u
2

;

(d) if a
1

= x
2

, a
2

= x0
2

and b
2

= u
2

, then b
1

= y
2

.

Intuitively, a valid quadruple is a potential starting point for a bisim-
ulation between Gm

1

and Gm
2

.
For any node x 2 adom(Gm

1

) we introduce the following terminology.

• If x equals x
1

or x
2

, or yi, wi or ti with 0 i m/2+ 1, we call x a
left element.

• If x is not a left element, i.e., x equals z
1

or z
2

, or yi, wi or ti with
m/2 + 1 < i m+ 1, we call x a right element.

• If x equals yi for any i, we call x a Y element. Analogously, if x
equals wi, ti, xi, or zi for any i, we call x a W , T , X or Z element,
respectively.

Clearly we can combine these adjectives and thus speak about a Y left
element, for example.

For any node y 2 adom(Gm
2

) we can use the analogous terminology of
left, right, U , V , W 0, X 0 and Z 0 elements with analogous meaning.

7.1 A bisimulation result 85

Let us now define a function f mapping valid pairs to natural numbers:

f(d, e) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

m/2 if d = yi left and e = ui

i� 1 if d = yi left and (e = vi or e = w0
i)

m+ 1� i if d = yi right and (e = ui or e = w0
i)

m/2 if d = yi right and e = vi

i� 1 if (d = wi or d = ti) left and e = ui

m/2 if (d = wi or d = ti) left and (e = vi or e = w0
i)

m/2 if (d = wi or d = ti) right and (e = ui or e = w0
i)

m+ 1� i if (d = wi or d = ti) right and e = vi

i� 1 if d = ti left and e = ui

m/2 if d = ti left and (e = vi or e = w0
i)

m/2 if d = ti right and (e = ui or e = w0
i)

m+ 1� i if d = ti right and e = vi

m/2 if d = xi and e = x0i
m/2 if d = zi and e = z0i

Intuitively, f(d, e) = m/2 only when d and e are in the middle column or
d and e are on the side of chains with similar endings in Figure 7.1, i.e., d
is Y left i↵ e is U left, and d is Y right i↵ e is V right. In all other cases
f(d, e) < m/2. For example, let us examine the values for the valid pairs
(x, y), (w, z), (a

1

, a
2

) and (b
1

, b
2

) in the graphs G8

1

and G8

2

displayed in
Figure 7.2. In this case m = 8, thus f(x, y) = 2, f(w, z) = m+ 1� 7 = 2,
f(a

1

, a
2

) = m/2 = 4 and f(b
1

, b
2

) = 3.
Our key idea to establish Theorem 7.4 is to show that min(f(a

1

, a
2

),
f(b

1

, b
2

)) is a lower bound on the bisimulation depth between (Gm
1

, a
1

, b
1

)
and (Gm

2

, a
2

, b
2

); this will be our key Lemma 7.22. Before proving this in
detail, we intuitively describe the overall strategy.

To establish a bisimulation of depth d between (Gm
1

, a
1

, b
1

) and (Gm
2

,
a
2

, b
2

), we need that (a
1

, b
1

, a
2

, b
2

) satisfies the Atoms condition, and we
need that the Forth and Back conditions hold. A first characteristic of our
strategy is that we take care to maintain not just the Atoms condition,
but the stronger property of validity from Definition 7.5. Viewing a bisim-
ulation argument as a game, the validity property provides tighter control
on the possible game situations that can arise.

For the Forth condition we need to find a node c
2

2 adom(Gm
2

) for
every node c

1

2 adom(Gm
1

) such that there is a bisimulation of depth d�1

86 Succinctness of converse elimination under nonemptiness

Y

W

T

x

a
1

b
1

w

U

V

W 0
b
2

y

a
2

z

Figure 7.2: The graphs G8

1

at the top, and G8

2

at the bottom. Notice here
that (x, y), (w, z), (a

1

, a
2

) and (b
1

, b
2

) are valid pairs. Since m = 8 in this
case, we have that f(x, y) = 2, f(w, z) = m+1�7 = 2, f(a

1

, b
2

) = m/2 = 4
and f(b

1

, b
2

) = 3

between (Gm
1

, a
1

, c
1

) and (Gm
2

, c
1

, a
2

), and (Gm
1

, c
1

, b
1

) and (Gm
2

, c
2

, b
2

).
For the Back condition we need to do the same thing except that the roles
of c

1

and c
2

are switched.
Actually, instead of directly working with bisimulations with a cer-

tain depth, we will show that we can pick a c
2

2 adom(Gm
2

) for every
c
1

2 adom(Gm
1

) (and vice versa) that ensures validity of (a
1

, c
1

, a
2

, c
2

) and
(c

1

, b
1

, c
2

, b
2

) while providing a lower bound on f(c
1

, c
2

). This will provide
enough information to prove Lemma 7.22 by induction.

So let us now have an intuitive look at the strategy used in the technical
lemmas to pick such a c

2

2 adom(Gm
2

) for every c
1

2 adom(Gm
1

). First,
remember that we only work with valid quadruples, so c

2

has to be in the
same column as c

1

. This leaves us with three candidate nodes (or just one
in case c

1

is an X or Z element). We pick one of these nodes according to
the following strategy:

1. First, we check whether a
1

= c
1

, c
1

= b
1

, (a
1

, c
1

) is an edge, or
(c

1

, b
1

) is an edge. If this is indeed the case, we say that c
1

is related
to a

1

or b
1

. Here we pick c
2

so that it is related in the same way as c
1

is related to a
1

or b
1

. The relation of c
1

and to a
1

of b
1

ensures that

7.1 A bisimulation result 87

Y

W

T

c
1

a
1

b
1

U

V

W 0
b
2

c
2

a
2

Figure 7.3: An example of the first step in our strategy on the graphs
Gm

1

and Gm
2

with m = 8. Here c
1

is related to b
1

, i.e, (c
1

, b
1

) is an edge.
The node c

2

is thus picked such that (c
2

, b
2

) is an edge. The validity of
(a

1

, b
1

, a
2

, b
2

) then ensures that a
2

is not related to c
2

. Notice also that
f(c

1

, c
2

) = f(b
1

, b
2

)� 1 by definition.

c
1

is in the column next to, or in the same column as a
1

or b
1

. This
implies that f(c

1

, c
2

) is at most one lower than f(a
1

, a
2

) or f(b
1

, b
2

).

For example, if (c
1

, b
1

) is an edge, we pick c
2

in the same column as
c
1

such that (c
2

, b
2

) is an edge (see Figure 7.3).

2. If c
1

is not related to a
1

or b
1

, i.e., if a
1

6= c
1

, c
1

6= b
1

, (a
1

, c
1

) is not
an edge, and (c

1

, b
1

) is not an edge, we check whether it is possible
to pick c

2

such that f(c
1

, c
2

) = m/2 without breaking validity. Since
m/2 is the maximum output of f , we can be sure that f(c

1

, c
2

) is
su�ciently large. For an example of this scenario see Figure 7.4.

3. If we cannot pick c
2

such that f(c
1

, c
2

) = m/2 without breaking
validity, we just pick c

2

such that validity is ensured. It turns out that
even then f(c

1

, c
2

) is su�ciently large, i.e., at most one lower than
f(a

1

, a
2

) or f(b
1

, b
2

). For an example of this scenario see Figure 7.5.

The strategy by itself may seem quite arbitrary. Why do we not provide
a single c

2

for each c
1

without the trial and error in the second step of the
strategy? The reason why we introduced the trial and error step, is because

88 Succinctness of converse elimination under nonemptiness

Y

W

T
b
1

c
1

a
1

U

V

W 0
b
2

c
2

a
2

Figure 7.4: An example of the second step in our strategy on Gm
1

and Gm
2

with m = 8. Hence c
1

is not related a
1

and b
1

(a
1

6= c
1

, c
1

6= b
1

, (a
1

, c
1

) is
not an edge, and (c

1

, b
1

) is not an edge), and it is possible to pick c
2

such
that f(c

1

, c
2

) = m/2 without violating validity. Notice that c
2

has to be
picked on U in this example since only then we have f(c

1

, c
2

) = m/2 by
definition.

a failure in that step tells us something about the location of a
1

and a
2

, and
b
1

and b
2

. Indeed, if the validity of (a
1

, c
1

, a
2

, c
2

) is broken, for example,
we know that a

2

= c
2

, or that (a
2

, c
2

) is an edge, which implies that a
1

and a
2

are in the same column as, or in the column next to c
1

and c
2

.
Using these facts, we will be able to determine the values of f(a

1

, a
2

) and
f(b

1

, b
2

), which will appear to be su�ciently low by itself so that we can
pick c

2

without having to worry about f(c
1

, c
2

).
We will now start the technical proof with several lemmas. Lemmas 7.6

and 7.7 take care of first step of the strategy outlined above. Lemmas 7.8
and 7.17 take care of the second and third step. To establish these final
two steps, we use several sublemmas for clarity (Lemmas 7.9 to 7.16).

Lemma 7.6. Suppose that (a
1

, b
1

, a
2

, b
2

) is valid, f(a
1

, a
2

) > 0, f(b
1

, b
2

)
> 1 and c

1

2 adom(Gm
1

) such that a
1

= c
1

, b
1

= c
1

, (a
1

, c
1

) is an edge,
or (c

1

, b
1

) is an edge. Then there exists c
2

2 adom(Gm
2

) such that both
(a

1

, c
1

, a
2

, c
2

) and (c
1

, b
1

, c
2

, b
2

) are valid, and f(c
1

, c
2

) � min(f(a
1

, a
2

),
f(b

1

, b
2

))� 1.

7.1 A bisimulation result 89

Y

W

T

c
1

a
1

b
1

U

V

W 0

b
2

c
2

a
2

Figure 7.5: An example of the third step in our strategy on Gm
1

and Gm
2

with m = 8. Hence c
1

is not related to a
1

and b
2

(a
1

6= c
1

, c
1

6= b
1

, (a
1

, c
1

)
is not an edge, and (c

1

, b
1

) is not an edge), and it is not possible to pick c
2

such that f(c
1

, c
2

) = m/2. Indeed, here f(c
1

, c
2

) = m/2 only if c
2

is on U .
Thus c

2

has to be picked on the chain not containing a
2

and b
2

. Clearly
f(c

1

, c
2

) = f(b
1

, b
2

)� 1 by definition.

