

Promoter: 	 Prof. Dr Koen Vanhoof
Co-promoter:	 Prof. Dr Benoit Depaire

2016 | Faculty of Business Economics

DOCTORAL DISSERTATION

A flexible compliance auditing
framework

Doctoral dissertation submitted to obtain the degree of
Doctor of Applied Economic Science, to be defended by

Nour Damer

D/2016/2451/46

”Having compliance policies but not enforcing them

maybe almost as harmful as not having them at all”

- Anonymous

I dedicate this thesis to

my family, my husband, and my beloved children

for their endless support and unconditional love

Acknowledgements

A page or two are, of course, too short to acknowledge each person who has sup-

ported me during my PhD journey. I would like to express my sincere appreciation

to everyone who, so generously, contributed to the work presented in this thesis.

This project would not have been possible without your support.

Foremost, I would like to express my sincere gratitude to my promoter Prof.

Dr. Koen Vanhoof. Thank you for supporting me and my research since the first

day I started my life in Belgium. You have been a tremendous mentor for me.

Your patience, motivation, and immense knowledge helped me all the time. You

learned me how to deal with very complicated problems and simplify them as much

as possible to be solved easily. You encouraged me to think more independently

about my research.

I would also like to express my very great appreciation to my co-promoter Prof.

Dr. Benoit Depaire. Your endless guidance inspired me in the most important mo-

ments of making right decisions and had significantly contributed to my research.

Thank you for the fruitful discussions which used to end up with new research chal-

lenges. Thank you for trusting me and believing in me. I will never forget your

opened door, smiley face, and willingness to give me time so generously.

I would also like to extend my thanks to Prof. Dr. Mieke Jans for the nice

experience I had with you while doing my PhD. Your continuous support was always

helpful. Besides, I would like to thank my PhD committee: Prof. Mario Cools, Dr.

George Sammour and Dr. Maikel Leon Espinosa for their insightful comments and

constructive suggestions. Without your feedback, this research would not have

been reached this stage.

Profound gratitude goes to Naser Damer for his contribution in analyzing the

clustering results and Hasan Al_Hamash for his support in developing the tool.

I wish to acknowledge Hasselt University and Princess Sumaya University for

Technology for giving me the opportunity to do my PhD. The help provided by the

iii

staff of the two universities was always supportive.

The PhD path is never straight forward, it is full of obstacles and hard moments.

I could not handle these moments without the support of my wonderful friends.

An, simply, no words can describe my gratitude thanks. Since we first met, I

knew that you will be a great friend forever. Jo, thank you for the nice moments

we spent together inside and outside Belgium. Working with you was a very nice

experience for me. Qiong, thank you for all the fun we had together. Lotte, thank

you for being such a great friend. Watching you while you are working at office

was enough to encourage me to work harder. Asma, thank you for all forms of

support whether it was directly or indirectly. I promise to do my best to achieve

our shared dream. Samaneh, Aida and Reza thank you for being nice friends

on whom I can count. I will never forget the many wonderful lunches and fun

activities we had together. Dalia, thank you for the nights we spent together on

skype discussing pure academic topics as well as funny kitchen voices. Thanks are

extended to all of you my friends (too many to list here but you know who you

are!). Special mention goes to Lieve, Luk, Feng, Katrien Declercq, Kristel, Marijke,

Hanne, Katrien Ramaekers, Fatima, Ghada, Arwa, Sarah for providing support and

friendship that I needed.

Amer, my soul-mate, I find it difficult to express my great appreciation because

it is so boundless. Thank you very much deep from my heart. You have been a

great supporter with unconditional love during my good and bad times. Although

the last year was very difficult for both of us, you were always beside me to encour-

age me and provide any form of support you can provide. Literally, this work would

not have been completed without your support! There are no words to convey how

much I love you. You are my everything.

Mom, the beauty of my life, do not know what to say! Thank you very much for

everything. Thank you for dedicating your life to make us happy, for providing un-

conditional love and care, for leading us towards our goals. Actually, no words can

describe my gratitude thanks. You are an amazing mother and a unique person.

Sister and brother, thank you for everything. Thank you for taking responsibili-

ties which were not yours. Thank you for spending the nights awake with me just

to encourage me. Hanin, you are not just a sister but a companion, a friend, a

confidant for life. Thank you for taking care of Maria and preparing the suitable

situation for me to work when there was a deadline. Sameer, my strong support

system, thank you for hiding your very busy schedule just to let me ask you com-

fortably when I used to have a latex issue or a problem in the MATLAB code. My

great family, I am very proud that I am one of your members. You are a blessing

of God.

My father in law, God bless your soul, I was hoping that you are alive now to

share my wonderful feelings with you now. But it was not Allah fate. Thank you

for the unforgettable smile which was enough to motivate me for decades. Your

life was is a standalone school which is enough to guide any person to achieve

his/her goal. My sisters in-laws, thank you very much for supporting me spiritually

throughout writing this thesis. I used to have one family, now I have two. Laila

and Ola thank you for your endless support. You are real sisters not in law. Laila,

given the limited space I have here, I cannot list all the points that I want to thank

you for. So, I would simplify it and say thank you for every happy moment you

caused in my life since 2005 and till now. Ola, few months were enough to discover

your great personality. You used to support me at the time that you yourself needs

support more than me. I will never forget leaving your home for nights with two

children just to take care of my daughter while I am abroad defending this thesis.

Last but of course not least, I would like to thank two persons who were the

main reason behind starting and finishing this project: my hero, daddy, and my

little angle, Maria.

This project is started 21 years ago after a short discussion with my daddy God

bless his soul. I can still remember each word he said at that time: “Nour, my

dream was to go to the university, but it was impossible at my time. I had to leave

the school early to work and make money to live. My dream now is to see one

of you, my children, a professor at the University. If you like the idea then make

sure that I will support you endlessly!”. Four years later, he passed away before I

even continued my school study. Since that time, my career path has been drawn.

Daddy, I can say now that your dream is achieved, thanks Allah. I wish you are

here today to watch me putting the final touch on my PhD thesis, the project that

you have started!

Maria, my sweet heart, I know you cannot read these lines for the moment

but I will keep your copy aside until you are old enough to read. My daughter,

thank you for being a part of my life. I had a very difficult time before your birth.

It was difficult to the extent that I was asking myself why did I start and shall I

continue? I almost lost any type of motivation to proceed. However, your birth has

changed everything in my life. It was a turning point to remember the old Nour

who was fully motivated, working days and nights. Your bright little smile was

enough to give me a huge batch of enthusiasm to work more and more. I promise

you to spend more time together from now on playing, laughing, and waiting for

our new family member. I wish you my children a happy life full of love, care, and

achievement and I would end with my grand-father words: “we will support you

endlessly!”

Every end is a new beginning

Nour Damer

20/6/2016

Contents

List of Figures ix

List of Tables ix

List of Abbreviations xiii

Abstract xv

1 Introduction 1

1.1 Categories of compliance requirements 2

1.2 Compliance checking approaches . 3

1.3 Compliance checking, conformance checking and compliance auditing 5

1.4 Motivation . 6

1.5 Research question . 7

1.6 Scope of this research . 8

1.7 Main contributions . 8

1.8 Thesis structure . 9

2 Literature Review 11

2.1 Compliance auditing . 11

2.2 Fitness measurement . 18

2.2.1 The Procurement Process . 19

2.2.2 Alignment-based techniques 20

2.2.3 Replaying-based techniques . 29

2.2.4 Constraint-based techniques 37

2.2.5 A comparison between existing fitness measure 37

2.3 Process modeling languages . 40

2.4 Conclusion . 44

vii

3 Business Process Modeling for Compliance Auditing 47

3.1 Declarative process modeling languages 47

3.1.1 Formal Contract Logic (FCL) . 50

3.1.2 Linear Temporal Logic (LTL) . 53

3.2 A comparison between FCL and LTL 55

3.3 BRCA language . 58

3.4 Conclusion . 70

4 Flexible Compliance Auditing Framework 73

4.1 The flexible compliance auditing framework 74

4.2 Fitness measurement technique . 76

4.3 Aggregation functions . 80

4.3.1 Cell fitness metric . 84

4.3.2 Case fitness metric . 88

4.3.3 Rule fitness metric . 90

4.3.4 Process fitness metric . 91

4.4 Example . 92

4.5 Conclusion . 96

5 The Loan Approval Process: A Synthesized Data Set 97

5.1 Generating the log file and defining the business rules 97

5.2 Result analysis . 101

5.2.1 The process level fitness degree 101

5.2.2 Rule level fitness degree . 102

5.2.3 Case level fitness degree . 105

5.2.4 Cell level fitness degree . 108

5.3 Conclusion . 110

6 The Procurement Process: A Real Life Data Set 113

6.1 Process level fitness degree . 115

6.2 Rule level fitness degrees . 118

6.3 Case level fitness degree . 122

6.4 Cell level fitness degree . 122

6.5 Conclusion . 123

7 Clustering Based Compliance Checking Approach 125

7.1 Clustering in process mining . 126

7.2 Clustering based compliance checking approach 127

7.2.1 Clustering the log file . 128

7.2.2 Measuring compliance . 129

7.2.3 Profiling the clusters . 132

7.3 Results discussion . 135

7.4 Conclusion . 137

8 BRCA Tool 139

9 Conclusion and Future Work 145

Appendix: The Syntax of BRCA Language 149

List of Figures

2.1 The procurement process in BPMN . 19

2.2 The procurement process in Petri net 30

3.1 An example for a log file . 59

4.1 Flexible Compliance Auditing Framework 74

4.2 Applying aggregation to measure fitness degrees 79

4.3 OWA weights for special cases . 85

5.1 Loan approval process model using the BPMN notations 98

6.1 The procurement process Petri net 117

6.2 The distribution of cases throughput time 120

7.1 The distribution of document types over the six clusters 133

7.2 The distribution of purchasing groups over the six clusters 134

7.3 The distribution of PO values over the six clusters 135

7.4 The distribution of PO creators over the six clusters 136

8.1 The main screen of the BRCA tool . 140

8.2 List of predefined business rules . 140

8.3 Tuning parameters according to the selected rule 141

8.4 Selecting the suitable aggregation operator 142

8.5 Assigning weights to WAM operator to measure the cases fitness degrees143

8.6 Fitness matrix . 144

xi

List of Tables

2.1 The traces recorded in the log file and their frequencies 20

2.2 A comparison between the fitness metrics introduced in the literature 40

2.3 A comparison between imperative languages and declarative languages

with respect to the predefined requirements 45

3.1 Most Frequent Compliance Requirements 57

3.2 Relational operators in BRCA language 61

3.3 Logical operators in BRCA language 62

4.1 Fitness matrix given a log file of C cases and a BRCA model of R rules 75

4.2 The business rules representing the compliance requirements 93

4.3 Originators and modification values required to check the fitness . . . 94

4.4 Fitness matrix for scenario A . 94

4.5 Fitness degrees at the case level for the scenario B 95

5.1 Attributes defined for the loan approval log file 100

5.2 The fitness degree at the process level 102

5.3 Rules fitness degrees: statistical information 103

5.4 Rules fitness degrees using the different aggregation operators 104

5.5 The case fitness degrees for some selected cases 107

5.6 The effect of the operator used at the cell level on the fitness degrees

for their corresponding cases . 110

6.1 The process fitness degree . 116

6.2 The fitness degree of the business rules using the different aggrega-

tion operators . 119

7.1 The number of clusters generated at each run time to determine the

best value for k . 129

xiii

7.2 Fitness degrees of the generated clusters and the original log 130

7.3 The fitness degrees of each cluster against each of the nine rules . . . 131

7.4 Fitness degrees of each cluster against rules 6, 7, 9 and the original

log file . 131

7.5 Summary of profiling results . 136

List of Abbreviations

AM Arithmetic Mean

BCL Business Contract Language

BPMN Business Process Modeling Notations

BRCA Business Rules Compliance Auditing

CTD Contrary To Duty

CTL Computational Tree Logic

FCL Formal Contract Language

HR Human Resources

ILP Integer Linear Program

LTL Linear Temporal Logic

PCL Process Compliance Language

PI Process Instance

PO Purchase Order

SOD Segregation Of Duties

SOX Sarbanes OXley Act

UML Unified Modeling Language

WAM Weighted Arithmetic Mean

xv

Abstract

Compliance auditing techniques are of high importance for process managers.

They provide quantitative metrics to measure to which extent the executed pro-

cesses are in accordance with the process model. The result is used later as an

input to evaluate the organizational performance. Existing techniques, provide one

fitness degree regardless of the context in which the fitness degree is measured.

Important factors such as the flexibility of execution and the different interpreta-

tion for a compliant process have been underestimated in the literature.

In this work we present a Flexible Compliance Auditing Framework to sup-

port the business world with more applicable metrics. The developed framework

provides different semantics for a compliant process. The fitness metrics can be

customized according to the process analyst needs. In addition, we introduce the

so-called BRCA process modeling language to represent the compliance require-

ments. The developed framework is implemented and evaluated by means of both

a synthesized data set and a real data set. Results show the importance of pro-

viding different semantics to measure the fitness degree.

xvii

Chapter 1

Introduction

Organizations operate by executing a set of prescribed processes to achieve their

goals. Once a new organization is established, the set of required processes are

defined. The processes are defined according to the need of the organization. For

instance, the loan approval process is defined in a lending organization such as

banks. However, it is not defined for a new hospital. Some processes are common

in most of the organizations such as: the procurement, recruitment and sales

processes.

When a new business process is designed, a set of constraints are defined

to control the execution of this process so we can achieve the organizational

goals. These constraints, referred to as compliance requirements, include the set

of guidelines, norms, laws, regulations, recommendations or qualities [1]. This

set is stemmed from internal sources, such as organizational policies, and/or ex-

ternal sources, such as government legislation [2]. The term process compliance

is used to describe the alignment of business processes execution against compli-

ance requirements. Hence, compliance checking can be defined as the procedure

of ensuring that business processes, operations and practice are in accordance

with the prescribed requirements [3].

Process compliance is gaining an increasingly importance in the business world

especially after the unexpected disastrous scandals such as Ernon and Worldcom

(USA), Parmalat (Italy), HIH (Australia) and Tyco International (France), to name

a few [4] . For organizations, this is considered as a two-edged sword. On the

one hand, compliance ensures the quality of their products and services and helps

them controlling their operations. On the other hand, it forms a kind of burden

since failing to comply is no longer an option [5, 6].

1

2 CHAPTER 1. INTRODUCTION

Organizations are concerned about being non-compliant because its associated

with risk such as financial penalties, scandals and loss of business reputation [7].

In its 2015 Sarbanes-Oxley Compliance Survey [8], Protiviti indicates that 58% of

large organizations spent $ million or more on Sarbanes-Oxley Act (SOX) compli-

ance costs in the most recent fiscal year and 25% of them spent more than $2

million. These percentages are after excluding the external audit fees. 54% of the

organizations have reported an increase of more than 16% in the total amount of

hours devoted to SOX compliance. 78% of the organizations has indicated that

the Internal Control over Financial Reporting (ICFR) has improved since SOX 404

has been required.

Process compliance is the concern of all parties involved in the business oper-

ation. Governments, process managers, stakeholders, internal and external au-

ditors as well as clients are all interested in compliant processes. Governments

aim at increasing the transparency of business operations and expanding the ac-

countability of responsibilities [9]. For process managers, compliance is of high

importance to protect their business from failure. It helps them obtaining quality

certificates and outperform their peers as a competitive advantage [9]. Auditors

share some objectives with process managers with more emphasize on internal

controlling [2]. As for clients, executing compliant processes helps them ensuring

the quality of the products and services they buy. The final goal is to protect the

stakeholders from fraud corruption or corporate misconduct and to safeguard the

economic system [9, 10].

1.1 Categories of compliance requirements

Compliance requirements are categorized into four main aspects: sequencing,

temporal, human resources (HR), and data objects [10–14].

• Sequencing (also called control flow) requirements focus on the order in

which activities are executed within the business process. Taking this as-

pect into account, we say that the process is compliant when its sequence of

activities complies with the required sequence. Usually procedural modeling

languages are used to model the order of execution such as Business Pro-

cess Modeling Notations (BPMN) [3, 15], Unified Modeling Language (UML)

Activity Diagrams [16] and Event-driven Process Chains [17]. Control flow

requirements show the dependency between activities such as:

1.2. COMPLIANCE CHECKING APPROACHES 3

– Activity A should be followed immediately by activity B

– Activity A should be executed before activity B is executed

– Activities A and B are executed in parallel

• The temporal aspect is concerned with temporal constraints such as dead-

lines, service level agreements, activity duration, and upper and lower bounds

for time intervals between activities [18]. This aspect is concerned with an-

swering questions about when activities should(not) occur within a business

process. Examples are:

– Activity A should be executed before executing activity B by 10 days

– Each process instance should be executed within 30 working days

• Human resources requirements are focused on the social network behind

executing the business process, i.e. the people interacting with the process,

and aim to answer the question: who will execute what? A famous example

of this type is the segregation of duties requirement.

• The data objects aspect is concerned with the data used and produced when

executing the business processes. Data objects flow between the process

activities which can modify their values. This includes both the syntax and

semantics of the data. For instance, in the procurement process the require-

ment: Activity C should be executed if the PO value is greater than 20,000

is a data object requirement. In addition requirements related to recording,

viewing and accessing data are also included in this category. Examples are:

how long should the recorded data be kept? what type of information should

be included in the data object? who can access this data? etc. [19–21].

In addition to the above mentioned categories, there is a compound one. A com-

pound requirement is the one in which more than one type of requirements are

involved. For instance, ”activity A should be followed by activity B within 5 work-

ing days” is an example of a compound requirement of two types: sequencing and

temporal. Another example is: activity A should be executed by person P if the

value of data(x) is greater than 100.

1.2 Compliance checking approaches

The compliance of a business process can be checked at one of three phases of

the business process lifecycle: design-time, run-time and after execution [14].

4 CHAPTER 1. INTRODUCTION

Compliance checking during the design time aims at checking whether the pro-

cess design is in accordance with the predefined requirements. The output of this

phase is a process model holding the compliance requirements. Process models

are expressed by means of a process modeling language such as Petri net, BPMN,

Linear Temporal Logic (LTL) business rules, etc. Design time compliance checking

is important to check the compliance at the next two phases i.e. run time and after

execution, because its output is used as input there. Actually, if the process is not

designed well to capture the compliance requirements then no point of auditing

the process execution.

Once the process is designed, it can be executed. The execution of each process

instance is monitored to ensure that it is being executed according to the process

design model. This procedure is referred to as run time compliance checking as

it takes place during the run time. Compliance checking at run time can be seen

as a preventative technique. We say that a process instance is compliant when

its behavior matches the process model. Otherwise, the process manager needs

to react to correct the situation and conform with the process design again (if

possible). However, in some cases, the deviation between the two sides reveals

a problem in the design model which needs to be resolved before executing new

process instances. This is the focus of process re-engineering field which is out of

the scope of this research.

After execution, compliance checking techniques are used to detect deviations

of executed processes from the process design. In the literature, compliance

checking after the fact is called compliance auditing [10]. Compliance auditing,

which is the focus of this research, is the procedure of checking that executed

processes are in accordance with the process design. In general, compliance au-

diting techniques are based on comparing two parties: the desired behavior and

the actual behavior. The desired behavior is what should have done. Normally, the

process design model is the used to represent the desired behavior. On the other

hand, the actual behavior is what was really done. This is the information recorded

about the executed process instances. In automated systems this information is

recorded automatically in a log file. The comparison between the two parties is

conducted with respect to the process design.

In the literature, different approaches are presented to check the process com-

pliance. Before 2010, the lion share of compliance checking research has been

devoted to design time and then run time approaches [14]. Just recently, after

the emergence of the process mining field, compliance auditing becomes increas-

1.3. COMPLIANCE CHECKING, CONFORMANCE CHECKING AND COMPLIANCE AUDITING5

ingly important. Most of the work presented in the literature are focus on process

compliance at one of the phases of the process lifecycle. The rest allow checking

the compliance at more than one phase such as [13, 22].

This research is devoted to compliance auditing. Design time and run time com-

pliance checking are out of the scope of this research. Readers who are interested

in design-time compliance checking may refer to [3, 11, 15, 16, 23–34]. Readers

who are interested in run time compliance checking may refer to [2, 35–39].

1.3 Compliance checking, conformance checking

and compliance auditing

The terms: compliance checking, conformance checking and compliance auditing

are used in the literature interchangeably. In this section, we explain the term con-

formance checking and then describe the relation between the three terms [40].

Conformance checking is a subfield of process mining describing the procedure of

checking the conformity between a set of executed process instances and a pro-

cess model. The procedure is executed from two perspectives: the log and the

model. Thus, conformance checking techniques can be used for compliance audit-

ing as well as process discovery. If the conformance checking technique is used

to measure the conformity between a set of executed processes and a process

design then it is compliance auditing. That being the case, the conformance is

checked with respect to the model, i.e. it is assumed that the process model is

correct and that the recorded cases should have been executed according to that

model. In contrast, if the conformance checking technique is used to measure

the conformity between the mined model and the log file used to generate it then

it supports process discovery techniques. In the latter case, the conformance is

checked with respect to the log, i.e. the log is assumed to be correct. The result

is used to evaluate to which extent the mined model could represent the actual

behavior. The usage of conformance checking for process discovery purposes is

out of the scope of this research.

Compliance auditing is a special case of conformance checking in which the

process model used is the process design model. However, compliance auditing is

also a special case of compliance checking in which the compliance is checked after

the fact. To conclude, the relation between the these three terms can be summa-

rized as follows: compliance auditing is at the intersection between compliance

checking and conformance checking.

6 CHAPTER 1. INTRODUCTION

1.4 Motivation

Compliance auditing techniques are of high importance for process managers. It

can help them analyzing the performance of their executed processes. The result

is a good indicator to evaluate the organizational performance.

Existing techniques provide quantitative metrics which measure to which extent

the executed processes are in accordance with a process model. This is usually

referred to as the fitness degree of the executed processes. Given the same input,

i.e. the process model and the log file, existing metrics produce one fitness degree.

However, in practice, some important factors should be considered when measur-

ing the fitness degree such as: the process manager perspective, the ability to

consider all requirements, and the flexibility of executing the process under in-

vestigation. Accordingly, the output of such metrics can be interpreted differently.

Although existing techniques provide some metrics to evaluate the compliance de-

gree. However, none of them consider such important factors when measuring the

fitness degree.

Starting with the process manager perspective, we believe that each process

manager has his/her own clue. What is considered as compliant from one man-

ager perspective can be seen as non-compliant from another manager perspective.

For instance, a process instance, from one perspective, is considered compliant if

all compliance requirements are applied. Whereas, from another perspective, the

same process instance is considered compliant if some of the requirements are ap-

plied. In simple words, existing techniques cannot be customized enough to meet

the process mangers needs and match their semantics of a compliant process.

Moreover, in the business world, some requirements are more important than

others. For instance, in the procurement process, it is more important to have the

purchasing order signed by the correct person than to check whether the process

instance is initiated by a trigger. The cost of violating the first requirement is higher

than that of the later requirement. Although this point is considered in the earliest

work in the field of compliance auditing [41], it is discarded in the majority of the

related work later on.

The flexibility of executing the process under investigation is yet another is-

sue [42]. Business processes have different natures. Some processes should be

executed very strictly. However, these are the minority. In reality, business tends

to be more flexible [43]. Business men are interested in achieving their goals

rather than the way it is reached. Actually, the aim of defining and executing the

business processes is to achieve these goals. Most of the existing techniques do not

1.5. RESEARCH QUESTION 7

consider flexibility when checking the compliance. And even when it is considered,

it is not treated well!

Flexibility and compliance are conflicting terms. Thus, it is not easy to handle

both of them at the same time. Existing techniques in which flexibility is considered

could handle the problem of representing more compliant ways to execute the

process [44–47]. However, none of them consider flexibility when measuring the

degree of compliance between the process model and the log file. We believe that

the compliance degree between a log file and a process model should be calculated

with respect to the flexibility of execution. One metric is not enough to measure

the compliance of all types of business processes.

When compliance auditing, the executed processes are checked against the set

of compliance requirements which are defined at the design time. As we mentioned

earlier, a process design model is used to hold the compliance requirements. Thus,

the ability of the design model to represent all types of compliance requirements

are important. If the model cannot hold all pre-defined requirements, then the

compliance checking result is not accurate enough to measure the compliance

degree. Although this issue should be solved at the design time, it is not always

the case. In addition, existing techniques lack the ability to check the compliance

at different levels. This feature can help process managers getting insights and

reveal common characteristics between non-compliant cases. So that, to avoid

the problem in the future and improve the process.

The main contribution of this work is to provide a flexible compliance auditing

framework which overcomes the previous drawbacks of existing techniques and

that can be applied in the business context.

1.5 Research question

The main research question of this thesis is: ”How should the existing research on

compliance measures be extended to produce true business value when applied

in a business context?”. To answer this question, we define the following sub-

questions:

1. What are the drawbacks of the existing compliance auditing techniques?

2. What are the metrics used in the literature to measure the compliance degree

of executed process instances with respect to a normative model? How can

we improve these metrics taking into consideration the flexibility issue?

8 CHAPTER 1. INTRODUCTION

3. What is the most suitable process modeling language that can be used to

capture compliance requirements for the purpose of compliance auditing? Is

there a need to develop one?

4. How can we apply clustering techniques to provide diagnostic information for

compliance auditing?

1.6 Scope of this research

1. This research is focus on checking the compliance after the fact. Thus we

assume that the process instances to be checked are completed. Process

instances which are initiated but not completed are not considered here since

they are still at the run time.

2. Design time compliance checking is out of the scope of this research. Hence,

we assume that the process design is correct and that it is in accordance

with the predefined compliance requirements. However, the capabilities of

the process modeling languages in expressing the compliance requirements

are taken into consideration.

3. The log file is assumed to be correct as well. Problems related to logging

data such as incompleteness and incorrect recording are not considered.

1.7 Main contributions

1. A flexible compliance auditing framework which keeps a balance between

flexible execution and compliant processes

2. A new fitness measurement approach based on aggregation. The approach

provides different semantics taking into consideration the different interpre-

tation for a compliant process. In addition it can be used to measure the

fitness degree at different levels of abstraction

3. A new declarative process modeling language called BRCA used to hold all

types of compliance requirements. The language is provided with a graphical

user interface. Thus, it can be used easily by non-experts.

4. A new compliance auditing approach based on clustering which can be used

to provide diagnostic information.

1.8. THESIS STRUCTURE 9

5. Introduce the concept of a ”cannot be checked” compliance requirement to

the compliance auditing field and show the importance of considering these

cases as neither compliance nor non-compliant.

1.8 Thesis structure

The rest of the thesis is organized as follows. The literature review is discussed in

Chapter 2. First the state of the art in the field of compliance auditing is discussed.

Next, exiting fitness metrics are studied in details. Each metric is evaluated against

the requirements defined in this research. Finally, the two main big families of

process modeling languages are discussed and then compared to make a decision

about which one is more suitable for compliance auditing.

Chapter 3 is focus on the process modeling language used to represent the

compliance requirements. Declarative languages are discussed first. Later, the

FCL and LTL languages are chosen as representatives for their logic families. The

two languages are evaluated with respect to some predefined requirements. Ac-

cordingly, we introduce our new declarative process modeling language which we

call the BRCA language.

The flexible compliance auditing framework is presented in Chapter 4. The

chapter discusses the framework components and the interaction between them.

In addition, it covers the fitness measurement technique used in the framework

and the aggregation operators defined with their semantics.

To evaluate the proposed technique, two data logs are used: a synthesized log

file and a real life data set. The results of the synthesized log file is presented in

Chapter 5 and the real life case study results are presented in Chapter 6.

In Chapter 7 we introduce the clustering based approach for compliance audit-

ing and show how clustering can be a good option to provide diagnostic informa-

tion. The algorithm used to cluster the log file in addition to the steps defined in

the proposed approach are explained.

The implemented tool called BRCA is described in Chapter 8.

Finally, the conclusion of this research in addition to some recommendations

are presented in Chapter 9.

Chapter 2

Literature Review

This chapter is dedicated for the literature review. It is divided into three main sec-

tions. In section 1 the compliance auditing techniques presented in the literature

are discussed. Section 2 is dedicated for fitness measurement. The fitness metrics

introduced in the literature are studied in details and then evaluated with respect

to some predefined factors. The process modeling languages are discussed in sec-

tion 3. There we conduct a comparison between the two main families of modeling

languages: procedural and declarative, to make a decision about which one should

be used in this research.

2.1 Compliance auditing

In this section we discuss the state of the art in compliance auditing field and the

related work presented in the literature.

The work of Cook and Wolf [41] was among the first to check the compli-

ance between the behavior of a real-time system and the expected behavior. The

idea is to compare an event stream derived from the design model with an event

stream recorded in the execution log file. When running the method, the executed

traces are transformed to match the expected event streams by means of insert-

ing required events and/or deleting additional events. The number of inserted and

deleted events needed to obtain a match to the model is used to measure the

distance between both sides taking into consideration the length of the trace. The

method provides the ability to assign weights in order to differentiate between the

relative importance of different events. In [48] the work is extended to include

time aspects where a timed concurrent model is used. This work is the base to

11

12 CHAPTER 2. LITERATURE REVIEW

the alignment based techniques presented later. However, it has some limitations.

First, the technique does not provide an overall fitness metric, i.e a fitness degree

representing the fitness degree of the entire process. In addition, it cannot be

used to check all types of requirements.

In the field of process mining, the work of van der Aalst [49] is one of earliest

work for compliance auditing. The author identifies the Delta analysis approach

to audit the compliance of a set of executed process instances. The analysis is

based on comparing the design model with the actual behavioral model which is

obtained through model discovery techniques such as Heuristics Miner [50] and

Genetic Miner [51]. Delta analysis can be used when there is an actual behavior

model but not a log file. For instance, when the log file used to generate the model

does not exist anymore or when the process manager does not want to provide

the data itself, therefore he compensates this by providing a behavioral model that

can be used for the analysis. However, the technique does not provide a quantita-

tive compliance measure. Moreover, the result of analysis depends on the actual

behavioral model which is derived from the event log. Hence, the results could be

misleading if the derived model does not represent the actual behavior appropri-

ately. Notice here that the models extracted from the same dataset depends on

discovery algorithm used and the tuning parameters defined. To overcome these

issues, the authors extended their work in [52] to include the conformance test-

ing approach. Conformance testing is based on comparing the recorded process

instances directly with the design model. In addition, it provides a quantitative

compliance measure and can locate the deviation. The concept of conformance

testing is used in terms of security in [45]. The authors use the α algorithm to

derive a perspective model from acceptable audit trials. The output of this step

is a workflow net representing the sequence of activities within the process. The

authors discusses the detection of anomalous process executions in the mined pro-

cess model by means of the ”token game”. In a next step, the mined model is used

as a reference to check the compliance of new audit trials. The approach considers

the different security levels ranging from low-level intrusion detection to high-level

fraud prevention. However, since it is based on replaying tokens, it suffers from

the overestimation problem.

