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The underdamped Brownian duet and stochastic linear irreversible
thermodynamics

Karel Proesmans and Christian Van den Broeck
Hasselt University, B-3590 Diepenbeek, Belgium
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Building on our earlier work [Proesmans et al., Phys. Rev. X 6, 041010 (2016)], we introduce the

underdamped Brownian duet as a prototype model of a dissipative system or of a work-to-work

engine. Several recent advances from the theory of stochastic thermodynamics are illustrated with

explicit analytic calculations and corresponding Langevin simulations. In particular, we discuss the

Onsager–Casimir symmetry, the trade-off relations between power, efficiency and dissipation, and

stochastic efficiency. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5001187]

We illustrate Ilya Prigogine’s major contributions to ther-

modynamics, namely, the development of linear irreversible

thermodynamics and the concept of an open dissipative sys-

tem, on a simple exactly solvable model, namely, a periodi-

cally driven particle in a harmonic potential. More recently,

a spectacular reformulation of thermodynamic has been

achieved by focusing on small systems including the effect

of fluctuations. We review some key discoveries of this so-

called stochastic thermodynamics, including the fluctuation

theorem, its relation to the fluctuation-dissipation relation,

and the properties of stochastic efficiency, by considering

the same model for a Brownian particle driven by a duet of

periodic forces.

I. INTRODUCTION

The theory of linear irreversible thermodynamics is typi-

cally introduced as a special topic in an advanced class on

thermodynamics. It usually focuses on the derivation of the

Onsager symmetry and its application to thermo-electric

effects, while the Prigogine minimum entropy production

theorem is occasionally included. The derivation of the

Onsager symmetry itself is often clouded in the somewhat

vague Onsager regression hypothesis, stating that fluctua-

tions on average regress in the same way as externally pro-

duced perturbations. The discussion of this issue is actually

quite subtle. A related jump from statements about the micro

world to the macro world concerns the validity of a micro-

scopic derivation for linear response or Green Kubo rela-

tions. There are several other concerns: the Onsager

symmetry is by no means general. The most obvious general-

ization is the Onsager–Casimir symmetry, where one needs

to distinguish between time-symmetric quantities (such as

position) and time-antisymmetric variables (such as veloci-

ties and magnetic field). Furthermore, a proper definition of

thermodynamic forces and fluxes is required to get a bona

fide thermodynamic description including the bilinear law

for the corresponding entropy production. Another usual gap

in the whole presentation is the lack of the connection with

the thermodynamic engine.

The purpose of this paper is to address all of these

issues, by introducing a simple exactly solvable model. It

consists of a particle in a harmonic potential subject to a

time-periodic force. The time-periodicity can be linked to

the time-periodic operation of most thermodynamic engines.

The full dynamic and thermodynamic description, including

the first and the second law, the Onsager coefficient(s) and

the thermodynamic efficiency of the related engine, can be

derived via a simple explicit calculation without any extrane-

ous assumptions. The Onsager coefficients display the

Onsager–Casimir symmetry, including the time-reversal of

the periodic driving (which needs not be time-symmetric).

The additional purpose is to present the recent spectacular

advances in our understanding of the second law by consider-

ing its application to small scale systems. Hence we revisit the

above scenario for a Brownian particle, i.e., a particle which

is small enough to be subject to the thermal fluctuations.

Assuming a description in terms of a Langevin equation with

the usual additive Gaussian white noise, the above dynamic

and thermodynamic discussion can be repeated. This analysis

is the generalization to the underdamped case of the Brownian

duet considered in Ref. 1. The Langevin description incorpo-

rates the property of detailed balance, which reflects the

micro-reversibility of the underlying dynamics. We show that

the implied fluctuation dissipation response relations are

equivalent to the fluctuation theorem, which is the generaliza-

tion of the second law to small systems. We discuss the impli-

cations for the stochastic efficiency of the engine, and show

that they are fully described in terms of the Onsager coeffi-

cients derived earlier. We illustrate all the properties by

Langevin simulations. They are, as expected in the presence

of exact analytic results, in full agreement with the theory. We

in particular, illustrate several of the surprising findings in this

context notably that the reversible efficiency is the least likely

in the long time limit for engines operating under time-

symmetric driving.