Proof. First suppose that a
1

= c
1

. Then we pick c
2

= a
2

. Clearly,
(a

1

, c
1

, a
2

, c
2

) and (c
1

, b
1

, c
2

, b
2

) are valid by construction. Furthermore,
f(c

1

, c
2

) = f(a
1

, a
2

) � min((fa
1

, a
2

)), f(b
1

, b
2

)) � 1. The case where
c
1

= b
1

is analogous.
Now suppose that (a

1

, c
1

) is an edge. Then we pick c
2

in the same
column as c

1

(thus (c
1

, c
2

) is valid) such that (a
2

, c
2

) is an edge. This
is clearly possible if a

1

6= ym+1

, since in that case any node in the same
column of a

2

has a forward or backward outgoing edge in the same way as
a
1

. On the other hand, if a
1

= ym+1

, then a
2

= vm+1

since f(a
1

, a
2

) > 0.
Again ym+1

in Gm
1

and vm+1

in Gm
2

have similar outgoing edges. Clearly
(a

1

, c
1

, a
2

, c
2

) is valid by construction. The validity of (c
1

, b
1

, c
2

, b
2

) is not
so evident. Note, however, that b

1

= y
2

i↵ b
2

= u
2

since f(b
1

, b
2

) > 1.
Thus conditions (c) and (d) for the validity of (c

1

, b
1

, c
2

, b
2

) are trivially
satisfied. Thus we only have to show that (c

1

, b
1

, c
2

, b
2

) satisfies the Atoms
condition.

90 Succinctness of converse elimination under nonemptiness

b
1

= c
1

() (a
1

, b
1

) is an edge (since (a
1

, c
1

) is an edge)

() (a
2

, b
2

) is an edge (since (a
1

, b
1

, a
2

, b
2

) is valid)

() b
2

= c
2

(since (c
1

, c
2

) is valid and (a
2

, c
2

) is an edge)

Suppose (c
1

, b
1

) is also an edge, then c
1

2 {x
2

, y
1

, z
2

} because these are
the only nodes with incoming as well as outgoing edges. If c

1

= x
2

, then
c
2

= x0
2

, and b
1

= y
1

, whence we have b
2

= u
1

since f(b
1

, b
2

) > 0. On the
other hand, if c

1

= y
1

, then a
1

= x
2

, c
2

= u
1

, b
1

= y
2

, and a
2

= x0
2

. Now
by conditions (c) and (d) from the validity of (a

1

, b
1

, a
2

, b
2

) we have that
b
2

= u
2

. Finally, if c
1

= z
2

, then c
2

= z0
2

and b
1

= z
1

, whence we have
b
2

= z0
1

since (a
1

, b
1

, a
2

, b
2

) is valid. In either case, (c
2

, b
2

) is an edge as
desired.

On the other hand suppose that (c
2

, b
2

) is an edge, then c
2

2 {x0
2

, u
1

,
z0
2

} because these are the only nodes with incoming as well as outgoing
edges. If c

2

= x0
2

, then c
1

= x
2

, and b
2

= u
1

, whence we have b
1

= y
1

since
f(b

1

, b
2

) > 0. On the other hand, if c
2

= u
1

, then c
1

= y
1

, a
2

= x0
2

and
b
2

= u
2

. Now by conditions (c) and (d) from the validity of (a
1

, b
1

, a
2

, b
2

)
we have that b

2

= y
2

. Finally, if c
2

= z0
2

, then c
1

= z
2

and b
2

= z0
1

, whence
we have b

2

= z
1

since (a
1

, b
1

, a
2

, b
2

) is valid. In either case, (c
1

, b
1

) is an
edge as desired.

So it remains to be shown that f(c
1

, c
2

) � min(f(a
1

, a
2

), f(b
1

, b
2

))� 1.
Since (a

1

, c
1

) is an edge, it is clear that c
1

is in the column to the left
or right of a

1

. Thus if f(a
1

, a
2

) < m/2, we must have that f(c
1

, c
2

) �
f(a

1

, a
2

) � 1 � min(f(a
1

, a
2

), f(b
1

, b
2

)) � 1. On the other hand, suppose
that f(a

1

, a
2

) = m/2. Let us list the possibilities for f(a
1

, a
2

) to equalm/2:
the column of a

1

is m/2+1; a
1

is Y left and a
2

is U left; a
1

is W left and a
2

is W 0 left; a
1

is W left and a
2

is V left; a
1

is T left and a
2

is W 0 left; a
1

is T
left and a

2

is V left; a
1

is Y right and a
2

is V right; a
1

is W right and a
2

is
W 0 right; a

1

isW right and a
2

is U right; a
1

is T right and a
2

isW 0 right; or
a
1

is T right and a
2

is U right. Therefore, unless a
1

2 {ym
2 +1

, tm
2 +1

, wm
2 +1

},
c
1

is on the same side of the chain as a
1

, and c
2

is on the same side (left or
right) of the chain as a

2

since (a
1

, c
1

) and (a
2

, c
2

) are edges. The definition
of f implies that f(c

1

, c
2

) = m/2. If a
1

2 {ym
2 +1

, tm
2 +1

, wm
2 +1

}, then the
column of c

1

and c
2

is m/2 or m/2+2 since (a
1

, c
1

) and (a
2

, c
2

) are edges.
Therefore f(c

1

, c
2

) � m+ 1� (m/2 + 2) = m/2� 1 as desired.
The case where (c

1

, b
1

) is an edge is analogous to the case where (a
1

, c
1

)
is an edge.

7.1 A bisimulation result 91

Notice that three consecutive columns in Gm
1

are isomorphic to the
three corresponding columns in Gm

2

displayed in Figure 7.1. Hence we
can exchange the roles of c

1

and c
2

in the proof of the previous lemma
without violating the Atoms condition since the Atoms condition can only
fail if there is a problem on the columns directly surrounding c

1

and c
2

.
Furthermore, notice that the value of f(a

1

, a
2

) only depends on how a
1

and
a
2

relate to one another on one side of the graph (the left or right-hand
side). Hence, the condition on f(c

1

, c
2

) also remains intact, since Gm
1

and
Gm

2

look completely the same on the left-hand (right-hand) side. Thus the
proof of the following lemma is analogous to the proof of Lemma 7.6.

Lemma 7.7. Suppose that (a
1

, b
1

, a
2

, b
2

) is valid, f(a
1

, a
2

) > 0, f(b
1

, b
2

)
> 1 and c

2

2 adom(Gm
2

) such that a
2

= c
2

, b
2

= c
2

, (a
2

, c
2

) is an edge,
or (c

2

, b
2

) is an edge. Then there exists c
1

2 adom(Gm
1

) such that both
(a

1

, c
1

, a
2

, c
2

) and (c
1

, b
1

, c
2

, b
2

) are valid, and f(c
1

, c
2

) � min(f(a
1

, a
2

),
f(b

1

, b
2

))� 1.

Let us now take care of steps two and three in the intuitive strategy
outlined before Lemma 7.6, i.e., when c

1

is not related to a
1

or b
1

.

Lemma 7.8. Suppose that (a
1

, b
1

, a
2

, b
2

) is valid, f(a
1

, a
2

) > 0, f(b
1

, b
2

)
> 1 and c

1

2 adom(Gm
1

) such that a
1

6= c
1

, c
1

6= b
1

, (a
1

, c
1

) and (c
1

, b
1

) are
not edges. Then there exists c

2

2 adom(Gm
2

) such that both (a
1

, c
1

, a
2

, c
2

)
and (c

1

, b
1

, c
2

, b
2

) are valid, and f(c
1

, c
2

) � min(f(a
1

, a
2

), f(b
1

, b
2

))� 1.

Proof. The goal is to follow the following strategy, unless it breaks the
Atoms condition for (a

1

, c
1

, a
2

, c
2

) or (c
1

, b
1

, a
2

, c
2

). Henceforth we refer to
this strategy as the Greedy Strategy.

c
1

= zi ^ 1 i 2 =) c
2

= z0i

c
1

= xi ^ 1 i 2 =) c
2

= x0i

c
1

= yi ^ 0 i m/2 + 1 =) c
2

= ui

c
1

= yi ^m/2 + 1 < i m+ 1 =) c
2

= vi

c
1

= wi =) c
2

= w0
i

c
1

= ti ^ 0 i m/2 + 1 =) c
2

= vi

c
1

= ti ^m/2 + 1 < i m+ 1 =) c
2

= ui.

The reason why we use this strategy is because in this case f(c
1

, c
2

) = m/2,
in which case it is trivial that f(c

1

, c
2

) � min{f(a
1

, a
2

), f(b
1

, b
2

)}� 1.

92 Succinctness of converse elimination under nonemptiness

First, we establish that the Atoms conditions cannot be broken in the
following situations: c

1

= y
1

; c
1

= ym+1

; c
1

= zi with i = 1, 2; c
1

= xi with
i = 1, 2; or (a

1

, c
1

) = (x
2

, y
2

). To prove this, suppose first that c
1

= y
1

;
then by the strategy outlined above c

2

= u
1

.

• If (a
2

, c
2

) is an edge then a
2

= x0
2

, whence we have a
1

= x
2

since
(a

1

, b
1

, a
2

, b
2

) is valid. Thus (a
1

, c
1

) is also an edge, which is a con-
tradiction.

• If a
2

= c
2

then a
2

= u
1

, whence we have a
1

= y
1

since f(a
1

, a
2

) > 0.
Thus a

1

= c
1

which is a contradiction.

? If (c
2

, b
2

) is an edge then b
2

= u
2

, whence we have b
1

= y
2

since
f(b

1

, b
2

) > 1. Thus (c
1

, b
1

) is also an edge, which is a contradiction.
(This item is specially marked with ? for later reference in the proof
of Lemma 7.20.)

• If b
2

= c
2

then b
2

= u
1

, whence we have b
1

= y
1

since f(b
1

, b
2

) > 0.
Thus c

1

= b
1

which is a contradiction.

So, when c
1

= y
1

the chosen c
2

does not break the Atoms conditions.
Next suppose that c

1

= ym+1

; then by the Greedy Strategy c
2

= vm+1

.

• (a
2

, c
2

) cannot be an edge since vm+1

has no incoming edges.

• If a
2

= c
2

then a
2

= vm+1

, whence we have a
1

= ym+1

since
f(a

1

, a
2

) > 0. Thus a
1

= c
1

which is a contradiction.

• If (c
2

, b
2

) is an edge then b
2

= z0
2

, whence we have b
1

= z
2

since
(a

1

, b
1

, a
2

, b
2

) is valid. Thus (c
1

, b
1

) is also an edge, which is a con-
tradiction.

• If c
2

= b
2

then b
2

= vm+1

. Hence, we have b
1

= ym+1

since
f(b

1

, b
2

) > 0. Thus b
1

= c
1

which contradicts the given.

Next suppose that c
1

= x
2

; then by the Greedy Strategy c
2

= x0
2

.

• If (a
2

, c
2

) is an edge, then a
2

= x0
1

, whence we have a
1

= x
1

since
(a

1

, b
1

, a
2

, b
2

). Thus (a
1

, c
1

) is also an edge, which is a contradiction.

• If a
2

= c
2

then a
2

= x0
2

, whence we have a
1

= x
2

. Thus a
1

= c
1

which is a contradiction.

7.1 A bisimulation result 93

• If (c
2

, b
2

) is an edge, then b
2

= u
1

. whence we have b
1

= y
1

, since
f(b

1

, b
2

) > 0. Thus (c
1

, b
1

) is an edge which is a contradiction.

• If b
2

= c
2

, then b
2

= x0
2

, whence we have b
1

= x
2

since (a
1

, b
1

, a
2

, b
2

)
is valid. Thus b

1

= c
1

which contradicts the given.

The situations where c
1

= x
1

or c
1

= zi with i = 1, 2 are similar to the
previous case.