Conformance testing can be seen as an introduction to the conformance check-

ing technique introduced by Rozinat et al. in 2008 [53]. Conformance checking

is one of the earliest and most cited work on compliance auditing. The approach,

which is based on replaying tokens, can be used to quantify the degree of confor-

2.1. COMPLIANCE AUDITING 13

mity between an event log and a Petri net representing the process model. The

approach provides quantitative metric to measure the degree of conformity be-

tween an event log and a process model. Recorded cases are replayed on the Petri

net. The fitness degree is defined to measure the conformity of the cases recorded

in the log file with respect to a Petri net model. It is calculated by counting the

number of missing and remaining tokens while the cases are replayed. We say that

the log file and a process model completely fit (100%) if the model can generate

all cases recorded in the log file. To measure the fitness of a log file, each recorded

case is replayed in the model in a non-blocking way. This means that if there are

missing tokens to fire a transition, this is detected as a location of non-compliant.

In this case, missing tokens are created artificially to proceed running the replay

algorithm. The approach has the advantage of locating deviations. However, since

the technique is based on a replaying algorithm, the fitness degree tends to be

overestimated. Moreover, it can be used to check all types of compliance require-

ments. This is because the normative process is represented by means of a basic

Petri net model. Petri nets can represent sequencing requirements but they cannot

represent the other three types of requirements.

An approach based on database technology is presented in [35] to automate

compliance auditing with Sarbanes-Oxley internal controls [54]. It consists of four

main components: workflow modeling, active enforcement, workflow auditing and

anomaly detection. The authors provide two types of workflow auditing: compli-

ance verification and query-based auditing. To verify the compliance, actual work-

flows are compared against the required workflow which represents the expected

behavior. In the proposed approach, the required workflow holds the compliance

requirements. Any deviation is detected as a control violation. This is similar to

the Delta analysis approach proposed in [49]. As for query-based auditing, the

auditor can express the violation as a query that can be checked for occurrence

in the activity log. To detect anomalies the authors use a discovery-driven OLAP

analysis.

In [7], a semi-automatic approach is presented to check the compliance of

the so-called unmanaged processes. Unmanaged processes are processes which

are executed with the absence of an execution engine. The approach is based

on the business provenance technology introduced in [55] which aims to trace

end-to-end business operations. The authors argue that a combination of both

traditional auditing techniques and automatic auditing tools can reduce the level

of non-compliant cases. It is not clear in the work how controls are represented.

14 CHAPTER 2. LITERATURE REVIEW

In [56–58], the authors introduce a conformance checking approach based on

trace alignment. The idea is closely related to the idea of Cook et al. [41, 48]. A

trace is replayed in a Petri net model by inserting and skipping activities. Skipped

activities are those which are not executed while the process model requires them

to be executed. Inserted activities are those which appear during the execution

time while the model does not allow them to be executed. The approach allows the

user to define the severity of deviation for each activity individually. Afterwards,

an instance of the Petri net that best matches the recorded trace is constructed. In

this context, an instance is a connected part of the Petri net that starts at an initial

place and does not contain choices. Later on, the A* algorithm [59] is used to find

the one with the least cost. Once the best match instance is found, the number of

inserted and skipped activities can be determined and used to measure the degree

of conformity between the log file and the process model. This technique over-

comes the problem of overestimation encountered in the token replaying based

techniques [53]. However, it cannot be used to check all types of compliance re-

quirements. In [60], the same authors introduce a similar alignment approach

based on discarding the partial alignments that are ”hopeless” so that to reduce

the memory required while finding the optimal alignments. Thus, larger logs can

be analyzed. As an extension to their previous work, the approach consider all

modeling languages for which translation to Petri nets is available.

In 2012 [61], the authors propose their technique to complement the work

in [57] by considering both data and resource requirements. The proposed tech-

nique is introduced to be independent of the process modeling language. Thus, a

causal net is used to represent the process model and extended to include data

and resource requirements [62]. An extended casual net is a graph where nodes

represent activities and arcs represent causal dependencies.

Another alignment based approach is presented in [63]. However, unlike [61]

which uses the A* with a heuristic function, this work is based on using an Integer

Linear Program (ILP) to create an optimal alignment between the event log and the

process model. The technique allows checking the different types of requirements

but cannot be used to check the compliance of one specific requirement. This

is because the process model, represented by means of a data aware Petri net,

captures the behavior of the whole process as one unit.

In [64] the authors presented a decomposed data-aware conformance checking

approach. The idea is to split the process model, which is represented by means of

a Petri net with data [65], into smaller partly overlapping model fragments using a

2.1. COMPLIANCE AUDITING 15

divide and conquer algorithm. Next, a sub-log is created for each model fragment

according to the activities used in that specific fragment. The ILP based approach

proposed in [63] is used to check the conformance of each sub-log against its

corresponding model fragment. The authors argue that this helps eliminating the

computational time required to check the conformance.

A similar approach based on partial alignments is introduced in [66]. The

authors argue that sequential traces are unable to describe concurrent events.

Hence, they propose a technique in which partially ordered traces rather than to-

tally ordered traces are used for alignment. The work is concerned with sequencing

requirements rather than the other types.

The work of Ramezani et al. [67, 68] is one of the recent work in the field. The

authors introduce a compliance checking approach based on Petri net patterns and

trace alignments. In [68] the authors categorized a set of 55 control flow rules

into 15 categories. Each rule is formalized as a Petri net pattern describing the

desired behavior. The deviation between the log file and the Petri net patterns

is measured using the cost-based fitness technique [56]. The work is extended

in [67] to include temporal requirements. For this purpose, the authors introduce

a technique to formalize temporal compliance requirements. Temporal rules are

expressed by means of a data-aware Petri nets. The work distinguish between

control flow and temporal compliance checking to the possible extent. However,

it provides diagnostic information about both control-flow and temporal violations.

Temporal requirements are checked using an alignment based compliance check-

ing technique. Later on, the data and human resources requirements are also

included [69].

In [70] the author introduces an approach for obtaining and visualizing diag-

nostics when checking the compliance of a business process. Compliance require-

ments are represented by means of Petri net attached with Data [71]. The author

considers the four types of requirements. To detect violations, the author uses

two of the existing compliance checking techniques: 1) the temporal compliance

checking technique introduced in [72] is used to check sequencing and tempo-

ral requirements, 2) the technique presented in [73] is used to check data and

HR requirements. Once the violations are detected, the cause of a specific prob-

lem (selected by the user) is determined using the C4.5 classification algorithm.

The problem of this approach is that recorded cases are first classified and then

the fitness degree is measured. However, this is not applicable if the number of

attributes is relatively high. For instance, suppose that the process manager sus-

16 CHAPTER 2. LITERATURE REVIEW

pects that attribute A could be the reason of violation and there is a thousand

unique values for A then the log file should be classified into 1000 sub-logs. In

addition, it assumes that the process manager has a hypothesis about the cause

of the deviation.

Alizadeh et al. [74, 75] work on improving the cost function used to find the

optimal alignment between a log file and a labeled Petri net [76]. Hence, only

sequencing requirements are considered. In the previous work the cost function

is defined manually according to the process analyst knowledge and experience.

However, this work propose a cost function which is defined automatically accord-

ing to some information extracted from compliant process instances. The cost

function is computed based on the probability of activities to be executed or not in

a certain state.

The authors of [77] presented a balanced multi-perspective approach. The

work can be seen as an extension to [63]. However, in contrast to [63] where

control flow is considered first and then the other types, this work allows for treat-

ing the different types equally. The approach in [63] may cause misleading results

if control-flow and the other types are closely inter-related. Hence, the authors

here provide a customized cost function to have equal contribution to the cost

degree.

In [78] an approach based on behavioral profiles is introduced. The idea is to

utilize behavioral profiles as a base line to calculate the compliance metric. The

concept of behavioral profiles relates pairs of activities according to their sequence.

Other types of compliance requirements are not considered. Behavioral profiles are

identified for both: actual behavior (log) and desired behavior (process model).

The degree of behavioral compliance is defined as a ratio of consistent behavioral

relations relative to the number of activity pairings in the log.

In [79] the authors define compliance checking as the degree to which the

behavioral process model is in accordance to a reference model. The work identifies

five models to be considered for compliance checking: the meta reference model,

adopted reference model, to-be process model, the instances of a process model

and the as-is process model. The last one is the actual behavioral model that

is derived from the event log. The behavioral model is generated by means of

a process discovery algorithm [62]. The authors argue that process models can

have different compliant structures. Thus, the authors introduce the so-called

sequence based compliance algorithm to measure the compliance degree of the

last two models (the instances of a process model and the as-is process model)

2.1. COMPLIANCE AUDITING 17

with respect to the adopted reference model.

Most of the compliance checking techniques introduced in the literature consider

a procedural process model. However, few work, focus on checking the compliance

with respect to a declarative model [44, 46, 47, 80].

The LTL checker is a process mining technique proposed in 2005 for compliance

checking [80]. Compliance requirements are expressed as Linear Temporal Logic

(LTL) formulae. Given a log file and a set of LTL rules, the technique is used to

check the compliance from two perspectives: the instances and the LTL rules.

From the instances perspective, the recorded cases in the log file are divided into

two lists. One for correct cases and one for the remaining cases. Correct cases are

those in which all rules are applied. From the LTL rules perspective, the technique

categorizes the set of LTL rules into two subsets. One for satisfied rules and one

for unsatisfied rules. A rule is considered satisfied just in case it is applied in all

recorded cases. The technique provides two simple metrics: the health degree

(for cases) and the coverage (for rules). The health degree of one specific case is

the percentage of applied rules to the total number of rules. The coverage degree

of one specific rule is the percentage of correct cases to the total number of cases

checked. LTL checker has the advantage of representing the process design by

means of a declarative language. Thus, the process can be executed in a flexible

way. The LTL logic allows the process analyst to represent the different types

of requirements. However, it assumes that all compliance requirements are of the

same importance. In addition, the technique does not provide a metric to measure

the compliance degree of the entire log file. Moreover, using the LTL checker, the

result is either 0 or 1 no matter how many times the rule is checked.

In [44], the authors develop a declarative language entitles with SCIFF and

use it to specify the business contracts. SCIFF is a declarative language based on

abductive logic programming. A contract in SCIFF is specified by means of two

components: a declarative knowledge base and a set of rules. The rules are used

to generate expectations about the behavior of the parties involved in the contract.

The events are inserted in the knowledge base as facts that happened in the past

(history). We say that we are compliant with respect to the contract when the

facts are in accordance with the generated expectations. The approach supports

the dynamic monitoring of compliance since new facts can be inserted into the

knowledge base during the procedure of compliance checking. The work is mainly

targeted at checking the compliance of executed processes with respect to a busi-

ness contract. The work is similar to an earlier work presented by [81] where the

18 CHAPTER 2. LITERATURE REVIEW

authors present an approach to check the compliance of careflow processes. First,

the careflow process is represented in the so-called GOSpeL graphical language

developed by the authors. Next, the careflow model is translated into SCIFF lan-

guage to verify the compliance of the facts, i.e. executed processes, with respect

to the model. The approach supports sequencing and temporal requirements but

does not support the other types.

In [46], de Leoni et al. introduce a conformance checking approach for declar-

ative models. The presented approach is applied to Declare, a declarative process

modeling language presented in [42]. Similar to Adriansyah work [56], this work

is an alignment based approach. However, the authors adapted the approach to

be able to deal with large search space required in case of declarative models.

The work is extended in [47] in which a framework for log preprocessing and con-

formance checking is introduced. The A* algorithm is used to find the optimal

alignment for each trace. Three use cases are considered in the work including

the conformance checking use case (the second one). The other two are cleaning

the log from traces that should not be used for further analysis and repairing the

event log to make sure essential constraints are satisfied before further analysis

is conducted.

Recently, a constraint-based approach is presented in [82] to check the con-

formance of declarative models. Declarative models are represented as constraint

satisfaction problems. The process instances are classified into two sets: compli-

ant and non-compliant. Later, a model-based fault diagnosis process is applied for

each non-compliant case to determine the problem.

2.2 Fitness measurement

Fitness metrics are defined to quantify the degree of conformity between a process

model and the executed processes. We categorize the existing fitness metrics

into three groups: alignment-based techniques, replaying-based techniques and

constraint-based techniques.

This section is devoted to study the fitness metrics introduced in the literature.

First, we start with a simple business process which will be used as an example

through out the section. Next, we study each metric separately and apply it to the

example if possible. Please notice that this section is devoted to study all metrics

introduced in the literature to measure the fitness degree between a log file and a

process model from the model perspective. At the end of the section, we conduct

2.2. FITNESS MEASUREMENT 19

a comparison between studied metrics with respect to some predefined factors.

2.2.1 The procurement process: an example

To explain the idea of the fitness metrics discussed in this section, we will use a

simple procurement process as an example throughout the chapter. The procure-

ment process is selected for two reasons. Firstly, it is one of the most common

processes in the business world. Organizations need to purchase goods and/or

services regardless of their functionalities. Secondly, we think it would be a good

introduction for the real life case study used in this research (See Chapter 7).

The procurement process is concerned with the purchase orders created in an

organization and how the procedure takes place since the purchase order is created

until the ordered products are received and the invoice is paid. In what follows,

we describe a simple procurement process and provide a corresponding log file.

The process is initiated when a new purchase order (PO) is created. Next, the

order is signed by the direct manager of the PO creator and then sent to the sup-

plier. Once the invoice and the ordered products are received, the payment activity

is executed and the process is terminated. The payment should take place within

30 days after the ordered products and the invoice are received. The sequence

of activities performed to execute the process is shown in Figure 2.1. The model

is represented by means of BPMN languages. According to the model, receiving

goods and invoice activities occur concurrently, i.e. in parallel with no preference.

The activity ’Receive goods’ can be skipped in case the ordered product is a service.

A log file corresponding to this model is shown in table 2.1. This log file is

not a real case but an example that will be used together with the process model

throughout the section. The traces can be grouped into six unique sequences. The

majority (90%) of the traces are in accordance with the sequencing requirements

represented in the BPMN model. Notice that the model represents the sequenc-

ing requirements only. However, it can be annotated to represent the other two

requirements, the temporal (payment within 30 days) and the HR (by the direct

manager) requirements. The modeling language is discussed later in chapter 3

The fourth sequence cover the pattern of missing a required activity, ’Sign’ in

this case. Conversely, sequence 6 covers the pattern of executing an additional

activity, ’GR’ in this case. Although the additional activity is one of the model

activities, its order in the log does not match that in the model. Trace 5 represents

two additional activities as well. However, one of them does not appear in the

model, i.e. ’Change order’. In all of the 38 cases, the new activity is followed by

20 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: The procurement process in BPMN

the ’Sign’ activity. Accordingly, we can assume that the order can be changed after

it is sent to the supplier. In addition, if it is changed then it needs to be signed

again. Although this does not match the model, it could be possible. Nevertheless,

these are all assumptions that needs more investigation.

Table 2.1: The traces recorded in the log file and their frequencies

Sequence of activities Frequency

1 Create PO, Sign, Send order, GR, IR, Pay 374

2 Create PO, Sign, Send order, IR, GR, Pay 290

3 Create PO, Sign, Send order, IR, Pay 236

4 Create PO, Send order, GR, IR, Pay 53

5 Create PO, Sign, Send order, Change order, Sign, GR, IR, Pay 38

6 Create PO, Sign, Send order, GR, IR, GR, Pay 9

Total 1000

2.2.2 Alignment-based techniques

These are the techniques based on aligning the recorded case on the process

model. There are mainly two techniques under in this group: the process vali-

dation and the cost-based compliance checking

Process validation

Process validation is one of the earliest techniques (1999) presented by Cook et

al. [41]. The approach is based on comparing two paths, the actual execution

2.2. FITNESS MEASUREMENT 21

path and the desired execution path. The actual execution path represents the

sequence of events for the process instance under investigation. On the other side,

the desired execution path, also referred to as the expected execution path, is the

path that holds the compliance requirements. This is derived from the designed

process model and it represents the expected behavior that we need to comply

with. Usually, the designed model represents different expected behaviors. Each

of which is represented by one execution path starting at an initial state, ending

at a final state, and contains a set of connected activities in between. However,

when a new process instance is initiated, only one of these paths is followed.

Later on, when applying the process validation technique, there are only two

results, either the executed path completely matches one of the expected paths,

which is the best, or that it does not match any of them. In the latter case, it could

be closer to one or more of the expected paths. That being the case, the technique

consider the different paths and select the lowest cost alternative. For instance, if

the executed path is
〈
’A, B, C, D, E’

〉
and there are two expected execution paths:〈

’A, B, C, D, E, F’
〉
and

〈
’A, B, D, E’

〉
then which expected path should be considered

as a desired path? The executed path can be easily converted to the first path
〈
’A,

B, C, D, E, F’
〉
by inserting an activity ’F’ after ’E’. Also, it can be converted to the

other path
〈
’A, B, D, E’

〉
by simply deleting the activity ’C’. Hence, the technique

compares the cost of inserting ’F’ with the cost of deleting ’C’ and then select the

least cost alternative.

The comparison between the two paths is conducted by means of model check-

ing techniques. The executed path is checked against the desired path. As long as

the executed path matches the desired path, the process is a straightforward pro-

cess. When a mismatch is encountered, the necessary events are inserted/deleted

to transform the executed path into the expected path. For instance, if the exe-

cuted path is:
〈
’A, B, C, C, D, F’

〉
and the expected path is:

〈
’A, B, C, D, E, F’

〉
,

then the second activity C is deleted first. Next, an activity E is inserted after the

activity D so that both sides are identical.

The determination of the least cost path is done by means of a best-first search

method. The cost of a specific path is the total cost of the insertion and deletion

operations required to convert the executed path into one of the expected paths.

The costs of inserting and deleting the different activities are assigned by the

process analyst. A matching case is considered to cost zero units. Once a mismatch

is encountered, the current lowest cost partial solution is evaluated and all its

possible continuations are generated. This generates a set of possible solutions,

22 CHAPTER 2. LITERATURE REVIEW

each of which is assigned a cost according to the insertion and deletion operations

needed to obtain this specific solution. This is repeated at each step during the

model checking procedure. The generated solutions are placed into a priority queue

and the next step is performed. Finally, the lowest-cost solution is selected as the

best one.

To determine the correspondence between the two paths, the authors consider

each path as a string where events are the characters that form this specific path.

Consequently, they could use string distance based metrics to measure the differ-

ence between the two paths. Two metrics are introduced to measure this distance:

Simple String Distance Metric (SSD) and Non-linear String Distance Metric (NSD).

To apply the SSD principle, the authors define the SSD metric to be the mini-

mum number of inserted and deleted events that are needed to convert the exe-

cuted path into the expected execution path if there is a mismatch. In this case,

inserted events are those which are required to be executed but they are missed in

the executed path. On the other hand, deleted events are events which should not

occur according to the designed model, however, they appear in the actual execu-

tion. The approach penalized inserting and deleting operations by some costs. The

insertion cost is interpreted as the cost of missing the execution of some activities.

Whereas deletion costs can be interpreted as extra work that was performed. SSD

is formulated as:

SSD =
WINI +WDND

WmaxLE
(2.1)

where:

• WI and WD: the costs (weights) of insertion and deletion operations respec-

tively.

• NI and ND: the number of insertions and deletions (respectively) that are

needed to convert the executed path into the expected path.

• Wmax: maximum of WI and WD.

• LE: the length of the executed path.

For instance, let’s find the SSD value for the fifth sequence presented in our

example (See section 2.2.1) assuming that WI = WD = 1. The trace has a problem

that can be solved by deleting two events ’Change order’ and its following event

’Sign’. This will convert it to match its closest expected trace:
〈
’Create PO’, ’Sign’,

’Send order’, ’GR’, ’IR’, ’Pay’
〉
. In this case the SSD value will be:

SSD =
1 ∗ 0 + 1 ∗ 2

1 ∗ 8
= 0.25 (2.2)

2.2. FITNESS MEASUREMENT 23

SSD value indicates the distance between the two paths. Given that the value

is bounded between [0,1], a path with zero SSD value completely fits the designed

model. Notice here that the first three traces in our example have zero SSD values

because each of which completely fits one of the three expected paths presented

in the model. The authors use a standard statistical correlation rules of thumb to

set a cutoff value. Accordingly, if SSD <0.2 then the executed path is strongly

corresponding to the expected path. Else, if SSD <0.5 then it is moderate corre-

sponding. Otherwise, it is a weak correspondence. Given that the SSD value for

trace 5 is 0.25 we can say that the trace is in the moderate correspondence range

and that it is close to the strongly corresponding range.

The SSD metric considers the cost of each insertion and deletion operation

separately. However, the authors argue that a sequence of missed activities can

be seen as a single deviation from the designed model. So that, they introduce

the NSD metric as an enhancement to the SSD. Under NSD, the unbroken series

of insertion or deletion operations, referred to as blocks, are considered as one

operation whereas the block lengths is used to calculate the NSD value.

NSD =

∑NB
I

j=1 WIf(bj) +
∑NB

D

k=1 WDf(bk)

WmaxLE
(2.3)

where the new terms over SSD are:

• NB
I and NB

D : the numbers of inserted and deleted blocks respectively.

• b: a specific block length.

• f(b): a cost function applied to a block length

The cost function is defined as an exponential function:

f(b) = ek(b−1) (2.4)

where k is a constant value used in the function as a tuning parameter. For a

block of length 1 the value would be 1.0. So, in case all blocks are of length 1,

NSD value will yield to the SSD as expected. The value of k is considered to be (k

>0.7) so that NSD value is always greater than SSD. Practical experiments show

that a value between [1,3] is more suitable to use.

For comparison, let’s find out the NSD value for trace 5 in our example assuming

that k = 1.5. Notice that in SSD, the two additional events are handled separately

by two deleting operations. However, under the NSD they are considered as one

24 CHAPTER 2. LITERATURE REVIEW

block of length 2 that can be handled by one deleting operation. In this case the

cost function will be:

f(b) = e1.5(2−1) = 4.5 (2.5)

So, NSD value will be:

NSD =
0 + 1 ∗ 4.5

1 ∗ 8
= 0.5625 (2.6)

Unlike SSD, NSD is unbounded [0,∞). Therefore, it is not possible to apply the

same evaluation criteria used before, i.e. 0.2 for good correspondence and 0.5

for moderate correspondence. To get over this, the authors define an equation to

derive cutoff values from the existing values. Given k and the average block length

(Bavg), the good correspondence cutoff is:

cutoff =
0.2ek(Bavg−1)

Bavg
(2.7)

Assuming that Bavg = 2.5, k = 1.5, the NSD good correspondence cutoff will

be 0.76. This implies that trace 5 is a good correspondence trace. Notice that

the same trace was categorized as a moderate correspondence trace under SSD.

However it was close to the good correspondence border. This denotes that the

approach penalizes deleting a block of length two less that deleting two events.

The work differentiates between insertion cost and deletion cost. However, in

practice, the cost depends heavily on which activity will be inserted or deleted.

For instance, the process manager may need to penalize an additional ’Payment’

event more than an additional ’Sign’. The technique allows overriding the default

insertion and deletion costs to match this requirement. The insertion or deletion

of each activity can have a different cost according to its importance.

Final output includes the SSD and NSD measures, information about the num-

ber of inserted and deleted events, the number of insertion and deletion opera-

tions as well as the number of matches per event type. In addition, the deviation

is located at both the executed path and the expected path. Nevertheless, only

sequencing requirements are considered.

To include temporal requirements, the work is extended in [48]. A timed con-

current model is used to represent the business process. To check the temporal

divergence, the difference between the time an event occurred and the time where

it is allowed to occur according to the model design is computed. An event is con-

sidered divergent if it is executed outside the specified time interval. Hence, the

2.2. FITNESS MEASUREMENT 25

SSDt metric equation becomes:

SSDt = (
WiNi +WdNd

LE
+

WtDt

TE
)/Wmax (2.8)

where the first part is just the SSD metric discussed above and:

• Dt: the sum of absolute values of time discrepancies that are measured over

the executed path.

• Wt: the cost (weight) of time.

• TE: the total elapsed time of the complete path.

• Wmax: now the maximum value of (Wi,Wd,Wt)

The interaction between matching the behavior and temporal discrepancies is

handled separately for the three possible cases (matching, insertion and deletion).

First the behavior is checked. In case of behavior matching, the metric is penalized

just in case there is a temporal discrepancies. In case of insertion, the allowable

time interval should be considered first. The last case, i.e. deletion, does not

have any effect since it is not connected to the model anymore. The metric can

be used to check both sequencing and temporal requirements. However, it cannot

be applied when the model is not attached with the allowable time interval of each

activity.

To the best of our knowledge, Cook et. al. work is the first to measure the

compliance degree between an executed process and a model design. It allows

assigning different weights to the activities according to their importance. How-

ever, it does not consider the data and human resources requirements. Moreover, it

does not provide an overall measure for the entire log file. The latter is considered

one of its main drawbacks.

Cost-based compliance checking technique

In 2011, Adriansyah et al. introduce an alignment based compliance checking

technique using the idea of inserted and skipped activities [83]. The technique

considers incomplete cases. Thus it can be used for run time compliance checking

as well. A Petri net is used here to model the process. The idea is closely related

to the idea of inserting and missing activities introduced in Cook et al. [41, 48].

The deviation between an event log and a process model can be interpreted as

either inserting activities, i.e. executing activities that should not happen according

to the model, or skipping activities, i.e. activities that should be executed according

to the model but they do not occur in reality. The severity of inserting or skipping

26 CHAPTER 2. LITERATURE REVIEW

activities depends on which activity we are talking about. For instance, in our

example, the severity of missing a ’Sign’ activity is higher than the severity of

missing a ’Send order’ activity.

It is worth mentioning here that some skipped activities are not really skipped

but they are just not logged in the file. However, the compliance checking tech-

nique cannot see more than what is logged in the file. Thus, these activities are

considered skipped because they do not appear in the log. This is usually the

case of trivial activities for which logging might be costly. For instance, if we

have a missing ’Send order’ event whereas the goods and invoice are received and

the payment took place then most probably this event occurred in reality but not

logged.

The severity of inserting and skipping activities, which is defined by the process

manager, is translated into cost functions for skipping and inserting the different

activities. For instance: saying that ki(X) = 2 indicates that the cost of inserting an

activity X costs 2 units, and ks(Y)= 1 indicates that the cost of skipping an activity

Y costs 1 unit. Hence, the cost of inserting Y is less than the cost of skipping X.

In their work, the authors argue that there are three issues to deal with when

measuring the fitness of a log file. These are: inserted and skipped activities,

the severity of deviation and the unobservable activities. Unobservable activities

are those activities which are not logged in the file such as OR-split and Or-join.

Starting from these issues, the authors propose their cost-based fitness measure.

An executed trace, referred to as an event net, conforms to a process model

if there is a complete trace in the event net which appears in the process model.

Both sides, i.e. the process model and the event net, are represented by means

of a Petri net language. However, the process model is extended with the cost

function of insertion and deletion operations.

To compare the two Petri nets, the approach uses a construction based on

an extension of the synchronous product of Petri nets. Given the two Petri nets,

the idea is to construct a net where the two nets fire the synchronized activities.

Non-synchronized activities are also allowed, however, they are penalized by the

inserting and deleting cost defined earlier. In case of inserted activities, transitions

are fired in the event net without firing a corresponding transitions in the process

model. On the contrary, activities are fired in the process model without firing a

corresponding transition in the event net in case of skipped activities. During the

construction procedure, the costs of inserted and skipped activities are considered

as stated in [57].

2.2. FITNESS MEASUREMENT 27

Once the extended synchronous product is generated, the approach can deter-

mine the execution path in the designed model which has the smallest distance

from the executed trace. The smaller is the distance, the higher is the fit. The

determined path will be the one with the minimal cost of skipped and inserted

activities. The computed cost is used later in the fitness measurement formula.

The intersection of the two Petri nets could lead to different scenarios. In the

best case, there will be a completed trace in the event net that appears in the

process model. This represents a compliant trace where the cost is zero. On the

other hand, the worst case occurs when the intersection produces an empty net.

In such a case the cost is the sum of the costs of inserting all required activities

to produce the event net. The cost in such a case is considered as the upper

bound cost and is used to normalize the fitness metric in the formula. The metric

is formulated as:

f = 1−
cF it((E,m′

0,m
′
f), (N,m0))

d(σ′, ε)
(2.9)

Simply, the fitness metric is the closest fit between the event net E and the

process model N , divided by the upper bound cost for normalization. The value is

always between 0 ≤ f ≤ 1.

The work is extended in [57]. The definitions of skipped activities, inserted ac-

tivities and the severity of deviation are in correspondence with their definitions in

the previous work [83]. To measure the conformity, the cost functions are defined.

Afterwards, an instance of the Petri net that best matches the recorded trace is

constructed. In this context, an instance is a connected part of the Petri net that

starts at an initial place and does not contain choices. The instance is constructed

by replaying the trace in the process model. Later on, the A* algorithm [59] is

used to find the one with the least cost. Once the best match instance is found,

the number of inserted and skipped activities can be determined and used to find

the fitness value according to the formula:

F = 1−
∑

a∈As
As(a)× ks(a) +

∑
e∈Ei

ki(a(e))∑
e∈Ec

ki(a(e))
(2.10)

where:

• ks and ki: the cost functions of skipping and inserting activities respectively.

• a, a(e): ’a’ refers to an activity type and a(e) is the activity type of an event

’e’

• Ec: the sequence of events of a case ’c’ under examination.

28 CHAPTER 2. LITERATURE REVIEW

• As: the multi-set (bag) of skipped activities in case ’c’

• Ei: a set of inserted events

Simply, the fitness value is one minus the ratio of having inserted and skipped

activities and the cost of the worst scenario, i.e. when there is no match at all.

In the worst case, the best match instance is an empty trace where all activities

are considered as inserted activities. Assuming that ks = ki =1 and that the cost

of skipping the invisible task in the model is zero, then the fitness value of our log

file will be:

F = 1− 53 + 85

265 + 304 + 63
= 0.78 (2.11)

The beauty of this technique is that it can deal with events that do not corre-

spond to any of the process activities. These are considered as inserted activities.

The fitness value is penalized as more activities are inserted or skipped and it is

strongly affected by the definition of the cost functions. Normally, fitness value is

0 ≤ F ≤ 1. Mathematically, the value tends to be higher when the cost of inserting

activities is relatively higher than the cost of skipping activities. However, if there

is a large number of skipped activities and/or the cost function of skipping activities

is relatively high then the value could be negative.

