
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Groundedness in Logics With
a Fixpoint Semantics

Bart Bogaerts

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor in Engineering

June 2015

Supervisor:
Prof. Dr. M. Denecker
Prof. Dr. J. Vennekens, co-supervisor
Prof. Dr. J. Van den Bussche, co-
supervisor

Groundedness in Logics With a Fixpoint Semantics

Bart BOGAERTS

Examination committee:
Prof. Dr. ir. J. Vandewalle, chair
Prof. Dr. M. Denecker, supervisor
Prof. Dr. J. Vennekens, co-supervisor
Prof. Dr. J. Van den Bussche, co-supervisor
Prof. Dr. ir. M. Bruynooghe
Prof. Dr. ir. F. Piessens
Prof. Dr. Gerhard Brewka
(University of Leipzig)

Prof. Dr. Thomas Eiter
(Vienna University of Technology)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

June 2015

© 2015 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Bart Bogaerts, Celestijnenlaan 200A, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Abstract

In the field of knowledge representation and reasoning, many different logics are
developed. Often, these logics exhibit striking similarities, either because they
emerged from related ideas, or because they use similar underlying fundamental
principles. Approximation fixpoint theory (AFT) is an abstract algebraical
unifying framework that aims at exposing these principles by formalising them
in lattice theory. It has been successfully applied to unify all common semantics
of logic programs, autoepistemic logic, default logic, and more recently Dung’s
argumentation frameworks and abstract dialectical frameworks.

In this dissertation, we extend approximation fixpoint theory to expose more
underlying principles common to the aforementioned logics. In these domains,
researchers have made use of a similar intuition: that facts (or models) can be
derived from the ground up. They typically phrase this intuition by saying, e.g.,
that the facts should be grounded, or that they should not be unfounded, or
that they should be supported by cycle-free arguments. In different domains,
semantics that allow ungrounded models have received a lot of criticism. In logic
programming for example, this was the case for Clark’s completion semantics,
which was later improved by perfect model semantics, stable semantics and
well-founded semantics. In autoepistemic logic, a similar evolution happened:
Moore’s expansion semantics turned out to allow self-supporting models; this
resulted in the development of many different semantics in attempts to get rid
of this erroneous behaviour.

In the first part of this dissertation, we formalise groundedness in approximation
fixpoint theory. We study how groundedness relates to other concepts and
fixpoints studied in AFT. We apply our abstract theory to the aforementioned
domains: we show that our notion of groundedness indeed captures the intuitions
that existed in these domains and study complexity of reasoning with grounded
models. We study which existing semantics are grounded and which are not.
For example, for logic programming, we find that Clark’s completion semantics
(indeed) is not grounded, while stable and well-founded semantics are grounded.

i

ii ABSTRACT

We show that the well-founded model is not just any grounded model: it is the
least precise partial grounded model.

In the second part of this thesis we define a class of autoepistemic theories for
which it is informally clear how to construct the intended model. Unfortunately,
despite previous claims that the well-founded semantics captures the meaning
of autoepistemic theories very well (e.g., because of its constructive nature),
the well-founded semantics fails to identify this model. In order to overcome
this limitation, we propose, algebraically, a new constructive semantics based
on the notion of groundedness. Our new construction refines the well-founded
model construction and succeeds in identifying the intended model for the class
of motivating examples. Furthermore, we show that for this class of examples,
our novel construction constructs the unique grounded fixpoint.

Summarised, in this dissertation, we continue the work on approximation fixpoint
theory by identifying novel concepts occurring in all of the application domains
and by refining existing semantics to better capture the intended meaning of a
class of theories.

Beknopte samenvatting

In het onderzoeksdomein kennisrepresentatie en redeneren worden formele
talen, ook wel logicas genoemd, ontwikkeld met als doel kennis op een
natuurlijke manier neer te kunnen schrijven en deze kennis te gebruiken
om automatisch te redeneren. Verschillende logicas vertonen vaak sterke
gelijkenissen, doordat ze uit gelijkaardige ideeën ontstaan, of doordat ze op
dezelfde fundamentele principes gebaseerd zijn. Approximation fixpoint theory
(AFT) is een abstracte algebraïsche theorie waarin dergelijke onderliggende
principes expliciet worden gemaakt, door ze op een hoog niveau, los van de
logicas zelf, te formaliseren. AFT is reeds succesvol toegepast om de verschillende
semantieken van logisch programmeren, autoepistemische logica, default logica
en abstracte argumentatietheorie te unificeren.

In dit proefschrift breiden we AFT uit om meer onderliggende principes bloot
te leggen. In de verschillende hogervermelde domeinen hebben onderzoekers
uitspraken gedaan over een gelijkaardige intuïtie. Ze verwezen vaak naar
het feit dat modellen gegrond (grounded) moeten zijn, of dat modellen van
de grond af aan opgebouwd kunnen worden of geen vicieuze cirkels mogen
bevatten. In de verschillende onderzoeksdomeinen werden modellen die deze—
informele—eigenschap niet hebben steeds als slecht beschouwd. Bijvoorbeeld in
logisch programmeren was er veel kritiek op Clark’s zogenaamde completion
semantiek om precies die reden. Dit heeft geleid tot de ontwikkeling van
verschillende verbeterde semantieken die enkel gegronde modellen toelaten. In
autoepistemische logica vond een gelijkaardige ontwikkeling plaats: Moore’s
oorspronkelijke semantiek liet ongegronde modellen toe en verschillende
onderzoekers ontwikkelden betere semantieken die dit gedrag niet vertonen.

In het eerste deel van deze tekst formaliseren we het begrip gegrondheid in
AFT. We geven een abstract algebraïsche definitie van deze notie en bestuderen
hoe gegrondheid zich verhoudt tot andere concepten die in AFT bestudeerd
worden. Nadien passen we onze theorie toe op de verschillende logicas. We tonen
aan dat onze abstracte definitie inderdaad bestaande intuïties kan vatten. We

iii

iv BEKNOPTE SAMENVATTING

bestuderen in elk van de verschillende domeinen welke bestaande semantieken
al dan niet gegrond zijn. Bovendien geven we een alternatieve definitie van de
well-founded semantiek gebaseerd op gegrondheid.

In het tweede deel van deze thesis gebruiken we gegrondheid om een ander
probleem op te lossen. We tonen aan dat er in autoepistemische logica een
klasse van theorieën is, waarvoor de well-founded semantiek ontoereikend is,
ondanks sterke eerdere claims dat de well-founded semantiek de betekenis
van autoepistemische theorieën zeer goed vat. We definiëren dan, opnieuw
algebraïsch, een nieuwe constructieve semantiek gebaseerd op gegrondheid.
Wanneer we deze algebraïsche constructie toepassen op autoepistemische logica,
krijgen we een semantiek die wel het gewenste resultaat geeft op de voorgenoemde
klasse van theorieën.

Kort samengevat zetten we in dit proefschrift het werk rond AFT verder
door nieuwe concepten te identificeren die in verschillende logische domeinen
voorkomen en door een bestaande algebraïsche constructie te verfijnen zodat ze
het intuïtief verwachte resultaat produceert op een grotere klasse van theorieën.

Preface

Today is the end of a 4 year lasting chapter of my life. I’ve had a really great
time, filled with challenging questions, opportunities to meat interesting people
and a lot of liberty to choose what to work on. Still, it feels good to close this
chapter and start a new one. There are many people who contributed to making
these four years enjoyable; for that, I’m grateful.

First of all, I want to thank my supervisors. I started this PhD with just
one supervisor, Marc. Over the past four years, he has been a non-stop source
of (mostly great) research ideas; if I had to work out all of his suggestions
before graduating, my PhD would take the rest of my life. All of the work in
this dissertation is somehow based on ideas he came up with. Marc, thank
you for turning me into a researcher, for all the constructive feedback on my
texts1, and the countless interesting discussions and coffee breaks! When my
research evolved, also Joost and Jan became my supervisors. Together with
Marc, they formed a great complimentary team. While Marc was dreaming
about drastically changing the entire field of computational logic, Joost often
managed to stay grounded2 and take a nuanced position. Joost also has the
ability to turn entire paragraphs into one sentence (with a greater information
content). While Marc spent hours to perfect the abstract of a paper, Jan was
able to uncover every tiny mathematical mistake or abuse of notation after the
first reading of a text. Jan is incredibly fast, and has given me great advice on
how to “sell” my papers. Marc, Joost, Jan, it goes without saying that I could
not have written this dissertation without your help. Thank you!

I want to thank all my colleagues for the great scientific collaborations, the
endless3 discussions at our whiteboard and the legendary board game sessions.
But most importantly, thanks for forming an extremely cohesive research group:

1Even though the perfect moment to send this feedback seems to be less than 24 hours
before the submission deadline.

2A property that was of great importance for this dissertation!
3Literally, endless.

v

vi PREFACE

whenever I needed someone to get feedback on some new ideas, to proofread a
draft, to explain some new C++11 features, or to answer some nagging question,
you guys were there!

I am grateful to the members of my jury, who found time in their busy schedule
to read (earlier versions of) this text and suggest countless improvements.
Thanks for the suggestions, for challenging me, and for coming to Leuven for
my defence.

In Dutch there’s a saying “In nood leert men zijn vrienden kennen4”. The last
few months were such a period “in need” during which my wife and I spent
more time in the hospital than at home. We tested the saying and are grateful
to all our friends and family5. Thanks for helping us get through this tough
period. Thanks for being there, no matter what, and asking if there’s anything
you could do...

Finally (last but definitely not least), I want to dedicate this text to two special
people. Evelyn, my sweetheart, thanks for making our apartment a warm
home to return to every day. Thanks for being there, thanks for everything!
Felientje, our cute little girl (and primary source of sleep deprivation), keep
on fighting. We love you!

4This translates roughly to “a friend in need, a friend indeed”.
5Special thanks goes out to my parents and parents-in-law who basically took over our

entire household.

Acronyms

ADF abstract dialectical framework.

AEL autoepistemic logic.

AF argumentation framework.

AFT approximation fixpoint theory.

AI artificial intelligence.

ASP answer set programming.

DL default logic.

DNF disjunctive normal form.

FO first-order logic.

KBS knowledge base system.

KRR knowledge representation and reasoning.

LP logic programming.

LTC linear time calculus.

OEL ordered epistemic logic.

vii

List of Symbols

A An approximator of O, page 12

AT The standard approximator of DT , page 48

AtO(ϕ) The atoms occurring objectively in ϕ, page 67

At(ϕ) The atoms occurring in ϕ, page 67

body(r) The body of rule r, page 14

⊥ The least element of a lattice, page 11

C(X) An abstract constraint, page 33

Cins The set conditions for s to be accepted in an ADF, page 39

∆T The semantic operator of an autoepistemic theory, page 45

≡ An equivalence relation, page 83

f The truth value “false”, page 14

FΘ The characteristic function of Θ, page 38

gf (O) The set of grounded fixpoints of O, page 81∧
S The greatest lower bound of S, page 11

glb(S) The greatest lower bound of S, page 11

GΞ The semantic operator of Ξ, page 40

head(r) The head of rule r, page 14

I A four-valued interpretation, page 15

I, J Interpretations, page 14

ix

x LIST OF SYMBOLS

K The autoepistemic operator, page 7

kks(O) The Kripke-Kleene set of O, page 74

Kon Konolige’s mapping from DL to AEL, page 50

L The language of propositional logic, page 43

L A lattice, page 11

L2 The bilattice of L, page 12

Lc The consistent elements of L2, page 12

≤f The “finer” relation between equivalence relations, page 86

≤k The knowledge order, page 44

≤p The precision ordering on L2, page 12

lfp(O) The least fixpoint of O, page 12

LK The language of modal propositional logic, page 43∨
S The least upper bound of S, page 11

lub(S) The least upper bound of S, page 11

|= The satisfaction relation, page 44

|=gf The grounded fixpoint satisfaction relation, page 94

|=wfs The well-founded set satisfaction relation, page 94

O A lattice operator, page 11

O≡ The induced operator on the quotient lattice, page 88

P A logic program, page 14

par(s) The parents of S in an ADF, page 39

p≡ The quotient mapping, page 83

ϕ A formula, page 14

⊕ The extension of possible world structures, page 68

pm(T) The perfect model of T , page 71

ΨP Fitting’s partial immediate consequence operator of P , page 15

LIST OF SYMBOLS xi

Σ An alphabet, page 14

t The truth value “true”, page 14

T A theory, page 43

TP The immediate consequence operator of P , page 14

Θ An abstract argumentation framework, page 37

Thobj(Q) The objective theory of Q, page 44

> The greatest element of a lattice, page 11

U The complement of U , page 29

UO The ultimate approximator of O, page 14

UT The ultimate approximator of DT , page 68

UΘ The unattacked mapping of Θ, page 38

wfs(O) The well-founded set of O, page 79

WΣ The set of all possible world structures over Σ, page 43

x≡ The equivalence class of x, page 83

Ξ An abstract dialectical framework, page 39

Contents

Abstract i

Acronyms vii

List of Symbols ix

Contents xiii

1 Introduction 1

1.1 Knowledge Representation and Reasoning 1

1.2 Contributions to Knowledge Representation and Reasoning . . 5

1.3 Non-Monotonic Reasoning . 6

1.4 Approximation Fixpoint Theory 8

1.5 Groundedness . 8

1.6 Contributions to Approximation Fixpoint Theory 9

2 Preliminaries 11

2.1 Lattices and Operators . 11

2.2 Approximation Fixpoint Theory 12

2.3 Logic Programming . 14

xiii

xiv CONTENTS

3 Grounded fixpoints and their applications in knowledge represen-
tation 19

3.1 Introduction . 19

3.2 Grounded Fixpoints . 21

3.3 Grounded Fixpoints and Approximation Fixpoint Theory . . . 26

3.4 Logic Programs . 28

3.4.1 Discussion . 35

3.5 Argumentation Frameworks and Abstract Dialectical Frameworks 37

3.5.1 Abstract Argumentation Frameworks 37

3.5.2 Abstract Dialectical Frameworks 39

3.5.3 Discussion . 42

3.6 Autoepistemic and Default Theories 42

3.6.1 Groundedness of the AFT family of semantics for AEL . 48

3.6.2 Default logic . 49

3.7 Conclusion . 51

4 Partial Grounded Fixpoints 53

4.1 Introduction . 53

4.2 Partial Grounded Fixpoints . 55

4.3 Partial Grounded Fixpoints in Logic Programming 59

4.4 Discussion . 62

4.5 Conclusion . 63

5 On Well-Founded Set-Inductions and Locally Monotone Operators 65

5.1 Introduction . 65

5.2 Preliminaries . 67

5.3 Motivation . 68

5.4 Set-Inductions . 73

CONTENTS xv

5.4.1 The Kripke-Kleene Set 74

5.4.2 The Well-Founded Set 76

5.5 Locally Monotone Operators 82

5.5.1 Meet Equivalences . 83

5.5.2 Equivalences and Operators 88

5.6 Locally Monotone Operators in Autoepistemic Logic 93

5.7 Locally Monotone Operators in Logic Programming 95

5.8 Related Work . 96

5.9 Conclusion . 98

6 Conclusion 99

6.1 Contributions . 99

6.2 Future Directions . 101

6.2.1 Applications of Approximation Fixpoint Theory 101

6.2.2 Extensions of Approximation Fixpoint Theory 103

A On Infinite Stratifications 105

A.1 Comparing Equivalences . 105

A.2 Extended locally monotone operators 106

Bibliography 111

Curriculum Vitae 125

List of Publications 127

Chapter 1

Introduction

1.1 Knowledge Representation and Reasoning

This thesis is situated in knowledge representation and reasoning (KRR) (Baral,
2003). KRR is a subfield of artificial intelligence (AI) concerned with defining
languages to represent knowledge and devising methodologies and tools to
reason with this knowledge. Formal studies of knowledge representation and
reasoning with knowledge date back to ancient times. As an example, consider
Aristotle’s famous syllogism

“All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.”

The argument presented above is inarguably valid. The three above sentences
are now commonly represented in first-order logic (FO):

∀x : Man(x)⇒ Mortal(x).

Man(Socrates).

Mortal(Socrates).

While the Greeks relied on philosophers to make (formal) arguments like the one
above, thanks to the progress in computer science, a simple personal computer
can now automatically infer that the last sentence is indeed a consequence of
the first two.

1

2 INTRODUCTION

KRR is concerned with a broad variety of tasks; FO is only one of the many
languages to represent knowledge in and deduction, which is the kind of reasoning
used above, is only one of many reasoning methods that are studied. The
following are some major research topics in KRR. The list is non-exhaustive,
and in no particular order.

Defining knowledge representation languages While statements of the form
“All men are mortal.” are easily expressed in FO, other forms of knowledge
cannot or not easily be expressed in this language. For this kind of knowledge,
we need to search for better, or extended formal languages.

Consider for example the concept of transitive closure. The transitive closure
TCE of a graph E is defined as the set of pairs of nodes (x, y) such that there is a
path from x to y in E. It is well-known that this relation cannot be expressed in
general in first-order logic. In order to overcome this limitation, several authors
have studied the concept of inductive definitions (Post, 1943; Spector, 1961;
Kreisel, 1963; Feferman, 1970; Martin-Löf, 1971; Moschovakis, 1974a,b; Aczel,
1977; Buchholz et al., 1981; Hallnäs, 1991). Inductive definitions, and related
fixpoint constructs have been integrated with first-order logic in many languages
such as µ-calculus (Kozen, 1983; Streett and Emerson, 1989), database query
languages (Afanasiev et al., 2008; Bidoit and Ykhlef, 1998), description logics
(Calvanese et al., 1999) and in the logic FO(ID) (Denecker and Ternovska,
2008). In FO(ID), the transitive closure of a road network contains all tuples
of cities x and y such that it is possible to drive from x to y; using inductive
definitions, this relation is expressed by the following rule set{

∀x, y : Reach(x, y)←Road(x, y).
∀x, y : Reach(x, y)←∃z : Road(x, z) ∧ Reach(z, y).

}
This rule set is read intuitively as follows: “City y is reachable from city x if
there is a road from x to y, or if there is a road from x to another city (z) from
which y is reachable. In all other cases, y is not reachable from x”. Extensions
of first-order logic, with constructs such as for example a transitive closure form
the basis of many database languages (Abiteboul et al., 1995).

All knowledge we saw this far was objective: it consists of statements about
the real world. In some contexts, such as for example games with incomplete
information, it is useful to reason about subjective information, e.g., about what
an opponent knows and what he does not know. This kind of information also
cannot be expressed in FO. In order to express such knowledge, new logics with
special language constructs to refer to knowledge are developed. For example
the logical formula

(Play(O,Hearts) ∧ ¬FollowSuit(I))⇒ KO¬Have(I,Hearts)

KNOWLEDGE REPRESENTATION AND REASONING 3

is read “If my opponent plays hearts, and I do not follow suit, then my opponent
knows that I do not have hearts”. The operator KO is an epistemic operator: it
refers to the knowledge of the agent O, my opponent (Fagin et al., 1995).

Studying the different forms of knowledge humans possess and defining
formalisms to express this knowledge unambiguously is an important task
in KRR. Popular knowledge representation languages include description logics
(Baader et al., 2003), answer set programming (ASP) (Marek and Truszczyński,
1999; Lifschitz, 1999; Niemelä, 1999; Eiter et al., 2009; Gebser et al., 2012),
argumentation frameworks (Dung, 1995), and extensions of first-order logic
(Denecker, 2012). Some languages focus on the ability to describe a large
variation of problem domains, while other languages, such as for example
situation calculus (Levesque et al., 1998; Pirri and Reiter, 1999; Reiter, 2001)
and event calculus (Shanahan, 1997), focus on expressing knowledge in a specific
setting; the two aforementioned languages focus on describing temporal domains.

Defining Inference Methods Concluding that Socrates is mortal, given the
fact that he is a man and all men are mortal, is a form of inference, called
deduction. Several other forms of inference exist.

One such inference method is model checking: verifying whether an interpreta-
tion satisfies a logical theory. For example, given a logical theory that describes
what are valid course schedules (no two courses in the same room at the same
time, all courses take place in a room with sufficient capacity, et cetera), decide
whether or not some given hand-crafted schedule satisfies all constraints in the
theory. Another inference method is model expansion, or answer set generation
(Mitchell and Ternovska, 2005; Ternovska and Mitchell, 2009; Gebser et al.,
2012): given a logical theory, and partial information about the real world, find
models of this theory. E.g., with the same scheduling theory as used above,
the model expansion inference consists of searching a valid schedule given some
partial input, for example the set of courses, students, teachers, rooms, et cetera.
Other inference methods include querying (Vardi, 1986), propagation (Wittocx
et al., 2013), abduction (Peirce and Buchler, 1955) and progression (Lin and
Reiter, 1997; Bogaerts et al., 2014a).

Depending on the problem at hand, different existing inference methods
can be used or new inference methods might need to be developed. Some
inference methods are designed to be generally applicable, while others focus
on a particular type of application domain, such as for example temporal
(Schnoebelen, 2003; Eén and Sörensson, 2003) or spatial (Randell et al., 1992)
reasoning.

4 INTRODUCTION

Implementing Inference Engines In order to be of practical use, the logics
and inference methods should not just be defined in some mathematical book;
we need automated systems that interpret the defined logics and that are able
to perform inference on them. Inference engines often perform one type of
inference for a specific language. For example, automated theorem provers
such as SPASS (Weidenbach et al., 2009), Vampire (Riazanov and Voronkov,
2002) and many more (Sutcliffe, 2013) perform deduction1 for (extensions of)
FO, ASP-solvers (Alviano et al., 2013; Gebser et al., 2012) perform answer set
generation, . . . Sometimes, it is also useful to have a system that can perform
many forms of inference on the same language. This way, we can achieve that
knowledge is represented once, and can be reused to solve different types of
problems in the same problem domain. This is the core idea underlying the
knowledge base system (KBS) paradigm (Denecker and Vennekens, 2008), which
is implemented in the IDP system (De Cat et al., 2014a).

Studying Complexity, Expressivity and Succinctness We already mentioned
that certain forms of knowledge can be inexpressible in certain logics. Studying
exactly what can and cannot be expressed in a certain logic can yield new
insights in this logic. A related research question is how succinct knowledge
can be expressed in one language.

Depending on the logic at hand, some inference methods might be simple to
execute, while others might be hard, or even impossible to perform in general. In
computational complexity theory (Papadimitriou, 1994), inference methods are
classified according to their inherent difficulty. Knowledge compilation (Cadoli
and Donini, 1997; Darwiche and Marquis, 2002) studies the relation between
the expressive power of knowledge representation languages and their support
for efficient inference by identifying languages that support certain queries and
transformations efficiently. It studies the relative succinctness of these languages,
and is concerned with building compilers that can transform knowledge bases
into a desired target language.

Unifying Logics In different research groups, different logics are developed.
Often, they contain similar ideas that are worked out slightly differently, or
approached from another angle. In order to keep an overview, it is important to
know how the different languages relate: are they different dialects but based
on the same principles or are they fundamentally different? One possible way
to study these relationships, is by defining transformations between logics, i.e.,
defining a semantic embedding of one logic in another. Another way is to devise

1Given the undecidability of deduction for first-order logic, these provers are often
incomplete, or only cover fragments of the language.

CONTRIBUTIONS TO KNOWLEDGE REPRESENTATION AND REASONING 5

unifying frameworks that capture the semantics of a large family of logics at
once. Several such frameworks exist (Denecker and De Schreye, 1993; Bonatti,
1995; Denecker et al., 2000; Thielscher, 2011).

Applications Knowledge is everywhere: every aspect of human life is flooded
with knowledge. For example, traffic regulations are knowledge, whether or not
there are tomatoes left in the fridge is knowledge, the evolution of the stock
markets over time is knowledge, the rules of the Sudoku game are knowledge,
. . . As such, it is to be expected that KRR has many applications in different
research domains. Indeed, we find applications of KRR in robotics (Andres et al.,
2013), security (Barker et al., 2014), privacy (Decroix et al., 2014), linguistics
(Andrews et al., 2012), pharmacology (Prokosch et al., 1991), machine learning
and data mining (Bruynooghe et al., 2015) and many more domains (van
Harmelen et al., 2007). Applications of KRR help to valorise the research in
this field.

1.2 Contributions to Knowledge Representation
and Reasoning

My research as a PhD student has been fairly broad. Over the last four years,
I have been interested in all of the above research topics. This section briefly
summarises the various topics my coauthors and I worked on, and discusses our
main contributions.

When performing inference, symmetries of the problem domain can be taken into
account to increase efficiency. For example in a course scheduling application,
two students who follow exactly the same courses are interchangeable. A
valid schedule for one of these students is also a valid schedule for the other.
Incorporating this kind of information in the inference engine can result in
significant speedups. In order to achieve these speedups, two tasks need to
be tackled, namely first detecting that some symmetries are present, and
secondly exploiting the detected symmetries. We studied symmetry for SAT
solvers: model expansion engines for propositional logic. We devised a dynamic
symmetry breaking algorithm, called SP(SAT) (Devriendt et al., 2012), which
outperforms the state-of-the art in symmetry breaking for SAT. We also
devised a symmetry detection algorithm, called BreakID (Devriendt et al.,
2014) and used the latter to win the hard-combinatorial track of the 2013 SAT
competition (Balint et al., 2013).

6 INTRODUCTION

We implemented the IDP knowledge base system (De Cat et al., 2014a) and
its underlying solver MiniSAT(ID) (De Cat et al., 2013, 2014b). We used
IDP to model and solve some machine learning and data mining applications
(Bruynooghe et al., 2015). Furthermore, we bootstrapped IDP: we implemented
parts of IDP using the inferences methods IDP implements itself (of course, in
the process, avoiding possible loops) (Bogaerts et al., 2014b).

We defined the causal logic FO(C) (Bogaerts et al., 2014c). This logic focuses
on expressing complex cause-effect relations, such as dynamic non-deterministic
choice (one object among a yet to be determined group of objects is randomly
selected) and object creation (certain actions can have the creation of an object
as effect). We studied complexity of several inference methods in this logic
(Bogaerts et al., 2014e) and compared FO(C) to other languages (Bogaerts
et al., 2014d) such as FO, disjunctive ASP, and extensions of Datalog (Abiteboul
and Vianu, 1991).

We defined the linear time calculus (LTC), a logic to describe temporal systems;
we defined and implemented several inference methods specifically suited for
these temporal domains (Bogaerts et al., 2014a). This study was, among other
things, a validation of the KBS paradigm: we demonstrated the potential of
the KBS approach in a temporal context.

We extended approximation fixpoint theory (AFT), an algebraical unifying
theory that captures the semantics of several non-monotonic logics (cfr. Section
1.3). We extended it with grounded fixpoints (Bogaerts et al., 2015a). We
applied this abstract theory to different logics, and used groundedness to define
an improved constructive semantics for these logics. In this dissertation, we
focus on the research revolving around the notion of groundedness. First, we
give some more background on non-monotonic reasoning, and approximation
fixpoint theory.

1.3 Non-Monotonic Reasoning

First-order logic is a monotonic formalism: adding more information to a
theory always allows us to derive more information. For example, adding the
information

“Plato is a man.”

to the syllogism at the start of this chapter also allows us to derive that Plato
is mortal. All previous derivations remain valid. For instance, Socrates remains
mortal.

NON-MONOTONIC REASONING 7

Other formalisms do not have this property. Adding new information might
invalidate previous derivations. In this dissertation, we focus on default
logic (DL), autoepistemic logic (AEL), logic programming (LP) and abstract
dialectical frameworks (ADFs). We briefly discuss the first two of these.

A default is a statement of the form “most P ’s are Q’s”. For example

“Most birds can fly.”

Reiter (1980) was the first to define a formal language to describe defaults. In
his seminal paper, he assumes that such a statement means

“If x is a bird, then in the absence of any evidence to the contrary,
infer that x can fly.”

The above sentence combined with (only) the information “Tweety is a bird”
allows us to conclude that Tweety can fly. If more information is discovered,
for example the fact that Tweety actually is a penguin, the above derivation
is no longer valid. Thus, in the case of default logic, adding more information
does not always lead to more derived information. This kind of derivation is
sometimes called defeasible inference.

Autoepistemic logic (AEL) is a non-monotonic logic for modelling the beliefs or
knowledge of a rational agent with perfect introspection capabilities (Moore,
1985). In AEL, the non-monotonicity is more explicit. In this logic, statements
of the form Kϕ, intuitively read as “I know ϕ”, can occur arbitrarily in logical
theories. For example, a statement ¬KP ⇒ Q is read “if I do not know P , then
Q holds”. In a situation where P is not known, the above sentence can be used
to derive Q. It is clear that adding more knowledge may increase the truth of
KP and hence may invalidate the derivation of Q.

There is a strong similarity between default and autoepistemic logic. Reiter’s
interpretation of the default “Most birds can fly” can be translated into
autoepistemic logic as follows:

KBird(Tweety) ∧ ¬K¬Fly(Tweety)⇒ Fly(Tweety),

or “if I know that Tweety is a bird, and I do not know that it cannot fly, conclude
that Tweety can fly”. Konolige (1988) noted this similarity and used it to define a
mapping from DL to AEL. However, contrary to the expectations, this mapping
does not preserve semantics. For a long time, researchers believed that AEL
and DL are really two different logics. In fact, Gottlob (1995) showed that no
modular translations exist from DL to AEL (but non-modular transformations
do exist). The exact relationship between DL and AEL was only discovered
with the introduction of approximation fixpoint theory (Denecker et al., 2000).

8 INTRODUCTION

1.4 Approximation Fixpoint Theory

Motivated by structural analogies in the semantics of several non-monotonic
logics, Denecker, Marek and Truszczyński (from now on abbreviated as DMT)
(2000) developed an algebraical fixpoint theory that defines different types of
fixpoints for a so-called approximating bilattice operator. They called these
fixpoints supported, Kripke-Kleene, stable and well-founded fixpoints. In the
context of logic programming, they found that Fitting’s (three- or four-valued)
immediate consequence operator is an approximating operator of the two-valued
immediate consequence operator and that its four different types of fixpoints
correspond exactly with the four major, equally named semantics of logic
programs. They also identified approximating operators for DL and AEL and
showed that the fixpoint theory induces all main and some new semantics in
these fields (Denecker et al., 2003). Moreover, by showing that Konolige’s
mapping from DL to AEL preserves the approximating operator, AEL and
DL were essentially unified and hence, they resolved an old research question
regarding the nature of these two logics: AEL and DL are “just” two different
dialects of autoepistemic reasoning (Denecker et al., 2003, 2011).

The study of these approximating operators, which is called approximation
fixpoint theory, has continued. It is now commonly used to define semantics
of extensions of logic programs, such as logic programs with aggregates (Pelov
et al., 2007) and HEX logic programs (Antic et al., 2013). Truszczynski (2006)
defined algebraic generalisations of strong and uniform equivalence using AFT.
Vennekens et al. (2006) used AFT in an algebraical modularity study for
logic programming, AEL and DL. Recently, Strass (2013) showed that many
semantics from Dung’s argumentation frameworks (AFs) and abstract dialectical
frameworks can be obtained by direct applications of AFT. Bi et al. (2014)
extended AFT with approximators allowing for inconsistencies and used it to
integrate description logics with logic programs. Bogaerts et al. (2014c) defined
the causal logic FO(C) as an instantiation of AFT.

1.5 Groundedness

In this dissertation, we extend AFT with several concepts. In Chapter 3, we
extend AFT with the notion of a grounded fixpoint, a fixpoint closely related
to stable fixpoints with similar properties, but that is completely determined
by the operator, not by the choice of an approximator. We apply this theory to
different research domains.

CONTRIBUTIONS TO APPROXIMATION FIXPOINT THEORY 9

• In the context of logic programming, our theory yields an intuitive, purely
two-valued semantics that is easily extensible and that formalises well-
known intuitions related to unfounded sets.

• We show that two of the main semantics of AFs can be characterised as
grounded fixpoints of previously defined operators and discuss grounded
fixpoints in the context of ADFs.

• Applied to autoepistemic logic and default logic, groundedness formalises
intuitions described by Konolige (1988).

In Chapter 4, we continue the study of groundedness. In that chapter, we
generalise groundedness to a partial context: we define A-grounded bilattice
points for an approximator A of O. We show this extended notion coincides
with groundedness for exact lattice points. We also show that all A-stable
fixpoints are A-grounded and provide a novel characterisation of the A-well-
founded fixpoint in terms of A-groundedness. We apply this theory to logic
programming.

In Chapter 5, we expose and solve a problem with the well-founded semantics
for AEL. We show that for a class of autoepistemic theories, the well-founded
semantics fails to identify the intended model. We provide an algebraical
generalisation of this class of theories, namely locally monotone lattice operators.
We give, in general, a refinement of the well-founded semantics which works on
sets of lattice elements instead of intervals and show that for locally monotone
operators, this refinement yields a unique fixpoint. Our refinement of the
well-founded semantics is based on groundedness.

1.6 Contributions to Approximation Fixpoint The-
ory

The main contributions of the research presented in this dissertations are as
follows.

• We define grounded lattice points and grounded bilattice points and
discuss the relationship with other fixpoints studied in AFT.

• We find a new characterisation of the A-well-founded fixpoint as the least
precise A-grounded fixpoint.

• We discuss the meaning of groundedness in logic programming, autoepis-
temic logic, default logic, AFs and ADFs; we show that in these contexts
groundedness often formalises existing intuitions.

10 INTRODUCTION

• We define a class of autoepistemic theories with a clear intended model
and show that the well-founded semantics fails to identify this model. We
generalise this observation to the algebraical setting, resulting in the class
of locally monotone lattice operators.

• We define, algebraically, a refined version of the Kripke-Kleene and the
well-founded semantics and show that the latter semantics, applied to
AEL, succeeds to identify the intended model for the aforementioned class
of autoepistemic theories.

