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Abstract

In this thesis we are interested in (unknown) functions which appear in statistical models, and

testing procedures concerning these unknown functions. These functions are estimated flexibly

(nonparametric) and not according to a prespecified (parametric) form. The nonparametric

technique we consider is by spline approximations. Splines are used to estimate univariate

as well as multivariate functions. Then, hypothesis testing about those unknown functions is

translated to a testing procedure based on the spline estimation.

The first statistical model we consider is a varying coefficient model (VCM), which is an ex-

tension of the classical linear regression model in the sense that the regression coefficients are

allowed to be functions, for example of time. Varying coefficient models (VCMs) are since

many years popular in longitudinal data and panel data studies, and have been applied in

fields such as finance, economics, ecology, epidemiology, health sciences, and so on. We esti-

mate the coefficient by B-splines. An important question in a VCM is whether the coefficient

has a particular parametric form, such as being constant or linear. This allows, on the one

hand to draw conclusions on the effect of certain variables on the response variable. On the

other hand, this could allow to propose a simpler model and strongly reduce the number of

parameters in the model. We construct testing procedures to answer the former hypothesis,

and give the supporting theoretical results for longitudinal data with correlated errors. Testing

of such hypotheses in VCMs is studied in Chapter 2, with illustrations of the power through

simulations and a data application.

In Chapter 3 we address our second hypothesis of VCMs. There, we are interested in whether

a coefficient function is monotonic or convex, i.e. the shape. We develop testing procedures

for monotonicity and convexity, with the necessary theoretical results. Moreover, we give

procedures to test simultaneously the shapes of certain coefficient functions. The tests use
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constrained and unconstrained regression splines. Application of our testing procedures on

simulations reveal the effectiveness of our approach. Data applications are also given.

Chapter 4 studies parameters of partial differential equations (PDEs). Many complex dynamic

systems are governed by PDEs, they appear in a vast number of scientific fields such as biology,

physics and finance. PDEs are determined by their parameters. Often scientists face the

challenge to determine unknown parameters of a PDE, and the need to estimate them from error

prone measurements. In the statistical literature it is very often assumed that the parameters

are constant, which restricts the application possibilities because in reality this assumption

can be crude. In Chapter 4 we extend the parametric cascading method- which was shown

to be very effective for PDE models with constant parameters- to the PDE setting where the

coefficients vary with multiple variables. In the case of a linear PDE model, we show that our

proposed estimator of the parameters is uniformly consistent.

In Chapter 1 we introduce further the concepts of this thesis with an overview of the relevant

statistical literature. Finally, in Chapter 5 we conclude this thesis with a summary of the results

and discuss future research perspectives.
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Abstract in Dutch

In deze thesis zijn we gëınteresseerd in (onbekende) functies die in statistische modellen voorkomen,

en toetsingsprocedures omtrent deze onbekende functies. Deze functies worden flexibel geschat

(niet-parametrisch) en niet volgens een voorgeschreven vorm (parametrisch). De niet-parametrische

techniek die we beschouwen is via spline schattingen. Splines worden gebruikt om zowel uni-

variate als multivariate functies te schatten. Vervolgens worden hypothesetoetsen over die

onbekende functies vertaald naar een toetsingsprocedure gebaseerd op de spline schatting.

Het eerste statistisch model dat we beschouwen is een model met variërende coëfficiënten, wat

een uitbreiding is van het klassieke lineaire regressie model in de zin dat de regressiecoëfficiënten

functies mogen zijn, bijvoorbeeld van tijd. Modellen met variërende coëfficiënten (VCM)

zijn sinds vele jaren populair in longitudinale data en paneldata studies, en zijn toegepast

in domeinen als financiën, economie, ecologie, epidemiologie, gezondheidswetenschappen, etc.

We schatten de coëfficiënten door middel van B-splines. Een belangrijke vraag in VCM is

of de coëfficiënten een bepaalde parametrische vorm hebben, zoals constantheid of lineariteit.

Dit laat toe om, enerzijds uitspraken te doen over de effecten van covariaten op de respons,

anderzijds een simpeler model voor te stellen en het aantal parameters in het model sterk te

reduceren. We construeren toetsingsprocedures voor zulke hypothesen, met theoretische onder-

bouwingen voor longitudinale data met gecorreleerde fouttermen. Zulke hypothesen toetsen in

VCM worden bestudeerd in Hoofdstuk 2, met illustraties aan de hand van gesimuleerde data

en toepassingen op reële data.

In Hoofdstuk 3 richten we ons tot andere soort hypothesen in VCM. Daar ligt onze interesse

in het toetsen van monotoniciteit en convexiteit, d.i. de vorm. We ontwikkelen toetsingsproce-

dures voor monotoniciteit en convexiteit, met de nodige theoretische funderingen. Bovendien

geven we ook procedures om simultaan de vorm van de coëfficiënten te toetsen, wat niet nodig
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was in univariate regressiemodellen. Gesimuleerde data onthullen de effectiviteit van onze aan-

pak. We beschouwen ook een reële data toepassing.

Hoofdstuk 4 bestudeert parameters van modellen met partiële differentiaalvergelijkingen (PDEs).

Verschillende complexe dynamische systemen zijn onderhevig aan PDEs, ze komen voor in

wetenschappelijke domeinen zoals biologie, fysica, financiën, etc. PDEs worden bepaald door

hun parameters. Vaak staan wetenschappers voor de uitdaging om onbekende parameters van

PDEs te bepalen aan de hand van metingen die onderhevig zijn aan meetfouten. In de statis-

tische literatuur wordt er heel vaak verondersteld dat de parameters van de PDEs constant

zijn, wat de mogelijke toepassingen beperkt omdat in realiteit deze assumptie vaak te ruw is.

In Hoofdstuk 4 breiden we een methode uit, waarvan reeds bewezen is dat deze effectief is in

PDEs met constante parameters, naar PDEs met multivariate parameters. In het geval van

lineaire PDEs tonen we aan dat onze schatter van de parameters uniform consistent is.

In Hoofdstuk 1 introduceren we verder de concepten van deze thesis met een overzicht van

relevante statistische literatuur. Tenslotte, in Hoofdstuk 5 geven we een overzicht van de

resultaten en lichten we enkele toekomstige onderzoeksperspectieven toe.
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Chapter 1

Introduction

The results in this thesis belong to the domain of nonparametric function estimation and

hypothesis testing. Parametric function estimation assumes that the function of interest has a

particular simple parametric expression, such as constant (i.e. polynomial of degree 0), linear

(i.e. polynomial of degree 1) etc. On the other hand, nonparametric function estimation does

not assume a prespecified expression of the function (Section 1.1).

The first goal of this thesis is to address the hypothesis whether coefficient functions in a varying

coefficient model have a certain parametric form, such as taking a constant value (Section 1.2.1).

In the same context we also construct effective testing procedures for the hypothesis that the

coefficient functions are monotonic or convex (Section 1.2.2).

The second goal of this thesis is the estimation of varying parameters in a partial differential

equation model (Section 1.3). The aim is to give good estimations of the varying parameters.

1.1 Spline approximation

We have mentioned that the coefficients of interest are estimated by nonparametric method.

To introduce the concept of nonparametric function estimation we consider the univariate

regression problem

Y = µ(x) + ε, (1.1)

1



2 Chapter 1. Introduction

where µ is an unknown mean function (depending on x) of the variable Y with domain a finite

interval [a, b] and ε is a mean zero stochastic variable which should be thought of as noise.

It is not difficult to imagine that in general, assuming a parametric form (e.g. linear) for the

mean function µ yields bad fits. Nonparametric estimation prevents this issue because the only

assumption is on the smoothness of µ. For example we assume that µ is continuous or that it

has a bounded second derivative.

The function of interest (µ in (1.1)) is estimated by a spline function. Spline functions are

characterized by a degree q and knots a = t0 ≤ t1 ≤ . . . ≤ tK = b.

Definition 1.1 (Spline function). A function S : [a, b] → IR is a spline function of degree q

with knots a = t0 ≤ t1 ≤ . . . ≤ tK = b if

S(x) = Pi(x) on [ti, ti+1)

for i = 0, 1, . . . , K − 1, and S(tK) = PK−1(tK), where Pi is a polynomial of degree at most q

such that S(q−1) is continuous.

The last condition –the function S is (q − 1) continuously differentiable– means that the poly-

nomials Pi join smoothly at the knots. A few attractive features of spline functions (taken from

Chapter 1 of Schumaker (2007)) are

• The spaces of spline functions are finite dimensional vector spaces with convenient bases

(e.g. B-spline basis);

• Splines are relatively smooth functions;

• The derivatives and antiderivatives of splines are again splines;

• Every continuous function on the interval [a, b] can be approximated arbitrarily well by

splines with the degree q fixed, provided a sufficient number of knots are allowed;

• Precise rates of convergence can be given for approximation of smooth functions by splines,

not only are the functions themselves approximated, but their derivatives are as well.

Moreover, the space of spline functions has a conventient basis called (normalized) B-splines

which are studied in great detail by De Boor (2001) and Schumaker (2007). B-splines have

some useful properties of which we list a few:
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• They are all nonzero;

• The support of any B-spline function is exactly given by q + 2 consecutive knots;

• B-splines sum up to the constant function 1 on [a, b];

• B-splines are defined recursively.

The recursive definition of B-splines allows to obtain the B-spline function of degree q from

B-splines of one degree lower. We define B-splines of degree 0 before we proceed to the recursive

definition of B-splines. B-splines of degree 0 are given by

Bj(x; 0) =

1, if tj−1 ≤ x < tj

0, else,

(1.2)

for j = 1, . . . , K and BK(tK ; 0) = 1.

B-splines are defined recursively

Bj(x; q) =
x− tj−1

tj+q−2 − tj−1

Bj(x; q − 1) + (1− x− tj
tj+q − tj+1

)Bj+1(x; q − 1), (1.3)

and it is applied for j = −q+1, . . . , K by adding knots t−q ≤ t−q+1 ≤ . . . ≤ t−1 left from t0 and

restricting to the interval [t0, tK ], to obtain a basis for the space of degree q spline functions

with knots t0, t1, . . . , tK . For the sake of presentation we let the indices of the B-splines go

from 1 to K + q. In Figure 1.1 three B-splines of degree one and of degree two are drawn for

the domain [0, 1]. The B-splines of degree one is based on the knotset {0, 1
6
, 2

6
, . . . , 1}, for the

degree two B-spline basis the knots are {0, 1
7
, 2

7
, . . . , 1}. Most properties of B-splines which are

summed up above can directly be verified.

Let us return to model (1.1) and suppose we have data (xi, Yi), for i = 1, . . . , n, satisfying

Yi = µ(xi) + εi (1.4)

with µ a certain smooth function, and were εi are independent and identically distributed

(i.i.d.) random variables with finite variance σ2. The function µ is modeled by a spline function

µ(x) =

K+q∑
j=1

αjBj(x; q). The estimator of α is obtained by maximizing the likelihood function

which is determined by the distribution of the error terms. When the error terms are normally
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Figure 1.1: Three B-splines with equidistant knots on the unit interval (a) of degree 1 and knot

distance 1
6

and (b) of degree 2 with knot distance 1
7
.

distributed, the B-spline coefficients α = (α1, α2, . . . , αK+q)
> are estimated by finding the

minimizer of the log-likelihood

1

σ2

n∑
i=1

(
Yi −

K+q∑
j=1

αjBj(xi; q)

)2

.

This approach is also used to estimate a multivariate µ, which is achieved by using tensor

product spline functions (see Chapter 4).

1.2 Varying coefficient models

We consider varying coefficient models (VCMs) to study longitudinal data. VCMs were devel-

oped by Hastie and Tibshirani (1993). Such models have been widely applied to many scientific

areas: environmental science, ecology, econometrics, epidemiology, etc. VCMs are an extension

of classic linear regression models where the coefficient corresponding to a covariate is assumed

to be constant (independent of other variables). This assumption can lead to poor modeling

when the data is for example time dependent. Therefore, the modeling strategy ought to be

revised to increase flexibility and maintain interpretability (Fan and Wenyang (2008)). The

extension consists of allowing the coefficients to depend on other variables. In Chapters 2 and
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3 we consider the model

Y (t) = X(t)>β(t) + ε(t) =
d∑
p=0

X(p)(t)βp(t) + ε(t), (1.5)

where Y (t) is the response at time t ∈ T = [0, 1]; X(t) = (X(0)(t), . . . , X(d)(t))> is the covariate

vector at time t, with X(0)(t) ≡ 1; β(t) = (β0(t), . . . , βd(t))
> is the vector of coefficient functions

at time t. Note that t can be any variable and the domain T can be any bounded interval.

The stochastic error function ε(t) has mean zero (conditioned on X(t)). The j-th measurement

of subject i (tij, Yij,Xij) for 1 ≤ i ≤ n and 1 ≤ j ≤ Ni, is a sample from (t, Y (t),X(t)),

where tij is the observed time, Yij is the observed response of the ith subject at time tij and

Xij = (X
(0)
ij , . . . , X

(d)
ij )> is the corresponding observed covariate vector. The observed covariates

and responses are used for nonparametric estimation of the coefficient functions β0, β1, . . . , βd.

This can be achieved by several nonparametric techniques. Local polynomial techniques are

discussed in Hoover et al. (1998) and Fan and Zhang (1999), among others. Huang et al. (2002)

approximates the coefficient functions by spline functions using B-spline bases, and Antoniadis

et al. (2012) use penalized splines approximation in a variable selection context. Note that the

optimal choice of the smoothing level for coefficient estimation need not be the optimal choice

for the hypothesis testing, for more on this note see Zhang and Mei (2012) (p. 1945-1946).

Consider the application of a VCM on the AIDS data which is a subset of the Multicenter

AIDS Cohort Study, and which is also analysed in Chapter 2. This data set contains the

repeated measurements of physical examinations, laboratory results and CD4 cell percentages

of 283 homosexual men who became HIV-positive between 1984 and 1991. CD4 cells play an

important role in the body’s immune system. The HIV virus destroys CD4 cells. The fewer

functioning CD4 cells, the weaker the immune system and therefore the more vulnerable a

person is to infections and illnesses. The patients would have measurements taken every 6

months, but due to certain individual’s missing their appointments and the random infection

moment, the number of repeated measurements varied per individual. The aim of the statistical

analysis is to describe the trend of the mean CD4 percentage depletion over time (in years)

explained by the effects of cigarette smoking, age at HIV infection and pre-HIV infection CD4

percentage. For more details about the design, methods and medical applications see Kaslow

et al. (1987). Consider the model

Yij = β0(tij) + β1(tij)X
(1)
i + β2(tij)X

(2)
i + β3(tij)X

(3)
i + εij,
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Figure 1.2: AIDS data. Spline estimations of the coefficient functions.

where Yij is the ith individual CD4 percentage measured at time tij, X
(1)
i is the smoking status

of the ith individual; X
(1)
i is 1 or 0 if the individual ever or never smoked, X

(2)
i is the ith

individual’s centered age at HIV infection (obtained by subtracting the sample average age at

HIV infection from the individual’s age at HIV infection), and in a similar way we let X
(3)
i be the

ith individual’s centered pre-HIV infection CD4 percentage. By centering, the intercept β0(t)

represents the mean CD4 percentage t years after HIV infection of a homosexual individual

with an average age at HIV infection, an average pre-HIV CD4 rate and who has never smoked

cigarettes. With our method which is described in Chapter 2, we test whether a linear regression

model makes more sense. The p-value for this test is smaller than 1e−3, therefore we strongly

reject the hypothesis that all coefficient functions are constants. Hence, it makes sense to

state a varying coefficient model instead of the linear regression model. Figure 1.2 contains the

coefficient function estimations which are obtained by finding the spline function approximation

which conforms the data the most. The details of finding these spline function approximations

are provided in Section 2.2.1.
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The coefficients need not be time dependent. The second application is such an example, which

is taken from the German Continental Deep Drill Program (KTB) which was designed to study

the properties and processes of the deeper continental crust by means of a superdeep borehole.

More background information and results from this program can be found in Emmermann and

Lauterjung (1997). Of particular interest is the occurrence of cataclastic shear zones in the

upper and middle earth crust. The amount of cataclastic rocks (CATR) which are revealed by

the drill cuttings helps to address cataclastic shear zones. Antoniadis et al. (2012) explain the

amount of CATR by other variables (such as SiO2 content and Na2O content) through a VCM

where the coefficients vary with depth up to 9.1 km, in a variable selection setting.

1.2.1 Testing for parametric forms of coefficients

In the context of model (1.5), it is important to know whether certain coefficient functions have

a parametric form (i.e. a polynomial of prespecified degree), for example constant. This could

mean that a covariate does not have a varying but a constant effect on the response and that

effect should be modeled by a scalar. Similarly, when it is decided that a coefficient function

is polynomial of a certain degree then a much simpler model can be proposed to both reduce

computational costs and prevent overfitting. Chapter 2 establishes a method to test these kind

of hypotheses for longitudinal data models. For a literature overview of hypothesis testing that

a coefficient function is constant in a cross-sectional data model we refer to Li et al. (2011) and

the references therein. For longitudinal data, Huang et al. (2002) constructed a test statistic

based on the difference of the residual sum of squares under the null (coefficient is constant)

and the alternative hypothesis (coefficient is varying), but do not acquire asymptotic results of

their approach. They obtain critical values via a bootstrap strategy, which imposes the need of

a relatively large sample size at a high computational cost. Zhang (2004) proposed generalized

linear mixed models for inference in varying coefficient models that include models where Y can

be nonnormal such as binary or Poisson. However, their approach includes a strong parametric

assumption through random effects, and typically these effects are assumed to be normal.

Our method extends the technique of Li et al. (2011) to longitudinal data with correlated error

structures, where the coefficient functions are estimated based on a B-spline basis expansion.

Their approach makes fully use of the nice properties of B-splines. A main advantage of this

approach, besides its simplicity and high power, is that it can be extended to other interesting
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hypotheses. The test statistic follows (asymptotically if the coefficient functions are not spline

functions) a Fisher distribution. The main difficulty is incorporating the weight matrix (when

longitudinal data are used) and the correlation structure of the errors. The novelty of our ap-

proach furnishes this issue. We prove that our test statistic follows asymptotically a generalized

Fisher (notation: F) distribution. This generalized F distribution is the exact null distribution

if the coefficient functions are splines. We also discuss how we can test for parametric forms in

other varying coefficient models.

1.2.2 Testing for shapes of coefficients

It can be of interest to derive some conclusions about the shapes of the coefficient functions.

In Chapter 3, we develop tests for monotonicity and convexity. For example, a monotonically

increasing coefficient of a time independent predictor indicates that the effect of this predicator

on the response is increasing. This can be important in, among other fields, medical sciences.

See for example our study of schizophrenia patients (Sect. 3.8), where the ‘Severity of Illness’

is modeled by a VCM with covariate the binary variable whether the patient received a drug,

with coefficients depending on time (with week as unit of time). The general finding was that

the drug improved the health of the patients considerably. Since we are employing a VCM we

looked at the behaviour of the drug coefficient which revealed additional information on the

evolution of the drug effect on the patients. To the best of our knowledge there is yet no effective

testing procedure for monotonicity and convexity in varying coefficient models. Our approach

for testing monotonicity is universal and can be applied to other varying coefficient models. In

the context of univariate regression, methods of estimation under a monotonicity constraint and

testing for monotonicity have been widely discussed, see Bowman et al. (1998), Ghosal et al.

(2000),Wang and Meyer (2011) and references therein. In the context of varying coefficient

models, not much has been written on this subject. However, Zhang et al. (2013) extended

the SiZer map approach to varying coefficient models where the local polynomial estimation

technique is used, which reveals the statistically significant features of the coefficient functions.

The SiZer approach leads to a good explanatory tool, for example for choosing the level of

smoothness of each coefficient function. We develop two testing procedures for monotonicity

and convexity (concavity) using the nice properties of B-splines. We use a straightforward test

statistic. For example, for testing whether a coefficient function is monotonically increasing
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the test statistic is the minimum of the derivative of the estimated coefficient function. Then,

by using a bootstrap approach the hypothesis is rejected if the test statistic is significantly

smaller than zero. Moreover, we develop testing procedures for testing simultaneously different

coefficient functions. A side result of this work is that we have shown that the first few

derivatives of the B-spline estimator are uniformly consistent.

1.3 Estimation of Multivariate parameters in Partial Dif-

ferential Equation Models

Ordinary differential equations (ODE) are used to model dynamic processes which are common

in real life. They have been applied in biology, physics, economy, engineering, etc. There is

a considerable amount of literature on ODE models, dealing with parameter estimation and

their statistical properties (see Xue et al. (2010) and references therein, Hong and Lian (2012)

and Frasso et al. (2016), among others). In the overview below, we touch upon a few statistical

methods available in the literature which have been used to estimate the parameters in an

ODE.

Only in this section let X(t) = (X1(t), X2(t), . . . , XL(t))> denote an L-dimensional state vari-

able vector with initial value X0 = X(t0). We consider an initial value problem ODE model

dX

dt
= F (t,X(t);θ(t)), ∀t ∈ [t0, T ], (1.6)

X(t0) = X0, (1.7)

where θ(t) = (θ1(t), . . . , θd(t))
> is an unknown d-dimensional parameter vector with compo-

nents (possibly constant) functions θp(t), p = 1, . . . , d. Moreover, we assume that F is a known

smooth function with domain a subset of IRL+1.

We assume having n measurements of X(t) at random or fixed design points t1, . . . , tn, and

that we observe these measurements with an error:

Y(ti) = X(ti) + ε(ti), i = 1, . . . , n, (1.8)

where the measurement errors ε(t1), ε(t2), . . . , ε(tn) are i.i.d. with mean zero and covariance

Σ, and Y(ti) = (Y1(ti), . . . , YL(ti))
>.
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Ramsay et al. (2007) study the model given by (1.6) and (1.7) where θ(t) is a constant vector.

They estimate the parameters by a penalized spline approach to assure both fidelity to the

ODE model and the data (1.8).

Xue et al. (2010) give theoretical results of their parameter estimates where only one parameter

is allowed to be time varying. To illustrate their estimation procedure we assume for simplicity

that θ(t) is a constant and write θ. When the exact solution of (1.6) and (1.7) is not known,

a numerical solution is used. The numerical solution of Xj is denoted by X̃j(t,θ). Then the

parameter θ is obtained by solving the nonlinear least squares problem

θ̂ = argminθ

n∑
i=1

L∑
j=1

(Yj(ti)− X̃j(ti,θ))2. (1.9)

Hong and Lian (2012) solve linear ODE models (F is linear in (1.6)) with time varying param-

eters θ(t) by using the local polynomial smoothing technique. Their approach is a two-stage

method. First, they use local polynomials to estimate X(ti) from the data (1.8) to obtain

the local polynomial estimator X̂(t). Second, they solve, using the norm notation given in

Appendix A,

argminθ(t)∈A

n∑
i=1

K((ti − t0)/h)‖dX̂
dt

(ti)− F (ti, X̂(ti);θ(ti))‖2
2 (1.10)

for a kernel function K and bandwidth h, where A is the product space of polynomials of fixed

degrees.

Some physical problems cannot be described by an ODE, but are described by partial differential

equations (PDE). There are three main approaches to estimate the parameters of the PDE

model. The first one is a two-stage method (similar to Hong and Lian (2012)). The second one

is similar to the approach of Xue et al. (2010). Another approach is given by Xun et al. (2013)

which is similar to Ramsay et al. (2007)’s approach. Xun et al. (2013) assume a multivariate

process g(t) setting (t = (t1, . . . , tl)), where we only observe

Yi = g(ti) + εi, i = 1, . . . , n (1.11)

and ti, i = 1, . . . , n, where εi are i.i.d. mean zero measurement errors. The latest research

efforts are collected in Chapter 4 where we consider PDE models with unknown varying pa-

rameters which we want to estimate. Often scientists face the challenge to determine unknown

parameters of a PDE, and the need to estimate them from error prone measurements. In the
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statistical literature it is generally assumed that the parameters are constant, which restricts

the application possibilities because in reality this assumption can be crude. Below we give

an example of heat diffusion which is described by a PDE and is discussed in Section 1.2 of

Haberman (2004).

Consider the temperature function g(t1, t2) of a one-dimensional rod of constant cross-sectional

area with length L which is made of one particular substance. The rod is oriented along the

t1-axis (from t1 = 0 to t1 = L). Suppose the lateral surface is insulated so that there is no

transfer of heat energy in this direction. We observe the temperature g(t1, t2) of the rod at

positions 0 ≤ t1 ≤ L and times 0 ≤ t2 ≤ T with measurement errors. The question is now

to find the unobservable source function θ(t1, t2) which is causing the rod to heat up and/or

cool down. Since the rod is insulated, one can think of the source function to be the result of

internal chemical reactions or electrical heating. This process is described by the PDE

∂g

∂t2
(t1, t2) +D

∂2g

∂t21
(t1, t2) + θ(t1, t2) = 0,

where θ is the source function which represents the internal heating source of the rod. Suppose

we have Dirichlet boundary conditions:

∂g

∂t2
(t1, t2) +D

∂2g

∂t21
(t1, t2) + θ(t1, t2) = 0

g(t1, 0) = 0 0 ≤ t1 ≤ L

g(0, t2) = 0 0 ≤ t2 ≤ T

g(L, t2) = 0 0 ≤ t2 ≤ T.

Figure 1.3 contains plots of θ and g which satisfy the PDE model with D = −π. Our aim is to

consistently estimate θ from error prone observations of g. This is the subject of Chapter 4.



12 Chapter 1. Introduction

0
1

2
3

4
5

0
2

4
6

8
10

0

1

2

3

4

5

x

Source term θ(x, t)

t

θ(
x,

 t)

0
1

2
3

4
5

0
2

4
6

8
10

0

1

2

3

4

x

Exact solution g(x, t)

t

g(
x,

 t)
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term θ (left).



Chapter 2

Testing for parametric forms in varying

coefficient models

The content of this chapter is published in Ahkim and Verhasselt (2017).

2.1 Introduction

In this chapter we consider the varying coefficient model for longitudinal data

Yij =
d∑
p=0

X
(p)
ij βp(tij) + ε(tij), (2.1)

for i = 1, . . . , n, and j = 1, . . . , Ni. Yij represents the response of individual i at time tij,

and Xij = (X
(0)
ij , . . . , X

(d)
ij )> (with X

(0)
ij ≡ 1) the corresponding observed covariate vector. We

develop procedures to test for parametric forms of the coefficients βp(·), p = 0, 1, . . . , d. On the

one hand this assures correct assessment of nonparametric covariate effects, if the hypothesis of

parametric form is rejected. On the other hand, if the hypothesis is not rejected, a parametric

model should be used. This would reduce the complexity of the model and prevent overfitting.