In the literarure, the cost based fitness approach is used in to measure the

conformity degree between a log file and a process model in [63, 66, 68, 73]

In [66], the cost based fitness approach is used to compute an optimal align-

ment between a partially ordered trace and a partially ordered alignment. Accord-

ing to the authors, a partially ordred trace (p-trace) is a directed acyclic graph

defining a partial order over a set of events. On the other hand, a partilly or-

dered alignment (p-alignment) between a p-trace and a process model is a di-

rected acyclic graph defining a partial order over the set of moves between them.

A dependency in p-trace from one event to another indicates the first event has

lead to the execution of the second event.

To compute an optimal p-alignment between a P-trace and a model, first, the

trace is converted to the so-called event net. An event net is a Petri net model

representing the behavior of the trace. Next, the event net is joined with the

process model to produce the product net. The product net contains three types

of transition: log moves, model moves, and synchronous moves. Later, a firing

sequence with the lowest cost is computed according to [83] and then replayed on

the product net. The result of this replay is an optimal alignment net containing

only the visited places, fired transitions and the arcs between them. The optimal

2.2. FITNESS MEASUREMENT 29

alignment net is converted later to an optimal p-alignment.

To find out the idea alignment, p-alignments are compared. For this purpose,

the authors define the true positive, false positives, and false negatives for the

three types of transitions in addition to the dependencies. Assuming that the ideal

p-alignment is known for a given case then:

For each synchronous move in the optimal p-alignment set, if this move is also

found in the ideal p-alignment then it is True Positive (TP), otherwise, i.e. not

found, then it is False Positive (FP). For each synchronous move in the ideal p-

alignment but not in the optimal p-alignment, this is considered as a False Negative

(FN). This definition is also applied to log moves, model moves, and dependen-

cies. Accordingly, the authors introduce the F1-score:

F1 = 1− 2 ∗ TP
2 ∗ TP + FP + FN

(2.12)

The authors of [63] introduce a conformance checking approach based on Inte-

ger Linear Programming. The work allows checking all types of constraints. A data

aware Petri net is used to represent the process model. The cost based fitness ap-

proach is used here to find a control flow alignment between the Petri net and the

log file. Next, the control flow alignment is used to construct the ILP problem. In

the work, the objective function is to minimize the cost associated with deviations

of any constraint different from the control flow.

2.2.3 Replaying-based techniques

Replaying techniques are based on the token games. The idea is to produce each

trace in the log file using the process model. Hence, traces are replayed event by

event starting from the first one until the last. It is worth mentioning here that

replaying based techniques can be used to check sequencing requirements only.

Conformance checker

In 2008, Rozinat et al. [53] presented their conformance checking technique which

is considered as a benchmark in the field of compliance auditing. The technique is

based on replaying the recorded traces on the process model. The process model is

represented by means of a Petri net. The fitness degree of a log file is calculated by

counting the number of missing and remaining tokens while the cases are replayed.

We say that the log file and a process model completely fit (100%) if the model

can generate all cases recorded in the log file.

30 CHAPTER 2. LITERATURE REVIEW

Figure 2.2: The procurement process in Petri net

Figure 2.2 shows the Petri net corresponds to the process model shown in

figure 2.1. In Petri nets, a transition (denoted by a square) indicates an activity

to be executed while a place (denoted by a circle) indicates a state between two

activities. Places are used to hold some tokens during the execution. In this

context, a token (denoted by a black dot) refer to a mark that indicates the state

of execution. For instance, the place between ’Create PO’ and ’Sign’ in the figure

is marked with a token which means that ’Create PO’ has been executed and that

’Sign’ is activated to be executed. The unlabeled transition denote an invisible

activity.

To replay a trace, a token is produced in the initial place. Afterwards, the events

that belong to this specific trace are fired one by one in accordance with their

sequence order in the log. Each time an event is fired it consumes a token from

each of its input places and produces a token at each of its output places. These are

called the consumed and produced tokens respectively. If the trace completely fit

the Petri net, then the replay procedure continues without problems. That however

is a big if! Usually, there are tokens which are missed during the replay and are

required to proceed. Thus, the procedure is carried out in a non-blocking way,

i.e. missing tokens are generated automatically and the replay continues until it

reaches the end place. Once the end place is reached, the technique checks if there

are remaining tokens left behind, i.e. tokens that are produced but not consumed

during the replay.

To measure the fitness of the entire log file, recorded traces are replayed. The

number of produced, consumed, missing and remaining tokens are counted during

the replay of each unique trace and the result is used to find out the overall fitness

value according to the formula:

2.2. FITNESS MEASUREMENT 31

Fitness =
1

2
(1−

∑k
i=1 nimi∑k
i=1 nici

) +
1

2
(1−

∑k
i=1 niri∑k
i=1 nipi

) (2.13)

where:

• k: the number of traces recorded in the log file.

• ni: the number of process instances which have the same trace.

• mi: the number of missing tokens

• ci: the number of consumed tokens

• ri: the number of remaining tokens

• pi: the number of produced tokens

Notice here that the approach groups the similar traces first (ni) and then re-

play one of them as a representative for this group instead of replaying all traces

individually which will produce the same result but consume more time.

Going back to our example, we can use the equation to find an overall fitness

measure for the entire log. First, the log file is filtered to remove all events that do

not correspond to an activity in the model. In the example, the only trace affected

by filtering is the fifth one because it is the only one which contains such an event,

’Change order’. Next, the recorded traces are grouped into similar traces. In the

example, there are six unique traces each of which is replayed separately. We will

replay trace 5 here as an example to explain the procedure. After the first step,

i.e. filtering, the trace becomes like this:
〈
Create PO, Sign, Send order, Sign, GR,

IR, Pay
〉
. The first three events can be replayed properly. However, a missing

token is required to proceed. The missing token is produced and the procedure

continues firing the rest of the events in order until it reaches the end place. The

result of replaying this trace is: 8 produced tokens, 8 consumed tokens, 1 missing

token, and 1 remaining token. The other recorded traces are replayed in the same

manner. Finally, the results are used to measure the fitness of the entire log file.

Fitness =
1

2
(1− 100

7994
) +

1

2
(1− 100

7994
) = 0.9875 (2.14)

In practice, mi ≤ ci and ri ≥ pi, so that the fitness value is always between 0

(in which none of the traces could be replayed) and 1 (in which all traces could be

replayed properly). In this context, a proper replayed trace is the one that could

be replayed without missing and remaining tokens.

Although the presented approach is considered as a benchmark in the confor-

mance checking literature, it has some downsides that affect the reliability of the

32 CHAPTER 2. LITERATURE REVIEW

fitness value. Firstly, the measure is sensitive to the structure of the model used.

It punishes a missing event exactly the same as a sequence of missing activities.

Secondly, the addition of missing tokens could lead to situations where a sequence

of activities is enabled whereas it should never occur, thus the result tends to be

overestimated. Concerning duplicate activities, i.e. activities which have the same

label in the Petri net, the existence of such cases do not cause a problem unless

two events of the same type are enabled at the same time.

In addition to the aforementioned downsides, we do not agree with filtering the

log file in the beginning to remove the events which do not correspond to any of the

model activities. We believe that these events could be a part of the process which

is not represented in the process model. For instance, in the example, ’Change

order’ activity does not appear in the model although it is normal to take place

in reality. Moreover, the removed events could be related to other events in the

same trace. Hence, these events should be investigated together. In our example,

it could be that whenever an order is changed, it has to be signed again. If this

is true then the ’Sign’ event should not be penalized as happened when replaying

trace 5.

Genetic miner

Genetic miner [51, 84] is a process discovery technique which merges two fields,

process mining and genetic algorithm. The mined model is the result of searching a

space of randomly generated models. The algorithm starts by generating an initial

population of n individuals where each individual represents a process model. To

generate the initial population, the dependency between the activities is used to

guide the algorithm. Hence, stronger relations have more chances to appear in

the generated individuals. Once the initial population is generated, its individuals

are evaluated and the fittest are used to generate the next population and so on.

Consequently, the final generated population, from which the mined model will be

selected, has the fittest individuals.

The conformance between an individual, i.e. a proposed model, and the log file

is evaluated by means of a parsing procedure. In this context, parsing is similar

to the replay procedure used in [53]. If the activity to be parsed is not enabled,

this is recorded as a problem and the parsing proceeds. This is the idea of adding

missing tokens when replaying a Petri net.

In the work, the fitness is introduced as an indicator to the number of correctly

parsed traces and activities in the event log. According to the authors, a correctly

2.2. FITNESS MEASUREMENT 33

parsed trace denotes a trace in which the parsing ends with activating the final

place. This indicates that the final state is reached properly and that the process is

not terminated in between. As shown in the formula below, the metric gives more

weight (60%) to the percentage of properly completed log traces rather than the

percentage of parsed activities.

Fitness = 0.40 ∗ allParsedActivities

numberOfActivities
+ 0.60 ∗ allProperlyCompletedLogTraces

numberOfTraces
(2.15)

where:

• allParsedActivities: the number of activities that can be parsed without prob-

lems.

• numberOfActivities: the total number of activities executed by all traces in

the log file.

• allProperlyCompletedLogTraces: the number of traces that are parsed with

no problems.

• numberOfTraces: the number of traces recorded in the log file.

The fitness degree is a value between [0,1], where 1 indicates the complete fit.

Applying this formula to our example, the result will be:

Fitness = 0.40 ∗ 5658

5758
+ 0.60 ∗ 900

1000
= 0.933 (2.16)

Although the metric considers parsing each activity individually, it does not con-

sider the number of missing tokens that are produced to proceed the parsing and

the number of extra tokens which are left enabled after the parsing procedure is

finished, i.e. remaining tokens. To overcome this weakness, the authors improved

their metric in their later work [85, 86]. The new metric, namely Partial Fitness

Complete (PFcomplete) is in the range between (-∞, 1], and formulated as the
following:

Fitness =
allparsedActivities− punishment

numberOfActivities
(2.17)

The punishment value is obtained using the formula:

allMissingTokens

#Traces− #TracesMissingTokens+ 1
+

allExtraTokensLeft

#Traces− #TracesExtraTokensLeft+ 1
(2.18)

34 CHAPTER 2. LITERATURE REVIEW

where:

• allMissingTokens: the total number of activities which cause problems while

parsing, i.e. the number of missing tokens of all activities.

• #Traces: the number of traces recorded in the log file.

• #TracesMissingTokens: the number of traces where there are missing tokens.

• allExtraTokensLeft: the number of tokens which are not consumed after pars-

ing is finished, i.e. remaining tokens, plus the number of tokens of the end

place minus 1 (decrease 1 for the proper completion).

• #TracesExtraTokensLeft: the number of traces in which there are extra to-

kens left behind after parsing the log file.

In case there are two individuals having the same punishment value, the ap-

proach considers the one that can parse more events as better fitting the log.

Thus, this individual becomes a better candidate to move to the next generation.

Applying the punishment formula to our example, the result is 0.16. Conse-

quently, the fitness degree is:

Fitness =
5658− 0.16

5758
= 0.983 (2.19)

Comparing with the previous result, the log file has a higher fitness degree.

However, this is not always the case.

Heuristics miner

In [50] the authors present a model discovery technique based on the heuristic

algorithm. The technique analyzes the dependency between the events of each

trace to end up with one model representing the actual behavior. Similar to the

genetic miner, the algorithm uses a parsing procedure to evaluate its generated

model.

Parsing a trace requires firing its corresponding events one by one according to

their occurrence in the log file. Before explaining the parsing procedure used in the

heuristics miner, we need first to explain two terms: ’input expression’ and ’output

expression’. An input expression of an activity ’X’ is the set of all possibilities that

allow ’X’ to be executed, i.e. activate ’X’. For instance, the input expression of ’Sign’

in our designed model is {’Create PO’}, and the input expression of ’Payment’

is {(IR),(IR ∧ GR)}. Conversely, the output expression of an activity ’X’ is the

set of all possibilities that are activated after ’X’ is executed. For example, the

output expression of ’Sign’ is {’Release’} and the output expression of ’Release’ is

2.2. FITNESS MEASUREMENT 35

{(IR),(IR ∧ GR)}. Intuitively, the input expression of the first activity equals the
output expression of the last activity equals the empty set { φ }.

To explain the idea, we will parse the trace
〈
Create PO, Release, IR, Payment〉

into our model. The first activity ’Create PO’ is fired properly. Firing ’Create PO’ will

activate ’Sign’ as it is its output expression. Next, the second event ’Release’ needs

to be fired. However, ’Release’ is not activated at the moment. This is recorded as

a ’missing activated input expression’ problem and the parsing continues. Firing

’Release’ activates its output expression{(IR),(IR ∧ GR)}. According to the given
trace, ’IR’ is fired and finally ’Pay’.

While parsing, the number of correctly parsed events and the number of miss-

ing activated input expressions are counted. In addition, the number of activated

output expressions that are left behind after parsing each trace is counted. An ex-

ample of this is the ’Sign’ activity in our example which was activated but not fired.

Later on, the values of these three counters are used to find out an overall fitness

measure referred to as the Continuous Parsing Measure (CPM). CPM indicates the

percentage of correctly parsed events and is calculated according to the formula:

CPM =
1

2

(e−m)

e
+

1

2

(e− r)

e
(2.20)

where:

• e: the number of events recoded in the log file

• m: the number of missing activated input expressions

• r: the number of remaining activated output expressions

According to this formula, the CPM value of our example will be:

CPM =
1

2

(5758− 100)

5758
+

1

2

(5758− 47)

5758
= 0.987 (2.21)

It worth mentioning here that the authors introduce another metric called Pars-

ing Measure which indicates the percentage of correctly parsed traces. A trace is

considered as correctly parsed trace if it could be replayed in the mined model

without any problem. However, this seems to naive because it does not consider

the level of deviation. For instance, a trace in which only one event could not be

parsed is considered exactly the same as the trace where none of the events could

be parsed.

36 CHAPTER 2. LITERATURE REVIEW

AGNE process discovery

In 2009, Goedertier et al. consider the process discovery issue as a multi-relational

classification problem on an event log which is extended with some artificial gen-

erated negative events [87]. Accordingly, the authors use the percentage of true

positive and true negative to evaluate the output model. For evaluation, the be-

havioral recall metric is introduced. It indicates the percentage of fitting events in

the log.

Similar to the aforementioned replaying techniques, the parsing procedure is

used to measure the conformance. The procedure is used to determine the per-

centage of true positive events. During parsing, each recorded trace is reproduced

in the model. Whenever an enabled transition is fired, the number of true positive

is increased by one. On the other hand, if a disabled transition is required to be

fired, i.e. a missing token, the number of false negative events is increased by

one.

To improve the computational efficiency, similar traces are grouped together

and only one trace of each group is parsed instead of parsing all recorded traces

such [53]. After parsing, the number of true positive and false negative are used

to measure the behavioral recall metric value according to the formula:

rPB =

∑k
i=1 niTPi∑k

i=1 niTPi +
∑k

i=1 niFNi

(2.22)

where:

• k: number of grouped sequences

• ni: number of similar traces in group i

• TP: the number of correctly classifies positive events

• FN: the number of misclassified positive events.

The behavioral recall of our log file in the example is:

rPB =
5658

5658 + 100
= .983 (2.23)

Notice here that although the other techniques in the literature which are based

on replying the traces [50, 53] punish for remaining tokens, this technique does

not. By remaining tokens here I refer to transitions which are enabled during

parsing but not fired. The technique considers these events as extra behavior that

are penalized in another metric called the behavioral specificity metric. However,

behavioral specificity is out of the scope of this research cause it measures the

fitness degree with respect to the log file not the process model.

2.2. FITNESS MEASUREMENT 37

2.2.4 Constraint-based techniques

These techniques are based on measuring the fitness degree of the log file with

respect to some business rules. Thus, they are also called rule based techniques.

They are distinguished from the other techniques by using declarative languages

to represent the compliance requirements. Hence, the compliance checking pro-

cedure is straight forward. A case is compliant if and only if the rule is applied.

LTL checker

The LTL checker introduced in [80] is a compliance auditing technique based on

linear temporal logic. The process model is a set of LTL formulae.

Given a log file and a set of LTL rules, the technique introduces two simple

metrics: health degree and coverage. The health degree of one case is the per-

centage of applied rules to the total number of rules. Hence, if there is a case to

be checked against 5 rules, 4 of them are applied and one is not, then the health

degree of this case is 80%. Coverage indicates to which extent a rule is applied

in a log file. For instance, given a log file of 100 cases and a rule that is applied

in only 60 cases, we say that the coverage rate for this rule is 60%. The health

degree of one specific case is the percentage of applied rules to the total number of

rules. The coverage degree of one specific rule is the percentage of correct cases

to the total number of cases checked.

Notice here that this technique can be used to measure the fitness degree of

one specific case. In addition, it can be used to measure the fitness degree of the

log file with against each compliance requirement individually.

2.2.5 A comparison between existing fitness measure

In this section we study the metrics introduced in the literature to measure the

fitness degree between a process model and a set of cases recorded in a log file.

Doing this, we aim at analyzing the points of strengths and weakness in existing

techniques to take this into consideration when proposing our own fitness mea-

surement technique. Hereafter, we conduct a comparison between studied metrics

with respect to the following factors.

1. Provide different semantics: does the technique consider measuring the fit-

ness degree from different perspective

38 CHAPTER 2. LITERATURE REVIEW

2. The type of process modeling language used to represent the compliance

requirements.

3. Comparison mechanism: the method used to compare the two parties; the

actual behavior, i.e. log file, and the desired behavior, i.e. process model.

These are: alignment based, replaying based, and constraint based.

4. Type(s) of compliance requirements which can be checked

5. Which of the following metrics are supported: a) the fitness degree of one

case against one compliance requirement, b) the fitness degree of one spe-

cific case against all requirements, c) the fitness degree of all recorded cases

against one compliance requirement, the fitness degree of the entire process

with respect to the process model.

6. The ability to solve mapping problems: can the technique deal with cases

in which the log file contains events with no corresponding activities in the

process model.

7. Locate the deviation (if any)

Table 2.2 shows the result of comparison. Notice that the majority of existing

fitness metrics are introduced to measure the fitness degree with respect to a

procedural model. Hence, they can be used to check sequencing requirements

only. However, in the business word, it is required to check all types of require-

ments. This point is related to the process modeling language used to present

the normative model. Normally, procedural models are superior in representing

the sequencing compliance requirements. However, mostly, they cannot capture

the other types. It worth mentioning here that a declarative model can be con-

verted into a procedural model. However, the result of this mapping is not always

promising. This depends on the representation capabilities of the process model-

ing language used. The generated procedural model does not necessary catch all

the requirements represented in the declarative model. The capabilities of each

modeling language is explained in more details in the next section.

Concerning the techniques in which a the process model is represented by

means of a procedural model, the process model is compared with the recorded

cases either directly or indirectly. In the direct comparison, the model itself is

used to replay the recorded cases such as [50, 53]. In the work of Adriansyah

et al., the process model is used to construct a partial instance of the model that

best matches the recorded traces [57, 83, 88]. Similarly, Cook et al. [48] use the

2.2. FITNESS MEASUREMENT 39

model to extract the desired execution paths. In the genetic process miner [85]

the so-called causal matrix is used as a representative of the model.

The replaying procedure works properly unless a mismatch is encountered.

We agree, to some extent, with the argue of Cook et al. [48] and Adriansyah et

al. [83] that a mismatch can be interpreted as either skipping activities or inserting

additional activities. Most of the existing techniques penalize inserting and skipping

activities. Moreover, some of them give different weights to skipping and inserting

the different types of activities [48, 83]. However, none of them count for the

relation between the mismatching events. In reality, inserting/skipping an event

could affect the other events in the same trace. Taking this trace as an example,〈
Create PO, Sign, Send order, Change order, Sign, GR, IR, Pay

〉
, the log indicates

that once an order is changed an additional sign is required. Although this does

not match the model, it could be the case that changing an order specification

is allowed and that it must be directly followed by a ’Sign’ activity. That being

the case, the technique should not penalize executing the second ’Sign’ event.

However, all of the techniques except the LTL do.

Additionally, most of the techniques could not handle the existence of the event

’Change order’ in trace 5 in our example. This is because this event does not

correspond to any of the model activities. Most of the techniques assume that

the events recorded in the log refer to the same set of activities represented in

the model. To meet this assumption, the log file is filtered before the parsing

is performed. This is conflicting with the idea of procedural models which are

designed to represent the process in an easy and understandable way. Normally,

these models represent the normal execution especially when the process is very

complex and has a lot of activities, choices, and parallel execution. For instance,

the ’Change order’ activity does not appear in the model but is executed in reality.

We assume that changing an order does not reflect the normal execution and thus

it is not represented in the model whereas it is recorded in the log file. This issue is

solved automatically in the LTL checker. Using a declarative language any behavior

is accepted unless it violates one of the business rules.

Regardless of the reason, the log could contain events which do not correspond

to any of the model activities. We believe that such events should be considered

when measuring the fitness rather than being filtered before. Going back to the

same example, filtering is another reason why we do not agree with penalizing

the second ’Sign’ activity. By looking at trace 5 after filtering ’Change order’, its

following ’Sign’ event does not make sense any more. The event will be treated

40 CHAPTER 2. LITERATURE REVIEW

as a mismatch although it could be obliged in such a case.

In terms of locating the deviation, compliance checking techniques could pro-

vide this feature whereas process discovery techniques do not. This is due to the

purpose of each field. When checking the compliance, process managers aim at

detecting the deviation and locating it. However, a process discovery technique

aims at modeling the actual behavior of the process. The technique generates

different models, evaluate them, and choose the optimal one. So, the location of

deviation is not of any importance. Process managers are interested in the out-

put model rather that the intermediate evaluation procedure. It worth mentioning

here that sometimes there are over 1,000 models to be evaluated. So, it does

not worth locating the deviation in all of these models especially when there is no

added value for this.

Finally, all of the techniques except the earliest one, process validation [48],

provide an overall fitness measure for the entire log file.

Table 2.2: A comparison between the fitness metrics introduced in the literature

Factor
Process vali-

dation

Cost-based

conformance

checking

Conformance

checker
Genetic PM

Heuristics

miner
AGNE LTL

Provide different se-

mantics
no no no no no no no

Modeling language procedural procedural procedural procedural procedural procedural declarative

Comparison mecha-

nism
alignment alignment replaying replaying replaying replaying constraint

Types of requirements sequencing sequencing sequencing sequencing sequencing sequencing all types

Fitness metrics pro-

vided
a a, d a, d d d d a, b, c

Solve mapping prob-

lems
no no no no no no yes

Locate deviation yes yes yes - - - yes

2.3 Process modeling languages

Compliance auditing techniques are based on comparing two parties; the actual

behavior (recorded in log files) and the process design (holding the compliance

requirements). The process design is expressed by means of a process modeling

language. Process modeling languages are categorized into two main categories:

declarative and procedural (imperative). In this section we first introduce each

of the two categories showing their capabilities in terms of compliance auditing.

Then, we conduct a comparison between them with respect to some predefined

requirements. Doing this, we aim to answer the following question: which is better

to use for compliance auditing purposes: procedural models or declarative models?

Process modeling languages are categorized into two main categories: declar-

2.3. PROCESS MODELING LANGUAGES 41

ative and procedural (imperative). Each category has a set of modeling languages.

For instance, UML, BPMN, Petri nets are categorized as procedural languages. On

the other hand, LTL, BCL and FCL rules are categorized as declarative languages.

Declarative languages focus on what needs to be done rather than how to do it.

These languages depend on the logic to control the relation between the process

components (activities, performers, data objects) in terms of time [89]. On the

other hand, procedural languages focus on the sequence of activities that should

be performed to execute one process instance [90]. It is worth mentioning here

that some mapping techniques can be used to convert the model from one format

to another such as [91–93]. However, the result is not necessary trusted. Mapping

models is out of the scope of this research.

We agree with the argue of [94] that declarative is no absolute property. Model-

ing languages are located on a line in between pure declarative and pure imperative

languages. In general, control flow models such as Petri nets, BPML, are more re-

garded as imperative languages while rule-based models (business rules) tend to

be more declarative. The authors of [90] position Petri nets at the imperative end

and LTL at the declarative end.

Regardless of the process modeling language used these are the main require-

ments that should be considered for compliance auditing purposes:

• Flexible: keep a balance between flexibility and compliance. In this regard,

languages which is capable of representing more compliant ways are more

suitable to use.

• Comprehensive: to be able to express all types of compliance requirements

(sequence, timing, data, and resources)

• Formal: to have a formal representation that is understandable by the differ-

ent parties involved in the compliance checking procedure, i.e. compliance

checker, process manager, etc.

• Able to represent the compliance requirements at two levels: cases and

events. Process managers should be able to represent requirements about

individual events such as the performer of one specific event. In addition,

they should be able to represent requirements related to the entire process

instance such as: the process instance should be closed automatically under

some conditions.

• Non-monotonicity: given the dynamic nature of the business world, viola-

tions are normal to occur. So, the modeling language should be able to rep-

42 CHAPTER 2. LITERATURE REVIEW

resent requirements that could be violated under some conditions and how

to repair the violation if it occurs.

• Individual requirements: to provide the ability to express each compliance

requirement individually to be able to check the compliance against one spe-

cific requirement later on.

• Easy to use and understand by non-experts.

• Maintainability: to be able to change the model in case of re-engineering.

This can be considered as low level requirement since the design process is

compliance auditing. However, it is preferable especially that the compliance

auditing results can be used as a feed back to improve the process design.

Comparing the two categories, i.e. declarative and imperative, there are some

similarities. However, there are major differences. The most important difference

is how each category deal with the flexibility issue. Hereafter, we compare the main

characteristics of each group. Accordingly, we tell which category of languages

can better support compliance auditing techniques. Next, we conduct another

comparison between the languages of the chosen category to select one of its

modeling languages.

In declarative languages, any way to execute the process in accordance with

the identified rules is an alternative way. Usually, more rules means more con-

straints and less alternatives[90]. Hence, declarative languages are also referred

to as constraint-based models [42, 89]. In contrast, in imperative languages, all

execution alternatives should be specified in the model. New alternatives must be

explicitly added to the model [89]. A process instance is compliant with respect to

an imperative model if the way it is executed is given in the model. On the other

hand, the same process instance is compliant with respect to a declarative model

if it does not violate any of the business rules.

Business processes today are executed in a flexible nature. It is difficult to

be stuck to a limited number of ways to execute the process. Sometimes, there

are more efficient ways for execution, however, because of some problems at the

design time, they are not represented in the process design and hence they are

treated as non-compliant. Normally, in compliance checking it is more important

that executed processes are in accordance with the regulations than the way they

were executed. Process managers are interested in achieving their goals rather

than the way it is reached. Actually, the processes are designed in order to reach

these goals.

2.3. PROCESS MODELING LANGUAGES 43

In terms of comprehensiveness, imperative languages are superior in terms of

sequential information (immediately ”leading to” and ”proceeding by”). On the

other hand, declarative languages are superior in defining the relations between

the process components such as: if the PO value is greater than a given threshold

then the order should be double signed [95]. In practice, control flow models can

be enriched with some annotations to represent the other types of requirements,

i.e. data flow, temporal and resource requirements [96]. So that to overcome the

shortage of representing one dimension. However, these annotations are attached

to specific activities. So, they can be used to hold compliance requirements at

the event level but not the case. On the other hand, business rules formalism

can represent all types of requirements. Nevertheless, there are some limitations

depending on the logic which is used for representation.

Regarding the non-monotonicity requirement, it is supported by some declar-

ative languages. For instance, in FCL a repairing chain is defined to deal with

non-monotonic rules. However, it is not supported by imperative languages. In

imperative languages, the repairing chain concept does not exist. Any path be-

tween the start and end is a possible execution path without priorities.

Imperative languages are based on the idea of moving the process objects from

one state to another in its state space. In this context, the state space can be seen

as the set of locations that the process objects can move in between. The action

of moving between two states is the event (also called transition or activity). The

focus in imperative languages is to model how the process activities change the

process objects between states. Hence, it is easy to represent compliance require-

ments related to one specific event. However, it is not the case when formulating

requirements related to the entire case. For instance, the requirement: ”the in-

formation about the executed process instances should be kept for at least tow

years” is not easy to represent in the model. To overcome this limitation, pro-

cess manager tends to represent such type of requirements in a separate process.

For example this requirement can be represented in the archiving business pro-

cess. Notice that by applying this solution, the process model is separated in (at

least) two models. In contrast, in declarative languages states and actions are

constructed when interpreting predicates and formulas. Thus, as Fahland et al.

mentioned in [90] a room is left for ”how the process’ changes are continuously

linked to each other”. Consequently, declarative models are superior in represent-

ing compliance requirements controlling the entire case.

As mentioned earlier, maintainability is not highly required for compliance au-

diting purpose, however, it is preferable. Maintainability is not easy to compare

44 CHAPTER 2. LITERATURE REVIEW

because there are many factors included in the procedure [97]. However, generally

speaking, when changing an imperative model, we need to make sure that we do

not add execution ways that should not be allowed and vice versa. Normally, the

new model is checked by the process manager to make sure that it represents all

execution paths and that undesired behavior is not represented in the new model.

On the other hand, when changing a declarative model, we need to make sure

that each new rule does not contradict any of the other rules. The contradiction

between rules can be checked automatically by means of design time compliance

checking techniques. Hence, changing a declarative model is, relatively, easier

than changing an imperative model.

In declarative languages, each compliance requirement is expressed by one

business rule. Hence, the process manager can check the compliance of each

requirement individually. However, this is not possible if an imperative language

is used. In imperative languages, all compliance requirements are represented

together in one graph.

As for the other two requirements, i.e. ease of use and formality, a general com-

parison cannot be conducted easily. Each modeling language has its own charac-

teristics regardless of its type, i.e. declarative or imperative. For instance, BPMN

and Petri nets are both members in the imperative languages family. However,

BPMN model are easy to use and understand by non experts whereas Petri nets

requires some knowledge to be able to read the model correctly. Declarative mod-

els in general require the process managers to know semantics and synatx of the

language to be able to define the business rules. Hence, some work [42] introduce

a graphical representation to overcome this problem.

With respect to the above discussion and given our predefined requirements,

we believe that declarative modeling languages are more suitable to represent the

compliance requirements. Table 2.3 shows the results of the comparison conducted

between the two categories. Imperative languages are skipped in the rest of this

thesis. Henceforth, the terms ”designed process”, ”business rules” and ”rules” will

be used interchangeably. Besides, in this context, the term ”process model” refer

to the ”design process model” which is a set of business rules in this case.