II. UNDERDAMPED PARTICLE IN A HARMONIC
POTENTIAL

Consider a particle with mass m, moving in a one-

dimensional harmonic potential with spring constant j,

1054-1500/2017/27(10)/104601/10/$30.00 Published by AIP Publishing.27, 104601-1

CHAOS 27, 104601 (2017)

http://dx.doi.org/10.1063/1.5001187
http://dx.doi.org/10.1063/1.5001187
http://dx.doi.org/10.1063/1.5001187
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5001187&domain=pdf&date_stamp=2017-09-07


subject to an external time dependent force F(t)¼F0g(t) and

a friction force proportional to the speed with friction coeffi-

cient c. We will refer to the particle as being the system,

while its surrounding responsible for the friction force is sup-

posed to be a thermal reservoir at temperature T. The

Newton equation of motion for the position of the particle,

Z(t), reads

m €ZðtÞ ¼ �c _ZðtÞ � jZðtÞ þ FðtÞ: (1)

For long enough times, the dependence on the initial posi-

tion is forgotten and one can concentrate on the following

“steady state” time-dependent solution Z(t) of this

equation:

ZðtÞ ¼ 2F0

js2

ð1
0

dt0e
� t0

2s1

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p t0

2s1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p gðt� t0Þ:

(2)

Here, we identified three intrinsic time-scales of the damped

harmonic oscillator: the relaxation time in the absence of a

spring, s1¼m/c, the overdamped relaxation time in the“

absence of a mass” s2¼ c/j, and the oscillation period in the

absence of friction s3 ¼ 2p
ffiffiffiffiffiffiffiffiffi
m=j

p
¼ 2p

ffiffiffiffiffiffiffiffiffi
s1s2
p

. Furthermore,

in the absence of an external force, the transition from the

underdamped to the overdamped regime is described by the

critical ratio s2/s1¼ 4.2 This also manifests itself in Eq. (2),

as both a numerator and denominator inside the integral go

to zero in this limit.

We will be particularly interested in the case of a time-

periodic forcing F(t)¼F(t þ s). It follows that Z(t) is also

periodic with the same period. In the case of a sine modula-

tion FðtÞ ¼ F0 sin 2pt=s, one finds, see also Fig. 1

ZðtÞ ¼ F0

j
1� 4p2a1a2ð Þsin 2pað Þ � 2pa2 cos 2pað Þ

1� 4p2a1a2ð Þ2 þ 4p2a2
2

(3)

with

a1 ¼ s1=s; a2 ¼ s2=s; a ¼ t=s: (4)

Having solved the dynamics of the problem, we turn to

its thermodynamics. The first law states the conservation of

total energy. We assume that the system, consisting of the

particle and the spring, has no internal structure or associated

internal dynamics. This means that the spring has an energy

given by

E ¼ mV2=2þ jZ2=2 (5)

with V ¼ _Z , The time-dependent force is due to an external

work reservoir and therefore does not contribute to the inter-

nal energy of the system. The power exerted by this external

force is given by _W ¼ F _Z . The notation of power as _W
should not be misinterpreted: the latter is not a full time-

derivative, corresponding to the well known fact that there

no such thing as a state variable work W. By multiplying the

equation of motion Eq. (1) with _Z , one immediately deduces

the following balance equation:

_E ¼ _W þ _Q (6)

via which we identify the rate of heat (defined as heat

towards the system, i.e., away from the reservoir):

_Q ¼ �c _Z
2
: (7)

We recognize the familiar expression of the Joule heating

rate � _Q ¼ c _Z
2 � 0, being the heat flux dumped into the res-

ervoir. Again, one should beware of the notation _Q, as this

does, in general, not represent the time derivative of a quan-

tity Q [see however comment3].

Having identified the heat flux, one can turn to the sec-

ond law of thermodynamics and the entropy production. We

are using here the formulation of thermodynamics for open

systems as introduced by Prigogine. The entropy change of a

system is the sum of two contributions: the irreversible

entropy production _Si and the entropy exchange _Se with the

environment

_S ¼ _Si þ _Se: (8)

The entropy flow is given in terms of the heat flux, while the

entropy production is nonnegative

_Se ¼
_Q

T
_Si � 0: (9)

As we are working with a system without an internal struc-

ture, we have _S ¼ 0, and therefore

_Si ¼ � _Se ¼
c _ZðtÞ2

T
; (10)

which is indeed nonnegative.

With the application to thermodynamic engines in mind,

we again focus on the case of a time-periodic forcing. Z(t) is

then also periodic with the same period, and hence so are all

FIG. 1. Scaled position 10Z(t)j/F0 (full line), force F(t)/F0 (dashed line),

and power 10 _Wsj=ðF2
0Þ (dotted line) of a bead with FðtÞ ¼ F0 sin ð2pt=sÞ,

as a function of time for s1¼ s2¼ s. Note that while �_W � 0, the system tran-

siently returns part of its energy back to the worksource (cf. the two time-

intervals where _W � 0).
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other the thermodynamic quantities, in particular, E and S.