Chapter 2

Preliminaries

2.1 Lattices and Operators

A partially ordered set (poset) 〈L,≤〉 is a set L equipped with a partial order ≤,
i.e., a reflexive, antisymmetric, transitive relation. As usual, we write x < y as
abbreviation for x ≤ y ∧ x 6= y. If S is a subset of L, then x is an upper bound,
respectively a lower bound of S if for every s ∈ S, it holds that s ≤ x respectively
x ≤ s. An element x is a least upper bound, respectively greatest lower bound
of S if it is an upper bound that is smaller than or equal to every other upper
bound, respectively a lower bound that is greater than every other lower bound.
If S has a least upper bound, respectively a greatest lower bound, we denote it
lub(S), respectively glb(S). As is customary, we sometimes call a greatest lower
bound a meet, and a least upper bound a join and use the related notations∧
S = glb(S), x ∧ y = glb({x, y}),

∨
S = lub(S) and x ∨ y = lub({x, y}). We

call 〈L,≤〉 a bounded lattice if every finite subset of L has a least upper bound
and a greatest lower bound. We call 〈L,≤〉 a complete lattice if every subset of
L has a least upper bound and a greatest lower bound. A complete lattice has
both a least element ⊥ and a greatest element >.

A lattice is distributive if ∧ and ∨ distribute over each other, a bounded lattice
is complemented if every element x ∈ L has a complement: an element ¬x ∈ L
satisfying x ∧ ¬x = ⊥ and x ∨ ¬x = >. A Boolean lattice is a distributive
complemented lattice.

An operator O : L → L is monotone if x ≤ y implies that O(x) ≤ O(y) and
anti-monotone if x ≤ y implies that O(y) ≤ O(x). An element x ∈ L is a
prefixpoint, a fixpoint, a postfixpoint of O if O(x) ≤ x, respectively O(x) = x,

11

12 PRELIMINARIES

x ≤ O(x). Every monotone operator O in a complete lattice has a least fixpoint,
denoted lfp(O), which is also O’s least prefixpoint.

Definition 2.1.1. If O is a monotone operator, a monotone induction of O is
a (possibly transfinite) sequence (xi)i≤α such that

• x0 = ⊥,

• xi ≤ xi+1 ≤ O(xi),

• xλ = lub({xi | i < λ}), for limit ordinals λ ≤ α.

A monotone induction is terminal if there exists no xα+1 6= xα such that
(xi)i≤α+1 is a monotone induction.

All terminal monotone inductions of O converge to lfp(O).

2.2 Approximation Fixpoint Theory

Given a lattice L, approximation fixpoint theory makes use of the bilattice
L2. We define two projection functions for pairs as usual: (x, y)1 = x and
(x, y)2 = y. Pairs (x, y) ∈ L2 are used to approximate all elements in the
interval [x, y] = {z | x ≤ z ∧ z ≤ y}. We call (x, y) ∈ L2 consistent if x ≤ y,
that is, if [x, y] is non-empty. We use Lc to denote the set of consistent elements.
Elements (x, x) ∈ Lc are called exact; they constitute the embedding of L in L2.
We sometimes abuse notation and use the tuple (x, y) and the interval [x, y]
interchangeably. The precision ordering on L2 is defined as (x, y)≤p (u, v) if
x ≤ u and v ≤ y. In case (u, v) is consistent, this means that (x, y) approximates
all elements approximated by (u, v), or in other words that [u, v] ⊆ [x, y]. If L
is a complete lattice, then 〈L2, ≤p 〉 is also a complete lattice.

AFT studies fixpoints of lattice operators O : L → L through operators
approximating O. An operator A : L2 → L2 is an approximator of O if it is ≤p -
monotone, and has the property that for all x, O(x) ∈ A(x, x). Approximators
are internal in Lc (i.e., map Lc into Lc). As usual, we often restrict our
attention to symmetric approximators: approximators A such that for all x
and y, A(x, y)1 = A(y, x)2. DMT (2004) showed that the consistent fixpoints
of interest (supported, stable, well-founded) are uniquely determined by an
approximator’s restriction to Lc, hence, sometimes we only define approximators
on Lc.

AFT studies fixpoints of O using fixpoints of A.

APPROXIMATION FIXPOINT THEORY 13

• The A-Kripke-Kleene fixpoint is the ≤p -least fixpoint of A and has the
property that it approximates all fixpoints of O.

• A partial A-stable fixpoint is a pair (x, y) such that x = lfp(A(·, y)1)
and y = lfp(A(x, ·)2), where A(·, y)1 denotes the operator L → L : x 7→
A(x, y)1 and analogously for A(x, ·)2.

• The A-well-founded fixpoint is the least precise partial A-stable fixpoint.

• An A-stable fixpoint of O is a fixpoint x of O such that (x, x) is a partial A-
stable fixpoint. This is equivalent with the condition that x = lfp(A(·, x)1).

The A-Kripke-Kleene fixpoint of O can be constructed as the limit of any
monotone induction of A. For the A-well-founded fixpoint, a similar constructive
characterisation has been worked out by Denecker and Vennekens (2007):

Definition 2.2.1. An A-refinement of (x, y) is a pair (x′, y′) ∈ L2 satisfying
one of the following two conditions:

1. (x, y)≤p (x′, y′)≤pA(x, y), or

2. x′ = x and A(x, y′)2 ≤ y′ ≤ y.

An A-refinement is strict if (x, y) 6= (x′, y′).

We call the first type (1.) of refinements application refinements and the second
type (2.) unfoundedness refinements. If (x′, y′) is an A-refinement of (x, y) and
A is clear from the concepts, we often denote it (x, y)→ (x′, y′).

Definition 2.2.2. A well-founded induction of A is a sequence (xi, yi)i≤β with
β an ordinal such that

• (x0, y0) = (⊥,>);

• (xi+1, yi+1) is an A-refinement of (xi, yi), for all i < β;

• (xλ, yλ) = lub≤p {(xi, yi) | i < λ} for each limit ordinal λ ≤ β.

A well-founded induction is terminal if its limit (xβ , yβ) has no strict A-
refinements.

A well-founded induction is an algebraical generalisation of the well-founded
model construction defined by Van Gelder et al. (1991). The first type of
refinement corresponds to making a partial structure more precise by applying

14 PRELIMINARIES

Fitting’s immediate consequence operator; the second type of refinement
corresponds to making a structure more precise by eliminating an unfounded
set.

For a given approximator A, there are many different terminal well-founded
inductions of A. Denecker and Vennekens (2007) showed that they all have the
same limit, which equals the A-well-founded fixpoint of O. Furthermore, if A
is symmetric, the A-well-founded fixpoint of O (and in fact, every tuple in a
well-founded induction of A) is consistent.

The precision order can be pointwise extended to the family of approximators
of O. It then follows that more precise approximators have a more precise
well-founded fixpoint and that they have more stable fixpoints. DMT (2004)
showed that there exists a most precise approximator, UO, called the ultimate
approximator of O. This operator is defined by

UO : Lc → Lc : (x, y) 7→ (
∧
O([x, y]),

∨
O([x, y])).

Here, we used the notation O(X) = {O(x) | x ∈ X} for a set X ⊆ L. It
then follows that for every approximator A, all A-stable fixpoints are UO-stable
fixpoints, and the UO-well-founded fixpoint is always more precise than the
A-well-founded fixpoint. We refer to UO-stable fixpoints as ultimate stable
fixpoints of O and to the UO-well-founded fixpoint as the ultimate well-founded
fixpoint of O. Semantics defined using the ultimate approximator have as
advantage that they only depend on O since the approximator can be derived
from O.

2.3 Logic Programming

We often illustrate our abstract results in the context of logic programming. We
recall some preliminaries. We restrict ourselves to propositional logic programs,
but allow arbitrary propositional formulas in rule bodies. However, our results
basically apply to all extensions of logic programming that admit an immediate
consequence operator (non-propositional ones, aggregates in the body, etc.).

Let Σ be a propositional alphabet, i.e., a collection of symbols which are called
atoms. A literal is an atom p or the negation ¬q of an atom q. A logic program
P is a set of rules r of the form h← ϕ, where h is an atom called the head of r,
denoted head(r), and ϕ is a propositional formula called the body of r, denoted
body(r). An interpretation I of the alphabet Σ is an element of 2Σ, i.e., a subset
of Σ. The set of interpretations 2Σ forms a lattice equipped with the order ⊆.

LOGIC PROGRAMMING 15

A ∧B B
t f

A t t f
f f f

A ∨B B
t f

A t t t
f t f

¬A

A
t f
f t

Figure 2.1: The truth tables for propositional logic.

The truth value (t or f) of a propositional formula ϕ in a structure I, denoted
ϕI , is defined as usual based on the standard truth tables for propositional logic
(see Figure 2.1).

With a logic program P , we associate an immediate consequence operator (van
Emden and Kowalski, 1976) TP that maps a structure I to

TP(I) = {p | ∃r ∈ P : head(r) = p ∧ body(r)I = t}.

The supported models of P are the fixpoints of TP .

In the context of logic programming, elements of the bilattice
(
2Σ)2 are four-

valued interpretations, pairs I = (I1, I2) of interpretations. The pair (I1, I2)
maps every atom to a tuple of two truth values; such a tuple corresponds to a
four-valued truth value (true (t, t), false (f , f), unknown (f , t) or inconsistent
(t, f)). With this interpretation I1 represents al atoms that are certainly true
and I2 represents all atoms that are possibly true. The pair (I1, I2) approximates
all interpretations I ′ with I1 ⊆ I ′ ⊆ I2. We often identify an interpretation
I with the four-valued interpretation (I, I). If I = (I1, I2) is a (four-valued)
interpretation, and U ⊆ Σ, we write I[U : f] for the (four-valued) interpretation
that equals I on all elements not in U and that interprets all elements in U as f ,
i.e., the interpretation (I1 \U, I2 \U). We are mostly concerned with consistent
(also called partial or three-valued) interpretations: tuples I = (I1, I2) with
I1 ⊆ I2. For such an interpretation, the atoms in I1 are true (t) in I, the atoms
in I2 \ I1 are unknown (u) in I and the other atoms are false (f) in I. If I is
a three-valued interpretation, and ϕ a formula, we write ϕI for the standard
three-valued valuation based on the Kleene truth tables (see Figure 2.2). An
alternative valuation is the supervaluation; with this valuation, the value of
a formula ϕ is t (respectively f) in partial interpretation I if and only if it
is t (respectively f) in all interpretations approximated by I; it is unknown
otherwise.

We call two formulas 3-equivalent if they have the same truth value in all three-
valued interpretations and 2-equivalent if they have the same truth value in all
(two-valued) interpretations. Several approximators have been defined for logic
programs. The most common is Fitting’s immediate consequence operator ΨP
(Fitting, 2002), a direct generalisation of TP to partial interpretations defined

16 PRELIMINARIES

A ∧B B
t f u

A
t t f u
f f f f
u u f u

A ∨B B
t f u

A
t t t t
f t f u
u t u u

¬A

A
t f
f t
u u

Figure 2.2: The Kleene truth tables (Kleene, 1938).

by

ΨP(I)1 = {a ∈ Σ | body(r)I = t for some rule r ∈ P with head(r) = a},

ΨP(I)2 = {a ∈ Σ | body(r)I 6= f for some rule r ∈ P with head(r) = a}.

DMT (2000) showed that the well-founded fixpoint of ΨP is the well-founded
model of P as defined by Van Gelder et al. (1991) and that ΨP -stable fixpoints
are exactly the stable models of P as defined by Gelfond and Lifschitz (1988).
In this case, the operator ΨP(·, y)1 coincides with the immediate consequence
operator of the Gelfond-Lifschitz reduct (Gelfond and Lifschitz, 1988). The
most precise approximator of TP is the ultimate approximator UP .

Replacing the body of a rule by a 3-equivalent formula obviously preserves
ΨP ; replacing the body of a rule by a 2-equivalent formula preserves TP and
hence also UP . Thus, transformations that preserve 3-equivalence, preserve
standard Kripke-Kleene, stable and well-founded semantics, and transformations
preserving 2-equivalence preserve all ultimate semantics (ultimate Kripke-Kleene,
ultimate stable, ultimate well-founded). The ease with which this can be proven
demonstrates the power of AFT.

Preserving 2-equivalence is not enough to preserve standard semantics. For
example, consider programs P = {p ← p ∨ ¬p} and P ′ = {p.}. Even though
the body of the rule defining p in P is a tautology, {p} is not a stable model
of P while it is a stable model of P ′. But ultimate semantics treat these two
programs identically. For instance, {p} is the unique ultimate stable model of
both programs.

While substituting formulas for 2-equivalent formulas in rule bodies preserves
the ultimate but not necessarily the standard versions of semantics, a weaker
equivalence property can still be guaranteed. It holds that the standard Kripke-
Kleene and well-founded models of both programs are compatible with each
other: no atom is true in the model of one and false in the model of the other
program. This follows from the fact that both the ultimate Kripke-Kleene and
the ultimate well-founded model are preserved by these substitutions and that

LOGIC PROGRAMMING 17

they are consistent and more precise than the standard Kripke-Kleene and
well-founded model respectively.

The nice property that ultimate semantics only depend on the operator comes
at a cost. DMT (2004) showed that deciding whether P has an ultimate stable
model is Σ2

P -complete, while that same task is only NP-complete for classical
stable models.

Chapter 3

Grounded fixpoints and their
applications in knowledge
representation

The contents of this chapter are accepted for publication in Artificial Intelligence
(Bogaerts et al., 2015b). A short version was published in the proceedings of
the 29th AAAI Conference on Artificial Intelligence (AAAI’15) (Bogaerts et al.,
2015a).

3.1 Introduction

In this chapter, we formally use fixpoint theory to investigate an intuition
that is found in all logic domains in which approximation fixpoint theory is
applied. In those domains, researchers have made use of a similar intuition:
that facts (or models) can be derived from the ground up. They typically
phrase this intuition by saying that, e.g., the facts should be grounded, or that
they should not be unfounded, or that they should be supported by cycle-free
arguments, or by arguments that contain no vicious circles, et cetera. In several
cases, great efforts were made to refine semantics which did allow ungrounded
models or facts. For example, it is well-known that the completion semantics
of logic programs allows ungrounded models, e.g., for the transitive closure
program. The efforts to avoid these led to the development of perfect, stable and
well-founded semantics. Also for AEL, it was known that Moore’s expansion

19

20 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

semantics accepted ungrounded models, e.g., for the theory {KP ⇒ P} which
has the ungrounded model in which P is known but this knowledge is self-
supporting. Examples like this motivated several attempts to refine Moore’s
semantics, among others by Halpern and Moses (1985), Konolige (1988) and
Niemelä (1991).

We formalise the intuition of groundedness in the context of algebraical fixpoint
theory. We call a lattice element x ∈ L grounded for lattice operator O : L→ L
if for all v ∈ L such that O(x ∧ v) ≤ v, it holds that x ≤ v. We investigate
this notion on the algebraical level in AFT and on the logical level in the
context of logic programming, autoepistemic logic, default logic and abstract
argumentation frameworks. We explain what grounded points and fixpoints
mean in these logics. We use groundedness as an ordering principle. Within each
of the application domains, we order semantics into two categories: grounded
and ungrounded semantics, where we call a semantics grounded if all its models
are grounded. Over the different domains, we bring order by unifying intuitions
that existed in each of these fields. We investigate a novel semantics for
the various logics that is based on grounded fixpoints. Our results unveil a
remarkable uniformity in intuition and mathematics in these fields and lead
to a new candidate semantics with some very appealing properties, not in the
least the mathematical simplicity and generality to define it in the context of
operator-based logics and logic constructs.

We can summarise the main contributions of this chapter as follows. We extend
AFT with the notion of a grounded fixpoint, a fixpoint closely related to stable
and well-founded fixpoints. We show that if the Kripke-Kleene fixpoint is
exact, then it is grounded. If the well-founded fixpoint is exact, then it is the
unique grounded and the unique stable fixpoint. Otherwise, stable fixpoints are
grounded but not necessarily the other way around. A useful feature of grounded
fixpoints that distinguishes them from stable and well-founded fixpoints is that
they are determined by O and do not require the choice of an approximator. We
then apply this theory to different logical research domains. In all domains, we
explain the meaning of grounded fixpoints, relate them to attempts to formalise
groundedness, study which semantics are grounded and finally, we explore the
semantics induced by grounded fixpoints.

• In the context of logic programming, our theory yields an intuitive, purely
two-valued, semantics that is easily extensible and that formalises well-
known intuitions related to unfounded sets.

• We show that two of the main semantics of argumentation frameworks
(AFs) can be characterised as grounded fixpoints of previously defined
operators and discuss grounded fixpoints in the context of abstract
dialectical frameworks (ADFs).

GROUNDED FIXPOINTS 21

• Applied to autoepistemic logic and default logic, groundedness turns out to
provide an alternative and improved formalisation of intuitions described
by Konolige (1988).

3.2 Grounded Fixpoints

Let 〈L,≤〉 be a complete lattice and O : L → L a lattice operator, fixed
throughout this entire section. We start by giving the central definition of this
chapter, namely the notion of groundedness.

Definition 3.2.1 (Grounded). We call x ∈ L grounded for O if for each v ∈ L
such that O(x ∧ v) ≤ v, it holds that x ≤ v. We call x a grounded fixpoint of O
if it is a fixpoint of O and it is grounded for O.

This concept is strongly related to the following.

Definition 3.2.2 (Strictly grounded). We call x ∈ L strictly grounded for O if
there is no y ∈ L such that y < x and (O(y) ∧ x) ≤ y.

The intuition behind these concepts is very similar and is easy to explain if we
assume that the elements of L are sets of “facts” of some kind and the ≤ relation
is the subset relation between such sets. In this case, ∧ is the intersection and
∨ the union of sets. Intuitively, a set of facts x is (strictly) grounded if it can
be “built from the ground up” by O. Such sets are built in several stages. Facts
that are derived in later stages depend on those of earlier stages. This means
that x has a stratified internal structure (it contains facts from different stages).
If we remove multiple stages from x, we cannot expect that with one application
of O, all of the removed facts will be reconstructed, but we should expect that
at least some of the removed facts of x reappear, in particular those in the
lowest stage from where facts were deleted. This idea is formalised in slightly
different ways in the two definitions.

If L is a powerset lattice, this intuition directly translates to ∀u 6= ∅ : u ⊆ x⇒
O(x \ u) ∩ u 6= ∅, i.e., whenever a set of elements u is removed from x, at least
one of these elements returns. To express it in the context of lattices in general,
the statement needs to be reformulated without using set subtraction. There
are two set-theoretically equivalent ways to do this.

In the definition of strictly grounded point, removing strata from x corresponds
to taking y < x (y represents x \u in this case). The condition that no elements
of u come back corresponds to (O(y) ∧ x) ≤ y (all elements of O(y) ∩ x are in
y; hence not in u).

22 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

In the definition of grounded point, a slightly different but equivalent set-
theoretic expression is used as a starting point: ∀u : O(x\u)∩u = ∅ ⇒ u∩x = ∅.
Removing strata from x corresponds to selecting a v ∈ L and taking x ∧ v (v
corresponds to the complement of u, hence x \ u to x ∧ v and the fact that
u ∩ x = ∅ corresponds to x ≤ v). The condition that O(x ∧ v) reintroduces no
elements from u corresponds to O(x ∧ v) ≤ v; for a point to be grounded, if
O(x ∧ v) reintroduces no elements, then u ∩ x must be empty, i.e., no points
were removed in the first place.

In what follows, we study some properties of (strictly) grounded (fix)points. We
start by showing the tight relationship between the two concepts. In general,
every strictly grounded point is grounded but not necessarily the other way
around. Unsurprisingly, in the context of powerset lattices — the context in
which we explained the intuitions — the two notions coincide.

Proposition 3.2.3. If x is strictly grounded for O, then x is grounded for O.

Proof. Assume x is strictly grounded and v ∈ L is such that O(x ∧ v) ≤ v. Let
y denote x ∧ v. Then O(y) ≤ v, and hence (O(y) ∧ x) ≤ (x ∧ v) = y. Since
(O(y) ∧ x) ≤ y and x is strictly grounded, it cannot be the case that y < x.
Since (x ∧ v) = y ≤ x, equality holds, i.e. (x ∧ v) = x and x ≤ v. This shows
that x is indeed grounded.

Example 3.2.4. The converse of Proposition 3.2.3 does not hold. Consider
the lattice and the operator represented by the following graph, where full edges
express the order relation (to be precise, the ≤ relation is the reflexive transitive
closure of these edges) and the dotted edges represent the operator:

>
rr

a

??

$$

b1

__

qq

b2

OO
dd

⊥

??

WW

OO

GROUNDED FIXPOINTS 23

In this case, b1 is grounded but not strictly grounded, as can be seen by taking
y = b2.

Proposition 3.2.5. If L is a Boolean lattice, then a point x ∈ L is grounded
if and only if it is strictly grounded.

Proof. We recall that in the context of powerset lattices the greatest lower
bound is the intersection and least upper bound is the union.

Proposition 3.2.3 guarantees that we only need to show that all grounded
points are strictly grounded. Hence, suppose x is grounded. Assume towards
contradiction that x is not strictly grounded, i.e., that for some y < x, O(y)∧x ≤
y. Take v = y ∨ ¬x. It holds that

v ∧ x = (y ∨ ¬x) ∧ x

= (y ∧ x) ∨ (¬x ∧ x)

= y ∧ x

= y,

since y < x. Since x 6= y, it must hold that x 6≤ v (otherwise, x = x ∧ v = y).
Since we assumed that O(y) ∧ x ≤ y, it also holds that

v = y ∨ ¬x

≥ (O(y) ∧ x) ∨ ¬x

= O(y) ∨ ¬x.

Hence O(y) ∨ ¬x ≤ v and also O(x ∧ v) = O(y) ≤ v. Together with the
observation that x 6≤ v, we find a contradiction with the assumption that x is
grounded.

Corollary 3.2.6. Let L be a powerset lattice 〈2>,⊆〉. Then a point x ∈ L is
grounded if and only if it is strictly grounded.

Proof. Follows immediately from the fact that powerset lattices are Boolean
lattices.

Proposition 3.2.7. Let O be a monotone operator. If x is grounded for O
then x is a postfixpoint of O that is less than or equal to lfp(O), i.e., x ≤ O(x)
and x ≤ lfp(O).

24 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

Proof. First, we show that x ≤ lfp(O). Since O is monotone, we have O(lfp(O)∧
x) ≤ O(lfp(O)) = lfp(O). Hence, groundedness of x with v = lfp(O) indeed
yields that x ≤ lfp(O).

In order to show that x is a postfixpoint of O, take v = O(x). Again using
monotonicity of O, we find O(v ∧ x) ≤ O(x) = v. Hence, groundedness yields
that x ≤ v = O(x), and indeed x is a postfixpoint of O.

Example 3.2.8. The converse of Proposition 3.2.7 does not hold. Consider
the following logic program P:{

p.

q ← p ∨ q.

}

Its immediate consequence operator TP is represented by the following graph:

> = {p, q}
UU

{p}

;;99

{q}

cc ee

⊥ = ∅

::dd``

TP is a monotone operator with least fixpoint >. Also, {q} is a postfixpoint of TP
since TP({q}) = > ≥ {q}. However, {q} is not grounded since TP({q} ∧ {p}) =
TP(⊥) = {p}, while {q} 6≤ {p}.

Proposition 3.2.9. All grounded fixpoints of O are minimal fixpoints of O.

Proof. Suppose x is grounded and y and x are fixpoints of O with y ≤ x. In
this case, O(x ∧ y) = O(y) = y ≤ y. Thus, since x is grounded, we conclude
that x ≤ y, which yields x = y. We find that indeed, all grounded fixpoints are
minimal fixpoints.

Example 3.2.10. The converse of Proposition 3.2.9 does not hold. Consider
the logic program P: {

p← p.

q←¬p ∨ q.

}

GROUNDED FIXPOINTS 25

This logic program has as immediate consequence operator TP :

> = {p, q}
UU

{p}

;;

++

{q}

cc

ss

⊥ = ∅

::dd
77

In this case, {p} is a minimal fixpoint of TP , but {p} is not grounded since
TP({p} ∧ {q}) = TP(⊥) = {q}, while {p} 6≤ {q}. On the other hand {q} is
grounded for TP since O({q} ∧ v) = {q} for all v ∈ L. Hence for v ∈ {⊥, {p}},
it holds that O(x ∧ v) 6≤ v and for all other v ∈ L it holds that {q} ≤ v.

Proposition 3.2.11. A monotone operator has exactly one grounded (and
strictly grounded) fixpoint, namely its least fixpoint.

Proof. Proposition 3.2.9 guarantees that grounded fixpoints are minimal, hence
a monotone operator O can have at most one grounded fixpoint lfp(O). Now
we show that lfp(O) is indeed strictly grounded. Since O is monotone, for
every y ≤ lfp(O), it holds that O(y) ≤ O(lfp(O)) = lfp(O) and hence that
O(y)∧ lfp(O) = O(y). Now suppose that for some y ≤ lfp(O), O(y)∧ lfp(O) ≤ y.
Then by the previous also O(y) ≤ y. Thus y is a prefixpoint of O. However,
lfp(O) is the least prefixpoint of O, hence lfp(O) ≤ y, and thus y = lfp(O). We
conclude that lfp(O) is indeed strictly grounded. From Proposition 3.2.3, it
then follows that x is grounded as well.

Proposition 3.2.12. Every postfixpoint of an anti-monotone operator is strictly
grounded.

Proof. Suppose x is a postfixpoint of an anti-monotone operatorO, i.e., x ≤ O(x)
and that y ≤ x. In that case O(y) ≥ O(x) ≥ x. If O(y) ∧ x ≤ y, then it follows
that x ≤ y. Thus indeed x = y and x is strictly grounded.

Example 3.2.13. The converse of Proposition 3.2.12 does not hold. Consider
the logic program P: {

p←¬p.
q←¬q.

}

26 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

This logic program has as immediate consequence operator TP :

> = {p, q}

��

{p}

;;

-- {q}

cc

mm

⊥ = ∅

::dd

LL

The operator TP is anti-monotone, and {p} is strictly grounded for TP . However,
{p} is not a postfixpoint of TP .

3.3 Grounded Fixpoints and Approximation Fix-
point Theory

In this section, we discuss how groundedness relates to AFT. More concretely,
we show that all (ultimate) stable fixpoints are grounded and that all grounded
fixpoints are approximated by the (ultimate) well-founded fixpoint.
Proposition 3.3.1. All ultimate stable fixpoints of O are (strictly) grounded
fixpoints.

Proof. Let x be an ultimate stable fixpoint of O. Thus, (x, x) is a fixpoint
of the ultimate stable operator, i.e., x = UO(x)1 = lfp(

∧
O([·, x])). Since

O(x) =
∧
O([x, x]), it follows that x is also a fixpoint of O. Now suppose for

some y ≤ x, O(y) ∧ x ≤ y; we show that x = y. We know that∧
O([y, x]) ≤ O(y) ∧O(x) = O(y) ∧ x ≤ y.

Thus, y is a prefixpoint of the monotone operator
∧
O([·, x]). Since x is the

least fixpoint (and also the least prefixpoint) of that same operator, we find
that x ≤ y, and thus x = y, which shows that x is strictly grounded indeed.

Example 3.3.2. The converse of Proposition 3.3.1 does not always hold.
Consider the logic program P:{

p←¬p ∨ q.
q←¬q ∨ p.

}

GROUNDED FIXPOINTS AND APPROXIMATION FIXPOINT THEORY 27

This logic program has as immediate consequence operator TP :

> = {p, q}
UU

{p}

;;

11 {q}

cc

qq

⊥ = ∅

::dd

OO

> is grounded for TP , since the only v with TP(> ∧ v) = TP(v) ≤ v is >
itself. However, since TP([⊥,>]) = L \ {⊥} and {p} ∧ {q} = ⊥, it follows that∧

(TP [⊥,>]) = ⊥. Thus, lfp(
∧
TP([·,>])) = ⊥. Therefore, > is not an ultimate

stable fixpoint of TP .

The fact that all A-stable fixpoints are ultimate stable fixpoints yields:
Corollary 3.3.3. If A is an approximator of O, then all A-stable fixpoints are
(strictly) grounded fixpoints of O.
Theorem 3.3.4. The well-founded fixpoint (u, v) of a symmetric approximator
A of O approximates all grounded fixpoints of O.

Proof. Let (ai, bi)i≤β be a well-founded induction of A and let x be a grounded
fixpoint of O. We show by induction that for every i ≤ β, ai ≤ x ≤ bi. The
result trivially holds for i = 0 since (a0, b0) = (⊥,>). It is also clear that the
property is preserved in limit ordinals. Hence, all we need to show is that the
property is preserved by A-refinements. Suppose (a′, b′) is an A-refinement of
(a, b) and (a, b) approximates x. We show that also (a′, b′) approximates x, i.e.,
that a′ ≤ x ≤ b′. We distinguish two cases.

First, assume that (a, b)≤p (a′, b′)≤pA(a, b). Since x is a fixpoint of O and A
an approximator of O, we find that x = O(x) ∈ A(x, x) ⊆ A(a, b) ⊆ (a′, b′).

Second, assume that a′ = a and A(a, b′)2 ≤ b′ ≤ b. Since every tuple in a
well-founded induction of a symmetric approximator is consistent, we know
that b′ ≥ a. Since also x ≥ a, we see that a ≤ x ∧ b′ ≤ b′. Hence x ∧ b′ ∈ [a, b′],
thus O(x ∧ b′) ∈ A(a, b′), and we see that O(x ∧ b′) ≤ A(a, b′)2 ≤ b′. Since x is
grounded, this implies that x ≤ b′; we conclude that also in this case x ∈ [a′, b′].

We have thus shown that every step in a well-founded induction of A preserves
all grounded fixpoints.

28 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

Corollary 3.3.5. If the well-founded fixpoint of a symmetric approximator A
of O is exact, then this point is the unique (strictly) grounded fixpoint of O.

Since the Kripke-Kleene fixpoint approximates the well-founded fixpoint, we
also get the following property.

Corollary 3.3.6. If the Kripke-Kleene fixpoint of a symmetric approximator
A of O is exact, then it is the unique fixpoint of O and it is (strictly) grounded.

3.4 Grounded Fixpoints of Logic Programs

In this section, we discuss grounded fixpoints in the context of logic programming.
It follows immediately from the algebraical results (Corollary 3.3.3 and Theorem
3.3.4) that stable models are grounded fixpoints of the immediate consequence
operator and that all grounded fixpoints are minimal fixpoints approximated
by the well-founded model. Furthermore, if the Kripke-Kleene or well-founded
model is exact, then it is the unique grounded fixpoint of TP .

Grounded fixpoints can be explained in terms of unfounded sets, a notion
that was first defined by Van Gelder, Ross and Schlipf (1991) in their seminal
paper introducing the well-founded semantics. Unfounded sets of a three-valued
interpretation are a key concept in the construction of the well-founded model.
Intuitively, an unfounded set is a set of atoms that might circularly support
themselves, but have no support from outside. Stated differently, an unfounded
set of a logic program P with respect to a (partial) interpretation I is a set U
of atoms such that P does not provide support for any atom in U if the atoms
in U are assumed false.

Below, we define the concept of unfounded set in the context of two-valued
interpretations. For clarity, we refer to our unfounded sets as “2-unfounded
sets” and to the original definition by Van Gelder, Ross and Schlipf as “GRS-
unfounded sets”.

Definition 3.4.1 (2-Unfounded set). Let P be a logic program and I ⊆ Σ an
interpretation.

A set U ⊆ Σ is a 2-unfounded set of I (with respect to P) if for each rule r ∈ P
with head(r) ∈ U , body(r)I[U :f] is false. A 2-unfounded set U of I is called
proper if U is a nonempty subset of I.

Thus, U is a 2-unfounded set of I if after revising I by setting atoms of U to
false, no atom in U can be derived.

LOGIC PROGRAMS 29

All interpretations I admit 2-unfounded sets, in particular the empty set ∅ and
every set U consisting of atoms p that are false in I and for which every rule
r ∈ P with head(r) = p has a false body in I. Indeed, for such sets, it holds
that I[U : f] = I and no rule derives an element of U . However, not every
interpretation I admits a proper 2-unfounded set. If I has a proper 2-unfounded
set, then this means that I cannot be built up from the ground.

In Section 3.4.1, we investigate the relationship between this formalisation
of unfounded sets and the original one. In particular, we extend the above
definition to three-valued interpretations and show that the different notions
of unfounded set are equivalent in the context of the well-founded model
construction. First, we show how unfounded sets are related to the algebraical
notion of groundedness.

The definition of 2-unfounded set can be easily rephrased in terms of the operator
TP , as shown in the following proposition.

Proposition 3.4.2. U is a 2-unfounded set of I with respect to P if and only
if TP(I[U : f]) ∩ U = ∅.

Proof. Follows immediately from the fact that p ∈ TP(I[U : f]) if and only if
for some rule r ∈ P with head(r) = p, it holds that body(r)I[U :f] = t.

Example 3.4.3. Let P be the following program:
p← q.

q← p.

r←¬p.


Let I be the interpretation {p, q}. Then U1 = {p, q} is a 2-unfounded set of I
since I[U1 : f] = {r} and in this structure, the bodies of rules defining p and q
are false. Alternatively, we notice that TP(I[U1 : f]) ∩ U1 = ∅ ∩ U1 = ∅.

The set U2 = {p} is not a 2-unfounded set of I since the rule body for p evaluates
to true in I[U2 : f].

In what follows, we use U for the set complement of U , i.e., U = Σ \ U .

Proposition 3.4.4. Let P be a logic program, I ∈ 2Σ an interpretation, U ⊆ Σ.
The following statements are equivalent:

• U is a 2-unfounded set of I,

• TP(I ∩ U) ⊆ U , and

30 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

• TP(I \ U) ∩ I ⊆ I \ U .

Proof. The equivalence of the first two follows immediately from Proposition
3.4.2 since I[U : f] = I \ U = I ∩ U and for every set X, X ⊆ U if and only if
X ∩ U = ∅. The equivalence of the second and third statement follows from
the fact that I \ U = I ∩ U and for all subsets X,Y and Z of Σ it holds that
X ∩ Y ⊆ Y \ Z if and only if X ⊆ (Σ \ Z).

Proposition 3.4.4 shows that U is a 2-unfounded set if and only if its complement
satisfies the condition on v in Definition 3.2.1 if and only if I \ U satisfies the
condition on y in Definition 3.2.2. This allows us to reformulate the condition
that I is grounded as follows.

Proposition 3.4.5. An interpretation I is (strictly) grounded for TP if and
only if I does not contain atoms that belong to a 2-unfounded set U of I with
respect to P .