2.4 Conclusion

In this chapter we have discussed the related work in the literature. The discussion

is divided into three parts: compliance auditing techniques, fitness measurement

techniques, and process modeling languages. In the first part, existing compliance

auditing techniques are discussed showing the points of strengths and weaknesses

of each technique. Secondly, existing fitness measurement techniques are studied

2.4. CONCLUSION 45

Table 2.3: A comparison between imperative languages and declarative languages

with respect to the predefined requirements

Requirement Imperative Declarative

Flexibility − +
Comprehensiveness ± ±
Formality + +
Represent events’ requirements + +
Represent cases’ requirements − +
Non-monotonocity − ±
Individual requirements − +
Ease of use ± ±
Maintainability ± ±

thoroughly with an explanatory example. The study of the first two parts, reveal

the need for a new compliance auditing approach which can be used to measure

the fitness degree at different levels of abstraction. In addition, it shows the impor-

tance of supporting different semantics when measuring the fitness degree taking

into consideration the process manager interpretation for a compliant process. The

last part is devoted to study the process modeling languages used in the litera-

ture to represent the process model. There, we conduct a comparison between

the two main families of process modeling languages: procedural and declarative

and show the importance of using a declarative model to represent the compliance

requirements.

Chapter 3

Business Process Modeling

for Compliance Auditing

In section 2.3 we conduct a comparison between procedural languages and declar-

ative languages. Accordingly, we choose to represent the normative model using a

declarative language. In this chapter we first introduce the concept of declarative

languages. Next, we explain the existing declarative languages in the literature,

study their capabilities and limitations and then conduct a comparison between

them.

The aim is to end up with a declarative modeling language that can be used

to represent the normative model in this research. To this end, we went through

the following steps: 1) Study existing declarative languages which are used in the

field. 2) Conduct a comparison between them with respect to some predefined

requirements. Accordingly, tell whether we can use and existing language or that

we need to develop a new one. 3) According to the result in (2), if there is a need

to develop a new language, then develop it.

In the first section we give an introduction to declarative languages and define

our requirements. In the following two sections, we discuss FCL and LTL languages

as representatives for their logic families. Then, we conduct a comparison between

them with respect to the predefined requirements. Accordingly, we introduce our

new declarative process modeling language.

3.1 Declarative process modeling languages

Declarative languages are logic based languages. A declarative process model is a

set of business rules controlling the relation between the process objects and the

47

48 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

activities that should be performed in terms of time and space. The relations are

characterized by the predicates and They describe the characteristics of a business

process regardless of how the process should be executed.

In the literature there are mainly two fields of logic used to model business

rules: deontic logic and temporal logic. Most of the research in the field extend the

preliminary logic formalism to capture more features that meet their requirements.

Some languages use a combination of both, i.e. deontic and temporal logic, such

as PENELOPE [25].

Deontic logic is the branch of logic that is concerned with three normative con-

cepts: obligations, permissions, and prohibition. The logic extends the first order

logic with three operators to express these concepts: O to express Obligations,

P to express Permissions and F to express prohibition (forbidden). For instance,

deontic logic can be used to represent the business rule: ”It is obligatory that the

person who creates a purchase order is not the same as the person who signs it”.

In the literature, deontic logic is mainly used to represent the norms of business

contracts. Examples for the deontic-based languages are: FCL (Formal Contract

Language), BCL (Business Contract Language) and PCL (Process Compliance Lan-

guage). BCL is a domain specific language that is mainly developed to enable

monitoring the execution of business contracts [38, 98]. PCL is an extension of

FCL with a richer deontic capabilities [1, 99, 100]

As for temporal logic, it is mainly concerned with time. Temporal logic extends

the predicate logic by temporal operators that introduce temporalized modalities.

Usually, there are two basic temporal operators used in the formalism, ”Glob-

ally” and ”Eventually”. In addition, there are operators that denote ”Next”, ”Until”,

”Release”, and ”Weak-until”. Linear Temporal Logic (LTL) and Computational Tree

Logic (CTL) are among the most used temporal based languages for compliance

checking. An example of using temporal logic in business rules representation is:

whenever the goods are received, next it should be checked and then eventually

the supplier is paid.

For the purpose of comparison, we select the most cited language of the each

type of logic. Hence, FCL is selected as a representative of deontic logic and LTL is

selected as a representative for temporal logic. Although CTL is also mentioned in

the literature, we do not consider it here because it does not support the proposi-

tional logic which we believe it is important in our study. Moreover, LTL shows more

capabilities in practice [101]. In the next sections, both languages are studied in

more details. Next a comparison is conducted and finally the conclusion is drawn

3.1. DECLARATIVE PROCESS MODELING LANGUAGES 49

up. However, before going further, we first define our requirements which will be

used later in the comparison.

1. The ability to check all types of requirements: sequencing, temporal, HR, and

data. In addition, it should allow the modeler to represent compound rules

and conditional rules. In this work, a compound rule is the rule representing

more than one type of requirement. For instance, A should be followed by

B within 5 days. A conditional rule is the one which is checked according to

some conditions. For instance, if x>10 then A should be followed directly by

B. Notice that the later rule is checked just in case the value of x is above 10

2. Allow checking compliance at very low level of abstraction (the occurrence

level). This is explained thoroughly in 4, however, the idea is discussed briefly

here to explain this point. Suppose that the case to be checked has the trace

<A, B, C, B, D, E, B, C> and that it needs to be checked against the rule:

‘Activity B should be followed immediately by Activity C’. Notice that the rule

can be checked three times because the event ‘B’ appears three times in the

trace. Hence, there should be three fitness degrees each of which represents

the fitness degree for one of the three B’s. We refer to this as the occurrence

level fitness degree. Its fitness degree against that rule should reflect that the

case is partially compliant. Notice that in this example, the rule is applied

in the first and third ‘B’s whereas it is violated in the second. Hence, it is

almost partially compliant. The modeling language should be able to support

checking the fitness degree at the occurrence level.

3. Ability to represent cases in which the rule cannot be checked. Assume the

case with the trace <A, C, D, F> is to be checked against the previous rule,

‘B’ should be followed directly by ‘C’. However, notice that B does not appear

in the trace. Hence, the rule is actually not checked! Process analysts should

be able to model the scenarios in which a business rule cannot be checked.

4. Ease of use by process auditors analysts. Process analysts should be able to

build and understand the models easily.

Moreover, using LTL, the case trace is checked event by event. However, once

an event is checked it is not possible to return back to it. Hence, a rule such as

A should be proceeded by B cannot be checked using LTL. Moreover, some rules

cannot be represented using LTL rules alone. An example for this is rule number

50 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

13 in table 3.1. In general, LTL rules are superior in representing temporal require-

ments. However, it is weak in representing data requirements. To overcome these

issues, we have developed a new modeling language called BRCA to represent the

compliance requirements.

3.1.1 Formal Contract Logic (FCL)

Also called Formal Contract Language, is a combination of a defeasible (non-

monotonic) formalism [102, 103] and deontic logic of violations [104]. The non-

monotonicity feature of defeasible logic ensures that there is only one conclusion

that can be derived from a set of premises so that contradictory conclusion could

not happen [105]. Defeasible logic defines a superiority relation which can be used

to give priority for a rule over another in case they are contradictory. As a conse-

quence, the rule with the higher priority will override the conclusion of the rule with

the lower priority. Deontic logic provides the ability to reason in case of violations

by means of contrary-to-duty obligations (CTD), also called reparation obligations.

Due to the dynamic nature of the business world, violations is normal to occur.

However, a violation is not always an error. Thus, CTD is used to represent a repa-

ration chain. In this context, a reparation chain is the secondary obligation which

needs to be activated as a response to violating the primary obligations.

One of the advantages of using deontic logic in our case is the ability to de-

fine new business rules in the future. We do not need to consider checking the

consistency between existing rules and the new rules. The modularity feature of

FCL is of particular relevance to represent the compliance requirements. It allows

the revision of a component of a business process without being forced to perform

a complete revision of the business process representation as the case of hard-

coded solutions. Moreover, defeasible reasoning is based on constructive proof.

Hence, for one conclusion there could be different derivations. These derivations

can be used to explain why a specific conclusion has been obtained. This is of high

importance in compliance auditing to provide diagnostic information [11].

A rule in FCL is an expression of the form:

r : A1, ..., An ⇒ B (3.1)

where r is a unique identifier for this rule, A1, ..., An are the premises and

B is the conclusion of the rule. Both premises and conclusion are propositions

that are formulated from a finite set of atomic propositions and the operators: O

3.1. DECLARATIVE PROCESS MODELING LANGUAGES 51

for (Obligation), P for (Permission), ¬ for (Negation) and ⊗ for the non-boolean

connective to express the CTD operator. FCL formulas apply the following rules:

• Every atomic proposition is a proposition

• The negation of an atomic proposition is a proposition, for instance: if p is

an atomic proposition, then ¬p is a proposition
• If p is a proposition, then Op is an obligation proposition and Pp is a per-

mission proposition. Both obligation and permission propositions are deontic

propositions.

• Prohibitions can be represented either as O¬ or ¬P .
• If p1, ..., pn are obligation propositions and q is a deontic proposition, then

p1 ⊗ ...⊗ pn ⊗ q is a reparation chain.

The reparation chain can be interpreted as: if P1 is violated then this can be

repaired by P2. If P2 is violated then P3 is activated and so on until q is activated

as a reparation for Pn. Rationally, the permission can only occur at the end of

a reparation chain because it can be used to repair a violation but it does not

make sense to violate a permission. Moreover, the reparation chain, if any, always

appears in the conclusion side. It goes beyond the scope of this research to explain

the details of the FCL language. However, interested readers may refer to[104,

106] for detailed explanation.

In some work, the deontic operators are indexed with the party/parties con-

cerned in the rule. In [11] the deontic operators are indexed with the normative

position corresponding to the operator. For example, in the procurement process,

the proposition OSupplierSendInvoice means that the supplier has the obligation to

send the invoice to the purchaser. In the work where FCL is used to represent the

norms of business contracts, deontic operators are indexed with the beneficiary

in addition to the role who is responsible to perform the activity. For instance,

OSupplier,ContractorSendInvoice indicates that the Supplier is obliged to send an

invoice to the contractor [26].

To integrate the temporal dimension, Sadiq et al. [11] timestamp all proposi-

tions in the language and then adopt the persistence mechanism presented in [107].

The work of Guido et al. [108] does not consider temporal requirements. However,

it is concern with the different types of obligations and when they are fulfilled or

violated. To this end, the obligations are classified into: persistent maintenance

obligations (Op,m), persistent achievement obligations (Op,a), and non-persistent

obligations (On) according to the classification proposed in [109]. Persistent main-

tenance obligations indicates that given a state s in the executed process instance,

52 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

the obligation prevails for all states that come after s. Hence, any state that comes

after s and does not fulfill the obligation is considered as non-compliant. This is

similar to the ”Globally” operator in LTL. For persistent achievement obligations,

the obligation is fulfilled if it occurs at some point after s and before the dead-

line. This is similar to the ”Eventually” operator in LTL. However, since temporal

constraints are not considered in the work, the authors set the deadline for all

obligations to be the deadline of the entire case. Non-persistent obligations are

evaluated on a state-by-state basis, so when they arise they must be fulfilled and

they do not have consequences on the other states.

After FCL rules are defined, they can be normalized to remove redundancy

and identify conflict rules (if any). The normalization process aims at cleaning

up the FCL representation: identifying loopholes, deadlocks, contradictory rules,

inconsistencies, and making hidden rules explicit. The generated Normal Form FCL

(NFCL) are derived from the defined FCL.

Given a set of FCL rules, normalization process consists of three steps [98]:

1. Merging related rules together by linking an obligation with the obligations

that are triggered in response to violating this obligation so that to produce

the reparation chains. For instance, the rules Γ ` OA⊗OB and ¬A,¬B ` OC

can be merged in one rule: Γ ` OA⊗OB ⊗OC

2. Remove redundant rules. Given the rules Γ ` OA ⊗ B ⊗ C and Γ ` OA ⊗ B

redundancy issue is solved by simply removing the second rule since the first

one includes it.

3. Solve the conflicts between the generated rules if any.

To deal with contradictory conclusions of two rules in the last step, FCL is

equipped with the superiority binary relation (≺). The relation is used to give

priority for one rule over the other. For example, given the rules: r1 : A ⇒ B ⊗C,

r2 : D ⇒ ¬C and the relation r1 ≺ r2 we conclude that r1 has the priority over

r2. Consequently, if both rules are fired concurrently, the conclusion will be that of

rule 1. Notice that C and ¬C cannot be concluded at the same time.

To measure the compliance degree between the rules and execution paths, FCL

is equipped with ideal semantics (ideal, sub-ideal, non-ideal, and irrelevant). An

ideal situation is the situation where execution paths do not violate the FCL rules.

Hence, the process is said to be fully compliant with the FCL rules. A sub-ideal

situation describes the situation where at least one rule is violated. However,

3.1. DECLARATIVE PROCESS MODELING LANGUAGES 53

this can be repaired according to the reparation chains defined in the rule. Sub-

ideal situations are still compliant although they provide a sub-optimal situation.

Non-ideal situations are situations where violation(s) occur but they could not be

repaired. These situations are considered non-compliant and are caused either

by executing prohibited activities or missing some required activities. Finally, an

irrelevant situation denotes a situation where none of the FCL rules is applicable.

3.1.2 Linear Temporal Logic (LTL)

LTL is an extension of temporal logic that is widely used to represent temporal

constraints. In LTL, each state has one possible future. Hence, formulas are in-

terpreted over a linear sequence of states. In the field of business process man-

agement, the linear sequence of states represents one of the possible execution

paths. LTL formulas consist of three types of alphabet:

• atomic proposition symbols such as p, q, r

• boolean connectives: (¬,∧,∨,→)

• temporal connectives: (X,F,G,U,W,R)

The boolean connections are the same operators which are used in standard

propositional logic formulas: ¬ for negation, ∧ for and, ∨ for or, and → for the

implication. Temporal connectives, which distinguish the LTL logic among other

logics, hold the temporal constraints. The first three operators (X,F,G) are unary,

whereas the rest, (U,W,R), are binary. The operator X denotes next time which

is the next state in the sequence. The eventually operator F indicates that the

formula will be true once in the future, i.e. next states of the sequence before the

end. The global operator G indicates that the formula is always true. This implies

that the formula is true in all future states. U represents the until operator. It

states: if the first formula is hold until the second formula is true. We say that the

formula pUq holds on a path if p holds continuously until q holds. The weak-until

operator W can be considered as a special case of U . The only difference is that

in pUq, it is required that q does hold in some future state. However, this is not

the case in pWq. Release is the dual operator of until, that is pRq is equivalent

to ¬(¬pU¬q). Release and weak until are quite similar, the difference is that they
swap the roles of the two operands p, q. The formula pRq indicates that q must

remain true until and including the moment when p becomes true, if any [110].

To formulate an LTL rule, the following rules should be considered:

• If p ∈ AwhereA is a non-empty set of atomic propositions then p is a formula.

54 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

• If p and q are formulas, then ¬p, p ∧ q, p ∨ q, p → q are formulas.

• If p and q are formulas, then X p,F p,G p, p U q, p W q, p R q are formulas.

Given that π is an execution path of the business process and according to

Backus Naur form [110], we can tell whether π satisfies an LTL formula according

to the following syntax:

π := p | True | False

| ¬p | p ∧ q | p ∨ q | p → q

| X p | Fp | G p | p U q | p W q | p R q

(3.2)

In the literature, LTL is used to represent the compliance requirements in differ-

ent compliance checking approaches. This include design-time and run-time com-

pliance checking techniques as well. In [30] the business rules are first captured

by means of a graphical representation language called Business Property Spec-

ification Language (BPSL). Next, they are translated into LTL formulas. The au-

thors argue that LTL is difficult to understand and use by compliance experts [89].

Thus, they start with LTL representation directly. The approach is considered as

a design-time verification approach where the process is designed first and then

verified against the set of regulations. The business process is modeled using BPEL

which is then transformed into pi calculus and then transformed again into finite

state machine representations to meet the model checker requirements.

The linear temporal logic is used in the literature as a base to introduce some

declarative languages such as: ConDec [111], DecSerFlow, CIGDec, and the LTL

language presented in the LTL checker work [80]

LTL checker, introduced in 2005, is a compliance auditing technique based on

LTL [80]. Compliance rules are expressed as (LTL) formulae. The idea is to verify if

a given LTL formula is hold in a set of process instances. The standard LTL logic is

extended to include two quantification operators: for all (∀) and exists (∃) to check
some business rules that cannot be represented using the standard LTL operators

alone. Given an LTL rule, the technique divides the log file into two new subsets:

one contains the process instances where the rule is followed and the other contains

the remaining cases where the rule is not followed. The approach can be used to

check the different aspects of compliance requirements, i.e. sequence of activities,

temporal constraints, human resources, and data objects. However, it focuses

more on sequencing and temporal requirements.

ConDec is a constraint based language which uses the LTL to formulate the con-

3.2. A COMPARISON BETWEEN FCL AND LTL 55

straints [111]. To overcome the complexity problem of LTL formulas, the authors

introduce a mapping method to associate a graphical representation to each con-

straint [89]. Hence, non-experts can easily understand and create process models.

However, the semantic domain of the language is limited to a specific finite set of

activities. For instance, if we need to define a relation between two activities then

we are restricted by the given predefined relations [90].

DecSerFlow [112] and CIGDec [113] are also graphical languages grounded

in LTL. DecSerFlow is presented to support the design and monitoring of web-

services processes. CIGDec is presented to model business processes in clinical

organization. Both languages are suitable to be used in their fields. However, they

have limited capabilities to deal with all types of business processes.

3.2 A comparison between FCL and LTL

To conduct a comparison between LTL and FCL, we select a set of 13 rules among

the most common compliance requirements in the business world [68]. The rules

represent the four types of requirements: sequencing, temporal, human resources,

and data requirements. Then we present them in LTL and FCL. Table 3.1 shows

the 13 rules with their corresponding LTL and FCL rules.

The table shows that both languages have the ability to represent all types

of requirements. However, each language has its own points of strengths and

weaknesses.

LTL is superior in representing the sequencing and temporal requirements as

it is mainly developed for this purpose. It can be used to represent direct follow,

eventual follow, and until requirement easily. On the other hand, FCL is supe-

rior in representing the consistency between rules and the semantic of contrary-

to-duty obligations (CTD) as its mainly developed to represent the compliance

requirements emerging from business contracts. Hence, it is equipped with the

non-monotonicity feature that is important for designing and monitoring business

contracts. The feature allows giving priorities to one rule over another. So that,

non-monotonic rules can be represented as a reparation chain. Concerning com-

plexity, both languages are not easy to use and understand by non-experts. No-

tice that compliance auditors are usually not familiar with such types of modeling.

Therefore, some of the related work propose using a graphical model as a first

representation [30, 31].

For compliance auditing, LTL better matches our requirements. Although, it has

56 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

some limitations such as representing CTD and consistency checking. However,

compared to the FCL limitations, these are less importance in compliance auditing.

Furthermore, capturing the sequencing requirements is of high importance for this

study which is efficiently supported by LTL.

3.2. A COMPARISON BETWEEN FCL AND LTL 57

T
a
b
le
3
.1
:
M
o
s
t
F
re
q
u
e
n
t
C
o
m
p
li
a
n
c
e
R
e
q
u
ir
e
m
e
n
ts

N
o
.

R
u
le
d
e
s
c
ri
p
ti
o
n

F
C
L

LT
L

R
e
q
.
ty
p
e

r1
A
c
ti
v
it
y
B
s
h
o
u
ld
b
e
e
x
e
c
u
te
d

a
t
s
o
m
e
ti
m
e
a
ft
e
r
A
c
ti
v
it
y
A

A
:
t
`
O
(B

:
k
∧
k
>

t)
G
(A

)
→

F
(B

)
s
e
q
u
e
n
c
in
g

r2
A
c
ti
v
it
y
B
s
h
o
u
ld
b
e
e
x
e
c
u
te
d

im
m
e
d
ia
te
ly
a
ft
e
r
A
c
ti
v
it
y
A

A
`
O
B

G
(A

)
→

X
(B

)
s
e
q
u
e
n
c
in
g

r3

A
c
ti
v
it
y
B
s
h
o
u
ld
b
e
e
x
e
c
u
te
d

im
m
e
d
ia
te
ly
a
ft
e
r
A
c
ti
v
it
y
A

o
th
e
rw
is
e
C
s
h
o
u
ld
b
e
e
x
e
c
u
te
d

A
`
O
B

⊗
O
C

c
a
n
n
o
t
b
e
re
p
re
s
e
n
te
d

s
e
q
u
e
n
c
in
g

r4
A
c
ti
v
it
y
A
s
h
o
u
ld
n
o
t
s
ta
rt

u
n
ti
l
A
c
ti
v
it
y
B
is
p
e
rf
o
rm
e
d

c
a
n
n
o
t
b
e
re
p
re
s
e
n
te
d

G
(!
A
U
B
)

s
e
q
u
e
n
c
in
g

r5
T
h
e
re
is
n
o
lo
o
p
s
o
f
A
c
ti
v
it
y
A

A
`
O
(!
A
)

G
(A

)
→

X
(!
A
)

s
e
q
u
e
n
c
in
g

r6
A
c
ti
v
it
y
A
s
h
o
u
ld
b
e
e
x
e
c
u
te
d

b
e
fo
re
T
im
e
t

O
(A

)
:
t

G
A

:
t′

→
t′

<
t

te
m
p
o
ra
l

r7
A
c
ti
v
it
y
A
s
h
o
u
ld
b
e
e
x
e
c
u
te
d

a
ft
e
r
T
im
e
t

c
a
n
n
o
t
b
e
re
p
re
s
e
n
te
d

G
A

:
t′

→
t′

>
t

te
m
p
o
ra
l

r8
A
c
ti
v
it
y
A
s
h
o
u
ld
b
e
e
x
e
c
u
te
d

in
th
e
ti
m
e
b
e
tw
e
e
n
(t
1
,
t2
)

O
(A

)
:
t2
,t
2
>

t1
G
A

:
t′

→
t 1

<
t′

<
t 2

te
m
p
o
ra
l

r9
A
c
ti
v
it
y
A
s
h
o
u
ld
b
e
p
e
rf
o
rm
e
d

b
y
P
e
rs
o
n
P

O
(A

P
)

G
(A

ct
iv
it
y
=

A
)
→

p
er

so
n
=

P
H
R

r1
0

P
e
rs
o
n
P
s
h
o
u
ld
p
e
rf
o
rm

A
c
ti
v
it
y
A

p
er

so
n
=

P
`
O
(A

ct
iv
it
y
=

A
)

G
(p
er

so
n
=

P
)
→

(A
ct
iv
it
y
=

A
H
R

r1
1

A
c
ti
v
it
ie
s
A
&
B
s
h
o
u
ld

b
e
p
e
rf
o
rm
e
d
b
y
tw
o
d
if
fe
re
n
t

p
e
o
p
le

A
(
p
er

so
n
(P

))
;B

`
O

P
!B

G
(A

(
p
er

so
n
(P

))
→

G
(!
(B

p
er

so
n
(Q

))
)

H
R

r1
2

If
th
e
v
a
lu
e
o
f
p
a
ra
m
e
te
r
P
a
r
a
m

is
a
b
o
v
e
a
g
iv
e
n
th
re
s
h
o
ld
th
e
n

A
c
ti
v
it
y
A
s
h
o
u
ld
b
e
p
e
rf
o
rm
e
d

P
a
r
a
m

>
th
r
es
h
o
ld

`
O
(A

)
G
(p
a
r
a
m

>
th
r
es
h
o
ld
)
→

F
(A

)
d
a
ta

r1
3

If
A
is
e
x
e
c
u
te
d
th
e
n
B
s
h
o
u
ld

b
e
e
x
e
c
u
te
d
w
h
e
re

(A
.k
ey

)
=

(B
.k
ey

)
c
a
n
n
o
t
b
e
re
p
re
s
e
n
te
d

c
a
n
n
o
t
b
e
re
p
re
s
e
n
te
d

M
u
lt
i

58 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

To conclude, FCL is more suitable for design-time compliance checking. On the

other hand, LTL is more suitable for compliance auditing. The comparison between

FCL and LTL logic shows that LTL is more capable of representing the requirements

for compliance auditing purposes. However, it still has some limitations which

makes it difficult to use in this research alone. The two most important limitations

of LTL is: 1) it cannot be used to represent cases in which the business rules can-

not be checked, 2) it cannot be used to represent rules which needs to be checked

at levels lower than the case level. Hence, we develop a new declarative process

modeling language entitled with BRCAL language. The new language extends the

important feature of LTL which is required in for this research. In addition, it over-

comes the limitations of LTL. In the next section, we describe the BRCAL language

and show how it can be used to build process models.

3.3 BRCA language

BRCAL stands for Business Rules for Compliance Auditing Language. It is devel-

oped to represent the compliance requirements which will be used to audit the

executed process instances. A BRCAL model is a set of business rules each of

which represents one of the compliance requirements.

BRCAL inherits some of the LTL operators such as next and eventually. It can

be used to represent the four types of compliance requirements. It overcomes the

limitations of existing languages in terms of compliance auditing. It can be used to

write business rules that can be checked at very detailed levels (occurrence level).

In addition, the modeler can select cases in which the rule cannot be checked.

Moreover, the language can be used to write conditional rules. A conditional rule,

in this context, is a rule which is checked according to some conditions.

Notice here that the language is developed mainly for compliance auditing.

However, it can be used to check the compliance at the run time.

The input format

The BRCA language is developed to define constraints on a log file of recorded

cases. A log file can be seen as a set of cases, also called process instances.

Each case has a set of attributes and a trace. The attributes hold some data

corresponding to the case. Some attributes are essential such as the timestamp

and the performer. The trace shows the sequence flow of events preformed to

3.3. BRCA LANGUAGE 59

execute this case. The number of events in one trace is referred to as the trace

length. Each case has a unique identifier (normally called case ID) in the log file.

Figure 3.1 below (resource: [62]) shows information about the first three cases

in a log file. In addition to the case ID, information about the event ID, the times-

tamp, the activity name, the resource and the cost are recorded. Notice here that

an event is a performed activity (also called task), thus the two terms are used in-

terchangeably. As mentioned earlier, the case ID is a value that uniquely identifies

each case. The timestamp attribute shows the time at which the activity is per-

formed. The sequence flow (trace) is generated according to the timestamp. The

resource (also called originator) in the figure shows the person who performed the

corresponding activity. The activity, the timestamp, and the resource are among

the most important attributes that are recorded in the log files. The figure shows

two more attributes, event ID and cost. Notice that the number of events pre-

formed in each case, i.e. the trace length, is not fixed. For instance, case 1 has

five events whereas case 3 has nine events.

In the figure, case 2 is executed by performing five events: register request,

check ticket, examine casually, decide, and pay compensation. The register re-

quest event was performed on the 30th of March 2010 at 11:32. It was performed

by Mike and costed 50 unit.

Figure 3.1: An example for a log file

The attributes are of two types: event attributes and case attributes. Event at-

60 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

tributes are data fields which hold information about one event such as the times-

tamp and performer. Case attributes are data fields which hold information about

the case itself regardless of the executed events. The attributes in the figure are

all event attributes.

The log file is checked case per case. The information recorded about one case

is independent from other cases.

Definitions

Variables are defined as objects regardless of their data type. In BRCAL, it is not

required to define variables explicitly, however, they are allocated on their first

use. Once a new attribute is defined, its value is assigned to 0 automatically.

Notice that an attribute can hold any type of data, integer, real number, text, date,

event, etc. Recall here that there are two types of attributes: case attributes and

event attributes. A case attribute holds information corresponding to one process

instance, i.e. a case. An event attribute holds information corresponding to one

event in the case trace.

Comments

Comments are useful to add explanation to the model. Commented lines are not

considered by the parser. Using comments helps creating an easy readable model,

especially by non-modelers. A one line comment starts with a percentage symbol

(%). Any text written to the right of the (%) symbol is discarded by the parser as

shown in the following example.

Example:

% This is a one line comment, this text is skipped by the parser

Multiple line comments are written between the /* and */ symbols. The /*

symbol defines the start of a multiple line comment. The */ symbol defines the

end of a multiple line comment. These comments are handy when the modeler

wants to write a comment that extends over many lines.

Example:

/* This model holds the procurement process model, it contains 5 business rules

Date: 25/4/2016

Author: Nour Damer

End of multiple line comment */

3.3. BRCA LANGUAGE 61

Operators

Relational operators: Rules are checked according to some relational operators.

The operators used depend on the data type to be compared. The comparison

process includes three elements, these are (in order from left to right): the left

hand side operand, the operator, and the right hand side operand. For example in

the (x < 10) comparison process, the left hand side is the value assigned to the

variable called x, the right hand side is 10, and the operator is less than.

The evaluation starts at the left hand side, then the right hand side, and finally

the values of the two sides are compared. The result of the comparison is either a

True or a False. In this example, if the value of x is less than 10 then the result is

True, otherwise, the result is False. According to this comparison, if the value of x

equals 10 the result is False. Table 3.2 summarizes the logical operators used in

the language with some examples assuming that: Person = ”Maria”, X = 10, Y=5

Table 3.2: Relational operators in BRCA language

Operator Name When True? Example

== Is equal
When the value in the right hand side

equals the value in the left hand side

Ex1:

Person == John

Result = False

Ex2:

X==10

Result = True

!= Not equal
When the values in the two sides are

not equal

Ex1:

Person != “John”

Result = True

Ex2:

Y != X/2

Result = False

< Less than
When the value at the left hand side is

less than the value in the right hand side

Ex:

Y < 5

Result = False

<= Less than or equal

When the value at the left hand side is

less than the value in the right hand side

or equal to it

Ex:

Y <= 5

Result = True

> Greater than

When the value at the left hand side is

greater than the value in the right hand

side

Ex:

X > 5

Result = True

>= Greater than or equal

When the value at the left hand side is

greater than the value in the right hand

side or equal to it

Ex:

X >= 5

Result = True

Temporal comparison operators: Two operators are defined to compare values

of type date. These are: Before and After. Both operators reflect their meaning.

Suppose that T1 = 1/1/2015, and T2=1/1/2016 then:

T1 Before T2 = True

T1 After T2 = False

62 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

Logical operators: BRCAL extends three logical operators from the predicate

logic. These are: AND, OR, and NOT. The first two are binary operators. How-

ever, NOT is a unary operator. The results of logical statement are defined as

follows:

• AND: the result of A and B is true if and only if both of them are evaluated

to True.

• OR: the result of A or B is true if at least one of them is evaluated to True.

• NOT: is simply the negation of A. The result is True if and only if A is false.

Table 3.3 shows the results of the three operators.

Table 3.3: Logical operators in BRCA language

A B A AND B A OR B NOT B

True True True True False

True False False True True

False True False True False

False False False False True

Functions

The BRCAL has a set of functions used to formulate the business rules. Hereafter,

we define these functions showing the parameters (input), result (output) and an

example for each. For the examples, assume that:

t:
〈
A, B, D, C, E, D

〉
x= ”D”, z = ”A”, w = ”M”

• count(x in y)

Parameters:

x: an event of a activity type x.

y: the trace of the case under investigation.