The obvious thing to do is to investigate the averages of

these quantities over one period. Such an average will be

designated by an overbar: �y ¼
Ð s

0
dt yðtÞ=s. Since the energy

returns to its original value after each period, one has

�_E ¼ �_Q þ �_W ¼ 0: (11)

Similarly, the system entropy does not change after each

period, hence

�_S ¼ �_Si þ �_Se ¼ 0: (12)

In combination with the first law, this leads to

�_Si ¼ �
�_Q

T
¼

�_W

T
: (13)

In words, the work performed on the system during each

period is dumped, in its entirety, under the form of heat into

the reservoir. Prigogine provided another more revealing

description of this state of affairs: we are dealing here with a

prototype of a dissipative system. The particle is in a time-

periodic nonequilibrium state. The nonequilibrium nature of

this state entails internal irreversible entropy production. The

persistence of this nonequilibirum state is only possible

because the system imports a compensating negative entropy

flow from the reservoir.

To conclude the analysis, we use the previously derived

explicit expression for the heat flow or work flow. One

observes that the entropy production (averaged over one

period), is quadratic in the amplitude of the driving. One

thus reproduced the “usual” expression of the entropy pro-

duction familiar from usual “steady state” linear irreversible

thermodynamics

�_Si ¼
�_W

T
¼ JX; J ¼ LX X ¼ F0

T
: (14)

The thermodynamic force X is taken to be the ampli-

tude F0 of the external driving divided by the reservoir tem-

perature T, in agreement with standard linear irreversible

thermodynamics. From _W ¼ F _Z with Z given by Eq. (2),

one finds the following explicit expression for the Onsager

coefficient L

L ¼ 2T

jss2

ðs

0

dt

ð1
0

dt0e
� t0

2s1

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p t0

2s1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p
� gðtÞ _gðt� t0Þ: (15)

As is clear from its relation to the non-negative entropy pro-

duction, this coefficient has to be positive. An explicit proof

follows by expressing the periodic forcing in terms of its

Fourier series. From

FðtÞ ¼ F0

X1
n¼0

aðn;sÞ sin
2pnt

s

� �
þ aðn;cÞ cos

2pnt

s

� �� �
;

(16)

one finds that the Onsager coefficient is given by

L ¼ T

js

X1
n¼0

2p2n2a2 a2
ðn;sÞ þ a2

ðn;cÞ

� �
1� 4p2n2a1a2ð Þ2 þ 4p2n2a2

2

: (17)

The above derivation, while appealing in its simplicity,

appears to be unexciting in its implications, aside from the

fact that it can serve as a simple prototype model of a dissi-

pative system. From the mathematical point of view, we

have merely succeeded in estimating the dissipation per

period in terms of a positive coefficient L. To make the con-

nection with an engine, we recall the basic principle of such

a construction: it consists of a motor mechanism, corre-

sponding to an entropy producing process, which drives

another“ entropy consuming” process, i.e., with a negative

entropy production.

III. UNDERDAMPED HARMONIC DUET

To build a genuine engine, we repeat the above analysis

in the presence of two external forces, i.e., we set

FðtÞ ¼ F1ðtÞ þ F2ðtÞ F1ðtÞ ¼ F1g1ðtÞ F2ðtÞ ¼ F2g2ðtÞ:
(18)

One now distinguishes the work done by each of the

forces

_W ¼ _W1 þ _W2; _W1 ¼ F1
_Z; _W2 ¼ F2

_Z: (19)

Considering time-periodic modulations with the same

period, we note that Eqs. (8), (11), and (14) remain valid,

with the above replacement for the expression of the (total)

work. The system can now act like a catalyst in chemistry: it

returns to its original state after each period, having mediated

the exchange of work between the two work sources.

Inserting Eq. (19) into Eq. (14), one finds (again after aver-

aging over one period):

�_Si ¼
�_W 1 þ �_W 2

T
¼ X

†

LX ¼ J †

X: (20)

Hence, instead of a single force X, flux J and Onsager coeffi-

cient L, one now has two forces X ¼ ðX1 ¼ F1=T; X2 ¼
F2=TÞ

†

with corresponding fluxes J ¼ ðJ 1;J 2Þ linked by a

2� 2 Onsager matrix L; J ¼ LX. These thermodynamic

fluxes give direct access to the work fluxes to the associated

reservoir. Furthermore, it is now possible to extract work
�_W 1 � 0, i.e., the worksource 1 is receiving work, provided

worksource 2 “pays for it” by delivering positive work
�_W 2 � � �_W 1 � 0. The efficiency of this“ work-to-work-con-

verter” is obviously given by

�g ¼ �
�_W 1

�_W 2

¼ �J 1X1

J 2X2

¼ �L11X2
1 þ L12X1X2

L21X1X2 þ L22X2
2

� 1: (21)

