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Inspired by Kubo-Anderson Markov processes, we introduce a new class of transfer matrices whose
largest eigenvalue is determined by a simple explicit algebraic equation. Applications include the free
energy calculation for various equilibrium systems and a general criterion for perfect harmonicity, i.e., a
free energy that is exactly quadratic in the external field. As an illustration, we construct a “perfect spring,”
namely, a polymer with non-Gaussian, exponentially distributed subunits which, nevertheless, remains
harmonic until it is fully stretched. This surprising discovery is confirmed by Monte Carlo and Langevin
simulations.
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The stretching of an (ideal) polymer provides one of the
most beautiful illustrations of thermodynamics and equi-
librium statistical physics. A force is needed because the
number of polymer configurations corresponding to a
stretched state is (exponentially) smaller than that of a
coiled state. More generally, the extension X versus force F
relation is obtained from the derivative, at constant temper-
ature T, of the free energy G [1]

X ¼ −dG=dF: ð1Þ

Under isotropic conditions, one expects that the free energy
G is even in F, hence, quadratic for F small. The extension
X is then harmonic, i.e., linear in the force F. For larger
forces, the polymer is expected to stiffen as it approaches
full extension. For example, for a freely jointed chain in
three dimensions, consisting of N units of fixed length b,
the fractional extension x ¼ X=Nb is given by x ¼ LðbFβÞ
with L the famous Langevin function LðyÞ ¼ cothðyÞ −
1=y [2] and β ¼ 1=ðkBTÞ, see, also, Fig. 1(a).
The issue of elasticity is an important one in materials

science. The width of the (harmonic) elastic regime, which
can be estimated from the ratio of the tensile strength over
the Young’s modulus, varies greatly from very small, for
example for nanotubes, to very large for rubber and elastin
[3]. Therefore, it is natural to ask whether variations of a
basic microscopic model, such as the freely jointed chain,
can lead to a predominant or even perfect harmonic
response. The immediate answer appears to be yes: the
Rouse model [4] supposes bonds that are perfectly har-
monic, and hence, so is the entire chain; but the assumption
of perfectly harmonic bonds is unphysical as it would, for
example, imply that both the bond and chain can be
infinitely stretched, and deriving harmonicity from har-
monicity is not exactly a great feat. The surprising finding

of this Letter is the discovery of a simple random walk
model for a polymer with nonharmonic bonds which is and
remains perfectly harmonic up to full extension (and not
beyond).
Before proceeding to the more technical derivation, we

comment on the route that led to this discovery and the
additional results that were obtained. The statistical physics
literature on polymers is huge, but exact results can only be
derived for some very simple models such as the freely
jointed chain [5,6]. One of the main tools for arriving at
these results is the evaluation of the partition function via a
transfer matrix method, essentially by identifying the
largest eigenvalue. Such transfer matrices have positive
entries and are, therefore, reminiscent of Markov matrices,
which describe the dynamics of Markov chains. We
introduce a special class of transfer matrices whose
structure is inspired by a specific type of Markov process.
We coin the name “Kubo-Anderson” transfer matrices in
reference to two early papers (on linewidth problems) in
which such Markov processes have been introduced [7].
The bonus is that the largest eigenvalue of such a transfer
matrix is determined by a simple explicit algebraic equa-
tion. Applications include the free energy calculation for
various equilibrium systems, including a simple model for
polymer chains with persistence. Furthermore, we derive,
after an additional simplification, a general criterion for
perfect harmonicity, i.e., a free energy that is exactly
quadratic in the external field. We will discuss it here in
the context of a simple random walk model for a polymer,
but the results are equally valid for other systems, such as
magnetic systems with exactly linear susceptibility. The
application to simple polymer models leads to the discov-
ery of the “perfect spring,” i.e., a random walk model for a
polymer with non-Gaussian subunits which, nevertheless,
remains harmonic until it is fully stretched.
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As is well known [8], many problems in equilibrium
statistical mechanics, including the celebrated Onsager
solution of the two-dimensional Ising model, can be
formulated in terms of a transfer matrix. One supposes
that the energy of the system can be written as a sum
E ¼ P

N
i¼1 Eσiþ1;σi , where σi represents the state of the “ith

layer” and Eσiþ1;σi is the interaction energy between layers
iþ 1 and i. For notational simplicity, we consider periodic
boundary conditions with layer N þ 1 identified with layer
1. The central quantity is the partition function

Z ¼
X
fσg

e−β
P

N
i¼1

Eσiþ1 ;σi ; ð2Þ

where the sum over fσg runs over all configurational states
of the system. The transfer matrix T is defined by its
elements