Proof. First, suppose I is grounded for TP and U is a 2-unfounded set of I.
Let V = U denote the set complement of U . Since U is a 2-unfounded set,
TP(I ∩ V) ⊆ V . Thus, the definition of groundedness yields I ⊆ V , and hence
that U ∩ I = ∅. We conclude that I is indeed disjoint from any 2-unfounded set.

The reverse direction is analogous. Suppose every 2-unfounded set is disjoint
from I. Let V be such that TP(I∩V) ⊆ V and let U = V denote the complement
of V . By Proposition 3.4.4 U is an unfounded set of I, hence it follows from
our assumption that I ∪ U = ∅ and hence I ⊆ U = V .

We already established in Corollary 3.2.6 that groundedness is equivalent to
strict groundedness in this context.

Corollary 3.4.6. A structure I is a grounded fixpoint of TP if and only if it is
a fixpoint of TP and it has no proper 2-unfounded sets.

We call grounded fixpoints of TP grounded models of P. Similarly to
ultimate semantics, grounded models are insensitive to 2-equivalence-preserving
rewritings in the bodies of rules: if P and P ′ are such that TP = TP′ , then the
grounded models of P and P ′ coincide. Also similar to ultimate semantics, the
above property comes at a cost.

Theorem 3.4.7. The problem “given a finite propositional logic program P,
decide whether P has a grounded model” is ΣP2 -complete.

LOGIC PROGRAMS 31

The proof of this theorem is heavily inspired by the proof of a similar property
for ultimate stable models (Theorem 6.12) by DMT (2004); we use the same
reduction of a ΣP2 -hard problem to our problem.

Proof. Given an interpretation I, any non-trivial 2-unfounded set of I is a
witness that I is not grounded. Thus, verifying that I is not grounded is in NP
and verifying that I is a grounded model is in co-NP. Thus the task of deciding
whether there exists a grounded model certainly is in the class ΣP2 .

We now show ΣP
2 -hardness of the problem of existence of a grounded model

of a program P. Let ϕ be a propositional formula in disjunctive normal form
(DNF) over propositional symbols x1, . . . , xm, y1, . . . , yn. For an interpretation
I ⊆ {x1, . . . , xm}, we define ϕI as the formula obtained from ϕ by replacing
all atoms xi ∈ I by t and all atoms xi 6∈ I by f . Recall that the problem of
deciding whether there exists an interpretation I ⊆ {x1, . . . , xm} such that ϕI
is a tautology is ΣP

2 -hard. We now reduce this problem to our problem. For
each xi, we introduce a new variable x′i; we will use x′i to represent the negation
of xi. Let ϕ′ be the formula obtained from ϕ by replacing all literals ¬xi by x′i.
We define a program P(ϕ) consisting of the following clauses

1. xi ← ¬x′i and x′i ← ¬xi for each i ∈ {1, . . . ,m},

2. yi ← ϕ′ for each i ∈ {1, . . . , n},

3. p← ϕ′,

4. q ← ¬p ∧ ¬q.

We now show that there is an I ⊆ {x1, . . . , xm} such that ϕI is a tautology if
and only if P(ϕ) has a grounded model. It is easy to see that in each fixpoint
M of TP(ϕ) the following properties hold:

1. q is false in M (if q is true TP(ϕ) does not derive q),

2. p is true in M (otherwise TP(ϕ) derives q),

3. y1, . . . , yn are true in M (since their rules have the same body as p),

4. for each i ∈ {1, . . . ,m}, exactly one of xi and x′i is true in M .

Given a set I ⊆ {x1, . . . , xm}, we define Ǐ = I ∪ {x′i | xi 6∈ I}. It follows from
the above properties that for each fixpoint M of TP(ϕ), there exists an I such
that

M = Ǐ ∪ {p, y1, . . . , yn}.

32 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

Thus it suffices to show that if I ⊆ {x1, . . . , xm}, then M = Ǐ ∪ {p, y1, . . . , yn}
is a grounded model of P(ϕ) if and only if ϕI is a tautology.

In order to prove this, we fix I and M = Ǐ ∪ {p, y1, . . . , yn}. Now, M is not
a grounded model if and only if there exists a non-empty U ⊆ M such that
TP(M \U)∩U = ∅. By the structure of the rules defining xi and x′i, each such
U has the property that xi 6∈ U and x′i 6∈ U . Hence U ⊆ {p, y1, . . . , yn}. Since
the bodies of rules defining atoms in U must be false in M \ U , such a U has
the property that ϕ′ is false in M \ U . But ϕ′ is false in M \ U if and only if
ϕI is false in {y1, . . . , yn} \ U . Thus, we conclude that M is not a grounded
model if and only if there exists a truth assignment to J ⊆ {y1, . . . , yn} such
that ϕI is false in J . Thus, M is not a grounded model if and only if ϕI is not
a tautology, which is exactly what we needed to show.

Let us briefly compare grounded model semantics with the two most frequently
used semantics of logic programming: well-founded and stable semantics. First,
we observe that these three semantics tend to prefer a subclass of the minimal
models. We called this criterion groundedness and indeed found that stable
semantics and two-valued well-founded semantics have the property that they
only accept grounded interpretations.

Second, since these three semantics are closely related, it is to be expected that
they often coincide. We established that for programs with a two-valued Kripke-
Kleene model, the Kripke-Kleene semantics coincides with the supported model
semantics and with the three semantics mentioned above. Also for programs
with a two-valued well-founded model, the three semantics coincide. This
sort of programs is common in applications for deductive databases (Datalog
and extensions (Abiteboul and Vianu, 1991)) and for representing inductive
definitions (Denecker and Ternovska, 2008; Denecker and Vennekens, 2014). In
contrast, well-founded semantics only rarely coincides with stable semantics in
the context of answer set programming. In the context where the well-founded
model is three-valued, the question arises when stable and grounded models
coincide. We illustrated in Example 3.3.2 that in this case, stable and grounded
model semantics may disagree (since {p, q} is not an ultimate stable model, it
certainly is no stable model either). However, we observe that this example is
quite extraordinary, and this is the case for all such programs that we found. It
leads us to expect that both semantics coincide for large classes of answer set
programming (ASP) programs. It is therefore an interesting topic for future
research to search for characteristics of programs that guarantee that both
semantics agree. If such properties can be identified, then within those classes
the grounded model semantics gives an equivalent reformulation of the stable
semantics. If these classes cover the pragmatically important classes of ASP
programs (that is, if the ASP programs written for practical problems fall

LOGIC PROGRAMS 33

inside them), then the grounded model semantics is an elegant, intuitive and
concise variant of the standard stable semantics, which in practice coincides
with it. And if pragmatically important classes of programs are discovered for
which both semantics disagree, the question then is if other properties than
groundedness can be identified that are possessed by stable but not by grounded
models.

Several other semantics such as well-founded and stable semantics satisfy
the desirable property of groundedness. However, unlike those semantics,
grounded model semantics is purely two-valued and algebraical. The well-founded
semantics explicitly uses three-valued interpretations in the well-founded model
construction. Stable semantics uses three-valued logic implicitly in the sense
that, as we showed, the Gelfond-Lifschitz reduct corresponds to an evaluation
in a partial interpretation. One of the main advantages of grounded model
semantics is that it is so easily definable for language extensions. All it takes
is to define the (two-valued) immediate consequence operator. Typically this
is quite easy (see the following paragraph). Note that the ultimate versions
of the well-founded and stable semantics are purely algebraical as well but
they are mathematically more involved since they still refer to three-valued
interpretations (replacing Kleene valuation by supervaluation).

Grounded Fixpoints for Logic Programs with Abstract Constraint Atoms
The fact that grounded model semantics is two-valued and algebraical makes it
not only easier to understand, but also to extend the semantics. To illustrate
this, we consider logic programs with abstract constraint atoms as defined
by Marek et al. (2008). An abstract constraint is a collection C ⊆ 2Σ. A
constraint atom is an expression of the form C(X), where X ⊆ Σ and C is
an abstract constraint. The goal of such an atom is to model constraints on
subsets of X. The truth value of C(X) in interpretation I is t if I ∩X ∈ C
and f otherwise. Abstract constraints are a generalisation of pseudo-Boolean
constraints, cardinality constraints, containment constraints, and much more.
A deterministic logic program with abstract constraint atoms (Marek et al.,
2008) is a set of rules of the form1

p← a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm,

where p is an atom and the ai and bi are constraint atoms. Having defined the
truth value of a constraint atom C(X) in an interpretation I, an immediate
consequence operator can be defined in the standard way:

TP(I) = {p | ∃r ∈ P : head(r) = p ∧ body(r)I = t}.
1The approach by Marek et al. (2008) also includes nondeterministic programs. We come

back to this issue in Section 3.4.1.

34 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

Grounded models of this operator still represent the same intuitions: an
interpretation I is grounded if it admits no unfounded sets, or said differently,
if it contains no atoms without external support. Thus, I is grounded if it
contains no non-empty set U of atoms such that body(r)I[U :f] for each rule r
with head(r) ∈ U .

Example 3.4.8. Let Σ be the alphabet {a, b, c, d}. For every i, let C≥i be the
cardinality constraint {X ⊆ Σ | |X| ≥ i}. Consider the following logic program
P over Σ: {

a. b← C≥1(Σ).
c← ¬C≥4(Σ). d← C≥4(Σ).

}
Any interpretation in which d holds is not grounded since, taking U = {d}
yields for every I that C≥4(Σ)I[U :f] = f and thus d 6∈ TP(I[U : f]). It can easily
be verified that {a, b, c} is the only grounded model of P.

This example illustrates that even for complex, abstract extensions of logic
programs, groundedness is an intuitive property. Groundedness easily extends
to these rich formalisms: the lattice always is the space of interpretations, the
immediate consequence operator is defined in the standard way and defining
grounded models takes only one line given this immediate consequence operator.
This is in sharp contrast with more common semantics of logic programming
(such as stable and well-founded semantics) which are often hard(er) to extend
to richer formalisms, as can be observed by the many different versions of those
semantics that exist for logic programs with aggregates (Ferraris, 2005; Son
et al., 2006; Pelov et al., 2007; Faber et al., 2011; Gelfond and Zhang, 2014).

Furthermore, groundedness is closely related to one of the most popular
semantics for logic programs with aggregates, namely the FLP-stable semantics
defined by Faber et al. (2011). Given an interpretation I, Faber, Pfeifer
and Leone (2011) defined the reduct of P with respect to I as the program
PI = {r | r ∈ P ∧ I |= body(r)}. I is an FLP-stable model of P if it is a
subset-minimal fixpoint of TPI . For a large class of programs, this semantics is
equivalent with qrounded model semantics, as the following theorem shows.

Theorem 3.4.9. Let P be a logic program with abstract constraint atoms. If
for each p ∈ Σ, there is at most one rule r ∈ P with head(r) = p, then I is an
FLP-stable model of P if and only if I is a grounded model of P.

Proof. In this case, for all I and J , TPI (J) = TP(J)∩TP(I) since PI is obtained
from P by removing all rules with body false in I and there is at most one
rule defining each atom. If I is a supported model of P, i.e., a fixpoint of TP ,
we find that TPI (J) = TP(J) ∩ I. It is easy to see that FLP-stable models
are supported models of P. Assume I is a supported model. In this case I is

LOGIC PROGRAMS 35

FLP-stable if and only if there is no J (I with TP(J) ∩ I = TPI (J) ⊆ J , i.e.,
if and only if I is strictly grounded. Now, we know from Corollary 3.2.6 that in
the context of logic programming, groundedness and strict groundedness are
equivalent, which proves our claim.

3.4.1 Discussion

Unfounded Sets Unfounded sets were first defined by Van Gelder et al. (1991)
in their seminal paper introducing the well-founded semantics. Their definition
slightly differs from Definition 3.4.1.
Definition 3.4.10 (GRS-Unfounded set). Let P be a logic program and I
a three-valued interpretation. A set U ⊆ Σ is a GRS-unfounded set of I
(with respect to P) if for each rule r with head(r) ∈ U , body(r)I = f or
body(r)I[U :f] = f .

The first difference between 2-unfounded sets and GRS-unfounded sets is that
GRS-unfounded sets are defined for three-valued interpretations, while we
restricted our attention to (two-valued) interpretations. Our definition easily
generalises to three-valued interpretations as well.
Definition 3.4.11 (3-Unfounded set). Let P be a logic program and I a three-
valued interpretation. A set U ⊆ Σ is a 3-unfounded set of I (with respect to
P) if for each rule r with head(r) ∈ U , body(r)I[U :f] = f .
Lemma 3.4.12. Let P be a logic program and I an interpretation. A set U ⊆ Σ
is a 2-unfounded set of I with respect to P if and only if it is a 3-unfounded set
of I with respect to P.

Proof. Follows immediately from the definitions.

This definition formalises the same intuitions as Definition 3.4.1: U is a 3-
unfounded set if making all atoms in U false in I results in a state where none
of them can be derived. This definition easily translates to algebra as well.
Proposition 3.4.13. Let P be a logic program, ΨP Fitting’s immediate
consequence operator and I a three-valued interpretation. A set U ⊆ Σ is
a 3-unfounded set if and only if ΨP(I[U : f])2 ∩ U = ∅.

Proof. Recall that Fitting’s operator is defined by

ΨP(I)1 = {a ∈ Σ | body(r)I = t for some rule r ∈ P with head(r) = a}

ΨP(I)2 = {a ∈ Σ | body(r)I 6= f for some rule r ∈ P with head(r) = a}

36 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

The claim now follows immediately from the definition of ΨP(I)2.

The following proposition relates the two notions of unfounded sets.

Proposition 3.4.14. Let P be a logic program, I a three-valued interpretation
and U ⊆ Σ. The following properties hold.

• If U is a 3-unfounded set, then U is a GRS-unfounded set.

• If I[U : f] is more precise than I, then U is a GRS-unfounded set if and
only if U is a 3-unfounded set.

Proof. The first claim follows directly from the definitions.

If I and U are chosen such that I[U : f] is more precise than I, for every formula
ϕ, the condition ϕI = f or ϕI[U :f] = f is equivalent with ϕI[U :f] = f . Thus we
conclude that in this case the notions of 3-unfounded set and GRS-unfounded
set are indeed equivalent, which proves the second claim.

Thus, for a certain class of interpretations, the two notions of unfounded sets
coincide. Furthermore, Van Gelder et al. only use unfounded sets to define
the well-founded model construction. It follows immediately from Lemma
3.4 by Van Gelder et al. (1991) that every partial interpretation I in that
construction with GRS-unfounded set U satisfies the condition in the second
claim in Proposition 3.4.14. This means that 3-unfounded sets and GRS-
unfounded sets are equivalent for all interpretations that are relevant in the
original work! Essentially, we provided a new formalisation of unfounded sets
that coincides with the old definition on all interpretations used in the original
work.

Corollary 3.4.6, which states that grounded models of P are fixpoints of TP that
permit no proper 2-unfounded sets, might sound familiar. Indeed, it has been
shown that an interpretation is a stable model of a logic program if and only if
it is a fixpoint of TP and it permits no proper GRS-unfounded sets (Lifschitz,
2008). As shown by Leone et al. (1997), also stable models of disjunctive logic
programs can be characterised as models that permit no proper GRS-unfounded
sets.

Groundedness and Nondeterminism In Section 3.4, we restricted our
attention to logic programs with abstract constraint atoms in the bodies of rules,
and we did not allow them in heads of rules. As argued by Marek et al. (2008),
allowing them as well in heads gives rise to a nondeterministic generalisation of

ARGUMENTATION FRAMEWORKS AND ABSTRACT DIALECTICAL FRAMEWORKS 37

the immediate consequence operator. A consistent nondeterministic operator
maps every point x ∈ L to a non-empty set O(x) ⊆ L. Extending the notion
of groundedness to this nondeterministic setting is out of the scope of this
dissertation.

3.5 Grounded Fixpoints in Dung’s Argumentation
Frameworks and Abstract Dialectical Frame-
works

Abstract argumentation frameworks (AFs) (Dung, 1995) are simple and abstract
systems to deal with contentious information and draw conclusions from it. An
AF is a directed graph where the nodes are arguments and the edges encode
a notion of attack between arguments. In AFs, we are not interested in the
actual content of arguments; this information is abstracted away. In spite of
their conceptual simplicity, there exist many different semantics with different
properties in terms of characterisation, existence and uniqueness.

Abstract dialectical frameworks (ADFs) (Brewka and Woltran, 2010; Brewka
et al., 2013) are a generalisation of AFs in which not only attack, but also
support, joint attack and joint support can be expressed.

Recently, Strass (2013) showed that many of the existing semantics of AFs and
ADFs can be obtained by direct applications of AFT. In this section we use the
aforementioned study to relate grounded fixpoints to AFs and ADFs. We first
do so for the case of AFs and afterwards generalise to ADFs.

3.5.1 Abstract Argumentation Frameworks

An abstract argumentation framework Θ is a directed graph (A,R) in which
the nodes A represent arguments and the edges in R represent attacks between
arguments. We say that a attacks b if (a, b) ∈ R. A set S ⊆ A attacks a if some
s ∈ S attacks a. A set S ⊆ A defends a if it attacks all attackers of a. An
interpretation of an AF Θ = (A,R) is a subset S of A. The intended meaning of
such an interpretation is that all arguments in S are accepted (or believed) and
all arguments not in S are rejected. Interpretations are ordered according to
the acceptance relation: S1 ≤ S2 iff S1 ⊆ S2, i.e., if S2 accepts more arguments
than S1. There exist many different semantics of AFs which each define different
sets of acceptable arguments according to different standards or intuitions. The
major semantics for argumentation frameworks can be formulated using two

38 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

operators: the characteristic function FΘ, which maps an interpretation S to

FΘ(S) = {a ∈ A | S defends a}

and the operator UΘ (U stands for unattacked), which maps an interpretation
S to

UΘ(S) = {a ∈ A | a is not attacked by S}.
An interpretation S is conflict-free if it is a postfixpoint of UΘ (S ≤ UΘ(S)),
i.e., if no argument in S is attacked by S. The characteristic function is a
monotone operator; its least fixpoint is called the grounded extension of Θ.
The operator UΘ is an anti-monotone operator; its fixpoints are called stable
extensions of Θ. Many more semantics, such as admissible interpretations,
complete extensions, semi-stable extensions, stage extensions and preferred
extensions can be characterised using the above operators as well (Dung, 1995;
Verheij, 1996; Caminada et al., 2012).

The following proposition shows that grounded extensions as defined in
argumentation theory are indeed grounded in the sense defined in this
dissertation.

Proposition 3.5.1. The grounded extension of Θ is the unique grounded
fixpoint of FΘ.

Proof. Follows immediately from Proposition 3.2.11 which states that a
monotone operator has exactly one grounded fixpoint, namely its least
fixpoint.

The grounded extension S consists of all arguments a that should definitely
be accepted: all arguments that are globally unattacked, defended by globally
unattacked arguments, and so on (recursively). As such, the intuition regarding
the grounded extension is similar to intuitions regarding grounded fixpoints: we
only accept arguments with a good, non-self-supporting defence.

Example 3.5.2. Consider the following framework:

a // b

��

// e

c // doo

In this example a is unattacked, hence should be accepted; b is attacked by
a, hence should not be accepted. The argument e is defended by a, hence

ARGUMENTATION FRAMEWORKS AND ABSTRACT DIALECTICAL FRAMEWORKS 39

can safely be accepted. c and d mutually attack each other and hence, defend
themselves. Since we have already established that b is rejected, the only
remaining argument that defends c is c itself. The grounded extension rejects
self-defending arguments (i.e., rejects both c and d) and hence is {a, e}.

Proposition 3.5.3. An interpretation S is a stable extension of Θ if and only
if it is a (strictly) grounded fixpoint of UΘ.

Proof. Follows immediately from Proposition 3.2.12 which states that all
postfixpoints of an antimonotone operator are (strictly) grounded. Indeed,
UΘ is anti-monotone and stable extensions are exactly the fixpoints of UΘ.

Example 3.5.4 (Example 3.5.2 continued). Stable extensions are more liberal
in accepting arguments than the grounded extension. In stable extensions,
arguments are “by default” accepted, unless another accepted argument
contradicts them. The framework considered in this example has two stable
extensions: {a, e, c} and {a, e, d}.

3.5.2 Abstract Dialectical Frameworks

We now extend our theory to the more general case of ADFs. In the context of
AFs, grounded fixpoints characterise two existing semantics, when applied to
two previously defined operators. In the context of ADFs, however, this does
not hold. Here, grounded fixpoints yield a new semantics.

An abstract dialectical framework is a triple Ξ = (S,L,C), where

• S is a set of arguments

• L ⊆ S × S is a set of links; we define the parents of s ∈ S as par(s) =
{r ∈ S | (r, s) ∈ L},

• C = {Cins }s∈S is a collection of sets Cins where for every s, Cins ⊆ 2par(s).

Intuitively, for every s, par(s) is the set of arguments that influence whether or
not S should be accepted. This influence can be positive (support), negative
(attack) or a combination of both. An argument s should be accepted if for some
set A ∈ Cins , all arguments in A are accepted and all arguments in par(s) \A
are not. An argumentation framework Θ = (A,R) is an ADF in which all links
are attack relations, i.e., for every s, par(s) = {s′ | (s′, s) ∈ R} and Cins = {∅}
(the only way to accept an argument is if none of its attackers is accepted).

40 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

Example 3.5.5. Let S be the set of arguments {a, b, c, d} and L the following
graph

a //

��

c

d boo

OO

ff

Furthermore, Cina = {∅}, Cinb = {{b}}, Cinc = {∅, {a}, {b}} and Cind = {{a, b}}.
The following observations provide an intuitive reading of the ADF Ξ = (S,L,C).

• a is a valid argument since it has trivial support.

• b supports itself: the only “reason” to believe b is b itself.

• a and b jointly attack c: since Cinc = {∅, {a}, {b}}, c is only rejected if a
and b are both present

• a and b jointly support d: d is only acceptable if a and b both hold.

Intuitively, we should accept a. Whether or not to accept b, depends on which
semantics for ADFs is used. Argument c can only be accepted in case we reject
b, d should be accepted if we accept b.

With an ADF Ξ, we associate an operator GΞ on the lattice 〈2S ,⊆〉 as follows
(Strass, 2013):

GΞ(X) = {s ∈ S | X ∩ par(s) ∈ Cins }.

This operator generalises the operator UΘ for AFs.

Strass (2013) showed that many of the existing semantics for ADFs can be
characterised with AFT. For example, models of Ξ are fixpoints of GΞ, stable
models (Brewka et al., 2013) of Ξ are ultimate stable fixpoints of GΞ, et cetera.
He also showed that there is a one to one correspondence between ultimate
semantics for ADFs and for logic programs, in the sense that every ADF Ξ can
be transformed to a logic program P such that GΞ and TP coincide and vice
versa. It is out of the scope of this dissertation to discuss all of the different
semantics for ADFs. Here, we restrict ourselves to discussing the intuitions
regarding grounded fixpoints. The intuitions underlying grounded fixpoints of
ADFs are of course similar to those in other domains where AFT is applied.
Groundedness serves to eliminate “ungrounded” reasoning: if the only reason
for accepting an argument is that the argument itself holds, then this argument
should be rejected.

ARGUMENTATION FRAMEWORKS AND ABSTRACT DIALECTICAL FRAMEWORKS 41

Example 3.5.6 (Example 3.5.5 continued). The operator GΞ from this example
has two fixpoints: {a, b, d} and {a, c}. The first of the two is not a grounded
fixpoint because b itself is the only reason to accept b. Formally

GΞ({a, b, d} ∧ {a, c, d}) = GΞ({a, d}) = {a, c} ≤ {a, c, d}

thus indeed {a, b, d} is ungrounded. On the other hand, {a, c} is grounded; it is
the unique grounded fixpoint of GΞ.

We now study groundedness in the context of ADFs.

Definition 3.5.7 (Support). Let Ξ = (S,L,C) be an ADF and X ⊆ S. We
say that s ∈ S has support in X if X ∩ par(s) ∈ Cins .

Definition 3.5.8 (Grounded model). Let Ξ = (S,L,C) be an ADF and X ⊆ L
a model of Ξ. We say that X is a grounded model of Ξ if for every set U with
∅ (U ⊆ X, at least one u ∈ U has support in X \ U .

Thus, a grounded model is one without self-supporting arguments, i.e., without
arguments that no longer have support once they are removed.

Below, U denotes the set complement of U , i.e., U = S \ U .

Proposition 3.5.9. Let Ξ = (S,L,C) be an ADF. Then X ⊆ S is a grounded
fixpoint of GΞ if and only if X is a grounded model of Ξ.

Proof. The proof is analogous to the proof of Proposition 3.4.5.

First, suppose X is a grounded fixpoint of GΞ. Since X is a fixpoint of GΞ, by
definition it is a model of Ξ. If U is a set ∅ (U ⊆ X, we need to show that at
least one u ∈ U has support in X \ U . Suppose this condition is not satisfied,
i.e., that no u has support in X \ U . This means that GΞ(X \ U) ∩ U = ∅.
Let V = U ; the previous equation translates to GΞ(X ∧ V) ≤ V . Thus, the
definition of groundedness yields X ≤ V , and hence that U ∩ X = ∅, which
contradicts with the assumption that ∅ (U ⊆ X, hence X is indeed a grounded
model of Ξ.

The reverse direction is analogous. Suppose X is a grounded model of Ξ. Let
V be such that GΞ(X ∧ V) ≤ V and let U = V ∩X. Thus U ⊆ X and (since
X \ U = X ∧ V) GΞ(X \ U) ∩ U = ∅. Thus, no u ∈ U has support in X \ U ,
hence by the definition of a grounded model, U must be empty, i.e., X ≤ V and
we conclude that X is indeed a grounded fixpoint in this case.

It is worth noting that the set U in Definition 3.5.8 corresponds to a proper
unfounded set in the case of logic programming.

42 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

Many semantics have been defined for ADFs. Most of these semantics are three-
valued. The only two-valued semantics are conflict-free sets, supported models
and two-valued stable models. Our algebraical results immediately yield that
the two-valued stable semantics has the property that it only accepts grounded
interpretations. Grounded fixpoints are a new element in the family of two-
valued semantics of ADFs. We believe that this is an interesting new member:
as illustrated above, it formalises simple and clear intuitions. Two-valued stable
semantics and grounded fixpoint semantics formalise related ideas. As with
logic programs, we conjecture that for large classes of ADFs these two semantics
coincide; it remains an open research question to define those classes (or classes
on which they differ). Since Strass (2013) defined transformations between logic
programs and ADFs that preserve the operator, solving this research question
will also solve the related open question from Section 3.4 and vice versa.

3.5.3 Discussion

Complexity Strass has shown that there is a one to one correspondence between
ultimate semantics for ADFs and for logic programs, in the sense that every
ADF Ξ can be transformed to a logic program P such that GΞ and TP coincide
and vice versa. These results allow us to port complexity results from the field
of logic programming to ADFs and vice versa. Hence, Theorem 3.4.7 yields that
checking existence of a grounded fixpoint of an ADF is ΣP2 -complete.

In the context of ADFs, one is often also interested in other forms of reasoning
such as credulous or sceptical reasoning (Strass and Wallner, 2014). Analysing
complexity of grounded fixpoint semantics for more forms of reasoning is a topic
for future work.

3.6 Grounded Fixpoints of Autoepistemic and De-
fault Theories

In this section, we study groundedness in the context of Moore’s autoepistemic
logic (AEL) (Moore, 1985) and Reiter’s default logic (DL) (Reiter, 1980).

In the late seventies, the field of knowledge representation and more particularly,
the field of non-monotonic reasoning, increasingly became concerned with the
representation of and reasoning on default statements “P ’s are normally Q’s”.
The idea grew to interpret such statements as defeasible inference rules “if x is
a P and it is not known that x is not a Q then (derive that) x is a Q”. This idea
was developed independently in default logic by Reiter (1980) and nonmonotonic

AUTOEPISTEMIC AND DEFAULT THEORIES 43

logic I and II (McDermott and Doyle, 1980; McDermott, 1982). Not much
later, Moore (1985) identified the latter sort of statements as autoepistemic
statements and developed autoepistemic logic (AEL) for it.

In Moore’s view, an autoepistemic theory T is the representation of the
knowledge of a perfect, rational, introspective agent. The agent is introspective
in the sense that propositions in its theory may refer to its own knowledge,
through the modal operator K. The informal interpretation of this operator is
“I (the agent) know that . . . ”. The agent is a perfect reasoner in the sense that
its knowledge is closed under entailment. It is rational in the sense that it only
believes propositions contained in or entailed by its knowledge base T . Thus, T
expresses, directly or indirectly, all the agent knows. Levesque (1990) called this
assumption about T the “All I Know Assumption”. It is this assumption that
distinguishes autoepistemic logic from the standard modal logic of knowledge
S5. The challenge in defining such a logic lies in the fact that AEL theories are
self-referential: what is known by T is made up from what is expressed by its
statements, but what is expressed by a statement depends on what is known by
T .

Moore (1985) formalised these ideas as follows. Let L be the language of
propositional logic based on the vocabulary Σ. Extending this language with a
modal operator K, yields the language LK of modal propositional logic. An
autoepistemic theory (over Σ) is a set of formulas in LK . A modal formula is a
formula of the form Kψ, with ψ a formula. An objective formula is a formula
without modal subformulas.

AEL uses the semantical concepts of standard modal logic. As before, an
interpretation I is a subset of Σ. It formally represents a potential state of
affairs of the world. A possible world structure is a set of interpretations. It can
be seen as a Kripke structure with the total accessibility relation. The set of all
possible world structures, WΣ, is thus 2(2Σ). It forms a complete lattice under
⊇. A possible world structure Q formally expresses a potential belief state of
an agent by providing all the states of the world that the agent considers to be
possible. Interpretations I ∈ Q are formal representations of possible states of
affairs and satisfy the propositions known by the agent. Interpretations I 6∈ Q
represent impossible states of affairs in the sense that they violate some of the
agent’s propositions.

The semantics of AEL is based on the standard S5 truth assignment. For
arbitrary formula ϕ in LK , Q a possible world structure and I an interpretation,
we define that ϕ is satisfied with respect to Q and I (denoted Q, I |= ϕ) by
the standard recursive rules of propositional satisfaction, augmented with one

44 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

additional rule:

Q, I |= Kϕ if Q, I ′ |= ϕ for every I ′ ∈ Q.

For objective formulas ϕ, it holds that Q, I |= ϕ if and only if I |= ϕ. We define
Q |= Kϕ (ϕ is known in Q) if Q, I |= ϕ for every I ∈ Q. As can be seen from
the definition of satisfaction, modal formulas are evaluated with respect to the
possible world structure Q, while objective formulas are evaluated with respect
to the world I.

Example 3.6.1. Consider a formula ϕ = ¬p ∧ ¬Kp. Let Q be the possible
world structure {{p}, ∅} and let I = ∅. Then, Q, I 6|= p, and Q, I 6|= Kp, hence
Q, I |= ϕ.

The class WΣ of possible world structures exhibits a natural knowledge order.
Intuitively Q contains less knowledge than Q′ if it has more possible worlds.
Formally we define Q≤kQ′ if Q ⊇ Q′. The intuition underlying this order
is clarified by considering the concept of the objective theory of a possible
world structure Q. This is the set of objective formulas that are known in Q.
Formally, it is defined as Thobj(Q) = {ϕ ∈ L | Q |= Kϕ} = {ϕ ∈ L | ∀I ∈ Q :
I |= ϕ}. Moore (1984) proved that the function Thobj induces a one-to-one
correspondence between possible world structures and sets of objective formulas
closed under logical consequence. An obvious property is that Q≤kQ′ if and
only Thobj(Q) ⊆ Thobj(Q′). Thus, if Q≤kQ′ then indeed Q possesses less
knowledge than Q′.

With the order ≤k , WΣ forms a complete lattice. For example, if Σ = {p}, the
associated lattice is:

> = ∅

{{p}}

99

{∅}

dd

⊥ = {{p}, ∅}

ee ::

Moore proposed to formalise the intuition that an AEL theory T expresses “all
the agent knows” in semantical terms, as a condition on the possible world

AUTOEPISTEMIC AND DEFAULT THEORIES 45

structure Q representing the agent’s belief state. The condition is as follows: a
world I is possible according to Q if and only if I satisfies T given Q, that is if
Q, I |= T . Equivalently, I is impossible if and only if I violates T given Q, or
Q, I 6|= T . Formally, Moore defines that Q is an autoepistemic expansion of T
if for every world I, it holds that I ∈ Q if and only if Q, I |= T .

The above definition is essentially a fixpoint characterisation. The underlying
operator DT is:

DT (Q) = {I | Q, I |= T }.
Clearly, Q is an autoepistemic expansion of T if and only if Q is a fixpoint of
DT . These autoepistemic expansions are the possible world structures that,
according to (Moore, 1985) express candidate belief states of an autoepistemic
agent with knowledge base T . Moore called such structures grounded.

Soon, researchers such as Halpern and Moses (1985) and Konolige (1988) pointed
out certain “anomalies” in the expansion semantics. The simplest example is
the theory T = {Kp⇒ p}. One of its expansions is Q2 = {{p}}. The problem
with Q2 is that it is self-supporting: Q2’s assumption that p is known to be
true, is essential for deriving p. Even from Moore’s perspective there might be
a problem with such self-supporting belief states. In the first part of his work
(Moore, 1985), he argues that sets of inference rules such as the theories that
arise in nonmonotonic reasoning, correspond to autoepistemic theories. Viewed
from this perspective, T is the singleton set consisting of one inference rule:

` p
p

Surely, such an inference rule should be of no value, as it can only derive
something that has been derived before! Therefore, the only acceptable belief
state for T seems to be Q1, the state of total ignorance.

Several attempts were done to strengthen Moore’s semantics. Halpern and
Moses (1985) proposed an alternative possible world semantics in which the
model of an AEL theory T is the ≤k -least prefixpoint of DT , if it exists.
Unfortunately, many simple and natural AEL theories have no model in this
semantics. An example is {¬Kp⇔ q} for which several prefixpoints of DT exist
but no least one. Here, Moore’s semantics makes sense. The unique expansion
{{q}, {p, q}} captures the idea that there is no objective information about p,
hence p is unknown; therefore, q holds.