For example, if we do not reject the hypothesis that β1(·) is a polynomial of degree q, we model

it by a degree q spline function without internal knots (see the first alinea of Section 2.2.1),

then the number of B-spline basis functions is q + 1 which is the dimension of the space of

degree q polynomials.

13
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We study the test statistic which is a ratio of quadratic forms (RQF) and resembles the Fisher

test static in simple linear regression. We assume homoscedastic normal errors with intrasub-

ject correlation. If the correlation matrix is given we construct the RQF test statistic which

follows a generalized F distribution under the null hypothesis. However, we show that imposing

a misspecified correlation structure (i.e. assuming independence) the RQF method is still sat-

isfying. It is a natural question whether the RQF approach also works when we do not assume

the correlation structure to be given and instead use an estimated correlation matrix. In the

conclusion of this chapter (Section 2.7) we explain why this approach (i.e. using a correlation

estimate) is not successful. This led us to propose a bootstrap approach when there is no

knowledge about the correlation structure and (or) the normality assumption does not hold.

When the response variable represents counts, a binary variable, etc. generalized varying

coefficient models (GVCMs) are considered where it is assumed that the density function of

the response variable comes from the exponential family. This is similar to the extension from

the classic linear models to generalized linear models by McCullagh and Nelder (1989). We

propose a bootstrap approach for hypothesis testing of parametric forms in GVCMs.

Further, this chapter is organized as follows. In Section 2.2 we describe the B-spline estimator.

In Section 2.3 the testing procedure and asymptotic results are presented when error terms are

normally distributed. The proofs are in Section 2.8. In Section 2.6 we discuss the extension to

GVCMs. The performance of our method compared to Huang et al. (2002) are illustrated with

numerical simulations in Section 2.4 and a data application is discussed in Section 2.5. Finally,

we end with a conclusion in Section 2.7.

2.2 Spline estimation

2.2.1 B-spline estimator

In this section we briefly recall the B-spline estimator in varying coefficient models, see Huang

et al. (2004). The assumption is that each component of β(t) = (β0(t), . . . , βd(t))
> can be ap-

proximated by a B-spline basis expansion, i.e., for each p = 0, . . . , d, βp(t) ≈
∑mp

l=1 αplBpl(t; qp),

where {Bpl(·; qp) : l = 1, . . . , Kp + qp = mp} is the normalized
(

i.e.
∑mp

j=1Bj(·; qp) = 1
)
qpth
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degree B-spline basis with Kp + 1 equidistant knots ξp0, ξp1, . . . , ξpKp in T . Let Gp denote the

space spanned by this basis.

The B-spline estimator α̂ = (α̂>0 , . . . , α̂
>
d )> (with α̂p = (α̂p1, . . . , α̂pmp)

>) is obtained by mini-

mizing the following expression with respect toα = (α>0 , . . . ,α
>
d )>, whereαp = (αp1, . . . , αpmp)

>

for p = 0, . . . , d:
n∑
i=1

wi

Ni∑
j=1

(
Yij −

d∑
p=0

mp∑
l=1

X
(p)
ij Bpl(tij; qp)αpl

)2

,

where wi denotes the weight for subject i, often wi = 1
Ni

is used. More compactly written, we

solve

min
α

n∑
i=1

(Yi −Uiα)>Wi(Yi −Uiα), (2.2)

where

Yi = (Yi1, . . . , YiNi)
>; Y = (Y>1 , . . . ,Y

>
n )>;

B(t) =


B01(t; q0) . . . B0m0(t; q0) 0 . . . 0 0 . . . 0

0 . . . 0
. . . 0 . . . 0

0 . . . 0 0 . . . 0 Bd1(t; qd) . . . Bdmd(t, qd)

 ∈ IR(d+1)×dim;

U>ij = X>ijB(tij) ∈ IR1×dim;

Ui = (Ui1, . . . ,UiNi)
> ∈ IRNi×dim, where dim =

d∑
p=0

mp;

U = (U>1 , . . . ,U
>
n )> ∈ IRN×dim;

Wi = diag
(
wi, . . . , wi

)
∈ IRNi×Ni (a diagonal matrix with Ni times

wi on the diagonal).

W = diag
(
W1, . . . ,Wn

)
∈ IRN×N (a block diagonal matrix

with the matrices Wi on the diagonal).

If (U>WU) is invertible, then (2.2) has a unique solution

α̂ = (U>WU)−1U>WY. (2.3)

Huang et al. (2004) proved that under Assumption 2.1.1−3 and Assumption 2.1.5 given in

Section 2.8.1, the matrix (U>WU) is invertible with probability tending to 1. Then, the
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B-spline estimator of β(t) is

β̂(t) = B(t)α̂ = (β̂0(t), . . . , β̂d(t))
>, with β̂p(t) =

mp∑
l=1

α̂plBpl(t; qp).

2.2.2 Some properties of spline approximations

The motivation for our test statistics are based on the following nice properties of B-spline

approximations.

Fix k ∈ {0, . . . , d}. Suppose that the function βk(t) is a constant ck, then βk(t) = ck =∑mk
l=1 αklBkl(t; qk) ∈ Gk. The equation sign holds since constant functions on T are contained

in Gk. Moreover, we have that αk = (ck, . . . , ck)
> ∈ IRmk×1, since normalized B-splines are

used and the functions Bkl(t; qk) (l = 1, . . . ,mk) form a basis of Gk. Therefore, the function

βk(·) is constant if and only if all the components of the vector of αk are equal. constant.

2.3 Testing constancy of coefficient functions

In this section we consider the problem of testing whether the kth coefficient βk(t) of a varying

coefficient model is really varying. We develop a testing procedure to test for constancy, i.e.

test

H0 : βk(·) is a constant function versus ¬H0 : βk(·) is not a constant function. (2.4)

Li et al. (2011) consider hypothesis (2.4) in varying coefficient models with cross-sectional data.

Their technique is based on the vector of first order differences D1α̂k where

D1 =


1 −1 0 0 . . . 0 0 0

0 1 −1 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 1 −1

 ∈ IR
(mk−1)×mk .

They use linear splines. However, it should be noted that splines of any degree could be used

(as noted in Section 2.2.2). We extend their approach to our longitudinal data model with

correlated errors where the coefficient functions are estimated by B-splines of any degree.
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We first give a test for the more restrictive hypothesis that all coefficient functions are constant:

H1 : βp(·) is a constant function for p = 0, . . . , d versus ¬H1. (2.5)

Under hypothesis H1 all coefficient functions are modeled by spline functions. Let us consider

the model where all coefficient functions are spline functions, i.e. βp(t) =
∑mk

l=1 αklBkl(t; qk)

and

Y = Uα+ ε,

with Y = (Y>1 , . . . ,Y
>
n )>, ε = (ε>1 , . . . , ε

>
n )> and εi = (εi1, . . . , εiNi)

> for i = 1, . . . , n. For this

model, testing problem (2.5) is equivalent to

H∗1 : L>1 α = 0 versus ¬H∗1 : L>1 α 6= 0, (2.6)

where L>1 ∈ IR(dim−d−1)×dim takes the first order difference of consecutive components of αp, p =

0, . . . , d.

2.3.1 Construction of the test statistic

We assume a homoscedastic error structure, i.e. Cov(εi) = σ2Ri where Corr(εi) = Ri and

Cov(ε) = σ2R, where R = diag(R1, . . . ,Rn). Recall the B-spline estimator of model (1.5)

α̂ = (U˜>U˜ )−1U˜>Y˜ ,
where U˜ = W

1
2 U and Y˜ = W

1
2 Y. Let PU˜ = U˜ (U˜>U˜ )−1U˜> and Ỹ = E(Y|X ), where

X = {(Xij, tij); i = 1, . . . , n, j = 1, . . . , Ni}. Throughout the remainder of this chapter we

condition on X . Let R˜ := Var(Y˜ ) = σ2W1/2RW1/2.

2.3.1.1 Testing hypothesis (2.5)

Remark 2.1. If we would use Li et al. (2011)’s test statistic in our longitudinal case, then we

would obtain the “test statistic”

dim− d− 1

N − dim
α̂>L1(L>1 (U˜>U˜ )−1L1)−1L1α̂

Y˜>(IN − PU˜)Y˜ , (2.7)

where IN is the identity matrix of dimension N ×N . Unlike the case in Li et al. (2011) where

the statistic (2.7), forms a ratio of two independent χ2 variables, we here have a ratio of two
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dependent χ2 variables (see the proof of Theorem 2.1). The novelty of our approach allows to

incorporate the weight matrix W and the correlation matrix R arising from longitudinal data

models. This generalization is not straightforward.

Our test statistic is based on the fact that under hypothesis (2.5)

E
(
L˜>1 α̂˜ |X ) = E

(
L>1 α̂|X

)
= 0,

where L˜>1 = L>1 (U˜>R˜−1U˜ )−1(U˜>U˜ ), α̂˜ := (U˜>U˜ )−1U˜>R˜−1Y˜ . Note that α̂˜ and L˜>1 are

precisely introduced to obtain a ratio of independent quadratic forms of which the distribution

is known, see below.

Since Y˜ ∼ N(W
1
2 Ỹ,R˜ ), we have that α̂˜ ∼ N(µ,Σ), where

µ = (U˜>U˜ )−1U˜>R˜−1W1/2Ỹ and Σ = (U˜>U˜ )−1U˜>R˜−1U˜ (U˜>U˜ )−1.

Next we define two quadratic forms in normal variables. The first is

Q1 =
1

σ2
Y˜>(IN − PU˜)Y˜ ,

the second

Q2 = α̂˜>L˜1(L˜>1 ΣL˜1)−1L˜>1 α̂˜ .
Our test statistic for hypothesis (2.5) is a ratio of these (stochastic) quadratic forms, namely

T1 =
dim− d− 1

N − dim
Q1

Q2

.

Such a test statistic will be termed by RQF test statistic. Note that T1 does not depend on σ2.

Theorem 2.1 states the exact null distribution of T1. When t1 ∈ IR is a realization of T1, the

p-value p1 to test H1 is defined to be

p1 = FT1(t1), (2.8)

where F1 is the distribution function of T1 under the null hypothesis (2.6), since Q2 is relatively

small under the null hypothesis. By Theorem 2.1 we know that under the null hypothesis in

(2.5), T1 follows a generalized F distribution of the type

(
∑l

i=1 ciXi)/(
∑l

i=1mi)

Y/n
,
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where the components of (X1, . . . , Xl, Y ) are independent with Xi ∼ χ2(mi), Y ∼ χ2(n) and

all ci > 0. Dunkl and Ramirez (2001) gave exact and numerically tractable expressions of the

cumulative distribution function (cdf) for this kind of generalized F distributions. We have

implemented the cdf of this distribution in Matlab to compute the p-values.

Note that in the case we have data without repeated measurements, i.e. the matrices W and

R are the identity matrix, the test statistic

N − dim
dim− d− 1

Q2

Q1

is exactly the test statistic used by Li et al. (2011) (see (2.7) in Remark 1) and follows the F

distribution with degrees of freedom (dim− d− 1, N − dim) under the null hypothesis in (2.5).

2.3.1.2 Testing hypothesis (2.4)

Let us return to hypothesis (2.4):

H0 : βk(·) is a constant function versus ¬H0 : βk(·) is not a constant function.

This time we are only interested in the coefficients belonging to the coefficient function βk(.),

therefore we apply the following transformation on α̂

L>2 =
(

0 . . . D1 . . . 0
)
∈ IR(mk−1)×dim.

The hypothesis in terms of the B-spline coefficients becomes

H∗0 : L>2 α = 0 versus ¬H∗0 : L>2 α 6= 0. (2.9)

The test statistic for hypothesis (2.4) is

T2 =
mk − 1

N − dim

1
σ2 Y˜>(IN − PU˜)Y˜

α̂˜>L˜2(L˜>2 ΣL˜2)−1L˜>2 α̂˜ ,
where L˜>2 = L>2 (U˜>R˜−1U˜ )−1(U˜>U˜ ). Theorem 2.2 states that the null distribution function of

T2 denoted by FT2 is asymptotically (as n→∞) equal to the generalized F distribution

mk − 1

N − dim

∑u
i=1 λiχ

2(ri)

χ2(mk − 1)
,

with distribution function F2, where λi, ri and u are defined in Theorem 2.1. Suppose that t2

is an observed value for T2. As in (2.8), the p-value is

p2 = F2(t2).
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Theorem 2.1. Assume that ε ∼ N(0, σ2R) in model (2.1). If hypothesis H0 in (2.5) holds,

then T1 follows the distribution

dim− d− 1

N − dim

∑u
i=1 λiχ

2(ri)

χ2(dim− d− 1)
,

with distribution function F1, where λ1, . . . , λu denote the nonzero distinct eigenvalues of

W1/2RW1/2(IN − PU˜)

with algebraic multiplicities r1, . . . , ru respectively, that satisfy
∑u

i=1 ri = N − dim, and where

χ2(r1), . . . , χ2(ru), χ
2(dim− d− 1) are mutually independent.

The proof of Theorem 2.1 is given in Section 2.8.3. The asymptotics of the following theorem

holds when the number of subjects n tends to infinity, the number of repeated measurements

Ni (i = 1, . . . , n) may or may not tend to infinity.

Theorem 2.2. Assume that ε ∼ N(0, σ2R) in model (2.1). Define the random variable

mk − 1

N − dim

∑u
i=1 λiχ

2(ri)

χ2(mk − 1)
,

with distribution function F2, where λ1, . . . , λu, r1, . . . , ru are defined in Theorem 2.1, and where

χ2(r1), . . . , χ2(ru), χ
2(mk − 1) are mutually independent. Let ‖A‖ denote the Frobenius norm

of a matrix A. Under H0 in (2.4)

‖FT2 − F2‖∞ =

O

(√
Mξ0

(
Nρ2

n‖R−1/2‖2 +
√
Nρn‖R−1/2‖

)
+

√
Mη0

(
Nwmaxρ2

n +Nwmaxρn

√
max
i
wiN

1/2
i

))
.

as n → ∞, where ‖f‖∞ is the supremum norm of a function f , ρn is the approximation error (see

Appendix A), Mξ0 and Mη0 are the maxima of the density function of χ2(mk − 1) and
∑u

i=1 λiχ
2(ri),

respectively.

The proof of Theorem 2.2 is given in Section 2.8.4. A discussion on the bound stated in Theorem

2.2 is given in Section 2.9 which contains a bound in terms of the number of subjects, their

repeated measurements and the number of knots.
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2.3.1.3 Testing a general hypothesis

From the proof of Theorem 2.2 we see that we can generalize the theorem for the test of any

hypothesis of the following form

H∗1 : A>α = a versus ¬H∗1 : A>α 6= a, (2.10)

where A is a known fixed nonzero matrix, and a is a known fixed vector, see (2.9). For instance,

we can test whether β1(·) is a polynomial of degree q by using the derivative property of B-

splines. The derivative of a spline function g(t) =
m∑
j=1

γjBj(t; q) having distance 1
K

between the

equidistant knots, is (De Boor (2001), page 116)

g′(t) = K
m−1∑
j=1

∆γj+1Bj(t; q − 1), (2.11)

where ∆γj+1 = γj+1 − γj. Then, the matrix A> is defined as taking the (q + 1)-th order

differences of the B-spline coefficients corresponding to β1(·) and a = 0.

As before, to construct the RQF test statistic we define A˜> = A>(U˜>R˜−1U˜ )−1(U˜>U˜ ). Let r

denote the number of rows of A>. The test statistic for hypothesis (2.10) is

T3 =
r

N − dim

1
σ2 Y˜>(IN − PU˜)Y˜

(α̂˜>A˜ − a>)(A˜>ΣA˜ )−1(A˜>α̂˜ − a)
.

Denote its null distribution function by FT3 . Define the random variable

r

N − dim

∑u
i=1 λiχ

2(ri)

χ2(r)
, (2.12)

with distribution function F3, where λ1, . . . , λu, r1, . . . , ru are defined in Theorem 2.2, and where

χ2(r1), . . . , χ2(ru), χ
2(r) are mutually independent. Suppose t3 is a realization of T3. As in (2.8),

the p-value is

p3 = F3(t3).

2.4 Simulation study

Here we discuss a simulation example where we illustrate the performance of our ratio of

quadratic forms method (RQF) and compare it with Huang et al. (2002)’s bootstrap method
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Figure 2.1: Simulation example (n = 30) with R = Rt1 and knots (K0,K1,K2) = (5, 5, 5). The

power functions for the hypothesis that (a) β0(·), (b) β1(·) and (c) β2(·) respectively, are constant for

RQF (black line), RQFind (dotted line) and Huang (dashed line) respectively.
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Figure 2.2: Simulation example (n = 30) with R = Rt1 and where knots are determined by CV. The

power functions for the hypothesis that (a) β0(·), (b) β1(·) and (c) β2(·) respectively, are constant for

RQF (full line), RQFind (dotted line) and Huang (dashed line) respectively.

(Huang). We illustrate the importance of incorporating the correlation structure in the RQF

method by also providing the RQF method where independence is assumed; referred to as

RQFind.

We let the number of subjects be n = 30, the number of repeated measurements Ni for individ-
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ual i is randomly generated from {9, . . . , 12} for i = 1, . . . , 30. For each individual i, the time

points tij, j = 1, . . . , Ni are equidistant in [0, 1]. We have a time dependent bivariate vector X(1)(t)

X(2)(t)

 ∼ N(0,ΣX(t)), ΣX(t) =

 3
2

1/(2 + t)

1/(2 + t) 2

 .

We consider two types of intrasubject correlated errors, the first is Rt1 defined by

Corr(ε(tij), ε(tik)) =
1

2
exp(−|tij − tik|), 1 ≤ j 6= k ≤ Ni,

while the error terms of different subjects are mutually independent; the second is an exchange-

able correlation structure Rt2 defined by

Corr(ε(tij), ε(tik)) = 0.6, 1 ≤ j 6= k ≤ Ni,

while the error terms of different subjects are mutually independent. Furthermore, we use

coefficient functions (with domain [0, 1]):

β0(t) = 0.5(e− e−1) + b0(e2t−1 − 0.5(e− e−1)),

β1(t) = 4/3 + b1(8t(1− t)− 4/3) and β2(t) = 1 + b2(2 sin2(2πt)− 1),

where changing the parameters b0, b1 and b2, changes the level of constancy. We measure the

performance of our test by varying the deviation of each coefficient function βp (p = 0, 1, 2)

from a constant, that is bp varies from 0 to 1 while bj = 1 for j ∈ {0, 1, 2} \ {p}.

Note that we have introduced modeling bias since the coefficient functions are not spline func-

tions (the modeling bias is of the order O(K−4
n ), where Kn = maxi=0,...,dKp, as n → ∞, see

inequality (3.30) in Chapter 3). The results are based on 200 simulated data sets. In the simu-

lations below, we follow two approaches concerning the choice of the knots. The first approach

fixes the number of knots (K0, K1, K2) = (5, 5, 5). In the second approach we use a cross

validation (CV) method to obtain the number of knots. Since n = 30, it is feasible to employ

the leave-one-subject-out cross-validation method (Huang et al. (2004) and references therein).

The advantage of deleting the whole subject is preserving any intrasubject correlation. We

delete subject i from the original data to obtain the training data which we use to determine

the B-spline estimator α̂−i. This is done for all the subjects i = 1, . . . , n, so that we can

compute the cross validation score

CV (K0, K1, K2) =
n∑
i=1

‖Yi −Uiα̂
−i‖2

2. (2.13)
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Figure 2.3: Simulation example (n = 30) with R = Rt2 and knots (K0,K1,K2) = (5, 5, 5). The

power functions for the hypothesis that (a) β0(·), (b) β1(·) and (c) β2(·) respectively, are constant for

RQF (full line), RQFind (dotted line) and Huang (dashed line) respectively.
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Figure 2.4: Simulation example (n = 30) with R = Rt2 and where knots are determined by CV. The

power functions for the hypothesis that (a) β0(·), (b) β1(·) and (c) β2(·) respectively, are constant for

RQF (full line), RQFind (dotted line) and Huang (dashed line) respectively.

The desired (K0, K1, K2) is the minimizer of (2.13) where we let (K0, K1, K2) vary over {5, 6, 7, 8, 9}3.

The degree of the splines is fixed at 3.
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Figure 2.5: Simulation example (n = 60) with R = Rt1 and knots (K0,K1,K2) = (5, 5, 5). The

power functions for the hypothesis that (a) β0(·), (b) β1(·) and (c) β2(·) respectively, are constant for

RQF (full line), RQFind (dotted line) and Huang (dashed line) respectively.
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Figure 2.6: Simulation example (n = 60) with R = Rt2 and knots (K0,K1,K2) = (5, 5, 5). The

power functions for the hypothesis that (a) β0(·), (b) β1(·) and (c) β2(·) respectively, are constant for

RQF (full line), RQFind (dotted line) and Huang (dashed line) respectively.

The performance of the testing procedure is illustrated by the power, namely the probability

P (H0 is rejected |¬H0), that should be as close as possible to 1 under ¬H0. In Figures 2.1-

2.4 the power functions for each bp ∈ {0, 0.1, 0.2, . . . , 1}, p = 0, 1, 2 are shown. The average

computing time for a fixed knot vector of RQF is about 0.6 seconds, while Huangs bootstrap

method took 22 seconds on average (bootstrap size B= 200).

When bp = 0 the power functions attain approximately the theoretical level of 5%, and increase

to 1 when bp increases. The RQF method performs better than Huang in all our examples,

except in Figure 2.1(a) where Huang performs slightly better in the end. The RQFind approach
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Figure 2.7: Simulation example (n = 60) with R = Rt1 and where knots are determined by CV. The

power functions for the hypothesis that (a) β0(·), (b) β1(·) and (c) β2(·) respectively, are constant for

RQF (full line), RQFind (dotted line) and Huang (dashed line) respectively.
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Figure 2.8: Simulation example (n = 60) with R = Rt2 and where knots are determined by CV. The

power functions for the hypothesis that (a) β0(·), (b) β1(·) and (c) β2(·) respectively, are constant for

RQF (full line), RQFind (dotted line) and Huang (dashed line) respectively.
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performs better than Huang when testing for β1(·) and β2(·), for β0(·) it is the other way

around. This discrepancy can be explained by the fact that β0(·) is the intercept and thus

has no covariate whereas β1(·) and β2(·) are multiplied with a covariate. Comparing RQF and

RQFind, we see that for Rt2 (Figures 2.3 and 2.4) the gaps between the power functions are

bigger than for Rt1 (Figures 2.1 and 2.2). The natural explanation is that the correlations in

the case of Rt1 (ranging from 0.18 to 0.46) are smaller than the correlations in Rt2 (constant

0.6).

We now consider the same example, but with a bigger sample size. We let n = 60 and the

number of repeated measurements Ni are chosen randomly from [18, 24]. The RQF method

takes on average 12.3 seconds for fixed knots, while Huang needs 260 seconds on average

(bootstrap size B= 200). As for the knot selection we use leave 10 subjects-out cross-validation

(also denoted by CV) where we divide the data in 6 fixed parts . The results can be found in

Figures 2.7-2.8 with similar conclusions as for the smaller data example. Note that the power

functions increase faster in this case as could be expected.

2.5 AIDS data

We apply our testing methodology to the AIDS data which is a subset of the Multicenter AIDS

Cohort Study (MACS). We introduced the data in Section 1.2. The model we consider is

Yij = β0(tij) + β1(tij)X
(1)
i + β2(tij)X

(2)
i + β3(tij)X

(3)
i + εij, (2.14)

where Yij is the ith individual CD4 percentage measured at time tij, X
(1)
i is the smoking status

of the ith individual; X
(1)
i is 1 or 0 if the individual ever or never smoked, X

(2)
i is the ith

individual’s centered age at HIV infection (obtained by subtracting the sample average age at

HIV infection from the individual’s age at HIV infection), and in a similar way we let X
(3)
i be the

ith individual’s centered pre-HIV infection CD4 percentage. By centering, the intercept β0(t)

represents the mean CD4 percentage t years after HIV infection of a homosexual individual

with an average age at HIV infection, an average pre-HIV CD4 rate and who has never smoked

cigarettes.

In our analysis we use the same B-spline bases as Huang et al. (2002) for the estimation of the

coefficient functions, i.e. (K0, K1, K2, K3) = (1, 6, 2, 4) and (q0, q1, q2, q3) = (3, 3, 3, 3). Figure
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1.2 in Chapter 1 contains the coefficient estimations.
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Figure 2.9: AIDS data: residual plots. (a) Q-Q plot; (b) plot of residuals against fitted values

from model (2.14).

The RQF method requires the normality assumption to hold. The Q-Q plot (Figure 2.9(a))

indicates that a normal structure is quite accurate. From Figure 2.9(b) we see that up to few

outlying fitted values it is reasonable to assume homoscedasticity. However, the residual plots

reveal that there is intrasubject correlation. Also, the Durbin-Watson statistic is approximately

0.7 which is a sign there is considerable correlation. Therefore we also give a bootstrap version

of the RQF method, which is presented in Section 2.6.2. In the bootstrap approach we work

with the knots (K0, K1, K2, K3) = (5, 5, 5, 5). Before setting the pseudo responses we define

residuals

ε̂ij = Yij −
3∑
p=0

X
(p)
ij β̂p(tij),

where (β̂0, β̂1, β̂2, β̂3) is the B-spline estimator with (K0, K1, K2, K3) = (5, 5, 5, 5). Let

Y ps
ij =

3∑
p=0

X
(p)
ij β̂

H0
p (tij) + ε̂ij for i = 1, . . . , n and j = 1, . . . , Ni,

be a set of pseudo responses under the null hypothesis. For example, for the hypothesis

that β0(·) is a constant the estimators (β̂H0
0 , β̂H0

1 , β̂H0
2 , β̂H0

3 ) are obtained by using degrees

(q0, q1, q2, q3) = (0, 3, 3, 3) and knots (K0, K1, K2, K3) = (1, 5, 5, 5). The bootstrap size is

B=500.

Let us test whether a linear regression model makes more sense, hence we want to test hy-

pothesis (2.5). The p-value (2.8) for this test is smaller than 1e−3 for RQFind as well as the
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RQFind Bootstrap Huang et al. (2002)

Null hypothesis p-value p-value p-value

β0(·) is constant < 1e−3 < 1e−3 < 1e−3

β1(·) is constant 0.495 0.146 0.176

β2(·) is constant 0.153 0.280 0.301

β3(·) is constant 0.575 0.066 0.059

Table 2.1: AIDS data: p-values from several methods.

bootstrap approach. Therefore we strongly reject the hypothesis that all coefficient functions

are constants. In Table 2.1 the p-values are presented for testing the constancy of each coeffi-

cient function by RQFind and the bootstrap approach (denoted by Bootstrap), it also includes

the corresponding results of Huang et al. (2002).