Return: An integer holding the number of occurrences of event x in trace

y.

Example:

count(x in t) = 2.

3.3. BRCA LANGUAGE 63

• exist(x in y)

Parameters:

x: an event of a activity type x.

y: the trace of the case under investigation.

Return: Boolean. True if trace y contains an event of type x. False

otherwise.

Example:

x: exist (x in t) = True.

exist(w in t) = False.

• first(y)

Parameters:

y: the trace of the case under investigation.

Return: The first event in trace y.

Example:

first(t) = A.

• last(y)

Parameters:

y: the trace of the case under investigation.

Return: The last event in trace y.

Example:

last(t) = D.

• previous(x)

Parameters:

x: an event of activity type x.

Return: The event proceeding x in the trace. The result is null if x is the

first

event.

• next(x)

Parameters:

64 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

x: an event of activity type x.

Return: The event which follows event x directly. The result is null if x is

the

last event in the trace.

Example:

next(B) = D.

• follow(x,y)

Parameters:

x: an event of a activity type x.

y: an event of a activity type y.

Return: The first event of activity type y that follows event x eventually.

The

result is null if x is not followed by an event of type y.

Example:

follow(z, x) = first D in the trace

follow(x, z) = null

• length(y)

Parameters:

y: the trace of the case under investigation.

Return: An integer holding the number of performed events in trace y.

Example:

length(t) = 6.

• position(x)

Parameters:

x: an event of a activity type x

Return: the 1-based index of event x in the trace.

Controls

Two types of controls are defined in BRCAL: the conditional control (if state-

ment) and the looping control (for loop).

3.3. BRCA LANGUAGE 65

Conditional control

The if statement is defined and used as a conditional control. As usual, if

statement is defined here to control the execution of some statements. According

to some conditions, some statements are either executed or not. The general

structure of the If conditional statement is:

if (condition)

Statement

The statement is executed only if the condition is evaluated to 1. For instance,

if person = “John”, y=0, given the following if statement:

If (person == “John”)

y = y+1

The condition is first evaluated. In this case, the result is True (5 is greater

than 0). Accordingly, the statement (y=y+1) is executed. Hence, the value of y

becomes 1.

Looping control

As a looping control, a for control is defined. In this research, looping is mainly

defined and used to go through all events in a given trace. The beauty of for

looping is that it start from an initial state until an end state. Hence, it better

matched the requirement of this research. For instance, suppose I need to write

a business rule in which I need to check that the events of type “A” are always

executed by person “J”. In this case, we can use a for loop to check each event in

the trace starting from the first event until the last one and check the value of its

HR.

The structure of for looping in the language is defined as the following:

for (param = event in case)

Statement

Writing rules using BRCA language:

The BRCA model is a set of business rules each of which representing one of

the compliance requirements. Hence, each rule can be seen as a constraint which

should be satisfied. Rules are checked per occurrence, i.e. one occurrence against

one business rule per time. To explain the idea of occurrence in this research, we

consider the following example: suppose the trace
〈
A, B, C, B, D

〉
is to be checked

against a business rule indicating that activity B should be followed directly by

activity C. However, the trace contains two events of type B. Hence, the rule is

checked two times; one for each B. In this case we say that the rule can be checked

66 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

twice (two occurrences) each of which has its own result. In our example the rule

is applied in the first occurrence however, it is violated in the second. Notice that

the number of occurrence could be zero. For instance, suppose that B does not

appear in the trace of our example. The occurrence concept is discussed in more

details in Chapter 4.

Given a case and a business rule to be checked. Each occurrence in the case

is checked against the business rule. Hence, each occurrence has its own fitness

degree. The result at the occurrence level is either zero or one. The variable

(result) is declared automatically to hold this result. It is initiated with the value

zero.

Rules are written according to the following syntax:

The languages has a set of predefined business rules which can be used imme-

diately by the end user. These rules are among the most common rules which are

frequently checked.

Hereafter, we use the BRCA to represent the most common business rules.

First, the rules which can be checked only once are discussed, then the others.

1. A should be the first activity: this rule is defined to checked whether the

first event is of type A.

It is written using an if conditional statement and two functions: first and

position. The result is one if the position of the first occurrence of A is 1 and

0 otherwise. Notice that the result value is increased by one just in case

the rule is applied. Also, notice that this rule can be checked exactly once.

Hence, no need to use a for statement to represent it. The rule is used in

case the process should be started in a specific way.

if position(first(A in Case)) = 1

result + 1

2. A should be the last activity: this is very similar to the previous rule,

however, it is defined to checked whether the last event is of type A. Thus,

the position value is compared with the result of calling the length function.

Notice here that the length function returns the number of events in the case

trace which is equal to the position of the last event. The rule is used in case

the process should be terminated in a specific way.

if position(last(A in Case)) = length(Case)

result+1

3.3. BRCA LANGUAGE 67

3. The process is executed within D days: this is a temporal rule. It does not

depend on the occurrences. However, the difference between the timestamps

of the last and first events is calculated. If it is less than the value D then

the rule is applied in that case. This rule is used to analyze the throughput

time of the process.

If last(A in Case)[time] - first(A in Case)[time] <= D days

result+1

4. A should be executed eventually: simply, if an event of activity A appears in

the case trace then the result is 1. Otherwise it is zero. This rule is used to

check whether a specific activity is performed or not.

if exist(A in Case)

result+1

5. If A exists, then B exists: the rule is checked in cases where executing activity

B depends on executing activity A regardless of their order in the case trace.

if exist(A in Case) and exist(B in Case)

result+1

6. If A exists then B exists where A(X) = B(Y): this can be seen as an extension

of the previous rule. Suppose I have two activities that can be performed

multiple times in the same case. However, each time A is executed a corre-

sponding B should be executed as well. This rule can be used to represent

such a case. key in the rule is an event attribute. It is used recognize the

corresponding event B. The result is one just in case there is a B event in

the trace with a key value equals to the key value of A. Notice that once

the corresponding event is found, the checking procedure is terminated by a

break statement.

for(x = A in Case)

for(y = B in Case)

if x[key] == y[key] % attribute key of x

result+1

exit % break

7. A should be followed directly by B: this rule is equivalent to (A next B) in LTL.

It is a sequential rule representing that if an event of type A is performed

68 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

then it should be followed immediately by an event of type B. Hence, the rule

is checked as much as there are A’s in the case trace. The for loop is used in

the rule to go through all events in the sequence. Notice that each time the

rule is checked, i.e. each occurrence, the result of this check (whether 0 or

1) is recorded.

for(x = A in Case)

if next(x) == B

result+1

8. A should be followed eventually by B: this rule is equivalent to (A eventually

B) in LTL. The rule indicates that once an event of type A is performed, it

should be followed by an event of type B, however, unlike the pervious rule,

B should follow A anytime before the process instance is terminated. This

rule is checked for each A. Notice that regardless of the number of A’s in the

trace, one B at the end is enough to consider all of them compliant.

for(x = A in Case)

if follow(x, B)

result+1

9. A should be followed eventually by B or C: this rule use a complex conditional

statement. Using the Or operator between the two conditions indicates that

at least one of them should be evaluated to True to consider the occurrence

under investigation as completely compliant. The rule is checked as much as

there are A’s in the case trace.

for(x = A in Case)

if follow(x, B) or follow(x, C)

result+1

10. A should be followed directly by B then directly by C: this rule indicates that

if an event of type A is executed then this A should be followed directly by B

and this B should be followed directly by C. In other words, if A is performed,

then the chain (A, B, C) should appear starting from this A.

for(x = A in Case)

if next(x) == B and next(next(x)) = C

result+1

3.3. BRCA LANGUAGE 69

11. A should be followed eventually by B then eventually by C: this rule indicates

that if an event of type A is executed then this A should be followed eventually

by B and this B should be followed eventually by C. In other words, if A is

performed, then the chain (A,…, B,…, C) should appear.

for(x = A in Case)

if follow(x) == B and follow(next(x)) = C

result+1

12. B before A directly: unlike the above mentioned rules which checked the

following events in the sequence, this rule checks the proceeding events. It

indicates that an event of type B should be proceeded by and event of type

A in the trace. Notice that this is not equivalent to (A should be followed

directly by B). Although both rules are used to detect the sequence (A, B).

However, this rule is checked according to the existence of B. However, that

rule is checked according to the existence of A.

for(x = B in Case)

if previous(B) == A

result+1

13. SOD(A, B): this is the famous segregation of duties rule (also called the 4

eyes principle). It is used to check whether two activities are executed by

the same person or not. The result is True if there is no intersection between

the performers of A and the performers of B.

for(x = A in Case)

for(y = B in Case)

if x[person] == y[person] % attribute person of x

result+1

14. A should be executed by person P: this is a simple rule used to control that

an activity A is executed by a specific person P. It is checked for each A in

the case trace.

for(x = A in Case)

if x[person] <> P

result+1

70 CHAPTER 3. BUSINESS PROCESS MODELING FOR ...

15. A is executed between time t1 and t2: this a temporal rule which is used to

check whether an events of type A are executed in a given time slot.

for(x = A in Case)

x[time] >= X and x[time] <= Y

result+1

16. If (Case attribute T [<, <= , 1 = , == , >, >=] value) then A should be

followed eventually by B:

Notice that this rule can be divided into two parts, the if clause and the main

clause. The if clause contains the condition that should be applied to check

the rule in the main clause. For instance, in this rule, the part after then, i.e.

A should be followed eventually by B, is checked just in case the condition

in the if clause is evaluated to True. Notice that the condition here depends

on the value of a case attribute. As mentioned earlier, case attributes are

different from event attributes. A case attribute is a property for the whole

case. However, an event attribute is a property for one specific event such as

the person who performed the event and when it is performed. For instance,

suppose the process manager aims at checking a rule for a specific type of

customers then he/she can define such a rule.

if Case[T] <= value

for(x = A in Activity)

if follow(x, B)

result+1

3.4 Conclusion

In this chapter, we study the declarative process modeling languages used in the

literature to represent compliance requirements and conduct a comparison be-

tween them with respect to some predefined requirements. Results show that

existing languages have two main problems. They do not allow for: 1) represent-

ing cases in which a business rule cannot be checked, 2)representing rules that

can be checked at the occurrence level. Hence, we introduce a new process mod-

eling language called the BRCA language which is developed mainly to represent

the compliance requirements for compliance auditing purposes. The introduced

language can be used to define a business rule which can be checked at different

3.4. CONCLUSION 71

levels. It also provides the ability to represent when the rule should be considered

neither applied nor violated but (not checked)!

Chapter 4

Flexible Compliance Auditing

Framework

The study of existing compliance auditing approaches reveals the need for a new

approach which supports different definitions of a compliant process in the business

context. Given a log file and a process model, all existing techniques provide one

output measure. However, process analysts have different interpretation for the

same value. What is seen as compliant from one perspective, is considered non-

compliant from another perspective. For this purpose we develop a compliance

auditing framework entitled with Flexible Compliance Auditing Framework.

The framework is developed to provide a flexible approach to measure the

fitness degree at different levels of abstraction. It is based on using some different

aggregation operators to measure the compliance degree. Hence, it provides the

foundation to construct compliance measures which have the proper semantics.

This is an important feature for process auditors. It provides them with fitness

metrics that match the context in which they are applied.

In mathematics, aggregation is the process of replacing a set of values by a

single representative one using an aggregation operator such as the average [114,

115]. For instance, the average of the students’ scores in one course is a represen-

tative value for the students performance. In this research we apply aggregation

to combine a set of fitness degrees at low levels to end up with one value repre-

senting the fitness degree at higher levels.

Hereafter, we first introduce the general framework. Then, we discuss the

fitness metrics used to measure the fitness degree at different levels of abstraction.

73

74 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

Later, we explain the concept of aggregation functions and how they are applied

in this research.

4.1 The flexible compliance auditing framework

The framework is developed for compliance auditing purposes. Unlike existing

compliance auditing approaches, which provides one fitness degree regardless of

the context, this framework can be used to check the compliance for a specific

business context. It provides a fitness measurement technique which can be cus-

tomized according to the process manager clue.

The framework, presented in Figure 4.1, starts by reading a log file and a nor-

mative model. The log file, which is extracted from operational databases, contains

information about the executed processes. The normative model represents how

the process should be executed. In this framework, the normative model is ex-

pressed by means of the BRCA language which is introduced in chapter 3. A BRCA

model is a set of business rules. Each of which represents one of the compliance

requirements.

Figure 4.1: Flexible Compliance Auditing Framework

After reading the log file and the BRCA model, the process auditor needs to

4.1. THE FLEXIBLE COMPLIANCE AUDITING FRAMEWORK 75

select a suitable aggregation operator. An operator is considered suitable if has

a proper semantic. It is selected according to the process under investigation.

Hence, there is no absolute best operator. Each operator is the most suitable for

a specific business context (environment).

The output of the framework, which we call the fitness matrix, is a two dimen-

sional table. It shows the fitness degrees measured at four levels: process, case,

rule and cell. The process fitness degree is the fitness degree of the entire log file,

i.e. all executed processes with respect to the normative model. The case fitness

degree is the fitness degree of one specific process instance against the normative

model. The rule fitness degree is the fitness degree of all recorded cases against

one business rule (compliance requirement). Recall here that the normative model

is a set of business rules each of which represent one of the compliance require-

ments. The cell fitness degree represents the fitness degree of one case against

one business rule.

Table 4.1 shows the fitness matrix for c cases and r rules. Cases information

are aligned horizontally whereas rules information are aligned vertically. The in-

tersection between a rowi(case) and a columnj(rule) holds the fitness degree of

casei against rulej. For instance, f(C2, R1) is the fitness degree of case 2 against

rule 1. This could be any value in the interval [0-1].

Table 4.1: Fitness matrix given a log file of C cases and a BRCA model of R rules

Rule 1 Rule 2 Rule(r) Fitness (Cases)

Case1 f(C1, R1) f(C1, R2) f(C1,Rr) F(C1)

Case2 f(C2, R1) f(C2, R2) f(C2,Rr) F(C2)

.

.

.

Casec f(Cc, R1) f(Cc, R2) f(Cc,Rr) F(Cc)

Fitness(rules) F(R1) F(R2) F(Rr) F

The last column, called Fitness (Cases), holds the fitness degrees of each case

individually. Each cell in that column is the aggregation of all values in the same

raw. For instance, F(C1)represents the fitness degree of Case1. The last row,

called Fitness (Rules), holds the fitness degrees against each of the business rules

individually. Each cell in that row holds the fitness degree of the entire log file

against its corresponding rule. For instance F(R2)represents the fitness degree

against Rule2. The cell at the bottom right, called (F), holds the fitness degree

of the entire log. This value is generated by one of three ways: aggregating the

76 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

values in the last column (cases), aggregating the values in the last row (rules),

or aggregating all the fitness degrees at the cells level.

In addition to these four metrics, the framework generates a fifth metric which

we call the occurrence level fitness metric. However, it is not shown in the out-

put matrix. The occurrence level is the level at which the compliance is actually

checked. It is the atomic unit used to produce the other four metrics. Once the

fitness degrees at the occurrence level are measured, the results can be used to

generate the fitness degrees one level upper, the cells level. Later, the cells fitness

degrees are used to generate the fitness degrees at the remaining three levels:

cases, rules and process.

The beauty of this framework is that it provides the foundation to construct

compliance measures which have the proper semantics. Hence, process auditors

can use it to measure the fitness degree with their business environments. In

addition, it provides fitness metrics at different levels of abstraction. Moreover, it

allows checking all types of compliance requirements: sequencing, temporal, HR,

and data because it is based on a BRCA model which enables representing all types

of compliance requirements.

In the next section we discuss the fitness measurement approach used to mea-

sure the fitness degrees at each of the five levels individually.

4.2 Fitness measurement technique

In this section we explain the fitness measurement approach used in our framework

to measure the fitness degree at the different levels of abstraction. To have a

standard measure, we define the fitness degree to be bounded between [0,1]

where 0 indicates the lower bound (completely violated) and 1 indicates the upper

bound (completely fit).

As mentioned earlier, the developed framework provides five different metrics:

occurrence, cell, case, rule and process. The occurrence fitness degree is the

atomic unit. Hence, the approach starts by measuring the fitness degrees at the

occurrence level. Next, the results are used to measure the fitness degrees at the

cells level. Later, the fitness degrees at the remaining upper levels, i.e. case, rule,

and process can be measured using the cell level fitness degrees.

The occurrence level is the most detailed one. It is the level at which the log file

and the normative model are actually compared. But what is an occurrence? Sup-

pose we need to measure the fitness degree of trace < A,B,C,D,B,E,B,C,G >

4.2. FITNESS MEASUREMENT TECHNIQUE 77

against rule ”Activity ’B’ should be followed directly by Activity ’C’”. That being the

case, we look for B first and then check its direct follow event in the trace. If it is

C then the rule is applied, otherwise, it is not. In our trace there are three events

of type B. Thus, the rule is checked three times. Each time a rule is checked in a

specific case is referred to as an occurrence of this rule in that case.

Sometimes, the number of occurrences k depends on the rule to be checked

regardless of the case under investigation. For instance, the rule ”Activity ’A’ should

be always the first activity” is checked exactly once in any case because there is

always one first activity whose value is compared with ’A’. The rule in our example

can be checked as many as there are ’B’ activities in the trace (three times in here).

If k denotes the number of occurrence and L denotes the trace length of the

case under investigation then: k ∈ Z≥0, k 6 L.

Each occurrence has its own fitness degree which we refer to as the occurrence

fitness degree. Given an occurrence and a rule to be checked, there are one of

two possibilities: the rule is either violated or applied at this occurrence. If the

rule is violated, then the fitness degree of the occurrence is 0. In contrast, if the

rule is applied, then the fitness degree of this occurrence is 1.

Definition: Let c be the case under investigation, r be the rule to be checked,

Ok is occurrence number k of rule r in case c, Fitnessk(c, r) is the fitness degree

of Ok, then:

Fk(c, r) =

0 , if the rule is violated at occurrence k

1 , if the rule is applied at occurrence k
(4.1)

According to this definition, the fitness degrees of the three occurrences in the

above mentioned example are (in order): 1, 0, 1.

However, what if there is no occurrence? Assume the trace < A,C,D > is to be

checked against the same rule: ”Activity ’B’ should be followed directly by Activity

’C’”. In such a case, the rule is not checked because, simply, there is no ’B’.

We believe that in such cases (i.e a rule cannot be checked in a specific case) the

result should be neither compliant (1) nor non-compliant (0). Intuitively, including

these cases in the measurement will bias the result to the compliant border (if they

are considered compliant) or to the non-compliant border (if they are considered

non-compliant). One may argue that in such cases the rule is not violated, thus

these cases should be considered as compliant. On the other hand, on may argue

that they should be treated as non-complaint because the rule is not applied.

Nonetheless, both arguments are not valid! We prove our debate here by means

78 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

of a synthesized data set. Given the log file and a business rule, we computed

the rule fitness degree three times. Once after discarding the non-checked cases,

once with considering them as compliant, and once with considering them as non-

compliant. Details are discussed in section 5.2. Accordingly, we exclude these

cases when computing the fitness degree. However, to distinguish them from

other cases we return a dash (-) in the fitness matrix.

Once the fitness degrees of all occurrences of one rule in a specific case are

measured, the results are aggregated to end up with the cell fitness degree of this

case against that rule. This is called the cell fitness degree in this work. Notice

that although the occurrence fitness degree is the atomic unit to measure the other

metrics, however, it does not represent a valuable information individually. Hence,

we keep it hidden in the fitness matrix.

The cell fitness degree (one case against one rule) denoted by F (C,R) is the

aggregation of the fitness degrees of all occurrences of that rule against this specific

case.

Suppose g is an aggregation function, F (c, r) is the fitness degree of case C

against rule R, Fi(C,R) is the fitness degree of occurrence i of rule R in case C,

k is the number of occurrences of rule R in case C, then

F (C,R) = g(F1(C,R), F2(C,R), .., Fk(C,R)) (4.2)

Notice here that the aggregation function is not applied in two scenarios: 0 and

1 occurrence. If there is no occurrence then the result is simply a dash because

there is no values to aggregate. If there is only one occurrence then there is no

need to run the aggregation function because the result is simply the occurrence

fitness degree.

The cell fitness degree can be seen as an intermediate value between the occur-

rence fitness degree and the other three levels. It is used to compute the fitness

degrees at the upper levels, i.e. case, rule, and process. Figure 4.2 shows the

relation between the fitness degrees shown in the fitness matrix. The case fitness

degree is the aggregation of this case against all rules.

Suppose g is an aggregation function, F (C) is the fitness degree of case C,

F (C,Ri) is the fitness degree of case C against rule i then

F (C) = g(F (c, r1), F (c, r2), .., F (c, rr)) (4.3)

Similarly, the rule fitness degree is the aggregation of fitness degrees of all

4.2. FITNESS MEASUREMENT TECHNIQUE 79

Figure 4.2: Applying aggregation to measure fitness degrees

80 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

cases against this specific rule. If g is an aggregation function, F (R) is the fitness

degree of all cases against rule R, F (Cc, R) is the fitness degree of case c against

rule R then

F (R) = g(F (C1, R), F (C2, R), .., F (Cc, R)) (4.4)

The process fitness degrees can be obtained by three ways: either aggregating

the fitness degrees of all rules, or aggregating the fitness degrees of all cases, all

aggregating the fitness degree of all cells.

Suppose g is an aggregation function, F (C,R) is the fitness degree of case C

against rule R, F (C) is the fitness degree of case C, F (R) is the fitness degree

against rule R then, the process fitness degree can be measured by aggregating

the fitness degrees at the cells level:

F =g(F (C1, R1), F (C1, R2), .., F (C1, Rr)),

F (C2, R1), F (C2, R2), .., F (C2, Rr)), ...

F (Cc, R1), F (Cc, R2), .., F (Cc, Rr)))

(4.5)

or aggregating the fitness degrees at the cases level

F = g(F (C1), F (C2), .., F (Cc)) (4.6)

or aggregating the fitness degrees at the rules level

F = g(F (R1), F (R2), .., F (Rr)) (4.7)

4.3 Aggregation functions

In mathematics, aggregation is the process of replacing a set of values by a sin-

gle representative one using an aggregation function. Aggregation functions (also

called aggregation operators, both terms are used interchangeably in the liter-

ature) are used for this purpose. An aggregation function such as the average

combines a set of input values into one representing the input values [116].

There exist a variety of aggregation functions such as: arithmetic mean, mini-

mum, maximum, weighted arithmetic mean, etc. Each function has some charac-

teristics which make it suitable for some cases [114–116]. For instance, in mutil-

criteria decision making problems, the weighted arithmetic mean can be used to

4.3. AGGREGATION FUNCTIONS 81

evaluate each alternative. It allows the decision maker assigning different weights

to the set of criteria according to their importance. In this research we apply ag-

gregation to combine a set of fitness degrees at low levels to end up with one value

representing the fitness degree at higher levels.

Aggregation functions have two fundamental characteristics: the preservation

of bounds and monotonicity [114].. The preservation of bounds indicates that the

aggregation of n 0s should yield to 0 as well. Similarly, the aggregation of n 1s

yields to 1. Suppose g(x1, x2, ..., xn) is an aggregation function then

g(0, 0, ..., 0) = 0, g(1, 1, ..., 1) = 1 (4.8)

In this research, the preservation of bounds characteristic ensure that if all

fitness degrees at lower levels are 100% compliant/non-compliant, then the fitness

degree at the upper level(s) will be the same. Suppose we aim at measuring the

fitness degree against a rule which is not applied in any of the recorded cases.

In such a case, the rule fitness degree is simply 0 because it is never applied.

Similarly, if all rules are applied, then the case fitness degree is 1.

The monotonicity property indicates that the function is either of never increas-

ing or of never decreasing as the values of the input increase. Suppose x and y

are inputs, (xi ≤ yi) for all i ∈ {1, ..., n} then

g(x1, x2, ..., xn) ≤ g(y1, y2, ..., yn) (4.9)

Assume we have three rules that are checked in two cases. Case 1 scores

(0,1,1), Case 2 scores (0.5, 1, 1). That being the case, the fitness degree of the

second case is less than the fitness degree of the first one.

In the literature, there exist a variety of aggregation functions. However, the

question is: which function(s) should be used in this research? To answer this

question we need first to determine the properties which describe the suitable

operators to aggregate the fitness degrees for compliance auditing purposes.

Hereafter, g refers to the aggregation function. x, y, z indicates three inputs.

f(x), f(y) denotes the output the aggregating x, y, z using function g respectively.

• Compensation (internal): the aggregation function g has the compensation

property if its output is a value in the range between the minimum and max-

imum values of the input.

min(x) ≤ f(x) ≤ max(x) (4.10)

82 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

• Strict monotonicity: an aggregation function is considered strictly monotone

increasing if:

x ≤ y but x 6= y then g(x) < g(y) for every x, y ∈ [0, 1]n (4.11)

Notice that this part: x ≤ y but x 6= y cannot be replaced by x < y because

it has a different meaning. x < y indicates that for all components of x and

y, xi < yi. However, x ≤ y but x 6= y indicates that at least one component

of y is greater than that of x. The later is the requirement in this research.

• Idempotency: an aggregation function is considered idempotent if for every

input x:

x = (t, t, ..., t), t ∈ [0, 1] the output is g(x) = t (4.12)

• Symmetry: the function f is symmetric if its output does not depend on the

permutation of input values. Hence,

g(x1, x2, ..., xn) = g(xP (1), xP (2), ..., xP (n)) (4.13)

• Bisymmetry: is an important property when selecting the aggregation func-

tion(s) at the process level. Recall here that the process fitness degree can

be obtained by aggregating the values at one of three levels; cells, cases or

rules. This is called an extended aggregation function in the literature be-

cause it is a combination of more than one function, i.e. the process fitness

degree can be measured by aggregating the rules fitness degrees which is in

turn the aggregation of some other degrees. Having a bisymmetric function

ensures that the results are always the same regardless of the level at which

the values are aggregated.

If gij represents the fitness degree of case i against rule j, then the aggre-

gation function is bisymmetric if for all i, j = 1, 2, ... and for all x ∈ [0, 1]ij

gij(x) = gi(gj(x11, ..., x1j , ..., gj(xi1, ..., xij))

= gj(gi(x11, ..., xi1, ..., gi(x1j , ..., xij))
(4.14)

• Neutral element: the neutral element is an element which does not affect

4.3. AGGREGATION FUNCTIONS 83

the result such as zero in addition and 1 in multiplication. Having a neutral

element is important in this research to deal with dashes, i.e. cases in which

the rule cannot be checked. An aggregation function g has a neutral element

e ∈ [0, 1] if for every t ∈ [0, 1] in any position it holds

g(e, ..., e, t, e, ..., e) = t (4.15)

The above mentioned points are general properties to measure the fitness de-

grees at the different level. It is not necessary to have an aggregation function

which applies all these behaviors. However, we will select the properties which are

suitable to measure each metric individually. For instance, bisymmetry is suitable

for one metric only, the process fitness degree, because it is the only one which is

extended. On the other hand, having a neutral element is suitable to measure all

metrics because in each metric there is a probability of have a dash (unchecked

rule).

Existing aggregation functions can be categorized, according to their semantics,

into four main categories: averaging, conjunctive, disjunctive, and mixed. An

aggregation function g is said to be an averaging function if min(x) ≤ f(x) ≤
max(x). It is used when there a compensation behavior is required. Conjunctive

functions are bounded by the minimum value at the upper bound, f(x) ≤ min(x).

In contrast, disjunctive functions are bounded by the maximum value at the lower

bound, f(x) ≥ max(x). Conjunctive and disjunctive are both required when a

reinforcement behavior is required. Mixed functions are simply the functions which

cannot be categorized under any of the other three classes. These are a mixed of

more than one category.

Conjunctive and disjunctive functions do not fit in our research because they

are not bounded by the minimum and maximum values. Both types not allow

for compensation behavior which we consider important in this research. Hence,

they are discarded in the procedure of selecting the aggregation functions. Mixed

functions are discarded as well for the same reason. Hence, our discussion will be

limited to averaging functions.

Hereafter we first discuss the properties which should be considered to measure

the fitness degree at each level separately. Then, accordingly, we select a set of

suitable aggregation functions. Notice that the occurrence fitness metric is out

of the discussion here because it is not generated using an aggregation function.

However, it is the input for the cell fitness metric.

84 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

4.3.1 Cell fitness metric

The cell fitness degree (F (c, r)) represents the fitness degree of one case against

one rule. It is generated by aggregating the fitness degrees of all occurrences of

that rule in this specific case.

As an aggregation operator we select the ordered weighted average (OWA)

function because it can represent a set of aggregation operators which are suitable

for this approach. OWA was first introduced in 1988 by Ronald R. Yager to be

used in the fuzzy sets field. It can be seen as the abstract for a set of well-

known aggregation operators including themaximum, minimum, arithmetic mean,

weighted arithmetic mean, the k-order statistics, etc. [114]. The OWA general

formula is given as the following:

OWA(x1, x2, ..., xn) =

n∑
i=1

wixσ(i) (4.16)

where wi is between [0,1] and the summation of weights is equal to 1. σ is

a function which orders the values to be aggregated before applying the formula.

In the equation xσ(i) denotes the value at the position i after the input values are

ordered.

In order to represent one of the operators, we need first to customize the σ func-

tion and then to assign the weights accordingly. The σ function is defined according

to the function we want to present. For instance, we can use the non-increasing

function or the non-decreasing function to represent the operators: maximum,

minimum, arithmetic mean, median and the k-order statistics. Applying any of

these two functions (i.e non-increasing or non-decreasing functions) will produce

a set of ordered elements. In the next step we can assign the weights with respect

to the ordering function. For instance, if the non-decreasing function is used to

represent the maximum operator, the result will be a list of ordered values in which

the maximum value is at the last position. That being the case, the value in the

last position is assigned the weight of 1 whereas all other values are assigned the

weight of zero. Figure 4.3 shows the weights corresponding to each operator if the

non-decreasing function is used.

As mentioned earlier, the OWA function is an abstract for a set of well-known

aggregation functions. Among these function we select the: minimum, arithmetic

mean, weighted arithmetic mean, and median since they are appropriate in our

context.

The OWA operator has the following property: monotonic, idempotent, and has

4.3. AGGREGATION FUNCTIONS 85

Figure 4.3: OWA weights for special cases

86 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

a compensation behavior. The later ensure that its result is bounded by the min

and max value of the input. However, it does not have a neutral number.

Minimum function:

the Min function is an extreme! By using it the process manager indicates that a

single violation is enough to identify the cell as a completely non-compliant case

against the given rule. Hence, it represents a very strict interpretation. This

function should be used when it is important to be stuck to the business rule. For

instance, when the process is very critical and any deviation may cause dangerous

consequences. Or that the manager tends to use an old managerial approach in

which managers do not believe in the flexibility of execution. Normally, this type

of managers would prefer to be stuck to the given prescribed process (this is not

common these days)!