To get the explicit expression of the output power

� �_W 1 ¼ �J 1X1 and efficiency �g in terms of the applied ther-

modynamic forces X, we need the expression for the

Onsager matrix L. The latter can be basically copied from

104601-3 K. Proesmans and C. Van den Broeck Chaos 27, 104601 (2017)



the expression Eq. (15) following the splitting of the single

force into a duet of forces. One finds

Lij ¼
2T

jss2

ðs

0

dt

ð1
0

dt0e
� t0

2s1

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p t0

2s1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p
� _giðtÞgjðt� t0Þ: (22)

One can again decompose the Onsager coefficients in terms

of Fourier components. Setting

FiðtÞ ¼ Fi;0

X1
n¼1

aði;n;sÞ sin
2pnt

s

� �
þ aði;n;cÞ cos

2pnt

s

� �� �
;

(23)

one finds that the Onsager coefficients Lij are given by the

following bilinear expression in terms of the Fourier ampli-

tudes (r, q¼ s, c refer to sine and cosine contributions,

respectively)

Lij ¼
X

r;q¼fs;cg

X1
n0;n¼1

aði;n0;rÞLði;n0;rÞ;ðj;n;qÞaðj;n;qÞ (24)

with

Lði;n0;rÞ;ðj;n;rÞ ¼
T

js
dn;n0

2n2p2a2aði;n;rÞaðj;n;rÞ

1� 4a1a2n2p2ð Þ2 þ 4p2n2a2
2

;

Lði;n0;sÞ;ðj;n;cÞ ¼
T

js
dn;n0

np 1� 4a1a2n2p2ð Þ
1� 4a1a2n2p2ð Þ2 þ 4p2n2a2

2

;

Lði;n0;cÞ;ðj;n;sÞ ¼ �Lði;n0;sÞ;ðj;n;cÞ:

(25)

We note that different frequencies do not couple to one

another. This is of course a consequence of the linearity of

the underlying dynamics and hence not a deep symmetry

principle. Furthermore, the matrix consists of symmetric and

anti-symmetric parts. This observation is put in the proper

perspective by considering the Onsager matrix ~Lij for the

time-reversed driving, ~giðtÞ ¼ gið�tÞ

~Lij ¼
2T

sj

ðs

0

dt

ð1
0

dt0e
� t0

2s1

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p
2s1

t0

 !

s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p
� _gið�tÞgjð�tþ t0Þ

¼ 2T

sj

ðs

0

dt

ð1
0

dt0e
� t0

2s1

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p
2s1

t0

 !

s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p
� _gjðtÞgiðt� t0Þ
¼ Lji: (26)

In the transition to the second line, we have used a partial inte-

gration with respect to t and shifted the time-axis of t (using

the fact that gi(t) is time-periodic). We thus conclude that the

Onsager matrix satisfies the Onsager–Casimir symmetry rela-

tion, i.e., it is symmetric upon inverting the quantities that are

odd under time reversal (Fig. 2). This completes the thermo-

dynamic analysis of the harmonic duet functioning as a work-

to-work converter. In Sec. IV, we review some of its conse-

quences for the efficiency of the engine.

IV. EFFICIENCY OF THE HARMONIC DUET

The trade-off between the efficiency, power and dissipa-

tion of an engine is an important issue, which has been

extensively discussed in the literature.4–35 Going back to

early work by Moritz von Jacobi on maximizing the output

power, an interesting scenario consists in optimizing thermo-

dynamic features with respect to the load force. In the pre-

sent setting of a time-periodic driving, we will assume that

the time-dependence of functions g1(t) and g2(t) is specified.

We select an output load amplitude F1, such that it maxi-

mizes the output power or efficiency, or minimizes dissipa-

tion. These three different regimes are identified by the

subscript notation MP, ME or mD, respectively. Power

P ¼ � �_W 1, efficiency g and dissipation
�_S are, via their defini-

tions, linked to each other in the linear regime as follows:

T�_Si ¼ P
1

g
� 1

� �
: (27)

FIG. 2. �_W 1 and �_W 2 for the Brownian duet with F1ðtÞ ¼ F1 cos ð2pt=sÞ;
F2ðtÞ ¼ F2 sin ð2pt=sÞ; F2 ¼ 1; s1 ¼ s2 ¼ s, for time-forward (top) and

time-reversed process (bottom). The diagonal terms L11 and L22 induce a

quadratic dependence in F1 and a constant contribution for �_W 1 and �_W 2,

respectively, while the off-diagonal terms give linear contributions. A

straighforward fitting procedure leads to L11 ¼ L22 ¼ ~L11 ¼ ~L22 ¼ 0:0156;