Finally, suppose that (a
1

, c
1

) = (x
2

, y
2

); then by the Greedy Strategy
(a

2

, c
2

) = (x0
2

, u
2

). Now, for the Atoms condition to be broken, we must
have that c

2

= b
2

since u
2

only has outgoing edges. Thus (a
1

, b
1

, a
2

, b
2

) =
(x

2

, b
1

, x0
2

, u
2

), whence we have b
1

= y
2

by condition (d) for the validity of
(a

1

, b
1

, a
2

, b
2

). But then c
1

= b
1

which contradicts the given.
At this point, we may assume that the Atoms condition is broken if

c
2

is picked according to the Greedy Strategy. By the arguments before,
then, c

1

is not y
1

, ym+1

or zi, xi for i = 1, 2, and (a
1

, c
1

) 6= (x
2

, y
2

).
Furthermore, we do not have to consider cases where c

1

is in the middle
column, or the two columns directly adjacent to it, i.e., the column directly
to the left and right of the middle one. Indeed, since there are three chains
in Gm

2

, we can always pick another node cnew
2

on the chain that does not
contain a

2

and b
2

. Thus (a
1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) are certainly
valid. Since c

1

and cnew
2

is located on either of the three middle columns, we
have that f(c

1

, cnew
2

) � m/2�1 � min(f(a
1

, a
2

), f(b
1

, b
2

))�1 since f(x, y)
is at most m/2 for any pair of nodes (x, y) 2 adom(Gm

1

)⇥ adom(Gm
2

).
From here we will write cold

2

for the c
2

chosen by the Greedy Strategy.
We will split the proof into several sublemmas (Lemmas 7.9 to 7.16).

First, in Lemmas 7.9 to 7.14 we show, for each case where the Atoms con-
dition is broken, that we can pick a cnew

2

2 adom(Gm
2

) such that conditions
(a) and (b) for the validity of both (a

1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

)
are satisfied, and f(c

1

, cnew
2

) � min(f(a
1

, a
2

), f(b
1

, b
2

))� 1. Then, in Lem-
mas 7.15 and 7.16 we show that (a

1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) also
satisfy conditions (c) and (d) for validity.

Lemma 7.9. If a
2

= cold
2

or (a
2

, cold
2

) is an edge, and c
1

is on Y then there
exists cnew

2

2 adom(Gm
2

) such that (a
1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) both
satisfy conditions (a) and (b) for validity, and f(c

1

, cnew
2

) � min(f(a
1

,
a
2

), f(b
1

, b
2

))� 1.

Proof. If c
1

is Y left (respectively Y right), cold
2

is U left (respectively V
right). Since c

1

is not in the middle three columns, c
1

62 {x
1

, x
2

, y
1

}, and
a
2

= cold
2

or (a
2

, cold
2

) is an edge, we have that a
2

is also U left (respectively

94 Succinctness of converse elimination under nonemptiness

V right), whence we have f(a
1

, a
2

) < m/2 by definition. We now pick
cnew
2

on the chain that does not contain a
2

or b
2

, in the same column as c
1

,
whence (a

1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) both satisfy conditions (a) and
(b) for validity. This is indeed possible since there are three chains. Thus
we may conclude that cnew

2

is not U left (respectively V right), and hence
f(c

1

, c
2

) < m/2. Therefore, if a
2

= cold
2

, clearly f(c
1

, cnew
2

) = f(a
1

, a
2

) <
m/2 by definition, since then c

1

is in the same column as a
1

and a
2

. On
the other hand, if (a

2

, cold
2

) is an edge, then f(c
1

, cnew
2

) � f(a
1

, a
2

) � 1 by
definition, since then c

1

is in one of the columns next to a
1

and a
2

. Thus
we may conclude that f(c

1

, cnew
2

) � min(f(a
1

, a
2

), f(b
1

, b
2

))� 1.

The proof of the following lemma is similar to the proof of Lemma 7.9
where the roles of a

1

and a
2

are replaced by b
1

and b
2

, and (a
2

, c
2

) being
an edge is replaced by (c

2

, b
2

) being an edge.

Lemma 7.10. If b
2

= cold
2

or (cold
2

, b
2

) is an edge, and c
1

is on Y then there
exists cnew

2

2 adom(Gm
2

) such that (a
1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) both
satisfy conditions (a) and (b) for validity, and f(c

1

, cnew
2

) � min(f(a
1

, a
2

),
f(b

1

, b
2

))� 1.

Lemma 7.9 and 7.10 have considered the scenarios where the Atoms
condition was broken when c

1

is located on Y . The scenarios when c
1

is
located on W are handled by Lemmas 7.11 and 7.12, and the scenarios
when c

1

is located on T are handled by Lemmas 7.13 and 7.14. We now
have a look at the scenarios where c

1

is located on W .

Lemma 7.11. If a
2

= cold
2

or (a
2

, cold
2

) is an edge, and c
1

is on W
then there exists cnew

2

2 adom(Gm
2

) such that conditions (a) and (b) for
the validity of both (a

1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) are satisfied, and
f(c

1

, cnew
2

) � min(f(a
1

, a
2

), f(b
1

, b
2

))� 1.

Proof. In this case cold
2

is on W 0, whence a
2

is also on W 0 since a
2

=
cold
2

, or (a
2

, cold
2

) is an edge. Since a
1

6= c
1

and (a
1

, c
1

) is not an edge,
we have that a

1

is on Y or on T . If a
1

is on Y , then f(a
1

, a
2

) < m/2
since c

1

is not in the three middle columns. Hence whatever new cnew
2

we
pick such that (c

1

, c
2

) is valid, we have f(c
1

, cnew
2

) � f(a
1

, a
2

) � 1 since
c
1

and cnew
2

are either located in the same column as, or in the column
next to a

1

and a
2

. Thus, if we pick cnew
2

on the chain that does not
contain a

2

and b
2

, in the same column as c
1

, we have that (a
1

, c
1

, a
2

, cnew
2

)
and (c

1

, b
1

, cnew
2

, b
2

) both satisfy conditions (a) and (b) for validity, and
f(c

1

, cnew
2

) � min(f(a
1

, a
2

), f(b
1

, b
2

))� 1.

7.1 A bisimulation result 95

On the other hand, suppose that a
1

is on T then f(a
1

, a
2

) = m/2.
This could be problematic if a

1

is T left (respectively T right) and if we
cannot put cnew

2

on the left side of V (respectively the right side of U),
in the same column as c

1

, simultaneously. That is, if putting cnew
2

on the
left side of V , in the same column as c

1

, (respectively right side of U)
makes b

2

= cnew
2

or (cnew
2

, b
2

) an edge. If this is not the case, then we
simply put cnew

2

on V , in the same column as c
1

(respectively U). Then
by construction (a

1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) satisfy conditions (a)
and (b) for validity and f(c

1

, c
2

) = m/2.
In the problematic case we will show that f(b

1

, b
2

) is su�ciently low.
So in this case putting cnew

2

in the same column as c
1

on the left side of V
(respectively right side of U) violates the Atoms condition for (c

1

, b
1

, cnew
2

,
b
2

). Then b
2

is V left (respectively U right), in the same column as, or in
the column next to c

1

and cold
2

. Since cold
2

= a
2

or (a
2

, cold
2

) is an edge, a
2

must be on W 0 as well. This implies that a
2

6= b
2

and that (a
2

, b
2

) is not an
edge, since b

2

is on V (respectively U) as mentioned before. Therefore, by
the validity of (a

1

, b
1

, a
2

, b
2

), we can also conclude that a
1

6= b
1

and that
(a

1

, b
1

) is not an edge. Thus b
1

is certainly not on T since then a
1

= b
1

or
(a

1

, b
1

) would be an edge. It cannot be on W either because then c
1

= b
1

or (c
1

, b
1

) would be an edge, which contradicts the given. Thus we may
conclude that in this case b

1

is on Y , whence we have f(b
1

, b
2

) < m/2 since
b
1

is V left (respectively U right). If we now put cnew
2

on the chain that
does not contain a

2

or b
2

, in the same column as c
1

, then (a
1

, c
1

, a
2

, cnew
2

)
and (c

1

, b
1

, cnew
2

, b
2

) certainly satisfy conditions (a) and (b) for validity, and
we have that f(c

1

, cnew
2

) � f(b
1

, b
2

)�1 � min(f(a
1

, a
2

), f(b
1

, b
2

))�1 since
c
1

and cnew
2

are either in the column next to, or in the same column as b
1

or b
2

. For an example of this scenario see Figure 7.6.

The proof of the following lemma is similar to the proof of Lemma 7.11
where the roles of a

1

and a
2

are replaced by b
1

and b
2

, and (a
2

, c
2

) being
an edge is replaced by (c

2

, b
2

) being an edge.

Lemma 7.12. If cold
2

= b
2

or (cold
2

, b
2

) is an edge, and c
1

is on W then there
exists cnew

2

2 adom(Gm
2

) such that (a
1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) both
satisfy conditions (a) and (b) for validity, and f(c

1

, cnew
2

) � min(f(a
1

, a
2

),
f(b

1

, b
2

))� 1.

As announced we now look at the scenarios when c
1

is located on T .
The reasoning used to prove the following lemma is again analogous to
the proof of Lemma 7.11, but since the Greedy Strategy deviates in this

96 Succinctness of converse elimination under nonemptiness

Y

W

T

c
1

a
1

b
1

U

V

W 0
b
2

cnew
2

a
2

cold
2

Figure 7.6: An example of a problem scenario in Lemma 7.11. Clearly cold
2

breaks the Atoms condition. Furthermore, if we would have picked cnew
2

on V , (cnew
2

, b
2

) would have been an edge, which is not allowed. Thus we
are forced to pick cnew

2

on U . This, however, is no problem since in this
scenario b

1

and b
2

are on sides of chains with di↵erent endings.

scenario compared to the scenario of Lemma 7.11, we need to address some
detailed di↵erences.

Lemma 7.13. If a
2

= cold
2

or (a
2

, cold
2

) is an edge, and c
1

is on T then there
exists cnew

2

2 adom(Gm
2

) such that (a
1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) both
satisfy conditions (a) and (b) for validity, and f(c

1

, cnew
2

) � min(f(a
1

, a
2

),
f(b

1

, b
2

))� 1.