Notice here that the Maximum function represents the other extreme. However,

it is inappropriate in our context. The maximum function indicates that a single

compliant occurrence is enough to consider the cell as fully compliant regardless of

the number of violating occurrences. However, this does not match the compliance

auditing definition. Assume a case in which a given rule is checked 100 times and

that it was applied only once out of the 100 times. In this case, the cell fitness

degree will be considered as completely compliant if the maximum function is used!

Median function:

The median value is the value separating the higher half of the data from the lower

half. Using either the ascending or descending order as a σ function, the value at

the center is returned. If the number of input values is odd then there will be one

value at the center. Otherwise, there will be two values at the center. That being

the case, the arithmetic mean of the two values is the result.

The Median is suitable to use when the process manager has a moderate ap-

proach to interpret the compliance checking result. Using the median operator,

the cell is completely compliant if the majority of occurrences are compliant and

non-compliant otherwise. Suppose a case in which there are seven occurrences

and that the fitness degrees of the seven occurrences are (in order): 0, 1, 1, 0, 0,

1, 0. Using the median operator, the values are first ordered either ascendingly or

descendingly. The result, using an ascending order, is: 0, 0, 0, 0, 1, 1, 1. Then,

the value in the center is selected as the output of the function. However, in case

4.3. AGGREGATION FUNCTIONS 87

there is an even number of input values, then the result is the average of the two

values in the center after the input values are ordered.

Arithmetic mean function:

The arithmetic mean (AM) is a member of the simple means family which contains

the geometric and harmonic means as well. It is an additive operator which is

used to average a set of abstract values. Thus, it is suitable for the purpose of this

research. Usually, we refer to the arithmetic mean as the average in our daily life.

The arithmetic mean formula for a set of n values is:

AM =
1

n

n∑
i=1

x(i) (4.17)

AM is yet another moderate approach. It can be used when input values are

considered to have equal contribution to the output value. However, this is not

usually the case when checking the process compliance. For instance, if the input

is 0, 1, 1, 0, 0, 1, 0 then the fitness degree using the AM is 0.43.

OWA function:

Using AM, occurrences are considered to have equal contribution to the fitness de-

gree. However, in some cases, process managers need to assign different weights.

For instance, suppose the process manager has the following semantics: if the

rule is violated three times out of 5 then the cell is completely non-compliant.

Otherwise, less violations can be compensated to some extent by the compliant

occurrences. To achieve this semantics, we use the OWA function in which the

process manager provides a specific weight vector to each occurrence.

To measure the fitness degree using OWA operator, the input values are first

ordered ascendingly. Then the firstm occurrences are assigned weights equal 1/m

where m is the number of violating occurrences (3 in our example). Accordingly,

if the number of violating occurrence is >= 3 then the cell is completely non-

compliant. Otherwise, if all occurrences are compliant then the cell is completely

compliant. Otherwise, the cell fitness degree is compensated to some extent by

the compliant occurrences. For instance, if m = 2 then the cell fitness degree will

be 0.33

The value of m is provided by the process manager. However, the value of k is

not fixed. The process manager does not know the value of k to provide a suitable

value for m. For instance, m = 5 is relatively high when k = 4. However, it is

88 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

relatively very small when k = 200. Moreover, what if the entered value for m is

less than the value of k. To overcome this issue, we define a new parameter called

the Relv. It represents the percentage of violating cases to the overall number of

occurrences. Relv stands for the relative number of violating occurrences. It is

simply, m/k which is 60% in our example. Having the value of Relv and k which is

generated automatically, m = Relv ∗ k.

4.3.2 Case fitness metric

This is the aggregation of the fitness degrees of one case against all rules (cells

in one row in the fitness matrix). The case fitness metric is important to study

one specific case. Normally it is used to measure the fitness degrees of suspected

cases. As mentioned earlier, dashes are not included in the aggregation procedure.

Hence, if the fitness degree of a given case is a dash then it could not be checked

against any of the business rules. However, this is a weak assumption.

To measure the case fitness degree we define: Minimum, Median, AM, Here-

after, we discuss the semantics of each operator and their description. However,

we skip the discussion of the operators that are already discussed in the cell fitness

metric section, i.e Min and AM.

Minimum function:

as used earlier, the minimum represents an extreme. It can be used just in case all

rules should be applied strictly to accept the case as a compliant one. Any violated

rule is enough to penalize the case and reject it in the compliance context.

Arithmetic mean function:

The arithmetic mean (AM) represents a moderate approach to measure the case

fitness degree. It is the most suitable operator when the checked rules have equal

contribution in the fitness degree. It should be used when the process manager has

a moderate clue with no preferences. Hence, it is defined as the default operator,

i.e. in case the process manager did not select an operator then this one is used.

WAM:

unlike the AM, in which rules are assigned equal weights, the WAM allows the

process manager to assign different weights. Each business rule is assigned a

4.3. AGGREGATION FUNCTIONS 89

weight showing its importance in the aggregated value.

WAM =

r∑
i=1

(F (C,Ri) ∗ wi) (4.18)

Where, r is the number of business rules, F (C,Ri) is the fitness degree of case

under investigation against rule i,wi is the weight assigned to rule i. Notice that

the AM is a special case of the WAM where input values are assigned equal weights.

The WAM is the most appropriate operator to use when some rules are impor-

tant than the others. Suppose the normative model contains five business rules

and that one of them is more important than all other rules whereas the others

are almost equally important. That being the case, the process manager can as-

sign 60% of the weights using the WAM operator and distribute the remaining 40%

among the remaining rules. If a case can be checked against all these rules (no

dashes), then the cell fitness degree corresponding to the 60% weighted rule has

the highest contribution on the fitness degree of this case.

In WAM, the summation of weights assigned to rules should be equal to one.

However, what if there are some rules which cannot be checked, i.e. a dash in the

input. In this case, the rule should not be considered in the calculation. To solve

this, we define a flexible weighting function which can deal with the any scenario.

First, the user should enter a value between 0 to 10 for each business rule to

show the importance of this rule. We call this value the importance degree. A 0

importance degree indicates the least importance whereas a 10 indicates the most

importance. Once the importance’ degrees are determined, the weighting function

is used to assign the weight for each rule automatically taking into consideration

the dashes in the aggregated values.

WRi
=

importance degree of Ri∑
importance degree of all checked rules

(4.19)

Assume the normative model contains four business rules, the importance’ de-

grees are (in order): 5, 8, 3, 10 , the case under investigation has the cells fitness

degrees: 1, 0.5, -, 1) against each of the four rules in order. Notice that the case

is not checked against rule number 3. Given these values, the weights will be:

1/23, 8/23, -, 10/23 where 23 is the summation of the importance’ degrees (5, 8,

10) of all checked rules (R1, R2, R4).

Add Chouquet integrals ...

90 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

4.3.3 Rule fitness metric

The rule fitness degree is the aggregation of the fitness degrees of all cases against

this rule. In the fitness matrix it is the aggregation of the cells values in one column.

To measure the rule fitness degrees we use: minimum, AM and WAM functions.

Hereafter we discuss the semantics of each aggregation function. The description

of the functions are not given here because it is already discussed earlier in the cell

fitness degree point. However, we discuss the weighting function which is used to

assign weights in the WAM function. As mentioned earlier, when measuring the rule

fitness degree dashes are not considered regardless of the aggregating function

used. It could happen that the fitness degree of one rule is a dash. Although this

is a weak assumption, however, if it happens then it indicates that the normative

model and the compliance requirements should be re-engineered.

Minimum function:

This function is used when the rule should be applied very strictly to consider

it as a completely compliant one. Any violating case is penalized heavily. AM:

this function is used for a moderate semantics. Thus, we select it as the default

function.

WAM:

The WAM function is used when cases do not contribute equally to the rule fitness

degree. The weights are assigned according to the cases attributes. For instance,

in the procurement process, cases in which the PO value is high are more impor-

tant than those with low PO value. The process manager should select the attribute

which control the weighting function. For the moment, only one attribute is con-

sidered. Intuitively, to be able to assign a weight to a specific case, it should hold

a value for this attribute. Cases in which it does not appear are treated as less

important cases.Notice that this does not apply to cases with a dash value.

Weighting function depends on the data type of the selected attribute, i.e. nu-

merical, nominal, date, etc. If the attribute has a numerical value then, the user

enters some thresholds which can be used in the weighting functions. For instance,

if the user defines two thresholds: 1000 and 2500. Then the cases which could be

checked are categorized into three groups: cases in which the selected attribute

value is less than 1000, cases in which it is between 1000 and 2500 and cases

in which the attribute value is above 2500. Hence, there are three weights. The

4.3. AGGREGATION FUNCTIONS 91

groups are ranked according to their importance, i.e. the least important group

gets the rank 1, then the second least important is ranked by 2 and so on. Once

the groups are ranked, each group is assigned a weight equal to its rank over the

summation of ranks.

W groupi =
ranki∑# of groups

i=1 i
(4.20)

In our example, suppose that the user consider the first group as the least

important, then the three groups are assigned the weights (in order): 1/6, 2/6,

3/6.

In case the attribute contains a nominal data, things become easier. Unique

values are grouped according to their importance. The process manager can cat-

egorize two or more values to the same group to give them equal weights. In

addition, values that are not categorized by the process manager are grouped to-

gether automatically and are assigned the least rank. Later on, the weights are

assigned according to the above mentioned formula.

Attributes holding date values are treated in a way similar to that used for

numerical values. The process manager should provide some thresholds to rank

the values. However, in date values the comparison condition is before and after

instead of greater than and less than. After ranking the cases, they are assigned

weights in the same manner.

Regardless of the data type, just in case the selected attribute does not appear

in some checked cases then these cases are categorized in a new group and will be

assigned the least weight. In the above example, suppose that some cases do not

have this attribute then the weights are shifted one step. New weights are: 1/10,

2/10, 3/10, 4/10, where the first group is the one in which the attribute does not

appear.

Notice that normally the selected attribute is related to the business rule whose

fitness degree is measured. Hence, having cases in which the attribute does not

appear is a weak scenario. However, we consider it her to keep the technique as

flexible as possible.

4.3.4 Process fitness metric

If the aggregation function is a bisymmetric one, then there are three approaches

to measure this degree: either aggregating the fitness degrees at the cells level,

or aggregating the fitness degrees of cases, or aggregating the fitness degrees of

92 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

rules.

Among the above mentioned functions, there are only two functions which can

be considered: minimum and AM functions. However, the minimum function is

not suitable to measure this degree. Suppose 1000 cases are checked against 5

rules and that all rules could be checked in all cases. This generates 5000 fitness

degrees at the cells level. Lets assume that all these values are 1 (completely

compliant) except one cell in which the result is zero. That being the case the

process is the process is almost 100% compliant. However, using the minimum

function the result will be zero. So, the whole process is completely violated just

because the result of one cell is zero. Hence, the minimum function is not used to

measure this degree.

However, what is the need for three approaches if the result is always the

same? Actually, the first approach, i.e. aggregating the values at the cells level,

is the default one. However, the other two approaches are defined to allow the

process manager using the WAM function. Suppose the process manager aims at

measuring the process fitness degree taking into consideration the weights of the

business rules. In this case, he can measure the fitness degree of cases using

the WAM function and then measure the process fitness degree. Similarly, if the

recorded cases are not equally important and the process manger aims at measur-

ing the process fitness degree taking into consideration the different contribution

of each case then the WAM can be used at the rules level and then another fitness

degree to measure the process level fitness degree.

4.4 Example

Hereafter we introduce a simple example to illustrate how the aggregation is ap-

plied. Assume that the business process under investigation is the procurement

process and that it is a collection of seven activities; ’Create PO’, ’Sign’, ’Release’,

’Invoice receive’, ’Goods receive’, ’Pay’, and ’Change line’. For the sake of simplic-

ity we will use symbols instead of the real activities’ names. So: A represents the

event ’Create PO’, B for ’Sign’, C for ’Release’, D for ’Invoice receive’, E for ’Goods

receive’, F for ’Pay’, and G for ’Change line’. Given a log file of 10 cases and a set

of five business rules, we aim to fill out the fitness matrix shown in Table 4.1) as

presented earlier in this chapter. The traces of the cases recorded in the log file

are (in order):

1. < A,B,C,G,E,D, F >

4.4. EXAMPLE 93

2. < A,B,C,E,D, F, F, F >

3. < G,A,B,C,D, F >

4. < A,B,C,G,E,G,E,E,G,B,C,E,D, F, F, F >

5. < F,A,B,C,G,D,E >

6. < A,B,C,E,G,B,G,B,C,G,B,C,E,E,E,D,D, F >

7. < A,B,C,G,D, F >

8. < A,B,G,C,G,E,D,D, F, F >

9. < A,G,B,C,D, F >

10. < A,C,D, F >

The five business rules holding the compliance requirements are:

Table 4.2: The business rules representing the compliance requirements

Rule Description

R1 A should be the first activity

R2 B should be followed directly by C

R3 C should be followed eventually by F

R4 SOD (A, E)

R5 If G.modification_value >1,000 then G should be followed eventually by B

The first three rules represent sequencing requirements. The fourth one rep-

resents an HR requirement and the last one represents a data requirement. To

check the fourth rule we need to know the performers of events A and E for each

individual case. Similarly, we need the modification values to check the last rule.

Modification value mentioned in R5 is an attribute for activity G. It indicates to

which extent the PO value has been changed. According to the rule, if this value

is above a threshold of 1,000 Euro the purchase order should be signed before the

case is closed. The information required about performers and modification values

are given in table 4.3.

Below we consider two different scenarios and select the suitable aggregation

functions for each scenario.

Scenario A

The process manager has a moderate clue. He aims at measuring the fitness

degree using a moderate function in which all cells have equal contribution to the

fitness degree.

That being the case, the AM is the best to use. It provides a moderate semantic

and equal weights. Table 4.4 shows the fitness degrees at the cells level. The

values in the table are the result of using the AM function to aggregate the values

94 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

Table 4.3: Originators and modification values required to check the fitness

T Originators

1 < A(OrgX), B, C,G,E(OrgY), D, F >
2 < A(OrgX), B, C, F,E(OrgZ), D,C >
3 < G,A(OrgX), B,B,C,D, F >
4 < A(OrgX), B, C,G,E(OrgX), G,E(OrgZ), E(OrgX), G,B,C,E(OrgW), D, F >
5 < F,A(OrgX), B, C,G,D,E(OrgY) >
6 < A(OrgX), B, C,E(OrgY), G,B,G,B,C,G,B,C,E(OrgZ), E(OrgX), E(OrgW), D,D, F >
7 < A(OrgX), B, C,G,D, F,C,C >
8 < A(OrgX), B,G,C,G,E(OrgX), D,D, F, F >
9 < A(OrgX), G,B,C,D, F >
10 < A(OrgX), C,D, F >
T Modification values

1 < A,B,C,G(mod. = 200), E,D, F >
2 < A,B,C, F,E,D,C >
3 < G(mod. = 0), A,B,B,C,D, F >
4 < A,B,C,G(mod. = 0), E,G(mod. = 1500), E,E,G(mod. = 0), B, C,E,D, F >
5 < F,A,B,C,G(mod. = 1750), D,E >
6 < A,B,C,E,G(mod. = 0), B,G(mod. = 7560), B, C,G(mod. = 1354), B, C,E,E,E,D,D, F >
7 < A,B,C,G(mod. = 5163), D, F,C,C >
8 < A,B,G(mod. = 0), C,G(mod. = 0), E,D,D, F, F >
9 < A,G(mod. = 1100), B, C,D, F >
10 < A,C,D, F >

Table 4.4: Fitness matrix for scenario A

R1 R2 R3 R4 R5 Fitness (Cases)

Case1 1.00 1.00 1.00 1.00 - 1.00

Case2 1.00 1.00 0.50 1.00 - 0.88

Case3 0.00 0.50 1.00 - - 0.50

Case4 1.00 1.00 1.00 0.00 1.00 0.80

Case5 0.00 1.00 0.00 1.00 0.00 0.40

Case6 1.00 0.66 1.00 1.00 1.00 0.93

Case7 1.00 1.00 0.33 - 0.00 0.58

Case8 1.00 0.00 1.00 0.00 - 0.50

Case9 1.00 1.00 1.00 - 1.00 1.00

Case10 1.00 - 1.00 - 0.00 0.25

Fitness (Rules) 0.80 0.80 0.78 0.67 0.50 0.73

4.4. EXAMPLE 95

at the occurrence level. Starting from these values, the fitness degrees at the

other three levels are measured using some aggregation functions.

Cases (1 and 9) are completely fit. Case 6 comes on the second place. It is

completely fit against all rules except for rule 2. Case 5 scores the least fitness

degree. It violates three rules out of the five. Rule 5 could not be checked in 4

cases and the fitness degree against this specific rule is 0.50 which is lower than

the fitness degree against all other rules. Notice that all fitness degrees against

rule 1 are either 0 or 1 because the rule can be checked only once in each case.

This is also the case against rule 4 as well. The rule represents an HR compliance

requirements. Thus, only the first occurrence is checked so that the values are

either 1 or 0. On the other hand rules 2 and 3 are sequencing rules so are checked

as much as they occur.

Scenario B

The process manager aims at measuring the cases fitness degree. However, he/she

considers R3 as the most important business rule and then R4. Rules 2 and 5 are

equally important. R1 is the least important one.

Given this scenario, we can use the WAM operators to measure the cases fitness

degrees. According to the process manager, the rules are assigned the following

degrees of importance: 1, 2, 4, 3, 2 to the five rules in order. Notice that rules 2

and 5 are assigned equal values. Accordingly, if all rules are checked, the weights

would be: 1/12, 2/12, 4/12, 3/12, 2/12. Using these weights, the result will be

as shown in table 4.5.

Table 4.5: Fitness degrees at the case level for the scenario B

Cases fitness degrees

Case1 1.00

Case2 0.80

Case3 0.71

Case4 0.75

Case5 0.41

Case6 0.94

Case7 0.48

Case8 0.50

Case9 1.00

Case10 0.71

96 CHAPTER 4. FLEXIBLE COMPLIANCE AUDITING FRAMEWORK

4.5 Conclusion

In this chapter we have introduced the Flexible Compliance Auditing Framework to

support the business world with more applicable metrics. The framework provides

different semantics for a compliant process. Hence, it can be used to check the

compliance taking into consideration the business context in which it is applied. A

set of fitness metrics are defined to measure the fitness degree at different levels

of abstraction. In addition, the concept of ”not checked rules” is introduced to the

field of compliance auditing. We show why it is important to distinguish them from

the remaining cases.

Chapter 5

The Loan Approval Process:

A Synthesized Data Set

To evaluate the proposed technique we use a real log file and a synthesized log

file. In this chapter we discuss the results obtained by running the implemented

tool on the synthesized log file. The process of generating the log file and defining

the business rules is discussed in section 1. Results are discussed in section 2 in

which the results of each metric is discussed separately. The description of the

implemented tool is given in Chapter 9.

5.1 Generating the log file and defining the busi-

ness rules

To evaluate the proposed technique, a synthesized log file is generated using the

the SecSy tool. The file is generated for the loan approval process which is exe-

cuted daily in banks and other lending organizations. When selecting the business

process, we aim at using a common process which is easy to understand and de-

fine business rules for. Figure 5.1 below shows the BPMN model representing the

sequence of activities to perform the process.

97

98 CHAPTER 5. THE LOAN APPROVAL CASE STUDY

F
ig
u
re
5
.1
:
L
o
a
n
a
p
p
ro
v
a
l
p
ro
c
e
s
s
m
o
d
e
l
u
s
in
g
th
e
B
P
M
N
n
o
ta
ti
o
n
s

5.1. GENERATING THE LOG FILE AND DEFINING THE BUSINESS RULES 99

Once a loan application is received, a new process instance is triggered. The

staff in the lending department works on checking the application form complete-

ness. If there is any missing information then the form is returned back to the

client until the form is completed. Next, the property is appraised in parallel with

checking the history of the client credit and assessing the loan risk. The risk ana-

lyst is responsible for assessing the loan risk. The estimated value of the property

in addition to the loan risk analysis are forwarded to the eligibility analyst who is

responsible for assessing the eligibility. Accordingly, the application is either ac-

cepted or rejected. If it is rejected then the process is terminated. If it is accepted

then an acceptance pack is prepared and the home insurance quote is checked to

continue the process and verify the payment agreement. Next, it is the applicant

decision to agree or disagree. If he/she agrees then the loan is approved and

the process is terminated. Otherwise, the process is terminated with a canceled

application.

To generate the log file, we started with a synthesized data set from the

3TU.Datacentrum website [117]. The selected data is suitable to check sequenc-

ing and temporal requirements. However, it cannot be used to check the human

resources and data requirements. This is because the log file does not contain the

information required to check these two types of requirements. Hence, we use the

Alpha Miner plugin [118] under ProM 6.5 [119] to build a Petri net representing

the data set. In a next step, we use the mined model to generate the required

data set using the SecSy tool. Alpha miner is used because it generates a Petri-net

model which is the required input format for SecSy.

SecSy is a log generator tool [120]. It is based on simulating the control flow

of a business process using a Petri net model. SecSy can be used to define some

originators and attributes and attach them to the generated events. It can also

be used to include detailed timing properties such as activity durations and delays

between activities. The most important feature of the SecSy tool is the ability

to consider compliance requirements. For instance the tool can be configured to

generate cases which deviate a given business rule such as the segregation of

duties and delay of events.

The generated log file contains 1000 cases with a total of 10662 events. The

originators defined are: loan department manager, risk analyst, eligibility analyst

and loan department staff. The attributes defined are shown in table 5.1 with their

corresponding data.

The log file is generated in two steps: first the process is simulated to generate

100 CHAPTER 5. THE LOAN APPROVAL CASE STUDY

Table 5.1: Attributes defined for the loan approval log file

Attribute Type Activity Value

1 Loan type String Loan application received housing, car, personnel

2 Client group String Loan application received G1, G2, G3, G4

3 Property value Numeric Apprise Property

4 Risk level String Assess risk low, medium, high

5 Number of points Numeric Assess eligibility

6 Loan value Numeric Verify payment

7 Payback period Numeric Verify payment

the required number of cases. In this step, events are attached with the defined

data according to the requirements. Next the modifiers are applied to modify the

generated cases in a way that creates some non-compliant cases. In our case

we used two types of modifiers: unauthorized execution and SOD. Unauthorized

execution modifier works on the originator field. It adjusts the originator in a way

that violates some HR requirements. For instance if an event should be executed

by an originator X then this modifier changes the value X to have a non-compliant

case. The SOD modifier is used to create cases that violates segregation of duties

requirement.

The log file generated using the SecSy tool does not contain cases violating se-

quencing requirements. So, we run the Add Noise plug-in [reference] under ProM

6.5 framework to have some violating cases for the purpose of this research. The

plug-in reads two parameters; the percentage of adding events and the percentage

of removing events. Both parameters are adjusted to 5%.

To formalize the set of business rules which will be checked, we took into con-

sideration the process model provided to the log generating tool and the data

attached to the events. Accordingly, we define five business rules: three sequenc-

ing requirements and two HR requirements. It was difficult to check the other two

types because of the limitations of the log generating tool. The defined rules are:

• R1: Prepare acceptance pack should be followed directly by Check if home

insurance quote is requested

• R2: Check application form completeness should be followed eventually by

Assess eligibility

• R3: Check application form completeness should be the first activity

• R4: SOD(Assess loan risk, Assess eligibility)

• R5: Approve application should be executed by the Loan department man-

ager

5.2. RESULT ANALYSIS 101

According to the process model, Rule 1 is checked whenever the application is

not rejected. The activity ’Prepare acceptance pack’ appears in 476 cases out of the

1000 cases forming the entire log. Since it detected 490 times in the entire log then

it should have been performed more than once in some cases. The activity ’Check

application form completeness’ appears 1564 times in the log file, however, it does

not appear in 24 cases although it should be always the first activity according to

Rule 3!

Rationally, Rule 3 can be checked only once in each case. The result is either

one or zero, no other possibilities. This is because there is always a first activity

for each cases that is either ’Check application form completeness’ or not. Rule 4

is one of the most common business rules for HR compliance requirements. The

rule implies that the activities ’Assess loan risk’ and ’Assess eligibility’ should not

be performed by the same person. According to the results, the rule is checked in

all cases.

Rule 5 is checked, normally, as much as there are approved applications. Ac-

cording to the process model, the process is terminated in one of three ways;

either the application is approved, rejected, or canceled by the client. Apparently,

238 (1000-762) applications are just approved. When generating the log file, we

assume that this is the most important rule that should be strictly applied.

Notice here that the number of occurrences does not reflect the number of cases

in which the rule is checked. It could be the case that the rule is checked different

times in the one case but is never checked in another case. In our example this

happened in Rules 1, 2 and 5.

5.2 Result analysis

The results are studied at the different levels starting by the most abstract level

(the log file level) and moving down to the most detailed level (one case against

one rule level). The tool is run using the different aggregation operators except

for the median since it is not implemented yet.

5.2.1 The process level fitness degree

According to our definition, the process fitness degree is measured by aggregating

the fitness degrees of: cells, cases, or rules. Regardless of the aggregated values,

the AM operator is used to end up with one value representing the fitness degree of

102 CHAPTER 5. THE LOAN APPROVAL CASE STUDY

the entire log. Table 5.2 shows the fitness degrees using different aggregation op-

erators. The operator used at the cells level is given in the first column. The other

columns show the fitness degrees measured by aggregating the fitness degrees of

cells, rules and cases in order. The fitness degree of each rule (third column) and

case (last column) is measured using the AM operator. The reason behind using

this operator among the others is to avoid the bias towards any of the two edges.

Table 5.2: The fitness degree at the process level

Aggregation operator for cells AM of cells AM for rules AM for traces

Min 92.74% 92.24% 92.42%

AM 93.33% 92.83% 92.97%

WAM 93.22% 92.75% 92.86%

Results show that the majority of cases are compliant. As expected, results

are bounded between the Min and the Max results. AM and WAM outputs are in

between. Notice that the difference between the results of the different operators

is relatively small. The is because the input values are very close. For instance,

there is only 39 cases making the difference between the results of the different

operators.

The process fitness degree is a good indicator to measure the overall perfor-

mance. Nevertheless, it cannot be used to check more details such as which cases

are completely compliant, non-compliant, partially compliant? Which rule is the

most applied one and which one is most violated one? How many times a given

rule is checked in a specific case? What if some rules are more important than

others? To answer such questions, we use the tool to check the fitness degree one

level lower. At this level, two measures are provided; cases and rules.

5.2.2 Rule level fitness degree

This measure is of high importance for process managers. It helps them measur-

ing the fitness degree against each compliance requirement separately. Table 5.3

shows some basic statistics about the results using the AM operator for both cells

and rules. A general look shows that the different rules have close fitness degrees

(range [89% - 95%]. However, this is not necessarily true! The fitness degree

is affected by the number of aggregated values, i.e. how many times each rule

is checked. For instance, comparing the results of rules 4 and 5, the difference

between the two values is less than 1%. However, Rule 4 is checked in all cases

5.2. RESULT ANALYSIS 103

(100% of the log file) whereas Rule 5 is checked in only 238 cases. Mathematically,

using one of the averaging operators, the fitness degree against one specific rule

is affected by the number of cases that are checked. More checked cases means

less contribution of each case on the final result. For instance, in our example, the

fitness degree of each case used to calculate the fitness degree of Rule 4 affects

the final result by (+/-) 0.0010 whereas each trace used to calculate the fitness

degree of Rule 5 affects the final result by (+/-) 0.0042!

Table 5.3: Rules fitness degrees: statistical information

R1 R2 R3 R4 R5

Fitness degree 89.81% 94.08% 94.50% 93.30% 92.44%

No. of cases with Fitness degree = 1 421 903 945 933 220

No. of cases with Fitness degree = 0 42 47 55 67 18

No. of cases with Fitness degree = (0-1) 13 26 0 0 0

No of cases which are not checked 524 24 0 0 762

Table 5.4 shows the fitness degree against each of the five rules using the

different operators. Given that the fitness degree is the aggregation of the fitness

degrees of individual cells (i.e. one case against one rule), the operator used to

compute the fitness degree of cells is important. Recall here that the proposed

technique provides three aggregation operators at the cell level; Min, AM, and

WAM. In this section, we use the AM and WAM operators. The other operators

are discarded because they bias the result to one of the two edges. For this case,

there is a very small deviation between the results of AM and WAM (less than 1%)

except for one value, Rule 2. The result is 95% using the AM to measure the cells

fitness degrees and 94% using the WAM operator. The reason is that the number

of occurrences in this data is relatively small compared to other log files (at most

7 occurrences). According to the result, Rule 3 is the most applied one. On the

other hand, Rule 1 is the most deviated one.

To prove our idea about discarding cases which cannot be checked, we repeat

the calculation if these cases are encountered. The results of rules 3 and 4 are not

affected because all cases are checked. However, the results of rules 1 and 5 are

totally different! If these cases are considered non-compliant, then the result of

Rule 1 is 52% instead of 90% and only 27% for Rule 5 instead of 92%. The result

of Rule 2 is a little bit less 93%. This is because the number of non-checked cases

is relatively smaller than those of rules 1 and 5. This shows the importance of not

considering these cases as compliant or non-compliant.

104 CHAPTER 5. THE LOAN APPROVAL CASE STUDY

Table 5.4: Rules fitness degrees using the different aggregation operators

R1 R2 R3 R4 R5

Min 0.00 0.00 0.00 0.00 0.00

AM 0.90 0.94 0.95 0.93 0.92

WAM 0.90 WAM 0.94 0.95 0.94 0.92

Percentage of cases checked 47.6 97.6% 100% 100% 23.8%

Regardless of the operator used, results can help managers making important

decisions such as re-engineering the process model, i.e the business rules, in the

future. Process re-engineering is out of the scope of this research. However, the

output of our technique is important to make such decisions. A rule that is never

applied or checked in the entire log needs to be revised to make sure it represents

the required performance accurately. In this example all rules are checked at least

once. None of the rules is completely applied or completely violated. However,

some of them are checked in the entire log, whereas others are checked in less

than one fourth of it. Rule 1 is checked just in case the application is not rejected.

Rule 5 is checked just in case the application is approved.

Rule 2 represents a requirement that should be checked in each case. However,

there are 24 instances in which the rule is not checked. If it is a real data then

process managers can check these cases in more details to detect the problem. It

could be that the activity ”Checking the application form completeness” is executed

but simply not logged or maybe not executed. In this example, if it is not executed

then it may affect the approval decision made by the loan department because

missing information can be considered as negative point against the applicant.