L12 ¼ �L21 ¼ ~L21 ¼ �~L12 ¼ 0:0795, verifying the Onsager–Casimir

symmetry.
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In Ref. 25, we proved that the values of these quantities in

the MP, ME, and mD regimes are further constrained by the

following set of relations:12,24,25

�gMP ¼
PMP

2PMP � PME
�gME

T�_Si;mD ¼
1

�gMP

� 1

�g2
ME

� 1

� �
PMP þ

1

�g2
ME

PME;

PmD ¼ PMP �
1

�g2
ME

PMP � PMEð Þ:

(28)

In the present case, the Onsager matrix obeys the following

symmetry relation:25

L12 ¼ 6L21: (29)

Under this condition, one can derive the additional result

that the power at minimum dissipation vanishes, implying

the following simplification of Eq. (28)

PmD ¼ 0; T _Si;mD ¼
1

�gMP

� 2

� �
PMP;

PME

PMP
¼ 1� �g2

ME; �gMP ¼
�gME

1þ �g2
ME

:
(30)

An illustrative verification of all these relations is given in

Fig. 3. In this figure, we show the power, efficiency, and dis-

sipation for a harmonic duet with time-symmetric driving,

meaning that the symmetry relation, Eq. (29), is satisfied.

One can easily verify that Eq. (30) are indeed obeyed.

V. STOCHASTIC DYNAMICS

The analysis of Secs. III and IV can be extended to the

study of a periodically driven Brownian particle in a

harmonic potential, by adding a noise term to the equation of

motion, Eq. (1)

m€zðtÞ ¼ �c _zðtÞ � jzðtÞ þ FðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2ckBT

p
RðtÞ: (31)

R(t) is the delta correlated noise

hRðtÞi ¼ 0; hRðtÞRðt0Þi ¼ dðt� t0Þ: (32)

The amplitude of the noise is chosen such that it obeys the

fluctuation dissipation relation. We are using a lower case

notation to stress that the position z(t) of the particle is now a

stochastic, fluctuating quantity. However, as the above equa-

tion is linear, one immediately verifies that ZðtÞ ¼ hzðtÞi still

obeys Eq. (1). Similarly one finds that the stochastic power,

again using the lower case convention to identify the corre-

sponding stochastic quantities

_wi ¼ FiðtÞ _zðtÞ; (33)

reduces upon averaging to the previously introduced power

h _wii ¼ _Wi. For this reason, the linear thermodynamics of

Sec. III describes the ensemble properties of the above sto-

chastic model. In particular, ensemble averaged response

and efficiency are quantified in terms of the aforementioned

Onsager–Casimir coefficients.

In the remainder of this paper we however show how

other stochastic properties of the model are also linked to the

Onsager coefficients. The first connection is not really novel,

as it is an expression of the famous fluctuation dissipation

theorem (although here derived in the context of a time-

periodic system). We consider the fluctuations in the power

output

CijðtÞ ¼ hwiwji � hwiihwji; (34)

where the notation wi stands for the change over a time inter-

val [0, t]

wi ¼
ðt

0

dt0 _wiðt0Þ: (35)

We omit the explicit dependence on t for notational simplic-

ity, whenever it is clear from the context. In the sppendix,

we derive the following expression for Cij(t) in the limit

t¼ ns with the number n of cycles large. The � sign denotes,

here and in the sequel, an equality to dominant order in t

CijðnsÞ � 2kBT3nXiXj

js2

ðs

0

dt0
ð1

0

dt00 _giðt0Þgjðt0 � t00Þ
	

þ _gjðt0Þgiðt0 � t00ÞÞ
e
� t0

2s1 sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p t0

2s1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p :

(36)

Comparison with Eq. (22) leads to the fluctuation-

dissipation relation

CijðnsÞ � kBT2nsXiXj Lij þ Ljið Þ: (37)

FIG. 3. (a) Power, (b) efficiency, and (c) dissipation as a function of F1, for a

Brownian duet, with F1ðtÞ ¼ F1 cos ð2pt=sÞ; F2ðtÞ ¼ F2 sin ð2pt=sÞ; s1 ¼ s2

¼ s and scaling s ¼ j¼F2¼ 1. One verifies that PME=PMP ¼ 0:478 ¼ 1

��g2
ME; �gME=ð1þ�g2

MEÞ¼0:47¼�gMP, PmD¼0, and ð1=�gMP�2ÞPMP¼0:013

¼T _Si;mD.

104601-5 K. Proesmans and C. Van den Broeck Chaos 27, 104601 (2017)



VI. FLUCTUATION THEOREM

While we have reproduced the above fluctuation dissipa-

tion relation by an explicit calculation, its validity can be

derived directly from the generalization of the second law,

describing small scale nonequilibrium systems. To formulate

this so-called fluctuation theorem, one needs to define the sto-

chastic analogues of the entropy, energy, heat, and work.