Table 2.1 shows that the results for testing the constancy of β0(·), β1(·), β2(·) and β3(·) are the

same for both methods with significance level 0.05. Note that the p-values from our bootstrap

approach and Huang’s are very close. The bootstrap approaches are the same, however, we

use a multidimensional instead of a one-dimensional test statistic. For β3(·), the p-values

from our bootstrap approach and Huang are on the border of being significant, while RQFind

“strongly” does not reject the hypothesis that β3(·) is a constant. This may be caused by the

misspecification of the correlation structure in RQFind. This analysis suggests that the change

in mean CD4 cell percentages is accounted for only by the intercept β0(·), since the covariates

are not time dependent and only β0(·) is not constant.

2.6 Extension to generalized varying coefficient models

There are situations where the response Y (t) is not a continuous random variable, such is the

case when Y (t) represents counts or categories. In such cases a generalized varying coefficient

model(GVCM) is proposed, see for example Cai et al. (2000) and Verhasselt (2014). GVCMs

were proposed to estimate the conditional mean of a response Y (t) which is not neccessarely

normal distributed. That is, the density function of the random variable Y (t) at time t is
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assumed to belong to the exponential family

f(Y ; θ, φ) = exp

(
Y θ − b(θ)
a(φ)

+ c(Y, φ)

)
, (2.15)

where a(·), b(·) and c(·) are known functions, φ is a scale parameter and θ is the canonical

parameter. In our setting θ depends on X(t) and a(·) is bounded. Let µ(X(t)) = E(Y (t)|X(t))

and σ(X(t))2 = Var(Y (t)|X(t)), then the following properties hold

µ(X(t)) =
db

dθ
(θ(X(t))) and σ(X(t))2 =

d2b

dθ2
(θ(X(t)))a(φ).

In a GVCM we link the function

κ(X(t)) =
d∑
p=0

X(p)(t)βp(t)

to the mean µ(X(t)) through a link function g: κ(X(t)) = g(µ(X(t))). The link function g is

called canonical if g(µ(X(t))) = θ(X(t)). As before, we have longitudinal data (tij,Xij, Yij)

with subjects i = 1, . . . , n, and number of repeated measurement j = 1, . . . , Ni. We use the

canonical link function, thus the model is

θ(X(t)) =
d∑
p=0

X(p)(t)

mp∑
l=1

Bpl(t; qp)αpl. (2.16)

2.6.1 B-spline estimator of α

Below we give the B-spline estimator of α which is obtained by following the P-spline approach

in Verhasselt (2014), by discarding the penalisation terms. The B-spline estimator is obtained

by maximizing the log likelihood given by (2.15). Thus we maximize with respect to α

S(α) = −2
n∑
i=1

1

Ni

Ni∑
j=1

(
Yijθij − b(θij)

a(φ)
+ c(Yij, φ)

)
, where θij = Uijα,

which is equivalent to maximizing the following with respect to α

S2(α) = −2
n∑
i=1

1

Ni

Ni∑
j=1

(YijUijα− b(Uijα))

= −2
n∑
i=1

1

Ni

(
Y>i Uiα− 1>Nib(Uiα)

)
= −2

(
Y>WUα− 1>NWb(Uα)

)
,

where the definitions of Y,Yi,U,Ui and W are as before, and 1>Ni = (1, . . . , 1) ∈ IRNi×1. One

can use an iterative method to maximize the previous expression, for example Newton-Raphson.
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2.6.2 Testing for parametric forms in GVCM

We briefly describe a bootstrap approach to test hypothesis (2.10) in GVCMs which is inspired

by the bootstrap approach of Huang et al. (2002). The essential step is to create pseudo data

{(Y ps
ij , Xij, tij) : i = 1, . . . , n, j = 1, . . . , Ni} which satisfies the null hypothesis in (2.10). For

the most general hypothesis (A>α = a), S2(α) should be maximized under the constraint

A>α = a to obtain the estimator under the null hypothesis. When the hypothesis is that

a particular coefficient function is a polynomial of degree q, the constraint is easily imposed

by modelling that coefficient function as described in Section 2.1, so that it is estimated by a

polynomial of degree q.

Denote by α̂cs the estimator we obtain under the constraints imposed by the null hypothesis.

Pseudo data {(Y ps
ij , Xij, tij) : i = 1, . . . , n, j = 1, . . . , Ni} are simulated by using α̂cs, the

model (2.16) and the density function (2.15). The test statistic is A>α̂ − a, where α̂ is the

estimator obtained without constraints. The null hypothesis is either rejected or not based on

the bootstrap procedure given below.

• Step 1: Resample n subjects with replacement from

{(Y ps
ij , Xij, tij) : i = 1, . . . , n, j = 1, . . . , Ni}

to obtain the bootstrap sample {(Y ps∗
ij , X∗ij, t

∗
ij) : i = 1, . . . , n, j = 1, . . . , N∗i }.

• Step 2: Repeat the above resampling procedure B times.

• Step 3: Obtain the test statistic vector from each bootstrap sample and derive the center

of mass µM and the sample covariance ΣM of all test statistic vectors obtained from

all the bootstrap samples. Then determine the sample distribution of all Mahalanobis

distances.

• Step 4: Take the (1− α) percentile M1−α of the Mahalanobis distances obtained in Step

3 and reject the null hypothesis (2.10) if (A>α̂−a−µM)>ΣM(A>α̂−a−µM) > M1−α,

else do not reject the null hypothesis.

In the next chapter we apply a similar bootstrap approach (i.e. where the test statistic is a

vector) to simultaneously hypothesis testing of coefficient functions.
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2.7 Conclusion

The RQF method was introduced in the VCM setting by Li et al. (2011) as well as its theoretical

motivation. They illustrated based on simulations that it is competitive with other methods

in the literature. In this chapter, we extended it to VCM models for longitudinal data with

intrasubject correlation. This method stands on its own due to its simplicity.

The simulations showed that the RQF method is more powerful with considerably less comput-

ing time than the bootstrap method of Huang et al. (2002). We applied the RQF method to

the AIDS data. The analysis indicated that the change in mean CD4 cell percentages is only

accounted for by the intercept function.

Moreover, the RQF method allows to test a series of hypotheses, by adjusting the transformation

matrix on the coefficients, see (2.10). For example one could test simultaneously whether certain

coefficient functions are constant, constant with a prespecified constant, polynomial, etc.

A drawback of the RQF method is that the normality assumption should not be violated and

that the correlation structure should be known. When no prior information is available on

the variance, it is natural to consider the RQF method where we plug in an estimate of the

true variance Var(ε) = V. We have pursued this approach by estimating the variance as

described in Huang et al. (2004), yielding bad results. There are several reasons for such an

unsuccessful attempt. Estimating V is not sufficient, what is needed is a good estimation of

(U˜ ′W1/2VW1/2U˜ )−1. Also, Theorems 2.1 and 2.2 only hold if V is positive definite, so more

research is needed to enforce this. Instead, we proposed a bootstrap approach when there is

little information on V, which can also be applied to hypothesis testing in generalized varying

coefficient models.

2.8 Proofs

2.8.1 Assumptions

Assumption 2.1.
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1. The observation times tij, j = 1, . . . , Ni, i = 1, . . . , n, are chosen independently according

to a distribution function FT (t) on T . Moreover, they are independent of the response

and the covariate process {(Yi(t), Xi(t))}, i = 1, . . . , n. The distribution function FT (t)

has a Lebesgue density fT (t) that is bounded away from zero and infinity, uniformly over

all t ∈ T , that is, there exist positive constants M1 and M2 such that M1 6 fT (t) 6 M2

for t ∈ T .

2. The eigenvalues ω0(t), . . . , ωd(t) of Σ(t) = E(X(t)X(t)>) are bounded away from zero and

infinity, uniformly over all t ∈ T , that is, there exist positive constants M3 and M4 such

that M3 6 ω0(t) 6 . . . 6 ωd(t) 6M4 for t ∈ T .

3. There exists a positive constant M5 such that |Xp(t)| 6M5 for t ∈ T and p = 0, . . . , d.

4. There exists a positive constant M6 such that E(ε(t)2) 6M6 <∞ for t ∈ T .

5. lim supn
maxpKp
minpKp

<∞.

These conditions are commonly used (e.g. Huang et al. (2004)) and are satisfied in many

practical examples. Let Kn = maxi=0,...,dKp. As for Assumption 2.1, when dealing with

deterministic time points we can replace this assumption by

sup
t∈T
|Fn(t)− FT (t) = o(1/Kn)

for some distribution function FT having a lebesgue density function fT which is bounded away

from zero and infinity, uniformly over t ∈ T , where Fn(t) = 1
n

∑n
i=1

1
Ni

∑Ni
j=1 1tij<t and 1tij<t is

the indicator function (Huang et al. (2004)). Note that we do not assume zero modeling bias,

since we allow the knots to increase to infinity.

2.8.2 Theorem of Tan (1977)

In the proof of Theorem 3 and 4 we need the following lemma, based on Theorem 3.1 of Tan

(1977).

Lemma 2.1. Let Z ∼ N(µ,V) with V invertible and Q = Z>AZ, where A is a real symmetric

matrix. Then Q =
∑z

i=1 λiχ
2(ri, θ

2
i ) where χ2(ri, θ

2
i ) are independent noncentral chi-square
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variables, λ1, . . . , λz are the nonzero distinct eigenvalues of VA with algebraic multiplicities

r1, . . . , rz respectively, and

θ2
j = µ>V−1Ejµ,

where VA has the spectral decomposition VA =
∑z

j=1 λjEj. Moreover, we have that

µ>Aµ =
z∑
j=1

λjθ
2
j .

2.8.3 Proof of Theorem 2.1

Proof. Under hypothesis H1 we have that βp(t) =
∑

l αplBpl(t; qp) and αpl = cp for l =

1, . . . ,mp; p = 0, . . . , d. Therefore E(Y˜ |X ) = U˜α and

L˜>1 α̂˜ ∼ Ndim−d−1(0,L˜>1 (U˜>U˜ )−1U˜>R˜−1U˜ (U˜>U˜ )−1L˜1) =: Ndim−d−1(0,Σ1),

hence we find that

Q2 = α̂˜>L˜1Σ
−1
1 L˜>1 α̂˜ ∼ χ2(dim− d− 1).

The specified distribution ofQ1 ∼
∑u

i=1 λiχ
2(ri, θ

2
i ) follows from Lemma 2.1 with 0 =

∑u
i=1 λiθ

2
i .

We now show that
∑u

i=1 ri = N − dim and that all θi = 0. Note that the idempotent matrix

(IN −PU˜) has eigenvalues 0 and 1. Therefore we have the decomposition IRN = E0 + E1, where

Eb is the eigenspace corresponding to the eigenvalue λ = b of the matrix (IN−PU˜). Moreover, E1

has dimension trace(IN −PU˜) = N −dim. Denote by E ′0 the eigenspace of the eigenvalue λ = 0

of the matrix R˜ (IN−PU˜)

σ2 . One can verify that E0 = E ′0. Hence, in order to find the eigenvectors

corresponding to a nonzero eigenvalue we can restrict to the space E1 ⊂ IRN . This also means

that the λi are eigenvalues of R˜ . Since R˜ is positive definite and the fact 0 =
∑u

i=1 λiθ
2
i , we

obtain that all θi = 0. The eigenspace of R˜ has dimension N , therefore

u∑
i=1

ri = N − dim.

It remains to show that Q1 and Q2 are independent. By Theorem 3.2 of Tan (1977) Q1 and Q2

are independent if and only if

R˜ (IN − PU˜)R˜R˜−1U˜ (U˜>U˜ )−1L˜1(L˜>1 (U˜>U˜ )−1U˜>R˜−1U˜ (U˜>U˜ )−1L˜1)−1

L˜>1 (U˜>U˜ )−1U˜>R˜−1R˜ = 0. (2.17)

It takes a small effort to verify the equation above by noting that PU˜U˜ = U˜ . �
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2.8.4 Proof of Theorem 2.2

Proof. The proof of this theorem is along the same lines as the proof of Theorem 3 in Li et al.

(2011), some of the details are however different due to our longitudinal setting. Recall the

definition of α∗ (see Appendix A). Set δ = E[Y|X ]−Uα∗, then ||δ||∞ = O(ρn). We can also

write Y˜ = U˜α∗ + W1/2δ + W1/2ε, so that under hypothesis H0 we obtain

Y˜ ∼ N(U˜α∗ + W1/2δ,R˜ ).

Note that L>2 α
∗ = 0 under H0, hence

L˜>2 α̂˜ = L˜>2 (U˜>U˜ )−1U˜>R˜−1W1/2ε+ L˜>2 (U˜>U˜ )−1U˜>R˜−1W1/2δ,

so

L˜>2 α̂˜ ∼ Nmk−1(L˜>2 (U˜>U˜ )−1U˜>R˜−1W1/2δ,L˜>2 (U˜>U˜ )−1U˜>R˜−1U˜ (U˜>U˜ )−1L˜2)

Denote Σ2 := Cov(L˜>2 α̂˜). We define

ξ0 := (W1/2ε)>R˜−1U˜ (U˜>U˜ )−1L˜2Σ
−1
2 L˜>2 (U˜>U˜ )−1U˜>R˜−1W1/2ε ∼ χ2(mk − 1).

Using Lemma 2.1, we obtain that

η0 := (W1/2ε)>
(IN − PU˜)

σ2
(W1/2ε) ∼

u∑
i=1

λiχ
2(ri),

ξ1 := Y˜>R˜−1U˜ (U˜>U˜ )−1L˜2Σ
−1
2 L˜>2 (U˜>U˜ )−1U˜>R˜−1Y˜ ∼ χ2(mk − 1, γ2),

η1 := Y˜> (IN − PU˜)

σ2
Y˜ ∼

u∑
i=1

λiχ
2(ri, θ

2
i ),

where γ2 and θ2
i are specified in Lemma 2.1. Denote τ0 = η0

ξ0
and τ1 = η1

ξ1
. To prove Theorem

2.2, we need to show that

lim
n→∞

(Fτ1(t)− Fτ0(t)) = 0 uniformly in t > 0. (2.18)

Some mathematical preparation is needed to prove (2.18). The Takagi factorization of (IN−PU˜)

leads to a matrix G ∈ IR(N−dim)×N such that

G>G =
(IN − PU˜)

σ2
, GG> = IN−dim.
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Throughout ‖A‖ (‖c‖) denotes the Frobenius (Euclidean) norm of a matrix A (vector c), and

〈a,b〉 denotes the standard inproduct of vectors a,b. Let ζ = (ζ1, ζ2, . . . , ζN−dim)> = GW1/2ε,

then η0 = ||GW1/2ε||22 =
∑N−dim

i=1 ζ2
i where

ζ ∼ N(0,GR˜G>).

Let ν = (ν1, ν2, . . . , νN−dim)> = GW1/2δ. Note that if δ = 0, then there is nothing to prove

since in that case ξ0 = ξ1 and η0 = η1, so we proceed with the case δ 6= 0. We also have that

N − dim = Rank(G>G) ≤ min(Rank(G>), Rank(G)) = Rank(G) ≤ N − dim,

from which it follows that ν 6= 0. Define an orthogonal transformation T ∈ IR(N−dim)×(N−dim)

with first row equal to ν>/||ν|| and let ζ∗ = (ζ∗1 , ζ
∗
2 , . . . , ζ

∗
N−dim)> = Tζ. We obtain the

expressions

η0 = ||GW1/2ε||22 =
N−dim∑
i=1

(ζ∗i )2

η1 = ||GW1/2ε+ GW1/2δ||22 = ||GW1/2ε||2 + ||GW1/2δ||2 + 2〈GW1/2ε,GW1/2δ〉

= ||ζ||2 + ||ν||2 + 2〈ζ,ν〉

= ||ζ||2 + ||ν||2 + 2ζ∗1 ||ν||

= (||GW1/2δ||+ ζ∗1 )2 +
N−dim∑
i=2

(ζ∗i )2 .

Therefore

|η1 − η0| ≤ ||GW1/2δ||2 + 2||GW1/2δ|||ζ∗1 |

E(|η1 − η0|) ≤ ||GW1/2δ||2 + 2||GW1/2δ||E(|ζ∗1 |)

= ||GW1/2δ||2 + 2||GW1/2δ||
√

2

π

√
Var(ζ∗1 ), (2.19)

since for a mean zero normal variable Z we have the property E(|Z|) =
√

2
π

Var(Z). Now

Var(ζ∗) = Var(Tζ) = TGR˜G>T> and TGG>T> = IN−dim. We want to bound Var(ζ∗1 ). Let

b = (b1, b2, . . . , bN) denote the first row of the orthogonal matrix TG, then we know ‖b‖ = 1,

also denote by c1, . . . , cN the columns of R˜ . Using the fact 〈b, ci〉 ≤ σ2 maxni=1 wi
√
Ni which is

obtained by the Cauchy-Schwarz inequality, we have that

Var(ζ∗1 ) =
N∑
i=1

bi〈b, ci〉 ≤
N∑
i=1

|bi〈b, ci〉| ≤
N∑
i=1

|〈b, ci〉| ≤ σ2N
n

max
i=1

wi
√
Ni
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Using the previous inequality, we can continue from equation (2.19) to obtain

E(|η1 − η0|) ≤ ||GW1/2δ||2 + 2||GW1/2δ||
√

2

π
σ

√
N

n
max
i=1

wi
√
Ni. (2.20)

Let H = 1
σ
Σ
−1/2
2 L˜>2 (U˜>U˜ )−1U˜>W−1/2R−1/2, then HH> = Imk−1, ξ0 = ||HR−1/2ε/σ||2 and

ξ1 = ||HR−1/2ε/σ + HR−1/2δ/σ||2. Analogously as in (2.20) we obtain

E(|ξ1 − ξ0|) ≤ ||HR−1/2δ/σ||2 + 2||HR−1/2δ/σ||
√

2

π
, (2.21)

since for any orthogonal transformation T2 ∈ IR(mk−1)×(mk−1), the variance of the first compo-

nent of κ∗ := T2κ, where κ = HR−1/2ε/σ is obtained by the entry with index (1, 1) of the

matrix

Cov(κ∗) =
1

σ2
T2HR−1/2σ2RR−1/2H>T>2 = Imk−1.

Note that GW1/2ε and HR−1/2ε/σ are independent multivariate normal random vectors, be-

cause on the one hand

Cov(GW1/2ε,HR−1/2ε/σ) = GW1/2R1/2H>,

on the other hand, by the same argument as in (2.17)

G>GW1/2R1/2H>H = 0,

from which we find that

GG>GW1/2R1/2H>HH> = GW1/2R1/2H> = 0.

Hence

Cov(GW1/2ε,HR−1/2ε/σ) = 0.

Fix a t > 0, then

Fτ1(t)− Fτ0(t) = P

(
η1

ξ1

< t

)
− P

(
η0

ξ0

< t

)
= P

(
η1

ξ1

< t

)
− P

(
η1

ξ0

< t

)
+ P

(
η1

ξ0

< t

)
− P

(
η0

ξ0

< t

)
≤ P

(
η1

ξ1

< t

)
− P

(
η1

ξ0

< t

)
. (2.22)

For the last inequality, since η1 and ξ1 are independent, and η1 and ξ0 are independent, we have

that

P

(
η1

ξ0

< t

)
= Eξ0{P (η1 ≤ tξ0)|ξ0}
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= Eξ0{
∫
||x+GW1/2δ||2≤tξ0

f(x)dx |ξ0}

= Eξ0{
∫
||x||2≤tξ0

f(x−GW1/2δ)dx |ξ0}

≤ Eξ0{
∫
||x||2≤tξ0

f(x)dx |ξ0}

= P

(
η0

ξ0

< t

)
,

where f is the density function of the multivariate normal distribution NN−dim(0,GR˜G>).

Continuing from equation (2.22) with c a positive real number

P

(
η1

ξ1

< t

)
− P

(
η1

ξ0

< t

)
= P (ξ0 ≤ η1/t)− P (ξ1 ≤ η1/t)

= P (ξ1 ≤ η1/t, ξ0 ≤ η1/t) + P (ξ1 > η1/t, ξ0 ≤ η1/t)− P (ξ1 ≤ η1/t)

≤ P (ξ1 > η1/t, ξ0 ≤ η1/t)

= P (ξ1 > η1/t, η1/t− c ≤ ξ0 ≤ η1/t) + P (ξ1 > η1/t, ξ0 < η1/t− c)

≤ P (η1/t− c ≤ ξ0 ≤ η1/t) + P (ξ0 − ξ1 < −c)

≤ Mξ0c+
1

c
E(|ξ0 − ξ1|), (2.23)

where Mξ0 is the maximum of the density function of ξ0 (the Markov inequality is applied in

(2.23)). Substitute

c =

√
E(|ξ0 − ξ1|)

Mξ0

in (2.23) to find that

P

(
η1

ξ1

< t

)
− P

(
η1

ξ0

< t

)
≤ 2
√
Mξ0 E(|ξ0 − ξ1|),

and by (2.22) we obtain that for all t ≥ 0

Fτ1(t)− Fτ0(t) ≤ 2
√
Mξ0 E(|ξ0 − ξ1|).

On the other hand, we obtain in a similar fashion where c denotes a positive real number

Fτ1(t)− Fτ0(t) = P

(
η1

ξ1

< t

)
− P

(
η0

ξ0

< t

)
= P

(
η1

ξ1

< t

)
− P

(
η0

ξ1

< t

)
+ P

(
η0

ξ1

< t

)
− P

(
η0

ξ0

< t

)
≥ P

(
η1

ξ1

< t

)
− P

(
η0

ξ1

< t

)



2.9. Rate of convergence 39

= − (P (η0 ≤ tξ1)− P (η1 ≤ tξ1))

= − (P (η1 ≤ tξ1, η0 ≤ tξ1) + P (η1 > tξ1, η0 ≤ tξ1)− P (η1 ≤ tξ1))

≥ − (P (η1 > tξ1, η0 ≤ tξ1))

= − (P (η1 > tξ1, tξ1 − c ≤ η0 ≤ tξ1) + P (η1 > tξ1, η0 ≤ tξ1 − c))

≥ − (P (tξ1 − c ≤ η0 ≤ tξ1) + P (η0 − η1 < −c))

≥ −
(
Mη0c+

1

c
E(|η0 − η1|)

)
, (2.24)

where Mη0 is the maximum of the density function of the random variable η0. Substitute in

(2.24)

c =

√
E(|η0 − η1|)

Mη0

to finally establish

∀t > 0 : −2
√
Mη0 E(|η0 − η1|) ≤ Fτ1(t)− Fτ0(t) ≤ 2

√
Mξ0 E(|ξ0 − ξ1|). (2.25)

Note that

||HR−1/2δ/σ||2 ≤ ||R−1/2δ/σ||2 = O(Nρ2
n‖R−1/2‖2)

||GW1/2δ||2 ≤ ||W1/2δ||2 = O
(
Nρ2

nwmax

)
since H>H and G>G are idempotent matrices, thus 0 and 1 are the only eigenvalues. Then

by (2.19),(2.21) and (2.25), it follows that

|Fτ1(t)− Fτ0(t)| =

O

(√
Mξ0

(
Nρ2

n‖R−1/2‖2 +
√
Nρn‖R−1/2‖

)
+

√
Mη0

(
Nwmaxρ2

n +Nwmaxρn

√
max
i
wiN

1/2
i

))
.

The proof is complete since F2 = Fτ0 and FT2 = Fτ1 . �

2.9 Rate of convergence

In Theorem 2.2 we assume (4.17). We shed more light on this rate by assuming that Nmax

Nmin

is bounded (Nmax = maxi=1,...,nNi and Nmin = mini=1,...,nNi),
N

3/2
max

n
= o(1) and dim

n
= o(1).

Suppose that subjects with equal number of repeated measurements have the same time points,
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we do not need this assumption if the correlation structure does not depend on time, such is

the case with any time independent correlation structure.

For the first part we use the fact that Mξ0 = O
(

1√
mk−1

)
(Li et al. (2011)), thus the first part

is bounded by √√√√(Nρ2
n‖R−1/2‖2

√
mk

+

√
Nρn‖R−1/2‖
√
mk

)
.

Bounding Mη0

For the second part, we note that there is no closed form expression of the density function of

a linear combination of chi-square variables (see Bausch (2013) among others). However, we

obtain a reasonable bound on Mη0 which is the maximum of the density of
∑u

i=1 λiχ
2(ri).

First, it does not hold that ri = 1 for all i. To prove this, suppose otherwise, i.e. ri = 1 for all

i. Then, by Theorem 2.1, we have u =
∑u

i=1 ri = N − dim. Next, we obtain a bound on u. We

argue, as in the proof of Theorem 2.1, that to find a bound on u we restrict to the eigen space

E1 ⊂ IRN of eigenvalue 1 of (IN −PU˜). Thus, restricting to E1, we only look at at the number of

positive eigenvalues of W1/2RW1/2 which is a block diagonal matrix. By the restriction on the

time points (see above), W1/2RW1/2 contains at most Nmax−Nmin + 1 different block matrices

with dimensions not exceeding Nmax. Hence, the number of different positive eigenvalues does

not exceed Nmax(Nmax −Nmin + 1), i.e. u ≤ Nmax(Nmax −Nmin + 1). By assumption all ri = 1,

thus it should hold

N − dim =
u∑
i=1

ri = u ≤ Nmax(Nmax −Nmin + 1). (2.26)

Divide (2.26) by N , since Nmax/Nmin is bounded by C > 0 and Nmax/n → 0, we obtain from

the previous inequality using also the fact N ≥ nNmin, that the left hand side is 1 + o(1) while

the right hand side is o(1). This is a contradiction. Hence, there is a 1 ≤ j ≤ k such that

rj > 1.

Also, we can write
∑u

i=1 λiχ
2(ri) as a sum of a scaled chi-square distribution λmaxχ

2(rλmax)

and the remaining part, where λmax := maxi λi is assumed to be an eigenvalue of a vector in

E1. Moreover, we assume that rλmax > 1. The density of this sum is a convolution which is

bounded by O( 1
λmax

) (after a small calculation). Moreover, by Theorem 2.1 of Wolkowicz and
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Styan (1980) we know that

λmax ≥
Tr(W1/2RW1/2)

N
=

n∑
i=1

Niwi/N ≥ wmin

since R contains only ones on its diagonal. Hence we derived Mη0 = O(1/wmin).