Also Konolige (1988) attempted to refine Moore’s semantics. He called
expansions weakly grounded and proposed alternative definitions for so called
moderately grounded and strongly grounded expansions. Intuitively, a possible
world structure Q is moderately grounded if all the information it contains
can be derived from T using only ignorance statements from Q. Thus, Q is

46 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

moderately grounded if all knowledge in Q follows from T augmented with all
statements of the form ¬Kϕ such that Q 6|= Kϕ (in standard S5 entailment).
Konolige proved that moderate grounded expansions are exactly the minimal
fixpoints of DT . However, he pointed out that even moderately grounded
expansions can give rise to ungrounded reasoning. He illustrated this with the
following example.

Example 3.6.2. Consider the following theory

T = {¬Kp⇒ q,Kp⇒ p}.

This theory has two moderately grounded possible world structures, namely
Q1 = {{p}, {p, q}} and Q2 = {{q}, {q, p}}. Q1 is the possible world structure
in which p is known (Kp,¬K¬p) and q is not known (¬Kq,¬K¬q).

Again, Konolige argued that Q1 from Example 3.6.2 should not be grounded.
Indeed, in Q1, the knowledge of p is self-supported. The intended model here is
Q2 = {{q}, {q, p}}.

This motivated him to propose the strengthened notion of strongly grounded
expansion; for a formal definition, see Konolige (1988). The disadvantage of
this notion, as recognised by Konolige, is that it is only defined for theories in a
normal form where every sentence is of the form

Kα ∧ ¬Kβ1 ∧ · · · ∧ ¬Kβn ⇒ γ,

where α, γ and the βi are objective. Furthermore, whether or not a possible
world structure is strongly grounded depends on which transformation to the
normal form is used. In other words, strong groundedness is syntactically
defined and may hold for one theory and not for an equivalent theory.

Example 3.6.3. Consider theories T1 = {p} and T2 = {Kp ⇒ p,¬Kp ⇒ p}.
These theories are equivalent in the modal logic S5. However, {{p}} is a strongly
grounded expansion of T1, while it is not a strongly grounded expansion of T2.

We now investigate how the algebraical concept of grounded fixpoint translates
to the setting of AEL and how it relates to the above ideas.

Definition 3.6.4 (Unfounded set of impossible worlds). Let T be an AEL
theory and Q a possible world structure. A non-empty set U of worlds is
an unfounded set of impossible worlds of Q if U ∩ Q = ∅ and for all I ∈ U :
(Q ∪ U), I |= T .

If Q admits such a U , it contains unsupported knowledge. In particular, the
knowledge that the worlds in U are impossible is unsupported, since if we

AUTOEPISTEMIC AND DEFAULT THEORIES 47

weaken Q by accepting U as possible worlds, then none of the worlds of U can
be dismissed as impossible. All of them satisfy T in the revised belief state
Q ∪ U . The desired property that an agent’s knowledge will satisfy is thus that
Q does not admit such a U .

Definition 3.6.5 (Grounded expansion). Let T be an AEL theory. A possible
world structure Q is grounded for T if Q does not admit an unfounded set of
impossible worlds. A possible world structure Q is a grounded expansion if it is
an expansion and grounded.

As it turns out, this notion is again equivalent with the algebraical notion of
groundedness.

Proposition 3.6.6. A possible world structure Q is grounded for T if and only
if Q is (strictly) grounded for DT in the lattice 〈WΣ, ≤k 〉.

Proof. Definition 3.6.5 can be rephrased by focussing on Q′ = Q ∪ U . Q is
grounded if there is no Q′) Q such that Q′ 6⊆ DT (Q′) ∪ Q. We notice that
) is <k, ∪ is

∧
and ⊆ = ≥k in the lattice 〈WΣ, ≤k 〉. With this information,

Definition 3.6.5 equals the definition of a strictly grounded lattice element.
Furthermore, Corollary 3.2.6 guarantees that the notion of strict groundedness
coincides with groundedness in powerset lattices.

The intuitions expressed above correspond closely to those written down by
Konolige (1988). On all the examples he gave, groundedness as we defined it,
achieves the desired result. Furthermore, since grounded fixpoints are always
minimal in ≤k , our notion of groundedness is indeed stronger than the notion
of moderate groundedness. We show below (in Corollary 3.6.10) that our notion
of groundedness is slightly weaker than strong groundedness. Furthermore,
groundedness is defined for every AEL theory (not just for a given normal form)
and it is defined purely semantically: two equivalent (in S5) theories have the
same grounded expansions.

Example 3.6.7. Consider the following autoepistemic theory:

T = {p,¬Kp⇒ q,Kq ⇒ q}.

The intended possible world structure is clear here: p follows from T using the
first sentence, hence p is known. The second sentence cannot be used to derive
q, since Kp holds. Furthermore, the last sentence cannot be used to derive
q since it first requires Kq. This theory has two autoepistemic expansions,
namely Q1 = {{p}, {p, q}} (which corresponds to knowing p, and not knowing
whether q holds or not) and Q2 = {{p, q}} (knowing both p and q). The first

48 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

one is grounded, while the second is not (it is not even a minimal fixpoint since
Q1≤kQ2). Indeed, if we remove the knowledge that q holds from Q2 (i.e., we
turn the previously impossible world {p} into a possible world by adding it to
Q2), then {p} remains possible; that is, the belief that {p} is impossible is not
derived anymore. Hence Q2 is not grounded.

3.6.1 Groundedness of the AFT family of semantics for AEL

As we saw, the problem of ungrounded expansions remained unsolved for several
years. A new take at it was obtained when DMT applied AFT to AEL. We
explain this approach.

The bilattice of WΣ consists of pairs (P,C) of possible worlds. Intuitively,
such pairs approximate possible world structures Q such that C ⊆ Q ⊆ P , i.e.,
P ≤kQ≤k C: therefore, C is to be understood as a set of certainly possible
worlds and P as a set of possibly possible worlds.

For such pairs, the standard 3- and 4-valued Kleene truth valuation of
propositional logic can be extended to a truth function ϕ(P,C),I by adding
the following rules for modal formulas:

• Kϕ(P,C),I = t if for all I ′ ∈ P , ϕ(P,C),I′ = t.

• Kϕ(P,C),I = f if for some I ′ ∈ C, ϕ(P,C),I′ = f .

• Otherwise, Kϕ(P,C),I = u

That is, ϕ is known in (P,C) if it holds in all possibly possible worlds, it is not
known if it does not hold in at least one certainly possible world. Otherwise, it
cannot be determined if ϕ is known.

This truth valuation induces for each autoepistemic theory T a bilattice operator
AT that maps pairs (P,C) to (P ′, C ′) where

C ′ = {I | T (P,C),I = t} and

P ′ = {I | T (P,C),I 6= f}

Intuitively, the derived certainly possible worlds are those in which T evaluates
to true, and the derived possibly possible worlds are those in which T does not
evaluate to false.

DMT showed that AT is an approximator of DT . Hence, it induces a class of
existing and new semantics for AEL: Moore’s expansion semantics (supported

AUTOEPISTEMIC AND DEFAULT THEORIES 49

fixpoints), Kripke-Kleene expansion semantics (Denecker et al., 1998) (Kripke-
Kleene fixpoints), stable extension semantics (stable fixpoints) and well-founded
extension semantics (well-founded fixpoints) (Denecker et al., 2003). The latter
two were new semantics induced by AFT. As a corollary of Theorem 3.3.4 and
Proposition 3.3.1, we obtain the following analysis of groundedness.

Corollary 3.6.8. Stable and two-valued well-founded extensions of T are
grounded (in the sense of Definition 3.6.5). If the well-founded extension is
two-valued, it is the unique stable extension and the unique grounded expansion.
If the Kripke-Kleene expansion is two-valued, it is the well-founded extension,
the unique expansion, the unique stable extension and it is grounded.

For the AEL theory {Kp ⇒ p}, the possible world structure {∅, {p}} is the
well-founded and the unique stable extension. It is also the unique grounded
expansion.

An example of an AEL theory with a grounded expansion that is not a stable
extension is {Kp⇒ p,¬Kp⇒ p}. Its unique grounded expansion is {{p}} but
it has no stable extensions and the well-founded extension is three-valued.

3.6.2 Default logic

Similar to McDermott and Doyle (1980), Reiter (1980) proposed to implement
defaults “P ’s are normally Q’s” by their defeasible inference rule “If x is known
to be a P and it is consistent to believe that it is a Q, then (infer that) x is a Q”.
Note that, through the standard duality of modal logic, the second condition is
equivalent to “it is not known that x is not a Q”. A default logic theory consists
of sentences of propositional calculus and default expressions of the form:

α : Mβ1, . . . ,Mβn
γ

where α, β1, . . . , βn, γ are expressions of propositional logic and n ≥ 1. The
informal semantics of such an expression is “if α is known, and it is consistent
to believe β1, . . . , and βn, then γ holds”. For this logic, Reiter developed his
extension semantics. It soon became clear that Reiter’s extension semantics
had some exquisite features. For example, consider the following default theory:{

p : Mt
p

}
It has one extension, namely the theory Thobj({∅, {p}}). Clearly, in this example
default logic avoids the ungrounded model that the related AEL theory {Kp⇒

50 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

p} has. The sort of ungrounded models that existed for AEL were never
discovered in DL. In corollary 3.6.9, we show that Reiter’s semantics indeed
does not allow ungrounded extensions.

There is an obvious correspondence on the informal level between default
expressions and AEL formulas. This connection was explicated by Konolige
(1988) who proposed to translate a default theory T to the AEL theory Kon(T)
consisting of AEL formulas:

Kα ∧ ¬K¬β1 ∧ · · · ∧ ¬K¬βn ⇒ γ

However Kon is not equivalence preserving. Indeed,
{
p:
p

}
is a counterexample,

as it translates to the AEL theory {Kp⇒ p} which under Moore’s expansion
semantics is not equivalent. In fact, Gottlob (1995) showed that no modular
translations exist from DL to AEL (but non-modular transformations exist).
For a while, it was believed that AEL and DL were quite different logics. Later,
DMT (2003) showed that, similar as for AEL, also with a default theory T it
is possible to associate an approximator AT . This induced again the family
of AFT semantics for DL which, just like for AEL, included several existing
and some new semantics for DL: weak extensions (Marek and Truszczynski,
1989) (supported fixpoints), Kripke-Kleene extensions (Kripke-Kleene fixpoints),
Reiter’s extensions (Reiter, 1980) (stable fixpoints) and well-founded extension
semantics (Baral and Subrahmanian, 1993) (well-founded fixpoint). Only Kripke-
Kleene extensions were a new semantics induced by AFT.

Interestingly, it then appeared that AT = AKon(T) for every default logic
theory T . Thus, a default theory and Konolige’s (modular) translation to
AEL have identical approximators. Therefore, they induce the same family of
semantics. For example, the extensions of a default theory correspond to the
stable extensions of its AEL translation. DMT (2011) argued that the different
semantics of AEL and DL induced by AFT correspond to different dialects of
autoepistemic reasoning. The mismatch found between AEL and DL was due
to the fact that Reiter’s and Moore’s semantics formalised different dialects of
autoepistemic reasoning. However, Konolige’s translation is correct on a deeper
level: it preserves equivalence under every dialect of autoepistemic reasoning!

The above exposition not only tells the story of the link between AEL and
DL but also provides the formal material for an analysis of groundedness in
the context of DL. Given the embedding of DL into AEL, Definition 3.6.5 also
defines groundedness in DL and—using the fact that AFT characterises all
main semantics of DL—we obtain the following corollary of Theorem 3.3.4 and
Proposition 3.3.1.
Corollary 3.6.9. Reiter’s extensions are grounded. If the well-founded
extension of a DL theory is two-valued then it is the unique extension and

CONCLUSION 51

the unique grounded weak extension. If the Kripke-Kleene extension of a DL
theory is two-valued then it is grounded (and also the well-founded extension,
the unique weak extension, the unique Reiter extension).

An example of a DL theory that has no Reiter extensions but has a grounded
weak extension is: {

p : Mt
p

,
: M¬p
p

}
,

which corresponds to the AEL theory {Kp⇒ p,¬Kp⇒ p}. Its unique grounded
weak extension is Thobj({{p}}).

To end the discussion of groundedness in AEL and DL, we return to AEL and
the strongly grounded expansions defined by Konolige. He defined them for
AEL theories consisting of formulas in the following canonical form:

Kα ∧ ¬K¬β1 ∧ · · · ∧ ¬K¬βn ⇒ γ

Such formulas are exactly the AEL formulas in the range of Kon. Hence, every
AEL theory in this canonical form is Kon(T) for some DL theory T . Konolige
showed that the strongly grounded expansions of Kon(T) are exactly the Reiter
extensions of T . Combining this result with the previous corollary yields the
following.

Corollary 3.6.10. If Q is a strongly grounded AEL expansion of T , then Q is
a grounded expansion of T .

3.7 Conclusion

The concept of groundedness is widespread in various logic and knowledge
representation domains. In this chapter, we formalised this as a property of
fixpoints of a lattice operator. In a first step, we analysed grounded fixpoints
and their relation to other notions of fixpoints, in particular minimal fixpoints
and the different sorts of fixpoints classified in approximation fixpoint theory.
The main results here are: given an operator O and an approximator A of O,
all A-stable fixpoints are grounded for O and all grounded fixpoints of O are
minimal fixpoints approximated by the A-well-founded fixpoint.

We then investigated groundedness in logic programming, abstract argumenta-
tion frameworks, autoepistemic logic and default logic. In each of these fields,
the concept of groundedness had appeared before, although not always under
the same name. We showed links with the notion of unfounded set in logic
programming, with groundedness in Dung’s argumentation frameworks and

52 GROUNDED FIXPOINTS AND THEIR APPLICATIONS IN KNOWLEDGE REPRESENTATION

various notions of groundedness in autoepistemic logic and default logic. In
each logic, we investigated groundedness of the existing semantics and the
new semantics induced by grounded fixpoints. For example, in the context
of argumentation frameworks, we discovered that grounded fixpoints recover
two existing semantics. In the more general abstract dialectical frameworks,
grounded fixpoint yield a new semantics with a clear informal semantics: a
fixpoint is grounded if it contains no self-supporting arguments. In autoepistemic
logic and default logic, groundedness captures intuitions written down by
Konolige.

In summary, the main contributions of the presented work are: we presented a
generic formalisation of the concept of groundedness, an analysis of groundedness
of existing semantics in a range of logics, and last but not least, the definition of
the new semantics for operator based logics induced by grounded fixpoints. In
comparison with approximation fixpoint theory, grounded fixpoints are defined
directly in terms of the original lattice operator and do not require the invention
of an approximator. Grounded fixpoint semantics is compact, intuitive and
applicable to all operator based logics. Moreover, it is easily extensible. When
adding new language constructs, it suffices to extend the operator for them.

Chapter 4

Partial Grounded Fixpoints

The contents of this chapter will be published in the proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI’15).

4.1 Introduction

In the previous chapter, we extended AFT with the notion of a grounded fixpoint.
We showed that grounded fixpoints are an intuitive concept, closely related to
exact stable fixpoints. In the context of logic programming, grounded fixpoints
can be characterised using a generalised notion of unfounded set.

Grounded fixpoints are lattice elements; in this chapter, we generalise them to
points in the bilattice, while still maintaining the intuitions, the elegance and
desirable properties of groundedness. For the case of logic programming, this
generalisation boils down to extending groundedness to partial (or three-valued)
interpretations. There are several reasons why it is important to generalise a
notion as groundedness to a partial context.

The first, and probably most obvious reason, is that sometimes partial fixpoints
are a central topic of study themselves. As an example, in argumentation
frameworks and abstract dialectical frameworks, most of the studied semantics
are three-valued.

A second reason is that studying concepts in the bilattice (i.e., in a partial
context) is more general than studying them only in the original lattice. Many of
our results are generalisations of results from the previous section. For instance,

53

54 PARTIAL GROUNDED FIXPOINTS

in Corollary 3.3.5, we showed that if the well-founded fixpoint is exact, then it
is grounded; in this section, we show that the well-founded fixpoint is always
grounded (Corollary 4.2.8). Another example is that in this section, we show
that all (possibly partial) consistent stable fixpoints are grounded (Proposition
4.2.4), a generalisation of Corollary 3.3.3 which states that all exact stable
fixpoints are grounded.

A third reason is that even in domains where we are only interested in two-
valued models, partial models can be useful, e.g., as an analysis tool. For
example, in answer set programming (Marek and Truszczyński, 1999) almost all
specifications are designed for two-valued stable model semantics. Errors in such
specifications may lead to logic programs without stable models; they are hard
to debug. Partial stable models (Przymusinski, 1991) can help the debugging
process as they can sometimes pinpoint the reason for inconsistency. As a trivial
example, let Σ be a vocabulary and p a symbol not in Σ. Augmenting any logic
program over Σ with the rule

p← ¬p

yields a logic program without stable models. Debugging tools can use the
observation that p is undefined in every partial stable model to identify the
“mistake” in the above program, namely the extra rule. The technique of
debugging knowledge bases based on partial stable models is used for example
in the XNMR system (Castro and Warren, 2001). Partial stable models are not
only used for debugging. Real-life databases often contain (local) inconsistencies.
The partial stable model semantics for deductive databases is more robust than
the two-valued stable semantics in this case. It only assigns the value unknown
to atoms in an inconsistent part of the database, hence it still allows inference
on the rest of the database (Seipel et al., 1997; Eiter et al., 1997).

Summarised, the main contributions of this chapter are as follows.

1. We extend the notion of groundedness to points in the bilattice.

2. We study the relationship between partial grounded fixpoints and the
other fixpoints studied in AFT. An important result in this context is
that we find a new characterisation of the well-founded fixpoint based on
groundedness.

3. We study how partial grounded fixpoints depend on the choice of an
approximator.

4. We apply our theory to logic programming.

5. We study complexity of both credulous and sceptical reasoning of partial
grounded model semantics in logic programming.

PARTIAL GROUNDED FIXPOINTS 55

4.2 Partial Grounded Fixpoints

We start by giving the central definition of this chapter, namely the notion
of A-groundedness. This definition is a direct extension of Definition 3.2.1 to
bilattice elements. It should be noted that we do not extend the notion of
strictly grounded fixpoints. The most important reason is that this concept
does not have an obvious natural extension to the bilattice, or at least, we did
not find it yet.

Definition 4.2.1. Let A be an approximator of O. A point (x, y) ∈ Lc is
A-grounded if for every v ∈ L with A(x ∧ v, y ∧ v)2 ≤ v, also y ≤ v.

The definition of this concept is a direct generalisation of groundedness for
points x ∈ L. It is based on the same intuitions, but applied in a more general
context. We again explain the intuitions under the assumption that the elements
of L are sets of “facts” and the ≤ relation is the subset relation between such
sets. In this case, a point (x, y) ∈ Lc represents a partial set of “facts”: the
elements of x are the facts that certainly belong to the partial set, the elements
in y are those that possibly belong to the set. Thus, y \ x are the unknown
elements and the complement of y are those that do not belong to the set. In
this context, a bilattice point (x, y) is A-grounded if all its possible facts (those
in y) are sanctioned by the operator A, in the sense that if we remove some
elements from the partial set, then A will make at least one of them possible
again (i.e., if we make some elements false, at least one of them should be made
not false). The above definition captures this idea, by using a set v ∈ L to
remove all elements not in v from (x, y): the point (x∧v, y∧v) does not contain
facts in the complement of v; on all other facts, (x∧v, y∧v) equals (x, y). In an
A-grounded point (x, y) removing elements must result in a state where at least
one of them is re-derived to be possible: it must hold that A(x ∧ v, y ∧ v)2 6≤ v.
Stated differently, if the removal of elements from (x, y) is not contradicted by
A, i.e., applying A results in a state where these elements are still false, then
these elements cannot be part of the grounded point (y ≤ v).

Example 4.2.2. Let P be the following logic program{
p← p.

q←¬r.

}

As always, ΨP denotes Fitting’s partial immediate consequence operator. Any
partial interpretation I with pI 6= f is not ΨP -grounded. To see this, suppose
I = (I1, I2) and let I ′ denote (I1 ∩ {q, r}, I2 ∩ {q, r}). Then pI

′ = f , hence also
pΨP(I′) = f . Thus ΨP(I ′)2 ⊆ {q, r}, while I2 6⊆ {q, r} since we assumed that p
is not false in I.

56 PARTIAL GROUNDED FIXPOINTS

In what follows, we study properties of A-grounded (fix)points, including their
relation to other fixpoints studied in AFT. A first observation is that for exact
points, i.e., bilattice points of the form (x, x), the choice of the approximator
A does not matter and that for those points, A-groundedness coincides with
Definition 3.2.1.
Proposition 4.2.3. If A is a symmetric approximator of O, then x is grounded
for O if and only if (x, x) is A-grounded.

Proof. Trivial. Follows immediately from the fact that A(x, x)2 = O(x) for all
x ∈ L if A is symmetric.

A second observation is that all partial A-stable fixpoints are A-grounded. This
is a generalisation of Corollary 3.3.3 which states that all exact stable fixpoints
are grounded.
Proposition 4.2.4. All consistent (partial) A-stable fixpoints are A-grounded.

Proof. Suppose (x, y) ∈ Lc is an A-stable fixpoint, i.e., x = lfp(A(·, y)1) and
y = lfp(A(x, ·)2). Also assume that for some v, A(x ∧ v, y ∧ v)2 ≤ v. We show
that y ≤ v. Since A is ≤p -monotone and y ∧ v ≤ y, it holds that

A(x, y ∧ v)2 ≤ A(x, y)2 = y.

Analogously, since A is ≤p -monotone and x ∧ v ≤ x, it holds that

A(x, y ∧ v)2 ≤ A(x ∧ v, y ∧ v)2 ≤ v.

Combining these two observations, we find that

A(x, y ∧ v)2 ≤ y ∧ v,

i.e., that y ∧ v is a prefixpoint of the monotone operator A(x, ·)2. Since y is the
least prefixpoint of this operator, it must hold that y ≤ y ∧ v, thus also that
y ≤ v, which we needed to show.

Example 4.2.5. The converse of Proposition 4.2.4 does not hold. Consider
the logic program P {

p← p ∨ ¬p.
}

We claim that every consistent bilattice point is ΨP -grounded in this case.
Indeed, if (x, y) ∈ Lc, then for v = {p}, y ≤ v is trivially true, for v = ∅, it
holds that

ΨP(x ∧ v, y ∧ v)2 = ΨP(∅, ∅)2 = {p} 6≤ ∅ = v.

Hence, all points in the bilattice are ΨP -grounded. Thus, ({p}, {p}) is a ΨP -
grounded fixpoint which is not ΨP -stable.

PARTIAL GROUNDED FIXPOINTS 57

A third observation is that the A-well-founded fixpoint is less precise than
any A-grounded fixpoint. This property generalises both the fact that the
A-well-founded fixpoint approximates all exact grounded fixpoints of O (which
we proved in Theorem 3.3.4) and the fact that the A-well-founded fixpoint is
less precise than any partial A-stable fixpoint (Theorem 23-2 from Denecker
et al. (2000)).

Theorem 4.2.6. The well-founded fixpoint (u, v) of a symmetric approximator
A of O is less precise than any A-grounded fixpoint.

Before we prove this theorem, we show that the second type of refinements in a
well-founded induction eliminates only non-grounded bilattice points. Thus, we
show that if (a, b′) is an unfoundedness refinement of (a, b), then all bilattice
points that are more precise than (a, b), but not more precise than (a, b′), are
ungrounded.

Lemma 4.2.7. Let (a, b) and (a, b′) be elements of Lc such that A(a, b′)2 ≤
b′ ≤ b. Then for every b′′ with b′ � b′′ ≤ b, (a, b′′) is ungrounded.

Proof. For every such b′′ it holds that A(a ∧ b′, b′′ ∧ b′)2 = A(a, b′)2 ≤ b′ while
b′′ 6≤ b′.

Proof of Theorem 4.2.6. Let (ai, bi)i≤β be a well-founded induction of A and
let (x, y) be an A-grounded fixpoint. We show by induction that for every i ≤ β,
ai ≤ x and y ≤ bi.

• The results trivially holds for i = 0 since (a0, b0) = (⊥,>).

• It is also clear that the property is preserved in limit ordinals.

• Hence, all we need to show is that the property is preserved by A-
refinements. Suppose (a′, b′) is an A-refinement of (a, b) and that
(a, b)≤p (x, y). We show that (a′, b′)≤p (x, y). We distinguish two
cases. If (a, b)≤p (a′, b′)≤pA(a, b), then since A is ≤p -monotone and
(a, b)≤p (x, y), it holds that A(a, b)≤pA(x, y) = (x, y), hence also
(a′, b′)≤p (x, y). For the second type of refinements, it follows from Lemma
4.2.7 that only ungrounded bilattice points are removed.

Te A-well-founded fixpoint is characterised as the least precise A-stable fixpoint.
The previous theorem provides us with a similar characterisation of the well-
founded fixpoints in terms of groundedness. This is an important result, as it
again supports the claim that many of the existing semantics are designed with
the intuitions of groundedness in mind: we establish a very tight link between
the well-founded fixpoints and grounded fixpoints.

58 PARTIAL GROUNDED FIXPOINTS

Corollary 4.2.8. The well-founded fixpoint of a symmetric approximator A of
O is the least precise A-grounded fixpoint.

Proof. The well-founded fixpoint of A is consistent and A-stable, hence
Proposition 4.2.4 shows that it is A-grounded as well. Theorem 4.2.6 shows that
it is less precise than any A-grounded fixpoint, hence the result follows.

An operator can have multiple approximators. In Proposition 4.2.3, we already
showed that the choice of approximator A does not affect exact A-grounded
fixpoints: these are exactly the fixpoints that are grounded for O. The question
still remains how groundedness of other points in the bilattice is influenced
by such a choice. The next proposition answers this question: more precise
approximators have fewer grounded points.

Proposition 4.2.9. If A and B are approximators of O and A≤pB, then all
consistent B-grounded points are also A-grounded.

Proof. Suppose (x, y) ∈ Lc is B-grounded; we show that it is also A grounded.
Assume that for some v it holds that A(x ∧ v, y ∧ v)2 ≤ v. Since A≤pB, it
holds that

B(x ∧ v, y ∧ v)2 ≤ A(x ∧ v, y ∧ v)2 ≤ v.

Since (x, y) is B-grounded, we find that y ≤ v.

Example 4.2.10. The choice of an approximator can really make a difference
for the notion of A-groundedness, i.e., not all A-grounded points are B-grounded
in Proposition 4.2.9. Consider the logic program P{

p←¬p.
q← q.

}

Then ({q}, {p, q}) is not ΨP -grounded since

ΨP({q} ∧ {p}, {p, q} ∧ {p})2 = ΨP(∅, {p})2

= (∅, {p})2

= {p},

while {p, q} 6≤ {p}.

However, let A be the trivial approximator of TP , i.e., the approximator such that
A(x, x) = (TP(x), TP(x)) for every x ∈ L and A(x, y) = (⊥,>) for (x, y) ∈ Lc
with x 6= y. We claim that ({q}, {p, q}) is A-grounded. We prove this claim by

PARTIAL GROUNDED FIXPOINTS IN LOGIC PROGRAMMING 59

showing that all v ∈ L satisfy the condition from Definition 4.2.1. For v = >
the condition y ≤ > is trivially satisfied. For v = {q}, we find

A({q} ∧ {q}, {p, q} ∧ {q})2 = A({q}, {q})2

= ({p, q}, {p, q})2

= {p, q}

6≤ {q}.

For v = {p}, we find

A({q} ∧ {p}, {p, q} ∧ {p})2 = A(∅, {p})2

= (⊥,>)2

= >

6≤ {p}

For v = ∅, we find that

A({q} ∧ ∅, {p, q} ∧ ∅)2 = A(∅, ∅)2

= ({p}, {p})2

= {p}

6≤ ∅.

This indeed proves our claim.

4.3 Partial Grounded Fixpoints in Logic Program-
ming

In this section, we apply our theory to logic programming. More concretely we
extend the observation from Section 3.4 that in logic programming, groundedness
is closely related to unfounded sets. Here, we define several variants of unfounded
sets (one for each approximator of TP) and show that A-groundedness is directly
characterised by means of A-unfounded sets. When taking for A Fitting’s
(partial) immediate consequence operator, our definition coincides with the
notion of “3-unfounded set” from Definition 3.4.11.

60 PARTIAL GROUNDED FIXPOINTS

Intuitively, an unfounded set is a set of atoms that might circularly support
themselves, but have no support from outside. Stated differently, an unfounded
set of a logic program P with respect to a partial interpretation I is a set U of
atoms such that P provides no support for any atom in U if the atoms in U are
assumed false. Each approximator A of the immediate consequence operator
TP defines its own notion of support: it maps a partial interpretation I to A(I),
where A(I)1 are the atoms that are supported by P, and A(I)2 are the atoms
that are possibly supported by P, depending on the values of atoms unknown
in I. Thus, the atoms for which A provides no support are those not in A(I)2
and the above intuitions are formalised directly as follows.

Definition 4.3.1 (A-Unfounded set). Let P be a logic program, A an
approximator of TP and I a three-valued interpretation. A set U ⊆ Σ is
an A-unfounded set of P with respect to I if A(I[U : f])2 ∩ U = ∅.

When A is Fitting’s immediate consequence operator, our definition coincides
with the notion of 3-unfounded set from Definition 3.4.11. We already showed
that for partial interpretations I such that I[U : f] is more precise than I,
ΨP -unfounded sets are exactly unfounded sets as defined by Van Gelder et al.
(1991) and that all interpretations in the well-founded model construction satisfy
this condition.

Example 4.3.2 (Example 4.2.2 continued). Let P again be{
p← p.

q←¬r.

}

In this case, {p} is a ΨP -unfounded set of any partial interpretation I. Indeed,
as argued in Example 4.2.2, p is false in ΨP(I[{p} : f]).

We now show how groundedness relates to this generalised notion of unfounded
sets. This proposition generalises Proposition 3.4.5.

Proposition 4.3.3. Let P be a logic program, and A an approximator of the
immediate consequence operator TP . A partial interpretation I is A-grounded
if and only if all atoms that belong to an A-unfounded set U of P with respect
to I are false in I.

Proof. First, suppose I = (I1, I2) is A-grounded and U is an A-unfounded set
of P with respect to I. Let V = Σ \ U be the complement of U . Since U is an
A-unfounded set, A(I[U : f])2∩U = ∅. This means that A(I1∧V, I2∧V)2 ≤ V ,
hence the definition of A-groundedness yields I2 ≤ V : all elements of U are
false in I.

PARTIAL GROUNDED FIXPOINTS IN LOGIC PROGRAMMING 61

The reverse direction is analogous. Suppose every A-unfounded set is disjoint
from I2. Let V be such that A(I1 ∧ V, I2 ∧ V)2 ≤ V and let U = Σ \ V be
the complement of V . Then again I[U : f] = (I1 ∧ V, I2 ∧ V) hence U is an
A-unfounded set of P with respect to I. Thus, it must hold that I2 ∩ U = ∅,
i.e., that I2 ≤ V . We conclude that I is indeed A-grounded.

Following the analogy with other partial semantics of logic programs, we call a
partial interpretation I such that I is a ΨP -grounded fixpoint of TP a partial
grounded model of P. We briefly discuss complexity of partial grounded model
semantics. First of all, deciding whether P has a partial grounded model is
not an interesting task since the well-founded model is always grounded. We
study other deterministic inference tasks, namely credulous and sceptical query
answering (sometimes also called possibility inference and certainty inference,
respectively) (Schlipf, 1995; Abiteboul et al., 1990; Saccà, 1997) under the
(partial) grounded semantics. The first of these tasks consists of deciding
whether a symbol p ∈ Σ holds in some grounded model, the second consists of
deciding whether it holds in all grounded models.

Theorem 4.3.4. Given a finite propositional logic program P over Σ and an
atom p ∈ Σ, the following hold.

1. The problem of deciding whether p holds in some partial grounded model
of P is ΣP2 -complete.

2. The problem of deciding whether p holds in all partial grounded models of
P is in P .

The proof of the first point is analogous to the proof of Theorem 3.4.7.

Proof. This first problem is in ΣP
2 ; this follows from the fact that verifying

whether a partial interpretation I is a partial grounded model can be done by
calculating ΨP(I[U : f]) for all candidate ΨP -unfounded sets.

We now show ΣP2 -hardness of the problem of existence of a (partial) grounded
model of a program P in which p holds. Let ϕ be propositional formula in
DNF over propositional symbols x1, . . . , xm, y1, . . . , yn. For an interpretation
I ⊆ {x1, . . . , xm}, we define ϕI as the formula obtained from ϕ by replacing
all atoms xi ∈ I by t and all atoms xi 6∈ I by f . Recall that the problem of
deciding whether there exists an interpretation I ⊆ {x1, . . . , xm} such that ϕI
is a tautology is ΣP

2 -hard. We now reduce this problem to our problem. For
each xi, we introduce a new variable x′i with as intended meaning the negation
of xi. Let ϕ′ be the formula obtained from ϕ by replacing all literals ¬xi by

62 PARTIAL GROUNDED FIXPOINTS

x′i. In the proof of Theorem 3.4.7, we defined a program P(ϕ) consisting of the
following clauses

1. xi ← ¬x′i and x′i ← ¬xi for each i ∈ {1, . . . ,m},

2. yi ← ϕ′ for each i ∈ {1, . . . , n},

3. p← ϕ′,

4. q ← ¬p ∧ ¬q.

We need to show that there is an I ⊆ {x1, . . . , xm} such that ϕI is a tautology
if and only if P (ϕ) has a partial grounded model in which p holds.

In the proof of Theorem 3.4.7, we already showed that there is an I ⊆
{x1, . . . , xm} such that ϕI is a tautology if and only if P (ϕ) has an exact
grounded model. Hence, all we need to show is that if P (ϕ) has a partial stable
fixpoint, then there is such an I as well. We will prove a stronger claim, namely
that every partial grounded model of P(ϕ) in which p holds can be extended to
a two-valued grounded model in which p holds.

It is easy to see that in each partial fixpoint M of ΨP(ϕ) with pM = t the
following properties hold:

1. y1, . . . , yn are true in M (since their rules have the same body as p),

2. for each i ∈ {1, . . . ,m}, either both xi and x′i are unknown in M or one
of them is true and the other is false in M .