Proof. If c
1

is T left, then cold
2

is V left, while if c
1

is T right, then cold
2

is U right. Furthermore, if cold
2

is V left, then a
2

is also V left, and if
cold
2

is U right, a
2

is also U right. This is because a
2

= cold
2

or (a
2

, cold
2

)
is an edge, and c

1

is not located in the middle three columns. Since
a
1

6= c
1

and (a
1

, c
1

) is not an edge, we have that a
1

is on Y or on W .
If a

1

is on Y then f(a
1

, a
2

) < m/2 since c
1

is not in the three middle
columns. Hence whatever new cnew

2

we pick in the same column as c
1

we have f(c
1

, cnew
2

) � f(a
1

, a
2

) � 1. Thus, if we pick cnew
2

on the chain
that does not contain a

2

and b
2

, in the same column as c
1

, we have that

7.1 A bisimulation result 97

(a
1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) both satisfy conditions (a) and (b) for
validity, and f(c

1

, cnew
2

) � min(f(a
1

, a
2

), f(b
1

, b
2

))� 1.
On the other hand, suppose that a

1

is on W , then f(a
1

, a
2

) = m/2.
This could be problematic if a

1

is W left (respectively W right) and if we
cannot put cnew

2

on W 0, in the same column as c
1

, simultaneously, i.e., if
putting cnew

2

on W 0, in the same column as c
1

, makes b
2

= cnew
2

or (cnew
2

, b
2

)
an edge. If this is not the case we simply put cnew

2

on W 0, in the same
column as c

1

. Then by construction (a
1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

)
both satisfy conditions (a) and (b) for validity, and f(c

1

, c
2

) = m/2.
In the problematic case we will show that f(b

1

, b
2

) is su�ciently low.
So in this case putting cnew

2

on W 0, in the same column as c
1

, violates the
Atoms condition for (c

1

, b
1

, cnew
2

, b
2

). Then b
2

is on located on W 0, in the
same column as, or in the column next to c

1

and cold
2

. Since cold
2

= a
2

or
(a

2

, cold
2

) is an edge, and c
1

is not in the middle three columns, a
2

must be
on V if c

1

is T left, or on U if c
1

is U right. In either case, this implies that
a
2

6= b
2

and that (a
2

, b
2

) is not an edge, since b
2

is on W 0 as mentioned
before. Therefore, by the validity of (a

1

, b
1

, a
2

, b
2

), we can also conclude
that a

1

6= b
1

and that (a
1

, b
1

) is not an edge. Thus b
1

is certainly not on W
since then a

1

= b
1

or (a
1

, b
1

) would be an edge. It cannot be on T either
because then c

1

= b
1

or (c
1

, b
1

) would be an edge, which contradicts the
given. Thus we may conclude that in this case b

1

is on Y , whence we have
f(b

1

, b
2

) < m/2 since b
1

is W 0. If we now put cnew
2

on the chain that does
not contain a

2

or b
2

, in the same column as c
1

, then (a
1

, c
1

, a
2

, cnew
2

) and
(c

1

, b
1

, cnew
2

, b
2

) certainly satisfy conditions (a) and (b) for validity, and we
have that f(c

1

, cnew
2

) � f(b
1

, b
2

)� 1 � min(f(a
1

, a
2

), f(b
1

, b
2

))� 1 since c
1

and cnew
2

are either in the column next to, or in the same column as b
1

or
b
2

. For an example of this scenario see Figure 7.7.

The proof of the following lemma is similar to the proof of Lemma 7.13
where the roles of a

1

and a
2

are replaced by b
1

and b
2

, and (a
2

, c
2

) being
an edge is replaced by (c

2

, b
2

) being an edge.

Lemma 7.14. If cold
2

= b
2

or (cold
2

, b
2

) is an edge, and c
1

is on T then there
exists cnew

2

2 adom(Gm
2

) such that (a
1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) both
satisfy conditions (a) and (b) for validity, and f(c

1

, cnew
2

) � min(f(a
1

,
a
2

), f(b
1

, b
2

))� 1.

Together Lemma 7.9 to 7.14 cover all scenarios for c
1

where one of
the Atoms conditions was broken. Thus, all that remains to establish
Lemma 7.8 is to show that (a

1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) satisfy con-
ditions (c) and (d) for validity. Let us first take care of (a

1

, c
1

, a
2

, cnew
2

).

98 Succinctness of converse elimination under nonemptiness

Y

W

T
c
1

a
1

b
1

U

V

W 0
b
2

cnew
2

a
2

cold
2

Figure 7.7: An example of a problem scenario in Lemma 7.13. Clearly cold
2

breaks the Atoms condition. Furthermore, if we would have picked cnew
2

on W 0, (cnew
2

, b
2

) would have been an edge, which is not allowed. Thus we
are forced to pick cnew

2

on V . This, however, is no problem since in this
scenario b

1

and b
2

are on sides of chains with di↵erent endings.

Lemma 7.15. Let cnew
2

2 adom(Gm
2

) be the node chosen in Lemmas 7.9
to 7.14. Then (a

1

, c
1

, a
2

, cnew
2

) also satisfies conditions (c) and (d) for
validity.

Proof. Condition (c) is only involved when (a
1

, c
1

) = (x
2

, y
2

), a case we
have already excluded at the start of the proof.

Condition (d) is only involved when (a
2

, cnew
2

) = (x0
2

, u
2

). Since (a
1

, b
1

,
a
2

, b
2

) is valid, we must have that a
1

= x
2

, whence we have f(a
1

, a
2

) =
m/2. We now show that c

1

= y
2

. Suppose for the sake of contradic-
tion that c

1

6= y
2

. Then by definition f(c
1

, cnew
2

) = 1. Furthermore, we
have cold

2

= v
2

or cold
2

= w0
2

by the Greedy Strategy. Since f(c
1

, c
2

) �
min(f(a

1

, a
2

), f(b
1

, b
2

)) � 1 = min(m/2, f(b
1

, b
2

)) � 1 = f(b
1

, b
2

) � 1 by
assumption, we have f(b

1

, b
2

) 2. Remember that the Atoms condition
for either (a

1

, c
1

, a
2

, cold
2

) or (c
1

, b
1

, cold
2

, b
2

) was broken. Notice that in this
case the Atoms condition for (a

1

, c
1

, a
2

, cold
2

) was not broken, since c
1

and
cold
2

are two columns to the right of a
1

and a
2

. Thus the Atoms condition
for (c

1

, b
1

, cold
2

, b
2

) was broken. Hence cold
2

= b
2

or (cold
2

, b
2

) is an edge (be-

7.1 A bisimulation result 99

cause by assumption c
1

is not related to b
1

). It is not possible for (cold
2

, b
2

)
to be an edge since v

2

and w0
2

have no outgoing edges. Thus we may con-
clude that cold

2

= b
2

= v
2

or cold
2

= b
2

= w0
2

. Hence b
1

= y
2

in both cases
since f(b

1

, b
2

) 2. Therefore (a
1

, b
1

, a
2

, b
2

) = (x
2

, y
2

, x0
2

, b
2

) where b
2

= v
2

or w0
2

, which contradicts condition (c) for the validity of (a
1

, b
1

, a
2

, b
2

).

Finally, we take care of (c
1

, b
1

, cnew
2

, b
2

).

Lemma 7.16. Let cnew
2

2 adom(Gm
2

) be the node chosen in Lemmas 7.9 to
7.14. Then (c

1

, b
1

, cnew
2

, b
2

) also satisfies conditions (c) and (d) for validity.

Proof. Condition (c) is only involved when b
1

= y
2

. Then b
2

= u
2

since
f(b

1

, b
2

) > 1, as desired.
Condition (d) is only involved when b

2

= u
2

. Then b
1

= y
2

since
f(b

1

, b
2

) > 1, as desired.

Together Lemmas 7.15 and 7.16 establish that both (a
1

, c
1

, a
2

, cnew
2

)
and (c

1

, b
1

, cnew
2

, b
2

) also satisfy conditions (c) and (d) for validity. Since
we already established that (a

1

, c
1

, a
2

, cnew
2

) and (c
1

, b
1

, cnew
2

, b
2

) satisfy con-
ditions (a) and (b) for validity, we may conclude that (a

1

, c
1

, a
2

, cnew
2

) and
(c

1

, b
1

, cnew
2

, b
2

) are both valid, which concludes the proof of Lemma 7.8.

The proof of next lemma is analogous to the proof of Lemma 7.8.
Indeed, this is because of the same reasons why the proof of Lemma 7.7
was analogous to the proof of Lemma 7.6.

Lemma 7.17. Suppose that (a
1

, b
1

, a
2

, b
2

) is valid, f(a
1

, a
2

) > 0, f(b
1

, b
2

)
> 1 and c

2

2 adom(Gm
2

) such that a
1

6= c
1

, c
1

6= b
1

, (a
1

, c
1

) and (c
1

, b
1

)
are not edges. Then there exists c

1

2 adom(Gm
1

) such that (a
1

, c
1

, a
2

, c
2

)
and (c

1

, b
1

, c
2

, b
2

) are valid, and f(c
1

, c
2

) � min(f(a
1

, a
2

), f(b
1

, b
2

))� 1.

Combining Lemmas 7.6 and 7.8 we get the following corollary.

Corollary 7.18. If (a
1

, b
1

, a
2

, b
2

) is valid, f(a
1

, a
2

) > 0 and f(b
1

, b
2

) > 1,
then for every c

1

2 adom(Gm
1

) there exists c
2

2 adom(Gm
2

) such that
(a

1

, c
1

, a
2

, c
2

) and (c
1

, b
1

, c
2

, b
2

) are valid, and f(c
1

, c
2

) � min(f(a
1

, a
2

),
f(b

1

, b
2

))� 1.

We will see later that this corollary is crucial to show that the duplicator
has a winning strategy starting in (a

1

, b
1

, a
2

, b
2

).
On the other hand, combining Lemmas 7.7 and 7.17 yields the following

corollary.

100 Succinctness of converse elimination under nonemptiness

Y

W

T

b
1

c
1

U

V

W 0

c
2

b
2

Figure 7.8: An example of a problem scenario where we are forced to pick
a c

2

such that (c
1

, b
1

, c
2

, b
2

) does not satisfy condition (c) for validity. It
turns out that it is su�cient to only satisfy the Atoms condition because
this scenario only occurs when f(b

1

, b
2

) = 1.

Corollary 7.19. If (a
1

, b
1

, a
2

, b
2

) is valid, f(a
1

, a
2

) > 0 and f(b
1

, b
2

) > 1,
then for every c

2

2 adom(Gm
2

) there exists c
1

2 adom(Gm
1

) such that
(a

1

, c
1

, a
2

, c
2

) and (c
1

, b
1

, c
2

, b
2

) are valid, and f(c
1

, c
2

) � min(f(a
1

, a
2

),
f(b

1

, b
2

))� 1.

Notice that until now we have always required that f(b
1

, b
2

) > 1.
The cases where f(b

1

, b
2

) = 1 are handled separately. Indeed, when
f(b

1

, b
2

) = 1, we cannot necessarily guarantee that (c
1

, b
1

, c
2

, b
2

) is valid
(see Figure 7.8). We can only guarantee the Atoms condition as shown
Lemmas 7.20 and 7.21. This will turn out to be su�cient.

Lemma 7.20. Suppose that (a
1

, b
1

, a
2

, b
2

) is valid, f(a
1

, a
2

) > 0, f(b
1

, b
2

)
= 1. Then, for every c

1

2 adom(Gm
1

) there exists c
2

2 adom(Gm
2

) such
that (a

1

, c
1

, a
2

, c
2

) and (c
1

, b
1

, c
2

, b
2

) satisfy the Atoms condition.