Bound on (4.17)

By the discussion above, we have the following bound on (4.17)√√√√(Nρ2
n‖R−1/2‖2

√
mk

+

√
Nρn‖R−1/2‖
√
mk

)
+

√(
wmax

wmin

Nρ2
n +N

wmax

wmin

ρn

√
max
i
wiN

1/2
i

)
. (2.27)

We consider a particular case for this bound to obtain a bound which solely depends on the

number of subjects, their number of repeated measurements and the number of knots. Let us

evaluate ‖R−1/2‖2 for the case that the intrasubject correlation is a constant 0 ≤ c ≤ 1 and all

number of repeated measurements are equal, i.e. N1 = N2 = . . . = Nn. Since R−1/2 is a real

symmetric matrix

‖R−1/2‖ =
√
Tr(R−1). (2.28)

Note that R = (R1, . . . ,Rn) is a block diagonal matrix with all blocks being equal, thus R−1 is

the block diagonal matrix composed of inverses of the block matrices in R. We want to compute

the trace of R−1, therefore we focus on R−1
1 . By the Sherman-Morrison formula (equation (16)

in Bartlett (1951))

R−1
1 =

1

1− c
IN1 −

c

1− c
1N11

>
N1

1 + c(N1 − 1)
,

where IN1 ∈ IRN1×N1 is the identity matrix and 1N1 ∈ IRN1×1 is a column vector with unit

components. Then Tr(R−1
1 ) = O(N1), and by (2.28) ‖R−1/2‖2 = Tr(R−1) = O(nN1).

Suppose the coefficients βp(·), p = 0, . . . , d, have bounded fourth derivatives, then by the

arguments after (3.37) and Assumption 2.1.5 we know that ρn = O(m−4
k ). To summarise, when

the weights are wi = 1
Ni

, bound (2.27) becomes

√
nN1

m
9/2
k

(
nN1

m4
k

+ 1

)
+

√√√√nN
3/4
1

m4
k

(
N

1/4
1

m4
k

+ 1

)
. (2.29)

A sufficient condition for (2.29) to go to zero as n→∞ is nN1

m4
k

= o(1).



Chapter 3

Monotonicity testing in varying

coefficient models

The content of this chapter is published in Ahkim et al. (2016).

3.1 Introduction

As in the previous chapter, we consider the varying coefficient model (2.1). We develop pro-

cedures to test for monotonicity and convexity of coefficients βp(·), p = 0, . . . , d. This can be

of interest when making inference on certain covariates. One concrete example is given by

our study of schizophrenic patients (Section 3.8) whose ‘Severity of Illness’ are modeled by a

VCM with covariate the binary variable whether the patient received a drug, with coefficients

depending on time (with week as unit of time). In the previous chapter we obtained the null

distribution of the test statistic by assuming normality and homoscedasticity of the errors, with

the correlation structure known. In this chapter the test statistic involves taking the minimum

of a stochastic vector. Under normality and homoscedasticity with given correlation structure

the p-value can be computed by evaluating a multivariate integral (see Section 3.4.1.2). How-

ever, this approach becomes computationally complicated for simultaneous testing. Therefore

we opt for a bootstrap approach (similar as the bootstrap approach proposed in Chapter 2)

without the normality assumption and the need of invoking the correlation.

42
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The remaining of the chapter is as follows. In Section 3.2 we discuss the flexible B-spline esti-

mator (Huang et al. (2004)), which is followed by a section with some general spline properties

as how to impose monotonicity on a spline function. The testing procedures for monotonicity

are presented in Section 3.4, followed by the section on testing for convexity (concavity). When

there are several covariates in the model, it can be of interest to test simultaneously the shape of

different coefficient functions. This is discussed in Section 3.6. We illustrate the performances

of the testing procedures on simulated data in Section 3.7, and apply it to data in Section 3.8.

Section 3.9 contains a short conclusion of this chapter.

3.2 Spline estimation

As in the previous chapter, we work with equidistant knots and assume that limn→∞ ρn = 0,

i.e., the unknown function β can be uniformly approximated by spline functions of certain fixed

degrees as the number of subjects n and the number of knots increase.

We call the estimator β̂ uniform consistent if ‖β̂ − β‖∞ = oP (1). Under certain conditions

we have the uniform consistency of β̂ and its derivatives. Denote by Bl ([0, 1]) the set of real

functions with domain [0, 1] who have a bounded l-th derivative. Let Kn = maxp=0,...,dKp.

Theorem 3.1. Suppose βp ∈ Bqp+1([0, 1]). Set

r2
n =

K2
n

n2

n∑
i=1

(
1

Ni

(
1− 1

Kn

)
+

1

Kn

)
.

Then, under Assumption 2.1,

‖β̂(v)
p − β(v)

p ‖∞ = OP (Kv
nρn +Kv−qp−1

n +Kv
nrn),

for v = 0, . . . , qp, where β
(v)
p is the v-th derivative of βp.

The consistency of the testing procedures is based on the approximation power given in Theorem

3.1, which is proved in Section 3.10.2. It follows immediately from Theorem 3.1 that β̂ and its

derivatives are also uniform consistent.

Corollary 3.1. Suppose βp ∈ Bqp+1([0, 1]) for p = 0, . . . , d. Then, under Assumption 2.1,

‖β̂(v) − β(v)‖∞ = OP (Kv
nρn +K

v−minp=0,...,d qp−1
n +Kv

nrn),

for v = 0, . . . ,minp=0,...,d qp.
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3.3 Preliminaries

Recall that the derivative of a spline function g(t) =
m∑
j=1

γjBj(t; q) having distance 1
K

between

the equidistant knots, is given by (2.11). In the lemma below it is established that when q = 2,

monotonicity of g(t) in the knots ξ0, · · · , ξK is equivalent to monotonicity on the whole domain

[ξ0, ξK ].

Lemma 3.1. If q = 2, then g′(t) ≥ 0 for all t ∈ [0, 1] if and only if g′(ξi) ≥ 0 for i = 0, 1, . . . , K.

Proof. To see this, suppose q = 2, hence γ = (γ1, γ2, . . . , γm)> ∈ IRK+2 and

g′(t) = K

m−1∑
j=1

∆γj+1Bj(t; 1).

Degree one B-splines have a support of 3 knots, are zero at the end knots of the support. More-

over, the sum of all B-splines evaluated in a point in [ξ0, ξK ] is 1. Hence, g′(ξ0) = K∆γ2, g
′(ξ1) =

K∆γ3, · · · , g′(ξK) = K∆γK+2. This proves the equivalences “derivative is positive on all knots”

⇔ “the differences ∆γj, j = 2, . . . , K + 2, are positive” ⇔ “the derivative is positive on the

interval [ξ0, ξK ].” �

3.3.1 Constrained splines

In Section 3.4 we describe our testing procedures for the hypothesis that a certain coefficient

function is increasing (decreasing). The estimation of the null distribution is based on a truthful

estimation of the relevant function. Below we discuss the constraints on the B-spline coefficients

which need to be added to obtain an increasing (decreasing) estimator.

3.3.1.1 Quadratic splines

The derivative of a quadratic spline function g(t) =
∑m

j=1 γjBj(t; 2) with B-spline basis B1(·; 2),

. . . , Bm(·; 2) which are based on the equidistant knots ξ0, . . . , ξK is a linear spline function

g′(t) = K
∑m−1

j=1 ∆γj+1Bj(t; 1) with B-spline basis B1(·; 1), . . . , Bm−1(·; 1). Define the matrix

S ∈ IR(K+1)×(K+2) which consists of B-spline derivatives at the knots; Sij = B′j(ξi−1; 2). By

Lemma 3.1, the function g is increasing if and only if

Sγ ≥ 0 ∈ IRK+1, (3.1)
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where γ = (γ1, . . . , γm)>. When the objective is to estimate an increasing function, we solve

(2.2) under the constraint (3.1) to obtain the constrained estimator α̂cs.

3.3.1.2 Cubic splines

Unlike for quadratic spline estimation where linear constraints at the knots can impose mono-

tonicity, for cubic spline estimation we are required to impose quadratic constraints at the

knots. We use a result of Karlin and Studden (1966) formulated by Daouia et al. (2016) as

follows.

Proposition 3.1. Let p(x) = p0 + p1x+ p2x
2 be a quadratic polynomial. Then p(x) ≥ 0 for all

x ∈ [0, 1] if and only if there exists y0 ≥ 0 such that (p0 + p2 + y0, p0 − p2 − y0, p1 − y0)> ∈ Q3,

where Qk+1 = {(z0, . . . , zk) : z0 ≥ ‖(z1, . . . , zk)
>‖2} is the (k + 1)-dimensional second order

cone.

The idea is to apply Proposition 3.1 to the derivative of a cubic spline function, which is by

definition a second degree polynomial between consecutive knots, to obtain the constraints on

the B-spline coefficients which ensure that the cubic spline is an increasing function. Note that

Proposition 3.1 needs to be adjusted so that it can be applied to a second degree polynomial

with domain a subinterval of [0, 1]. Daouia et al. (2016) used this approach to obtain the

constraints when one works with the truncated power function basis. In Proposition 3.2 we

give the constraints on γ = (γ1, γ2, . . . , γm)> to ensure g(t) =
m∑
j=1

γjBj(t; 3) is monotonically

increasing.

Proposition 3.2. The function g′ is nonnegative on [ξ0, ξK ] if and only if there exists a vector

h = (h0, h1, . . . , hK−1)> ∈ IRK×1 with positive components such that

Ajv ≥ ‖(Bjv,Cjv)>‖2, for j = 0, . . . , K − 1, (3.2)

where v = ((D1γ)>,h>)> and D1 is the matrix which takes the first order differences of γ =

(γ1, γ2, . . . , γm)>, and where

Aj = (0, . . . , 0︸ ︷︷ ︸
j

,
2

K2
,− 1

K2
,

1

K2
, 0, . . . , 0︸ ︷︷ ︸

m−4

, 1, 0, . . . , 0︸ ︷︷ ︸
K−j−1

) ∈ IR1×(m−1+K)

Bj = (0, . . . , 0︸ ︷︷ ︸
j

, 0,
3

K2
,− 1

K2
, 0, . . . , 0︸ ︷︷ ︸

m−4

,−1, 0, . . . , 0︸ ︷︷ ︸
K−j−1

) ∈ IR1×(m−1+K)



46 Chapter 3. Monotonicity testing in varying coefficient models

Cj = (0, . . . , 0︸ ︷︷ ︸
j

,
−2

K2
,

2

K2
, 0, 0, . . . , 0︸ ︷︷ ︸

m−4

,−1, 0, . . . , 0︸ ︷︷ ︸
K−j−1

) ∈ IR1×(m−1+K)

for j = 0, . . . ,K − 1.

The proof is relegated to Section 3.10.1. We obtain the constrained cubic spline estimator α̂cs

by solving (2.2) under the corresponding constraints (3.2). We use the same notation for the

constrained quadratic spline estimator when there is no ambiguity.

3.3.2 Selection number of knots

Here, the B-spline estimator is attained by fixing the degree vector and allowing only the knot

vector to vary. We resolve to a cross validation method (2.13) to obtain a desired knot vector

(K0, . . . , Kd). The desired K = (K0, . . . , Kd) is the minimizer of (2.13). One can also resolve

to the v-fold cross validation method. Here we partition the data in equal parts (with respect

to the subjects) P1, P2, . . . , Pv where all the information of one subject is contained in only one

part. Then a training data is formed by deleting one part Pi with which we determine the

B-spline estimator α̂−Pi and compute the cross validation score for the deleted part. The total

cross validation score which we seek to minimize is

CVv(K0, . . . , Kd) =
v∑
i=1

‖YPi −UPiα̂
−Pi‖2

2. (3.3)

3.3.3 Conditional variance estimation

Let X = {(tij,Xij) : i = 1, . . . , n, j = 1, . . . , Ni}. Conditioning on X , we obtain by (2.3)

Cov(α̂ |X ) = (U>WU)−1U>WVWU(U>WU)−1, (3.4)

where the only unknown is Cov(ε) = V = diag(V1, . . . ,Vn), and Cov(εi) = Vi with εi =

(εi1, . . . , εiNi)
>. More explicitly

(Vi)jj′ = Cov(εi(tij), εi(tij′)), 1 ≤ j, j′ ≤ Ni. (3.5)
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Huang et al. (2004) estimate Cov(εi(tij), εi(tij′)) by a tensor product spline on [0, 1] × [0, 1]

(Chapter 12, Schumaker (2007)), that is

Cov(εi(t), εi(s)) ≈
mε∑
k,l=1

uklBk(t, qε)Bl(s, qε), t, s ∈ [0, 1], t 6= s, (3.6)

where we use a fixed set of B-splines {B1(·; qε), B2(·; qε), . . . , Bmε(·; qε)} with degrees qε and

equidistant knots in [0, 1], and let ukl = ulk. We impose the approximation in (3.6) only when

t 6= s, since the covariance function Cov(εi(t), εi(s)) is not necessarily continuous at t = s, that

is, lims→t Cov(εi(t), εi(s)) 6= Cov(εi(t), εi(t)), see Diggle and Verbyla (1998) and Diggle (1988)

for example. Moreover, E(εi(tij)εi(tij′)) = Cov(ε(tij), ε(tij′)), therefore we could estimate the

coefficients ukl by finding the minimizer of

n∑
i=1

Ni∑
j=1

Ni∑
j′=j+1

(
εi(tij)εi(tij′)−

mε∑
k,l=1

uklBk(tij; qε)Bl(tij′ ; qε)

)2

(3.7)

if the error terms εi(tij) were observed. Since they are not observed, we replace them by the

residuals ε̂i(tij) = Yij −X>ijβ̂(tij) to obtain the minimizer ûkl (k, l = 1, . . . ,mε).

For the estimation of σ2(t) = Cov(ε(t), ε(t)) we use the approximation σ2(t) ≈
∑

k vkBk(t; qε).

As before, we minimize
n∑
i=1

Ni∑
j=1

(
ε2
i (tij)−

mε∑
k=1

vkBk(tij; qε)

)2

(3.8)

conditioned by vk ≥ 0 to obtain v̂k, k = 1, . . . ,mε, and define the variance estimate σ̂2(t) =∑mε
k=1 v̂kBk(t; qε). Under mild conditions, this yields a consistent estimator for the covariance

function (Huang et al. (2004)).

3.4 Monotonicity tests in VCM

We test whether βk(·) (for a fixed k ∈ {0, . . . , d}) is increasing. Hence, the hypothesis

H0 : β′k(t) ≥ 0 for all t in [0, 1], versus ¬H0. (3.9)

When qk = 2 we use the idea of Wang and Meyer (2011) who worked with quadratic splines to

test monotonicity in the univariate case.

To test whether βk(·) is decreasing we use the varying coefficient model where we replace X(k)

by −X(k). Then, we test whether the corresponding coefficient, which is equal to −βk(·), is

increasing.
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3.4.1 Quadratic splines approximation

For quadratic spline functions, the monotonicity constraint is translated into a linear con-

straint on the B-spline coefficients (see Section 3.3.1.1). Define C = (01S03) where 01 ∈

IR(Kk+1)×
∑k−1
j=0 mj ,03 ∈ IR(Kk+1)×

∑d
j=k+1mj are matrices with entries 0 and S ∈ IR(Kk+1)×(Kk+2)

is the matrix of derivatives at the knots of B-splines corresponding to the coefficient βk:

Sij = B′kj(ξk(i−1); 2), see (3.1). Hence, the estimate β̂k is increasing if and only if

Cα̂ ≥ 0.

Then it is natural to take as test statistic min(Cα̂). The pseudo algorithm to test hypothesis

H0 is as follows.

1. Determine the unconstrained estimator α̂, and calculate smin, the minimum of the slopes

at the knots; smin = min(Cα̂). This is the test statistic.

2. If smin is non-negative, we do not reject H0.

3. If smin < 0, determine the distribution of smin under the null hypothesis and calculate the

α percentile (see below) Qα.

4. If smin is smaller than the α percentile, then we reject H0.

Below we discuss two approaches to determine the null distribution of smin.

3.4.1.1 Bootstrap method

We use a bootstrap method to determine the null distribution of smin. We start with setting

residuals

ε̂ij = Yij −
d∑
p=0

X
(p)
ij β̂p(tij)

where β̂ is the unconstrained B-spline estimator and let

Y ps
ij =

d∑
p=0

X
(p)
ij β̂

cs
p (tij) + ε̂ij for i = 1, . . . , n and j = 1, . . . , Ni

be a set of pseudo responses under the null hypothesis with β̂cs = (β̂cs0 , . . . , β̂
cs
d )> the con-

strained estimate putting the constraint on βk. The bootstrap procedure to determine the null

distribution of smin goes as follows.
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• Step 1: Resample n subjects (with all its repeated measurements) with replacement from

{(Y ps
ij , Xij, tij) : i = 1, . . . , n, j = 1, . . . , Ni}

to obtain the bootstrap sample {(Y ps∗
ij , X∗ij, t

∗
ij) : i = 1, . . . , n, j = 1, . . . , N∗i }

• Step 2: Repeat the above sampling procedure B times.

• Step 3: Obtain the test statistic s∗min from each bootstrap sample and derive the empirical

distribution based on all s∗min.

• Step 4: Take the α percentile Q̂α of the empirical distribution in Step 3 and reject the

null hypothesis if smin < Q̂α, else do not reject the null hypothesis.

3.4.1.2 Multivariate normal method

This approach is useful when we have normal errors and is also considered in Wang and Meyer

(2011). Assume normal errors ε = (ε1, . . . , εn)>

ε ∼ N(0,V). (3.10)

We need the function Pr(smin ≤ r), r ∈ IR. Since E(Y|X ) ≈ Uα and smin = min(Cα̂), we

have that Cα̂ is, conditioned on X , approximately normal with mean Cα and covariance

Σ = C(U>WU)−1U>WVWU(U>WU)−1C>. (3.11)

We obtain the expression

Pr(smin ≤ r) = 1−
∫
· · ·
∫
{z|z−r1≥0}

φ(z; Cα,Σ)dz, where z,1 = (1, 1, . . . , 1)> ∈ IR(Kk+1)×1

(3.12)

where φ(· ; Cα,Σ) denotes the multivariate normal density function with mean Cα and co-

variance Σ. We can compute (3.12) only if α and V are known. It is clear that we can only

approximate α and V. The suggestion is to use α̂cs, the constrained estimator, for approxi-

mating α, and the unconstrained α̂ for estimating V as in Section 3.3.3; if we would use α̂cs

instead, it would lead to a biased estimate for V under the alternative hypothesis. Therefore,

we use

PCα̂cs,Σ̂(r) = 1−
∫
· · ·
∫
{z|z−r1≥0}

φ(z; Cα̂cs, Σ̂)dz, (3.13)
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where

Σ̂ = C(U>WU)−1U>WV̂WU(U>WU)−1C>. (3.14)

The estimated α percentile is determined as follows

Q̂α = inf{r | PCα̂cs,Σ̂(r) ≥ α}. (3.15)

3.4.1.3 Consistency of the test for quadratic splines

The following theorem states that the type II error tends to 0 when the coefficient function

function is strictly increasing.

Theorem 3.2. Assume that Knρn+Kqk
n +Knrn = o(1). Under Assumption 2.1, if inft∈[0,1] β

′
k(t) =

δ > 0, then P (smin < min(0, Q̂α)) = o(1).

The proof of this theorem can be found in Section 3.10.3.

3.4.2 Cubic splines approximation

For cubic splines we look at the minimum of the derivative of

β̂′k(t) = Kk

mk−1∑
j=1

∆α̂k(j+1)Bj(t; qk − 1)

for t ∈ [0, 1], see equation (2.11), where qk = 3. The degrees for other coefficient functions can

be arbitrary. Hypothesis H0 holds if and only if β′k is non-negative on its domain. In practice we

work with a grid G of [0, 1], say G = {0, 0.001, 0.002, · · · , 1}. Then we determine the minimum

of β̂k over the grid G which will be the test statistic, i.e. the test statistic is β̂k(c) for gridpoint

c. When the test statistic is nonnegative we do not reject H0. In the other case we want to

measure how plausible the negative test statistic is. Therefore we look at the α percentile of

the null distribution of β̂k(c). The pseudo algorithm for this approach is as follows.

1. Compute s = ming∈G β̂
′
k(g)

2. If s ≥ 0, do not reject H0.
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3. If s < 0, choose a c ∈ G such that s = β̂′k(c) < 0. Determine the null distribution of s

(see below) and check whether s is smaller than the α percentile Q̃α .

4. If s < Q̃α, reject H0, else do not reject H0.

We are left with determining Q̃α in Step 3, hence it suffices to find the null distribution of s.

Note that we could have used the same approach when working with quadratic splines. However,

in that case we know that the minimum over the grid G of the linear spline function β̂′k

is attained at a knot. This fact makes that this approach is not appropriate when we use

quadratic spline estimation.

3.4.2.1 Bootstrap method

The bootstrap method to determine the null distribution of s is similar as before (Section

3.4.1.1).

3.4.2.2 Asymptotic normality

Another approach to estimate the null distribution is motivated by the asymptotic normality

of β̂′k(t). Define

b(t; qk − 1) = (B1(t; qk − 1), B2(t; qk − 1), B3(t; qk − 1), · · ·Bmk−1(t; qk − 1))> ∈ IR(mk−1)×1,

(3.16)

and, let D ∈ IR(mk−1)×dim denote the matrix such that

Dα̂ = (∆α̂k2,∆α̂k3, · · · ,∆α̂kmk)>.

Hence, we need to find the null distribution of β̂′k(c) = Kkb(c; qk − 1)>Dα̂. This leads to the

following result, for which the proof is given in Section 3.10.4.

Theorem 3.3. Suppose the process ε(t) can be decomposed as the sum of two independent

stochastic processes, ε(1)(t) and ε(2)(t), where ε(1)(t) is an arbitrary mean zero process and

ε(2)(t) is a process of measurement errors that are independent at different time points and

have mean zero and constant variance σ2. Under Assumption 2.1 in Section 2.8.1, where βp



52 Chapter 3. Monotonicity testing in varying coefficient models

has a bounded fourth derivative with qp ≥ 3 for all p. Suppose qk = 3 and limn
K9
n

nmaxiNi
= ∞,

then
β̂′k(c)− β′k(c)√

Var
(
β̂k(c)− β′k(c)

) d−→ N(0, 1) as n→∞. (3.17)

We can use this asymptotic normality result if we can estimate the variance and β′k(c). For the

variance, we have

Var
(
β̂k(c)− β′k(c)

)
= Var(Kkb(c; qk − 1)>D(α̂− E(α̂)) = K2

kb(c; qk − 1)>D(U>WU)−1

U>WVWU(U>WU)−1D>b(c; qk − 1) ∈ IR. (3.18)

We can estimate V by V̂ as it is described in Section 3.3.3 to obtain the following estimate of

the variance (3.18)

v̂k = K2
kb(c; qk − 1)D(U>WU)−1U>WV̂WU(U>WU)−1D>b(c; qk − 1)>. (3.19)

We now have an estimate for the variance, but we still need to estimate β′k(c) to obtain the

(estimated) null distribution of β̂′(c). Therefore we take Kkb(c; qk− 1)Dα̂cs as a good approx-

imation for β′k(c), where α̂cs is the constrained cubic spline estimator.

The estimated α percentile Q̃α is the α percentile of a N(Kkb(c; qk − 1)Dα̂cs, v̂k).

3.4.2.3 Consistency

Suppose we estimate V by σ̂2IN where

σ̂2 =
1

N − dim
(Y −Uα̂)>(Y −Uα̂).

When there is correlation, even with this misspecified estimator of V, Theorem 3.4 says that

as n increases to infinity we correctly reject the null hypothesis with probability tending to 1

when the coefficient βk(·) is strictly decreasing in a point in the domain. Also, when βk(·) is

strictly increasing we do not reject the null hypothesis with probability tending to 1.

Theorem 3.4. We construct a grid Gn which depends on n, such that minGn = 0, maxGn = 1

and the supremum distance between two consecutive grid points tends to zero as n→∞. Under

Assumption 2.1 and the condition Knρn +K−qkn +Knrn = o(1) such that limn
K3
n

n
= 0 we have

the following:
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1. Suppose inft∈[0,1] β
′
k(t) = δ < 0, then lim

n→∞
P (s ≥ min(0, Q̃α)) = 0.

2. Suppose inft∈[0,1] β
′
k(t) = δ > 0, then lim

n→∞
P (s < min(0, Q̃α)) = 0.

The proof of this theorem is deferred to Section 3.10.5. Theorem 3.4 states the effectiveness

of this method under certain conditions when we consider for example the space S = {βk ∈

B4([0, 1])| inft∈[0,1] β
′
k(t) 6= 0}. This function space can be seen as the space of smooth functions

without increasing functions with a flat spot.

3.5 Testing convexity

It is also of interest to test for convexity or impose convexity when estimating a coefficient

function. We want to test the hypothesis that βk is convex, hence

H1 : β′′k(t) ≥ 0 for all t in [0, 1], versus ¬H1. (3.20)

The testing procedures are analogous to these in Section 3.4, except for the obvious adjustments

since we now work with the second derivative. Moreover, the consistency results in Section 3.4

are carried over under the appropriate adjustments of the conditions.

3.5.1 Cubic spline

When qk = 3, the second derivative of the B-spline estimate β̂k is a linear spline function. The

second derivative of β̂k is nonnegative if and only if (as in (3.1))

Tαk ≥ 0, (3.21)

where T ∈ IR(Kk+1)×(Kk+2) is the matrix of second derivatives at the knots of B-splines cor-

responding to the coefficient βk: Tij = B′′kj(ξk(i−1); 3). Define H = (01T03) where 01 ∈

IR(Kk+1)×
∑k−1
j=0 mj ,03 ∈ IR(Kk+1)×

∑d
j=k+1mj are matrices with entries 0. Then we proceed as

in Section 3.4.1.1 using the test statistic min(Hα̂). Moreover, the estimator α̂cs is obtained

under constraint (3.21).
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3.5.2 Quartic spline

When qk = 4 we use the bootstrap method as in Section 3.4.2.1. For the asymptotic normality

approach (Section 3.4.2.2) we need the α percentile of N(K2
kb(c2; qk−2)D2α̂

cs, v̂2k) denoted by

Q̂2,α, where c2 = argmint∈G β̂
′′
k(t) and D2 is the matrix which takes the second order differences

of α̂csk and

v̂2k = K4
kb(c2; qk − 2)D2(U>WU)−1U>WV̂WU(U>WU)−1D>2 b(c2; qk − 2)>. (3.22)

The constrained estimator α̂csk is obtained as in Section 3.3.1.2 since we need to constrain a

quadratic spline function. The only difference is that we work with second order differences

because we work with the second order derivative of a quartic spline function.

3.6 Simultaneous testing

We address how to conduct a simultaneous shape test, i.e. test simultaneously whether cer-

tain coefficient functions are monotone and/or convex. Suppose we want to test for b shapes

(monotonicity and/or convexity). For example, we test whether βi1(·) is monotonic, βi2(·) is

convex,. . ., βib(·) is convex where i1, . . . , ib is contained in {0, 1, . . . , d}. For simplicity we re-

quire that i1, i2, . . . , ib is a mutually different sequence. Let s denote the column vector with

length b of the corresponding test statistics. Thus for the example above

s = (min
t∈G

β̂′i1(t),min
t∈G

β̂′′i2(t), . . . ,min
t∈G

β̂′′ib(t))
>,

for a suitable grid G ⊂ [0, 1] .