Now, suppose M is a partial grounded model of P. By the above observations,
the only unknown atoms in M can be q, the xi and the x′i. Now, it is easy to
see that M [{q} : f] is also a grounded model of P. Similarly, if xi and x′i are
unknown in M , then M [{xi} : t, {x′i} : f] is a grounded model as well. Hence,
our claim follows.

The second point follows from the fact that the well-founded model of P can be
computed in polynomial time (Van Gelder et al., 1991) and that the well-founded
model is the least precise partial grounded model (Corollary 4.2.8).

4.4 Discussion

In the context of logic programming and argumentation frameworks, many
subclasses of partial stable models have been proposed.

CONCLUSION 63

• A partial stable model (X,Y) of P is called M-stable (for maximally stable)
if it is ≤p maximal, i.e., if there is no more precise partial stable model
(Saccà and Zaniolo, 1997). These models coincide with the preferred
extensions of Dung (1995) and the regular models of You and Yuan (1990)
for non-disjunctive logic programs.

• A partial stable model (X,Y) of P is called L-stable (for least undefined
stable) if Y \X is ⊆-minimal, i.e., if there exists no partial stable model
(X ′, Y ′) of P such that Y ′ \ X ′ (Y \ X (Saccà and Zaniolo, 1997).
L-stable models only differ from exact stable models if a program has
no two-valued stable models. This property is particularly useful in the
context of debugging.

Recent work by Strass (2013) lifted these two notions to approximation fixpoint
theory.1 His definitions can be used immediately to define partial M -grounded
and L-grounded fixpoints as well. Studying their properties, e.g., complexity, is
a topic for future work.

4.5 Conclusion

In this chapter, we extended groundedness to points in the bilattice: for every
approximating operator A, we defined a notion of A-groundedness. We showed
that for exact lattice points, this coincides with groundedness for O. We related
A-grounded fixpoints to other fixpoints in AFT: all A-stable fixpoints are A-
grounded and the A-well-founded fixpoint approximates all A-grounded points.
This gave us a new characterisation of the A well-founded fixpoint: it is the
least precise A-grounded fixpoint.

We applied our algebraical theory to logic programming, where A-groundedness
is closely related to unfounded sets.

1In order to define L-stable fixpoints, some additional assumptions about the lattice need
to be made.

Chapter 5

On Well-Founded
Set-Inductions and Locally
Monotone Operators

This chapter contains new, unpublished, work.

5.1 Introduction

The informal and formal semantics of nonmonotonic logics such as logic
programming and autoepistemic logic have been a topic of at moments intense
debate for several decades. Many semantics have been defined for these logics. In
several foundational papers, Denecker and coauthors argued for a constructive
interpretation of these logics and that well-founded inductions provide the
desired construction. They went as far as to suggest that for ’sound’ theories,
the well-founded construction always is strong enough to construct the intended
(exact) model, and that if the well-founded construction gets trapped in a
non-exact state, this is sign of a semantical anomaly in the theory which should
be considered to be flawed. A well-known example of a “flawed” program is the
following

{p← ¬p.}.

This claim was made and proven for logic programs viewed as inductive
definitions (Denecker and Vennekens, 2014). Such a claim was also made
for autoepistemic logic (Denecker et al., 2011). However, no proof was given

65

66 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

for that case. Shortly after the latter paper was published, it became clear
that for autoepistemic logic, this claim was incorrect: the well-founded model
construction is not nearly strong enough to always construct the intended model.

Example 5.1.1. In 2011, Hanne Vlaeminck, then PhD student of Denecker,
presented the following, so far unpublished example to show the weakness of
the well-founded semantics of autoepistemic logic.

Consider the autoepistemic theory

{q ⇔ ¬Kp, r ⇔ ¬Kq}.

Since p does not occur objectively in T , an agent who only knows T does
not have any information about p. Thus ¬Kp and ¬K¬p must hold in the
intended model. The first sentence then entails q, hence Kq must hold. Now,
the last sentence implies ¬r; the intended model is thus {{p, q}, {q}}, the unique
possible world structure in which ¬Kp,¬K¬p,Kq, and K¬r hold.

Hanne discovered this example when investigating a translation from ordered
epistemic logic (OEL) to AEL. The above AEL theory was obtained by
applying this translation to some OEL theory with the intended interpretation
{{p, q}, {q}}. Thus, this example showed not only the translation was not
equivalence preserving, but also the weakness of the well-founded semantics,
something that her (and some of my) supervisors—who had just advocated the
well-founded semantics—certainly had not expected.

We make some observations regarding Example 5.1.1.

1. As we show in Section 5.3, the well-founded semantics fails to identify the
intended model.

2. We can, informally, construct the intended model following some sort of
stratification (first reasoning on knowledge of p, next on knowledge of q
and finally on knowledge of r).

3. DT has a unique fixpoint, which is the intended model and which is
grounded.

DMT (2011) have strongly argued in favour of a constructive semantics for
AEL. While a constructive semantics has indeed important advantages, the
above example shows that the constructive semantics of their choice, the well-
founded semantics, is too weak for making the construction. An alternative
way suggested by the last observation is to use the grounded fixpoint semantics
for AEL instead. However, the grounded fixpoint semantics is non-constructive.

PRELIMINARIES 67

In order to solve this discrepancy, in this chapter we define a novel and stronger
constructive semantics for AEL. We show that on a large class of theories
(monotonically stratified theories, a class that generalises Example 5.1.1), our
stronger construction is capable to construct a unique model. Moreover, we will
prove that this model is the unique grounded fixpoint of the semantic operator
DT . This gives strong evidence that indeed, the presented construction fits
better with the aims of DMT.

In Section 5.4, we define—algebraically—a refinement of the well-founded
semantics. Our refined semantics is constructive and differs from the well-
founded semantics in the sense that instead of approximating lattice elements by
intervals (bilattice elements), we use arbitrary sets of lattice elements. In Section
5.5, we introduce a class of lattice operators, called locally monotone operators.
We prove that for locally monotone operators, our refined semantics yields a
single fixpoint, the unique grounded fixpoint of the operator. In Section 5.6,
we show that monotonically stratified AEL theories induce a locally monotone
operator and that the unique fixpoint identified by our semantics coincides with
the intended model for monotonically stratified theories. Thus, we show that
the grounded fixpoint semantics is correct for monotonically stratified theories
and provide a general, algebraical, construction of the unique grounded fixpoint.

In Section 5.7, we briefly apply our theory to logic programming. In this context,
we show that (locally) stratified logic programs (Przymusinski, 1988) induce a
locally monotone operator.

In Section 5.8, we relate our theory to the work by Vennekens et al. (2006) on
modularity of lattice operators and the work by Niemelä (1991) on a constructive
semantics for AEL. We conclude in Section 5.9.

In this chapter, we restrict our attention (e.g., in Definition 5.5.27) to finite
stratifications since the infinite case (n is an ordinal) requires several technical
details without facilitating new insights. These technical details can be found in
Appendix A. In the appendix, we show that our main technical results, namely
Theorems 5.5.28 and 5.5.29 also hold in the infinite case.

5.2 Preliminaries

If ϕ is a AEL-formula, At(ϕ) denotes the set of all atoms that occur in ϕ and
AtO(ϕ) the set of all atoms that occur objectively, i.e., not in the scope of an
operator K, in ϕ.

Recall from Section 3.6 that the lattice of all possible world structures is denoted
WΣ and that the semantic operator DT of an autoepistemic theory is defined

68 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

by
DT (Q) = {I | Q, I |= T }.

Following DMT (2003), the semantics of an autoepistemic theory is defined
by an approximator on the bilattice W2

Σ. In this chapter, we use the ultimate
approximator UT since this is the most precise approximator and we intend
to show that even the ultimate well-founded model is not precise enough to
capture the intended semantics of a class of autoepistemic theories. If we show
this for the ultimate approximator, the same also trivially follows for all other
approximators of DT . UT maps (P, S) to (P ′, S′), where

P ′ = {I | Q, I |= T for a Q with P ⊇ Q ⊇ S}

S′ = {I | Q, I |= T for all Q with P ⊇ Q ⊇ S}

DMT (2011) gave compelling arguments defending the (ultimate) well-founded
semantics for autoepistemic reasoning. Well-founded inductions mimic the
reasoning process of a rational agent: an (ultimate) well-founded induction
(Pi, Qi)i≤β of DT gradually derives what the agent knows (statements ϕ such
that Pi |= Kϕ) and what it does not know (ϕ such that Qi 6|= Kϕ).

Following Vennekens et al. (2006), we call an autoepistemic theory T stratifiable1

with respect to a partition (Σi)0≤i≤n of its alphabet if there exists a partition
(Ti)0≤i≤n of T such that for each i, AtO(Ti) ⊆ Σi and At(Ti) ⊆

⋃
0≤j≤i Σj .

This notion of stratification significantly extends the notion of Marek and
Truszczyński (1991). A stratification is modally separated if for every modal
subformula Kψ of Ti, either At(ψ) ⊆ Σi or At(ψ) ⊆

⋃
0≤j<i Σj .

Let Σ1 and Σ2 be two disjoint vocabularies. If Q1 and Q2 are possible world
structures over Σ1 and Σ2 respectively, then the extension of Q1 with Q2 is
the possible world structure over Σ1 ∪ Σ2 defined as Q1 ⊕Q2

def= {I1 ∪ I2 | I1 ∈
Q1 ∧ I2 ∈ Q2}. If Q is a possible world structure over Σ1 ∪ Σ2, the restriction
of Q to Σ1 is Q|Σ1

def= {I ∩ Σ1 | I ∈ Q}.

5.3 Motivation

In this section, we first show that for certain AEL theories such Example 5.1.1,
the well-founded fixpoint is not precise enough. Afterwards, we generalise this
example to obtain a class (called monotonically stratified theories) of theories
for which we can unambiguously define the intended model. By analogy with a

1As mentioned in the introduction, we restrict ourselves to finite stratifications.

MOTIVATION 69

similar concept in logic programming, namely local stratification (Przymusinski,
1988), we call the intended model of a monotonically stratified theory its perfect
model.

Example 5.3.1 (Example 5.3.1 continued). Again, let T be the autoepistemic
theory

{q ⇔ ¬Kp, r ⇔ ¬Kq}.
We now show that the well-founded semantics fails to identify the intended
model {{p, q}, {q}}. Let UT be the ultimate approximator of DT . Recall that
> = ∅ and ⊥ is the possible world structure containing all interpretations. First,
we notice that

UT (⊥,>)1 =
∧
DT ([⊥,>])

≤ DT (⊥) ∧DT ({{p, q}, {q}}) ∧DT ({{p}, {q, p}}) ∧DT (>)

= {{q, r}, {q, r, p}} ∧ {{p, q}, {q}} ∧ {{p, r}, {r}} ∧ {∅, {p}}

= ⊥

and that

UT (⊥,>)2 =
∨
DT ([⊥,>])

≥ DT (⊥) ∨DT (>)

= {{q, r}, {q, r, p}} ∨ {∅, {p}}

= >.

Hence UT (⊥,>) = (⊥,>) and there are no strict refinements of the first
kind of (⊥,>). Suppose that for some y′, UT (⊥, y′)2 ≤ y′. Since DT (⊥) =
{{q, r}, {q, r, p}}, it follows that y′ ≥ {{q, r}, {q, r, p}}. We find that

y′ ≥ UT (⊥, y′)2

=
∨
{DT ([⊥, y′])}

≥ DT (⊥) ∨DT ({{q, r}, {q, r, p}})

≥ {{q, r}, {q, r, p}} ∨ {{q}, {q, p}}

= ∅

= >.

70 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

Thus, there are also no strict refinements of the second kind either; (⊥,>) is
the ultimate well-founded fixpoint of DT .

We observe that the theory from the above example is stratifiable with respect
to the partition 〈{p}, {q}, {r}〉. Symbols in a stratum are uniquely defined in
terms of knowledge of symbols in lower strata, hence we expect that there
is a unique two-valued model which can be constructed from the ground up,
following the stratification. This is not the case under the (ultimate) well-
founded semantics. We now generalise this example.

Definition 5.3.2 (Monotonically stratified). We say that T is monotonically
stratified with respect to a partition (Σi)0≤i≤n of its alphabet if there is a
modally separated stratification (Ti)0≤i≤n of T such that all modal subformulas
Kψ of Ti with At(ψ) ⊆ Σi occur negatively (in the scope of an odd number of
negations) in Ti.

The stratification is strict if there are no modal subformulas Kψ of Ti with
At(ψ) ⊆ Σi.

The intuition regarding this definition is that whether or not symbols in Σi are
known by the agent is completely determined by knowledge of symbols in Σi′
with i′ < i and by Ti. Hence, knowledge of the agent can be built up in strata.
Restricted to Ti, symbols in Σi only depend positively on their own knowledge.
This guarantees that DT induces a monotonic operator when restricted to Σi.

Proposition 5.3.3. Let (Ti)0≤i≤n be a monotonic stratification of T with
respect to (Σi)0≤i≤n. For some i, let Qi−1 be a possible world structure over⋃
j<i Σj. The operator

Di :WΣi →WΣi : Q 7→ DTi(Q⊕Qi−1)|Σi

is monotone.

Proof. Follows from the fact that all modal subformulas Kψ of Ti with At(ψ) ⊆⋃
0≤j<i Σj are evaluated with respect to Qi−1, which is fixed, and all other

modal formulas occur negatively, i.e., more knowledge can only yield more
derivations.

Proposition 5.3.3 can be used to iteratively build up a possible world structure
similar to the perfect model for logic programs (Przymusinski, 1988). Given
this similarity, we also call this constructed model perfect. Contrary to the
case for logic programming, the well-founded model does not always equal the
perfect model here, as Example 5.3.1 shows.

MOTIVATION 71

Definition 5.3.4 (Perfect model). Let T be a monotonically stratified
autoepistemic theory and (Ti)0≤i≤n a monotonic stratification of T . The
perfect model of T (denoted pm(T)) is defined by induction on n.

• If n = 0, then DT is monotone and the perfect model of T is the least
fixpoint of DT .

• Otherwise, let Qn−1 denote pm(
⋃
j<n Tj) and let Dn be as in Proposition

5.3.3; in this case we define pm(T) as lfp(Dn)⊕Qn−1.

Example 5.3.5 (Example 5.3.1 continued). Again, let T be the autoepistemic
theory

{q ⇔ ¬Kp, r ⇔ ¬Kq}.
This theory is monotonically stratified with respect the the partition
〈{p}, {q}, {r}〉. The perfect model of T is computed as follows.

pm(T0) = {∅, {p}}

pm(T0 ∪ T1) = {{q}} ⊕ pm(T0) = {{q}, {q, p}}

pm(T0 ∪ T1 ∪ T2) = {∅} ⊕ pm(T1) = {{q}, {q, p}}

where

T0 = {}

T1 = {q ⇔ ¬Kp}

T2 = {r ⇔ ¬Kq}

Hence, in this example, the perfect model indeed corresponds to the intended
model. Furthermore, the perfect model computation follows the reasoning
process described in Example 5.1.1. Furthermore, it can be seen that
{{q}, {q, p}} is the unique grounded fixpoint of DT .

We show in Corollary 5.6.5 that the perfect model of every “good” theory is
the unique grounded fixpoint of its semantic operator.

The idea underlying the construction of the perfect model is that the knowledge
of symbols in Σi remains fixed after computing the perfect model of

⋃
j<i Tj .

Even though this seems intuitively clear, it is not always the case, as the
following example shows.

Example 5.3.6. Let T be the AEL theory

{p,Kp⇒ q,Kp⇒ ¬q}.

72 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

This theory is monotonically stratified with respect to the partition 〈{p}, {q}〉.
The lowest stratum determines the knowledge of p; it consists of the theory
{p}, hence we conclude that the intended model Q of T satisfies Q |= Kp and
Q 6|= K¬p. However, in the second stratum, an inconsistency occurs, since both
q and ¬q are derived. Hence the perfect model of T is the inconsistent possible
world structure > = ∅. Thus, in the perfect model of T , also ¬p is known,
which violates our previous conclusion.

Luckily enough, this strange behaviour only occurs when the inconsistent
possible world structure is involved. This kind of peculiarities has already been
noted by Vennekens et al. (2007). They introduced the syntactical notion of a
permaconsistent theory in order to avoid problems with the inconsistent possible
world structure. We use a slightly weaker variant.

Definition 5.3.7 (Weakly permaconsistent). An autoepistemic theory T is
called weakly permaconsistent if for every possible world structure Q, at least
one I satisfies Q, I |= T .

Proposition 5.3.8. Suppose T is weakly permaconsistent and (Ti)0≤i≤n is a
monotonic stratification of T with respect to the partition (Σi)0≤i≤n. Then,
for every objective formula ϕ over

⋃
j≤i Σj, pm(T) |= Kϕ if and only if

pm(
⋃
j≤i Tj) |= Kϕ.

Proof. First observe that if Σ1 and Σ2 are two disjoint vocabularies, ϕ is a
formula over Σ1, and Q1 and Q2 are non-empty possible world structures over
Σ1 and Σ2 respectively, then Q1 |= Kϕ if and only if Q1 ⊕Q2 |= Kϕ.

Now if T is weakly permaconsistent, DTi(Q) is non-empty for all Q and i,
i.e., all possible world structures used in the perfect model computation are
non-empty. The result then follows from the above observation by induction.

For “reasonable” theories (theories that represent the knowledge of a rational
introspective agent), the inconsistent possible world structure will never be a
relevant possible world structure. In this text, we focus on the class of weakly
permaconsistent theories, i.e., those in which consistency is guaranteed. What
we expect is that a good semantics for AEL manages to identify the intended
possible world structure for “reasonable” monotonically stratified theories.

Definition 5.3.9 (Respect stratification). We say that a semantics for
autoepistemic logic respects stratification if all weakly permaconsistent
monotonically stratified theories have exactly one model, namely their perfect
model.

SET-INDUCTIONS 73

Following the analogy with logic programming, we would expect that stable
and well-founded semantics respect stratification. However, this is not the case
here! In fact, the motivating at the start of this section shows that well-founded
semantics does not respect stratification. For (ultimate) stable semantics, this
remains an open research question. In this chapter we will prove that grounded
fixpoint semantics respects stratification.

Theorem 5.3.10. The (ultimate) well-founded semantics for autoepistemic
logic does not respect stratification.

Proof. Example 5.3.1 provides a counterexample for the ultimate well-founded
semantics. For the well-founded semantics based on another approximator,
for example the one defined in (Denecker et al., 2003), this follows from the
algebraical property that the ultimate well-founded fixpoint is always more
precise than the A-well-founded fixpoint.

Intuitively, the problem with the well-founded semantics is the fact that points in
the bilattice, which are intervals of lattice elements, are not granular enough to
represent the information in the informal reasoning process presented in Example.
There, we would first like to restrict our attention to the set of possible world
structures in which both ¬Kp and ¬K¬p hold, i.e., no information about p is
known. However, the smallest (most precise) interval that approximates this set
is [⊥,>] (to see this, this interval must approximate {{q}, {q, p}}, {{r}, {r, p}},
{{q, r}, {q, r, p}} and {∅, {p}}). For this reason, well-founded inductions cannot
leave the least precise bilattice point. In what follows, we define a refinement
of the well-founded semantics that works on sets of lattice elements instead of
intervals. This will allow us to follow the reasoning process of a rational agent
in greater detail.

5.4 Set-Inductions

Given an operator O : L→ L, we now define two constructive characterisations
of sets of elements of L and discuss how they relate to AFT. The first, and
simplest, refines the Kripke-Kleene fixpoint. The Kripke-Kleene set, as we
call it, manages to identify the intended model in Example 5.3.1 and for all
monotonically stratified theories in which the stratification is strict. However,
the semantics derived from it does not respect stratification in general. In order
to overcome this limitation, the second constructive characterisation refines the
well-founded semantics.

74 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

5.4.1 The Kripke-Kleene Set

We extend O to subsets of L in the pointwise manner. Below, X,Xi, Y denote
subsets of L. Before defining our constructive characterisations, we recall how
the ultimate Kripke-Kleene fixpoint is characterised. Given a set X ⊆ L, JXK
denotes the smallest interval such that X ⊆ JXK, i.e., JXK = [

∧
X,
∨
X].

Lemma 5.4.1. Let O be an operator. (x′, y′) is an UO-application refinement
of (x, y) if and only if

JO([x, y])K ⊆ [x′, y′] ⊆ [x, y].

Proof. Trivial, since UO(x, y) = (
∧
O([x, y]),

∨
O([x, y])) = JO([x, y])K.

Now, the UO-Kripke-Kleene fixpoint is characterised as the limit of any terminal
monotone induction of UO. In this computation, an interval [xi, yi] is used to
approximate the intended partial fixpoint. At each step, this interval is updated
to the set Si := O([xi, yi]), and then for the next step in the induction, the
smallest interval approximating Si is taken. With this information, it is clear
how to generalise the Kripke-Kleene fixpoint to sets: all we need to do is skip
the approximation by intervals, which might lose valuable information.

Definition 5.4.2 (Kripke-Kleene set-induction). Let O : L → L be a lattice
operator. A Kripke-Kleene set-induction of O, is a sequence (Xi)i≤α satisfying

• X0 = L,

• Xi ⊆ Xi+1 ⊆ O(Xi), and

• Xλ =
⋂
{Xi | i < λ}, for limit ordinals λ ≤ α.

A Kripke-Kleene set-induction is terminal if there exists no Xα+1 6= Xα such
that (Xi)i≤α+1 is a Kripke-Kleene set-induction induction.

Lemma 5.4.3. All terminal Kripke-Kleene set-inductions converge to the same
set, which we call the Kripke-Kleene set of O and denote kks(O).

Proof. Follows immediately from the fact that Kripke-Kleene set-inductions are
monotone inductions of the extension of O to 2L.

Proposition 5.4.4. Let A be an approximator of O and (x, y) be the A-Kripke-
Kleene fixpoint of O. It then holds that kks(O) ⊆ [x, y].

SET-INDUCTIONS 75

Proof. Follows from the fact that the UO-Kripke-Kleene fixpoint is more precise
than the A-Kripke-Kleene fixpoint, Lemma 5.4.1 and the definition of kks(O).

Proposition 5.4.5. The Kripke-Kleene set of O contains all fixpoints of O.

Proof. Follows by induction from the fact that if Xi contains a fixpoint x of O,
that then O(Xi) also contains this fixpoint.

The previous two propositions show that the Kripke-Kleene set refines the
Kripke-Kleene fixpoint (for every approximator), but still approximates all
fixpoints of O. For the example that motivated this work, the Kripke-Kleene
set turns out to be precise enough.

Example 5.4.6 (Example 5.3.1 continued). Again take

T = {q ⇔ ¬Kp, r ⇔ ¬Kq}.

The construction of the Kripke-Kleene set of DT starts from the entire lattice
WΣ. We make two observations.

1. For every possible world structure Q, DT (Q) |= K¬q if Q |= Kp and
DT (Q) |= Kq otherwise, and analogously for Kr.

2. As p does not occur objectively in T , all possible world structures Q in
the image of DT satisfy that I ∈ Q iff I ∪ {p} ∈ Q.

The above observations guarantee that DT (WΣ) = {Q,Qq, Qr, Qqr} where

• Q
def= {{p}, {}},

• Qq
def= {{p, q}, {q}},

• Qr
def= {{p, r}, {r}}, and

• Qqr
def= {{p, q, r}, {q, r}}.

Furthermore, DT (Q) = Qqr, DT (Qq) = Qq, DT (Qr) = Qqr, and DT (Qqr) =
Qq. Thus D2

T (WΣ) = {Qq, Qqr} and D3
T (WΣ) = {Qq}. Thus, the Kripke-

Kleene set of DT is a singleton and the unique element of kks(DT) is the perfect
model of T .

76 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

In the next section we will show that it is not a coincidence that this theory
has a singleton Kripke-Kleene set. A monotonically stratified theory in which
the stratification is strict always has a singleton Kripke-Kleene set. This result
does not hold for arbitrary monotonically stratified theories (if the stratification
is not strict).

Example 5.4.7. The theory T = {Kp⇒ p} is monotonically stratified with
perfect model ⊥ = {{p}, ∅}. Its semantic operator is visualised below.

> = ∅

ww

{{p}}

99

%%
{∅}

dd

xx

⊥ = {{p}, ∅}

::ee

''

The Kripke-Kleene set of DT is {⊥, {{p}}}, and hence is not a singleton.

5.4.2 The Well-Founded Set

In the previous section, we found that the Kripke-Kleene set sometimes is
not precise enough. The reason why it fails is because it has no means to
eliminate ungrounded reasoning. E.g., in Example 5.4.7, it fails to discover that
knowledge of p only follows from the theory Kp⇒ p if p is known in the first
place. Hence, a rational agent whose only knowledge is T would never know
p. The well-founded semantics has a tool to eliminate this kind of reasoning,
namely unfoundedness refinements. We generalise this kind of refinements to
set inductions, but first, we recall some properties of ultimate well-founded
inductions.

Lemma 5.4.8. Let O : L→ L be an operator and UO its ultimate approximator.
Suppose (xi, yi)i≤β is an UO-well-founded induction. For every i < β, one of
the following conditions is satisfied:

1. JO([xi, yi])K ⊆ [xi+1, yi+1] ⊆ [xi, yi], or

2. [xi, yi] \ [xi+1, yi+1] is a set of ungrounded points and O([xi+1, yi+1]) ⊆
[xi+1, yi+1].

SET-INDUCTIONS 77

Proof. If (xi, yi) → (xi+1, yi+1) is an UO-application refinement ((1) in
Definition 2.2.1), then

JO([xi, yi])K = (
∧
O([xi, yi]),

∨
O([xi, yi]))

= UO(xi, yi)

⊆ [xi+1, yi+1]

⊆ [xi, yi].

In this case (1) is satisfied.

On the other hand, if (xi, yi) → (xi+1, yi+1) is an UO-unfoundedness
refinement ((2) in Definition 2.2.1),then it follows from Theorem 3.3.4 that no
grounded fixpoints are removed. Furthermore, Denecker and Vennekens (2007)
(Proposition 2) showed that it always holds that UO(xi+1, yi+1) ⊆ [xi+1, yi+1];
we then indeed find O([xi+1, yi+1]) ⊆ UO(xi+1, yi+1) ⊆ [xi+1, yi+1].

This lemma inspires a generalised notion of refinement that works on sets instead
of intervals and is based on the same intuitions.

Definition 5.4.9 (Refinement). An O-refinement of X is a set Y such that
one of the following holds:

• O(X) ⊆ Y ⊆ X, or

• Y = X \U , where U is a set of ungrounded lattice elements and O(Y) ⊆ Y .

Following the analogy with A-refinements, we call the first type of refinement
application refinement and the second kind unfoundedness refinement. An
O-refinement is strict if X 6= Y .

If Y is an O-refinement of X and O is clear from the context, we often denote
this X → Y .

Definition 5.4.10 (Well-founded set-induction). Let β be an ordinal number.
A well-founded set-induction (or shortly, set-induction) is a sequence L = X0 →
X1 → · · · → Xβ such that the following hold:

• For limit ordinals λ, Xλ =
⋂

({Xα | α < λ}.

• For every i < β, Xi → Xi+1 is a strict O-refinement.

78 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

Definition 5.4.11 (Terminal set). A set-induction (Xi)i≤β is terminal if Xβ

has no strict O-refinements. We call Y a terminal set of O if there is a terminal
set-induction (Xi)i≤β with Xβ = Y .

In what follows, we show that terminal sets exist and also, that the terminal
set is unique. Thus, even though in general many different set-inductions of an
operator might exist, they all converge to the same set. An essential property
is that refinements preserve being closed under O. This property is similar to
A-contractingness (Denecker and Vennekens, 2007).

Proposition 5.4.12. Given a set-induction (Xi)i≤β, for all i ≤ β, it holds
that O(Xi) ⊆ Xi.

Proof. We prove this by induction. It is true initially since X0 = L.

This property is preserved in limit ordinals λ since

O
(⋂
{Xα | α < λ}

)
⊆
⋂
{O(Xα) | α < λ}

⊆
⋂
{Xα | α < λ}.

Let X → Y be an O-refinement and suppose O(X) ⊆ X. We show that
O(Y) ⊆ Y . If X → Y is an application refinement, then O(X) ⊆ Y ⊆ X. In
this case also O(Y) ⊆ O(X) ⊆ Y . If X → Y is an unfoundedness refinement,
then the result is trivial. This indeed shows that being closed under application
of O is preserved by O-refinements.

Proposition 5.4.13. Every well-founded induction (Xi)i≤β is decreasing, i.e.
for i < j, it holds that Xj ⊆ Xi.

Proof. It is trivial that unfoundedness refinements result in a decreased set and
that taking limits results in a decreased set. Proposition 5.4.12 shows that
also application refinements result in a decreased set. The result follows by
induction.

Proposition 5.4.14. Every operator O has a terminal set.

Proof. Follows from Proposition 5.4.13: we can extend every non-terminal
induction with a strict O-refinement. This results in a strictly decreasing
sequence of subsets of 2L, which must eventually terminate since 2L is a
complete lattice.

SET-INDUCTIONS 79

Proposition 5.4.15. Let Z be a terminal set of O and let X → Y be an
O-refinement. If Z ⊆ X, then Z ⊆ Y .

Proof. Suppose Z is a terminal set of O. By proposition 5.4.13, it holds that
O(Z) ⊆ Z. Since Z is terminal O(Z) 6⊂ Z, otherwise O(Z) would be a refinement
of Z. Hence, we know that Z = O(Z).

If X → Y is an application-refinement, then O(X) ⊆ Y , hence Z = O(Z) ⊆
O(X) ⊆ Y .

On the other hand, suppose Y = X \U , where U are ungrounded points. Define
Z ′ = Z \U . It then holds that Z ′ = Z \U ⊆ X \U = Y . Also, Z ′ is a refinement
of Z, since all elements in Z ′ \ Z are ungrounded and

O(Z ′) ⊆ O(Y) ∩O(Z) ⊆ Y ∩ Z = Z ′.

Since Z is a terminal set, this refinement cannot be strict, hence, U ∩ Z = ∅
and Z ⊆ Y .

Theorem 5.4.16. All set-inductions converge to the same set which we call
the well-founded set of O and denote wfs(O).

Proof. Let (Xi)i≤β and (Yi)i≤α be terminal set-inductions. We show that
Xβ = Yα. From Propositions 5.4.15, it follows using induction that Xβ ⊆ Yi for
every i ≤ α. Hence, also Xβ ⊆ Yα. The exact same argument can also be used
to show that Xβ ⊇ Yα, hence the result follows.

In AFT, it is known that the A-well-founded fixpoint is more precise than the
A-Kripke-Kleene fixpoint for every approximator A. A similar result holds
between the Kripke-Kleene set and the well-founded set.

Proposition 5.4.17. For every operator O, wfs(O) ⊆ kks(O).

Proof. It follows directly from the definition that Kripke-Kleene set-inductions
are exactly the well-founded set inductions that only use application refinements.
The result then immediately follows from the fact that set-inductions are
decreasing (Proposition 5.4.13).

Example 5.4.18. Consider a lattice {⊥,>} ∪ {ai | i ∈ Z} with order as
depicted below and an operator O that maps that maps ⊥ to a0, > to > and

80 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

every ai to ai+1.

>
ll

a0

OO

%%

. . . // a−2 //

<<

a−1

==

FF

a1 //

``

a2

hh

// . . .

⊥

aa
hh

>>
66

OO

First, we notice that {⊥} ∪ {ai | i ≥ 0} are the O-grounded points. Indeed, >
is ungrounded since O(> ∧ a0) ≤ a0 and for i < 0 it holds that O(ai ∧ a0) =
O(⊥) = a0 ≤ a0. We also notice that > is the only fixpoint of O. Hence, O
has no grounded fixpoints. We now show that the well-founded set of O is
empty. Let X0 = L and X1 = O(L) = L \ {⊥}. Then, O(X1) = X1, hence
no application refinements are possible. The observations above guarantee
that U = {ai | i < 0} ∪ {>} is a set of ungrounded points. Let X2 denote
X1 \ U = {ai | i ≥ 0}. Then O(X2) ⊆ X2 and we can refine X1 to X2.
We notice that O(X2) 6= X2 hence more application refinements are possible.
Unfoundedness refinement has now removed all ungrounded elements in the
{ai | i ∈ Z}. More application refinements will gradually delete every of the
remaining elements: Xi = {aj | j ≥ i− 2} for i > 2. Hence, this example also
illustrates that well-founded inductions can lead to an empty set.

Definition 5.4.19 (Total operator). We call O total if its well-founded set is
a singleton.

Intuitively, total operators are “good” in the sense that they uniquely determine
one lattice point of interest.

Example 5.4.20 (Example 5.4.6 continued). We saw that the semantic
operator of

T = {q ⇔ ¬Kp, r ⇔ ¬Kq}

has a singleton Kripke-Kleene set. Hence, there are no application refinements
of kks(DT). Since the unique element {{p, q}, {q}} of kks(DT) is a grounded
fixpoint of DT , there are no unfoundedness refinements possible either and it
follows that wfs(DT) = kks(DT). Hence DT is total.

SET-INDUCTIONS 81

Example 5.4.21 (Example 5.4.7 continued). With T = {Kp⇒ p}, we already
know that the Kripke-Kleene set of DT is {⊥, {{p}}}. As {{p}} is not grounded
for DT , a set-induction further refines this set to {⊥}. This is the well-founded
set of DT .

In Section 5.5, we show that it is not a coincidence that the operators in
Examples 5.4.20 and 5.4.21 are total; there, we show that the semantic operator
of a monotonically stratified theory is always total. First, we summarise how
the well-founded set relates to other fixpoints studied in AFT.
Theorem 5.4.22. For every operator O and consistent approximator A of O,
let wf (A) denote the A-well-founded fixpoint of O and gf (O) the set of grounded
fixpoints of O. It holds that

gf (O) ⊆ wfs(O) ⊆ wf (A).

Furthermore, each of these inclusions can be strict.

Proof. The first inclusion is proven as Proposition 5.4.23 and the second as
Proposition 5.4.26. In Examples 5.4.24 and 5.4.6, respectively, we show that
these inclusion can be strict.

The following propositions and example all prove parts of this result.
Proposition 5.4.23. The well-founded set of O contains all grounded fixpoints
of O.

Proof. Grounded fixpoints belong to X0 and are preserved in limit ordinals.
As for refinements X → Y , all fixpoints are preserved by applying O, and all
grounded points are trivially preserved by unfoundedness refinements.