These quantities will be denoted by the lower case notation of

their macroscopic counterparts. We refer to Refs. 36 and 37

for an introduction to this stochastic thermodynamics,38,39 and

briefly review the main result that is relevant here. The sto-

chastic system entropy s obeys a Prigogine balance equation

_s ¼ _si þ _se _se ¼ _q=T; (38)

_q is the stochastic heat flux into the system. Contrary to its

macroscopic average, the stochastic entropy production _si

need not be positive. In fact, the second law is replaced by a

symmetry relation for the probability distribution of this quan-

tity: the fluctuation theorem states that the probability to have

a positive stochastic entropy production rate is exponentially

more likely then to have the corresponding negative entropy

production rate in the process with time-inverted driving40–44

pðDsiÞ
~pð�DsiÞ

� e
Dsi
kB (39)

with Dsi ¼
Ð t

0
dt0 _siðt0Þ. We note in passing that, by multiply-

ing with ~ptð�DsiÞ and integrating over Dsi, one finds the so-

called integral version of the fluctuation theorem, which in

turn implies by Jensen’s inequality the usual second law

property for the ensemble average

he
Dsi
kB i ¼ 1! hDsii � 0: (40)

For the application to the present situation, one needs a

“stronger” fluctuation theorem expressed in terms of the

individual fluxes45,46

ptðw1;w2Þ
~ptð�w1;�w2Þ

� e
w1þw2

kBT ; (41)

where we have used the fact that the stochastic entropy pro-

duction in the long time limit is equal to the work input

divided by the temperature, i.e., Dsi ¼ Ds� Dse � �Dse

¼ �q=T ¼ ðw1 þ w2Þ=T. Due to the linearity of Eq. (31),

the work distribution is Gaussian47

ptðw1;w2Þ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffi
detC
p e

�1
2

P
i;j

wi�hwiitð ÞC�1
ij wj�hwjitð Þ

(42)

and an analogous result for the time-inverted dynamics. One

finds in the long time limit that

2 w1 þ w2ð Þt2
kBT

� �
X

i;j

wi � hwiit
	 


C�1
ij wj � hwjit
	 


þ
X

i;j

wi þ h~wiit
	 


~C
�1

ij wj þ h~wjit
	 


: (43)

Noting that this should hold for any values of the wi, one

has

CðtÞ � ~CðtÞ; (44)

C�1ðtÞ hwit þ h~wit
	 


� 1

kBT
1; (45)

hwi
†

t C
�1ðtÞhwit � h~witC�1ðtÞh~wit; (46)

where 1¼ (1, 1) and where we used the fact that C is by defi-

nition symmetric. Plugging Eq. (45) into Eq. (46) gives

1
†

CðtÞ1 � 2kBT1hwit ¼ 2kBT2nsX
†

LX (47)

with X¼ (X1, X2)† and where we consider t¼ ns with n large

in the last equality sign. As this equation should hold for any

choice of X, one reproduces Eq. (37), i.e., the fluctuation the-

orem reproduces the fluctuation-dissipation theorem.

VII. STOCHASTIC EFFICIENCY

A recent discovery in the field of stochastic thermody-

namics has to do with the properties of the stochastic effi-

ciency.48–65 The latter is defined as

g ¼ �w1

w2

: (48)

One expects that this stochastic quantity will converge

to the thermodynamic efficiency �g in the limit of long times

t, as both work fluxes will converge to their average value in

the large time limit, wi � �_W it for i¼ 1, 2, implying that the

results from Sec. IV remain valid, when one focuses on aver-

aged values. The approach of this limit however holds some

surprises, which can be nicely illustrated in the present

model. The probability distribution for the efficiency is given

by

ptðgÞ ¼
ð

dw1

ð
dw2 pðw1;w2Þd gþ w1

w2

� �
: (49)

As the probability distribution associated with the work is

purely Gaussian, cf. Eq. (42), the efficiency distribution can

be calculated exactly for all times

ptðgÞ ¼
ecðgÞ 2þ jaðgÞjffiffiffiffiffiffiffiffiffi

bðgÞ
p e

aðgÞ2
2bðgÞ

ffiffiffiffiffiffi
2p
p

erf
jaðgÞjffiffiffiffiffiffiffiffiffiffiffi

2bðgÞ
p

 !" #

2bðgÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detCðtÞ

p (50)

with

aðgÞ ¼
C22ðtÞghw1it � C11ðtÞhw2it þ C12ðtÞ hw1it � ghw2it

	 

detCðtÞ ;

bðgÞ ¼ C11ðtÞ þ 2C12ðtÞgþ C22ðtÞg2

detCðtÞ ;

cðgÞ ¼ �C22ðtÞhw1i2t � 2C12ðtÞhw1ithw2it � C11ðtÞhw2i2t
2 detCðtÞ :