The first way is to test for the relevant coefficient functions based on the Bonferroni correction.

Thus, we do the test for each relevant coefficient function with level α/b. We do not reject the

null hypothesis if all individual tests give a positive answer, i.e. all individual null hypotheses

are not rejected. When we use cubic splines for testing monotonicity (Section 3.4) and quartic

splines for testing convexity (Section 3.5), the Bonferroni correction method yields a consistent

multiple test when we restrict to the appropriate space.

Otherwise, it is quite straightforward to use the bootstrap approach as before. If all the

components of s are nonnegative, then we do not reject the null hypothesis. In the other case,
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we use a bootstrap method to determine how plausible such a test statistic is observed under

the null hypothesis. As before we start with setting residuals

ε̂ij = Yij −
d∑
p=0

X
(p)
ij β̂p(tij)

where β̂ is the unconstrained B-spline estimator and let

Y ps
ij =

d∑
p=0

X
(p)
ij β̂

cs
p (tij) + ε̂ij for i = 1, . . . , n and j = 1, . . . , Ni

be a set of pseudo responses under the null hypothesis with β̂cs = (β̂cs0 , . . . , β̂
cs
d )> the constrained

estimate which is obtained by adding the appropriate constraints. Thus, for the example

above we put the monotonicity constraint on βi1(·), the convexity constraint on βi2(·), . . ., the

convexity constraint on βib(·). Then the bootstrap procedure to determine whether we do not

reject the null hypothesis is as follows.

• Step 1: Resample n subjects with replacement from

{(Y ps
ij , Xij, tij) : i = 1, . . . , n, j = 1, . . . , Ni}

to obtain the bootstrap sample {(Y ps∗
ij , X∗ij, t

∗
ij) : i = 1, . . . , n, j = 1, . . . , N∗i }

• Step 2: Repeat the above resampling procedure B times.

• Step 3: Obtain the test statistic vector from each bootstrap sample and derive the center

of mass µM and the sample covariance ΣM of all test statistic vectors obtained from

all the bootstrap samples. Then determine the sample distribution of all Mahalanobis

distances.

• Step 4: Take the (1− α) percentile M1−α of the Mahalanobis distances obtained in Step

3 and reject the null hypothesis if (s−µM)>ΣM(s−µM) > M1−α, else do not reject the

null hypothesis.

3.7 Simulation examples

In this section we evaluate the testing procedures on simulated data with significance level

α = 0.05. We assume a longitudinal model with mean zero errors. Let the number of subjects
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be n, the number of repeated measurements for subject i is Ni which is randomly generated from

{b3n/10c, . . . , b4n/10c} for i = 1, . . . , n. For each subject i, the time points tij, j = 1, . . . , Ni

are equidistant in [0, 1] and blurred by adding a random variable with distribution N(0, 5·10−5).

For the error structure we consider two settings. In the first setting ε(tij) ∼ N(0, 0.62) and in

the second ε(tij) ∼ Un[−1.73, 1.73]. In both settings, the error terms from different subjects

are independent and the intrasubject correlation is

Corr(ε(tij), ε(tik)) = 0.2, 1 ≤ i ≤ n, 1 ≤ j, k ≤ Ni, j 6= k. (3.23)

Throughout the simulations, the signal-to-noise ratio (SNR) is around 7. The SNR is defined

by

Var
(
β0(t) +

∑d
p=0X

(p)(t)βp(t)
)

Var (ε(t))
.

In practice the SNR is estimated by its sample version. Moreover, the simulation results are

based on 200 samples. First we study the performances for the test whether a certain coefficient

function is increasing, followed by a study for testing the convexity of one coefficient function

and for simultaneous testing.

3.7.1 Monotononicity tests

We consider n = 50 and n = 100. We use coefficient functions β0(t) = 0.25 + 2t, β1(t) =

f(t), β2(t) = −0.5+10(t−0.5)2. The hypothesis (3.9) is tested for β1(·) using several functions

f . We consider

• f1,a(t) = −2 + 2(1 + t− a exp(−50(t− 0.5)2));

• f2(t) = 1.1;

• f3(t) = 5(t− 0.25)2;

• f4(t) = 5(t− 0.25)2
+.

The function f1,a(·) is taken from Bowman et al. (1998). This function is strictly monotone

for a = 0.15, whereas a dip appears when a = 0.30 and more profoundly when a = 0.45. The

function f3(·) is a parabola which is strictly decreasing on [0, 0.25] and strictly increasing on
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[0.25, 1]. Wang and Meyer (2011) used f4(·), which is the same as the function f3(·) but is zero

for t ≤ 0.25, to show that certain testing procedures reject too often the null hypothesis in (3.9)

when the increasing function has flat parts.

We employ the time dependent bivariate vector X(1)(t)

X(2)(t)

 ∼ N(0,Σ(t)), Σ(t) =

 1 1/(4 + t)

1/(4 + t) 1

 . (3.24)

We set for the cubic spline testing procedure K0 = K1 = K2 = 4 with q0 = q1 = q2 = 3, whereas

for the quadratic spline testing procedure K0 = K2 = 4, K1 = 5 with q0 = q2 = 3, q1 = 2. The

number of knots are chosen in such a way that the number of B-splines for each coefficient is

the same irrespective of the degree we use.

The rejection rates are collected in Table 3.1. The quadratic spline testing procedure is based

on the bootstrap method (Section 3.4.1.1) with bootstrap size equal to 200. For the cubic

spline approach we look at both the bootstrap method and the method based on asymptotic

normality (Sections 3.4.2.1 and 3.4.2.2) where we restrict the grid G to [0.05, 0.95] using 100

equidistant grid points. In the asymptotic normality approach (AN) there is the obstacle of

estimating the covariance (see (3.18)). Note that Theorem 3.4 holds when we replace V̂ in

(3.18) by σ̂2IN . The rejection rates in the asymptotic normality approach where we use the

true covariance matrix are almost equal (differences of less than 1%) to the rejection rates using

the (misspecified) covariance σ̂2IN , therefore we only report the results based on σ̂2IN .

From the results in Table 3.1 we see that the bootstrap outcomes (B) are comparable to each

other and consistent as n increases, i.e. the rejection rates when the function is not increasing

(f1,0.3(·), f1,0.45(·) and f3(·)) tend to 1 while the rejection rate is about 0.05 (the testing level,

as the sample size increases) for increasing functions (f1,0.15(·), f2(·) and f4(·)). The asymptotic

normality approach (AN) rejects too often for increasing functions which are not contained in S

(see Section 3.4.2.3 for the definition of S), i.e. the constant function and the increasing function

with a flat start (bold numbers in Table 3.1). This seems to be inherent to the approach, since

the simulations for a much bigger n = 500 reveal extremely high rejection rates (0.995 for the

constant function and 1 for the increasing function with a flat start). However, for functions

in S (f1,0.15(·), f1,0.30(·), f1,0.45(·) and f3(·)) the asymptotic normality approach performs better

than the bootstrap methods. We could expect this bad performance for functions with flat parts
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f, n Characteristics of f Normal errors Uniform errors

2 3 (B) 3 (AN) 2 3(B) 3(AN)

f1,0.15(·), 50 increasing 0.045 0.010 0.045 0.025 0.015 0.025

f1,0.15(·), 100 ” 0.030 0.005 0.020 0.015 0.005 0.010

f1,0.3(·), 50 small dip 0.445 0.340 0.900 0.450 0.340 0.955

f1,0.3(·), 100 ” 0.945 0.990 1.000 0.965 0.990 1.000

f1,0.45(·), 50 large dip 0.910 0.920 1.000 0.910 0.940 1.000

f1,0.45(·), 100 ” 1.000 1.000 1.000 1.000 1.000 1.000

f2(·), 50 constant 0.075 0.045 0.335 0.055 0.040 0.385

f2(·), 100 ” 0.050 0.045 0.705 0.055 0.065 0.625

f3(·), 50 parabolic 0.510 0.545 0.600 0.480 0.545 0.595

f3(·), 100 ” 0.875 0.935 1.000 0.835 0.950 1.000

f4(·), 50 increasing with flat part 0.050 0.045 0.300 0.045 0.050 0.265

f4(·), 100 ” 0.020 0.045 0.530 0.035 0.040 0.515

Table 3.1: The rejection rates for the hypothesis that β1(·) is increasing are stated based on 200

simulations. The functions in the most left column are consecutively substituted in β1(·). In the case

of cubic splines we differentiate between the bootstrap method (denoted by B) and the method based

on asymptotic normality (AN).

since the AN approach is based on the pointwise asymptotic normality result given in Theorem

3.3, and for increasing functions with flat parts the test statistic s is attained at different grid

points while the AN approach assumes the grid point where the minimum is attained to be

unique. Furthermore, the results for normal errors and uniform errors are comparable. The

first two rows of Table 3.1 suggest that the test level is not reached as n increases. For the

AN approach this seems to be in conflict with the result (3.17) which uses the true coefficient

function and the true variance with increasing number of knots. However, we estimate both

the coefficient function and the variance with fixed number of knots (which do not increase

as n increase). By our remark at the end of the previous paragraph, the ‘problem’ seems to

lie with the estimation of the coefficient function (under the null hypothesis). The results of

the bootstrap approach which uses the same coefficient function estimation agrees with this
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Hypothesis n = 50 n = 100 n = 150

β0(·) is convex (case one) 0.04 0.025 0

β1(·) is convex (case one) 0 0.47 1

β0(·) and β2(·) are increasing (case two) 1 1 1

β0(·) and β2(·) are increasing (case three) 0.265 0.915 0.955

Table 3.2: The rejection rates stated are based on 200 simulations with normal errors. These results

are based on the bootstrap method using cubic splines for monotonicity testing and quartic splines

for convexity testing. Three cases are considered. In each case β0(t) = 0.25 + 2t, and further in case

one β1(t) = f1,0.45(t), β2(t) = −0.5 + 10(t − 0.5)2; for case two we take β1(t) = f1,0.30(t), β2(t) =

−0.5 + 10(t− 0.5)2; for case three we use β1(t) = −0.5 + 10(t− 0.5)2, β2(t) = f1,0.30(t).

conclusion. Therefore, in practice the recommendation is to use the bootstrap approach.

3.7.2 Convexity and simultaneous tests

In addition, we test the convexity of β0(t) = 0.25 + 2t in first instance and β1(·) = f1,0.45(·) in

second instance, using quartic splines and the bootstrap method. To illustrate the effectiveness

of our simultaneous approach, we also test whether β0(·) and β2(·) are both increasing using

cubic splines and the bootstrap method. Table 3.2 contains the results where we have fixed the

knots K0 = K1 = K2 = 4. As before, we see that the powers tend to one and we do not reject

too often when the null hypothesis holds.

3.8 Data applications

3.8.1 PBC

We consider a database of 424 patients having primary biliary cirrhosis (PBC) established and

collected by the Mayo Clinic between January 1974 and May 1984. PBC is a fatal chronic

liver disease of unknown cause. The database is available in R (Package ‘survival’). These 424

patients met standard eligibility criteria for a randomized, double-blinded, placebo-controlled,
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Hypothesis PBC data

2 3 (B) 3 (AN)

β0(·) is increasing 0.17 0.37 0.48

β0(·) is decreasing 0.07 0.14 0.44

β1(·) is increasing 0.05 0.05 0.37

β1(·) is decreasing 0.42 0.38 0.18

β2(·) is increasing 0.49 0.37 0.50

β2(·) is decreasing 0.24 0.28 0.44

Table 3.3: The p-values concerning the PBC data. In the case of cubic splines we differentiate

between the bootstrap method (denoted by B) and the method based on asymptotic normality

(AN)

.

clinical trial of the drug D-penicillamine (DPCA). There was randomization in 312 of 424 cases

and complete follow up to July, 1986 was attempted. Our study will be based on these 312

patients. Further information about this dataset can be found in Fleming and Harrington

(1991), who gave a detailed description of the database with a thorough study. We suppose

a VCM with age dependent coefficient functions. In our study we omit few youngest and

oldest patients so that the data has a more dense number of observations at the boundaries

and we omit the patients who were censored or received kidney transplantation, leading to 122

patients that are at least 33 and at most 71 years old. The response Y denotes the logarithm

of days between registration and death. The covariates are the logarithm of bilirubin in mg/dl

(serum bilirubin is well established as an independent predictor of prognosis in PBC, see for

example Lammers et al. (2014)) denoted by log(B) and presence of edema (0: no edema and

no diuretic therapy for edema, 0.5: edema present for which no diuretic therapy was given or

edema resolved with diuretic therapy, 1: edema despite diuretic therapy) denoted by E, edema

represents the accumulation of fluids in the tissue. The logarithm of bilirubin is used in order

to have covariates of a similar scale. For interpretability reasons, we translate the log(B) values

such that the minimal log(B) value is 0. We are interested in the influence of these covariates

and their effects on the survival time of the patient as the patient’s age varies. This is studied
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Figure 3.1: In (a) the estimations of mean survival time of the VCM (3.25) as a function of

age for patients with Edema=0 and three different bilirubin levels are depicted. In (b) the

analogous case is depicted with Edema=1.

by by considering the VCM

Y = β0(age) + β1(age) log(B) + β2(age)E + ε(age). (3.25)

The question is whether the coefficients β0(·), β1(·) and β2(·) are increasing or decreasing. The

number of knots are determined by a 3-fold cross validation where the number of knots vary

from 3 to 8. The results are given in Table 3.4. For completeness, we also include the asymp-

totic normality results. However, as we have concluded in the end of Section 3.7 we base our

judgments on the bootstrap approach.

From Table 3.4 we see that for the intercept (β0(·)) and the coefficient of edema (β2(·)) we do

not reject the hypothesis that they are increasing, neither do we reject that they are decreasing.

Therefore, it is likely that β0(·) and β2(·) are constant functions, i.e. age independent. For β1(·)

(coefficient of log bilirubin) we conclude, on the boundary, that it is decreasing. This reveals us

that bilirubin has a decreasing impact on the survival time of the patient as the age increases.

This result is depicted in Figure 3.1(b), where we only see the combined intercept and bilirubin

effect on the survival time Y . There we see that for higher bilirubin levels the decreasing trend

on the survival time is more eminent. The same conclusion holds for Figure 3.1(a) with E = 1

revealing the combined effects of the intercept and the covariates.

3.8.2 Schizophrenia data

The second data example is from the National Institute of Mental Health Schizophrenia Col-

laborative Study. Specifically, we study Item 79, ‘Severity of Illness’, of the Inpatient Multidi-
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Figure 3.2: Schizophrenia data. The full lines are the cubic spline estimations (i.e. the degree

vector is (3, 3)) of the coefficients β0(·) and β1(·), the dashed lines are the estimations when the

degree vector is (3, 2). (a) contains the estimations of β0(·), and (b) the estimations of β1(·).

mensional Psychiatric Scale (IMPS; Lorr and Klett (1966)). Item 79 was originally measured

on a numerical scale ranging from 1 (normal, not at all ill) to 7 (among the most extremely ill).

In this study, most patients were measured at weeks 0, 1, 3 and 6; however, a few patients were

additionally measured at weeks 2, 4 and 5. The n = 437 patients were randomly assigned to

either receive a drug or a placebo. The data are available in R (Package ‘vcrpart’). Previously,

these data were studied by for example Hedeker and Gibbons (1997) who used a random-effects

pattern-mixture model for the changes of the ‘Severity of Illness’ measurements. Here, we study

the changing of Item 79 (= Y ) with the VCM

Y (week) = β0(week) + β1(week)Drug + ε(week), (3.26)

Drug is a binary variable where Drug = 1 denotes a patient who received the drug, and

Drug = 0 means that the patient received a placebo. The number of knots are determined

by a 4-fold cross validation where the number of knots vary from 1 to 8. This yields the knot

vector (1, 1) for both the degree vectors (3, 3) and (3, 2). As for the degree vector (2, 3), the

knot vector obtained is (2, 1). In Figure 3.2 we depict the cubic spline estimators for β0(·)

and β1(·) (the solid curves in respectively Figures 3.2(a) and (b)). We also present, as dashed

curves, the spline estimators when using the degree vector (2, 3). The question of interest is

how the drug affects the illness of the patients, that is the coefficient β1(·). A negative β1(·)

which is decreasing indicates that the drug is effective. The full line in Figure 3.2(b) suggests

that such is the case. Moreover, from Figure 3.2(b) the drug effect drops quickly to reach a
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Figure 3.3: Schizophrenia data. The mean fits from model (3.26) are shown of the placebo

group and the drug group. The squares and triangles are the mean Item 79 measurements at

weeks 0, 1, 3 and 6, of the placebo group and drug group, respectively.

steady effect of −1 from week 3 onwards. Figure 3.2(a) shows an overall mildly decreasing

trend for the intercept function β0(·), revealing a little improvement of the illness over time (in

weeks).

Figure 3.3 contains the mean fits, i.e. β̂0(week) + β̂1(week)Drug, for the placebo group and

the drug group. We see that the varying of mean Item 79 measurements are well described by

model (3.26) for both groups.

Table 3.4 contains the results of the monotonicity tests. The asymptotic normality results are

included for completeness. However, as we have concluded in the end of Section 3.7, we base

our judgments on the bootstrap approach. For test level 0.10 we reject the hypothesis that β0(·)

is increasing, moreover, the high p-values for the decreasing hypothesis indicates that β0(·) is

decreasing. For β1(·) we totally reject the hypothesis that it is increasing. For cubic splines we

do not reject the hypothesis that β1(·) is decreasing. On contrary is the result for quadratic

splines, because the cubic fit is monotonically decreasing while the quadratic fit is not from

week 4 onwards (see Figure 3.2(b)). This discrepancy can be explained by noting that very few

measurements were taken on weeks 4 and 5.
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Hypothesis Schizophrenia data

2 3 (B) 3 (AN)

β0(·) is increasing 0.08 0.05 0.21

β0(·) is decreasing 0.69 0.65 0.50

β1(·) is increasing 0.00 0.00 0.02

β1(·) is decreasing 0.03 0.70 0.35

Table 3.4: The p-values concerning the Schizophrenia data with bootstrap size B= 500. In the

case of cubic splines we differentiate between the bootstrap method (denoted by B) and the

method based on asymptotic normality (AN).

3.9 Conclusion

In this chapter we presented two approaches for (simultaneous) shape testing in varying coef-

ficient models. We showed in simulation examples that in general the bootstrap approach is

consistent and yields the best results. One application modeled the ‘Severity of Ilness’ mea-

surements from the Schizophrenia data by a varying coefficient model with covariate a binary

variable which indicates whether the patient received a drug, and where the coefficients depend

on the week number. Our interest was in the drug coefficient and whether it is decreasing,

which would reveal how affective the drug is. It turned out that the drug coefficient is negative

and mainly monotonically decreasing as the age increases.

Varying coefficient models are also applied in other contexts, in particular in the generalized

context (see Section 2.6) and in survival analysis (see Fan and Wenyang (2008) for an overview).

It should be noted that the bootstrap approach is quite universal because you mainly need an

estimation of the B-spline coefficients which satisfies the null hypothesis, i.e. you need to add

the relevant constraints on the B-spline coefficients to the optimization problem.
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3.10 Proofs

3.10.1 Proof of Proposition 3.2

Proof. The function g(t) is a cubic polynomial between consecutive knots [ξj, ξj+1]. Below we

show that the constraint to be monotonically increasing on [ξj, ξj+1] coincides with (3.2) for

this particular j.

We proceed with the derivative of a cubic spline function g(t) =
∑m

j=1 γjBj(t; 3) with B-

spline basis B1(·; 3), . . . , Bm(·; 3). Note that g′(t) = K
∑m−1

j=1 ∆γj+1Bj(t; 2) with B-spline basis

B1(·; 2), . . . , Bm−1(·; 2) and knots ξ0, ξ1, . . . , ξK . Next, we use the recursive definition of B-

splines to determine B1(·; 2), . . . , Bm−1(·; 2). We let Bj(·; 3) start at knot ξj−4, when j < 4

this is achieved by adding equidistant knots at the left of ξ0. Hence, Bj(·; 2) starts at knot

ξj−3 and ends in ξj, for j = 1 . . . ,m − 1. Then, the relevant B-splines for this interval are

Bj+1(·; 2), Bj+2(·; 2) and Bj+3(·; 2). By equation (14) on page 90 in De Boor (2001), the recursive

B-spline relations with equidistant knots are

Bj(t; 2) =
(t− ξj−3)

2/K
Bj(t; 1) +

(ξj − t)
2/K

Bj+1(t; 1)

Bj(t; 1) =
(t− ξj−3)

1/K
Bj(t; 0) +

(ξj−1 − t)
1/K

Bj+1(t; 0)

Bj(t; 0) =

1, if ξj−3 ≤ t < ξj−2

0, else,

(3.27)

where it should be noted that in De Boor (2001) the indices are different because we use a

different indexation and only use equidistant single knots (i.e. all knots have multiplicity one).

Using (3.27), we find that restricted to the interval [ξj, ξj+1]

Bj+1(t; 2) =
K2

2
(t2 − 2ξj+1t+ ξ2

j+1)

Bj+2(t; 2) =
K2

2
(−2t2 + t(ξj−1 + ξj + ξj+1 + ξj+2)− ξj−1ξj+1 − ξjξj+2)

Bj+3(t; 2) =
K2

2
(t2 − 2ξjt+ ξ2

j ),

where the coefficients of Bj+1(·; 2), Bj+2(·; 2) and Bj+3(·; 2), are (γj+2− γj+1), (γj+3− γj+2) and

(γj+4 − γj+3), respectively. Thus, the polynomial expression of 2g′

K3 on [ξj, ξj+1] is

2

K2

(
(γj+2 − γj+1)Bj+1(t; 2) + (γj+3 − γj+2)Bj+2(t; 2) + (γj+4 − γj+3)Bj+3(t; 2)

)
=
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t2
(
(γj+2 − γj+1)− 2(γj+3 − γj+2) + (γj+4 − γj+3)

)
+

t
(
− 2(γj+2 − γj+1)ξj+1 + (γj+3 − γj+2)(ξj−1 + ξj + ξj+1 + ξj+2)− 2(γj+4 − γj+3)ξj

)
+

(γj+2 − γj+1)ξ2
j+1 + (γj+3 − γj+2)(−ξj−1ξj+1 − ξjξj+2) + (γj+4 − γj+3)ξ2

j

=: qj2t
2 + qj1t+ qj0.

To apply Proposition 3.1 we need to rewrite the previous equation as a composition with the

function [0, 1]→ [ξj, ξj+1] : z 7→ ξj + z/K. Therefore we consider the function

z2 qj2
K2

+ z(
2ξjqj2 + qj1

K
) + ξ2

j qj2 + ξjqj1 + qj0 =: pj2z
2 + pj1z + pj0. (3.28)

Moreover, using that ξj − ξj−1 = 1
K

for all j, we obtain

pj2 =
(γj+2 − γj+1)− 2(γj+3 − γj+2) + (γj+4 − γj+3)

K2

pj1 =
−2(γj+2 − γj+1) + 2(γj+3 − γj+2)

K2

pj0 =
(γj+2 − γj+1) + (γj+3 − γj+2)

K2
.

By Proposition 3.1, the function g′ is positive on [ξj, ξj+1] if and only if there exists a positive

hj such that

pj0 + pj2 + hj ≥ ‖(pj0 − pj2 − hj, pj1 − hj)>‖2. (3.29)

Inequality (3.29) is the constraint we need when we restrict to the interval [ξj, ξj+1]. We need

K such constraints which are given by (3.2). This completes the proof. �

3.10.2 Proof of Theorem 3.1

Proof. By the triangle inequality

‖β̂(v)
p − β(v)

p ‖∞ ≤ ‖β̂(v)
p − β̃(v)

p ‖∞ + ‖β̃(v)
p − β∗(v)

p ‖∞ + ‖β∗(v)
p − β(v)

p ‖∞,

where β̃p(t) = E(β̂p(t)|X ). We give the proof by bounding each part of the right side. We

subsequently deal with the third, second and first term of this upper bound.

• By Corollary 6.21 and (2.120) of Theorem 2.59 in Schumaker (2007), there exist a spline

function β∗p of degree qp with equidistant knots ξp0 = 0, ξp1, . . . , ξpKp = 1, such that

‖β(v)
p − β∗(v)

p ‖∞ ≤ C1K
v−qp−1
p ‖β(qp+1)

p ‖∞ (3.30)
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for v = 0, . . . , qp, where C1 only depends on qp. Hence ‖β(v)
p − β∗(v)

p ‖∞ = O(K
v−qp−1
p ) for

v = 0, . . . , qp.

• Let α̃p = E(α̂p|X ). The derivative formula for B-splines gives

β̂(v)
p (t)− β̃(v)

p (t) = Kv
pb(t; qp − v)>Dv(α̂p − α̃p),

where Dv denotes the matrix which takes the v-th order differences of a vector. Now,

α̂p − α̃p = (U>WU)−1U>W(Y − Ỹ) = (U>WU)−1U>Wε,

it is shown in Lemma A.4 of Huang et al. (2004), that

‖(U>WU)−1U>Wε‖2
2 = OP (r2

n),

which yields

‖β̂(v)
p − β̃(v)

p ‖∞ = OP (Kv
prn), (3.31)

since ‖b(t; qp − v)>Dv‖∞ is bounded by the properties of B-splines and the fact that Dv

is a band matrix with bandwidth v.

• Let α∗p denote the B-spline coefficients of β∗p , then using the derivative formula for B-

splines we get

|β̃(v)
p (t)− β∗(v)

p (t)| = ‖Kv
pb(t; qp − v)>Dv(α̃p −α∗p)‖∞

= O(Kv
p‖α̃p −α∗p‖∞).

By Lemma A.11 of Huang et al. (2004) ‖α̃p −α∗p‖∞ = OP (ρn), therefore

‖β̃(v)
p − β∗(v)

p ‖∞ = OP (Kv
nρn). (3.32)

Equations (3.30) to (3.32) and Assumption 2.1.5 establish

‖β̂(v)
p − β(v)

p ‖∞ = OP (Kv
nρn +Kv−qp−1

n +Kv
nrn).

The proof is complete. �
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3.10.3 Proof of Theorem 3.2

Proof. The outline of the proof is similar to the proof given for the univariate case in Wang

and Meyer (2011). It is essentially based on the uniform consistency of the B-spline estimator

and the fact

|min
t∈U

f(t)−min
t∈U

g(t)| ≤ max
t∈U
|f(t)− g(t)|, (3.33)

for functions f and g of which U is a subset of the domain. Let Ξk = {ξk0, ξk1, . . . , ξkKk}. For

n sufficiently large mint∈Ξk β
′
k(t) > 0 and

P (smin < min(0, Q̂α)) ≤ P (min
t∈Ξk

β̂′k(t) < 0)

= P (min
t∈Ξk

β̂′k(t)−min
t∈Ξk

β′k(t) < −min
t∈Ξk

β′k(t))

≤ P (|min
t∈Ξk

β̂′k(t)−min
t∈Ξk

β′k(t)| > min
t∈Ξk

β′k(t)))

≤ P (max
t∈Ξk
|β̂′k(t)− β′k(t)| > min

t∈Ξk
β′k(t))

≤ P (‖β̂′k − β′k‖∞ > min
t∈Ξk

β′k(t)).