Example 5.4.24. Let L be the lattice {⊥,>} and O the operator that maps
⊥ to > and > to ⊥.

>

⊥

OOHH

O has no fixpoints, hence also no grounded fixpoints. There are clearly no strict
application refinements of L. Furthermore, since ⊥ is grounded, there are no
strict unfoundedness refinements either. Hence, it holds that L = wfs(O). We
notice that the well-founded set can be strictly larger than the set of grounded
fixpoints of O.

82 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

Example 5.4.25. Consider the logic program P{
p←¬p ∨ q.
q←¬q ∨ p.

}
The operator TP is pictured below

> = {p, q}
II

{p}

;;

11 {q}

cc

qq

⊥ = ∅

::dd

OO

We see that TP(L) = {>, {p}, {q}} consists of only grounded points and hence
equals the well-founded set of O. Since not each of those are fixpoints, we again
see that the well-founded set can be strictly larger than the set of grounded
fixpoints of O.

Proposition 5.4.26. The ultimate well-founded fixpoint of an operator O
approximates the well-founded set of O.

Proof. This follows immediately from Lemma 5.4.8, which shows that UO-
refinements are also O-refinements.

Corollary 5.4.27. Let A be a consistent approximator of O, then the A-well-
founded fixpoint of O approximates the well-founded set of O.

5.5 Locally Monotone Operators

In this section, we generalise the notion of monotonically stratified theories to
the algebraical setting. We define the class of locally monotone operators and
show that all operators in this class are total. In autoepistemic logic (AEL),
a monotonically stratified theory has the property that whenever all symbols
from a lower stratum are fixed, the semantic operator on the next stratum
is monotone. Intuitively2, we generalise this using equivalence relations. We

2All concepts used in these intuitions are formally defined below.

LOCALLY MONOTONE OPERATORS 83

will call an operator locally monotone if there exists a sequence of equivalence
relations ≡i on L of increasing precision, such that within every equivalence
class of ≡i, the quotient operator of O modulo ≡i+1 is monotone. The intended
fixpoint of such an operator can then be computed by an iterated least fixpoint
computation. Before formally introducing locally monotone operators, we first
introduce some terminology on equivalence relations on lattices.

5.5.1 Meet Equivalences

An equivalence relation on a set is defined as usual. If ≡ is an equivalence
relation on a set X, we use x≡ for the equivalence class {y | y ≡ x} and if
Y ⊆ X, Y≡ denotes the set of equivalence classes of elements in Y . We define
the quotient mapping p≡ : X → X≡ : x 7→ x≡. If x≡ is an equivalence class,
every y ∈ x≡ is a representative of x≡. If E is a set of equivalence classes, a
representative of E is any set Y such that E = Y≡.

Definition 5.5.1 (Meet equivalence). Let L be a complete lattice and ≡ an
equivalence relation on L. We call ≡ a meet equivalence if ≡ respects ∧, i.e., if
for every two subsets X and Y of L with X≡ = Y≡, also

∧
X ≡

∧
Y .

If ≡ is a meet equivalence on L, then for every equivalence class x≡, it holds
that {x} ≡ x≡, hence also x =

∧
{x} ≡

∧
x≡. This means that x≡ has a least

element ⊥x≡ =
∧
x≡.

Definition 5.5.2 (Quotient order). Let 〈L,≤〉 be a complete lattice and ≡ a
meet equivalence on L. We define an order ≤≡, called the quotient order of L
modulo ≡ on L≡ as follows: x≡ ≤≡ y≡ if ⊥x≡ ≤ ⊥y≡ .

When ≡ is clear from the context, we often abuse notation and omit ≡, i.e., we
use ≤ for the quotient order on L≡.

Lemma 5.5.3. Let 〈L,≤〉 be a complete lattice and ≡ a meet equivalence on
L. Whenever x ≤ y for x, y ∈ L, it also holds that x≡ ≤≡ y≡.

Proof. If x ≤ y, it holds that x = x ∧ y. Hence

⊥x≡ ≡ x = x ∧ y ≡ ⊥x≡ ∧ ⊥y≡ .

Since ⊥x≡ ≡ ⊥x≡ ∧ ⊥y≡ and ⊥x≡ is the least element of x≡, it must hold that
⊥x≡ = ⊥x≡ ∧ ⊥y≡ , i.e., that ⊥x≡ ≤ ⊥y≡ . Thus, from the definition of ≤≡, it
then follows that x≡ ≤≡ y≡.

84 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

The order ≤≡ defines a well-known concept, namely the quotient lattice. For
completeness, we show (in Proposition 5.5.6) that this is indeed a complete
lattice.

Lemma 5.5.4. Let 〈L,≤〉 be a complete lattice and ≡ a meet equivalence on
L. Let X ⊆ L≡ be a set of equivalence classes and X ′ ⊆ L be the set of least
representatives of X, (i.e., X ′ = {⊥x | x ∈ X}). Then (

∧
X ′)≡ is a greatest

lower bound of X in L≡.

Proof. First, we show that (
∧
X ′)≡ is a lower bound of X. For every x ∈ X it

holds that ⊥x ∈ X ′ hence also that

⊥(
∧
X′)≡ ≤ ⊥x.

Hence, it also holds that (
∧
X ′)≡ ≤≡ x for every x ∈ X.

Now we show that (
∧
X ′)≡ is the greatest lower bound X. If y is another lower

bound of X, then it must hold that ⊥y ≤ ⊥x for each x ∈ X. Hence, it must
hold that ⊥y ≤

∧
{⊥x | x ∈ X}, i.e., that y ≤≡ (

∧
X ′)≡.

Lemma 5.5.5. Let 〈L,≤〉 be a complete lattice and ≡ a meet equivalence on
L. Let X ⊆ L≡ be a set of equivalence classes and X ′ ⊆ L be the set of least
representatives of X, (i.e., X ′ = {⊥x | x ∈ X}). Then (

∨
X ′)≡ is a least upper

bound of X in L≡.

Proof. First, we show that (
∨
X ′)≡ is an upper bound of X. For every x ∈ X

it holds that
⊥x ≤

∨
{⊥y | y ∈ X} =

∨
X ′,

hence by Lemma 5.5.3, for every x ∈ X, it holds that

x = (⊥x)≡ ≤≡
(∨

X ′
)
≡
.

Now we show that (
∨
X ′)≡ is the least upper bound of X. If y is another

upper bound of X, then it must hold that ⊥x ≤ ⊥y for each x ∈ X, hence, it
must hold that

∨
{⊥x | x ∈ X} ≤ ⊥y. Again, by Lemma 5.5.3, it follows that

(
∨
X ′)≡ ≤ y.

Proposition 5.5.6. Let 〈L,≤〉 be a complete lattice and ≡ a meet equivalence
on L. Then 〈L≡,≤≡〉 is a complete lattice, called the quotient lattice of L
modulo ≡.

LOCALLY MONOTONE OPERATORS 85

Proof. L≡ is clearly a partially ordered set. Lemmas 5.5.4 and 5.5.5 guarantee
that 〈L≡,≤≡〉 permits least upper bounds and greatest lower bounds.

It follows easily from the definition of meet equivalence that the following lemma
holds.
Lemma 5.5.7. If ≡ is a meet equivalence on L, then (i) every chain of
representatives of x≡ has a greatest lower bound in x≡ and (ii) whenever
x≡ ≤≡ y≡, there is a z ∈ x≡ such that z ≤ y.

Proof. For the first point, we note that if X ⊆ x≡, then
∧
X ≡

∧
{x} by the

definition of meet equivalence. Hence indeed
∧
X ∈ x≡. For the second point,

we can take z = ⊥x≡ .

We would like to use equivalence relations as a tool to reason in a stratified way.
For example in 5.3.1, the first observation was: p does not occur objectively in
T , hence in the intended model, it is unknown whether or not p holds. This
observation was obtained by reasoning modulo the equivalence relation Q ≡ Q′
if Q|{p} = Q′|{p}, i.e., by only reasoning about knowledge of p. After these
observations, we focused our attention on the set of possible world structures Q
such that Q |= ¬Kp and Q |= ¬K¬p. From the situation in AEL, we can learn
several properties that good equivalence relations (equivalence relations that
generalise projecting out a variable in AEL) need to satisfy.

In order to illustrate these properties, we depicted the lattice W{p,q} and the
equivalence relation that corresponds to “forgetting q”, i.e., the relation ≡
such that Q ≡ Q′ if and only if Q|{p} = Q′|{p} in Figure 5.1. First, we notice
that the depicted equivalence relation in AEL is a meet equivalence but not a
join equivalence (it does not preserve joins: for instance, {∅, {p}} ≡ {∅, {p, q}}
but {∅, {p}} ∨ {∅, {p, q}} = {∅} 6≡ {∅, {p}}). Second, simply being a meet
equivalence is insufficient to generalise monotonically stratified theories. The
definition of perfect model, in order to compute a least fixpoint, requires that
every class x≡ is chain complete: in the definition of perfect model, we take
least upper bounds of a chain within equivalence classes (for computing the
least fixpoint of Di). Lemma 5.5.7 shows that for meet equivalences, greatest
lower bounds can be taken within equivalence classes, but this does not hold for
least upper bounds. Third, we observe that in AEL, the equivalence classes are
nicely structured in the sense that whenever x≡ ≤ y≡, there is a z ∈ y≡ such
that x ≤ z.

Our observations in AEL complement the observations in Lemma 5.5.7. In order
to obtain these properties in general, we introduce the notion of a conservative

86 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

meet equivalence. In Section 5.5.2, we will use this to generalise monotonically
stratified theories to operators.

Definition 5.5.8 (Conservative). Let L be a complete lattice and ≡ a meet
equivalence on L. We call ≡ conservative if (i) each class x≡ is chain complete
and (ii) whenever x≡ ≤ y≡, there is a z ∈ y≡ with x ≤ z.

We can order equivalence relations according to how fine-grained they are: one
equivalence relation is finer than another if its equivalence classes are smaller;
formally ≡2 is finer than ≡1 (denoted ≡1 ≤f ≡2) if for all x, y ∈ L with x ≡2 y,
also x ≡1 y.

Proposition 5.5.9. If ≡1 and ≡2 are conservative meet equivalences of L with
≡1 ≤f ≡2, then ≡1 defines an equivalence relation on the lattice L≡2 . This is
a conservative meet equivalence of L≡2 .

Proof. ≡1 defines an equivalence relation on L≡2 as follows: x≡2 ≡1 y≡2 if and
only if x ≡1 y. This equivalence relation is well-defined (independent of the
choice of representatives) since ≡2 is finer than ≡1, The fact that this is a meet
equivalence follows directly from the fact that it is a meet equivalence on L.
We now show that it is conservative.

First, assume that C is a chain of elements of L≡2 , i.e., a totally ordered subset
of L≡2 such that for every c, c′ ∈ C, it holds that c ≡1 c′. Since ≡2 is a
conservative meet equivalence of L, we can choose representatives dcinL for
every c ∈ C such that dc ≤ dc′ if c ≤ c′. Since all c ∈ C are equivalent modulo
≡1, and the dc are representatives of elements in C, it also holds dc ≡1 dc′ if
c, c′ ∈ C. Thus, D := {dc | c ∈ C} is a chain in L. Let d denote

∨
D. Since ≡1

is conservative, d ≡1 dc for every c. Hence d≡2 is a least upper bound of C as
desired.

Second, if x, y ∈ L≡2 and x≡1 ≤ y≡1 , choose a representative x′ ∈ L of x with
respect to ≡2. Since ≡1 ≤f ≡2, it also holds that x′≡1

≤ y≡1 . Hence, we find
a z ∈ L such that z≡1 = y≡1 and such that x′ ≤ z since ≡1 is a conservative
meet equivalence on L. Then x ≤ z≡2 , as desired.

LOCALLY MONOTONE OPERATORS 87

>
=
∅◦

{∅
}♦

33

{{
p
}}

�

55

{{
q}
}♦

jj

{{
p
,q
}}

�

ll

{∅
,{
p
}}
4

OO
;; {∅
,{
q}
}♦

cc

22

{∅
,{
p
,q
}}
4

ii
22

{{
p
},
{q
}}
4

kk

99 {{
p
},
{p
,q
}}

�

ll

88 {{
q}
,{
p
,q
}}
4

OO
ff

{∅
,{
p
},
{q
}}
4

OO
;;

22

{∅
,{
p
},
{p
,q
}}
4

ii
OO

33

{∅
,{
q}
,{
p
,q
}}
4

kk
ii

44 {{
p
},
{q
},
{p
,q
}}
4

OO
ff

jj

⊥
4

cc
kk

;;
22

Fi
gu

re
5.
1:

Th
e
la
tt
ice
W

Σ
fo
rΣ

=
{p
,q
}.

Th
e
co
lo
ur
sa

nd
sy
m
bo

ls
re
pr
es
en
tt

he
eq
ui
va
len

ce
cla

ss
es

of
la
tt
ice

ele
m
en
ts

w
he

re
tw

o
el
em

en
ts

ar
e
eq
ui
va
le
nt

if
th
ey

ha
ve

th
e
sa
m
e
kn

ow
le
dg

e
ab

ou
t
p
an

d
¬p

.
T
he

or
an

ge
el
em

en
ts

(a
nn

ot
at
ed

w
ith
4
)
ar
e
th
os
e
in

w
hi
ch

bo
th
¬K

p
an

d
¬K
¬p

ho
ld
.
T
he

gr
ee
n
(♦

)
el
em

en
ts

sa
tis

fy
K
¬p

an
d
¬K

p
,t

he
re
d
(�

)
sa
tis

fy
K
p
an

d
¬K
¬p

an
d
th
e
bl
ue

(◦
)
K
p
an

d
K
¬p

.

88 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

5.5.2 Equivalences and Operators

Definition 5.5.10 (Congruence). Let L be a complete lattice and ≡ an
equivalence relation on L and O : L → L an operator on L. We call ≡ a
congruence of O if for every x, y ∈ L, x ≡ y implies O(x) ≡ O(y).

The following lemma rephrases a well-known result about congruences.

Lemma 5.5.11. If ≡ is a congruence of O , then O defines a unique operator,
denoted O≡, on L≡ such that p≡ ◦O = O≡ ◦ p≡.

Proof. Any operator O≡ satisfying the above condition must map x≡ ∈ L≡ to
O(x)≡, hence uniqueness follows. This mapping is well-defined (independent of
the choice of the representative x) since ≡ is a congruence of O .

Definition 5.5.12 (Abstraction/Specialisation). If L≡ is a conservative meet
equivalence on L, and ≡ is a congruence of O , then we call O≡ an abstraction
of O and O a specialisation of O≡.

Example 5.5.13. Let Σ = {p, q} be a vocabulary and Σp = {p} a
subvocabulary. Let P and P ′ be the following logic programs

P =
{

p.

q ←¬p.

}
,

P ′ =
{
p.
}
.

P and P ′ induce immediate consequence operators TP and TP′ on the lattice of
Σ-structures and Σp-structures respectively. The relation x ≡ y if x|Σp = y|Σp
is a meet equivalence on 2Σ. The operator TP≡ then exactly equals TP′ . Hence,
TP′ is an abstraction of TP , obtained by dropping all rules defining symbols
not in Σp from P.

For every lattice, the total binary relation is a conservative meet equivalence.
Hence, every operator is a specialisation of the trivial operator on a singleton
lattice.3 This shows that specialisations do not necessarily preserve the structure
of the operator. In order to guarantee that some structure is preserved, we
again find inspiration in AEL, more concretely in Proposition 5.3.3 which states
that if (Ti)0≤i≤n is a monotonic stratification of T , then the operator DT is
monotone within equivalence classes.

3There is only one operator on a singleton lattice.

LOCALLY MONOTONE OPERATORS 89

Definition 5.5.14 (≡-monotone/constant). Let ≡ be a congruence of O. We
call O ≡-monotone (respectively ≡-constant) if O is monotone (respectively
constant) within each of ≡, i.e., if O|x≡ is monotone (respectively constant) for
every equivalence class x≡ ∈ L≡.

Definition 5.5.15 (Monotone/constant specialisation/abstraction). A spe-
cialisation O of O≡ is called monotone (respectively constant) if O is ≡-
monotone (respectively ≡-constant). An abstraction O≡ of O is called monotone
(respectively constant) if the specialisation O of O≡ is monotone (respectively
constant).

Example 5.5.16 (Example 5.5.13 continued). The abstraction defined in
Example 5.5.13 is a constant (and hence also a monotone) abstraction.
Intuitively, for logic programs, an abstraction obtained by projecting out some
symbols is constant if the symbols that are projected out do not depend on
themselves, and it is monotone if they only depend positively on themselves. In
the example, the symbol q which is projected out only depends on p, not on
itself.4

The following propositions and theorems show that monotone and constant
specialisations preserve a lot of structure of the operator. Our first result is a
study of the relationship between the grounded fixpoints of O and those of O≡.

Proposition 5.5.17. Suppose O is a monotone specialisation of O≡. If x is
grounded for O, then x≡ is grounded for O≡.

Proof. We prove this by contraposition. Choose x ∈ L such that x≡ is not
grounded for O≡. We show that x is not grounded either. Let x′ = x≡. Since x′
is not grounded, we can choose v′ ∈ L≡ such that O≡(x′ ∧ v′) ≤ v′ and x′ 6≤ v′.
For every v ∈ p−1

≡ (v′), it holds that

p≡(O(x ∧ v)) = O≡(p≡(x ∧ v))

= O≡(p≡(x) ∧ p≡(v))

= O≡(x′ ∧ v′)

≤ v′.

Hence, using the definition of conservative meet equivalence, for every v ∈
p−1
≡ (v′), the set {w ∈ p−1

≡ (v′) | w ≥ O(x ∧ v)} is non-empty. Since p≡ is a
preserves meets, the operator

λ : p−1
≡ (v′)→ p−1

≡ (v′) : v 7→
∧
{w ∈ p−1

≡ (v′) | w ≥ O(x ∧ v)}
4In Section 5.7, we formally define dependencies.

90 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

is well-defined. We know that O is monotone within every equivalence class.
Hence, in particular, O is monotone on x ∧ p−1

≡ (v′). Since also x ∧ · and
∧

are
monotone, we find that λ, the composition of these three is monotone as well.
Hence, it is a monotone operator in a chain complete subset of L, thus it has a
least fixpoint, which we denote v. Since λ(v) = v it holds that

v =
∧
{w ∈ p−1

≡ (v′) | w ≥ O(x ∧ v)}

and in particular
v ≥ O(x ∧ v).

Furthermore x 6≤ v since p≡(x) = x′ 6≤ v′ = p≡(v). Hence indeed, x is not
grounded.

Example 5.5.18. The converse of Proposition 5.5.17 does not hold. Consider
a simple lattice L = {⊥,>} with identity operator

O : L→ L : x 7→ x.

Since O is monotone, O is a monotone specialisation of the trivial operator
on a singleton lattice (using the equivalence relation ⊥ ≡ >). However, >≡ is
grounded while > is not.

The converse of Proposition 5.5.17 does not hold as the previous example shows.
However, a better correspondence holds: Theorem 5.5.20 shows that there is a
one-to-one correspondence between the grounded fixpoints of O and those of
O≡.

Proposition 5.5.19. Let O be a monotone specialisation of O≡. If x′ is a
grounded fixpoint of O≡, then lfp(O|p−1

≡ (x′)) is a grounded fixpoint of O.

Proof. Suppose x def= lfp(O|p−1
≡ (x′)) is not grounded. Then there is a v such that

O(x ∧ v) ≤ v and x 6≤ v. Let v′ denote v≡. Then also O≡(x′ ∧ v′) ≤ v′, and
since x′ is grounded, x′ ≤ v′. Hence, there exists a w with v ≡ w such that
x ≤ w. Since x ∧ w = x and v ≡ w, it holds that x ∧ v ≡ x. Now, we find
that O(x ∧ v) ≤ O(x) = x. Since also O(x ∧ v) ≤ v, x ∧ v is a prefixpoint of
the monotone operator O|p−1

≡ (x′) which is smaller than the least fixpoint of that
same operator. This yields a contradiction.

Theorem 5.5.20. Let O be a monotone specialisation of O≡. The mapping
p≡ induces a one-to-one correspondence between the grounded fixpoints of O
and the grounded fixpoints of O≡.

LOCALLY MONOTONE OPERATORS 91

Proof. Proposition 5.5.17 guarantees that p≡ maps grounded points to grounded
points. By definition of O≡, it is clear that p≡ also maps fixpoints to fixpoints.
Now, Proposition 5.5.19 guarantees that for every grounded fixpoint x′ of
O≡, there is a grounded fixpoint x = lfp(O|p−1

≡ (x′)) of O with p≡(x) = x′.
Furthermore, since O is monotone on p−1

≡ (x′), all other fixpoints in p−1
≡ (x′)

cannot be grounded as they are not minimal.

The second main result, which we prove below, is that whenever the Kripke-
Kleene set of an operator identifies a unique point of interest, then so do constant
specialisations. This is not necessarily the case for monotone specialisations.

Proposition 5.5.21. Let O be a monotone specialisation of O≡. Then
kks(O) ⊆ p−1

≡ (kks(O≡)).

Proof. Follows by induction from the fact that O(p−1
≡ (X ′)) ⊆ p−1

≡ (O≡(X ′)) for
every X ′ ⊆ L≡.

Theorem 5.5.22. If O is a constant specialisation of O≡ and kks(O≡) is a
singleton, then kks(O) is a singleton as well.

Proof. Let kks(O≡) = {x′} be the Kripke-Kleene set of O≡. Let X = p−1
≡ (x′).

Proposition 5.5.21 guarantees that kks(O) ⊆ X. Since x′ is a fixpoint of O≡,
O(X) ⊆ X. But, as O|X is constant, O(X) is a singleton set containing a
fixpoint of O, and hence the Kripke-Kleene set of O is indeed a singleton as
well.

Example 5.5.23. Consider an autoepistemic theory

T = {Kp⇒ p};

the semantic operator DT is monotone and hence a monotone specialisation of
the trivial operator on the singleton lattice. However, the Kripke-Kleene set
of DT is not a singleton. This shows that Theorem 5.5.22 does not necessarily
hold for monotone specialisations.

Our third main result is that monotone specialisations preserve totality.

Proposition 5.5.24. Suppose O is a monotone specialisation of O≡ and X ′ →
Y ′ is an O≡-refinement, then p−1

≡ (X ′) → p−1
≡ (Y ′) is an O-refinement of the

same kind.

Proof. In this proof, we use X and Y to denote p−1
≡ (X ′) and p−1

≡ (Y ′)
respectively.

92 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

If O≡(X ′) ⊆ Y ′ ⊆ X ′, then also

p−1
≡ (O≡(X ′)) ⊆ p−1

≡ (Y ′) = Y ⊆ p−1
≡ (X ′) = X.

The result then follows from the fact that

O(X) = O(p−1
≡ (X ′)) ⊆ p−1

≡ (O≡(X ′)).

On the other hand, suppose X ′\Y ′ consists of ungrounded points and O≡(Y ′) ⊆
Y ′. Then by Proposition 5.5.17 also X \ Y consists of ungrounded points. Also,
for every y ∈ Y , O≡(p≡(y)) ∈ Y ′, hence O(Y) ⊆ Y .

Proposition 5.5.25. Let O be a monotone specialisation of O≡. Then
wfs(O) ⊆ p−1

≡ (wfs(O≡)).

Proof. Let (X ′i)i≤β be a terminal set-induction of O≡. By iterated application
of Proposition 5.5.24, (p−1

≡ (X ′i))i≤β is a (not necessarily terminal) set-induction
of O. Hence, the results follows.

Theorem 5.5.26. If O is a monotone specialisation of O≡ and O≡ is total,
then O is total as well.

Proof. Let wfs(O≡) = {x′} be the well-founded set of O≡ and x def= lfp(O|p−1
≡ (x′)).

We claim that wfs(O) = {x}.

Proposition 5.5.19 shows that x is a grounded fixpoint of O, thus using
Proposition 5.4.23 we find that x ∈ wfs(O). Proposition 5.5.25 guarantees that
wfs(O) ⊆ p−1

≡ (x′). Since O is monotone on p−1
≡ (x′), any well-founded induction

that ends in an X with {x} ⊆ X ⊆ p−1
≡ (x′) can, by repeated application

refinements be reduced to {y ∈ X | y 6≤ x}. Next, unfoundedness refinement
with v = x yields a well-founded induction ending in {x}. Since x ∈ wfs(O),
no more refinements are possible and this well-founded induction is terminal.
Hence wfs(O) = {x} as desired.

A monotone specialisation corresponds in the case of AEL to adding one extra
stratum to a monotonically stratified theory, where the symbols in the new
stratum only depend positively on their own knowledge. It is now clear how to
generalise monotonically stratified theories to the algebraical setting, namely
as an operator that can be constructed by iteratively applying monotonic
specialisations starting from the trivial operator. We call such operators locally
monotone and use locally constant for the stricter definition where at every
stage a constant specialisation is applied (in the context of AEL, we will see that
this kind of operators is derived from strict monotonically stratified theories).

LOCALLY MONOTONE OPERATORS IN AUTOEPISTEMIC LOGIC 93

Definition 5.5.27 (Locally monotone, locally constant). Let O be an operator.
We call O locally monotone (respectively locally constant) if there exists a
sequence (≡i)i≤n of conservative meet equivalences of L such that ≡i ≥f ≡j if
i ≥ j and the following all hold:

• ≡n is the identity relation, hence O≡n = O,

• ≡0 is the trivial relation: ∀x, y ∈ L : x ≡0 y,

• each ≡i is a congruence of O,

• O≡i+1 is a monotone (respectively constant) specialisation of O≡i for every
i < n (by Proposition 5.5.9 ≡i+1 is a conservative meet equivalence on
L≡i).

The following theorems now follow by repeated application of Theorems 5.5.22
and 5.5.26 respectively. They show that locally monotone (and locally constant)
operators are “good” in the sense that they determine a unique point of interest.
As we will see, for prudent monotonically stratified theories, this unique point
of interest is indeed the perfect model.

Theorem 5.5.28. Locally constant operators have a singleton Kripke-Kleene
set.

Proof. The proof is by induction. If O is a locally constant operator and the
≡i are as in Definition 5.5.27, then O≡0 trivially has a singleton Kripke-Kleene
set. The induction step follows directly from Theorem 5.5.22.

Theorem 5.5.29. Locally monotone operators are total.

Proof. The proof is by induction. If O is a locally monotone operator and the
≡i are as in Definition 5.5.27, then O≡0 is trivially total. The induction step
follows directly from Theorem 5.5.26.

5.6 Locally Monotone Operators in Autoepistemic
Logic

We now define two semantics for autoepistemic logic of which our algebraic
results show that they respect stratification. The first one is based on the
concept of a grounded fixpoint, as discussed in Section 3.6; the second is based
on our refinement of the well-founded semantics.

94 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

Definition 5.6.1 (Grounded fixpoint semantics). The grounded fixpoint
semantics for AEL is defined by Q |=gf T if and only if Q is a grounded
fixpoint of DT .

Definition 5.6.2 (Well-founded set semantics). The well-founded set semantics
for AEL is defined by Q |=wfs T if and only if {Q} = wfs(DT).

Our algebraical results immediately show that the well-founded set semantics
is slightly more liberal than the two-valued (ultimate) well-founded semantics
which states that Q is a model if and only if (Q,Q) is the (ultimate) well-
founded fixpoint: we found that if (Q,Q) is the (ultimate) well-founded fixpoint,
then {Q} is the well-founded set. We now formalise the relationship between
monotonically stratified theories and locally monotone operators, in order to
show that the two aforementioned semantics respect stratification.

Theorem 5.6.3. If T is a weakly permaconsistent monotonically stratified
autoepistemic theory, then DT is locally monotone. Furthermore, if the
stratification is strict, then DT is locally constant.

Proof. Suppose (Ti)0≤i≤n is a prudent monotonic stratification of T with respect
to the partition (Σi)0≤i≤n. Consider the equivalence relations ≡i such that
Q ≡i Q′ if and only if Q|∪j≤iΣj = Q′|∪j≤iΣj .

First, it follows directly from the definitions that each of the ≡i is a conservative
meet equivalence.

Second, each of these equivalences is a congruence ofDT : for every interpretation
I and possible world structure Q, it holds that Q, I |= T if and only if Q, I |=⋃
j≤i Tj and Q, I |=

⋃
j>i Tj . For a fixed I, the first is completely determined

by the restriction of Q to symbols in strata smaller than (or equal to) i.
Furthermore, in

⋃
j>i Tj , the symbols of strata smaller than or equal to i do not

occur objectively, hence the second does not influence I|∪j≤iΣj . We conclude
that if Q ≡i Q′, also DT (Q) ≡i DT (Q′): ≡i is indeed a congruence of DT .

Third, it is clear that for i > j, ≡i ≥f ≡j .

Fourth, we claim that (DT)≡i = D∪j≤iTj . This follows again from the
observation that Q, I |= T if and only if Q|∪j≤iΣj , I|∪j≤iΣj |=

⋃
j≤i Tj and

Q|∪j>iΣj , I|∪j>iΣj |=
⋃
j>i Tj . Since T is weakly permaconsistent, there is

at least one such I for each Q, hence DT (Q) is non-empty and for every i
DT (Q)|∪j≤iΣj = D∪j≤iTj (Q|∪j≤iΣj), which proves our claim.

Fifth, the fact that each (DT)≡i+1 is a monotone specialisation of (DT)≡i
follows immediately from Proposition 5.3.3.

LOCALLY MONOTONE OPERATORS IN LOGIC PROGRAMMING 95

The five above observations combined indeed yield that DT is locally monotone;
the claim about strict stratifications follows completely analogously.

Example 5.6.4. The converse of Theorem 5.6.3 does not hold. The theory
{p ⇔ Kp} is not monotonically stratified; however, its semantic operator is
locally monotone and even locally constant. The possible world structure {∅},
i.e., the world in which we know ¬p is its perfect model, and also its unique
model under grounded fixpoint and well-founded set semantics.

Corollary 5.6.5. Both the grounded fixpoint semantics and the well-founded
set semantics respect stratification.

Proof. Theorem 5.6.3 yields that both of these semantics identify a unique
fixpoint of interest. The fact that this indeed equals the perfect model of a
monotonically stratified theory can be proven inductively. The base case, for
monotone operators, is trivial. The induction step is given by Theorem 5.5.26.

5.7 Locally Monotone Operators in Logic Program-
ming

We now apply our abstract results in the context of logic programming.

For p, q ∈ Σ, we say that p depends positively (respectively negatively) on q (in
P) if q occurs in the scope of an even (respectively odd) number of negations
in the body of some rule r ∈ P with head(r) = p. A logic program P is called
(locally) stratified5 (Przymusinski, 1988) if every atom in Σ can be assigned an
ordinal number ω such that

• no atom depends on an atom with greater rank, and

• no atom depends negatively on an atom with the same rank.

As mentioned in the introduction, in this text, we focus on finite stratifications.
In this case, for a locally stratified logic program, we can assign to every atom
p ∈ Σ a rank rank(p) ∈ {0, . . . , n} for some n ∈ N such that the two above
conditions are satisfied. We now show that TP is locally monotone in this case.
For every i, we define Σi as {p ∈ Σ | rank(p) ≤ i} and Pi as the logic program
over Σi defined by Pi = {r ∈ P | head(r) ∈ Σi}. The following proposition

5Since we work in the propositional case, locally stratified logic programs and stratified
logic programs are the same.

96 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

reformulates two well-known results about locally stratified logic programs in
the lattice terminology used in this text.

Proposition 5.7.1. If P is (locally) stratified, then the following hold.

• TP0 is monotone,

• For every i ≤ n, TPi+1 is a monotone specialisation of TPi .

Proof. The fact that TP0 is monotone follows immediately from the fact that
all atoms of Σ0 only occur positively in the body of rules in TP0 .

For every i ≤ n, the equivalence relation ≡i between two Σ-interpretations is
defined as I ≡i I ′ if I ∩ Σi = I ′ ∩ Σi. This is a conservative meet equivalence
of 2Σ. It is easy to see that each of the ≡i is a congruence of TP : if two
interpretations are identical on Σi, since atoms in Σi only depend on atoms in
Σi, applying TP will preserve this equivalence.

Furthermore, for each i, it holds that (TP)≡i = TPi . The fact that TPi+1 is
a monotone specialisation of TPi now follows immediately from the fact that
atoms in Σi+1 only depend positively on atoms in Σi+1.

Theorem 5.7.2. If P is (locally) stratified, then TP is locally monotone.

Proof. Follows immediately from Proposition 5.7.1.

The following result immediately follows from Theorem 5.7.2, but this result
could also have been obtained from the fact that locally stratified logic programs
have an exact well-founded model.

Corollary 5.7.3. If P is (locally) stratified, then TP is a total operator.

5.8 Related Work

Vennekens et al. (2006) have studied modularity of operators. They have results
similar to ours, namely that certain fixpoints of interest (stable, well-founded)
can be characterised as fixpoints of derived operators on an abstraction of the
lattice. There are some key differences between our study and theirs.

First, their work focuses on product lattices, which are a special case of the
equivalence relations we studied here: for product lattice L = L1 × L2, the
equivalence relation (x1, x2) ≡ (y1, y2) iff x1 = x2 is a conservative meet

RELATED WORK 97

equivalence. In the context of autoepistemic logic, product lattices do not
naturally arise. Vennekens et al. (2006) solved this problem by transforming
lattices in AEL to a derived product lattice, but this transformation only
preserves semantics for permaconsistent theories. All permaconsistent theories
are weakly permaconsistent, but not necessarily the other way round, as
witnessed by Example 5.3.1. Thus, we study a broader class of theories.

Second, we showed how to construct the unique grounded fixpoint for locally
monotone operators stratum per stratum; they showed how well-founded and
stable fixpoints can be obtained from the components of stratifiable operators on
a product lattice. Our specialisations preserve grounded fixpoints and totality,
but do not always preserve stable and well-founded fixpoints; this is good since
this work was motivated by an example for which the well-founded semantics
fails in the first place.

Third, our theory does not require extensions to the bilattice: all concepts are
defined in terms of the original operator; no approximations are required.