Otherwise, the process instance may take more time to be executed. It is also

possible that some applicants have enough experience about the procedure, and

hence, it is not required to check their applications’ forms. Unfortunately, studying

these cases is not possible since this is a synthesized log. Notice that this activity

is common between rules 2 and 3. According to Rule 3, this activity should be

executed as first state in all cases which indicates the importance of executing this

specific activity. According to Rule 2 this activity should be followed eventually by

the assess eligibility activity.

Starting by the Min operator, using this operator we assume that the rule should

be followed strictly, one non-compliant case is enough to say that this rule is vio-

lated. This indicates that each rule is completely violated at least once. According

to this result, the process manager can go through the aggregated values to check

5.2. RESULT ANALYSIS 105

which cases are completely violated. In the case study, we assume that Rule 5

should be followed strictly. Thus, this operator is suitable to be used to check the

fitness degree against this rule. That being the case, Rule 5 is considered com-

pletely violated. According to the result of the AM operator, the application is not

approved by the correct person in 8% of the approved applications. These cases

can be checked in more details when going one level down, i.e the cells level.

We compare our results with the LTL checker [80]. The technique is used to

check the compliance of a log file against a set of linear temporal rules. In LTL

checker, business rules are categorized as either satisfied (completely applied) or

unsatisfied (completely violated). A partial satisfaction is not an option. Given the

generated log file and the set of business rules for this case study, all rules are

categorized as unsatisfied rules. All rules are considered unsatisfied because none

of them is applied 100% in all cases. Moreover, it does not differentiate between

violating cases and not-checked cases. The cases in which the rule cannot be

checked is considered as non-compliant. The technique does not provide a fitness

measure but a coverage rate showing the percentage of cases in which the rule is

applied to the total number of cases in the log file. In this case study, the coverage

rate of the five rules are; 43%, 92%, 94%, 94%, 22% in order. However, the

definition of the SOD rule (Rule 4) in the LTL checker is not the same as the one

defined in this work. In the LTL checker, the rule used is (exists person doing tasks

A and B). The rule is considered satisfied if there is a person doing the two tasks.

In contrast, and with respect to the business rules agreed on with the process

manger, we consider this as a violation in this research.

5.2.3 Case level fitness degree

The fitness degree of case Ci is generated by aggregating the fitness degrees of

this specific case against all business rules. In our example, there are at most five

values to be aggregated (five rules). Since there are no dashes in the result, then

all cases are checked at least once. A first look indicates that almost 76% of the

recorded cases completely fit the five rules, i.e. their fitness degrees are equal

to 1. On the other hand, there are only two cases which are completely violated

(fitness = 0). The rest are partially compliant. By partially compliant here we

refer to the cases in which some rules are applied and some are not. The fitness

degree of these cases depends on the aggregation operator used. For instance,

using the Min operator these cases are considered non-compliant. However, using

the averaging operators, the same cases are considered partially compliant, i.e.

106 CHAPTER 5. THE LOAN APPROVAL CASE STUDY

score fitness degrees between 0 and 1.

We had a closer look at the completely violating cases (207 & 995). We noticed

that both cases violate only two rules: 3 and 4 whereas the other rules could not be

checked. This proves our point that one fitness degree does not necessarily reflects

the compliance situation accurately. For a process analyst there is a difference

between a case which is completely non-compliant and a case in which only 40%

of the rules can be checked. In the loan approval process and given that there are

three paths to terminate the process, it is very normal that some rules, such as

Rule 5, cannot be checked. We have discussed this earlier in section 5.1.

To reveal the importance of discarding dashes (not checked cases) before mea-

suring the fitness degree of each individual case, we recalculate the fitness degrees

of the two non-compliant cases another two times with different inputs. In the first

time, the dashes are replaced by ones based on the debate that the three rules are

not violated. That being the case, the new fitness degree becomes 60% for each

case. Accordingly, the two cases are as compliant as case 719 in which three rules

are applied and two rules are violated. In the second time, dashes are replaced

by zeros based on the debate that the three rules (1, 2, and 5) are not applied.

Although this does not affect the fitness degrees of the two cases. However, it will

lead to a totally different interpretation as follows:

• Rule 1: it seems as if the ”Prepare acceptance back” activity is executed but

it is not followed directly by the activity ”Check if home insurance quote is

requested”.

• Rule 2: it seems as if the ”Check application form completeness” activity is

executed but is not followed by the ”Assess eligibility” activity.

• it seems as if the application is approved but by the wrong person.

Notice here that none of these three points are true. Saying this, we assume

that all cases will go through the same execution path. However, this is not true

in our case study. The process is terminated by one of three ways: it is either

accepted, rejected, or canceled. For instance the third point is reached just in case

the application is approved which occurs in less than 25% of the recorded cases

as mentioned earlier. Actually, this is the main reason why declarative models

are more suitable to represent the compliance requirements than the procedural

models. See section 2.3.

The results, i.e. fitness degress, of the different operators are equal for com-

pletely compliant and completely non-compliant cases. However, they are not

5.2. RESULT ANALYSIS 107

equal for partially compliant cases. These cases are considered once non-compliant

(using the Min operator) and once partially compliant (using an averaging opera-

tor). Table 5.5 shows the fitness degrees of cases using the four operators. The

AM operator is used to measure the fitness degree at the cells level.

Table 5.5: The case fitness degrees for some selected cases

Min AM WAM1 WAM2 WAM3 Range

7 0.00% 37.50% 57.14% 17.50% 39.47% 39.64 %

260 0.00% 80.00% 70.00% 60.00% 95.00% 35.00%

284 0.00% 80.00% 90.00% 60.00% 80.00% 30.00%

647 0.00% 75.00% 85.71% 33.33% 78.95% 52.38%

82 50.00% 87.50% 92.86% 66.67% 89.47% 26.19%

121 50.00% 87.50% 85.71% 95.83% 81.58% 14.25%

6 66.67% 88.89% 88.89% 91.67% 84.44% 7.23%

269 75.00% 91.67% 91.67% 93.75% 88.33% 5.42%

All selected cases are partially compliant. Other cases are not considered be-

cause the result is the same no matter which aggregation operator is used. The

results are ordered ascending according to the result of the Min operator. The fifth,

sixth and seventh columns of the table shows the results of the WAM operator us-

ing different set of weights. The weights assigned to WAM1, WAM2, WAM3 are:

(10%, 20%, 10%, 30%, 30%), (40%, 5%, 7%, 8%, 40%), (5%, 30%, 30%,

30%, 5%) respectively. Notice here that the weights assigned to run WAM1 is the

most realistic one for this example. The other two are used for comparison reasons

only. When assigning the weights for WAM2 and WAM3 we take into consideration

the number of checked cases and the fitness degree against each rule. The aim

is to study the effect of the input weights on the case fitness degree. Notice here

that according to our research, the weights are assigned by the process analyst.

The entered values should reflect the importance of the business rules.

All fitness degrees are bounded by the minimum and maximum values of the

inputs. Recall that this is because the aggregation function used have a com-

pensation feature. The result of the WAM operator is interesting. It shows the

importance of using it as an aggregation operator to measure the cases fitness

degrees’. To explain our idea we will take case 647 as an example. This case is

only 33% fit in WAM2, however, it is 85% in WAM1. This big difference (52%)

is just because of the weights assigned at each run time. The last column shows

the range of difference between the highest and lowest fitness degree using WAM.

Normally, rules are not of the same importance. For instance, the fitness degree of

108 CHAPTER 5. THE LOAN APPROVAL CASE STUDY

Case 7 is 37% if all rules are treated equally (AM result) however, it is 57% if the

realistic weights are used (WAM1). Case 7 has the second highest range (almost

40%) after case 647. In contrast, case 269 has the smallest range of difference

(around 5%) and then case 6 (around 7%). The reason is that the range between

the Min and Max output is already small. Recall here that the WAM is one of the

median approach operators and its output is a value between the Min and Max

values inclusively.

Cases 82 and 121 score the same fitness degree using Min and AM. However,

the result of the WAM is different. We checked the detailed value for these two

cases. Both of them are checked against all rules except Rule 5. The fitness

degrees for Case 82 are (0.5, 1, 1, 1) and the fitness degrees for Case 121 are

(1, 0.5, 1, 1). Swapping the two values caused this deviation in the case fitness

degree. The same situation is repeated with cases 260 and 284.

Comparing with the LTL checker [80], the technique provides two lists: one

for correct PI(s) and another one for incorrect PI(s). A correct PI is the case in

which all business rules are applied. In our case study 12 cases are listed in the

correct PI(s) list. Others are listed in the incorrect instances no matter how many

rules are violated. The LTL checker provides a measure called the ”health degree”

of the PI. It is used to measure the percentage of the applied rules to the total

number of business rules. The ”health degree” of a given case is similar to the AM

result in our proposed technique, however, with some limitations. For instance,

the aggregated values are either zeros or ones, no fractions. In addition, it does

not consider the cases in which the rule cannot be checked. Using the LTL checker,

these cases are listed in the incorrect PI(s). Recall here that the result of the LTL

checker when checking the SOD rule is not equal. Thus, using our technique, the

result of Rule 4 is different.

5.2.4 Cell level fitness degree

Given 1,000 traces and 5 rules, the tool generates 5,000 values (cells). Each value

tells to which extent a single case is compliant against one specific rule. This is

the most detailed measure which the end user have. It is important because it

is used to calculate the other three metrics: cases, rules and the process. Recall

here that the fitness degree of one case against one rule (cell) is computed by

aggregating the fitness degrees of all its occurrences. There are four possibilities

for the output: a dash, 0, 1 or in between (0-1). A dash indicates that the case

5.2. RESULT ANALYSIS 109

could not be checked against this specific rule. Rationally, this is the same no

matter which aggregation operator is used. In our case, almost one fourth of

the values are dashes. The majority (around 70% of the cells) are completely

compliant. Around 5% of the cases are completely non-compliant. The remaining

(39 cases) are partially compliant.

Mathematically, the output of the different operators are the same if there is

only one occurrence. The result is also the same if the fitness degrees of all oc-

currences are equal. Recall here the aggregation operators have preservation of

bounds property. The process manager perspective does not affect the result in

any of these two cases and the result will be either 1 (completely compliant) or

0 (completely non-compliant). However, what about the cases in which some oc-

currences are compliant and some are not. These cases are considered partially

compliant. As mentioned earlier, we have 39 cases which are partially compliant.

The fitness degree at the cells level is the atomic unit to measure the other three

metrics. Hence, the aggregation operator used at this level affects the results of all

other metrics. To study this effect, we select the cases fitness degree as an exam-

ple. The cases fitness degree is chosen among the other two metrics, i.e. process

and rules, because it has the minimum number of input values. Consequently, the

contribution of each input value on the final result is more obvious. In this case

study, the contribution of each cell in its corresponding case fitness degree is (at

most) 20% whereas it is 0.1% and 0.02% for rules and process respectively.

For the comparison, six cases are checked against Rule 2. Rule 2 is selected

because it is the most common one in the log file. As for the six cases, they

are selected to cover the different scenarios. Cases 23 and 24 represent one

occurrence for Rule 2. One of them is a compliant occurrence and one is not. The

other four cases represent multiple occurrences. The scenario of zero occurrence

is not represented because it is not considered in the calculation. For the purpose

of comparison, the six cases are selected to have equal fitness degrees against

the other four rules no matter which operator is used. For instance, the fitness

degree of Case 121 is 1 against Rules 1, 3 and 4 and is not checked against Rule 5.

This is the output regardless of the aggregation operator used. As an aggregation

operator at the case level we select the AM operator. The AM is selected because

it generates moderate values. In addition, it assigns equal weights to the cases

no matter how long the trace is.

Results are shown in table 5.6. Staring by cases 23 and 24, Rule 2 is checked

only once, thus, the result is the same no matter which operator is used. However,

110 CHAPTER 5. THE LOAN APPROVAL CASE STUDY

it is not the case for the other four cases . Each of these cases is considered

once partially compliant (AM and WAM) and once completely non-compliant (Min)

according to the operator used.

Table 5.6: The effect of the operator used at the cell level on the fitness degrees

for their corresponding cases

Case# Min AM WAM

6 0.00 0.67 0.67 0.89 0.50 0.83

23 0.00 0.80 0.00 0.80 0.00 0.80

24 1.00 1.00 1.00 1.00 1.00 1.00

121 0.00 0.75 0.50 0.88 0.33 0.83

206 0.00 0.67 0.80 0.93 0.67 0.89

269 0.00 0.67 0.75 0.92 0.60 0.87

average 0.17 0.76 0.62 0.90 0.52 0.87

The operator is chosen according to the situation. For a process manager, some

business rules cannot be violated. Recall here that when we define the business

rules for this process we consider the last two rules as the most important rules

which should be applied strictly. One violating occurrence is enough to say that the

case violates the given business rule. For instance, according to Rule 5 if the loan

department manager approves the application once then this is enough to consider

it as compliant. The AM and WAM is used when it is important to consider each

occurrence. This is normally the case when checking sequencing requirements

such as Rule 2 (the rule under investigation). Using the AM, all occurrences have

equal weights. In contrast, using the WAM occurrences are assigned different

weights according to their order in the trace. The first occurrence is assigned the

highest weight. This is yet another perspective to tell whether a case is compliant

or not. Notice that the AM result is higher than the WAM result in the four cases.

However, this is not always the case.

5.3 Conclusion

In this chapter we have used the Flexible Compliance Auditing Framework to check

the compliance of a synthesized data set. The loan approval business process is

selected for this purpose. The log file is generated using the SecSy tool. The

implemented tool is run to measure the fitness degree at the different levels of

abstraction and using different aggregation operators. Results show that given

5.3. CONCLUSION 111

the one log file and a BRCA model, the tool produces different results. Each of

which can be interpreted in a different way according to the business context in

which it is used.

Chapter 6

The Procurement Process: A

Real Life Data Set

The proposed technique is applied to a real data set of 10,000 cases. The coop-

erative organization is an international financial services provider. The input data

file was derived from the procurement process cycle configured in an SAP® sys-

tem. The cycle starts with creating a purchase order and ends with the payment

of the associated invoice(s). Each case in the log file represents an item line of

a purchase order. The procedure of process selection and data preparation was

described thoroughly in the work of Jans [121].

A new process instance is triggered by creating a purchase order with its item

line(s) and then signed before being released. In some cases the PO can be re-

leased without an additional signature. After a release, goods and an invoice are

received. Finally, after both goods and the invoice are received, the payment can

be made. However, if the purchased product is a service then no goods are re-

ceived. The item line of the PO can be changed according to some business rules.

There are seven activities executed in this process: Create PO, Sign, Release,

GR, IR, Pay. GR and IR refer to Goods receive and Invoice receive respectively.

The business rules representing the process model are:

1. Sign should be followed eventually by release

2. SOD (Sign and Release)

3. SOD (GR and IR)

4. SOD (Release and GR)

5. Every case should be released at least once

6. A process instance should be executed within 60 day

113

114 CHAPTER 6. THE PROCUREMENT PROCESS CASE STUDY

7. If the PO value is 12,500 or less then an order change up to 5% is permitted

without a new approval. Otherwise, if the PO value is between 12,500 and

125,000 then an order change up to 2% is permitted without a new approval.

Otherwise, if the PO value is above 125,000 then it cannot be changed without

a new Sign

8. Pay should be the last activity

9. If ’Pay’ exists and then ’IR’ exists where Pay(payObjectKey) = IR (IRObjec-

tKey)

The rules represent all types of compliance requirements: sequencing, human

resource and data, temporal. Rule 1 is an example of a sequencing requirement.

It is defined to ensure that each ’Sign’ activity is followed by a ’Release activity’

in the future. Rules 2-4 are of the same type; human resource. They are set to

check that each pair of activities are not executed by the same originator. At the

cell level, the result of the SOD rule is 0, 1, or a dash. A dash indicates that at least

one of the two activities is not executed. Hence, the rule is neither applied nor

deviated. If there is no intersection between the originators of the two activities

then the rule is applied and the result is one. Otherwise, it is zero. According to

Rule 5, the ’Release’ activity should be executed at least once per case. Rule 6

is an example of a temporal rule. A case is compliant if it is executed within 60

days. Rule 8 ensures that the last event in the trace is of type ’Pay’. According to

the process analyst, Rule 9 is the most important one. It is used to ensure that

whenever there is a payment there should be a corresponding invoice received.

According to the rule, it does not matter which one comes first so any order is

considered compliant.

Rule 7, is the rule which controls the ’Change line’ activity. The rule is checked

according to the PO value (case attribute) and the relative modification (an activity

attribute). The Change line activity allows the user to do some changes on the

purchase order created per line. This can be a change in quantity, description, etc.

If the requested change increases the PO value then it needs to be controlled. The

relative modification attribute is used to quantify the percentage of change on the

PO value. The relative modification is zero (in case the PO value is not affected),

positive (if the PO value after change is greater than the original one) or negative

(otherwise). This rule is concern with cases in which the relative modification is

positive. The rule is divided into three branches according to the PO value. If

the PO value is less than 12,500 then a change up to 5% is permitted without a

new signature. If it is between 12,500 and 125,000 then a change up to 2% is

6.1. PROCESS LEVEL FITNESS DEGREE 115

permitted without a new signature. Otherwise, i.e. above 125,000, there must be

a new signature. A new signature mean that the ’Change line’ activity should be

followed by a ’Sign’ activity and then this ’Sign’ should be followed by a ’Release’

activity. Notice here that according to the rule, it is not necessary that the three

activities followed each other directly but sometime in the future. Notice that this

rule is not checked if the trace does not contain a ’Change line’ activity. Also, if

the relative modification is negative or zero then the rule is not checked as well.

Before discussing the results we would like to notify the reader that the aim

here is to show the importance of the following points rather than interpreting the

violating cases. The interpretation of the violations is discussed in details in the

work of Jans [121].

1. The importance of measuring compliance at different levels of abstraction

starting from the top level (entire log) and moving down to the bottom level

(cells)

2. The importance of using different aggregation operators to measure the fit-

ness degree and how each of which support a different perspective

3. The importance of differentiating between the cases in which the rule can be

checked and others

4. How declarative modeling languages can support compliance checking tech-

niques better than procedural languages

Hereafter, we start with the most abstract level, the entire log. Next we discuss

the results of the rules and traces and then the cells results.

6.1 Process level fitness degree

The fitness degree of the entire log using the proposed technique is affected by the

aggregation operator used at the cells level. In our case there are 10000 cases

which are checked against 9 rules. So, if all rules can be checked, there are 90000

values to be aggregated. Hence, the contribution of each value is very small. The

fitness degree of the entire log using the different operators at the cells level are

shown in Table 6.1. The first column shows the operator used at the cells level. The

other three columns show the process fitness degrees using the AM function as an

aggregation operator. In the second column, the fitness degrees are computed by

aggregating the fitness degrees of all cells (unless it is a dash). Column 3 shows

the results if the rules fitness degrees are aggregated. In our case, nine values are

aggregated. The last column shows the results if the fitness degrees of cases are

116 CHAPTER 6. THE PROCUREMENT PROCESS CASE STUDY

aggregated. In the third and fourth column the AM operator is used to calculate

the fitness degree of rules and cases respectively.

Notice that the results of one column are very close no matter which operator

is used. It seems as if the operator used does not affect the final result. However,

this is not the case. The difference between the minimum and maximum of the

input values is (at most 0.03%) indicates that there is a very small deviation in

the input values. Talking about the second column, we find out that there are only

20 values out of the 90,000 making the difference!

Table 6.1: The process fitness degree

Aggregation operator for cells AM of cells AM for rules AM for traces

Min 97.67% 90.10% 97.69%

AM 97.68% 90.11% 97.70%

WAM 97.68% 90.11% 97.70%

A noticeable remark about the results is the difference between the results

of cells and cases on one hand and the results of rules on the other hand. For

instance, if the Min operator is used, the log file fitness degree is 97.67% and

97.69% using the cells and cases values respectively. However, it is 90.10% if the

rules fitness degrees are used for the calculation. This is because the number of

aggregated values (input) in case of rules is very small comparing to that of cells

and cases. By aggregating nine values using the AM operator, the contribution of

each value is 0.11. Whereas, aggregating 10,000 values (in case of cases), the

contribution of each value is 0.00001!

To show the importance of the modeling language used for compliance checking

purposes, we compare our model with the Petri net model for the same process.

Figure6.1 shows the Petri net for the procurement process. It is taken from Jans

work [121], as agreed on with the process manager.

As a procedural model, Petri nets represent sequencing requirements only.

Hereafter, we compare the capabilities of the two process models, i.e. the Petri

net and the business rules. Before starting, we would like to notify the reader that

both models are agreed on with the process manager. Of course, this does not

mean that the process manager has two different prescribed models for the same

process. However, he is restricted with the capabilities of the process modeling

language used in each case. Notice here that using a Petri net, the process man-

ager cannot differentiate between following directly and eventually. Moreover, it

6.1. PROCESS LEVEL FITNESS DEGREE 117

Figure 6.1: The procurement process Petri net

does not differentiate between proceeding and following. It can just represent the

sequence of activities.

Starting with Rule 1, the rule indicates that a ’Sign’ activity should be followed

by a ’Release’ activity in the future, no matter what is in between (if any). Ac-

cording to the Petri net model, there is a limited number of compliant paths. For

instance, the path
〈
’Sign’, ’GR’, ’Release’

〉
is compliant according to the rule but

not compliant according to the Petri net. Similarly, Rule 5 is represented in the

Petri net with new constraints including what should follow and proceed a ’Release’

activity.

Rules 2,3, and 4 cannot be represented using this type of Petri nets. These rules

can be represented if a colored Petri net is used. However, the Replay technique

reads a Petri net not a colored one. Hence, these requirements are not checked

here. Rules 6 and 7 are yet another two rules that cannot be represented using the

Petri net. The former is a temporal requirement and the later is a compound one.

Rule 8 is represented in the Petri net with some constraints about which activities

should proceed it. The last rule, Rule 9, is weakly modelled. The Petri net shows

that ’IR’ is followed by a ’Pay’. The data value checking which ’IR’ is corresponding

to which ’Pay’ is not considered. Moreover, according to the rule the order of ’IR’

and ’Pay’ is not important. However, it is important according to the Petri net.

Someone may argue that we conduct the comparison here with respect to the

rules. However, it is not the case. Recall that both models are agreed on with

the process manager. The difference between the two representation refers to the

capabilities and limitations of each language. In case of the Petri net, the process

manager has to specify all execution paths. On the other hand, using LTL rules,

the process manager has to specify the violating cases. Even if a colored Petri

net is used, as a procedural model, only specific paths are accepted, others are

118 CHAPTER 6. THE PROCUREMENT PROCESS CASE STUDY

considered non-compliant. Whereas, using a declarative language such as LTL,

everything is allowed unless it is defined as a violating case. Taking into account

the nature of the business world and the flexibility issue, process managers prefer

to keep a balance between compliant processes and flexible execution. This cannot

be guaranteed using a procedural language in which only specific compliant paths

are defined.

We believe that Petri nets are capable of representing the process behavior

in process discovery techniques. Nonetheless, they are weak in representing the

compliance requirements in compliance checking techniques unless there are very

specific paths to follow while executing the process and a flexible execution is not

an option.

6.2 Rule level fitness degrees

Although the process fitness degree can be used as a performance indicator. How-

ever, it does not tell something about the fitness degree of each rule separately;

the most applied rule, the most violated rule, rules that are 100% applied or vio-

lated, etc. To answer such question, we need to check the fitness degree of each

business rule individually. The implemented tool is run different time to compute

the fitness degrees of the nine rules using the different operators. Results are

shown in table 6.2.

Checking the fitness degree of the nine rules, Rule 3 (SOD (GR and IR)) and 8

(Pay should be the last activity) are completely applied. Both rules score a fitness

degree of 1 no matter which aggregation operator is used. On the other hand,

Rule 7 (the Change line rule) is the most violated one. Its fitness degree using

the AM operator for both cells and rules is around 22% whereas the next lowest

fitness degree is around 86%. However, it is checked just in 9.27% of the cases.

Hereafter, we discuss the results of each rule and then compare the results of the

different operators taking into consideration cases in which the rule is not checked.

In addition, we show the importance of considering a dash in the result.

Rule 1 is a sequencing requirement. The rule is checked as much as there are

’Sign’ events in the case trace. This rule is not checked in 9.54% of the log file

which indicates that we have 954 cases in which the ’Sign’ does not appear.

The SOD rules (2-4) cannot be checked if (at least) one of the two activities is

not executed. If the rule is checked, then the result is either 0 or 1. The result is

1 if there is no intersection between the originators of the two activities and zero

6.2. RULE LEVEL FITNESS DEGREES 119

Table 6.2: The fitness degree of the business rules using the different aggregation

operators

1 2 3 4 5 6 7 8 9

Min 50.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 7.69%

AM 99.99% 99.36% 100.00% 99.79% 99.99% 89.63% 22.37% 100.00% 99.89%

WAM 99.98% 98.66% 100.00% 99.79% 99.99% 85.84% 32.14% 100.00% 99.74%

Cases not

checked
954 0 0 0 0 0 9073 0 0

otherwise. Results show that each of the three rules is checked in each case. Rule 3

is completely applied in all traces. Rule 2 is violated 64 times and Rule 3 is violated

21 times. According to the process manager, Rule1 should be checked pairwise.

To explain the idea we will use the following trace as an example: (’Create PO’,

’Sign’, ’Release’, ’Sign’, ’Release’, ’GR’, ..). The originators of the first ’Sign’ and the

second ’Release’ is the same so that its fitness degree against Rule1 is 0. However,

according to the process analyst the result is 0 just in case the originators of the

’Sign’ and its direct follow ’Release’ is the same. Checking the 64 cases (at the cells

level) reveals that none of them is a violation [121]. The result we got shows the

need for a new SOD function in which the segregation of duties is checked pairwise.

As for Rule 4, extra analysis reveals that there are four persons responsible for the

21 violating cases. For further information readers may refer to [121]. Recall here

that the aim is to locate the deviation rather than interpreting it.

Rules 5, 6 and 8 are examples of rules that are checked exactly once in each

case. The results of the three rules is either 0 or 1. No other possibilities. According

to Rule 5, the case is compliant just in case it contains a ’Release’ activity. The

rule is violated only once. Rule 6 is the only temporal rule. The rule is defined to

control the throughput time. It is checked by calculating the difference between

the timestamps of the first and last activity. If the difference is within 60 days

then the case is compliant. Result show that this is the second most violated rule

after rule 7. Over 10% of the cases took more than 60 days to complete. To get

more insight, we run the ’Replay a log on petri net for performance/conformance

analysis’ under prom. Results, see figure 6.2, show that some cases took around

a year before it is completed. These cases need to be checked by the process

manager. Rule 8 is defined to ensure that the last event in each case is of type

’Pay’. The rule is completely applied in all cases.

Rule 7 is the most violated and the least checked rule (less than 10% of the

120 CHAPTER 6. THE PROCUREMENT PROCESS CASE STUDY

Figure 6.2: The distribution of cases throughput time

cases). The rule is a good example to show the importance of considering a dash

in the result of compliance checking technique. Recall here that a dash indicates

that the rule could not be checked. In the log file there are 9073 cases in which the

result is a dash for some reasons. Let us assume that these cases are considered

compliant. Then the new fitness degree using the AM operator would be would

be 92.80% instead of 22.37%. On the other hand, if these cases are considered

non-compliant then the results would be only 2.07%! For a process manager, each

result can lead to a different decision. Hence, we believe that cases in which the

rule is not checked should never be included when calculating the fitness degree.

Finally, Rule 9, is an example of a compound rule in which a sequencing re-

quirement and a data requirement are merged together in one rule. According to

the process manager recommendation, the rule is checked according to the ap-

pearance of the ’Pay’ event. The aim is to ensure that each payment activity has a

corresponding invoice received. This is the most important rule since it is assigned

the highest weight (20%) among all other rules which are assigned 10% for each.

Checking the results at the cells level we found out that the rule is violated in 16

cases with a total of 71 times. The process manager needs to check these cases

thoroughly.

6.2. RULE LEVEL FITNESS DEGREES 121

In what follows we compare the results of the same input using different op-

erators. The results of rules 3 and 8 are discarded in the discussion because the

results are equal no matter which operator is used.

Comparing the results of AM and WAM especially for Rules 6 and 7, the same

input produces two different outputs just because the trace length is considered.

In general, the results of AM and WAM will be close in two cases. First, when the

length of the different traces is close to one value. Second, when the majority

of traces have equal fitness degrees against this specific rule. The first case, i.e

similar lengths, is not applied here. In the log file there are traces of only four

events, on the other hand, there are traces of 202 events. However, the second

case is applied. The results of AM and WAM are equal for some rules, such as

Rules 4 and 5, because the aggregated values are equal. In contrast, there is a

relatively big difference in the results of Rule 7. It seems like long traces are less

compliant against Rule 6, whereas they are more compliant against Rule 7.

With respect to the results we got, the main question is when to use each of

the six operators? And how they can support the different perspectives of process

analysts?

The Min operator can be used when the rule should be followed strictly. This is

the best choice just in the following case: the rule is considered 100% applied if

it is never violated in the entire log.

The AM and WAM are used when the process analyst aims at checking to which

extent a rule is applied. A fraction in the result indicates that the rule is partially

applied. Choosing AM or WAM depends on different factors such as the nature

of the process under investigation and the business rules defined. If the process

analyst believes that long traces are expected to have more deviations then he

should use the WAM operator. Notice here that this could be the case when the

rule can be checked more than once such as Rule 1 in our example. However, it is

not possible for rules that are checked exactly once such as rules: 5 and 8. Rule

6 is an exception here since it is defined to check the trace length.

To test the relation between the number of occurrences and the results of AM

and WAM, we run the tool again using the WAM as an aggregation operator at the

cells level. Results show a very small deviation in the result. This needs more

investigation in the future.

122 CHAPTER 6. THE PROCUREMENT PROCESS CASE STUDY

6.3 Case level fitness degree

A log file which is 98% compliant indicates that there are some non-compliant

cases. Checking the fitness degree at this level, i.e case level, can help process

managers get insights and check the fitness degree of each case individually. A

non-compliant case could be a fraudulent one. In this work, we propose three

metrics to check the compliance of one case: Min, AM and WAM. The measure

to use is selected according to the process manager perspective. Using the WAM

operator, rules are assigned weights according to some input from the process

manager.

The implemented tool is used to compute the fitness degrees of the 10,000

cases. The AM operator is used to compute the fitness degree at the cells level. A

general look at the results shows that each case is checked against at least one rule.

No dashes in the result. Almost, 85% of the 10000 cases score a fitness degree =

1. The results of the AM and WAM operators are very similar. The weights defined

by the process manager are in order: (10%, 10%, 10%, 10%, 10%, 10%, 10%,

10%, 20%). Recall here that the AM operator can be seen as a special case of

WAM in which weights are equal. In addition, when there is a very small deviation

in the input, such as our case study here, the output is not affected heavily by the

operator used. Notice here that cases in which the rule could not be checked are

not considered in the calculation.