The uniform consistency of β̂k yields

lim
n→∞

P (‖β̂′k − β′k‖∞ > min
t∈Ξk

β′k(t))) = 0,

since lim
n→∞

min
t∈Ξk

β′k(t) = δ > 0. This completes the proof. �

3.10.4 Proof of Theorem 3.3

Proof. By Lemma A.8 in Huang et al. (2004) we have

Kkb(c; qk − 1)>Dα̂− β̃′k(c)√
var

d−→ N(0, 1),

where var = Var(b(c; qk − 1)>(KkDα̂− β̃′k(c))). We argue that this asymptotic normality still

holds when β̃′k(c) is replaced by β′k(c) by showing that

var−1/2|β̃′k(c)− β′k(c)| = oP (1).

Therefore we determine a lower bound on var. Recall the expression for var (3.18).
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Inequality (A.5) in Huang et al. (2004) establishes

λ>U>WVWUλ &
‖λ‖2

2n

Kn maxiNi

(3.34)

for any vector λ ∈ IRdim×1, where for sequences an and bn we write an & bn or bn . an when

the sequence bn/an is bounded. When both an & bn and bn & an we write an � bn. Now we set

λ = Kk(U
>WU)−1D>b(c; qk−1). By Lemma A.3 in Huang et al. (2004) ‖(U>WU)−1‖2 � Kn

n
,

therefore

‖λ‖2
2 & K2

k

K2
k

n2
‖D>b(c; qk)‖2

2.

Note that

‖D>b(c; qk − 1)‖2
2 =

mk−1∑
j=0

(Bj(c; qk − 1)−Bj+1(c; qk − 1))2, (3.35)

with the convention B0(c; qk − 1) = Bmk(c; qk − 1) = 0. To determine a lower bound of (3.35)

we can assume without loss of generality that c ∈ [ξ0, ξ1] = [0, 1
Kk

] due to the properties of

B-splines with equidistant knots. Then

‖D>b(c; qk − 1)‖2
2 ≥ (B1(c; qk − 1)−B2(c; qk − 1))2 + (B3(c; qk − 1)−B2(c; qk − 1))2 (3.36)

Using the explicit formulas of B-splines given in Section 3.10.1, we obtain that the function

(B1(c; qk − 1)−B2(c; qk − 1))2 + (B3(c; qk − 1)−B2(c; qk − 1))2

on [0, 1
Kk

] has a positive minimum at c = 1
2Kk

. This minimum does not depend on the number

of knots. Therefore

λ>U>WVWUλ &
‖λ‖2

2n

Kn maxiNi

&
K4
n

n2 n

Kn maxiNi

=
K3
n

nmaxiNi

. (3.37)

By (3.30), Assumption 2.1.5 and the fact qk = 3 it follows that ρn = O(K−4
n ) and ‖β∗′k −β′k‖∞ =

O(K−3
p ). Then, by (3.32) and the triangle inequality ‖β̃′k−β′k‖∞ ≤ ‖β̃′k−β∗

′

k ‖∞+‖β∗′k −β′k‖∞ =

O(K−3
p ), therefore

var−1/2|β̃′(c)− β′(c)| .
√
nmaxiNi√

K9
n

.

�

3.10.5 Proof of Theorem 3.4

Proof. We use similar steps as in the proof of Proposition 2 of Wang and Meyer (2011). Denote

δn = mint∈Gn β
′
k(t), then limn→∞ δn = δ. Let cn ∈ Gn such that mint∈Gn β̂

′
k(t) = β̂′k(cn).
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1. For n sufficiently large we have δn < 0. Moreover, by (3.33)

P (s < min(0, Q̂α)) = P (min
t∈Gn

β̂′k(t) < min(0, Q̂′α))

= P (min
t∈Gn

β̂′k(t)− min
t∈Gn

β′k(t) < −min
t∈Gn

β′k(t) + min(0, Q̂′α))

≥ P (max
t∈Gn
|β̂′k(t)− β′k(t)| < |δn|+ min(0, Q̂′α))

= P (max
t∈Gn
|β̂′k(t)− β′k(t)| < |δn|+ min(0, inf{r |Pβ̂csk ′(cn),v̂k

(r) ≥ α})

≥ P (max
t∈Gn
|β̂′k(t)− β′k(t)| < |δn| − | inf{r |P0,v̂k(r) ≥ α}|)

= P (max
t∈Gn
|β̂′k(t)− β′k(t)| < |δn| − qα

√
v̂k)

≥ P (‖β̂′k − β′k‖∞ < |δn| − qα
√
v̂k),

where qα is the α quantile of the standard normal variable.

Before we proceed with the last inequality we need to bound v̂k. Recall

‖v̂k‖2 = ‖K2
k σ̂

2b(c)>D(U>WU)−1U>W2U(U>WU)−1D>b(c)‖2

≤ K2
k σ̂

2‖b(c)>D‖2
2‖(U>WU)−1‖2

2‖U>W2U‖2.

Using Markov’s inequality, we see that the estimate σ̂2 is bounded in probability if we

prove that E(σ̂2| X ) is bounded. Hence, we start with

E(σ̂2| X ) = E

(
1

N − dim
(Y −Uα̂)>(Y −Uα̂)| X

)
=

1

N − dim
E

( n∑
i=1

Ni∑
j=1

(
Yij −

d∑
p=0

X
(p)
ij β̂p(tij)

)2

| X
)

=
1

N − dim
E

( n∑
i=1

Ni∑
j=1

(
ε2
ij + 2εij

d∑
p=0

X
(p)
ij (βp(tij)− β̂p(tij))

+
d∑
p=0

X
(p)
ij

2(βp(tij)− β̂p(tij))2
)
| X
)
.

(3.38)

Due to the following facts

• Assumption 2.1.4, which also means that E(|εij| |X ) is bounded by a uniform con-

stant for all i, j;

• In the proof of Theorem 3.1 we showed ‖βp − β̂p‖∞ = OP (ρn + rn). Therefore,

by the condition in the statement of this theorem ‖βp − β̂p‖∞ = oP (1), moreover

E(‖βp − β̂p‖∞ |X ) = o(1);
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• Assumption 2.1.3;

expression (3.38) is bounded by O( N
N−dim), where dim =

d∑
p=0

mp. Clearly dim/N = o(1),

which establishes E(σ̂2| X ) = O(1).

Then, due to the properties of B-splines ‖b(c)>D‖2
2 is bounded, and by Lemma A.3 in

Huang et al. (2004) we have that ‖(U>WU)−1‖2 � Kn
n

and ‖(U>WU)‖2 . n
Kn

from

which we obtain, by first noting that ‖(U>W2U)‖2 ≤ ‖(U>WU)‖2,

‖v̂k‖2 = OP

(
K3
n/n
)
.

By assumption K3
n/n→ 0 and the fact that δn → δ, we obtain by Theorem 3.1 that

lim
n→∞

P (‖β̂′k − β′k‖∞ < |δn| − qα
√
v̂k) = 1

which completes the proof of the first part.

2. For the second part, let n be sufficiently large so that δn > 0, then

P (s < min(0, Q̂α)) = P (min
t∈Gn

β̂′k(t) < 0)

= P (min
t∈Gn

β̂′k(t)− min
t∈Gn

β′k(t) < −min
t∈Gn

β′k(t))

= P (min
t∈Gn

β̂′k(t)− min
t∈Gn

β′k(t) < −δn)

≤ P (|min
t∈Gn

β̂′k(t)− min
t∈Gn

β′k(t)| > δn)

≤ P (max
t∈Gn
|β̂′k(t)− β′k(t)| > δn)

≤ P (‖β̂′k − β′k‖∞ > δn).

By the uniform consistency of β̂′k and since limn δn = δ we have

lim
n→∞

P (‖β̂′k − β′k‖∞ > δn) = 0.

This completes the second part of the proof.

�



Chapter 4

Estimating multivariate parameters in

PDE models

This chapter is based on Ahkim et al. (2017) (manuscript).

4.1 Introduction

Many scientists study dynamic systems abiding by PDEs which are governed by certain param-

eters. Often these parameters are unknown and the interest is to shed light on them based on

error prone measurements of the state variables. The PDE parameters are viewed as a source

of information about the dynamic process beyond what is revealed by the state variables, hence

the interest in their value. There is a considerable amount of literature on estimating constant

PDE parameters. In contrast is the situation for PDEs with multivariate parameters. Appli-

cations of PDE models to real life problems crucially depend on methods to acquire precise

measurements. In the last three decades many successful advances have been made. Hence the

importance to provide a general framework for effectively estimating multivariate parameters

in PDE models and giving theoretical foundations. That is the purpose of this chapter.

Our model assumes a multivariate state variable g(t) setting (t = (t1, . . . , tl)), where we only

observe states Yi

Yi = g(ti) + εi, i = 1, . . . , n (4.1)

72
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for ti = (ti1, . . . , til) (i = 1, . . . , n) and with εi|ti i.i.d. mean zero measurement errors. The

multivariate state variable g is modeled by a known PDE

F

(
t, g,

∂g

∂t1
, . . . ,

∂g

∂tl
,
∂2g

∂t1∂t1
, . . . ,

∂2g

∂t1∂tl
, . . . ,

∂2g

∂tl∂tl
;θ

)
= 0, (4.2)

where the multivariate parameter θ. Equation (4.2) might suggest that the PDE must be

of second order, however a PDE of any order can be considered (by allowing higher order

derivatives). Also, for simplicity we write F (g(t);θ) to refer to (4.2).

There are three main approaches to estimate the constant parameters of a general PDE. The

first approach is a two-stage method where unknown PDEs are modeled by multivariate polyno-

mials. Based on this approximation the PDE parameters are obtained by using a least squares

approximation (Müller and Timmer (2004) and Bär et al. (1999)). In the second approach, the

PDE is first solved with a numerical method and then the parameters are estimated by solving

another least squares problem (Müller and Timmer (2002)). The third approach is a penalized

smoothing method introduced by Ramsay et al. (2007) in the ODE context. This approach can

be seen as an extension of the penalized spline method for estimating mean functions of Eilers

and Marx (1996). In the context of PDEs, this approach is followed by Xun et al. (2013) and

Frasso et al. (2015) who estimate constant parameters of linear PDE models. In this chapter we

extend this approach to PDE models with multivariate parameters and give consisteny results

in case of linear PDEs. Note that in general a linear PDE model does not imply closed form

expressions of the estimators. However, numerical optimization techniques are to be used in

general. For a further introduction and considerations of PDE modeling with splines we refer

to Frasso et al. (2015).

To the best of our knowledge there is no theoretical literature on estimating multivariate pa-

rameters of a PDE. Our goal is to estimate (consistently) multivariate parameters based on the

flexible third approach. Xun et al. (2013) showed that this approach performs better than the

two-stage method (see Figure 1 in the same article) and it has the advantage of not needing

to find numerical solutions of a PDE. Moreover, they showed the asymptotic normality of the

parameter estimator.

The relevance of this work is highlighted by many recent PDE applications in the scientific

literature. For illustration purposes we consider two biological applications. Hartung et al.

(2014) model tumor growth and metastatic spreading which is described by a transport equation
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with varying parameters. Metastatic spreading is the process whereby one initial tumor grows

and starts to spread cancer cells causing new growing tumors. The PDE which describes this

process is

∂ρ(x, t)

∂t
+

∂

∂x
(gm(x)ρ(x, t)) = 0,

where ρ(x, t) is the number of size x tumors per unit length at time t, gm(x) is the growth rate.

Hartung et al. (2014) model the gm(x) by parametric functions which are formulated based on

experience. Nonparametric estimation of the parameters relieves the scientist from formulating

parametric models. The second example is the modeling of brain glioma growth using a modified

reaction-diffusion equation by Jianjun et al. (2013). In our simulation example we discuss the

heating and cooling of a rod, which is described by the reaction-diffusion equation.

We approximate g(t) and θ(t) by tensor product spline functions and give asymptotic results

when the number of observations n tends to infinity. Unlike Xun et al. (2013), we do not

assume the tensor product spline approximation to be exact, however, g(t) as well as θ(t) are

assumed to be smooth functions. It should also be noted that Xun et al. (2013) do not consider

incorporating boundary conditions. From our experience we know that omitting boundary

conditions leads to a very poor estimation of g(t) on the boundaries, hence the unacceptable

bias of the parameter estimation at the boundaries. We show that due to the nice B-spline

properties, the boundary conditions are easily translated into linear constraints on the tensor

product B-spline coefficients (as it is mentioned in Frasso et al. (2015)). We also establish the

uniform consistency of our parameter estimator θ̂(t) under certain assumptions.

The overview of this chapter is as follows. In Section 4.2 we will describe the B-spline modeling

of the multivariate functions. In Section 4.3 two methods for estimating the parameters are

presented. In the case of a linear PDE model, we show explicit expressions for the estimators

in Section 4.4, where we also give asymptotic results. The proofs can be found in Section 4.7.

In Section 4.5 we apply both estimation methods to the 1D heat equation, where we wish to

describe the source term which causes the heating and/or cooling of the bar. The results of the

simulation study are discussed in Section 4.5.3. We summarize our findings in Section 4.6.
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4.2 Modelling multivariate PDE parameters

Using the same notation as before we consider the PDE model

F (g(t);θ(t)) = 0 (4.3)

with given boundary conditions on g. The methods in this chapter still work if we assume no

given boundary conditions, and in such a case if it is reasonable to assume constant boundary

values for g, we include the constraints which ensure that the derivatives along the boundaries

are zero. We observe (ti, Yi) for i = 1, . . . , n, and assume that the domain of g and θ is a

compact rectangle H ⊂ IRl.

The multivariate state variable g is estimated by a tensor product spline function s(t;α) =

B>g (t)α (see Chapter 11 of Schumaker (2007)), where Bg(t) is a vector of basis functions of

dimension mg evaluated in t. Thus

Bg(t) =
(
Bg1(t1)> ⊗Bg2(t2)> ⊗ . . .⊗Bgl(tl)

>)> ,
where Bgj(tj) ∈ IRmgj×1 denotes the column vector of B-splines for the tj direction evaluated

in tj, and mg =
∏l

j=1mgj. For the sake of presentation we assume without loss of generality

that H is a unit rectangle, i.e. H = [0, 1]l. Also, we omit the index g in Bg(t) if it is clear from

the context. The design points ti are deterministic and we assume there exists a cumulative

distribution function G(t), with a positive and continuous density function on [0, 1]l such that

sup
t∈[0,1]l

|Gn(t)−G(t)| = o
(
m−1
g

)
, (4.4)

where

Gn(t) =
1

n

n∑
i=1

1∏l
j=1[0,tij ]

(t)

is the empirical distribution function of t1, . . . , tn with 1A the indicator function of the set A. We

also assume that the knots 0 = ξj0 < ξj1 < . . . < ξjKgj = 1 corresponding to Bgj, j = 1, . . . , l,

are quasi-uniform. This means that at each j = 1, . . . , l, with consecutive knot distances

δjk = ξjk − ξj(k−1) we have a positive constant C such that

max1≤k≤Kgj δjk

min1≤k≤Kgj δjk
< C. (4.5)

Assumptions (4.4) and (4.5) are also used in Yoo and Ghosal (2016) among others.
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The PDE parameter θ(t) = (θ1(t), . . . , θd(t)) is also modeled by tensor product spline functions.

Let γp ∈ IRmθp×1 denote the vector of tensor product spline coefficients corresponding to the

modeling of θp(t) ≈ B>θp(t)γp, for p = 1, . . . , d, where

Bθp(t) =
(
Bθp1(t1)> ⊗Bθp2(t2)> ⊗ . . .⊗Bθpl(tl)

>)> ,
with Bθpj(tj) ∈ IRmθpj×1 denoting the column vector of B-splines for the tj direction evaluated

in tj, and let mθp =
∏l

j=1mθpj. Let γ = (γ>1 , . . . ,γ
>
d )> ∈ IRmθ×1 where mθ =

∑d
p=1mθp and

let the notation F (α;γ) = 0 refer to the spline modeling of (4.3). In theory, we let g and θp

for p = 1, . . . , d, be approximated by tensor product splines which have a fixed degree and an

increasing number of quasi-uniform knots such that the approximation errors tend to zero as

the sample size n→ +∞.

4.3 Estimating multivariate PDE parameters

In this section, we present two different methodologies for estimating the multivariate param-

eters θ(t). The first one extends the method used by Xun et al. (2013) and consists of two

sequential minimization problems, which is why we refer to it as the “two-step method”. The

second method considers one big minimization problem and we’ll refer to it as the “one-step

method”.

4.3.1 The two-step method

The two-step method obtains an estimator for α in function of γ. An estimator for γ is

then obtained by minimizing a penalized least squares measure of fit for the given data Y =

(Y1, . . . , Yn)>. Finally, using γ̂ we obtain the estimate α̂.

4.3.1.1 Estimation of α for a fixed γ

To estimate α, we first treat γ as fixed and minimize a penalized least squares criterion:

J(α | γ) =
n∑
i=1

(Yi −Bg(ti)α)2 + λ

∫
F (α;γ)2 dt + µ

(
C∑
j=1

∥∥Vjα
∥∥2

2

)
. (4.6)
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The first term models the fidelity to the measured data and the second term to the PDE

model (4.3). The final term enforces the boundary (and initial) conditions. In Section 4.5

we explain how such conditions can always be translated into simple linear constraints on the

tensor product spline coefficients α which we write as∥∥V1α
∥∥2

2
+ . . .+

∥∥VCα∥∥2

2
= 0.

Here, C is the number of constraints, Vi (i = 1, . . . , C) are known matrices and ‖ · ‖2 is the

Frobenius norm (see Appendix A).

Hence, in first instance we minimize J(α|γ) to obtain α̂(γ). The integral in (4.6) can be

approximated by numerical integration methods.

4.3.1.2 Estimation of γ

Once an estimator α̂(γ) is obtained, we obtain an estimator γ̂ by minimizing the penalized

least squares measure of fit

H(γ) =
n∑
i=1

(Yi −Bg(ti)α̂(γ))2 +
l∑

j=1

d∑
p=1

λpj
∥∥Ppjγp

∥∥2

2
. (4.7)

The penalty matrices Ppj encourage smooth estimates of θ̂(t) by penalizing the roughness of

the coefficients. They will be discussed in more detail in Section 4.3.3. Using γ̂, we can now

finally calculate the tensor product spline estimator α̂(γ̂).

Until now we have treated the regularization parameters (λ, µ, {λpj| p = 1, . . . , d, j = 1, . . . , l})

as fixed. In Section 4.3.4 we propose a criterion to determine these regularization parameters.

4.3.2 The one-step method

Instead of solving two minimization problems, the one-step method combines (4.6) and (4.7)

into one big minimization problem

K(α,γ) =
n∑
i=1

(Yi −Bg(ti)α)2 + λ

∫
F (α;γ)2 dt + µ

(
C∑
j=1

∥∥Vjα
∥∥2

2

)

+
l∑

j=1

d∑
p=1

λpj
∥∥Ppjγp

∥∥2

2
.

(4.8)
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Note that because
∂K

∂α
=
∂J

∂α

the estimator α̂(γ) will be the same for both methods. However, because the same does not

hold for the partial derivatives with respect to γ, the methods will find different estimators α̂

and γ̂. This is illustrated in Section 4.8 and 4.9 where these calculations are done for the heat

equation problem discussed in Section 4.5.

In Section 4.3.4 we propose a criterion to determine the regularization parameters (λ, µ, {λpj| p =

1, . . . , d, j = 1, . . . , l}).

4.3.3 Ensuring smoothness of tensor product spline functions

In this section we define the penalization matrices used in (4.7) for γ1. For the sake of clarity

we assume l = 2 and denote spline coefficients

γ1 = (Γ11, . . . ,Γ1mθ12
,Γ21, . . . ,Γ2mθ12

, . . . ,Γmθ111, . . . ,Γmθ11mθ12
)>.

Consider

Bθ1(t)>γ1 =

mθ11∑
i=1

mθ12∑
j=1

ΓijBθ11,i(t1)Bθ12,j(t2). (4.9)

Then, γ1 is the subsequent concatenation of the rows of Γ, where Γ is the matrix with (i, j)-th

element Γij. Our way to achieve smoothness of (4.9), which is also described in Marx and Eilers

(2005), is by penalizing both the rows and the columns of Γ. Penalization of the columns (rows)

ensures smoothing in the t1 (t2) direction. Suppose we penalize the first order differences of the

rows and the second order differences of the columns of Γ, this is equivalent with penalizing γ1

by the matrices

P11 = D1 ⊗ Imθ12

and

P12 = Imθ11 ⊗D2,

respectively, where the matrix D1 (D2) takes the first (second) order differences of the columns

(transposed rows) of Γ and Im denotes the identity matrix of size m. For example when

mθ11 = mθ12 = 3

D1 =

−1 1 0

0 −1 1

 , D2 =
(
−1 2 1

)
,
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and hence the penalization matrices for the t1- and t2-direction are respectively given by

P11 = D1 ⊗ I3 =



−1 0 0 1 0 0 0 0 0

0 −1 0 0 1 0 0 0 0

0 0 −1 0 0 1 0 0 0

0 0 0 −1 0 0 1 0 0

0 0 0 0 −1 0 0 1 0

0 0 0 0 0 −1 0 0 1


,

and

P12 = I3 ⊗D2 =


−1 2 1 0 0 0 0 0 0

0 0 0 −1 2 1 0 0 0

0 0 0 0 0 0 −1 2 1

 .

4.3.4 Determining the regularization parameters

The estimators α̂ and θ̂ depend on the regularization parameters λ, µ, λpj, p = 1, . . . , d, j =

1, . . . , l. The optimal regularization parameters need to fulfill three main goals: goodness-of-fit

to the data and fidelity to both the PDE equation and its boundary conditions. Fidelity to the

PDE equation is assessed by F (ti; α̂; γ̂), i = 1, . . . , n, which should have a small mean. Fidelity

to the boundary conditions is measured by

C∑
j=1

∥∥Vjα̂
∥∥2

2
=

∥∥∥∥∥(
C∑
j=1

V>j Vj)
1/2α̂

∥∥∥∥∥
2

2

and it should be as small as possible. Xun et al. (2013) proposed a criterion where a trade-

off between goodness-of-fit and fidelity to the PDE model is made. However, one important

consideration is overlooked, i.e. the fidelity to the PDE equation which will imply a relatively

small variance for F (ti; α̂; γ̂) (i = 1, . . . , n), especially when we have multivariate parameters.

When this variance is included in the criterion, we found that the estimator θ̂ approximates θ

smoothly and hence more precise. A similar consideration holds for the boundary conditions.

We therefore propose to choose the regularization parameters such that the following criterion

is minimized:

∑n
i=1(Yi −B(ti)α̂)2

nσ̂2
ε

+

∑n
i=1 F (ti; α̂; γ̂)2

nσ̂2
F

+
‖
√∑C

j=1 V>j Vjα̂‖2
2

mgσ̂2
b

+ σ̂2
F + σ̂2

b . (4.10)
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Here σ̂2
ε is the sample variance of (Yi − B(ti)α̂), σ̂2

F is the sample variance of F (ti; α̂; γ̂)

(i = 1, . . . , n) and σ̂2
b is the sample variance of

√∑C
j=1 V>j Vjα̂. The averaging and rescaling

in the first three terms of (4.10) serve to weight equally the three goals mentioned above. Note

that we do not add σ̂2
ε in (4.10) because σ̂2

ε should be approximately σ2 = Var(εi), the noise

level.

In practice, a grid is set for each regularization parameter, and the regularization parameters

that minimize criterion (4.10) over these grids are chosen.

4.4 Linear PDE models

For linear PDEs we derive more explicit formulas for the one- and the two-step method. The

most general linear PDE can be written as

F (g;θ) =
r∑
i=1

hi(θ)Oi(g) = 0, (4.11)

where Oi(·) denotes an operator which either takes a partial derivative of g, takes g to itself

or to the constant function 1. Let O denote the order of the PDE (4.11). Note that partial

derivatives of s(t;α) = B>g (t)α are still linear in α.

We assume that (without loss of generality) the coefficient of the operator which takes g to the

function 1 is θd. Then we can write (4.11) in terms of the tensor product spline coefficients α

and γ as follows:

F (α;γ) = f>(t;γ)α+ Q>d (t)γ.

Here f(t;γ) ∈ IRmg×1 is a (column) vector and Qd(t) ∈ IRmθ×1 is the (column) vector such

that Q>d (t)γ is the tensor product spline modeling of θd(t).

4.4.1 Estimator for the two-step method

As it is described in Section 4.3.1, to estimate (α,γ) we first minimize

J(α | γ) =
∥∥Y − Bα∥∥2

2
+ λ

(
α>R(γ)α+ 2γ>T(γ)α+ γ>Z(γd)γ

)
+ µ

(
C∑
j=1

∥∥Vjα
∥∥2

2

)
(4.12)
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with respect to α. Here R(γ) =
∫

f(t;γ)f>(t;γ) dt, T(γ) =
∫

Qd(t)f>(t;γ) dt, Z(γd) =∫
Qd(t)Q>d (t) dt and

B =


B>(t1)

B>(t2)
...

B>(tn)

 ∈ IR
n×mg . (4.13)

When the integrals are difficult to compute explicitly, we can approximate them numerically.

See for example Burden and Faires (2005), who suggest to use a composite Simpson’s rule as

an adequate approximation of these integrals.

Continuing with the minimization problem, we find that

∂J(α | γ)

∂α
=− 2Y>B + 2α>B>B + λ

(
2α>R(γ) + 2γ>T(γ)

)
+ 2µα>

(
C∑
j=1

V>j Vj

)
.

(4.14)

The solution to ∂J(α|γ)
∂α

= 0 is therefore given by

α̂(γ) =

(
B>B + λR(γ) + µ

(
C∑
j=1

V>j Vj

))−1

(B>Y − λT(γ)>γ). (4.15)

Second, to obtain the estimator of γ we minimize

H(γ) =
∥∥Y − Bα̂(γ)

∥∥2

2
+

l∑
j=1

d∑
p=1

λpj
∥∥Ppjγp

∥∥2

2
, (4.16)

with respect to γ. In Section 4.8 we compute the minimizer of H(γ) for the Heat Example

(Section 4.5).