Proof. Careful inspection of the proofs of Lemmas 7.6 and 7.8 reveals that
f(b

1

, b
2

) > 1 is only used for showing conditions (c) and (d) for the validity
of (a

1

, c
1

, a
2

, c
2

) and (c
1

, b
1

, c
2

, b
2

), except in the case where c
1

= y
1

and
b
2

= u
2

(item marked with ? in the proof of Lemma 7.8). If we are not in
this case, we can simply pick the same c

2

as in these proofs.

7.1 A bisimulation result 101

Now suppose we are in this exceptional case. Since f(b
1

, b
2

) = 1, b
1

is not on Y . Notice that (a
1

, c
1

) cannot be an edge, since then a
1

=
x
2

, and hence also a
2

= x0
2

since (a
1

, b
1

, a
2

, b
2

) is valid. Thus we have
(a

1

, b
1

, a
2

, b
2

) = (x
2

, b
1

, x0
2

, u
2

). Condition (d) for the validity of (a
1

, b
1

, a
2

,
b
2

) then implies that b
1

= y
2

, which contradicts the fact that b
1

is not on
Y .

If a
1

= c
1

, then we pick a
2

= c
2

. Notice that in this case b
2

6= c
2

.
Indeed, if b

2

= c
2

= a
2

, then a
1

= b
1

by the validity of (a
1

, b
1

, a
2

, b
2

). Thus
c
1

= b
1

which is a contradiction.
On the other hand, if a

1

6= c
1

, we simply pick c
2

on the chain not
containing a

2

or b
2

, in the same column as c
1

. This is possible since there
are three chains.

The proof of the following lemma is analogous to the proof of the
previous lemma. This is because of the same reasons why the proof of
Lemma 7.7 was analogous to the proof of Lemma 7.6.

Lemma 7.21. Suppose that (a
1

, b
1

, a
2

, b
2

) is valid, f(a
1

, a
2

) > 0, f(b
1

, b
2

)
= 1. Then, for every c

2

2 adom(Gm
2

) there exists c
1

2 adom(Gm
1

) such
that (a

1

, c
1

, a
2

, c
2

) and (c
1

, b
1

, c
2

, b
2

) satisfy the Atoms condition.

We are now ready to show our key lemma.

Lemma 7.22. Let s be a natural number and let m > 4 be a natural
number divisible by four. If (a

1

, b
1

, a
2

, b
2

) 2 adom(Gm
1

)2 ⇥ adom(Gm
2

)2 is
valid and s min(f(a

1

, a
2

), f(b
1

, b
2

)), then (Gm
1

, a
1

, b
1

) 's (Gm
2

, a
2

, b
2

).

Proof. We proceed by induction on s. If s = 0 then (Gm
1

, a
1

, b
1

) 's

(Gm
2

, a
2

, b
2

) since the Atoms condition is implied by the validity of (a
1

, b
1

,
a
2

, b
2

).
Now let s > 0, so both f(a

1

, a
2

) > 0 and f(b
1

, b
2

) > 0. If f(b
1

, b
2

) = 1
then Lemma 7.20 implies that for every c

1

2 adom(Gm
1

), there exists c
2

2
adom(Gm

2

) such that (a
1

, c
1

, a
2

, c
2

) and (c
1

, b
2

, c
2

, b
2

) satisfy the Atoms
condition. This, however, is equivalent to

(Gm
1

, a
1

, c
1

) '
0

(Gm
2

, a
2

, c
2

) and (Gm
1

, c
1

, b
1

) '
0

(Gm
2

, c
2

, b
2

).

Hence the Forth condition holds. Furthermore, Lemma 7.21 implies that
for every c

2

2 adom(Gm
2

), there exists c
1

2 adom(Gm
1

) such that (a
1

, c
1

, a
2

,
c
2

) and (c
1

, b
2

, c
2

, b
2

) both satisfy the Atoms condition. Again this is
equivalent to (Gm

1

, a
1

, c
1

) '
0

(Gm
2

, a
2

, c
2

) and (Gm
1

, c
1

, b
1

) '
0

(Gm
2

, c
2

, b
2

).
Hence the Back condition holds. Thus (Gm

1

, a
1

, b
1

) '
1

(Gm
2

, a
2

, b
2

).

102 Succinctness of converse elimination under nonemptiness

Now suppose that f(a
1

, a
2

) > 0 and f(b
1

, b
2

) > 1. We will first show
that the Forth condition holds. Suppose that c

1

2 adom(Gm
1

). Then by
Corollary 7.18 there exists c

2

2 adom(Gm
2

) such that both (a
1

, c
1

, a
2

, c
2

)
and (c

1

, b
1

, c
2

, b
2

) are valid and f(c
1

, c
2

) � min(f(a
1

, a
2

), f(b
1

, b
2

)) � 1.
Furthermore, f(c

1

, c
2

) � s � 1 since s � 1 min(f(a
1

, a
2

), f(b
1

, b
2

)) � 1.
Hence s�1 min(f(c

1

, c
2

), f(a
1

, a
2

)) and s�1 min(f(c
1

, c
2

), f(b
1

, b
2

)).
Therefore we can apply our induction hypothesis, which tells us that
(Gm

1

, a
1

, c
1

) 's�1

(Gm
2

, a
2

, c
2

) and (Gm
1

, c
1

, b
1

) 's�1

(Gm
2

, c
2

, b
2

) as desired.
The Back condition is verified similarly using Corollary 7.19.

Theorem 7.4 finally follows:

Proof of Theorem 7.4. First, if (a
1

, b
1

) = (ym/2+1

, ym/2+2

), then we pick
the pair (a

2

, b
2

) = (um/2+1

, um/2+2

). In this case (a
1

, b
1

, a
2

, b
2

) is valid,
f(a

1

, a
2

) = m/2 and f(b
1

, b
2

) = m + 1 � (m/2 + 2) = m/2 � 1 and thus
(G

1

, a
1

, b
1

) 'm/2�1

(G
2

, a
2

, b
2

) due to Lemma 7.22.
If (a

1

, b
1

) 6= (ym/2+1

, ym/2+2

) then we use the following strategy:

a
1

= yi ^ 0 i m/2 + 1 =) a
2

= ui

a
1

= yi ^m/2 + 1 < i m+ 1 =) a
2

= vi

a
1

= wi =) a
2

= w0
i

a
1

= ti =) a
2

= w0
i

We use the same strategy to determine b
2

from b
1

. Clearly in this case
(a

1

, b
1

, a
2

, b
2

) is valid, and f(a
1

, a
2

) = f(b
1

, b
2

) = m/2, whence we have
(G

1

, a
1

, b
1

) 'm/2�1

(G
2

, a
2

, b
2

) due to Lemma 7.22.

The bisimulations that we use always require that (a
1

, b
1

, a
2

, b
2

) is valid.
There might be a a bisimulation of a larger depth when we remove this
restriction. It turns out that we can find an upper bound on the depth.

Proposition 7.23. There is no bisimulation between (Gm
1

, ym
2 +1

, ym
2 +1

)

and (Gm
2

, a, b) for every (a, b) 2 adom(Gm
1

)2 of depth 3m/4 + 2.

Proof. By Theorem 7.3 it su�ces to show that there exists an expression
e 2 N (�, di) of degree 3m/4 + 2 such that (ym

2 +1

, ym
2 +1

) 2 e(Gm
1

) and

7.1 A bisimulation result 103

(a, b) 62 e(Gm
2

). To this end, define the following family of expressions:

e
0

:= ⇡
2

(R3)

e0
0

:= ⇡
1

(R2)

e
1

:= ⇡
1

(R � e
0

)

en+1

:= ⇡
1

(R \ ((R � di) � (en �R))) (for n > 1)

e0n+1

:= ⇡
1

(R \ ((R � di) � (e0n �R))) (for n > 0)

For n = 1, . . . ,m/2, we have (y
2n+1

, y
2n+1

) 2 en(Gm
1

) and (ym+1�2n,
ym+1�2n) 2 e0n(G

m
1

). Thus we may also conclude that (ym
2 +1

, ym
2 +1

) 2
em/4 \ e0m/4(G

m
1

).

On the other hand, en(Gm
2

) only contains pairs of nodes on U , while
e0n(G

m
2

) only contains nodes on V for any n = 1 . . .m/2. Hence en\e0n(Gm
2

)
is empty for n = 1, . . . ,m/2. Thus we may conclude that em/4\ e0m/4(G

m
2

)

is empty, and thus does not contain (a, b) either.
Since en and e0n have degree 3n+2, the degree of em/4\e0m/4 is 3m/4+2

as desired.

8
A monotone preservation
result for containments of

conjunctive queries

In this chapter, we show the following preservation for monotone contain-
ments of conjunctive queries. Recall that MON denotes the family of all
monotone Boolean queries.

Theorem 8.1. For every database schema �, CQ
�

✓ \MON = CQ
�

6=;.
This equality remains true in the presence of unsafe CQs.

Note that CQ
�

6=; ✓ CQ
�

✓ \MON already follows from the fact that
Q 6= ; is equivalent to () ; ✓ () BQ (cf. Theorem 3.9(3)). To
prove the remaining inclusion we first establish a few technical results.
First, we show that any monotone containment of conjunctive queries is
equivalent to a containment of conjunctive queries with empty heads. For
the remainder of this section, we write Za to be the instance, where there
is exactly one fact R(a, . . . , a) for every R 2 �. Note that for every CQ Q,
we have Q(Za) = {(a, a, . . . , a)}.

Lemma 8.2. Let Q
1

and Q
2

be conjunctive queries that can be unsafe.
If Q

1

✓ Q
2

is monotone, then it is equivalent to the conjunctive query
() BQ1 ✓ () BQ2.

Proof. Instead of working with the regular definition of CQs introduced in
Section 2.1.2, we work with a slightly more general version of CQs that pro-

105

106 A monotone preservation result for containments of CQs

duce output according to the named perspective of the relational-model [1].
In this perspective, tuples are defined over a finite set of attributes, which
we refer to as a relation scheme. Formally, tuples, say H = (ui)i2S on
a relation scheme S, are considered as mappings, so H is a mapping on
S and H(i) = ui. Then, subtuples, say H|K for K ✓ S are treated as
restrictions of the mapping H to K.

We now adapt conjunctive queries. In this proof, a conjunctive query
is an expression of the form Q : H B where the head H is a tuple over
some relation scheme S and the body B is a set of atoms over � as defined
in Section 2.1.2. We write BQ for the body and HQ for the head of Q. The
result scheme of a conjunctive query Q is the relation scheme of the head
HQ. Then, semantically, for every instance I over �, Q(I) is defined as:

{f �HQ | f is a homomorphism from Q into I}.

Here, a homomorphism f from Q into I is a function on the variables in
HQ and BQ to adom(I) such that f(BQ) ✓ I. In this perspective, we only
allow containments of conjunctive queries with the same relation scheme.

Note that CQs as defined in Section 2.1.2 can easily be expressed using
our new CQs. Indeed, a tuple of variables (v

1

, . . . , vn) in the context of
Section 2.1.2 can be seen as the mapping i 7! vi on the relation scheme
{1, . . . , n}.