(51)

One can straightforwardly check that

ptðgÞ�g�2 (52)
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for g !61. This implies that the moments, and in particu-

lar, the average and the cumulant generating function, do not

exist. While this may seem to be counter-intuitive, one has to

realize that the efficiency is not an “additive” quantity, but

rather the ratio of “additive” quantities, and therefore has

some unusual properties. Furthermore, the macroscopic effi-

ciency is well defined and given by �g ¼ � limt!1hw1i=hw2i.
The properties of the stochastic efficiency are particularly

interesting as one approaches this asymptotic limit. The prob-

ability distribution for the efficiency converges to a delta func-

tion centered at the macroscopic efficiency �g, with all other

efficiencies exponentially unlikely. More explicitly, this

asymptotic behavior is described by the so-called large-devia-

tion-function J(g)66

JðgÞ ¼ � lim
g!1

1

t
lnptðgÞ: (53)

By applying this limit to Eq. (50) and combining it with

the fluctuation-dissipation result, Eq. (37), one finds that

J(g) can be expressed as follows in terms of the Onsager

matrix:

JðgÞ ¼ 1

4kB

X1 gX2

� �
L

X1

X2

" # !2

X1 gX2

� �
L

X1

gX2

" # : (54)

One verifies the following remarkable properties. J(1) is

invariant under a transposition of the Onsager matrix implying

Jð1Þ ¼ ~Jð1Þ. Furthermore, J(g) has a unique maximum at g
¼ 1 if the Onsager matrix is symmetric, L12¼ L21, which is

the case when the driving is time-symmetric. In particular, the

probability distribution will intersect at reversible efficiency

in the case of time-asymmetric driving, while for time-

symmetric protocols a minimum emerges at reversible effi-

ciency in the efficiency distribution. These properties are veri-

fied via analytic calculations and simulations in Figs. 4 and 5.

For these simulations we used a standard Euler–Maruyama

integrator.

The above long-time properties are in fact generic, as is

clear by deriving them directly from the fluctuation theorem.

From

FIG. 4. Stochastic efficiency of a Brownian duet with time-symmetric driv-

ing: g1ðtÞ ¼ 10 cos ð2pt=sÞ and g2ðtÞ ¼ 10 cos ð2pt=sÞ þ cos ð4pt=sÞ with

thermodynamic forces X1¼ –X2¼ 10, which leads to �g ¼ 0. Upper panel:

probability distribution of the efficiency after 32 (red), 64 (green), and 128

(blue) cycles with analytical results and simulation data. Lower panel: large

deviation function of the efficiency, with analytical results and extrapolation

from simulation data (using the extrapolation procedure described in Refs.

55 and 57).

FIG. 5. Stochastic efficiency of a Brownian duet with time-asymmetric

driving: g1ðtÞ ¼ 10 cos ð2pt=sÞ and g2ðtÞ ¼ 10 cos ð2pðt=s� 0:4ÞÞ with

thermodynamic forces X1¼ 2, X2¼ 1. Upper panel: probability distribution

of the efficiency after 16 (red), 32 (green), and 64 (blue) cycles with ana-

lytical results and simulation data. Lower panel: large deviation function

of the efficiency, with analytical results and extrapolation from simulation

data. Note that the deviations between analytic and simulation results for

larger values of g are due to insufficient statistics.
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ptðw1;w2Þ
~ptð�w1;�w2Þ

� e
w1þw2

kBT ; (55)

one finds that the large deviation function I(w1, w2) of the

joint work

Iðw1;w2Þ ¼ � lim
t!1

1

t
lnptðw1t;w2tÞ; (56)

obeys the symmetry property

Iðw1;w2Þ � ~Ið�w1;�w2Þ ¼
w1 þ w2

kBT
(57)

with an analogous relation for the time-inverted dynamics.

This large deviation function for the work fluxes is related to

the large deviation function for the efficiency via the so

called contraction principle

JðgÞ ¼ min
�w1=w2¼g

Iðw1;w2Þ ¼ min
k

Ið�gk; kÞ: (58)

Note that for reversible efficiency, g¼ 1, one has

w1þw2¼ 0, and therefore, using Eq. (56)

Jð1Þ ¼ min
k

Ið�k; kÞ ¼ min
k

~Iðk;�kÞ ¼ ~Jð1Þ; (59)

i.e., the large deviation functions for the efficiency of the

time-forward and time-reversed process intersect at g ¼ 1.

For the time-symmetric case, we note that the minimisation

in Eq. (58) includes k ¼ 0, and therefore

JðgÞ � Ið0; 0Þ: (60)

On the other hand, Eq. (56) implies

Iðk;�kÞ þ Ið�k; kÞ ¼ 0; (61)

and as I(w1, w2) is generally convex, this implies

Jð1Þ ¼ min
k

Iðk;�kÞ ¼ Ið0; 0Þ: (62)

Combining with Eq. (60) implies that J(1) is the maxi-

mum of J(g), and reversible efficiency becomes the least

likely efficiency.