4.4.2 Estimator for the one-step method

As it is described in Section 4.3.2, the one-step approach minimizes

K(α,γ) =
∥∥Y − Bα∥∥2

2
+ λ

(
α>R(γ)α+ 2γ>T(γ)α+ γ>Z(γd)γ

)
+ µ

(
C∑
j=1

∥∥Vjα
∥∥2

2

)
+

l∑
j=1

d∑
p=1

λpj
∥∥Ppjγp

∥∥2

2
.
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Thus the following system of equations needs to be solved
∂K

∂α
= 0

∂K

∂γ
= 0.

As mentioned before, the partial derivative of K w.r.t α is the same as the partial derivative of

J w.r.t. α which was given by (4.14). See Section 4.9 where we solve this system of equations

for the Heat Example (Section 4.5).

4.4.3 Practical considerations

The estimator α̂ for both methods depends on the inverse of (B>B) with B ∈ IRn×mg . Hence for

(B>B) to be invertible we must have n ≥ mg. This means that when the number of observations

is relatively small, the number of knots in each direction must be chosen accordingly. We also

need the quasi-uniformity of the knots and condition (4.4) which says that the measurements

must be fairly distributed over the whole domain, see (4.23) onwards for the proof. It is also

required that n + d · l ≥ mθ, this becomes clear by looking at the dimension of the Jacobian

matrix when one applies the Gauss-Newton method to minimize (4.7).

When the number of multivariate parameters is high, the computational cost to determine the

(d · l + 2) regularization parameters becomes a burden. Assuming λp1, λp2, . . . , λpl to be equal

for p = 1, . . . , d, would reduce the number of regularization parameters to d + 2. However,

our experience is that such an assumption delivers up a large amount of accuracy in the final

multivariate parameter estimates, because in general multivariate parameters vary in their

degree of smoothness in various directions. This issue is part of still ongoing research.

4.4.4 Asymptotic results (two-step method)

In this section we present the theoretical results for the two-step method with the full basis.

Similar techniques can be used to obtain asymptotic results for the one-step method. Proposi-

tion 4.1 gives the rate of convergence of our estimator of g. This rate involves the approximation

error term ρn = inff∈G ||g−f ||∞ where G = {Bg(t)α |α ∈ IRmg} is the space of tensor product

spline functions which we employ.



4.4. Linear PDE models 83

Under certain smoothness conditions on g we can say more about ρn. To this end, we first

introduce the following notion. Set 0 < κ ≤ 1, a function h on H is said to satisfy a Hölder

condition with exponent κ if there exists a positive number κ∗ such that |h(t) − h(t0)| ≤

κ∗‖t − t0‖κ2 for t, t0 ∈ H. Let ν = (ν1, . . . , νl) denote an l-tuple of nonnegative integers, we

define [ν] = ν1 + . . . + νl. For such l-tuples we let Dν denote the differential operator defined

by

Dν =
∂[ν]

∂tν11 . . . ∂tνll
.

We refer to [ν] as the order of Dν . Now, let k be a nonnegative integer and set p = k + κ. A

function h on H is called p–smooth if it is k-times continuously differentiable on H and Dνh

satisfies a Hölder condition with exponent κ for all ν with [ν] = k.

In the nonparametric estimation literature the p–smooth condition is often used (see Huang

(1998), page 251). Suppose the B-spline degrees in all directions are equal to q and m
1/l
g = mgj

for all directions j, then, under the p–smoothness condition ρn . m
−p/l
g if q ≥ p−1 (see (13.69)

and Theorem 12.8 of Schumaker (2007)).

Recall that O is the highest order of the partial derivatives in the linear PDE (4.11).

Proposition 4.1. Assume that (4.4),(4.5) and A.1 to A.8 (defined in Section 4.7) hold. If
m2
g

n

(
λm

2O/l
g + µ

)
= o(1) as n→∞, then

1

n

n∑
i=1

(g(ti)−B>(ti)α̂(γ))2 = OP

(
ρ2
n +

mg

n
(λ2m1+2O/l

g /n+ 1)
)

as n→∞. (4.17)

The proof is given in Section 4.7. Next is the main theorem which states that the two-step

estimator of the multivariate parameters is uniform consistent with probability tending to one

as n→∞. When we write α̂(θ) for some function θ, we mean the estimator we find by fixing

the coefficient θ in (4.6) where F (α;γ) is replaced by F (α;θ). Thus α̂(θ) depends on the

regularization parameters λ, µ. Let θ0 denote the true parameter function of the PDE model

(4.11).

Theorem 4.1. Assume that (4.4),(4.5) and A.1 to A.8 (defined in Section 4.7) hold. Suppose

the bound which is given in (4.17) tends to zero as n → ∞, where α̂(θ0) depends on λ, µ (see

the comments before the statement of this theorem). Write θ̂n since θ̂ depends on n. Assume

the first order partial derivatives of the sequence (θ̂n) are bounded by a positive number with
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probability one. If
mθpλpj

n
= o(1) for p = 1, . . . , d, j = 1, . . . , l, then∥∥∥θ̂n − θ0

∥∥∥
∞

= oP (1).

The proof is in Section 4.7.

4.5 Example: The heat equation

Let us revisit the evolution of the temperature of a rod introduced in Section 1.3. Mathe-

matically, this results in the well known 1D heat equation on a bar of length L with Dirichlet

boundary conditions:

∂g

∂t2
(t1, t2) +D

∂2g

∂t21
(t1, t2) + θ(t1, t2) = 0

g(t1, 0) = g0(t1) 0 ≤ t1 ≤ L

g(0, t2) = 0 0 ≤ t2 ≤ T

g(L, t2) = 0 0 ≤ t2 ≤ T.

(4.18)

Here, g : [0, L] × [0, T ] −→ IR is the temperature of the bar at each point in space and time,

θ : [0, L] × [0, T ] −→ IR is a source term heating or cooling the bar and D is the diffusion

coefficient which is assumed to be known. In this example l = 2 and the number of unknown

parameters is d = 1.

Remark 4.1. By considering the substitutions

g(t1, t2)←− g(t1, t2)− g0(t1)

θ(t1, t2)←− θ(t1, t2) +D
∂2g0

∂t21
(t1),

we can restrict ourselves to the special case g0(t1) = 0.

It should be noted that we can implement general boundary conditions g(0, t2) = b0(t2) and

g(L, t2) = bL(t2), see Remark 4.2.

4.5.1 Boundary constraints on the spline coefficients

The boundary conditions have to be satisfied by the spline estimator of g, which we enforce by

imposing linear constraints on the tensor product B-spline coefficients. We use cubic splines.
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Since cubic B-splines have a support which is spanned by 4 consecutive knots and vanish at

endpoints, we have

s(t1, 0) =

mg1∑
i=1

mg2∑
j=1

αijBg1,i(t1)Bg2,j(0)

=

mg1∑
i=1

(
αi1Bg2,1(0) + αi2Bg2,2(0) + αi3Bg2,3(0)

)
Bg1,i(t1).

Then s(t1, 0) = 0 implies that

αi1Bg2,1(0) + αi2Bg2,2(0) + αi3Bg2,3(0) = 0, ∀i ∈ {1, . . . ,mg1}, (4.19)

because the B-splines constitute a basis. Using the tensor product notation, this can be written

as

V1α = 0,

where V1 ∈ Rmg1×(mg1mg2) which has on row i and on columns (i−1)mg2 +1, (i−1)mg2 +2, (i−

1)mg2+3 the values Bg2,1(0), Bg2,2(0), Bg2,3(0), respectively. For example, when mg1 = mg2 = 4,

V1 = I4 ⊗
(
Bg2,1(0) Bg2,2(0) Bg2,3(0) 0

)
∈ IR4×16.

Similarly, the boundary conditions s(0, t2) = 0, s(L, t2) = 0 translate to V2α = 0,V3α = 0,

respectively.

Remark 4.2. We can implement general boundary conditions, for example when the boundary

conditions are g(0, t2) = b0(t2) and g(L, t2) = bL(t2), by finding the spline approximations of

b0 and bL. Then, by analogous reasoning, the right hand side of (4.19) is equal to the B-spline

coefficients of b0 and bL, respectively.

4.5.2 Boundary constraints by using multiple knots B-spline

Throughout we use B-splines which are based on singular equidistant knots. However, when

we use multiple knots at the boundary, we can enforce the boundary conditions (4.18) to hold

in our modeling of g. Suppose we use cubic splines where the multiplicity of the initial knot

(at t1 = 0) is 4 and all the other knots are singular (for clarity of the presentation we allow

the misuse of notation and denote the B-spline basis by B1, B2, . . . , Bm). Then B1(0) = 1 and

Bi(0) = 0 for all 2 ≤ i ≤ m, see Figure 4.1(b). This means that for example the condition

g(0, t2) = 0 can be enforced by using for the t1 direction the reduced basis B2, B3, . . . , Bm.
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Thus to enforce all the boundary conditions we just employ multiple end knots and discard the

first (and or last) B-spline.

This approach ensures the boundary conditions (4.18) hold exactly. Also, since the penalty

term based on the boundary conditions can be removed from the definition of J,H and K.

This means that we need to determine one less regularization parameter, resulting in a lower

computational cost.
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Figure 4.1: Single and multiple knots cubic B-splines on the interval [0, 1]. Left: first four

B-splines with equidistant single knots. Right: first four B-splines with equidistant interior

knots and multiple initial knot.

Other more advanced techniques to enforce boundary conditions by basis adjustments exist in

the literature. These include Web-splines (Höllig (2003)) and I-splines (Sanches et al. (2011)).

Implementing such techniques is beyond the scope of this chapter.

4.5.3 Simulation: heat equation

We conduct a simulation study of the heat equation (4.18). We assume that the diffusion

coëfficiënt D = −π is known, we set the length of the rod L = 5 and simulate measurements

up to T = 10. We now wish to estimate the unknown source term θ by the one- and by

the two-step method. We run 200 simulations which consist of n = 5151 observations on the

rectangular grid

{0, 0.1, 0.2, . . . , 5} × {0, 0.1, 0.2, . . . , 10}.



4.5. Example: The heat equation 87

0
5

0.5

1

10

1.5

t
1 t

2

2

5

0 0

0
5

1

10

2

t
1 t

2

3

5

0 0

0
5

2

10

4

t
1 t

2

6

5

0 0

0

5

10

t
2

0

5

t
1

1

1.5

2

2.5

3

0
5

2

10

4

t
1 t

2

6

5

0 0

0
5

2

10

4

t
1 t

2

6

5

0 0

Figure 4.2: The solutions g (top row) of the heat equation (4.18) for the various sources θ

(bottom row). Cases 1, 2 and 3 are displayed column-wise from left to right.

The measurements themselves are generated based on the Fourier expansion of the solution

with i.i.d. additive noise terms εi ∼ N(0, σ2). We consider two different noise levels σ = 0.05

and σ = 0.1 and three different source terms θ:

• θ1(t1, t2) = 2,

• θ2(t1, t2) = 1
2
t2 exp

(
−(t1 − 5

2
)2
)
,

• θ3(t1, t2) = 5 exp
(
−1

5
(t− u)(t− u)>

)
, with u = (5/2, 10/2).

These functions and the corresponding solution g can be seen in Figure 4.2.

We choose a generous number of knots to increase flexibility, keeping in mind that the regular-

ization parameters ensure smoothness (Marx and Eilers (2005)). The temperature function g

is modeled by cubic tensor product B-splines with 20 equidistant knots in both directions. The

source term θ is modeled in a similar fashion with 15 equidistant knots in both directions. We
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choose less knots for the multivariate parameters because we only observe these parameters in-

directly and we do not need their partial derivatives. The regularization parameters λ, µ, λ1, λ2

are chosen on the grid

{10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104, 105, 106}

based on the criterion described in Section 4.3.4.

The effectiveness of the methods is shown by the relative errors of the source term θ and the

temperature function g:√∑n
i=1(θ̂(ti)− θ(ti))2√∑n

i=1 θ(ti)
2

,

√∑n
i=1(ĝ(ti)− g(ti))2√∑n

i=1 g(ti)2
. (4.20)

The results are collected in Table 4.1 and 4.2. These results reveal that the full basis (of B-

splines with equidistant single knots) yields more accurate results in all cases except for the

estimation of g when θ = θ2 and σ = 0.05. This is explained by the fact that by construction

the reduced basis approach is less flexible for the estimation of the boundary regions of g.

Then, the partial derivatives in the boundary regions of g are not accurate which leads to a

very low accuracy in boundary estimations of θ. This is confirmed by the figures in Section

4.10. For the full basis, the overall conclusion is that the two-step method yields better results

than the one-step method. As it is expected, Table 4.1 and 4.2 show that a higher measurement

precision of g generally gives better estimates. Some examples of the state variable g are shown

in Section 4.10 and illustrate again that the full basis approach gives much better estimates

than the reduced basis approach, especially at the boundaries of θ. Also these estimates mimic

very well the true shapes depicted in Figure 4.2.

4.6 Conclusion

In this chapter estimating multivariate parameters of linear PDEs from measurements of the

state variable is considered. We proposed to model the PDE parameters and the state variable

by tensor product splines, then the estimators are obtained by considering a trade-off between

least squares measure of fit, a measure of fidelity to the PDE model and boundary conditions.

We investigated two avenues for enforcing boundary conditions on the modelling of the state

variable. The first enforces the boundary conditions exactly trough a reduced B-spline basis:
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Two-step method One-step method

Full basis Reduced basis Full basis Reduced basis

g 6.45e−3(1.35e−3) 1.50e−2(5.78e−3) 6.99e−3(1.42e−3) 9.83e−3(2.97e−3)

θ = θ1 4.57e−2(2.30e−2) 4.36e−1(2.30e−1) 6.41e−2(1.96e−2) 5.06e−1(8.87e−2)

g 1.19e−2(5.52e−3) 1.28e−2(4.68e−3) 1.48e−2(3.84e−3) 1.55e−2(5.83e−3)

θ = θ2 2.83e−1(7.91e−2) 4.44e−1(4.43e−2) 3.25e−1(5.53e−2) 4.16e−1(4.44e−2)

g 4.55e−3(6.76e−4) 9.96e−3(3.61e−3) 1.55e−2(2.66e−2) 1.11e−1(3.88e−2)

θ = θ3 3.55e−1(4.25e−3) 4.95e−1(1.03e−1) 3.55e−1(6.15e−3) 7.34e−1(1.14e−1)

Table 4.1: Mean and standard deviation (in brackets) of the relative error for 200 runs with

noise generated for σ = 0.10.

Two-step method One-step method

Full basis Reduced basis Full basis Reduced basis

g 5.03e−3(7.47e−4) 1.33e−2(5.53e−3) 6.65e−3(1.64e−3) 7.76e−3(1.00e−3)

θ = θ1 3.63e−2(1.39e−2) 4.52e−1(2.13e−1) 7.04e−2(8.53e−3) 5.55e−1(4.56e−2)

g 9.41e−3(6.47e−3) 7.81e−3(3.61e−3) 1.39e−2(4.12e−3) 1.27e−2(4.32e−3)

θ = θ2 2.49e−1(9.72e−2) 4.71e−1(5.16e−2) 3.20e−1(6.60e−2) 4.25e−1(2.81e−2)

g 2.35e−3(3.59e−4) 7.55e−3(3.05e−3) 1.23e−2(2.58e−2) 1.17e−1(2.64e−2)

θ = θ1 3.53e−1(2.24e−3) 5.49e−1(1.06e−1) 3.54e−1(5.71e−3) 7.51e−1(6.68e−2)

Table 4.2: Mean and standard deviation (in brackets) of the relative error for 200 runs with

noise generated for σ = 0.05.

we use a B-spline basis with multiple knots at the (relevant) boundaries where we omit the

first and (or) last basis function. The second is by adding constraints on the spline coefficients.

Also, asymptotic results were included.

We compared different estimation methods on simulated data which describe the heating and

cooling of a rod due to an unknown source term. The source term was allowed to be space

(one dimensional) and time dependent. We found that our best estimating method (i.e. the

method with complete bases and added boundary constraints) succeeds in reconstructing the

source term well, for several source shapes.



90 Chapter 4. Estimating multivariate parameters in PDE models

4.7 Proofs

Matrix and function norms are defined in Appendix A. We use the notation an � bn to denote

that an/bn and bn/an are bounded. Let C(H) the space of continuous functions H → IRd.

Recall that α (mg) and γ (mθ) depend on n, i.e. they are allowed to increase in dimension as

n → ∞. The consistency results are based on few assumptions which are needed in the proof

of Theorem 4.1, which establishes the consistency of our multivariate parameter estimator.

A.1 The function g : H → IR is bounded measurable, i.e. ‖g‖∞ <∞ and g is integrable.

A.2 The functions hi(θ) are bounded for all bounded θ.

A.3 The tensor product spline coefficients satisfy γp ∈ Kmθp for some compact K ⊂ IR.

A.4 The spline dimensions mgi satisfy mgi � mgj ∀i, j ∈ {1, . . . , l}, hence mgi � m
1/l
g for all

i ∈ {1, . . . , l}.

A.5 1
n

n∑
i=1

(B(ti)(α̂(θ1)− α̂(θ2)))2 is continuous in (θ1,θ2) (C(H) is equipped with ‖ · ‖∞)

and converges (with probability tending to one) uniformly over (θ1,θ2) ∈ C(H)× C(H).

A.6 Q(θ) = limn→∞
1
n

∑n
i=1 (B(ti)(α̂(θ)− α̂(θ0)))2 has a unique minimum in θ = θ0

A.7 1
n

n∑
i=1

εiB(ti)(α̂(θ0)− α̂(θ))
P−→ 0 for any θ ∈ C(H).

A.8 There exists a positive constant M such that P (εi < M) = 1 for all i ∈ {1, . . . , n}.

A.1-A.4 are very general and are satisfied in practice. In the literature it is often assumed that

unknown parameters are contained in some compact space, our equivalent is A.3. Assumptions

A.5 and A.6 are inspired by the assumptions 1 and 2 in Yu and Ruppert (2002). A.5 says

that α̂(θ1) is a smooth function of θ1, A.6 is needed for identifiability reasons. A.8 states that

the magnitude of the measurement errors are, sensibly so, bounded.

In Proposition 4.1 we show the consistency of the estimator of g. In the proof of this proposition

we need the following proposition (on the inverse of the sum of two matrices) which is derived

from Corollary 5.6.16 Horn and Johnson (1988).
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Proposition 4.2. Let G1,G2 be m × m square matrices such that G1 is invertible. If there

exists a matrix norm ‖ · ‖ such that ‖G−1
1 G2‖ < 1, then

(G1 + G2)−1 =
∞∑
j=0

(−1)jG−1
1 (G2G

−1
1 )j.

Proof. By Corollary 5.6.16 of Horn and Johnson (1988), we have that for an invertible matrix

A ∈ IRm×m, where ‖Im −A‖ < 1 and where Im is the identity matrix,

A−1 =
∞∑
j=0

(Im −A)j.

Apply the previous equation to A = Im + G2G
−1
1 to find

(Im + G2G
−1
1 )−1 =

∞∑
j=0

(−1)j(G2G
−1
1 )j,

and left multiply both sides with G−1
1 to find

(G1 + G2)−1 =
∞∑
j=0

(−1)jG−1
1 (G2G

−1
1 )j,

which is the desired equation. �

Before we proceed to the proof of Proposition 4.1 we obtain a bound on ‖f>(t;γ)‖∞. By

A.2 it suffices to bound B-splines and their derivatives since the components of f>(t;γ) are

composed of B-splines and their derivatives up to the order O (this follows clearly from the

tensor product notation). B-splines are bounded: they take values between 0 and 1. The

derivative of a B-spline Bj(t; q) having distance 1
K

between the equidistant knots, is (De Boor

(2001), page 116)

B′j(t; q) = K(Bj−1(t; q − 1)−Bj(t; q − 1)).

Hence, the derivative of B-splines is bounded by the number of knots. We can reapply the

previous property to find that the Oth derivative of B-splines is bounded by the Oth power of

the number of knots. Thus ‖f(t;γ)‖∞ = O
(
m
O/l
g

)
and ‖f>(t;γ)‖∞ = O

(
m
O/l+1
g

)
.

Proof of Proposition 4.1. Let α̂un denote the unpenalized spline estimator, i.e. λ = 0 = µ in

(4.6). We prove (4.17) by using the triangle inequality√√√√ 1

n

n∑
i=1

(g(ti)−B>(ti)α̂(γ))2 ≤

√√√√ 1

n

n∑
i=1

(g(ti)−B>(ti)α̂un)2
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+

√√√√ 1

n

n∑
i=1

(B>(ti)(α̂un − α̂(γ)))2. (4.21)

We subsequently bound the first part and the second part of (4.21). A bound on the first part

follows from Theorem 1 of Huang (1998)√√√√ 1

n

n∑
i=1

(g(ti)−B>(ti)α̂un)2 = OP (

√
mg

n
+ ρ2

n). (4.22)

Moreover, Lemma 8.9 of Yoo and Ghosal (2016) establishes that

α>(B>B)α � nm−1
g ‖α‖2

2, (4.23)

if (4.4) and (4.5) hold. Thus for n sufficiently large, the eigenvalues of (B>B) are contained

in [C1nm
−1
g , C2nm

−1
g ] for positive constants C1 < C2. Therefore (B>B) is invertible for n

sufficiently large. Thus, under such conditions α̂un (is unique and) equals

α̂un = (B>B)−1B>Y.

For the second part of (4.21), we bound

B>(t)α̂un −B>(t)α̂(γ) = B>(t)(α̂un − α̂(γ))

= B>(t)

(B>B)−1 −

(
B>B + λR(γ) + µ

C∑
j=1

V>j Vj

)−1
B>Y

+ B>(t)

(
B>B + λR(γ) + µ

C∑
j=1

V>j Vj

)−1

λT>(γ)γ

= a>Y + B>(t)

(
B>B + λR(γ) + µ

C∑
j=1

V>j Vj

)−1

λT>(γ)γ, (4.24)

in three steps.

• Step 1:

(
(B>B)−1 −

(
B>B + λR(γ) + µ

∑C
j=1 V>j Vj

)−1
)

= O
(
m3
g

n2 (λm
2O/l
g + µ)

)
.

By Proposition 4.2,(
B>B + λR(γ) + µ

C∑
j=1

V>j Vj

)−1

=
∞∑
j=0

(−1)j(B>B)−1

((
λR(γ) + µ

C∑
j=1

V>j Vj

)
(B>B)−1

)j

if the series converges. This series converges if∥∥∥∥∥
(

(λR(γ) + µ

C∑
j=1

V>j Vj)(B>B)−1

)∥∥∥∥∥
∞

< 1. (4.25)
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Condition (4.25) holds if we demonstrate that∥∥∥∥∥
(

(λR(γ) + µ

C∑
j=1

V>j Vj)(B>B)−1

)∥∥∥∥∥
∞

= O

(
m2
g

n
(λm2O/l

g + µ)

)
. (4.26)

This follows from three facts. First, the fact that

‖R(γ)‖∞ ≤
∫
H
‖f(t;γ)‖∞‖f>(t;γ)‖∞ dt

≤
∫
H
mO/lg mgm

O/l
g dt = O(m1+2O/l

g )

because of the comments before this proof and the compactness of H , second,∥∥∥∥∥
C∑
j=1

V>j Vj

∥∥∥∥∥
∞

= O(mg),

since all Vj are bounded because their terms are B-splines which are bounded by 1, and

third,

‖(B>B)−1‖∞ = O(
mg

n
), (4.27)

which follows from the observation after (4.23) and Lemma 8.4 of Yoo and Ghosal (2016).

Then∥∥∥∥∥(B>B)−1 − (B>B + λR(γ) + µ
C∑
j=1

V>j Vj)
−1

∥∥∥∥∥
∞

= O

(
m3
g

n2
(λm2O/l

g + µ)

)
(4.28)

follows from (4.26) which tends to zero by assumption in the proposition statement, via∥∥∥∥∥∥
∞∑
j=1

(−1)j(B>B)−1

(
(λR(γ) + µ

C∑
j=1

V>j Vj)(B>B)−1

)j
∥∥∥∥∥∥
∞

≤ ‖(B>B)−1‖∞
∞∑
j=1

∥∥∥∥∥
(
λR(γ) + µ

(
C∑
j=1

V>j Vj

))∥∥∥∥∥
j

∞

‖(B>B)−1‖j∞

= ‖(B>B)−1‖∞

(
1

1− ‖(λR(γ) + µ
∑C

j=1 V>j Vj)‖∞‖(B>B)−1‖∞
− 1

)

= ‖(B>B)−1‖∞
‖(λR(γ) + µ

∑C
j=1 V>j Vj)‖∞‖(B>B)−1‖∞

1− ‖(λR(γ) + µ
∑C

j=1 V>j Vj)‖∞‖(B>B)−1‖∞

= O

(
m3
g

n2
(λm2O/l

g + µ)

)

• Step 2: a>Y = OP

(
m2
g

n
(λm

2O/l
g + µ)

)
. We have by the normality property of B-splines

‖B>(t)‖∞ = 1. By Lemma 8.3 of Yoo and Ghosal (2016) ‖B>‖∞ = O( n
mg

), recalling the
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definition of B (see (4.13)). Therefore, using (4.28), (4.24) and A.1, we obtain

‖a>‖∞ = O

(
m2
g

n
(λm2O/l

g + µ)

)
, ‖a>g‖∞ = O

(
m2
g

n
(λm2O/l

g + µ)

)
, (4.29)

where g = (g(t1), . . . , g(tn))>. Also, with ε = (ε1, ε2, . . . , εn)>,

‖a>ε‖∞ ≤ ‖a>‖∞‖ε‖∞ = OP

(
m2
g

n
(λm2O/l

g + µ)

)

by (4.29) and A.8. Hence

‖a>Y‖∞ = OP

(
m2
g

n
(λm2O/l

g + µ)

)
, (4.30)

since Y = g + ε.

• Step 3:

B>(t)

(
B>B + λR(γ) + µ

C∑
j=1

V>j Vj

)−1

λT>(γ)γ = O

(
λm

1+O/l
g

n
+
λm

3+O/l
g

n2
(λm2O/l

g + µ)

)
.

Apply the triangle inequality to (4.27) and (4.28) to find∥∥∥∥∥B>(t)(B>B + λR(γ) + µ
C∑
j=1

V>j Vj)
−1

∥∥∥∥∥
∞

= OP

(
mg

n
+
m3
g

n2
(λm2O/l

g + µ)

)
. (4.31)

and

‖λT>(γ)γ‖∞ ≤ λ‖T>(γ)‖∞‖γ‖∞

≤ λ‖γ‖∞
∫
H
‖f(t;γ)>‖∞‖Q>d (t)‖∞dt

= O(λmO/lg ), (4.32)

‖Q>d (t)‖∞ = 1 since B-splines sum up to 1.

Finally, by Step 2 and Step 3 we have shown that uniformly in t

|B>(t)α̂un −B>(t)α̂(γ)| = OP

(
m2
g

n
(λm2O/l

g + µ) + λ
m

1+O/l
g

n
+ λ

m
3+O/l
g

n2
(λm2O/l

g + µ)

)
.