Let S be the result scheme of Q
1

and Q
2

. Let us write BQ2 as
B

1

, . . . , Bk, B where the Bj are the connected components of BQ2 that
contain at least one variable in HQ2 , and B is the collection of the remain-
ing connected components.

Define Aj = {i 2 S | HQ2(i) 2 adom(Bj)} for j = 1, . . . , k and let A
0

contain the remaining attributes in S. Furthermore, define A =
S

1jk Aj .
We first show that there is a function h such that h�HQ2 |A0 = HQ1 |A0 .

Let a be a fresh data element. Define I = Za [BQ1 [
S

i2C ZHQ1 (i)
where

C = {i 2 S | HQ1(i) 62 adom (BQ1)}. Since, Q
1

(Za) = Q
2

(Za) and
Q

1

✓ Q
2

is monotone, we have Q
1

(I) ✓ Q
2

(I). Therefore, HQ1 2 Q
2

(I)
since HQ1 2 Q

1

(I). Hence, there is a homomorphism from Q
2

into I such
that f �HQ2 = HQ1 . In particular, f �HQ2 |A0 = HQ1 |A0 as desired.

Next, we show for each j = 1, . . . , k that

(HQ1 |Aj BQ1) v (HQ2 |Aj Bj). (?)

Let I be an instance over � and let a be a fresh data element. Suppose
H 2 (HQ1 |Aj BQ1)(I). Since (HQ1 |Aj BQ1) and Q

1

have the same

A monotone preservation result for containments of CQs 107

body, and HQ1 |Aj is a subtuple of HQ1 , we can extend H to H 0 such that
H 0 2 Q

1

(I). Furthermore, since Q
1

✓ Q
2

is monotone and Q
1

(Za) =
Q

2

(Za), we have Q
1

(I [Za) ✓ Q
2

(I [Za). Thus, H 0 2 Q
2

(I [Za),
whence we also have H 2 (HQ2 |Aj Bj)(I [Za). Since HQ2 |Aj Bj is
additive, H 2 (HQ2 |Aj Bj)(I) [(HQ2 |Aj Bj)(Za). This implies that
H 2 (HQ2 |Aj Bj)(I) since H is a tuple of data elements in I.

We now show that Q
1

✓ Q
2

is equivalent to Q0
1

✓ Q0
2

where Q0
1

=
() BQ1 and Q0

2

= () BQ2 , which proves our lemma. Clearly, Q
1

(I) ✓
Q

2

(I) implies that Q0
1

(I) ✓ Q0
2

(I). For the other direction, suppose that
Q0

1

(I) ✓ Q0
2

(I) and let H 2 Q
1

(I). Then, we have the following:

• There is a homomorphism f
1

from BQ1 to I such that f
1

�HQ1 = H.

• There is a homomorphism f
2

from BQ2 to I since ; 6= Q0
1

(I) ✓ Q0
2

(I).

• There is a function h such that h �HQ2 |A0 = HQ1 |A0 .

• For every j = 1, . . . , k, H|Aj 2 (HQ2 |Aj Bj)(I) by (?). Hence,
there is a homomorphism hj from Bj into I such that hj �HQ2 |Aj =
H|Aj .

We now construct a homomorphism f from Q
2

into I such that f �
HQ2 = H. We define this f as follows:

f : x 7!

8
><

>:

f
2

(x), if x 2 B;

hj(x), if x 2 adom (Bj);

f
1

� h(x), otherwise.

We first show that f �HQ2 = H.

f �HQ2 = f � (HQ2 |A0 [
[

1jk

HQ2 |Aj)

= f �HQ2 |A0 [
[

1jk

f �HQ2 |Aj

= f
1

� h �HQ2 |A0 [
[

1jk

hj �HQ2 |Aj

= f
1

�HQ1 |A0 [
[

1jk

H|Aj

= H|A0 [
[

1jk

H|Aj = H

108 A monotone preservation result for containments of CQs

Finally, we show that f(BQ2) ✓ I.

f(BQ2) = f(B [
[

1jk

Bj) = f(B) [
[

1jk

f(Bj)

= f
2

(B) [
[

1jk

hj(Bj)

✓ I

To prove Theorem 8.1 we may thus limit ourselves to conjunctive
queries with empty heads. First, we have a look at containments of the
form Q

1

✓ Q
2

where BQ1 contains at least two non-redundant atoms. In
what follows, when we write that a conjunctive query Q is minimal, we
mean that BQ does not contain redundant atoms.

Lemma 8.3. Let Q
1

and Q
2

be CQs where Q
1

is minimal and HQ1 =
HQ2 = (). If BQ1 contains at least two atoms, then Q

1

✓ Q
2

is equivalent
to true or is not monotone.

Proof. If Q
1

✓ Q
2

is not equivalent to true, then Q
1

6v Q
2

. Thus,
Q

2

(BQ1) = ;, whence we have Q
1

(BQ1) 6✓ Q
2

(BQ1). Since |BQ1 | � 2,
there exists a nonempty B (BQ1 . We have Q

1

(B) = ; for otherwise Q
1

would not be minimal.
Clearly, Q

1

(B) = ; implies that Q
1

(B) ✓ Q
2

(B). Hence, Q
1

✓ Q
2

is
not monotone.

We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. Let Q
1

✓ Q
2

be in CQ
�

✓ \MON. By Lemma 8.2
we may assume that HQ1 = HQ2 = (). We may furthermore assume that
Q

1

is minimal. The constant true query is expressed by () ; 6= ;, so we
may assume that Q

1

6v Q
2

. Thus, Q
2

(BQ1) = ;.
If BQ1 contains at least two atoms, then Q

1

✓ Q
2

is equivalent to true
by Lemma 8.3, which we have already considered.

If BQ1 = ;, then Q
1

✓ Q
2

is equivalent to Q
2

6= ; which is in CQ
�

6=;.
Finally, suppose that BQ1 contains exactly one atom. First, let us con-

sider BQ1 = {R(x
1

, . . . , xn)} where there is a repetition among x
1

, . . . , xn.
Define I

1

= {R(y
1

, . . . , yn)} where y
1

, . . . , yn are all di↵erent and not equal
to any of x

1

, . . . , xn. Clearly, Q
1

(I
1

) = ;. Since Q
2

(BQ1) = ;, there is a
connected component C of BQ2 that does not map in BQ1 . Furthermore,

A monotone preservation result for containments of CQs 109

C does not map into I
1

either, whence we also have Q
2

(I
1

) = ;. In-
deed, if C would map into I

1

, then C would also map into BQ1 since I
1

maps into BQ1 . It follows that C does not map into I
1

[BQ1 either,
since C is connected and adom(I

1

) is disjoint from adom(BQ1). There-
fore, Q

2

(I
1

[BQ1) = ;. Hence, Q
1

(I
1

[BQ1) 6✓ Q
2

(I
1

[BQ1) since the
head of Q

1

is in Q
1

(I
1

[BQ1). This contradicts that Q
1

✓ Q
2

is mono-
tone, since Q

1

(I
1

) = ; ✓ Q
2

(I
1

). So, the only body left to consider is
BQ1 = {R(x

1

, . . . , xn)} where x
1

, . . . , xn are all di↵erent and R 2 �. Our
proof now depends on the number of relations in �.

1. Suppose that � only contains the relation name R. Then Q
1

(I) 6=
; for any instance I over � since BQ1 = {R(x

1

, . . . , xn)} where
x
1

, . . . , xn are all di↵erent. We may thus conclude that Q
1

✓ Q
2

is equivalent to Q
2

6= ; in CQ
�

6=;.

2. Suppose that � only contains R and exactly one other relation name
T . Define I

1

= {T (y
1

, . . . , ym)} where y
1

, . . . , ym are di↵erent from
each other and from x

1

, . . . , xn. Since the body of Q
1

is an R-atom
and I

1

only contains a T -atom, we have Q
1

(I
1

) = ;. Hence, Q
1

(I
1

) ✓
Q

2

(I
1

). By the monotonicity of Q
1

✓ Q
2

, we also have Q
1

(I
1

[
BQ1) ✓ Q

2

(I
1

[BQ1). Therefore, every connected component of BQ2

maps in I
1

or BQ1 . Indeed, Q
2

(I
1

[BQ1) 6= ; since the head of
Q

1

is in Q
1

(I
1

[BQ1). This observation partitions the connected
components of BQ2 into two sets B0 and B00, where B0 contains the
components that map into I

1

, and B00 contains the components that
map into BQ1 .

We now show that Q
1

✓ Q
2

is equivalent to Q0 = () B0. To
this end, suppose that Q0(I) 6= ; and Q

1

(I) 6= ; for some instance I
over �. Thus B0 and BQ1 map into I. Since B00 maps into BQ1 by
construction, we also have that B00 map into I. Hence, Q

2

(I) 6= ;
as desired. For the other direction, suppose that Q

1

(I) ✓ Q
2

(I) for
some instance I over �. If Q

1

(I) 6= ;, then Q
2

(I) 6= ; by assumption.
Clearly, Q0(I) 6= ; since BQ0 is a subset of BQ2 . On the other hand, if
Q

1

(I) = ;, then I has no R-facts. Since instances cannot be empty,
it must contain at least one T -fact, so I

1

maps into I. Thus B0 also
maps into I, whence we have Q0(I) 6= ; as desired.

3. Finally, suppose that � contains at least three relation names. Since
Q

2

(BQ1) = ;, there is a connected component C of BQ2 that does
not map into BQ1 . In particular, we know that C is not empty,

110 A monotone preservation result for containments of CQs

whence it contains at least one atom, say a T -atom. (Note that T
can be equal to R or not.) Since there are three relation names in �
there is at least one other relation name S in � that is not equal to
T or R. Define I

2

= {S(z
1

, . . . , zl)} where z
1

, . . . , zl are all di↵erent
from each other and from x

1

, . . . , xn. By construction, C do not
map into I

2

either, since C contains an atom di↵erent from S. Thus,
Q

2

(I
2

[BQ1) = ;, whence we have Q1

(I
2

[BQ1) 6✓ Q
2

(I
2

[BQ1) 6= ;
since Q

1

(I
2

[BQ1) 6= ;. However, Q
1

(I
2

) = ; since R and S are
di↵erent, which implies that Q

1

(I
2

) ✓ Q
2

(I
2

). This contradicts the
assumption that Q

1

✓ Q
2

is monotone.

9
Conclusion

In this thesis, we have outlined a framework along which we can investigate
Boolean queries. Firstly, we have identified three natural base modalities
to express Boolean queries: nonemptiness, emptiness and containment.
Secondly, we have outlined themes along which we investigate Boolean
query families that stem from these base modalities:

• Comparing the base modalities for fixed query languages

We have investigated this theme in Chapter 3. First, we have identi-
fied query features that enable the expression of one base modality in
terms of another one. These query features are the constant empty
query; set di↵erence; cylindrification; complementation; and tests.

We have also identify general properties that reflect the absence of
these query features, notably, the properties of monotonicity and
additivity. We have then shown how these properties indeed prevent
going from one modality to another.

We then applied these results to conjunctive queries and navigational
graph query languages.