Our work is closely related to the work by Niemelä (1991). He also defines
a constructive semantics for autoepistemic logic with as main goal that the
models (called L-hierarchic expansions) are “tightly grounded” in the theory.6
It deserves to be noted that semantically, his approach works for Example 5.3.1:
the unique L-hierarchic expansion is the intended model in that example. It
is currently unknown whether the L-hierarchic expansion semantics respects
stratification in general; researching this is a topic for future work. However,
the constructive semantics by Niemelä (1991) is not enough for our purposes,
as the proposed constructions do not follow the reasoning process of a rational
introspective agent for several reasons. First of all, in Example 5.3.1, taking as
enumeration7 r, p, q, we would first derive ¬Kr, next ¬Kp and finally Kq. I.e.,
we are able to derive ¬Kr because we will eventually derive that q is known.
Secondly, there is a lack of confluence: a theory such as

{p⇔ ¬Kq, q ⇔ ¬Kp}

can have multiple “constructions” associated to it, resulting in a different final
state. If this is the case, these constructions cannot represent the reasoning
process of a non-schizophrenic rational agent. An important contribution that
distinguishes our work from the previous is that we defined our constructive
semantics algebraically in approximation fixpoint theory (AFT). As such, our
results are not restricted to AEL. For example, locally monotone operators
include both the immediate consequence operator of a locally stratified logic
program and the semantic operator of a monotonically stratified autoepistemic
theory.

6In that work, “grounded” is still an informal concept.
7For details and a definition of enumerations, we refer to (Niemelä, 1991).

98 ON WELL-FOUNDED SET-INDUCTIONS AND LOCALLY MONOTONE OPERATORS

5.9 Conclusion

In this chapter, we identified a problem with the well-founded semantics for
AEL, namely that certain simple and intuitively clear theories have a three-
valued well-founded model. We solved this problem by refining the well-founded
semantics algebraically. We showed that a large class of lattice operators (called
locally monotone operators) have a unique grounded fixpoint, and we provided a
constructive characterisation of this fixpoint. This class of operators generalises
monotonically stratified autoepistemic theories and (locally) stratified logic
programs.

Chapter 6

Conclusion

6.1 Contributions

This dissertation started from the observation that similar constructs are defined
in many different logics. These concepts often stem from the same intuitions,
but are called differently. The main goal of this thesis was to identify such
constructs and formalise them in a unifying framework, namely approximation
fixpoint theory.

In Chapter 3, we focused on the notion of groundedness. Throughout history, for
different logics, semantics were developed that allowed ungrounded, also called
self-supporting models. This has led to a great deal of criticism and a significant
amount of research was dedicated to the development of new semantics that
avoid this kind of models. For example, in the case of logic programming, this
has led to the development of perfect model semantics, stable semantics and
well-founded semantics. In Chapter 3 we defined groundedness in an abstract,
algebraical setting, namely AFT. We studied how grounded fixpoints related to
other fixpoints studied in AFT and obtained the following major results

• all grounded fixpoints are minimal fixpoints (Proposition 3.2.9),

• all stable fixpoints are grounded (Proposition 3.3.1), and

• the well-founded fixpoint approximates all grounded fixpoints (Theorem
3.3.4).

99

100 CONCLUSION

We applied our theory to logic programming, autoepistemic logic, default logic,
argumentation frameworks and abstract dialectical frameworks. In each of
these domains, our algebraical results entail that several existing semantics
(namely those induced by stable fixpoints or an exact well-founded fixpoint) are
grounded, in the sense that they only accept grounded models. We found that
our notion of groundedness indeed corresponds to existing intuitions in these
domains. We also studied complexity of computing grounded models of logic
programs.

This far, we showed that in each of the aforementioned domains, stable models
are grounded and the well-founded model is grounded if it is two-valued. The
next questions that naturally arise are “what about partial stable models?”
and “what is the relation between the three-valued well-founded model and
groundedness?”. We answered these two questions in Section 4. In order
to do this, we extended the notion of groundedness for a lattice operator to
groundedness for an approximator. We obtained the following major algebraical
results:

• all partial A-stable fixpoints are A-grounded (Proposition 4.2.4), and

• the A-well-founded fixpoint is the least precise A-grounded fixpoint
(Corollary 4.2.8).

This again shows that existing semantics do a great job at avoiding ungrounded
models. This also shows that the well-founded model is not just some grounded
model: it is the least precise grounded model. As such, our definition of
groundedness is now used to provide an alternative characterisation of an
existing semantics. We applied the theory of partial grounded fixpoints to logic
programming and found that in this context, (partial) grounded fixpoints are
closely related to unfounded sets.

In Chapter 5, we tackled a different problem. This chapter starts from the
observation that all previously defined constructive semantics for AEL fail
to identify the unique possible world structure of interest for a very simple
autoepistemic theory. The major results of this chapter are:

• we generalised the example to a class of autoepistemic theories, called
monotonically stratified theories (Definition 5.3.2),

• we defined, algebraically, two new constructive semantics, namely the
Kripke-Kleene-set and the well-founded set (Lemma 5.4.3 and Theorem
5.4.16),

FUTURE DIRECTIONS 101

• we defined a class of lattice operators, called locally monotone operators,
from which we show that they have a singleton well-founded set (Definition
5.5.27 and Theorem 5.5.29),

• we showed that monotonically stratified theories induce a locally monotone
operator, and hence that our new semantics is able to identify the unique
model of interest (Theorem 5.6.3).

The notion of groundedness played a central role in defining the well-founded
set.

6.2 Future Directions

We see two main future research directions: researching applications and
extensions of AFT.

6.2.1 Applications of Approximation Fixpoint Theory

Approximation fixpoint theory is a highly general and abstract theory that
unifies the semantics of different logics. We expect that the application domain
of AFT reaches far beyond the domains where it is currently applied. An
important future challenge is to identify these research domains. A priori,
possible application domains include all fields in which some kind of fixpoint
(construction) is used to define a semantics or a point of interest.

One particular application domain that comes to mind are nested least and
greatest fixpoint definitions (Hou et al., 2010), a language closely related to the
propositional µ-calculus (Kozen, 1983; Streett and Emerson, 1989). In this logic,
a propositional least (respectively greatest) fixpoint definition ∆ is an expression
of the form

bR,∆1, . . . ,∆nc respectively dR,∆1, . . . ,∆ne,
where R is a set of rules, the ∆i are least or greatest fixpoint definitions
themselves satisfying some more syntactical restrictions (for details, we refer to
the work by Hou et al. (2010)).

For example the expression

∆ :=
⌈
p← q
bq ← pc

⌉
represents a recursive definition in which p is maximised, while q is minimised.
Intuitively, the nesting determines the “importance” of maximising/minimising

102 CONCLUSION

the truth value of certain atoms. In this example, maximising p (the outer
fixpoint definition) is more important than minimising q (the inner fixpoint
definition). Hence, the intended model of this definition is {p, q}.

This example has a natural translation to approximation fixpoint theory using
the following observations

• we can construct an immediate consequence operator for ∆ in the obvious
way by ignoring all nesting information, i.e., by treating all rules as one
rule set,

• in AFT, smaller points are always preferred over bigger points, hence a
least fixpoint corresponds to the classical ordering of truth value while a
greatest fixpoint corresponds to the reverse order,

• intuitively, the nesting information, i.e., the importance of the minimisa-
tion/maximisation of certain atoms can be encoded in lattices by means
of a lexicographical order.

Formally, it is clear how to define the immediate consequence operator. We
now explain how the lexicographical order should be constructed. For every
definition, Σ∆ denotes the set of atoms defined locally in ∆, i.e., those defined
in ∆ but not in its subdefinitions. Let Σ denote the entire vocabulary. Suppose
I and J are Σ∆-interpretations, i.e., subsets of Σ∆, we say that I ≤∆ J if either
I ⊆ J and ∆ is a least fixpoint definition or if I ⊇ J and ∆ is a greatest fixpoint
definition. If I and J are subsets of Σ, we say that I ≤ J if I ∩ Σ∆ ≤∆ J ∩ Σ∆
or if I ∩ Σ∆ = J ∩ Σ∆ and I ≤∆i

J for every subdefinition ∆i of ∆.

Using this, our example reduces to the following lattice L and operator T∆:

> = {q}

||

∅

OO

zz

{p, q}

OO

xx

⊥ = {p}

OO

<<

Remarkably, in this example, the intended model is the unique stable fixpoint
which is also the unique grounded fixpoint. This seems to be no coincidence,

FUTURE DIRECTIONS 103

as this holds for every example we have seen this far. It still remains an open
question whether this holds in general. We formulate two conjectures.

Conjecture 6.2.1. For every least or greatest fixpoint definition ∆ and every
interpretation I, it holds that I |= ∆ if and only if I is the unique grounded
fixpoint of T∆.

Conjecture 6.2.2. For every least or greatest fixpoint definition ∆ and every
interpretation I, it holds that I |= ∆ if and only if I is the unique stable fixpoint
of T∆.

If one of these conjectures turns out to hold, the semantics of another formalism
is captured by AFT.

Another observation is the fact that the well-founded fixpoint is (⊥,>). Hence,
the well-founded fixpoint does not identify the intended fixpoint; neither does
our refined construction: wfs(T∆) = {⊥, {p, q},>}. On the other hand, Hou
et al. (2010) did define a constructive characterisation of the intended fixpoint.
It is an open research question whether their constructive characterisation can
be generalised to arbitrary lattice operators.

6.2.2 Extensions of Approximation Fixpoint Theory

Another, but related, future research direction is further extending AFT. For
example, in Section 3.4, we discussed how the notion of groundedness extends
to programs with abstract constraint atoms. In that section, we restricted our
attention to logic programs with abstract constraint atoms in the bodies of rules.
Allowing them as well in heads gives rise to a nondeterministic generalisation of
the immediate consequence operator. Some preliminary work has already been
done to generalise semantics of AFT to nondeterministic operators, namely
by Pelov and Truszczynski (2004), but several research questions remain in
this area. For example, is it possible to provide a purely abstract algebraical
characterisation of the stable semantics of a disjunctive logic program?

This dissertation adds another open question to this list. Namely, how does
groundedness generalise to nondeterministic operators?

Appendix A

On Infinite Stratifications

In this chapter, we extend some of the theory from Chapter 5 to infinite
stratifications. More concretely, we extend the notion of a locally monotone
and locally constant operator to allow for a transfinite sequence of equivalence
relations. We show that even in this generalised setting, it still holds that all
locally constant operators have a singleton Kripke-Kleene set and all locally
monotone operators are total.

A.1 Comparing Equivalences

We denote the set of all meet equivalences of L by M(L) and the set of all
conservative meet equivalences of L by C(L). We can order equivalence relations
according to how fine-grained they are: one equivalence relation is finer than
another if its equivalence classes are smaller; we recall the following definition
from Chapter 5.

Definition A.1.1 (Finer). Let ≡1 and ≡2 be meet equivalences on L. We say
that ≡2 is finer than ≡1 (denoted ≡1 ≤f ≡2) if for all x, y ∈ L with x ≡2 y,
also x ≡1 y.

Proposition A.1.2. For every subset A of M(L), the relation ≡ such that
x ≡ y if and only if x ∼ y for every ∼ in A is a least upper bound of A in
〈M(L), ≤f 〉.

105

106 ON INFINITE STRATIFICATIONS

Proof. It follows directly from the definitions that ≡ is again a meet equivalence.
Also, it is clear that ∼ ≤f ≡ for every ∼ in A, and that ≡ is the least relation
with this property.

It follows directly from the previous proposition that 〈M(L), ≤f 〉 is chain
complete. The finest meet equivalence of L is the identity relation, the least
fine is the trivial equivalence relation in which everything is equivalent.

Proposition A.1.3. The set C(L) ⊆M(L) is chain complete, i.e., the limit of
a (possibly infinite) chain of conservative meet equivalences is again conservative.

Proof. Let I be some (totally ordered) index set and (≡i)i∈I a chain of
conservative meet equivalences such that ≡i ≤f ≡j if i ≤ j. Let ≡ be

∨
i{≡i},

we show that ≡ is conservative.

First we prove that every equivalence class of ≡ is chain complete. Let x≡ be an
equivalence class of ≡ and let C = (cj)j∈J be a chain in x≡. Define c =

∨
j cj ;

we show that c ∈ x≡. First of all, it holds for every i and j that cj ∈ x≡i ,
hence C is a chain in x≡i . Since ≡i is conservative, c ∈ x≡i . Thus, using the
definition of ≡, it follows that c ∈ x≡.

Secondly, we show that if x≡ ≤ y≡, then there is a z ∈ y≡ such that x ≤ z.
Suppose x≡ ≤ y≡. For every i, it also holds that x≡i ≤ y≡i , hence we find for
every i ∈ I a non-empty set Zi = {z ∈ y≡i | z ≥ x}. We define zi =

∧
Zi for

each i. If i ≤ j, it holds that ≡i ≤f ≡j , thus Zi ⊇ Zj and zi ≤ zj . It follows
that (zi)i∈I is a chain in L and its limit is in each of the y≡i . Hence, its limit is
indeed an element of y≡ greater than x.

Proposition A.1.4. Let A be a set of meet equivalences of L. If x≡ ≤ y≡ for
every ≡ in A, then x(

∨
A) ≤ y(

∨
A).

Proof. Let ∼ denote
∨
A. It holds that

∨
≡∈A⊥z≡ = ⊥z∼ for every z ∈ L. Also,

for every ≡ in A, it holds that ⊥x≡ ≤ ⊥y≡ since x≡ ≤ y≡. Hence we find that
⊥x∼ =

∨
≡∈A⊥x≡ ≤

∨
≡∈A⊥y≡ = ⊥y∼ . Thus indeed x(

∨
A) ≤ y(

∨
A).

A.2 Extended locally monotone operators

We now extend the notion of a locally monotone operator to allow the possibility
of an infinite stratification. The definition trivially extends to this setting now
that we know how to take limits of chains of conservative meet equivalences.

EXTENDED LOCALLY MONOTONE OPERATORS 107

Definition A.2.1 (∞-locally monotone, ∞-locally constant). Let O be an
operator. We call O ∞-locally monotone (respectively ∞-locally constant) if
there exists a sequence (≡i)i≤β of conservative meet equivalences of L such that
≡i ≥f ≡j if i ≥ j and the following all hold:

• ≡n is the identity relation, hence O≡n = O,

• ≡0 is the trivial relation: ∀x, y ∈ L : x ≡0 y,

• each of the ≡i is a congruence of O,

• O≡i+1 is a monotone (respectively constant) specialisation of O≡i for every
i < β,

• ≡λ=
∨

({≡i| i < λ}) for limit ordinals λ < β.

In order to prove that locally monotone operators are total, most work is already
done in Theorem 5.5.26. The only difficulty left are limit ordinals. We now
discuss some properties of limits of equivalences.

Proposition A.2.2. Let (≡i)i<β be a sequence of conservative meet equiva-
lences of L that are congruences of O. Let ≡ be

∨
({≡i| i < β}). Then x≡ is a

fixpoint of O≡ if and only if for every i < β, x≡i is a fixpoint of O≡i .

Proof. First suppose x≡i is a fixpoint of O≡i for every i. Hence O(x) ≡i x, for
every i. Now, the definition of

∨
({≡i| i < β}) guarantees that O(x) ≡ x, as

desired.

For the other direction, we know that ≡ ≥f ≡i for every i. Hence if O(x) ≡ x,
also O(x) ≡i x for every i.

Proposition A.2.3. Let (≡i)i<β be a sequence of conservative meet equiva-
lences of L that are congruences of O and such that ≡i ≥f ≡j whenever i ≥ j.
Let ≡ be

∨
({≡i| i < β}). If x≡i is grounded for each of the i < β, then x≡ is

grounded for O≡.

Proof. Suppose that for each of the i < β, x≡i is grounded for O≡i and that
for some v

O≡(x≡ ∧ v≡) ≤ v≡.

Proposition 5.5.9 guarantees that each of the ≡i is also a conservative meet
equivalence of L≡. Hence certainly O≡i(x≡i ∧ v≡i) ≤ v≡i for every i < β.
Since x≡i is grounded for O≡i , this means that x≡i ≤ v≡i for each i. Hence
Proposition A.1.4 yields that x≡ ≤ v≡.

108 ON INFINITE STRATIFICATIONS

Proposition A.2.4. Let (≡i)i<β be a sequence of conservative meet equiva-
lences of L that are congruences of O and such that ≡i ≥f ≡j whenever i ≥ j.
Let ≡ be

∨
({≡i| i < β}). If X and Y are sets such that for every i, X≡i → Y≡i

is a O≡i-refinement of the first (respectively the second) kind, then X≡ → Y≡
is a refinement of the first (respectively the second) kind.

Proof. First of all, we claim that if A,B ⊆ L and A≡i ⊆ B≡i for every i, then
A≡ ⊆ B≡. This claim simply follows from the definition of

∨
({≡i| i < β}).

If p≡i(O(X)) = O≡i(X≡i) ⊆ Y≡i ⊆ X≡i for every y, then by the previous claim,
it also holds that O≡(X≡) ⊆ Y≡ ⊆ X≡.

On the other hand, suppose X≡i \ Y≡i consists of ungrounded points and
O≡i(Y≡i) ⊆ Y≡i . Then Proposition 5.5.17 guarantees that also X \ Y consists
of ungrounded points. Also, for every y ∈ Y and every i, O≡i(y≡i) ∈ Y≡i , hence
by our first claim, O(Y) ⊆ Y .

Proposition A.2.5. Let O be an operator such that the conditions in
Proposition A.2.4 are satisfied. For every i < β, wfs(Oβ) ⊆ {x≡β | x≡i ∈
wfs(O≡i)}.

Proof. Follows immediately by induction using Propositions A.2.4 and 5.5.24.
Notice that Proposition 5.5.24 guarantees that the precondition in Proposition
A.2.4 that all refinements are of the same kind is satisfied.

Proposition A.2.6. Let O be an operator such that the conditions in
Proposition A.2.4 are satisfied. For every i < β, kks(Oβ) ⊆ {x≡β | x≡i ∈
kks(O≡i)}.

Proof. Follows immediately by induction using Proposition A.2.4.

Theorem A.2.7. All ∞-locally monotone operators are total.

Proof. The proof is by induction. If O is a locally monotone operator and the
≡i are as in Definition 5.5.27, then O≡0 is trivially total. The induction step
follows directly from Theorem 5.5.26.

Let (≡i)i≤β be a sequence of equivalences of L satisfying the conditions in
Definition 5.5.27. We use Li for L≡i and Oi for O≡i .

We prove this by induction on β. For β = 0, the result is trivial. If the results
holds for i, Theorem 5.5.26 guarantees that it holds for i+ 1 as well.

Let λ be a limit ordinal and suppose for all i < λ, Oi is total, we show that Oλ
is total. First, we show that wfs(Oλ) non-empty. For every i < λ, let wi ∈ Li

EXTENDED LOCALLY MONOTONE OPERATORS 109

denote the unique element in the well-founded set of Oi and let xi ∈ L the
minimal representative of wi, i.e., xi = ⊥wi . Since ≡j ≥f ≡i for j ≥ i, it holds
that xj ∈ wi if j ≥ i. Hence, the sequence (xi) is increasing. Let x =

∨
i xi

be the limit of this sequence. Now x≡i = wi, for every i, hence Propositions
A.2.3 and A.2.2 yield that x≡λ is a grounded fixpoint of Oλ. Hence wfs(Oλ) is
non-empty.

Now, Proposition A.2.5 yields that:

wfs(Oλ) ⊆
⋂
i<λ

({x≡λ | x≡i = wi})

Hence, if x′≡λ ∈ wfs(Oλ), then for every i, x′≡i = wi = x≡i . Thus, using the
definition of

∨
({≡i| i < λ}), we find that x≡λ = x′≡λ .

Theorem A.2.8. All ∞-locally constant operators have a singleton Kripke-
Kleene set.

Proof. The argument is completely analogous to the proof of Theorem A.2.7.

Bibliography

Abiteboul, S., Hull, R., Vianu, V., 1995. Foundations of Databases. Addison-
Wesley.

Abiteboul, S., Simon, E., Vianu, V., 1990. Non-deterministic languages to
express deterministic transformations. In: (PODS, 1990), pp. 218–229.
URL http://doi.acm.org/10.1145/298514.298575

Abiteboul, S., Vianu, V., 1991. Datalog extensions for database queries and
updates. J. Comput. Syst. Sci. 43 (1), 62–124.
URL http://dx.doi.org/10.1016/0022-0000(91)90032-Z

Aczel, P., 1977. An introduction to inductive definitions. In: Barwise, J. (Ed.),
Handbook of Mathematical Logic. North-Holland Publishing Company, pp.
739–782.

Afanasiev, L., Grust, T., Marx, M., Rittinger, J., Teubner, J., 2008. An
inflationary fixed point operator in XQuery. In: ICDE. IEEE, pp. 1504–1506.
URL http://dx.doi.org/10.1109/ICDE.2008.4497604

Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C., Ianni,
G., Krennwallner, T., Kronegger, M., Oetsch, J., Pfandler, A., Pührer, J.,
Redl, C., Ricca, F., Schneider, P., Schwengerer, M., Spendier, L. K., Wallner,
J. P., Xiao, G., 2013. The fourth Answer Set Programming competition:
Preliminary report. In: (Cabalar and Son, 2013), pp. 42–53.
URL http://dx.doi.org/10.1007/978-3-642-40564-8_5

Andres, B., Obermeier, P., Sabuncu, O., Schaub, T., Rajaratnam, D., 2013.
ROSoClingo: A ROS package for ASP-based robot control.
URL http://arxiv.org/abs/1307.7398

Andrews, T., Blockeel, H., Bogaerts, B., Bruynooghe, M., Denecker, M.,
De Pooter, S., Macé, C., Ramon, J., Aug. 2012. Analyzing manuscript
traditions using constraint-based data mining. In: First Workshop on

111

http://doi.acm.org/10.1145/298514.298575
http://dx.doi.org/10.1016/0022-0000(91)90032-Z
http://dx.doi.org/10.1109/ICDE.2008.4497604
http://dx.doi.org/10.1007/978-3-642-40564-8_5
http://arxiv.org/abs/1307.7398

112 BIBLIOGRAPHY

Combining Constraint Solving with Mining and Learning, Montpellier, France,
27 August 2012.
URL https://lirias.kuleuven.be/handle/123456789/352303

Antic, C., Eiter, T., Fink, M., 2013. Hex semantics via approximation fixpoint
theory. In: (Cabalar and Son, 2013), pp. 102–115.
URL http://dx.doi.org/10.1007/978-3-642-40564-8_11

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., Patel-Schneider, P. F.
(Eds.), 2003. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, second edition, 2007.
URL http://www.cambridge.org/asia/catalogue/catalogue.asp?
isbn=9780521876254

Balint, A., Belov, A., Heule, M. J., Matti, M. J., 2013. The 2013 international
SAT competition.
URL http://satcompetition.org/2013/results.shtml

Baral, C., 2003. Knowledge Representation, Reasoning, and Declarative Problem
Solving. Cambridge University Press, New York, NY, USA.
URL http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511543357

Baral, C., De Giacomo, G., Eiter, T. (Eds.), 2014. Principles of Knowledge
Representation and Reasoning: Proceedings of the Fourteenth International
Conference, KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press.
URL http://www.aaai.org/Library/KR/kr14contents.php

Baral, C., Subrahmanian, V., 1993. Dualities between alternative semantics
for logic programming and nonmonotonic reasoning. Journal of Automated
Reasoning 10 (3), 399–420.
URL http://dx.doi.org/10.1007/BF00881799

Barker, S., Boella, G., Gabbay, D. M., Genovese, V., 2014. Reasoning about
delegation and revocation schemes in answer set programming. J. Log.
Comput. 24 (1), 89–116.
URL http://dx.doi.org/10.1093/logcom/exs014

Bi, Y., You, J.-H., Feng, Z., 2014. A generalization of approximation fixpoint
theory and application. In: Kontchakov, R., Mugnier, M.-L. (Eds.), Web
Reasoning and Rule Systems. Vol. 8741 of LNCS. Springer International
Publishing, pp. 45–59.
URL http://dx.doi.org/10.1007/978-3-319-11113-1_4

Bidoit, N., Ykhlef, M., 1998. Fixpoint calculus for querying semistructured data.
In: Atzeni, P., Mendelzon, A. O., Mecca, G. (Eds.), WebDB. Vol. 1590 of
LNCS. Springer, pp. 78–97.
URL http://dx.doi.org/10.1007/10704656_6

https://lirias.kuleuven.be/handle/123456789/352303
http://dx.doi.org/10.1007/978-3-642-40564-8_11
http://www.cambridge.org/asia/catalogue/catalogue.asp?isbn=9780521876254
http://www.cambridge.org/asia/catalogue/catalogue.asp?isbn=9780521876254
http://satcompetition.org/2013/results.shtml
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511543357
http://www.aaai.org/Library/KR/kr14contents.php
http://dx.doi.org/10.1007/BF00881799
http://dx.doi.org/10.1093/logcom/exs014
http://dx.doi.org/10.1007/978-3-319-11113-1_4
http://dx.doi.org/10.1007/10704656_6

BIBLIOGRAPHY 113

Bogaerts, B., Jansen, J., Bruynooghe, M., De Cat, B., Vennekens, J., Denecker,
M., 7 2014a. Simulating dynamic systems using linear time calculus theories.
TPLP 14, 477–492.
URL http://journals.cambridge.org/article_S1471068414000155

Bogaerts, B., Jansen, J., De Cat, B., Janssens, G., Bruynooghe, M., Denecker,
M., 2014b. Meta-level representations in the IDP knowledge base system:
Towards bootstrapping inference engine development. In: Mitchell, D.,
Denecker, M. (Eds.), Workshop on Logic and Search, 2014.
URL https://lirias.kuleuven.be/handle/123456789/459071

Bogaerts, B., Vennekens, J., Denecker, M., 2015a. Grounded fixpoints. In:
Bonet, B., Koenig, S. (Eds.), Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA. AAAI Press, pp. 1453–1459.
URL http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/
9324

Bogaerts, B., Vennekens, J., Denecker, M., 2015b. Grounded fixpoints and their
applications in knowledge representation. Artif. Intell. 224, 51–71.
URL http://dx.doi.org/10.1016/j.artint.2015.03.006

Bogaerts, B., Vennekens, J., Denecker, M., Van den Bussche, J., 2014c. FO(C):
A knowledge representation language of causality. TPLP 14 (4-5-Online-
Supplement), 60–69.
URL https://lirias.kuleuven.be/handle/123456789/459436

Bogaerts, B., Vennekens, J., Denecker, M., Van den Bussche, J., 2014d. FO(C)
and related modelling paradigms. In: Konieczny, S., Tompits, H. (Eds.),
NMR. No. RR-1843-14-01 in INFSYS. Institut Für Informationssyteme, pp.
90–96.
URL http://arxiv.org/abs/1404.6394

Bogaerts, B., Vennekens, J., Denecker, M., Van den Bussche, J., 2014e. Inference
in the FO(C) modelling language. In: Schaub, T., Friedrich, G., O’Sullivan, B.
(Eds.), ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22
August 2014, Prague, Czech Republic - Including Prestigious Applications of
Intelligent Systems (PAIS 2014). IOS Press, pp. 111–116.
URL http://dx.doi.org/10.3233/978-1-61499-419-0-111

Bonatti, P. A., 1995. Autoepistemic logics as a unifying framework for the
semantics of logic programs. J. Log. Program. 22 (2), 91–149.
URL http://dx.doi.org/10.1016/0743-1066(94)00022-X

Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J. P., Woltran, S., 2013.
Abstract dialectical frameworks revisited. In: Rossi, F. (Ed.), IJCAI

http://journals.cambridge.org/article_S1471068414000155
https://lirias.kuleuven.be/handle/123456789/459071
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9324
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9324
http://dx.doi.org/10.1016/j.artint.2015.03.006
https://lirias.kuleuven.be/handle/123456789/459436
http://arxiv.org/abs/1404.6394
http://dx.doi.org/10.3233/978-1-61499-419-0-111
http://dx.doi.org/10.1016/0743-1066(94)00022-X

114 BIBLIOGRAPHY

2013, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, Beijing, China, August 3-9, 2013. IJCAI/AAAI.
URL http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/
view/6551

Brewka, G., Woltran, S., 2010. Abstract dialectical frameworks. In: Lin, F.,
Sattler, U., Truszczyński, M. (Eds.), Principles of Knowledge Representation
and Reasoning: Proceedings of the Twelfth International Conference, KR
2010, Toronto, Ontario, Canada, May 9-13, 2010. AAAI Press, pp. 102–111.
URL http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1294

Bruynooghe, M., Blockeel, H., Bogaerts, B., De Cat, B., De Pooter, S., Jansen,
J., Labarre, A., Ramon, J., Denecker, M., Verwer, S., 2015. Predicate logic
as a modeling language: Modeling and solving some machine learning and
data mining problems with IDP3. TPLP(in press).
URL https://lirias.kuleuven.be/handle/123456789/448838

Buchholz, W., Feferman, S., Pohlers, W., Sieg, W., 1981. Iterated Inductive
Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies.
Vol. 897 of Lecture Notes in Mathematics. Springer.

Cabalar, P., Son, T. C. (Eds.), 2013. Logic Programming and Nonmonotonic
Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain,
September 15-19, 2013. Proceedings. Vol. 8148 of LNCS. Springer.

Cadoli, M., Donini, F. M., 1997. A survey on knowledge compilation. AI
Commun. 10 (3-4), 137–150.
URL http://iospress.metapress.com/content/0a5ejbx7dl6r07j8/

Calvanese, D., De Giacomo, G., Lenzerini, M., 1999. Reasoning in expressive
description logics with fixpoints based on automata on infinite trees. In: Dean,
T. (Ed.), IJCAI. Morgan Kaufmann, pp. 84–89.
URL http://ijcai.org/Past%20Proceedings/IJCAI-99-VOL-1/PDF/013.
pdf

Caminada, M. W. A., Carnielli, W. A., Dunne, P. E., 2012. Semi-stable semantics.
J. Log. Comput. 22 (5), 1207–1254.
URL http://dx.doi.org/10.1093/logcom/exr033

Castro, L. F., Warren, D. S., 2001. An environment for the exploration of
non monotonic logic programs. In: Kusalik, A. J. (Ed.), Proceedings of
the Eleventh Workshop on Logic Programming Environments (WLPE’01),
Paphos, Cyprus, December 1, 2001.
URL http://arxiv.org/abs/cs.PL/0111049

http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6551
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6551
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1294
https://lirias.kuleuven.be/handle/123456789/448838
http://iospress.metapress.com/content/0a5ejbx7dl6r07j8/
http://ijcai.org/Past%20Proceedings/IJCAI-99-VOL-1/PDF/013.pdf
http://ijcai.org/Past%20Proceedings/IJCAI-99-VOL-1/PDF/013.pdf
http://dx.doi.org/10.1093/logcom/exr033
http://arxiv.org/abs/cs.PL/0111049

BIBLIOGRAPHY 115

Darwiche, A., Marquis, P., 2002. A knowledge compilation map. J. Artif. Intell.
Res. (JAIR) 17, 229–264.
URL http://dx.doi.org/10.1613/jair.989

De Cat, B., Bogaerts, B., Bruynooghe, M., Denecker, M., 2014a. Predicate logic
as a modelling language: The IDP system. CoRR abs/1401.6312.
URL http://arxiv.org/abs/1401.6312

De Cat, B., Bogaerts, B., Denecker, M., Sep. 2014b. MiniSAT(ID) for
satisfiability checking and constraint solving.
URL https://lirias.kuleuven.be/handle/123456789/463884

De Cat, B., Bogaerts, B., Devriendt, J., Denecker, M., 2013. Model expansion
in the presence of function symbols using constraint programming. In: 2013
IEEE 25th International Conference on Tools with Artificial Intelligence,
Herndon, VA, USA, November 4-6, 2013. IEEE Computer Society, pp. 1068–
1075.
URL http://dx.doi.org/10.1109/ICTAI.2013.159

Decroix, K., Butin, D., Jansen, J., Naessens, V., Dec. 2014. Inferring
Accountability from Trust Perceptions. In: Prakash, A., Shyamasundar,
R. K. (Eds.), Information Systems Security, ICISS 2014, Hyderabad, 16-20
December 2014. Springer-Verlag, pp. 69–88.
URL https://lirias.kuleuven.be/handle/123456789/461505

Denecker, M., 2012. The FO(·) knowledge base system project: An integration
project (invited talk). In: ASPOCP.