By the triangle inequality and (4.22) we have established the desired result
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1

n

n∑
i=1

(g(ti)−B>(ti)α̂(γ))2 =

OP

(
mg

n
+ ρ2

n +

(
m4
g

n2
+ λ2m

6+2O/l
g

n4

)
(λm2O/l

g + µ)2 + λ2m
2+2O/l
g

n2

)
,

using the assumption
m2
g

n
(λm

2O/l
g + µ)→ 0 we deduce that

1

n

n∑
i=1

(g(ti)−B>(ti)α̂(γ))2 = OP

(
ρ2
n +

mg

n
(λ2m1+2O/l

g /n+ 1)
)
.

�

The next lemma shows that γ̂ is a stochastic variable that exists and which is essentially Lemma

2 of Jennrich (1969). Moreover, to stress the dependence of γ on n, we add the subscript n to

γ (and γ̂) in the upcoming proofs. Also, we use the notation θn(t) (θ̂n(t)) to denote the spline

function which corresponds to γn (γ̂n).

Lemma 4.1. The estimator γ̂n which minimizes

n∑
i=1

(Yi −B(ti)α̂(γn))2 +
l∑

j=1

d∑
p=1

λpj‖Ppjγp‖2
2

exists.

Proof. Define the real valued function

Qn(γn, Y1, Y2, . . . , Yn) =
n∑
i=1

(Yi −B(ti)α̂(γn))2 +
l∑

j=1

d∑
p=1

λpj‖Ppjγp‖2
2.

Note that (Y1, . . . , Yn) ∈M whereM is the product of measurable space IRn. Apply Lemma 2

of Jennrich (1969) with real valued function Qn and compact subset Km to show the existence

of the statistic γ̂n = (γ̂>1 , . . . , γ̂
>
d )>.

�

Next, we show the uniform consistency of our parameter estimator. The proof is inspired to

some extent by the proof of Theorem 1 Yu and Ruppert (2002). We do not assume θ0 to be

a collocation of tensor product spline functions, that causes us to use in the proof the Arzelà-

Ascoli Theorem with the assumption that the components of θ̂ have bounded partial derivatives.

In the other case θ0 is the collocation of tensor product spline functions, hence the number of
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knots are fixed, and therefore the conditions of the Arzelà-Ascoli Theorem are satisfied by our

comments before the proof of Proposition 4.1. By γ̂p we mean the spline coefficients estimator

corresponding to the parameter function θ̂p.

Proof of Theorem 4.1. Let F ⊂ C(H) denote a compact subspace. Define for θ ∈ F

Qn(θ;γn) =
1

n

n∑
i=1

(Yi −B>(ti)α̂n(θ))2 +
1

n

(
l∑

j=1

d∑
p=1

λpj‖Ppiγp‖2
2

)
, (4.33)

which can be written as

Qn(θ;γn) =
1

n

n∑
i=1

(
(Yi −B>(ti)α̂n(θ0)) + (B>(ti)α̂n(θ0)−B>(ti)α̂n(θ))

)2

+
1

n

(
l∑

j=1

d∑
p=1

λpj‖Ppjγp‖2
2

)

=
1

n

n∑
i=1

(
Yi −B>(ti)α̂n(θ0)

)2

+
1

n

n∑
i=1

(
B>(ti)α̂n(θ0)−B>(ti)α̂n(θ)

)2

+
2

n

n∑
i=1

(
Yi −B>(ti)α̂n(θ0)

) (
B>(ti)α̂n(θ0)−B>(ti)α̂n(θ)

)
+

1

n

(
l∑

j=1

d∑
p=1

λpj‖Ppjγp‖2
2

)

=
1

n

n∑
i=1

(εi + fi)
2 +

1

n

n∑
i=1

(
B>(ti)α̂n(θ0)−B>(ti)α̂n(θ)

)2

+
2

n

n∑
i=1

(εi + fi)
(
B>(ti)α̂n(θ0)−B>(ti)α̂n(θ)

)
+

1

n

(
l∑

j=1

d∑
p=1

λpj‖Ppjγp‖2
2

)

= A1 + A2 + A3 + A4,

where fi arises as the difference fi = g(ti)−B>(ti)α̂n(θ0).

We demonstrate that Qn(θ;γn) = A1 + A2 + A3 + A4
P−→ σ2 + Q(θ) as n → ∞ uniformly in

θ ∈ F . For A1 we have

A1 =
1

n

∑
i

ε2
i +

2

n

∑
i

εifi +
1

n

∑
i

f 2
i

P−→ σ2 (4.34)
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using the (strong) law of large numbers, the fact fi → 0 (by Proposition 4.1 and (A.7)) and

the Cauchy-Schwarz inequality. By A.5 , A2
P−→ Q(θ). Then

A3 =
2

n

n∑
i=1

εiB
>(ti) (α̂n(θ0)− α̂n(θ)) +

2

n

n∑
i=1

fiB
>(ti) (α̂n(θ0)− α̂n(θ)) , (4.35)

where uniformly in θ ∈ F , the first part converges in probability to 0 by Lemma 4.2 (given

below) and the second part gives by the Cauchy-Schwarz inequality

2

n

n∑
i=1

|fiB>(ti) (α̂n(θ0)− α̂n(θ)) | ≤ 2

(
1

n

n∑
i

f 2
i

)1/2(
1

n

n∑
i

(
B>(ti)(α̂n(θ0)− α̂n(θ))

)2

)1/2

= oP (1).

Finally, we show that A4 → 0 using A.3 and the fact that ‖P>pj‖∞, ‖Ppj‖∞ are bounded (see

Section 4.3.3),

‖Ppjγp‖ = ‖Ppjγp‖∞

≤ ‖γ>p ‖∞‖P>pj‖∞‖Ppj‖∞‖γp‖∞ = O(mγp)

Thus A4 = O( 1
n

∑l
j=1

∑d
p=1mγpλpj). Therefore

Qn(θ;γn)
P−→ Q(θ) + σ2, (4.36)

uniformly in θ ∈ F .

Now we show the uniform consistency of θ̂n. By Lemma 4.1 γ̂n that minimizes Qn(θn;γn)

exists. The theory above is developed around compact spaces. The space of interest is

A = {θ̂n | n ≥ n0},

for a fixed n0 ∈ N. By A.3 and the properties of B-splines A is a set of uniformly bounded

functions. By assumption the partial derivatives of θ̂n are bounded by the same constant, and by

the mean value inequality the set A is Lipschitz continuous with one Lipschitz constant. Hence

A is a set of equicontinuous functions. Let Ā ⊂ C(H) denote the closure of A. Then Ā is closed

by definition, it is uniformly bounded and equicontinuous because A is uniformly bounded and

equicontinuous. By the Arzelà-Ascoli Theorem Ā is compact, thus every sequence in Ā has a

converging subsequence. Thus (θ̂n) has a subsequence (θ̂nk) which converges uniformly to a

function θ′, i.e. ‖θ̂nk − θ′‖∞ = oP (1). By A.5, Q(θ) is continuous in θ, thus

Q(θ̂nk)
P−→ Q(θ′). (4.37)
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Write

Qnk(θ̂nk ; γ̂nk)−Q(θ′)− σ2 = [Qnk(θ̂nk ; γ̂nk)−Q(θ̂nk)− σ2] + [Q(θ̂nk)−Q(θ′)], (4.38)

where the first term converges to zero in probability since

|Qnk(θ̂nk ; γ̂nk)−Q(θ̂nk)− σ2| ≤ sup
θ∈Ā
|Qnk(θ; γ̂nk)−Q(θ)− σ2|,

and the latter tends to zero in probability by (4.36). The second term also converges to zero

in probability, because Q is continuous in θ by A.4 and A.5, and ‖θ̂nk − θ′‖∞ = oP (1). Thus

Qnk(θ̂nk ; γ̂nk)
P−→ Q(θ′) + σ2. (4.39)

On the other side there is a sequence of spline functions (θ̃nk) (with coefficients (γ̃nk)) from the

same spline spaces as the sequence (θ̂nk) such that ‖θ̃nk − θ0‖∞ → 0 when nk →∞ (Theorem

12.8 in Schumaker (2007)). Next, since Qnk(θ̂nk ; γ̂nk) ≤ Qnk(θ̃nk ; γ̃nk) we obtain by taking the

limit k →∞ of the previous inequality and applying (4.39) twice

Q(θ′) + σ2 ≤ Q(θ0) + σ2,

which gives Q(θ′) ≤ Q(θ0). By A.6 we must have θ′ = θ0.

Now we argue that (θ̂n) converges to θ0 with probability tending to one. It is clear by the

discussion above that if it converges it must converge to θ0. Suppose (θ̂n) does not converge.

There exists a neighbourhood V of θ0 such that V does not contain infinitely many functions

from the sequence (θ̂n). These infinitely many functions cannot have a subsequence which

converges to θ0, which is a contradiction. We have shown the desired result

‖θ̂n − θ0‖∞ = oP (1)

�

The following lemma is based on Theorem 4 of Jennrich (1969) and is adapted to fit our setting.

Let F ⊂ C(H) denote a compact subspace.

Lemma 4.2. Assume εi is i.i.d. and the conditions A.5,A.7 hold. Define

pn(θ1,θ2) :=
1

n

n∑
i=1

(B(ti)(α̂n(θ1)− α̂n(θ2)))2
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which is a sequence of continuous functions in (θ1,θ2) ∈ F × F (consequence of A.5). We

have the convergence

hn(θ) :=
1

n

n∑
i=1

εiB(ti)(α̂n(θ0)− α̂n(θ))
P−→ 0

uniformly over θ ∈ F .

Proof. By A.5 the sequence |pn(θ1,θ2)| converges uniformly in θ1 ∈ C(H) (with probability

tending to one) for any θ2 ∈ C(H) to a continuous function in θ1. Hence there exists a

neighbourhood V of θ2 such that (with probability tending to one) for all θ1 ∈ V

|pn(θ1,θ2)| ≤ δ (4.40)

for a given δ > 0, when n is sufficiently large. Then, consider the inequality

|hn(θ1)| ≤
√
pn(θ1,θ2)‖ε‖2/

√
n+ |hn(θ2)| (4.41)

which follows from the triangle and the Cauchy-Schwarz inequalities. By A.7,

hn(θ2)
P−→ 0.

Thus by inequalities (4.40)-(4.41) and the law of large numbers,

sup
θ1∈V
|hn(θ1)| = OP (

√
δσ + δ).

Therefore C(H) is covered by neighbourhoods V such that

sup
θ∈V
|hn(θ)| = OP (

√
δσ + δ)

. This leads to such a finite subcover of the compact subspace F so that

sup
θ∈F
|hn(θ)| = OP (

√
δσ + δ).

Since δ > 0 is taken arbitrary we have shown the desired result

|hn(θ)| P−→ 0

uniformly in θ ∈ F . �
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4.8 Heat Example: Two-step method computation

In this section we derive the expressions for the estimators of α and γ for the two-step method

applied to the heat diffusion problem described in Section 4.5.

The method consists of minimizing

J(α | γ) = ‖Y − Bα‖2 + λ
(
α>Rα+ 2γ>Tα+ γ>Zγ

)
+ µ

(
‖V1α‖2 + ‖V2α‖2 + ‖V3α‖2) (4.42)

with respect to α, which yields α̂(γ), and

H(γ) = ‖Y − Bα̂ (γ)‖2 + λ1 ‖P1γ‖2 + λ2 ‖P2γ‖2 (4.43)

with respect to γ.

From (4.42) it now follows that

∂J

∂α
= −2

(
B>Y − B>Bα

)>
+ 2λ

(
α>R + γ>T

)
+ 2µα>

(
V>1 V1 + V>2 V2 + V>3 V3

)
.

This is equal to zero if and only if

α̂ (γ) = D−1
(
B>Y − λT>γ

)
,

where D = B>B + λR + µ
(
V>1 V1 + V>2 V2 + V>3 V3

)
. Note that D = D> and

∂α̂

∂γ
= −λD−1T>.

From (4.43) it now follows that

∂H

∂γ
= −2 (Y − Bα̂ (γ))> B∂α̂

∂γ
+ 2γ>

(
λ1P

>
1 P1 + λ2P

>
2 P2

)
.

Substituting α̂ (γ) and its derivative into this equation, we find that this is equal to zero if and

only if (
λTD−1B>BD−1T> +

λ1

λ
P>1 P1 +

λ2

λ
P>2 P2

)
γ =

(
TD−1B>B −T

)
D−1B>Y.

4.9 Heat Example: One-step method computation

In this section we derive the expressions for the estimators of α and γ for the one-step method

applied to the heat diffusion problem discribed in Section 4.5.
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The method consist of minimizing:

K(α,γ) = ‖Y − Bα‖2 + λ
(
α>Rα+ 2γ>Tα+ γ>Zγ

)
+ µ

(
‖V1α‖2 + ‖V2α‖2 + ‖V3α‖2)+ λ1 ‖P1γ‖2 + λ2 ‖P2γ‖2

(4.44)

with respect to α and γ.

From (4.44) it follows that
∂K

∂α
= −2

(
B>Y − B>Bα

)>
+ 2λ

(
α>R + γ>T

)
+ 2µα>

(
V>1 V1 + V>2 V2 + V>3 V3

)
∂K

∂γ
= 2λ

(
α>T> + γ>Z

)
+ 2γ>

(
λ1P

>
1 P1 + λ2P

>
2 P2

)
.

This implies that ∇K is equal to zero if and only ifDα+ λT>γ = B>Y

λTα+
(
λZ + λ1P

>
1 P1 + λ2P

>
2 P2

)
γ = 0

⇔

 D λT>

λT
(
λZ + λ1P

>
1 P1 + λ2P

>
2 P2

)
α

γ

 =

B>Y

0

 ,
where D is the same as in Section 4.8. Moreover, it is easy to see that we find the same

expression for the estimator of α as in the two-step method, but that the estimator of γ is

different.

4.10 Figures

In all the images below, the first row of images contains the estimates of the state variable g

and the second row the corresponding estimates of θ for σ = 0.1. The columns are as follows:

• Column 1: the two-step method using the full basis.

• Column 2: the two-step method using the reduced basis.

• Column 3: the one-step method using the full basis.

• Column 4: the one-step method using the reduced basis.
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Figure 4.3: Example of the estimations found when using θ1 as the source function for the heat

equation. The numbers mentioned below each figure are the relative error with respect to the

exact solution.
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Figure 4.4: Example of the estimations found when using θ2 as the source function for the heat

equation. The numbers mentioned below each figure are the relative error with respect to the

exact solution.
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Figure 4.5: Example of the estimations found when using θ3 as the source function for the heat

equation. The numbers mentioned below each figure are the relative error with respect to the

exact solution.



Chapter 5

General conclusions and research

perspectives

In this thesis attention is devoted to estimating unknown functions by splines and their infer-

ences. We focused on varying coefficient models (VCMs) and PDE models.

In the classic linear regression model the coefficients are constants. For many data examples

this parametric assumption is not likely. VCMs are an extension of the linear regression model,

i.e. the coefficients are allowed to be functions, maintaining interpretability and increasing

flexibility. In linear regression models F-tests (which are ratios of quadratic forms) are used for

inferences on the coefficients. In Chapter 2 we generalized the F-test approach to longitudinal

data VCMs by using the nice properties of B-splines. We showed that the test statistic follows

(asymptotically) a generalized F distribution. As such we can test whether the coefficient

functions have a parametric form, for example constant or linear. We conducted an extensive

simulation study to show the good performances of our generalized F-tests, and gave a data

application. In the context of generalized varying coefficient models (GVCMs) we provided a

bootstrap approach to test similar hypotheses.

Chapter 3 dealt with monotonicity and convexity testing in VCMs. We used a testing approach

which has proven to be very effective in univariate regression models and extended it to VCMs,

with theoretical foundations. A broad simulated study is given where we also included testing

simultaneously monotonicity and convexity of coefficient functions. Moreover, we gave data

applications.

105
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Our testing methods could be applied to other VCMs such as quantile estimation models

(Andriyana et al. (2014)), recurrent event data models (Eshaghi et al. (2016)) and time series

data models (Huang and Shen (2004)). A challenging hypothesis to study in the context of

VCMs is whether a coefficient function is piecewise constant. The objective of piecewise testing

is to discover abrupt changes, this is also termed change point detection. Such hypotheses are

popular in time series data. There is statistical literature on how to estimate the jump locations

of a piecewise constant function in several models (Lebarbier (2005) and Kolar et al. (2009)

among others). It would be interesting to study such hypotheses in VCMs.

In Chapter 4 we studied linear PDE models. PDEs are used to describe a vast number of

dynamic processes, they appear in scientific fields such as biology, physics, finance, etc. PDEs

are determined by their parameters, which are often unknown and of interest for scientists.

In the statistical literature it as assumed that these parameters are constant, this can be a

crude assumption in practice. In Chapter 4 we showed how to model and estimate multivariate

parameters of linear PDEs. We demonstrated that our estimators are uniformly consistent. As

an illustration we simulated the temperature of a rod which is heating up and cooling down

due to an unknown bivariate source term which we estimated from error prone temperature

measurements of the rod. We found that our approach managed to estimate the unknown

source term accurately.

Further research in this context includes variance estimation of a multivariate parameter esti-

mate θ̂, i.e. estimate Var(θ̂(t)) for a point t in the domain of θ. This boils down to estimating

the variance of the tensor product spline coefficients of θ̂(t) and would allow to perform statisti-

cal inference of the unknown parameter θ. One approach for variance estimation was suggested

by Rodriguez-Fernandez et al. (2006) and Xue et al. (2010), by using the pseudo-information

matrix given by the inverse hessian matrix of (4.7). Frasso et al. (2015) found that this yields

a reasonable approximation of the covariance matrix of constant PDE parameters. A second

approach which is also suggested by Xue et al. (2010) is the weighted bootstrap method (Ma

and Kosorok (2005)). This approach suggests to solve (4.7) repeatedly by adding iid weights

with mean zero and unit variance.

We mainly focused on linear PDEs, our approach can be extended to include nonlinear PDE

models by employing numerical optimization techniques. Note that the term which ensures

a good fit of the measured data, i.e. the term sum of squared residuals in (4.6) and (4.7),
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should be replaced by the log-likelihood to include nonnormal error structures. We could use a

Gauss-Newton method as in Ramsay et al. (2007), who estimate constant parameters in ODE

models by a two-step method, to obtain the solutions of minimizing (4.6) and (4.7). Inference

in PDE models did not receive considerable attention in the literature. Methods for hypothesis

testing of the multivariate parameters could be proposed by using the experiences from the

VCMs setting. One could test whether a parameter is time independent, constant, etc. which

can help to fine tune PDE equations.



Appendix A

Notation

1. For a real matrix A ∈ IRn1×n2 , ‖A‖2 denotes the Frobenius norm: ‖A‖2 =
√∑n1

i=1

∑n2

j=1 A2
ij.

The norm ‖ · ‖∞ is defined by ‖A‖∞ = maxi=1,...,n1

∑n2

j=1 |Aij|.

2. For a real valued function h on T , ||h||∞ = supt∈T |h(t)| denotes its supremum norm,

while for a real vector valued function h = (h1, . . . , hm)>, we let its supremum norm be

||h||∞ = max16i6m ||hi||∞.

3. Let G = G0 × . . . × Gd. Define the function g∗(t) = (g∗0(t), . . . , g∗d(t))
> such that ||β −

g∗||∞ = ρn = infg∈G ||β − g||∞. Let α∗ denote the corresponding coefficient vector, i.e.

g∗(t) = B(t)α∗.
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Höllig, K. (2003), Finite element methods with B-splines, SIAM Frontiers in Applied Mathe-

matics.

Hong, Z. and Lian, H. (2012), ‘Time-varying coefficient estimation in differential equation

models with noisy time-varying covariates’, Journal of Multivariate Analysis 103(1), 58 –

67.

Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L.-P. (1998), ‘Nonparametric smoothing

estimates of time-varying coefficient models with longitudinal data’, Biometrika 85(4), 809–

822.

Horn, R. A. and Johnson, C. R. (1988), Matrix Analysis, Cambridge University Press.

Huang, J. Z. (1998), ‘Projection estimation in multiple regression with application to functional

anova models’, The Annals of Statistics 26(1), 242–272.



112 BIBLIOGRAPHY

Huang, J. Z. and Shen, H. (2004), ‘Functional coefficient regression models for non-linear time

series: A polynomial spline approach’, Scandinavian Journal of Statistics 31(4), 515–534.

Huang, J. Z., Wu, C. O. and Zhou, L. (2002), ‘Varying-coefficient models and basis function

approximations for the analysis of repeated measurements’, Biometrika 89(1), 111–128.

Huang, J. Z., Wu, C. O. and Zhou, L. (2004), ‘Polynomial spline estimation and inference for

varying coefficient models with longitudinal data’, Statistica Sinica 14(3), 763–788.

Jennrich, R. I. (1969), ‘Asymptotic properties of non-linear least squares estimators’, The

Annals of Mathematical Statistics 40(2), 633–643.

Jianjun, Y., Liu, L. and Hu, Q. (2013), ‘Mathematical modeling of brain glioma growth using

modified reaction-diffusion equation on brain mr images’, Computers in Biology and Medicine

43(12), 2007–2013.

Karlin, S. and Studden, W. J. (1966), ‘Optimal experimental designs’, The Annals of Mathe-

matical Statistics 37(4), 783–815.

Kaslow, R., Ostrow, D., Detel, R., Phair, J., Polk, B. and Rinaldo, C. (1987), ‘The Multicenter

AIDS Cohort Study : rationale, organization, and selected characteristics of the participants’,

American Journal of Epidemiology 126, 310–318.

Kolar, M., Song, L. and Xing, E. P. (2009), ‘Sparsistent learning of varying-coefficient models

with structural changes’, pp. 1006–1014.

Lammers, W. J., van Buuren, H. R., Hirschfield, G. M., Janssen, H. L., Invernizzi, P., Mason,

A. L., Ponsioen, C. Y., Floreani, A., Corpechot, C., Mayo, M. J., Battezzati, P. M., Pars,

A., Nevens, F., Burroughs, A. K., Kowdley, K. V., Trivedi, P. J., Kumagi, T., Cheung, A.,

Lleo, A., Imam, M. H., Boonstra, K., Cazzagon, N., Franceschet, I., Poupon, R., Caballeria,

L., Pieri, G., Kanwar, P. S., Lindor, K. D. and Hansen, B. E. (2014), ‘Levels of alkaline

phosphatase and bilirubin are surrogate end points of outcomes of patients with primary

biliary cirrhosis: An international follow-up study’, Gastroenterology 147(6), 1338 – 1349.

Lebarbier, E. (2005), ‘Detecting multiple change-points in the mean of gaussian process by

model selection’, Signal Processing 85(4), 717 – 736.



BIBLIOGRAPHY 113

Li, N., Xu, X. and Liu, X. (2011), ‘Testing the constancy in varying-coefficient regression

models’, Metrika 74(3), 409–438.

Lorr, M. and Klett, C. J. (1966), Inpatient Multidimensional Psychiatric Scale: Manual., Palo

Alto, CA: Consulting Psychologists Press.

Ma, S. and Kosorok, M. R. (2005), ‘Robust semiparametric m-estimation and the weighted

bootstrap’, Journal of Multivariate Analysis 96(1), 190 – 217.

Marx, B. D. and Eilers, P. H. (2005), ‘Multidimensional penalized signal regression’, Techno-

metrics 47(1), 13–22.

McCullagh, P. and Nelder, J. A. (1989), Generalized linear models (Second edition), London:

Chapman & Hall.

Müller, T. and Timmer, J. (2002), ‘Fitting parameters in partial differential equations from

partially observed noisy data’, Physica D: Nonlinear Phenomena 171(12), 1 – 7.

Müller, T. and Timmer, J. (2004), ‘Parameter identification techniques for partial differential

equations’, International Journal of Bifurcation and Chaos 14(6), 2053–2060.

Ramsay, J. O., Hooker, G., Campbell, D. and Cao, J. (2007), ‘Parameter estimation for differ-

ential equations: a generalized smoothing approach’, Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 69(5), 741–796.

Rodriguez-Fernandez, M., Egea, J. A. and Banga, J. R. (2006), ‘Novel metaheuristic for pa-

rameter estimation in nonlinear dynamic biological systems’, BMC Bioinformatics 7(1), 483.

Sanches, R., Bornemann, F. and Cirak, F. (2011), ‘Immersed b-spline (i-spline) finite element

methods for geometrically complex domains’, Computer Methods in Applied Mechanics and

Engineering 200(13-16), 1432–1445.

Schumaker, L. (2007), Spline Functions: Basic Theory, Cambridge University Press.

Tan, W. Y. (1977), ‘On the distribution of quadratic forms in normal random variables’, Cana-

dian Journal of Statistics 5(2), 241–250.

Verhasselt, A. (2014), ‘Generalized varying coefficient models: A smooth variable selection

technique’, Statistica Sinica 24(18), 147–171.



114 BIBLIOGRAPHY

Wang, J. C. and Meyer, M. C. (2011), ‘Testing the monotonicity or convexity of a function

using regression splines’, Canadian Journal of Statistics 39, 89–107.

Wolkowicz, H. and Styan, G. P. (1980), ‘More bounds for elgenvalues using traces’, Linear

Algebra and its Applications 31(1), 1 – 17.

Xue, H., Miao, H. and Wu, H. (2010), ‘Sieve estimation of constant and time-varying coefficients

in nonlinear ordinary differential equation models by considering both numerical error and

measurement error’, Ann. Statist. 38(4), 2351–2387.

URL: http://dx.doi.org/10.1214/09-AOS784

Xun, X., Cao, J., Mallick, B., Maity, A. and Carroll, R. J. (2013), ‘Parameter estimation

of partial differential equation models’, Journal of the American Statistical Association

108(503), 1009–1020.

Yoo, W. W. and Ghosal, S. (2016), ‘Supremum norm posterior contraction and credible sets

for nonparametric multivariate regression’, The Annals of Statistics 44(3), 1069–1102.

Yu, Y. and Ruppert, D. (2002), ‘Penalized spline estimation for partially linear single-index

models’, Journal of the American Statistical Association 97(460), 1042–1054.

Zhang, D. (2004), ‘Generalized linear mixed models with varying coefficients for longitudinal

data’, Biometrics 60(1), 8–15.

Zhang, H.-G. and Mei, C.-L. (2012), ‘Sizer inference for varying coefficient models’, Communi-

cations in Statistics - Simulation and Computation 41(10), 1944–1959.

Zhang, H.-G., Mei, C.-L. and Wang, H.-L. (2013), ‘Robust sizer approach for varying coefficient

models’, Mathematical Problems in Engineering 2013(Article ID 547874), 13 pages.