• Comparing di↵erent query languages under fixed modalities

We have investigated this theme in Chapter 4. We have noted that
this theme is particularly interesting when a query language has a lot
of di↵erent operators that can be included or be left out. The navi-
gational graph query languages are of this nature. We have focused
on these languages in this theme.

111

112 Conclusion

For the (co)projection restricted fragments, subsumption under non-
emptiness has already been completely characterized [21].

With a simple reduction we have shown that subsumption of naviga-
tional query fragments under emptiness coincides with the subsump-
tion under nonemptiness.

Finally, under containment we have completely characterized sub-
sumption for unrestricted fragments, i.e., fragments can contain just
a single projection or coprojection. We have shown that every opera-
tor is primitive, i.e., every operator adds expressive power on its own.
Thus, subsumption among fragments under the containment modal-
ity behaves the same as subsumption for path queries. This was not
obvious, since under nonemptiness subsumption behaves very di↵er-
ently.

• Comparing di↵erent query languages under di↵erent base

modalities We have investigated this theme in Chapter 5. Just as
in the previous theme, this theme is particularly interesting when a
query language has a lot of di↵erent operators that can be included
or be left out. The navigational graph query languages are of this
nature. We have focused on these languages in this theme.

We have been able to characterize exactly when F✓
1

✓ F 6=;
2

and

F✓
1

✓ F=;
2

for unrestricted graph query fragments F
1

and F
2

,

On the other hand, we have been able to characterize exactly when
F 6=;
1

✓ F=;
2

for (co)projection restricted fragments F
1

and F
2

.

We have not been able to fully characterize F 6=;
1

✓ F✓
2

. We, however,
conjecture that

F 6=;
1

✓ F✓
2

i↵ F 6=;
1

✓ F 6=;
2

and F 6=;
2

✓ F✓
2

for (co)projection restricted fragments F
1

and F
2

. We have been able

to show this for the most part. Only the fragments where ⇡ 2 fF
1

and F
2

✓ {di,�1,+} are still open. Even in this open case, we have
been able to prove the conjecture for the union-free subfragment of
{all,�1}✓. To prove the conjecture in this case, we have proven a
preservation result: CQ✓ \MON = CQ 6=;. To prove the full con-
jecture when using the same proof strategy, we would have to prove
a similar preservation result for conjunctive queries with union and
nonequalities, but we have not been able to find such a preservation
result.

Conclusion 113

The aforementioned preservation theorem is interesting in its own
right. Indeed, in finite model theory, model theory and database
theory, preservation theorems have been studied in detail [15, 12, 37,
24, 3, 39]. As future work, it could be interesting to find preservation
theorems for larger languages and/or even other semantic properties.

• Closure under Boolean connectives We have investigated this
theme in Chapter 6. We have already compared nonemptiness to
emptiness. Remember that this comparison is equivalent to ask-
ing whether query languages are closed under negation. We have
asked the same question for the containment modality. In particular,
we have shown that (unions of) conjunctive queries under contain-
ment are not closed under negation. Furthermore, we have been able
to characterize when graph query languages under containment are
closed under negation.

Obviously, this question can be generalized to other Boolean con-
nectives. For this question we have again focused on conjunctive
queries and navigational graph query languages. We have shown that
(unions of) conjunctive queries under nonemptiness are always closed
under conjunction. Under emptiness, the same holds for unions of
conjunctive queries. For conjunctive queries under emptiness and
containment, however, this is no longer true. We have shown that
the answer depends on the database schema.

The navigational graph query languages under emptiness are always
closed under conjunction since union is always present. Under non-
emptiness, however, this is no longer true. We have been able to
characterize when graph query languages under nonemptiness are
closed under conjunction.

We have not been able to characterize closure under conjunction for
navigational graph query languages under containment. We do, how-
ever, conjecture that a fragment under containment is closed under
conjunction i↵ di↵erence is present. We have been able to show this
conjecture for a small number of fragments. Thus, this question re-
mains open for the majority of fragments.

As future work, we can investigate whether unions of conjunctive
queries under the containment modality are closed under conjunc-
tion.

114 Conclusion

Another interesting line of future work would be to consider other
Boolean connectives such as disjunction.

Finally, in Chapter 7 we have shown that converse elimination under non-
emptiness always leads to an exponential blowup in degree. This result
gives no information regarding the length of expressions. For future work,
it could be interesting to establish lower bounds on the length of expres-
sions after eliminating converse under nonemptiness.

In all of the above, it could be interesting to add two other derived op-
erators to our graph query fragments called the residuals [36]. It expresses
a natural form of universal quantification and its expressive power relative
to other operators is largely unexplored. We also do not know much about
basic reasoning tasks, such as deciding satisfiability or subsumption, in the
basic algebra extended with residuals.

9.1 Open Questions

The following list contains a selection of interesting open problems in this
thesis:

• Is UCQ✓ closed under conjunction?

• Is F✓ closed under conjunction for fragments F that include ⇡?

• Are monotone containments in {di,�1,+}✓ captured by nonempti-
ness expressions in {di,�1,+}6=;?

• Is {⇡} 6=; subsumed by {di,�1,+}✓?

• Find a lower bound on the length of expressions after eliminating
converse.

9.2 Future work

In this section we discuss the future of this project. In our framework,
we have proven results for well established languages such as CQs and
navigational graph languages. Obviously, these are not the only interesting
query languages. For example, one can use our framework to investigate
Boolean queries constructed from relational algebra or Datalog fragments.
We hope that our framework will serve as a template to investigate Boolean
queries for a wide array of query languages.

9.2 Future work 115

Another direction for this project could be to consider other sets of
modalities. The base modalities we considered stem from natural/practical
problems we want answered. We realize, however, that there can be other
natural modalities motivated by other practical settings. For example,
Barwise and Cooper [11] consider the modality e

1

\ e
2

6= ;, corresponding
to the language construct “some e

1

are e
2

”. Even when one considers
other base modalities, our framework can still serve as a guideline for the
investigation of Boolean queries. However, one needs to be careful in this
setting, as there are an infinitude of base modalities one can consider.

We thus hope that our framework will serve as a starting point to in-
vestigate Boolean queries in general, regardless of the specific application.

10
Dutch Summery

Wanneer een relationele database gequeryd wordt, is het resultaat normaal
gezien een relatie. Dit zijn echter niet de enige interessante queries, veel
interessante queries verwachten immers een ja/nee-antwoord. We kunnen
bijvoorbeeld vragen “Is student 14753 ingeschreven voor het vak c209?”
of “Is er een vak dat geen schriftelijk examen heeft?”. Dergelijke queries
worden Booleaanse queries genoemd.

In database theorie en eindige model theorie is het standaard om deze
Booleaanse queries uit te drukken door middel van de nonemptiness moda-
liteit. Aan de hand van deze modaliteit worden Booleaanse queries uitge-
drukt met expressies van de vorm e 6= ;, waarbij e een expressie is in een be-
paalde querytaal. Hier wordt een niet-leeg queryresultaat gëınterpreteerd
als true en een leeg query resultaat als false. De Booleaanse query “Is stu-
dent 14753 ingeschreven voor het vak c209” wordt bijvoorbeeld uitgedrukt
door het niet-leeg zijn van de query “Verzamel alle studenten met nummer
14753 die ingeschreven zijn voor het vak c209”. In de praktijk wordt de
nonemptiness modaliteit gebruikt door de querytalen SPARQL (ASK P)
en SQL (EXISTS (Q)).

De nonemptiness modaliteit is duidelijk niet de enige natuurlijke ma-
nier om Booleaanse queries uit te drukken. Een integrity constraint is
bijvoorbeeld op een natuurlijke manier uitdrukbaar aan de hand van een
query die slechte elementen in de database zoekt. De constraint is dan vol-
daan als de query geen slechte elementen in de database vindt en bijgevolg
een leeg resultaat geeft. Hier gebruiken we dus de emptiness modaliteit
waarbij een leeg resultaat gëınterpreteerd wordt als true en een niet-leeg
resultaat als false. In de praktijk wordt de emptiness modaliteit gebruikt

117

118 Dutch Summery

in SQL door middel van NOT EXISTS (Q).
Een andere natuurlijke modaliteit is de containment modaliteit. Via

deze modaliteit worden Booleaanse queries uitgedrukt met expressies van
de vorm e

1

✓ e
2

waarbij e
1

en e
2

twee query-expressies zijn in een bepaalde
querytaal. De query e

1

✓ e
2

is true voor een database D als e
1

(D) een
deelverzameling is van e

2

(D).1 Bijvoorbeeld, de foreign-key constraint
“elke student ingeschreven voor het vak c209, moet geslaagd zijn voor c106’
wordt uitgedrukt door de containment e

1

✓ e
2

waarbij e
1

de studenten
verzamelt die ingeschreven zijn voor c209 en e

2

degenen verzamelt die
geslaagd waren voor c106.

Dit voorbeeld laat ons ook de sterkte zien van de containment mo-
daliteit. Containments geven ons namelijk de kracht om niet-monotone
queries uit te drukken met monotone queries. Monotone queries Q zijn
queries waarbij het resultaat enkel kan groeien: als D ✓ D0 dan is Q(D)
vervat in Q(D0).

Als een querytaal krachtig genoeg is, zoals bijvoorbeeld eerste-order
logica, dan zijn al deze modaliteiten even krachtig. Dit wil zeggen dat we
precies dezelfde ja/nee-vragen kunnen stellen. Bijvoorbeeld, {x̄ | '(x̄)} =
; is equivalent met {() | ¬9x̄'(x̄)} 6= ;. Eveneens is {x̄ | '

1

(x̄)} ✓ {x̄ |
'
2

(x̄)} equivalent met {() | 8x̄('
1

! '
2

)(x̄)} 6= ;.
Desondanks kan de keuze van de modaliteit toch belangrijk zijn voor

e�ciëntie en gebruikersgemak. Een functionele afhankelijkheid A ! B
op een relatie R(A,B) kan direct uitgedrukt worden door middel van de
emptiness modaliteit:

{(a, b1, b2) | R(a, b1) ^R(a, b2) ^ b1 6= b2} = ;.

Op basis van de nonemptiness modaliteit is dit echter niet mogelijk als we
enkel monotone queries, zoals bijvoorbeeld conjunctive queries (CQ), toe-
laten. Een analoge situatie doet zich voor bij foreign-key constraints. Deze
kunnen namelijk eenvoudig gedefinieerd worden aan de hand van contain-
ment expressies. Met de nonemptiness en emptiness modaliteiten kunnen
we dergelijke constraints echter niet uitdrukken als we enkel monotone
expressies toelaten.

Wij vinden het dus zeker nuttig om te onderzoeken hoe deze modali-
teiten zich verhouden ten opzichte van elkaar.

1Merk op dat expressies van de vorm e1 ✓ e2 niet verward mogen worden met
het bekende containment probleem, waarbij men gëınteresseerd is in het geval waarbij
e1(D) vervat zit in e2(D) voor alle databases D. Containment expressies waarbij e1
volledig vervat zit in e2 voor alle database D, zijn niet interessant als Booleaanse queries
aangezien de query dan altijd true oplevert.