Tσ0;σ ¼ e−βEσ0 ;σ : ð3Þ

In the thermodynamic limit N → ∞, the free energy G is
obtained as

G ¼ −
lnZ
β

¼ −
TrTN

β
∼ −

N ln λ
β

; ð4Þ

where ∼ refers to an equality to dominant order in N, and λ
is the largest eigenvalue of the transfer matrix T.
A transfer matrix has positive elements. The elements of

a Markov matrix represent probabilities, which are also
obviously positive but obey, in addition, a normalization
condition. The relation between transfer matrices and
Markov matrices was noticed a long time ago, see, e.g.,
[9,10], and has been revisited more recently in the context
of large deviations for conditioned Markov processes [11].
In this Letter, we introduce a new class of transfer matrices
inspired by Kubo-Anderson and Markov processes. The
latter have been used for a detailed analytic description of a
large variety of physical processes [7]. In the context of
transfer matrices, the bonus is a simple explicit relation for
its largest eigenvalue. Our starting point is the following
Markov matrix:

Aσ0;σ ¼ ð1 − qσÞδσ;σ0 þ qσpσ0 : ð5Þ

Aσ0;σ is the transition probability to go from state σ to σ0. Its
explicit form can be explained as follows. With a proba-
bility 1 − qσ the system remains in its present state σ. With
probability qσ, a novel state is selected. This novel state is σ0
with probability pσ0. As is explained in the introduction,
with the stretching of a polymer, the addition of an external
field allows us to explore the regions of “higher free
energy.” We do something similar here by adding an extra
Boltzmann factor to the transfer matrix, with ϵσ represent-
ing the energy contribution due to such a field on layer σ,
leading finally to the following Kubo-Anderson transfer
matrix:

Tσ0;σ ¼ e−
βðϵσþϵ

σ0 Þ
2 Aσ0;σ: ð6Þ

The connection with the corresponding interaction energy
Eσ0;σ is obtained by comparison with Eq. (3). Conversely,
this relation establishes the dependence of the quantities qσ
and pσ on the energies Eσ0;σ and the temperature.
We now show how the largest eigenvalue (and corre-

sponding eigenfunction) of a Kubo-Anderson transfer
matrix T can be obtained. From the eigenvalue equationX

σ

Tσ0;σϕσ ¼ λϕσ0 ; ð7Þ

one finds that

e−βϵσ0 ð1 − qσ0 Þϕσ0 þ pσ0
X
σ

e−
βðϵσþϵ

σ0 Þ
2 qσϕσ ¼ λϕσ0 : ð8Þ
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FIG. 1. Extension x versus force F for (a) d ¼ 3 freely jointed
chain q ¼ 1 and its modified version with persistence q ¼ 0.7:
theoretical result Eq. (16) (solid line) versus Langevin simulation
for N ¼ 100 (triangles q ¼ 1 and dots q ¼ 0.7). (b) Random
walk polymer model with persistence and appropriate transverse
field reproducing Eq. (28). L ¼ 10dl (red), L ¼ 20dl (green),
and L ¼ 100dl (blue), with l̄=dl ¼ 10 (Monte Carlo, crosses) and
l̄=dl ¼ 5 (Langevin, squares).
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The largest eigenvalue λ and its corresponding eigenfunc-
tion ϕ can be identified by invoking the Perron-Frobenius
theorem: the eigenvalue λ is unique and positive
and all components of ϕ have the same sign, and can,
thus, be chosen to be positive. As a consequenceP

σ exp ð−βϵσ=2Þqσϕσ is also positive. Furthermore, since
ϕ is only determined up to a constant factor, we can assume
the following normalization:

X
σ

e−
βϵσ
2 qσϕσ ¼ 1: ð9Þ

With this constraint, we find, from Eq. (8), the following
explicit expression for the eigenvector ϕ:

ϕσ ¼
pσ

λe
βϵσ
2 − e−

βϵσ
2 ð1 − qσÞ

: ð10Þ

By substitution of this expression in Eq. (9), one concludes
that λ is determined by

X
σ

pσqσ
eβϵσ λ − ð1 − qσÞ

¼ 1: ð11Þ

This simple explicit algebraic equation for the dominant
eigenvalue is the first important result of this Letter.
We mention a few classes of systems which can be

solved exactly. As a first example, we consider systems
without “persistence,” i.e., qσ ≡ 1, leading to