Denecker, M., De Schreye, D., 1993. Justification semantics: A unifying
framework for the semantics of logic programs. In: Pereira, L. M., Nerode, A.
(Eds.), LPNMR. MIT Press, pp. 365–379.
URL https://lirias.kuleuven.be/handle/123456789/133075

Denecker, M., Marek, V., Truszczyński, M., July 26-30 1998. Fixpoint 3-
valued semantics for autoepistemic logic. In: AAAI’98. MIT Press, Madison,
Wisconsin, pp. 840–845.
URL http://www.aaai.org/Papers/AAAI/1998/AAAI98-119.pdf

Denecker, M., Marek, V., Truszczyński, M., 2000. Approximations, stable
operators, well-founded fixpoints and applications in nonmonotonic reasoning.
In: Minker, J. (Ed.), Logic-Based Artificial Intelligence. Vol. 597 of The
Springer International Series in Engineering and Computer Science. Springer
US, pp. 127–144.
URL http://dx.doi.org/10.1007/978-1-4615-1567-8_6

http://dx.doi.org/10.1613/jair.989
http://arxiv.org/abs/1401.6312
https://lirias.kuleuven.be/handle/123456789/463884
http://dx.doi.org/10.1109/ICTAI.2013.159
https://lirias.kuleuven.be/handle/123456789/461505
https://lirias.kuleuven.be/handle/123456789/133075
http://www.aaai.org/Papers/AAAI/1998/AAAI98-119.pdf
http://dx.doi.org/10.1007/978-1-4615-1567-8_6

116 BIBLIOGRAPHY

Denecker, M., Marek, V., Truszczyński, M., 2003. Uniform semantic treatment
of default and autoepistemic logics. Artif. Intell. 143 (1), 79–122.
URL http://dx.doi.org/10.1016/S0004-3702(02)00293-X

Denecker, M., Marek, V., Truszczyński, M., Jul. 2004. Ultimate approximation
and its application in nonmonotonic knowledge representation systems.
Information and Computation 192 (1), 84–121.
URL https://lirias.kuleuven.be/handle/123456789/124562

Denecker, M., Marek, V., Truszczyński, M., 2011. Reiter’s default logic is a
logic of autoepistemic reasoning and a good one, too. In: Brewka, G., Marek,
V., Truszczyński, M. (Eds.), Nonmonotonic Reasoning – Essays Celebrating
Its 30th Anniversary. College Publications, pp. 111–144.
URL http://arxiv.org/abs/1108.3278

Denecker, M., Ternovska, E., Apr. 2008. A logic of nonmonotone inductive
definitions. ACM Trans. Comput. Log. 9 (2), 14:1–14:52.
URL http://dx.doi.org/10.1145/1342991.1342998

Denecker, M., Vennekens, J., 2007. Well-founded semantics and the algebraic
theory of non-monotone inductive definitions. In: Baral, C., Brewka, G.,
Schlipf, J. S. (Eds.), LPNMR. Vol. 4483 of LNCS. Springer, pp. 84–96.
URL http://dx.doi.org/10.1007/978-3-540-72200-7_9

Denecker, M., Vennekens, J., 2008. Building a knowledge base system for an
integration of logic programming and classical logic. In: (García de la Banda
and Pontelli, 2008), pp. 71–76.
URL http://dx.doi.org/10.1007/978-3-540-89982-2_12

Denecker, M., Vennekens, J., 2014. The well-founded semantics is the principle
of inductive definition, revisited. In: (Baral et al., 2014), pp. 22–31.
URL https://lirias.kuleuven.be/handle/123456789/448356

Devriendt, J., Bogaerts, B., Bruynooghe, M., 2014. BreakIDGlucose: On the
importance of row symmetry. In: Proceedings of the Fourth International
Workshop on the Cross-Fertilization Between CSP and SAT (CSPSAT).
URL https://lirias.kuleuven.be/handle/123456789/456639

Devriendt, J., Bogaerts, B., De Cat, B., Denecker, M., Mears, C., 2012.
Symmetry propagation: Improved dynamic symmetry breaking in SAT. In:
IEEE 24th International Conference on Tools with Artificial Intelligence,
ICTAI 2012, Athens, Greece, November 7-9, 2012. IEEE, pp. 49–56.
URL http://dx.doi.org/10.1109/ICTAI.2012.16

Dung, P. M., 1995. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artif.

http://dx.doi.org/10.1016/S0004-3702(02)00293-X
https://lirias.kuleuven.be/handle/123456789/124562
http://arxiv.org/abs/1108.3278
http://dx.doi.org/10.1145/1342991.1342998
http://dx.doi.org/10.1007/978-3-540-72200-7_9
http://dx.doi.org/10.1007/978-3-540-89982-2_12
https://lirias.kuleuven.be/handle/123456789/448356
https://lirias.kuleuven.be/handle/123456789/456639
http://dx.doi.org/10.1109/ICTAI.2012.16

BIBLIOGRAPHY 117

Intell. 77 (2), 321 – 357.
URL http://dx.doi.org/10.1016/0004-3702(94)00041-X

Eén, N., Sörensson, N., 2003. Temporal induction by incremental SAT solving.
Electr. Notes Theor. Comput. Sci. 89 (4).
URL http://dx.doi.org/10.1016/S1571-0661(05)82542-3

Eiter, T., Ianni, G., Krennwallner, T., 2009. Answer set programming: A
primer. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S.,
Rousset, M., Schmidt, R. A. (Eds.), Reasoning Web. Semantic Technologies
for Information Systems, 5th International Summer School 2009, Brixen-
Bressanone, Italy, August 30 - September 4, 2009, Tutorial Lectures. Vol.
5689 of Lecture Notes in Computer Science. Springer, pp. 40–110.
URL http://dx.doi.org/10.1007/978-3-642-03754-2_2

Eiter, T., Leone, N., Saccà, D., 1997. On the partial semantics for disjunctive
deductive databases. Ann. Math. Artif. Intell. 19 (1-2), 59–96.
URL http://dx.doi.org/10.1023/A:1018947420290

Faber, W., Pfeifer, G., Leone, N., 2011. Semantics and complexity of recursive
aggregates in answer set programming. Artif. Intell. 175 (1), 278–298.
URL http://dx.doi.org/10.1016/j.artint.2010.04.002

Fagin, R., Halpern, J. Y., Moses, Y., Vardi, M. Y., 1995. Reasoning About
Knowledge. MIT Press.
URL http://library.books24x7.com.libproxy.mit.edu/toc.asp?
site=bbbga&bookid=7008

Feferman, S., 1970. Formal theories for transfinite iterations of generalised
inductive definitions and some subsystems of analysis. In: Kino, A., Myhill,
J., Vesley, R. (Eds.), Intuitionism and Proof theory. North Holland, pp.
303–326.

Ferraris, P., 2005. Answer sets for propositional theories. In: Proceedings
of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR). pp. 119–131.
URL http://dx.doi.org/10.1007/11546207_10

Fitting, M., 2002. Fixpoint semantics for logic programming — A survey.
Theoretical Computer Science 278 (1-2), 25–51.
URL http://dx.doi.org/10.1016/S0304-3975(00)00330-3

García de la Banda, M., Pontelli, E. (Eds.), 2008. Logic Programming, 24th
International Conference, ICLP 2008, Udine, Italy, December 9-13 2008,
Proceedings. Vol. 5366 of LNCS. Springer.

http://dx.doi.org/10.1016/0004-3702(94)00041-X
http://dx.doi.org/10.1016/S1571-0661(05)82542-3
http://dx.doi.org/10.1007/978-3-642-03754-2_2
http://dx.doi.org/10.1023/A:1018947420290
http://dx.doi.org/10.1016/j.artint.2010.04.002
http://library.books24x7.com.libproxy.mit.edu/toc.asp?site=bbbga&bookid=7008
http://library.books24x7.com.libproxy.mit.edu/toc.asp?site=bbbga&bookid=7008
http://dx.doi.org/10.1007/11546207_10
http://dx.doi.org/10.1016/S0304-3975(00)00330-3

118 BIBLIOGRAPHY

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., 2012. Answer Set Solving
in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
URL dx.doi.org/10.2200/S00457ED1V01Y201211AIM019

Gelfond, M., Lifschitz, V., 1988. The stable model semantics for logic
programming. In: Kowalski, R. A., Bowen, K. A. (Eds.), ICLP/SLP. MIT
Press, pp. 1070–1080.
URL http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.
6050

Gelfond, M., Zhang, Y., 2014. Vicious circle principle and logic programs with
aggregates. TPLP 14 (4-5), 587–601.
URL http://dx.doi.org/10.1017/S1471068414000222

Gottlob, G., 1995. Translating default logic into standard autoepistemic logic.
J. ACM 42 (4), 711–740.
URL http://dx.doi.org/10.1145/210332.210334

Hallnäs, L., 1991. Partial inductive definitions. Theor. Comput. Sci. 87 (1),
115–142.
URL http://dx.doi.org/10.1016/S0304-3975(06)80007-1

Halpern, J. Y., Moses, Y., 1985. Towards a theory of knowledge and ignorance:
Preliminary report. In: Apt, K. R. (Ed.), Logics and Models of Concurrent
Systems. Vol. 13 of NATO ASI Series. Springer Berlin Heidelberg, pp. 459–
476.
URL http://dx.doi.org/10.1007/978-3-642-82453-1_16

Hou, P., De Cat, B., Denecker, M., 2010. FO(FD): Extending classical logic
with rule-based fixpoint definitions. TPLP 10 (4-6), 581–596.
URL http://dx.doi.org/10.1017/S1471068410000293

Kleene, S. C., 1938. On notation for ordinal numbers. The Journal of Symbolic
Logic 3 (4), 150–155.
URL http://www.jstor.org/stable/2267778

Konolige, K., 1988. On the relation between default and autoepistemic logic.
Artif. Intell. 35, 343–382.
URL http://dx.doi.org/10.1016/0004-3702(88)90021-5

Kozen, D., 1983. Results on the propositional µ-calculus. Theoretical Computer
Science 27, 333–354.

Kreisel, G., 1963. Generalized inductive definitions. Tech. rep., Section III in
the Stanford University report on the Foundations of Analysis.

dx.doi.org/10.2200/S00457ED1V01Y201211AIM019
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6050
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6050
http://dx.doi.org/10.1017/S1471068414000222
http://dx.doi.org/10.1145/210332.210334
http://dx.doi.org/10.1016/S0304-3975(06)80007-1
http://dx.doi.org/10.1007/978-3-642-82453-1_16
http://dx.doi.org/10.1017/S1471068410000293
http://www.jstor.org/stable/2267778
http://dx.doi.org/10.1016/0004-3702(88)90021-5

BIBLIOGRAPHY 119

Leone, N., Rullo, P., Scarcello, F., 1997. Disjunctive stable models: Unfounded
sets, fixpoint semantics, and computation. Inf. Comput. 135 (2), 69–112.
URL http://dx.doi.org/10.1006/inco.1997.2630

Levesque, H. J., 1990. All I know: A study in autoepistemic logic. Artif. Intell.
42 (2-3), 263–309.
URL http://dx.doi.org/10.1016/0004-3702(90)90056-6

Levesque, H. J., Pirri, F., Reiter, R., 1998. Foundations for the situation
calculus. Electron. Trans. Artif. Intell. 2, 159–178.
URL http://dblp.uni-trier.de/db/journals/etai/etai2.html#
LevesquePR98

Lifschitz, V., 1999. Answer set planning. In: Schreye, D. D. (Ed.), Logic
Programming: The 1999 International Conference, Las Cruces, New Mexico,
USA, November 29 - December 4, 1999. MIT Press, pp. 23–37.

Lifschitz, V., 2008. Twelve definitions of a stable model. In: (García de la Banda
and Pontelli, 2008), pp. 37–51.
URL http://dx.doi.org/10.1007/978-3-540-89982-2_8

Lin, F., Reiter, R., 1997. How to progress a database. Artif. Intell. 92 (1-2),
131–167.
URL http://dx.doi.org/10.1016/S0004-3702(96)00044-6

Marek, V., Niemelä, I., Truszczyński, M., 2008. Logic programs with monotone
abstract constraint atoms. TPLP 8 (2), 167–199.
URL http://dx.doi.org/10.1017/S147106840700302X

Marek, V., Truszczynski, M., 1989. Relating autoepistemic and default logics.
In: Brachman, R. J., Levesque, H. J., Reiter, R. (Eds.), Proceedings of the
1st International Conference on Principles of Knowledge Representation and
Reasoning (KR’89). Toronto, Canada, May 15-18 1989. Morgan Kaufmann,
pp. 276–288.
URL http://dl.acm.org/citation.cfm?id=112950

Marek, V., Truszczyński, M., 1991. Autoepistemic logic. J. ACM 38 (3), 588–
619.
URL http://dx.doi.org/10.1145/116825.116836

Marek, V., Truszczyński, M., 1999. Stable models and an alternative logic
programming paradigm. In: Apt, K. R., Marek, V., Truszczyński, M., Warren,
D. S. (Eds.), The Logic Programming Paradigm: A 25-Year Perspective.
Springer-Verlag, pp. 375–398.
URL http://arxiv.org/abs/cs.LO/9809032

http://dx.doi.org/10.1006/inco.1997.2630
http://dx.doi.org/10.1016/0004-3702(90)90056-6
http://dblp.uni-trier.de/db/journals/etai/etai2.html#LevesquePR98
http://dblp.uni-trier.de/db/journals/etai/etai2.html#LevesquePR98
http://dx.doi.org/10.1007/978-3-540-89982-2_8
http://dx.doi.org/10.1016/S0004-3702(96)00044-6
http://dx.doi.org/10.1017/S147106840700302X
http://dl.acm.org/citation.cfm?id=112950
http://dx.doi.org/10.1145/116825.116836
http://arxiv.org/abs/cs.LO/9809032

120 BIBLIOGRAPHY

Martin-Löf, P., 1971. Hauptsatz for the intuitionistic theory of iterated inductive
definitions. In: Fenstad, J. (Ed.), Second Scandinavian Logic Symposium. pp.
179–216.

McDermott, D., 1982. Nonmonotonic logic II: Nonmonotonic modal theories.
Journal of the ACM 29 (1), 33–57.
URL http://dl.acm.org/citation.cfm?id=322293

McDermott, D., Doyle, J., 1980. Nonmonotonic logic I. Artif. Intell. 13 (1-2),
41–72.
URL http://hdl.handle.net/1721.1/6303

Mitchell, D. G., Ternovska, E., 2005. A framework for representing and solving
NP search problems. In: Veloso, M. M., Kambhampati, S. (Eds.), AAAI.
AAAI Press / The MIT Press, pp. 430–435.
URL http://www.aaai.org/Library/AAAI/2005/aaai05-068.php

Moore, R. C., 1984. Possible-world semantics for autoepistemic logic. In:
Proceedings of the Workshop on Non-Monotonic Reasoning. pp. 344–354,
reprinted in: M. Ginsberg, ed., Readings on Nonmonotonic Reasoning, pages
137–142, Morgan Kaufmann, 1990.
URL http://www.sri.com/sites/default/files/uploads/
publications/pdf/616.pdf

Moore, R. C., 1985. Semantical considerations on nonmonotonic logic. Artif.
Intell. 25 (1), 75–94.
URL http://dx.doi.org/10.1016/0004-3702(85)90042-6

Moschovakis, Y. N., 1974a. Elementary Induction on Abstract Structures. North-
Holland Publishing Company, Amsterdam- New York.

Moschovakis, Y. N., 1974b. On non-monotone inductive definability. Fundamenta
Mathematica 82, 39–83.

Niemelä, I., 1991. Constructive tightly grounded autoepistemic reasoning. In:
Mylopoulos, J., Reiter, R. (Eds.), Proceedings of the 12th International Joint
Conference on Artificial Intelligence. Sydney, Australia, August 24-30, 1991.
Morgan Kaufmann, pp. 399–405.

Niemelä, I., 1999. Logic programs with stable model semantics as a constraint
programming paradigm. Ann. Math. Artif. Intell. 25 (3-4), 241–273.
URL http://dx.doi.org/10.1023/A:1018930122475

Papadimitriou, C. H., 1994. Computational complexity. Addison-Wesley.

http://dl.acm.org/citation.cfm?id=322293
http://hdl.handle.net/1721.1/6303
http://www.aaai.org/Library/AAAI/2005/aaai05-068.php
http://www.sri.com/sites/default/files/uploads/publications/pdf/616.pdf
http://www.sri.com/sites/default/files/uploads/publications/pdf/616.pdf
http://dx.doi.org/10.1016/0004-3702(85)90042-6
http://dx.doi.org/10.1023/A:1018930122475

BIBLIOGRAPHY 121

Peirce, C., Buchler, J., 1955. Philosophical Writings of Peirce. International
library of psychology, philosophy and scientific method. Dover Publications.
URL https://books.google.com/books?id=7KPdoAEACAAJ

Pelov, N., Denecker, M., Bruynooghe, M., 2007. Well-founded and stable
semantics of logic programs with aggregates. TPLP 7 (3), 301–353.
URL http://dx.doi.org/10.1017/S1471068406002973

Pelov, N., Truszczynski, M., 2004. Semantics of disjunctive programs with
monotone aggregates - an operator-based approach. In: Delgrande, J. P.,
Schaub, T. (Eds.), 10th International Workshop on Non-Monotonic Reasoning
(NMR 2004), Whistler, Canada, June 6-8, 2004, Proceedings. pp. 327–334.
URL http://www.pims.math.ca/science/2004/NMR/papers/paper43.
pdf

Pirri, F., Reiter, R., May 1999. Some contributions to the metatheory of the
situation calculus. J. ACM 46 (3), 325–361.
URL http://doi.acm.org/10.1145/316542.316545

PODS, 1990. Proceedings of the Ninth ACM Symposium on Principles of
Database Systems. ACM Press.

Post, E. L., 1943. Formal reductions of the general combinatorial decision
problem. American Journal of Mathematics 65 (2), 197–215.
URL dx.doi.org/10.2307/2371809

Prokosch, H. U., Kamm, S., Wieczorek, D., Dudeck, J., 1991. Knowledge
representation in pharmacology. A possible application area for the Arden
syntax? Proc Annu Symp Comput Appl Med Care, 243–247.
URL http://www.ncbi.nlm.nih.gov/pubmed/1807597

Przymusinski, T. C., 1988. On the declarative semantics of deductive databases
and logic programs. In: Foundations of Deductive Databases and Logic
Programming. Morgan Kaufmann, pp. 193–216.

Przymusinski, T. C., 1991. Stable semantics for disjunctive programs. New
Generation Computing 9 (3/4), 401–424.
URL http://dx.doi.org/10.1007/BF03037171

Randell, D. A., Cui, Z., Cohn, A. G., 1992. A spatial logic based on regions and
connection. In: Nebel, B., Rich, C., Swartout, W. R. (Eds.), Proceedings of
the 3rd International Conference on Principles of Knowledge Representation
and Reasoning (KR’92). Cambridge, MA, October 25-29, 1992. Morgan
Kaufmann, pp. 165–176.

Reiter, R., 1980. A logic for default reasoning. Artif. Intell. 13 (1-2), 81–132.
URL http://dx.doi.org/10.1016/0004-3702(80)90014-4

https://books.google.com/books?id=7KPdoAEACAAJ
http://dx.doi.org/10.1017/S1471068406002973
http://www.pims.math.ca/science/2004/NMR/papers/paper43.pdf
http://www.pims.math.ca/science/2004/NMR/papers/paper43.pdf
http://doi.acm.org/10.1145/316542.316545
dx.doi.org/10.2307/2371809
http://www.ncbi.nlm.nih.gov/pubmed/1807597
http://dx.doi.org/10.1007/BF03037171
http://dx.doi.org/10.1016/0004-3702(80)90014-4

122 BIBLIOGRAPHY

Reiter, R., 2001. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press.
URL http://books.google.be/books?id=exa4f6BOZdYC

Riazanov, A., Voronkov, A., 2002. The design and implementation of VAMPIRE.
AI Communications 15 (2-3), 91–110.
URL http://iospress.metapress.com/content/ajar8kjbdtdf7kc2/

Saccà, D., 1997. The expressive powers of stable models for bound and unbound
DATALOG queries. J. Comput. Syst. Sci. 54 (3), 441–464.
URL http://dx.doi.org/10.1006/jcss.1997.1446

Saccà, D., Zaniolo, C., 1997. Deterministic and non-deterministic stable models.
J. Log. Comput. 7 (5), 555–579.
URL http://dx.doi.org/10.1093/logcom/7.5.555

Schlipf, J. S., 1995. Complexity and undecidability results for logic programming.
Annals of Mathematics and Artificial Intelligence 15 (3-4), 257–288.
URL http://dx.doi.org/10.1007/BF01536398

Schnoebelen, Ph., 2003. The complexity of temporal logic model checking.
In: Balbiani, Ph., Suzuki, N.-Y., Wolter, F., Zakharyaschev, M. (Eds.),
Proceedings of the 4th Workshop on Advances in Modal Logic (AIML’02).
King’s College Publications, pp. 481–517.

Seipel, D., Minker, J., Ruiz, C., 1997. A characterization of the partial
stable models for disjunctive databases. In: Maluszynski, J. (Ed.), Logic
Programming, Proceedings of the 1997 International Symposium, Port
Jefferson, Long Island, NY, USA, October 13-16, 1997. MIT Press, pp.
245–259.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.
1

Shanahan, M., 1997. Solving the Frame Problem - a Mathematical Investigation
of the Common Sense Law of Inertia. MIT Press.
URL http://mitpress.mit.edu/books/solving-frame-problem

Son, T. C., Pontelli, E., Elkabani, I., 2006. An unfolding-based semantics for
logic programming with aggregates. CoRR abs/cs/0605038.
URL http://arxiv.org/abs/cs/0605038

Spector, C., 1961. Inductively defined sets of natural numbers. In: Infinitistic
Methods (Proc. 1959 Symposium on Foundation of Mathematis in Warsaw).
Pergamon Press, Oxford, pp. 97–102.

http://books.google.be/books?id=exa4f6BOZdYC
http://iospress.metapress.com/content/ajar8kjbdtdf7kc2/
http://dx.doi.org/10.1006/jcss.1997.1446
http://dx.doi.org/10.1093/logcom/7.5.555
http://dx.doi.org/10.1007/BF01536398
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.1
http://mitpress.mit.edu/books/solving-frame-problem
http://arxiv.org/abs/cs/0605038

BIBLIOGRAPHY 123

Strass, H., 2013. Approximating operators and semantics for abstract dialectical
frameworks. Artif. Intell. 205, 39–70.
URL http://dx.doi.org/10.1016/j.artint.2013.09.004

Strass, H., Wallner, J. P., 2014. Analyzing the computational complexity of
abstract dialectical frameworks via approximation fixpoint theory. In: (Baral
et al., 2014), pp. 101–110.
URL http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7917

Streett, R. S., Emerson, E. A., 1989. An automata theoretic decision procedure
for the propositional µ-calculus. Information and Computation 81 (3), 249–
264.

Sutcliffe, G., 2013. The 6th IJCAR Automated Theorem Proving System
Competition - CASC-J6. AI Communications 26 (2), 211–223.

Ternovska, E., Mitchell, D. G., 2009. Declarative programming of search
problems with built-in arithmetic. In: Boutilier, C. (Ed.), IJCAI. pp. 942–947.
URL http://ijcai.org/papers09/Papers/IJCAI09-160.pdf

Thielscher, M., Jan. 2011. A unifying action calculus. Artif. Intell. 175 (1),
120–141.
URL http://dx.doi.org/10.1016/j.artint.2010.04.010

Truszczynski, M., 2006. Strong and uniform equivalence of nonmonotonic
theories - an algebraic approach. Ann. Math. Artif. Intell. 48 (3-4), 245–
265.
URL http://dx.doi.org/10.1007/s10472-007-9049-2

van Emden, M. H., Kowalski, R. A., 1976. The semantics of predicate logic as a
programming language. J. ACM 23 (4), 733–742.
URL http://dx.doi.org/10.1145/321978.321991

Van Gelder, A., Ross, K. A., Schlipf, J. S., 1991. The well-founded semantics
for general logic programs. J. ACM 38 (3), 620–650.
URL http://dx.doi.org/10.1145/116825.116838

van Harmelen, F., Lifschitz, V., Porter, B., 2007. Handbook of Knowledge
Representation. Elsevier Science, San Diego, USA.
URL https://www.elsevier.com/books/handbook-of-knowledge-representation/
van-harmelen/978-0-444-52211-5

Vardi, M. Y., 1986. Querying logical databases. Journal of Computer and
System Sciences 33 (2), 142 – 160.
URL http://www.sciencedirect.com/science/article/pii/
0022000086900164

http://dx.doi.org/10.1016/j.artint.2013.09.004
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7917
http://ijcai.org/papers09/Papers/IJCAI09-160.pdf
http://dx.doi.org/10.1016/j.artint.2010.04.010
http://dx.doi.org/10.1007/s10472-007-9049-2
http://dx.doi.org/10.1145/321978.321991
http://dx.doi.org/10.1145/116825.116838
https://www.elsevier.com/books/handbook-of-knowledge-representation/van-harmelen/978-0-444-52211-5
https://www.elsevier.com/books/handbook-of-knowledge-representation/van-harmelen/978-0-444-52211-5
http://www.sciencedirect.com/science/article/pii/0022000086900164
http://www.sciencedirect.com/science/article/pii/0022000086900164

124 BIBLIOGRAPHY

Vennekens, J., Gilis, D., Denecker, M., 2006. Splitting an operator: Algebraic
modularity results for logics with fixpoint semantics. ACM Trans. Comput.
Log. 7 (4), 765–797.
URL http://dx.doi.org/10.1145/1182613.1189735

Vennekens, J., Gilis, D., Denecker, M., Jan. 2007. Erratum to splitting an
operator: Algebraic modularity results for logics with fixpoint semantics (vol
7, pg 765, 2006).
URL https://lirias.kuleuven.be/handle/123456789/124415

Verheij, B., 1996. Two approaches to dialectical argumentation: Admissible sets
and argumentation stages. In: In Proceedings of the biannual International
Conference on Formal and Applied Practical Reasoning (FAPR) workshop.
Universiteit, pp. 357–368.

Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P., 2009. SPASS version 3.5. In: Schmidt, R. A. (Ed.), CADE. Vol. 5663 of
LNCS. Springer, pp. 140–145.
URL http://dx.doi.org/10.1007/978-3-642-02959-2_10

Wittocx, J., Denecker, M., Bruynooghe, M., Aug. 2013. Constraint propagation
for first-order logic and inductive definitions. ACM Trans. Comput. Logic
14 (3), 17:1–17:45.
URL http://doi.acm.org/10.1145/2499937.2499938

You, J., Yuan, L., 1990. Three-valued formalization of logic programming: Is it
needed? In: (PODS, 1990), pp. 172–182.
URL http://doi.acm.org/10.1145/298514.298559

http://dx.doi.org/10.1145/1182613.1189735
https://lirias.kuleuven.be/handle/123456789/124415
http://dx.doi.org/10.1007/978-3-642-02959-2_10
http://doi.acm.org/10.1145/2499937.2499938
http://doi.acm.org/10.1145/298514.298559

Curriculum Vitae

Bart Bogaerts studied mathematics at the University of Leuven (KU Leuven),
Belgium. His master thesis was titled “Unieke factorisatie in reguliere lokale
ringen” (Unique factorisation in regular local rings) and was supervised by
dr. Jan Schepers. He graduated summa cum laude in July 2011.

In September 2011, he joined the DTAI (Declaratieve Talen en Artificiële
Intelligentie, Declarative Languages and Artificial Intelligence) research group of
the Department of Computer Science of the KU Leuven to investigate knowledge
representation and reasoning techniques, supervised by prof. dr. Marc Denecker.
As his research interests evolved, prof. dr. Joost Vennekens and prof. dr. Jan
Van den Bussche became his co-supervisors.

125

List of Publications

A complete and up-to-date list of publications can be found at http://www.cs.
kuleuven.be/publicaties/lirias/mypubs.php?unum=U0078511.

Journal and Book Articles

• M. Denecker, B. Bogaerts, J. Vennekens. “The well-founded semantics
is the principle of inductive definition: A study from first principles”.
Submitted to: Journal of the ACM.

• B. Bogaerts, J. Jansen, B. De Cat, G. Janssens, M. Bruynooghe and M.
Denecker. “Bootstrapping inference in the IDP knowledge base system”.
Submitted to: New Generation Computing.

• B. Bogaerts, J. Vennekens and M. Denecker. “Grounded fixpoints and
their applications in knowledge representation”. Artificial Intelligence,
volume 224, pages 51–71, 2015.

• B. De Cat, B. Bogaerts, M. Bruynooghe and M. Denecker. “Predicate
logic as a modeling language: the IDP3 system”. To be published in: M.
Kifer and A. Liu, “Declarative Logic Programming: Theory, Systems, and
Applications”.

• M. Bruynooghe, H. Blockeel, B. Bogaerts, B. De Cat, S. De Pooter, J.
Jansen, A. Labarre, J. Ramon, M. Denecker and S. Verwer. “Predicate
logic as a modeling language: Modeling and solving some machine learning
and data mining problems with IDP3”. To be published in: Theory and
Practice of Logic Programming.

• B. Bogaerts, B. De Cat, J. Jansen, M. Bruynooghe, B. De Cat, J.
Vennekens and M. Denecker. “Simulating dynamic systems using linear

127

http://www.cs.kuleuven.be/publicaties/lirias/mypubs.php?unum=U0078511
http://www.cs.kuleuven.be/publicaties/lirias/mypubs.php?unum=U0078511

128 LIST OF PUBLICATIONS

time calculus theories”. In: Theory and Practice of Logic Programming,
volume 14, issue 4–5, pages 477–492, 2014.

Peer-reviewed Articles at Conferences and Work-
shops

• B. Bogaerts, G. Van den Broeck. “Knowledge compilation of logic
programs using approximation fixpoint theory”. Submitted to: Thirty-first
International Conference on Logic Programming, ICLP’15.

• B. Bogaerts, J. Vennekens and M. Denecker. “Partial grounded fixpoints”.
To be published in: Twenty-fourth International Conference on Artificial
Intelligence, IJCAI’15.

• B. Bogaerts, J. Vennekens and M. Denecker. “Grounded fixpoints”.
In: Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15,
Austin, January 25–29, 2015.

• B. Bogaerts, J. Jansen, B. De Cat, G. Janssens, M. Bruynooghe and M.
Denecker. “Meta-level representations in the IDP knowledge base system:
Towards bootstrapping inference engine development”. In: International
Workshop on Logic and Search, LaSh’14, Vienna, July 18, 2014.

• B. Bogaerts, J. Vennekens, M. Denecker and J. Van den Bussche.
“Inference in the FO(C) modelling language”. In: Twenty-first European
Conference on Artificial Intelligence, ECAI’14, Prague, August 18–22,
2014.

• B. Bogaerts, J. Vennekens, M. Denecker and J. Van den Bussche.
“Inference in the FO(C) modelling language”. In: 14th International
Workshop on Non-Monotonic Reasoning, NMR’14, Vienna, July 17–19,
2014.

• B. Bogaerts, J. Vennekens, M. Denecker and J. Van den Bussche. “FO(C)
and related modelling paradigms”. In: 14th International Workshop on
Non-Monotonic Reasoning, NMR’14, Vienna, July 17–19, 2014.

• B. Bogaerts, J. Vennekens, M. Denecker and J. Van den Bussche.
“FO(C): A knowledge representation language of causality”. In:
Technical Communications of the 30th International Conference on Logic
Programming, ICLP’14, Vienna, July 19–22, 2014.

LIST OF PUBLICATIONS 129

• J. Devriendt, B. Bogaerts and M. Bruynooghe. “BreakIDGlucose: On the
importance of row symmetry in SAT”. In: Fourth International Workshop
on the Cross–Fertilization Between CSP and SAT, CSPSAT’14, Vienna,
July 18, 2014.

• B. De Cat, B. Bogaerts, M. Denecker and J. Devriendt. “Model expansion
in the presence of function symbols using constraint programming”. In:
25th IEEE International Conference on Tools For Artificial Intelligence,
ICTAI’13, Washington D.C., November 4–6, 2013.

• P. Van Hertum, J. Vennekens, B. Bogaerts, J. Devriendt and M. Denecker.
“The effects of buying a new car: An extension of the IDP knowledge
base system”. In: Technical Communications of the 29th International
Conference on Logic Programming, ICLP’13, Istanbul, August 24–29,
2013.

• T. Andrews, H. Blockeel, B. Bogaerts, M. Bruynooghe, M. Denecker, S. De
Pooter, C. Macé and J. Ramon. “Analyzing manuscript traditions using
constraint-based data mining”. In: Proceedings of the First Workshop on
Combining Constraint Solving with Mining and Learning, Montpellier,
France, August 27, 2012

• H. Blockeel, B. Bogaerts, M. Bruynooghe, B. De Cat, S. De Pooter, M.
Denecker, A. Labarre, J. Ramon, S. Verwer. “Modeling machine learning
and data mining problems with FO(·)”. In: Technical Communications
of the 28th International Conference on Logic Programming, ICLP’12,
Budapest, Hungary, September 4–8, 2012.

• J. Devriendt, B. Bogaerts, C. Mears, B. De Cat and M. Denecker.
“Symmetry propagation: Improved dynamic symmetry breaking in
SAT”. In: 24th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI’12, Athens, Greece, November 7–9, 2012.

Peer-reviewed Abstracts

• J. Devriendt, B. Bogaerts, C. Mears, B. De Cat and M. Denecker.
“Symmetry propagation: Improved dynamic symmetry breaking in SAT”.
In: SymCon, Quebec City, October 6–8, 2012.

130 LIST OF PUBLICATIONS

Papers, Posters and Presentations at Miscellaneous
Events

• B. De Cat, B. Bogaerts, M. Denecker. “MiniSAT(ID) for satisfiability
checking and constraint solving”. In: ALP Newsletter, September 2014

• B. De Cat, M. Denecker, P. Stuckey, B. Bogaerts. “Lazy model expansion:
Interleaving grounding with search”. Invited talk at International
Workshop on Logic and Search (LaSh), 2014.

• B. Bogaerts. “Towards a knowledge base system for second order logics”.
Poster at 13th International Conference on Principles of Knowledge
Representation and Reasoning (KR), 2012.

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

SCIENTIFIC COMPUTING GROUP
Celestijnenlaan 200A

B-3001 Heverlee
bart.bogaerts@cs.kuleuven.be

https://people.cs.kuleuven.be/bart.bogaerts

	Abstract
	Acronyms
	List of Symbols
	Contents
	Introduction
	Knowledge Representation and Reasoning
	Contributions to Knowledge Representation and Reasoning
	Non-Monotonic Reasoning
	Approximation Fixpoint Theory
	Groundedness
	Contributions to Approximation Fixpoint Theory

	Preliminaries
	Lattices and Operators
	Approximation Fixpoint Theory
	Logic Programming

	Grounded fixpoints and their applications in knowledge representation
	Introduction
	Grounded Fixpoints
	Grounded Fixpoints and Approximation Fixpoint Theory
	Logic Programs
	Discussion

	Argumentation Frameworks and Abstract Dialectical Frameworks
	Abstract Argumentation Frameworks
	Abstract Dialectical Frameworks
	Discussion

	Autoepistemic and Default Theories
	Groundedness of the AFT family of semantics for AEL
	Default logic

	Conclusion

	Partial Grounded Fixpoints
	Introduction
	Partial Grounded Fixpoints
	Partial Grounded Fixpoints in Logic Programming
	Discussion
	Conclusion

	On Well-Founded Set-Inductions and Locally Monotone Operators
	Introduction
	Preliminaries
	Motivation
	Set-Inductions
	The Kripke-Kleene Set
	The Well-Founded Set

	Locally Monotone Operators
	Meet Equivalences
	Equivalences and Operators

	Locally Monotone Operators in Autoepistemic Logic
	Locally Monotone Operators in Logic Programming
	Related Work
	Conclusion

	Conclusion
	Contributions
	Future Directions
	Applications of Approximation Fixpoint Theory
	Extensions of Approximation Fixpoint Theory

	On Infinite Stratifications
	Comparing Equivalences
	Extended locally monotone operators

	Bibliography
	Curriculum Vitae
	List of Publications