Dutch Summery 119

In deze thesis introduceren we een kader om Booleaanse queries te
onderzoeken. Al onze resultaten passen in dit kader.

In het eerste thema fixeren we de querytaal en vergelijken we de moda-
liteiten. In deze thesis identificeren we enkele cruciale query operatoren die
het mogelijk maken om van de ene modaliteit naar de andere te gaan. De
verschil operator geeft ons bijvoorbeeld de mogelijkheid om van de contain-
ment modaliteit naar de emptiness modaliteit te gaan. Uiteraard willen we
graag weten of die operatoren wel degelijk de operatoren zijn die we altijd
nodig hebben. Hiervoor hebben we negatieve resultaten nodig die aanto-
nen dat we een Booleaanse query kunnen uitdrukken met een bepaalde
modaliteit, maar niet met een andere als bepaalde operatoren niet aanwe-
zig zijn. Indien we geen restricties aan querytalen opleggen is dit echter
niet mogelijk. We kunnen immers zeer pathologische querytalen construc-
turen. Als alternatief identificeren we bepaalde semantische eigenschappen
van verzamelingen van queries, zoals bijvoorbeeld monotoniciteit, die het
ontbreken van bepaalde operatoren reflecteren. We tonen bijvoorbeeld aan
dat er geen gemeenschappelijke queries uitdrukbaar zijn in de emptiness en
nonemptiness modaliteiten als we enkel monotone queries toelaten. Hierna
passen we al onze resultaten toe op bekende querytalen zoals CQs en na-
vigationale graaf querytalen.

In het tweede thema vergelijken we een vaste modaliteit onder ver-
schillende querytalen. Dit soort vergelijking is interessant voor querytalen
met veel verschillende operatoren. Zo kunnen we de invloed van de ope-
ratoren op de expressieve kracht bepalen voor een vaste modaliteit. Voor
navigationele graaf talen is de volledige expressieve kracht al gekend onder
de nonemptiness en emptiness modaliteiten [21]. In deze thesis brengen
we de volledige expressieve kracht voor de navigationele graaf talen in
kaart onder de containment modaliteit. We tonen in het bijzonder aan dat
alle operatoren kracht toevoegen, tenzij ze letterlijk geconstrueerd kunnen
worden. Dit verschilt drastisch met de expressieve kracht voor deze ta-
len onder de nonemptiness modaliteit. Onder de nonemptiness modaliteit
kunnen we namelijk in enkele gevallen de inverse operator wegwerken. Dit
proces wordt ook inverse eliminatie genoemd. In deze thesis tonen we bo-
vendien aan dat inverse eliminatie resulteert in een zeer complexe formule
met exponentieel meer composities/projecties/coprojecties.

In het derde thema brengen we het eerste en tweede thema samen en
vergelijken we verschillende modaliteiten onder verschillende querytalen.
Net zoals bij het tweede thema, zijn talen met verschillende operatoren
hier zeer geschikt voor. We vergelijken de drie modaliteiten voor alle ver-

120 Dutch Summery

schillende navigationele graaftalen. Voor de meeste talen tonen we aan dat
ze onvergelijkbaar zijn, tenzij de operatoren letterlijk geconstrueerd kun-
nen worden. In deze context zijn er echter enkele vragen open. Zo weten we
bijvoorbeeld niet of alle Booleaanse queries die uitdrukbaar zijn door mid-
del van projectie onder nonemptiness, ook uitdrukbaar zijn door middel
van diversity (ongelijkheid) en inverse onder de containment modaliteit.

Merk op dat de nonemptiness en emptiness modaliteiten elkaars negatie
zijn. Bijgevolg is de vergelijking van nonemptiness en emptiness voor een
bepaalde querytaal F equivalent met de vraag of F onder de nonemptiness
modaliteit gesloten is onder negatie. In het vierde thema bekijken we deze
vraag voor de containment modaliteit. We tonen in het bijzonder aan dat
CQ onder containment niet gesloten is onder negatie en navigationele talen
enkel gesloten zijn onder negatie als de containment modaliteit geen extra
kracht toevoegt over nonemptiness. We veralgemenen dit idee verder naar
andere Booleaanse connectieven zoals conjunctie.

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[2] S. Abiteboul and V. Vianu. Regular path queries with constraints.
Journal of Computer and System Sciences, 58:428–452, 1999.

[3] M. Ajtai and Y. Gurevich. Monotone versus positive. J. ACM,
34(4):1004–1015, October 1987.

[4] T.J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Weaker forms of
monotonicity for declarative networking: A more fine-grained answer
to the CALM-conjecture. ACM Transactions on Database Systems,
40(4):article 21, 2016.

[5] T.J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Datalog queries
distributing over components. ACM Transactions on Computational
Logic, 18(1):5:1–5:35, 2017.

[6] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and
D. VrgočDatalog. Foundations of modern query languages for graph
databases. ACM Computing Surveys, 50(5):68:1–68:40, September
2017.

[7] R. Angles, P. Barceló, and G. Rios. A practical query language for
graph DBs. In L. Bravo and M. Lenzerini, editors, Proceedings 7th
Alberto Mendelzon International Workshop on Foundations of Data
Management, volume 1087 of CEUR Workshop Proceedings, 2013.

[8] R. Angles and C. Gutierrez. Survey of graph database models. ACM
Computing Surveys, 40(1):article 1, 2008.

[9] A. Badia. Quantifiers in Action: Generalized Quantification in Query,
Logical and Natural Languages, volume 37 of Advances in Database
Systems. Springer, 2009.

121

122 Bibliography

[10] P. Barceló. Querying graph databases. In Proceedings 32st ACM
Symposium on Principles of Databases, pages 175–188. ACM, 2013.

[11] J. Barwise and R. Cooper. Generalized quantifiers and natural lan-
guage. Linguistics and Philosophy, 4(2):159–219, 1981.

[12] M. Benedikt, J. Leblay, B. ten Cate, and E. Tsamoura. Generat-
ing Plans from Proofs: The Interpolation-based Approach to Query
Reformulation. Morgan&Claypool, 2016.

[13] D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y. Vardi. Rea-
soning on regular path queries. SIGMOD Record, 32(4):83–92, 2003.

[14] A.K. Chandra and P. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Proceedings 9th ACM Symposium
on the Theory of Computing, pages 77–90. ACM, 1977.

[15] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, 3rd
edition, 1990.

[16] E. Codd. A relational model for large shared databanks. Communi-
cations of the ACM, 13(6):377–387, 1970.

[17] I.F. Cruz, A.O. Mendelzon, and P.T. Wood. A graphical query lan-
guage supporting recursion. In ACM SIGMOD Record, volume 16,
pages 323–330. ACM, 1987.

[18] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, second
edition, 1999.

[19] G.H.L. Fletcher, M. Gyssens, D. Leinders, D. Surinx, J. Van den Buss-
che, D. Van Gucht, S. Vansummeren, and Y. Wu. Relative expres-
sive power of navigational querying on graphs. Information Sciences,
298:390–406, 2015.

[20] G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche,
D. Van Gucht, and S. Vansummeren. Similarity and bisimilarity
notions appropriate for characterizing indistinguishability in frag-
ments of the calculus of relations. Journal of Logic and Computation,
25(3):549–580, 2015.

[21] G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche,
D. Van Gucht, S. Vansummeren, and Y. Wu. Relative expressive

Bibliography 123

power of navigational querying on graphs. In Proceedings 14th Inter-
national Conference on Database Theory, 2011.

[22] G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche,
D. Van Gucht, S. Vansummeren, and Y. Wu. The impact of transi-
tive closure on the expressiveness of navigational query languages on
unlabeled graphs. Annals of Mathematics and Artificial Intelligence,
73(1–2):167–203, 2015.

[23] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database Systems:
The Complete Book. Prentice Hall, 2009.

[24] Y. Gurevich. Toward logic tailored for computational complexity.
In M.M. Richter et al., editors, Computation and Proof Theory, vol-
ume 1104 of Lecture Notes in Mathematics, pages 175–216. Springer-
Verlag, 1984.

[25] P. Hell and J. Nesetril. Graphs and Homomorphisms. Oxford Lecture
Series in Mathematics and Its Applications. OUP Oxford, 2004.

[26] L. Hella, K. Luosto, and J. Väänänen. The hierarchy theorem for
generalized quantifiers. The Journal of Symbolic Logic, 61(3):802–
817, 1996.

[27] J. Hellings. Unpublished notes, Hasselt University, 2016.

[28] L. Henkin and A. Tarski. Cylindric algebras. In R.P. Dilworth, ed-
itor, Lattice Theory, volume 2 of Proceedings of Symposia in Pure
Mathematics, pages 83–113. American Mathematical Society, 1961.

[29] T. Imielinski andW. Lipski. The relational model of data and cylindric
algebras. Journal of Computer and System Sciences, 28:80–102, 1984.

[30] Ph.G. Kolaitis. On the expressive power of logics on finite models. In
Finite Model Theory and Its Applications, chapter 2. Springer, 2007.

[31] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[32] L. Libkin, W. Martens, and D. Vrgoč. Quering graph databases with
XPath. In Proceedings 16th International Conference on Database
Theory. ACM, 2013.

[33] R.D. Maddux. Relation Algebras. Elsevier, 2006.

124 Bibliography

[34] M. Marx and M. de Rijke. Semantic characterizations of navigational
XPath. SIGMOD Record, 34(2):41–46, 2005.

[35] M. Marx and Y. Venema. Multi-Dimensional Modal Logic. Springer,
1997.

[36] V. Pratt. Origins of the calculus of binary relations. In Proceedings
7th Annual IEEE Symposium on Logic in Computer Science, pages
248–254, 1992.

[37] B. Rossman. Homomorphism preservation theorems. Journal of the
ACM, 55(3):15:1–15:53, August 2008.

[38] Y. Sagiv and M. Yannakakis. Equivalences among relational expres-
sions with the union and di↵erence operators. J. ACM, 27(4):633–655,
1980.

[39] A.P. Stolboushkin. Finitely monotone properties. In Proceedings of
the 10th Annual IEEE Symposium on Logic in Computer Science,
LICS ’95, pages 324–, Washington, DC, USA, 1995. IEEE Computer
Society.

[40] D. Surinx, J. Van den Bussche, and D. Van Gucht. The primitivity
of operators in the algebra of binary relations under conjunctions of
containments. In 2017 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), pages 1–10, June 2017.

[41] D. Surinx, G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den
Bussche, D. Van Gucht, S. Vansummeren, and Y. Wu. Relative ex-
pressive power of navigational querying on graphs using transitive
closure. Logic Journal of the IGPL, 23(5):759–788, 2015.

[42] B. ten Cate and M. Marx. Navigational XPath: Calculus and algebra.
SIGMOD Record, 36(2):19–26, 2007.

[43] J. Van den Bussche. Applications of Alfred Tarski’s ideas in database
theory. In L. Fribourg, editor, Computer Science Logic, volume 2142
of Lecture Notes in Computer Science. Springer, 2001.

[44] P.T. Wood. Query languages for graph databases. SIGMOD Record,
41(1):50–60, March 2012.