λ ¼
X
σ

pσe−βϵσ : ð12Þ

The 3D freely jointed chain is obtained with the following
identifications: σ represents the space angle Ω, specifying
the orientation of each subunit (of fixed length b). Since
this orientation is random, one has pΩ ¼ 1=ð4πÞ, while the
sum becomes an integral over the space angle,P

σ →
R
2π
0 dϕ

R
π
0 dθ sin θ. Furthermore, ϵΩ ¼ Fb cos θ

represents the effect of an external field, with θ the angle
between the bond and this field. Equation (12) gives the
result

λ ¼ sinhðbFβÞ
bFβ

: ð13Þ

By combination with Eq. (1) and Eq. (4), one recovers the
aforementioned result x ¼ X=ðNbÞ ¼ LðbFβÞ.
The above analysis can be reproduced for state-inde-

pendent persistence, i.e., q ≤ 1 but independent of σ ¼ Ω,
by starting from Eq. (11) rather than from Eq. (12). The
integral determining the eigenvalue λ

Z
2π

0

dϕ
Z

π

0

dθ
sin θ
4π

q
ebFβ cos θλ − ð1 − qÞ ¼ 1; ð14Þ

can still be solved

λ ¼ ðe2bFβ=q − 1Þð1 − qÞ
ebFβð2=q−1Þ − ebFβ

: ð15Þ

The fractional extension x ¼ LqðbFβÞ is described by a
generalized Langevin function, see, also, Fig. 1(a),

LqðyÞ ¼
ð2 − qÞe2y=qðe2y − 1Þ þ qðe2y − e4y=qÞ

qðe2y=q − 1Þðe2y − e2y=qÞ : ð16Þ

The freely jointed chain is retrieved in the limit q → 1, with
Lq converging to L. In the limit of strong persistence,
q → 0, Lq converges to the sign function L0ðyÞ ¼ sgnðyÞ.
For small forces, the polymer behaves as a harmonic spring,
with spring constant κq ¼ F=X given by

κq ¼
q

ð2 − qÞ κ1 with κ1 ¼
3

Nb2β
: ð17Þ

κ1 is the spring constant of the 3D freely jointed chain. Note
the weakening of the spring for increasing persistence,
corresponding to a decreasing value of q. These predictions
have been verified using Langevin simulations, cf.
Fig. 1(a). Other applications, e.g., 1D polymers and
systems with only two σ states, are presented in the
Supplemental Material [12].
Depending on the interpretation of the model, the above

transfer matrix describes discrete steps taking place in
space (for example, in an Ising spin or polymer chain
problem), in time (for a Markov chain), or in another
possibly more abstract coordinate (for example, an angle
coordinate or a higher dimensional vectorial coordinate).
To further simplify the eigenvalue equation, we focus on a
“hydrodynamic” limit. For simplicity, we present it as
taking place in the context of a single scalar spatial variable.
We associate an elementary spatial displacement of length
dl (corresponding to the bond length b in the above
polymer problem) to each discrete step. This length will
be small compared to the average length of “straight”
segments, belonging to a given state σ, l̄σ, i.e., dl=l̄σ → 0.
Meanwhile, the total length L ¼ Ndl will become large
compared to the typical lengths of the problem, l̄σ=L → 0.
In this limit, the “jump probabilities” qσ are replaced by
transition probabilities per unit length kσ ¼ 1=l̄σ

qσ ¼ kσdl; ð18Þ
resulting in straight segments with lengths that are
exponentially distributed. The matrix A is replaced by a
transition matrix K

Aσ0;σ ¼ 1þKσ0;σdl; Kσ0;σ ¼ kσðpσ0 − δσ;σ0 Þ: ð19Þ
Consistent with this limit, the energy ϵσ and the eigenvalue
λ converge as follows to 0 and 1, respectively,
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ϵσ ¼ Fσdl; λ ¼ 1þ μdl; ð20Þ

with Fσ representing the external “force” or “energy
density” when the system is in the state σ. Thus, the
eigenvalue equation, Eq. (11), reduces to the following
algebraic relation for μ:

X
σ

pσkσ
μþ βFσ þ kσ

¼ 1: ð21Þ

We note that the dependence on the external field con-
tribution Fσ is no longer via an exponential function. The
corresponding free energy, cf. Eq. (4), becomes

G ∼ −
Lμ
β

; ð22Þ

with a simple proportionality to the eigenvalue μ. The
extensivity in N is replaced by an extensivity in L.
Equation (22) is an equality to dominant order in L.
We now turn to the search for a perfect spring, defined as

a system for which the free energy Eq. (22) is exactly
quadratic in the external field amplitude. More precisely,
we introduce the overall force F via the specification
Fσ ¼ aσF, with aσ an F-independent amplitude, and
require that