VIII. CONCLUSIONS

In this work, we have discussed the underdamped peri-

odically driven (Brownian) duet in the terminology of Ilya

Prigogine. Entropy production, Onsager coefficients, and

Onsager–Casimir symmetry can be easily derived. The anal-

ysis provides a pedagogical illustration of a periodically

driven dissipative system, and with a duet of forces of a

work-to-work convertor. With the addition of thermal noise,

the model can be analyzed in full analytic detail in the con-

text of stochastic thermodynamics. In particular, the connec-

tion to the fluctuation-dissipation relation, to the fluctuation

theorem, and to universal properties of stochastic efficiency

can be displayed.
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APPENDIX: WORK CORRELATION FUNCTION CIJ

The solution of the Langevin equation, Eq. (31), for a

particle starting at position z(0)¼ z0 with initial velocity,

v(0)¼ v0 sampled from the periodic steady state distribution

Eq. (A3), is given by

zðtÞ�hzðtÞi¼
e�

ct
2m sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4s1=s2

p t

2s1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4s1=s2

p
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4s1=s2

p t

2s1

� �� �
z0þ2s1sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4s1=s2

p t

2s1

� �
v0

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4s1=s2

p

þ 2F0

bjs1s2

ð1
0

dt0e
� t0

2s1

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4s1=s2

p t

2s1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4s1=s2

p Rðt� t0Þ: (A1)

To evaluate the probability distribution of position and velocity in the periodic steady state, it is convenient to start from the

Kramers equation

@

@t
pðz; v; tÞ ¼ �v

@

@z
pðz; v; tÞ þ @

@v
ðcvpðz; v; tÞÞ þ z

s1s2

þ F1g1ðtÞ þ F2g2ðtÞ
m

� �
@

@v
pðz; v; tÞ þ 1

s1mb
@2

@v2
pðz; v; tÞ: (A2)

One verifies by substitution that the solution reads

pðz; v; tÞ ¼ b
ffiffiffiffiffiffiffi
jm
p

2p
e�

b
2

mðv�hvitÞ
2þj

2
ðz�hzitÞ

2ð Þ; (A3)

where hzit is the solution of Eq. (1) and hvit ¼ dhzit=dt. Multiplying Eq. (A1) with z0 and averaging with the distribution given

in Eq. (A3) leads to
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hzð0ÞzðtÞi � hzð0ÞihzðtÞi ¼
2e�

ct
2m sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p t

2s1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p t

2s1

� �� �� �
bj

¼ 2

bjs2

ðt

0

dt0
e
� t0

2s1 sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p t0

2s1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p : (A4)

Note that the right hand side is invariant under a shift of the

time axis, and therefore stationary.

Turning to the work distribution, one writes

CijðtÞ ¼
ðt

0

dt0 _wiðt0Þ
ðt

0

dt00 _wjðt00Þ

 �

�
ðt

0

dt0 _wiðt0Þ

 �

�
ðt

0

dt00 _wjðt00Þ

 �

¼ T2XiXj

ðt

0

dt0
ðt

0

dt00 _giðt0Þ _gjðt00Þ

� hzðt0Þzðt00Þi � hzðtÞihzðt0Þi
	 


¼ T2XiXj

ðt

0

dt0
ðt0

0

dt00ð _giðt0Þ _gjðt0 � t00Þ

þ _gjðt0Þ _giðt0 � t00ÞÞ hzðt00Þzð0Þi � hzðt00Þihzð0Þi
	 


:

(A5)

This result further simplifies after partial integration and for

t¼ ns

CijðnsÞ ¼ T2XiXj

ðns

0

dt0
ðt0

0

dt00ð _giðt0Þgjðt0 � t00Þ

þ _gjðt0Þgiðt0 � t00ÞÞ d

dt00
hzðt00Þzð0Þi � hzðt00Þihzð0Þi
	 


�T2XiXj

ðns

0

dt0
ðt0

0

dt00ð _giðt0Þgjð0Þ

þ _gjðt0Þgið0ÞÞ hzðt0Þzð0Þi � hzðt00Þihzð0Þi
	 


¼ 2T2XiXj

bjs2

ðns

0

dt0
ðt0

0

dt00ð _giðt0Þðgjðt0 � t00Þ

� gjð0ÞÞ þ _gjðt0Þ giðt0 � t00Þ � gið0Þ
	 


Þ

�
e
� t0

2s1 sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p t0

2s1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s1=s2

p : (A6)
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