μ ¼ lðβFÞ2; ð23Þ

with l an F-independent reference length scale. Thus, the
question reduces to finding probability distributions pσ

such that Eq. (21) holds under this constraint. By Taylor
expansion in F, and under the assumption that kσ ¼ 1=l̄ is
independent of the state σ, one finds the following explicit
expression for the moment generating function associated
with pσ (see Supplemental Material [12])

X
σ

pσe−λaσ ¼
ffiffī
l
l

s
I1

�
2

ffiffi
l
l̄

q
λ

�
λ

: ð24Þ

I1 is the modified Bessel function. This general criterion for
harmonicity is our second major result. The probability
distribution pσ can be found from it, depending on the
topology of the phase space and the form of aσ, by an
inverse (integral) transform. Equation (24) obviously has
no solution for a finite state space of σ. In particular, two-
state models (corresponding, for example, to a polymer
model in d ¼ 1) can not be turned into fully harmonic
springs.
Combining Eq. (1), Eq. (22), and Eq. (23), one finds that

the corresponding stretching fraction x is given by

x ¼ X=L ¼ −
1

L
d
dF

G ¼ 2lFβ; x ≤ 1: ð25Þ

Thus, the extension is exactly linear in F. The above result
is only valid up to x ¼ 1, i.e., until the polymer is fully
stretched. The reason for this limitation is that the Taylor
expansion of Eq. (21) has a radius of convergence given by
Fc ¼ 1=ð2lβÞ. For larger values of F, x stays put at its
maximal value x ¼ 1; hence, the system undergoes a
second order phase transition at F ¼ Fc (discontinuous
second derivative of G). The spring constant κ, correspond-
ing to the harmonic law Eq. (25), is given by κ ¼ 1=ð2LlβÞ.
The above result has been derived in the limit dl=l̄ → 0. In
the Supplemental Material [12], we evaluate the first order
correction in dl and conclude that the harmonic behavior
prevails, but with a modified spring constant

κ ¼ 1

2Llβ

�
1 − 2

dl
l̄

�
: ð26Þ

As a concrete application of the above harmonicity
criterion, we return to the polymer problem in d-dimen-
sional Euclidean space, with the identification of σ as a d-
dimensional spatial angle Ω. Identifying b with dl, one
finds, from ϵΩ ¼ Fb cos θ, that aΩ ¼ cos θ. Furthermore, if
we assume that pΩ only depends on θ, the integral Eq. (24)
can be solved by inverting the integral transform.
Anticipating that l ¼ l̄=4 and comparing the harmonicity
criterion, Eq. (24), with the following integral representa-
tion of the Bessel function [13]:

I1ðλÞ ¼
λ

π

Z
π

0

dθe−λ cos θ sin2 θ; ð27Þ

we conclude (remembering that the Jacobian of the d
sphere features the factor sind−2 θ)

pΩ ¼ N d sin4−d θ: ð28Þ

(N d is a normalization constant.) This is our third major
result. We conclude that a polymer with persistence,
consisting of exponentially distributed straight segments,
is perfectly harmonic until full stretching in d ¼ 4. In
d ¼ 3, one needs an additional field, orthogonal to the
stretching direction, which induces a biased distribution
pΩ ∼ sin θ. Such a field can be realized by application of an
electromagnetic force, which is often used in the exper-
imental stretching of polymers. We have verified the latter
prediction via Monte Carlo and Langevin simulations. The
numerical results are in perfect agreement with the theory,
cf. Fig. 1(b) and the Supplemental Material [12] for more
details [14]. These conclusions are, of course, not restricted
to polymer models.
In conclusion, we have introduced Kubo-Anderson

transfer matrices, for which the largest eigenvalue can be
obtained from the simple, explicit algebraic equation,
Eq. (11). The latter simplifies, upon taking a continuous
limit, to Eq. (21). By assuming a uniform transition rate, a
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simple, explicit criterion for harmonicity results,
cf. Eq. (24). As a concrete example, we show that a
polymer chain with persistence can behave, until fully
stretched, as a perfect harmonic spring. Although our
model is rather theoretical, and perhaps not experimentally
feasible, its discovery can serve as the starting point for the
construction of complex polymer systems with enhanced
harmonicity. These results can be easily mapped on other
systems. For example, one could construct an Ising-like
magnet with perfectly linear susceptibility.
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