6.4 Cell level fitness degree

The cell fitness degree represents the fitness degree between a specific case and a

business rule. This value is affected by the number of occurrences. Three aggre-

gation operators are used for this purpose: Min, AM and WAM. The weights in the

WAM operator are assigned automatically according to the position of occurrence.

In our case study, we compare the results of AM and WAM for Rule 9 to study the

effect of the occurrence location. We found out that the deviation between the

results of AM and WAM operators is at most 0.16. Rule 9 is selected because of

the number of occurrences. Most of the other rules are checked at most once.

Thus, the output of the four operators are not comparable.

Normally, process analysts start their analysis from an abstract level. Hence,

this metric is not used unless a deviation at the higher levels is detected. That being

the case, this metric can be used to support the analyst with further diagnostic

6.5. CONCLUSION 123

information.

6.5 Conclusion

In this chapter we have used the Flexible Compliance Auditing Framework to check

the compliance of a real data set. The cooperative organization is an international

financial services provider. The log file contains information about 10,000 cases

extracted from the procurement process operational databases. The process man-

ager provides a process model of nine business rules. The process model is pre-

sented by means of the BRCA language presented in chapter 3. The implemented

tool is run to measure the fitness degree at the different levels of abstraction. Re-

sults show the importance of providing different aggregation operator to measure

the fitness degree. Process managers can select the suitable operator according

to the semantic they have.

Chapter 7

Clustering Based Compliance

Checking Approach

In compliance auditing literature, existing techniques provide an overall fitness

degree measuring the fitness degree of the entire log file. The computed degree

cannot distinguish between cases that are more compliant with the designed pro-

cess and those which are less compliant. By investigating the included cases, we

may find that there are some common characteristics between the less compliant

cases. For example, in the procurement process, we may find that most of the

less compliant cases are created by a single person or that they are purchased by

the same group. Revealing such relations would be a good start for process man-

agers to investigate these cases in depth. According to the investigation results,

managers can take some actions to improve the process in the future. To this end,

we propose a clustering based compliance checking approach in which the log file

is clustered before the process compliance is checked.

We believe that clustering the log file before compliance checking can reveal

important diagnostic information [122, 123]. Hence, we introduce a clustering

based compliance checking approach in which the log file is divided into a set of

sub-logs before the process compliance is checked. Next, the fitness degree of

each generated cluster is measured separately and compared with the fitness de-

gree of the entire log. Generated clusters are profiled according to some features

to find the common characteristics. We assume that clusters with lower fitness de-

gree with respect to the overall fitness degree have some common characteristics

which leads to, relatively, less compliant cases. The proposed approach is applied

125

126 CHAPTER 7. CLUSTERING BASED COMPLIANCE CHECKING APPROACH

to the procurement process discussed in chapter 6.

This chapter is organized as follows: first, we discuss clustering techniques in

the process mining field and made a decision about which is the most suitable

clustering technique for this research. Next, we use the multi-perspective compli-

ance checking technique proposed in Chapter 6 to measure the fitness degree of

each cluster separately. Fitness degrees are calculated for the entire cluster and

per rule. Later, the generated clusters are profiled according the process manager

recommendation. Finally, the results are discussed and some recommendations

are made.

7.1 Clustering in process mining

To the best of our knowledge, two clustering techniques are introduced in the pro-

cess mining literature: sequence clustering and trace clustering. Using sequence

clustering, the log file is divided into k clusters according to the similarity of se-

quences. However, trace clustering techniques use a set of features to measure

the similarity between the process instances. Similar cases are grouped together

in one cluster.

Sequence clustering was first developed in bioinformatics to group large protein

data sets into different families [124]. Later on, the idea is applied in the process

mining field to study the different behaviors within a single process [125, 126]. It

is useful to discover the behavior of different traces in the log file and divide them

into clusters. Hence, it is applied to deal with spaghetti models [127].

Initially, the sequence clustering algorithm generates k number of clusters

where each cluster is associated with a Markov chain model. After the clusters

and their corresponding Markov chains are generated, each individual sequence in

the input log file is assigned to one of the generated clusters. To assign a given

sequence to a cluster, the probabilities of all generated clusters to produce this

sequence is computed first. The sequence is assigned to the cluster with the high-

est probability to produce this specific sequence. In a next phase, these steps are

repeated in an iterative Expectation-Maximization procedure to re-estimate the

models. The sequences assigned to a cluster are used to re-estimate the Markov

chain of that cluster. This produces more accurate models to be used to assign

the sequences again in the next iteration. By repeating the procedure again and

again, the models (Markov chains) become more stable which no longer change.

The final output Markov chains are the models that represent the behavior of its

7.2. CLUSTERING BASED COMPLIANCE CHECKING APPROACH 127

associated cluster [125].

As for trace clustering, it is a hierarchical clustering technique. First, the traces

are assigned to different clusters. Next, similar clusters are combined together

until it ends up with one single cluster. In process mining, trace clustering is

used to support both process discovery and conformance checking. In [123], the

authors propose a process discovery technique based on trace clustering. The au-

thors in [128] presnet a trace clustering approach based on profiling the traces.

To compute the distance, a combination of bag-of-activities and k-gram is used.

Bose et al. [129] propose a generic edit distance based approach to measure the

(dis-)similarity between two sequences. The edit distance (also called Levenshtein

distance) between two sequences is defined as the minimum number of edit op-

erations needed to transform a sequence into the other. An edit operation, in this

context, can be an insertion, deletion, or substitution of two events. The minimum

variance criteria is used to choose the two clusters to be combined.

In this work, we use a trace clustering technique to cluster the log file. Se-

quence clustering is discarded for two reasons. First, it does not consider any

dimension other than the sequencing one. However, we aim at checking the four

types of compliance requirements. Second, sequence clustering is used in a pre-

vious work [130] for the same purpose and it did not provide promising results.

7.2 Clustering based compliance checking approach

In this section, we describe the clustering based compliance checking approach. In

a first step, we cluster the log file into more homogeneous subsets. Next, we used

the multi-perspective compliance checking technique (See Chapter 4) to compute

the fitness degree for each cluster separately. The fitness degrees are calculated

at two levels, the entire log and the rules. Next, the results are compared with

those of the original log file. Finally, we profile each cluster according to the process

manager recommendation to find out the common characteristics. This way mutual

benchmarks are created. Process analysts are provided with multiple compliance

degrees and therefore gains insights in the compliance of separate groups. By

analyzing the characteristics of a cluster with a higher/lower compliance degree,

insights on compliance determinants are developed.

128 CHAPTER 7. CLUSTERING BASED COMPLIANCE CHECKING APPROACH

7.2.1 Clustering the log file

As mentioned earlier, trace clustering is chosen to divide the log file into k clus-

ters. The value of (k) is predefined by the user as an input parameter to run the

clustering algorithm. But, how to determine the value of (k)?

This question has no general answer in the data mining field because each

data set has its own case. In practice, the clustering algorithm is run different

time and then, according to the results, the data analyst determines the most

suitable solution. In this research, we leave this decision to the process analyst

because he/she has the highest level of understanding the process under analysis.

However, we provide a recommendation, later on, which can help in making the

decision.

In our case, the fitness degree of the original log file is 97.68%. The majority

of cases (almost 85%) are 100% compliant regardless of the aggregation operator

used. With respect to the proposed clustering based approach, these cases should

be assigned to one cluster. Accordingly, the clustering result should contain one

big cluster and that cluster should have a fitness degree higher than that of the

original log because it contains the most fitting cases.

We started running the clustering technique with k = 2 and stopped at k = 7.

The number of cases in each cluster is recorded in Table 7.1. When running the

technique with k = 7 we noticed that the big cluster generated in the previous run,

i.e. 6 Clusters, is divided into, relatively, two big clusters. This indicates that the

most fitting cases are not grouped together in one cluster any more. This is an

important remark to determine the value of k. In our case, the majority of cases

are 100% compliant. Accordingly, we made the decision to stop incrementing value

of k when the big cluster, which we assume it contains these compliant cases, is

divided into two big cluster.

Notice that each time the value of k is incremented by one, one of the clusters

in the previous output is divided into two clusters. For example, the 9900 cases

in (3 clusters run time) is divided into two clusters one with 9815 cases and the

other with the remaining 85 cases in (4 clusters run time). This is because trace

clustering is a hierarchical clustering technique as mentioned earlier.

Although our results cannot be generalized because each log file has its own

cases. However, we can end up with a general recommendation to help process

analysts determining the value of k. Start running the clustering technique with

k = 2 and increment the value by one each running time. Each time you run the

algorithm, you need to write down the number of cases assigned to each cluster.

7.2. CLUSTERING BASED COMPLIANCE CHECKING APPROACH 129

In addition, you need to check the fitness degree at the case level to have an

idea bout the compliance of recorded cases individually. It would be better if you

can run the framework presented in chapter 4 to measure the fitness degree of

generated clusters. However, this is not necessary. Notice that, according to the

clustering based approach, fitness degree is measured after clustering the log file.

Once you have the results of different run times and an idea about the fitness

degree of individual cases, then you need to stop when the clustering results show

that the majority of cases are divided into two clusters. In case you want to check

the fitness degree of generated clusters, then you need to stop when you find a

cluster with fitness degree higher than the process fitness degree.

Table 7.1: The number of clusters generated at each run time to determine the

best value for k

2 Clusters 3 Clusters 4 Clusters 5 Clusters 6 Clusters 7 Clusters

Cluster 1 51 51 51 51 12 12

Cluster 2 9949 49 49 49 39 39

Cluster 3 — 9900 85 85 49 49

Cluster 4 — — 9815 138 85 85

Cluster 5 — — — 9677 138 138

Cluster 6 — — — — 9677 5362

Cluster 7 — — — — — 4315

The log file is divided into six sub-logs using the guide tree miner plugin un-

der ProM version 6.5.1. For clustering, the plugin is configured as follow: entire

trace as a feature type, the generic edit distance as a distance metric and the Min

variance as a join type of agglomerative hierarchical clustering [129].

7.2.2 Measuring compliance

After clustering the log file, the fitness degree of each cluster is checked separately

using the implemented tool. The fitness degrees are checked at two levels: the

entire log and the rules. The others, i.e. cases and cells, are discarded because

comparing their results is not applicable. For comparison reasons, we prefer using

one of the median operators to avoid any bias. Among the two median operators,

i.e. AM and WAM, we choose the AM function because we wanted to treat all traces

equally regardless of their length.

1. The entire log: the fitness degree of the entire log for each cluster is mea-

sured and then compared with the fitness degree of the parent log. Results

130 CHAPTER 7. CLUSTERING BASED COMPLIANCE CHECKING APPROACH

are shown in table 7.2. As mentioned earlier, the AM is used as an aggre-

gation operator. To measure the fitness degree of the entire log, the fitness

degrees at the cells level are used as input. Recall here that the fitness de-

gree of the entire log is calculated by aggregating the fitness degrees at one

of: cells, rules, or cases.

Table 7.2: Fitness degrees of the generated clusters and the original log

Percentage of cases The entire log fitness degree

Cluster 1 0.12% 91.16%

Cluster 2 0.39% 89.36%

Cluster 3 0.49% 83.48%

Cluster 4 0.85% 90.84%

Cluster 5 1.38% 88.37%

Cluster 6 96.77% 98.00%

The original log 100% 97.68%

Results reveal a noticeable remark. The largest cluster is the only one for

which the fitness degree is higher than that of the original log file. On the

other hand, the fitness degrees of all other clusters are lower than that of

the parent log. Results indicate that the most fitting cases are grouped in

one cluster. This goes with our assumption when clustering the log file and

selecting the most suitable value for k, i.e. the number of generated clusters.

2. Rules: the rules’ fitness degrees are measured for each generated cluster.

Results are show in table 7.3. Notice that the results of rules 3 and 8 are not

given in the table because the two rules are 100% applied in the parent log.

The discussion will be narrowed to include three rules only: 6, 7 and 9. The

others are discarded for the following reasons.

(a) Rule 1 is discarded because the violating cases are divided into three

clusters. Additionally, there is a slight difference in the results of these

clusters and the parent log.

(b) Rule 2 is discarded because, as mentioned earlier, the rule is not violated

according to the process analyst.

(c) Rules 3 and 8 are discarded because they are 100% compliant in the

entire log.

(d) Rules 4 and 5 are discarded because the cases in which these rules are

violated are grouped in one cluster, the largest one, containing 96.77%

7.2. CLUSTERING BASED COMPLIANCE CHECKING APPROACH 131

of the cases. Hence, the results cannot be compared.

Table 7.3: The fitness degrees of each cluster against each of the nine rules

Rule 1 Rule 2 Rule 4 Rule 5 Rule 6 Rule 7 Rule 9

Cluster 1 100.00% 100.00% 100.00% 100.00% 33.33% 66.67% 100.00%

Cluster 2 100.00% 97.44% 100.00% 100.00% 20.51% 88.89% 97.05%

Cluster 3 99.49% 53.06% 100.00% 100.00% 26.53% 36.36% 99.32%

Cluster 4 100.00% 98.82% 100.00% 100.00% 50.59% 14.29% 90.68%

Cluster 5 99.64% 73.91% 100.00% 100.00% 32.61% 91.43% 100.00%

Cluster 6 99.99% 99.97% 99.78% 99.99% 91.45% 18.69% 99.99%

Original log 99.99% 99.36% 99.79% 99.99% 89.63% 22.37% 99.89%

Before going to the next step, we would like to consider the number of not

checked cases for each of the three rules: 6, 7 and 9. Recall here that using the

AM operator, the number of cases that are not checked affects the fitness degree

measure. Starting with Rules 6 (the 60 days rule) and 9 (the Pay _IR rule), their

results are never affected. Both rules are checked in each specific case in the

entire log. In contrast, Rule 7 (the Change line rule) is strongly affected by this

factor. The rule is not checked in over 90.73% of the cases recorded in the parent

log. Only 927 cases out of the 10,000 cause the deviation in the results. However,

these cases are divided into 6 clusters. Notice, here that since there are no dashes

in Rule 7 column then each cluster has a share of these 927 cases.

After this discussion, the results table is eliminated to include the results of

rules: 6, 7, and 9 in addition to the number of cases in which Rule 7 is checked in

each cluster.

Table 7.4: Fitness degrees of each cluster against rules 6, 7, 9 and the original log

file

Rule 6 Rule 7 Rule 9 entire log

Cluster 1 33.33% 66.67% 100.00% 91.60%

Cluster 2 20.51% 88.89% 97.05% 89.36%

Cluster 3 26.53% 36.36% 99.32% 83.48%

Cluster 4 50.59% 14.29% 90.68% 90.84%

Cluster 5 32.61% 91.43% 100.00% 88.37%

Cluster 6 91.45% 18.69% 99.99% 98.00%

The original log 89.63% 22.37% 99.89% 97.68%

By comparing the results in the table we could prove our point of view that

the overall fitness degree is not representative enough to measure the process

132 CHAPTER 7. CLUSTERING BASED COMPLIANCE CHECKING APPROACH

compliance. The fitness degrees against individual rules could reveal much more

information about violating cases. For instance, although Cluster 6 is 98% compli-

ant and Cluster 5 is only 88.37% compliant, however, the result of the two clusters

against Rule 7 tells something totally different. Cluster 6, which is the most fitting

one, records the second lowest fitness degree (18.69%) among all other clusters.

Whereas, Cluster 5 records the highest fitness degree against the same rule.

Similarly, the results of rules 2 and 4 reveal that the overall fitness degree is

not enough to measure the conformity degree. Although the two clusters have

a relatively close fitness degrees (89.36% and 90.84%), however, their fitness

degrees against the individual rules are not close. Cluster 2 has the lowest fitness

degree against Rule 6. However, is has the second highest fitness degree against

Rule 7. In contrary, Cluster 4 has the second highest fitness degree against Rule

6 whereas it records the lowest fitness degree against Rule 7. Notice that the

number of checked cases is considered when comparing the results of Rule 7 to

make sure that it did not affect the fitness degrees. As for Rule 9, there is also

a relatively high difference between the fitness degree of the two clusters against

this rule.

Notice that by clustering the log file, the most fitting/violating cases against

one specific rule are grouped together in one cluster. This way, the procedure

of analyzing these cases becomes much easier. In the next step, we profile the

six clusters to find out the common characteristics between clusters with relative

high/low fitness degree to get insights.

7.2.3 Profiling the clusters

The output of the previous two steps is a set of clusters with their corresponding

compliance degrees. In this step, we profile the clusters by means of case infor-

mation to have a closer look at the characteristics of each cluster. The selected

information depends on the case under study. However, some recommendations

from the process managers would be a good start. The recommendations in this

case will be a set of attributes that the process manager thinks might affect the

compliance degree whether positively or negatively. The output of this step will

be a set of relations between the compliance degree and the selected attributes’

values such as the cluster where the majority of cases created by the originator X

have a lower compliance degree.

In our case study, four attributes are analyzed according to the process man-

ager recommendation. These are: the document type, the purchasing group (PG),

7.2. CLUSTERING BASED COMPLIANCE CHECKING APPROACH 133

the purchase order (PO) value and the purchase order (PO) creator.

1. Document type

Starting with the document type, there are mainly five types of documents.

Each case is related to only one type. Originally there were nine types but

the remaining five are discarded because of having very low frequencies. The

idea behind discarding the less frequent values of document types is that the

number of cases for these types is not enough to do the comparison so that

including them does not add a value to the results.

Figure 7.1 shows the distribution of document types over the six clusters.

The values are normalized over the document types count to overcome the

large difference in the number of each type in the six clusters and therefore

to better represent the results. The normalization was done by dividing the

number of each document type in one cluster by the total number of this type

in the entire log file. Moreover, the values related to cluster 6 are divided by

10 to better visualize the values in other clusters. This was necessary because

a relatively high number of cases fall under cluster 6. The normalization

described here is applied to all other attributes for the same reasons.

Figure 7.1: The distribution of document types over the six clusters

The distribution shows that cluster 1 is dominated by document type FO and

that document types: MA, NB, FSD does not appear in this cluster. Cluster 2

is dominated by DI and does not contain any case of MA or NB. As for cluster

134 CHAPTER 7. CLUSTERING BASED COMPLIANCE CHECKING APPROACH

3, the both DI and NB appears with close distribution. However, FSD and MA

do not appear in the cluster. Cluster 4 contains all types of documents. The

most frequent one is MA and then DI. Similarly, Cluster 5 is dominated by

MA and DI. However, unlike Cluster 4, the percentage of DI is higher than

that of MA.

FO is the most frequent one. It appears in more than 75% of the cases in the

original log. On the other hand, MA is the least frequent one among these

five types. Recall here that we discarded four types because of having very

low frequencies.

2. Purchasing group

There are mainly 11 purchasing groups registered in the original log file. Only

seven groups are considered in the analysis. Again, the remaining four are

discarded because of their low frequencies.

Figure 7.2: The distribution of purchasing groups over the six clusters

The PG LOG is the most frequent one (more than 78% of the cases). Results

show that Cluster 1 is dominated by OBS. Both clusters 2 and 3 are dominated

by ISE.

3. PO value

According to the process manager recommendation, the purchase order val-

ues are categorized into 4 using the thresholds 1,000, 1,250 and 12,500. We

7.3. RESULTS DISCUSSION 135

profiled the four clusters according to the values of these four attributes.

Figure 7.3: The distribution of PO values over the six clusters

Figure 7.3 shows the distribution of each category with respect to the original

log. Results show that the cases in clusters 1 and 2 are all under category 4.

The cases assigned to cluster 3 are mostly under category 4.

4. PO creator There are 81 different PO creators, most of them are less fre-

quent (74 creators). However, these could not be discarded because, in total,

they have the probability of 17% in the original log. So, they are treated as

one group called others.

Figure 7.4 shows that the ’others’ PG are assigned to all clusters.

7.3 Results discussion

We summarize the results obtained by profiling the clusters in table7.5. The table

presents the main characteristic captured by each of the six clusters. The analyzed

characteristics included the most represented type of attribute and the most vio-

lated rule (measured by the fitness degree of the rule) for each cluster. Using this

table, we aim at explaining the correlation between the clusters, the attributes,

and the fitness rules. This correlation will point out the clustering role in identify-

ing certain combinations of attributes that will affect certain fitness rules and will

lead to a lower fitness values. Notice here that the fitness degrees of the entire

136 CHAPTER 7. CLUSTERING BASED COMPLIANCE CHECKING APPROACH

Figure 7.4: The distribution of PO creators over the six clusters

log is not considered since the rules results are more representative as discussed

earlier in the chapter.

Table 7.5: Summary of profiling results

Cluster Rule with Rule with Dominant Dominant Dominant Dominant

lowest fitness second lowest doc. type PG PO value PO creator

degree fitness degree Category

Cluster 1 R6 R7 FO, DI OBS, RBB 4 others

Cluster 2 R6 R7 FO, DI ISE, Build. 4 others

Cluster 3 R6 R7 NB, DI ISE, Build., RBB 4, 2 G51429, others

Cluster 4 R7 R6 MA, DI ISE, Build., Branches 4, 1 others, U21356, U32028

Cluster 5 R6 R7 MA, DI ISE, Buil., RBB 4, 3 others, G77089,

U32028

Cluster 6 R7 R6 FO, DI, Log, Branches, RBB 3, 1 U47966, G13254, U65500

FSD MMSDBATCH, U45859

The results indicate that there is a general detection of document type ’DI’,

purchasing groups ’Buildings’ and ’ISE’ (except Cluster 1), PO value ’category 4’

(except Cluster 1), and PO creator ’others’ in all clusters with lower fitness degrees.

Moreover, the distribution of the PO creators in the most fitting cluster ’Cluster 6’

is the lowest! This indicates that the appearance of PO creator ’others’ in the

other five clusters affects their fitness degrees negatively. Recall here that ’others’

groups the less frequent PO creators in the entire log file. Thus, we assume that

these creators do not have enough experience to perform the procurement process

which in turn leads to lower fitness degree.

7.4. CONCLUSION 137

The most noticeable remark in the table is the clear representation of certain

patterns in the cases included in each cluster. For example, clusters 1 and 2 contain

common document types, PO value categories and PO creators. However, the two

clusters record different fitness degrees. Cluster 1 is dominated by PG ’OBS’ and

’RBB’. However, Cluster 2 is dominated by PG ’Buildings’ and ’ISE’. This maybe

the reason behind the difference between the results of the two clusters against

Rule 6. The rule is only 20.5% applied in Cluster 2 whereas it is 33.3% applied in

Cluster 1. Recall here that Rule 6 is the rule to check the throughput time. Thus,

it could be the case that these purchasing groups consume extra time.

Cluster 3 represents the pattern where Document type ’NB’, PG ’ISE’ and ’RBB’,

PO value ’Category 2’, and PO creator ’G51429’ appear. This indicates that cluster

3 grouped the cases with lower fitness degree (related to rule 6 and 7) caused by

this pattern.

The highest Rule 7 effect on the fitness degree was isolated in clusters 6 and

then 4. A noticeable remark about the distribution of the two clusters is that these

are the only clusters containing cases of PO value ’Category 1’. In cluster 4, this was

associated with document type ’MA’, PG ’ISE’ and ’Branches’, PO value ’Category

1’, and PO creators ’U21356’ and ’U32028’. In Cluster 6, this was associated with

document type ’FO’ and ’FSD’, PG ’Log’, ’Branches’ and ’RBB’, PO value category ’3’

and ’1’, and PO creators ’U47966’, ’G13254’, ’U65500’, ’MMSDBATCH’, ’U45859’.

Regarding Rule 9, cases in Cluster 4 were the most violating cases and then

those in Cluster 2. Comparing this with the results of clusters 1 and 5, which are

100% compliant against the same rule, we noticed that PG ’RBB’ does not appear

in Cluster 2 and has a relatively small distribution in Cluster 4. We assume that

the presence of this PG affects the fitness degree positively.

7.4 Conclusion

In this chapter we present a new approach for compliance auditing based on clus-

tering. The idea is to cluster the log file and then check the compliance of generated

clusters. Later on, the clusters are profiled to reveal common characteristics in the

least compliant and most compliant clusters. The aim is to provide diagnostic in-

formation about the reason behind violation. This chapter can be seen as a first

step towards extending this research in the future to support the process manger

with diagnostic information.

Chapter 8

BRCA Tool

The BRCA tool is developed as an implementation for the Flexible Compliance Au-

diting Framework. The tool can be used by process analyst to check the compliance

of executed processes with respect to a normative model. The log file should be

in the xml format. The normative model which is a BRCA model is a file with the

extension *.br. It contains the set of business rules that should be checked. The

tool provides the ability to create a new model, save it, and load a predefined

one. However, to measure the fitness degree the the normative model is required.

The output of the tool is a csv file containing the fitness degrees at all levels of

abstraction. The tool is developed using the C#.net programming language.

Figure 8.1 shows the main screen. To run the tool, the user should have the

log file in xml format. Other formats are not supported for the moment. However,

if the log file is an mxml file or an xes file then they can be converted to an xml file

easily by changing the extension. In some cases, the structure of the mxml does

not work properly this way. In such cases, we recommend converting the file into

xes file first using the ProM tool [119] and then change the extension.

Once the log is located, it is parsed and then the tool is tuned according to the

recorded cases. In case the file could not be parsed, then the message (Cannot

parsed the selected XML file) appears to notify the user. Once the log file is parsed,

the business rules can be defined. The user has two options at this stage; he/she

can either build the model from scratch, or open a predefined model using the

(Load) option. In the former case, the new model can be saved to be used later.

The normative model is a BRCA model with the extension (*.br). To build a new

BRCA model, the tool provides a set of predefined rules representing the most

frequent checked requirements as shown in figure 8.2.

139

140 CHAPTER 8. BRCA TOOL

Figure 8.1: The main screen of the BRCA tool

Figure 8.2: List of predefined business rules

141

Selecting one of the rules, the user needs to tune the parameters according to

his/her needs. For instance, if the rule: If A exists then B exists where A(X) =

B(Y) is selected, then the user should select the values of A, B, X, and Y among a

list of values such as shown in Figure 8.3. Notice that there is no need to type the

values of the parameters. Expected values are listed next to their corresponding

parameters. Users can just select the values from the list.

Figure 8.3: Tuning parameters according to the selected rule

Once the model is ready to use, the user needs to select a suitable aggregation

operator which has a proper semantics (see figure 8.4). In case the WAM operator

is selected to measure the cases fitness degree, then the user can tune the weights

according to the importance of each rule.

After setting the process model, the tool can be run to measure the fitness

degrees. For this purpose, the user needs to press the (Save matrix) button and

choose a suitable location to save the output file. The output is an excel file contains

the fitness matrix such as shown in Figure 8.6.

142 CHAPTER 8. BRCA TOOL

Figure 8.4: Selecting the suitable aggregation operator

143

Figure 8.5: Assigning weights to WAM operator to measure the cases fitness de-

grees

144 CHAPTER 8. BRCA TOOL

Figure 8.6: Fitness matrix

Chapter 9

Conclusion and Future Work

Compliance auditing techniques are of high importance for process managers.

They can help them analyzing the performance of their executed processes. The

result is a good indicator to evaluate the organizational performance. Although ex-

isting techniques provide quantitative metrics to measure the conformity between

a log file and a set of executed processes. However, they have some important

limitations. The study of the literature reveals the need for a flexible approach for

compliance auditing which can be customized to meet the process analyst needs.

Some major factors have been underestimated in the exiting work such as the

flexibility of execution, the different interpretation for a compliant process, and

the ability to check the compliance at different levels of abstraction.

In this work we present our Flexible Compliance Auditing Framework to support

the business world with more applicable metrics. The framework provides different

semantics for a compliant process. Hence, it can be used to check the compliance

taking into consideration the business context in which it is applied. The devel-

oped framework supports the business world with a fitness measurement technique

which can be customized according to the process under investigation. This en-

ables the process analysts to consider important factors affecting the procedure

such as: the nature of the process under investigation, the different perspective of

process analysts when interpreting the results of compliance auditing techniques,

the balance between ensuring process compliance and flexible execution, and the

dynamic nature of the business world.

Flexibility and compliance are conflicting terms. Keeping the balance between

them is not easy. In this work, we handle the flexibility issue in two ways: firstly,

we use a new declarative language called the BRCA language which we developed

145

146 CHAPTER 9. CONCLUSION AND FUTURE WORK

to represent the compliance requirements. Hence, the process can be executed

in a very flexible way. Notice here that procedural models and flexible execution

never meet. Secondly, we define different functions to measure the fitness degree

of executed processes with respect to the normative model. Selecting the suitable

function is left to the process analysts. This way, they can customize the fitness

measurement technique according to their needs.

The BRCA language is introduced to represent the compliance requirements for

compliance auditing purposes. The study of the declarative languages used in the

literature reveal the need for a new language. Existing languages have two main

problems which make it difficult to use one of them in this research: 1) they do not

provide the ability to represent cases in which a business rule cannot be checked,

2) they do not allow formulating rules that can be checked at the occurrence level.

Hence, the BRCA language is introduced to overcome these limitations. Using

BRCA, the process analyst can define a set of business rules. Each of which can

be checked at different levels of abstraction. In addition, it provides the ability to

represent when the rule is applied, violated, or cannot be checked!

Given a log file and a BRCA model, the fitness degree can be measured at four

levels of abstraction: process, rule, case, and cell (one case against one business

rule). These metrics are formulated using different aggregation operators. Each

operator provides a different semantic. This is an important feature for process

analysts. It provides them with fitness metrics that match the context in which

they are applied. In addition, the proposed technique considers the different types

of compliance requirements. This is another added value for using a declarative

language other than flexibility.

Moreover, to the best of our knowledge, this is the first work to introduce the

concept of ”not checked rules”. Not checked rules are those that cannot be checked

in an executed process. Previously, these processes are considered either compli-

ant or non-compliant. We believe that these cases should be treated differently.

However, this concept needs more investigation. For the moment, these cases

affect the result when using an averaging aggregation function.

In addition, we propose a new clustering-based approach to provide diagnostic

information for compliance auditing. The idea is to cluster the log file and then

check the compliance of each cluster individually and then profile the clusters to

reveal common characteristics. The results provide diagnostic information about

the reasons behind violations.

The developed framework is evaluated by means of a synthesized data set for

147

the loan approval process and a real data set for the procurement process. Re-

sults show the importance of providing different semantics to measure the fitness

degree.

Future Work

Although the framework developed in this research has solved the limitations de-

tected in the existing work, however, nothing is complete. This work can be further

improved in a number of ways:

1. Extend the framework to provide diagnostic information: the framework can

be extended to support the user with diagnostic information. The idea is

to include the clustering based compliance auditing technique presented in

chapter 7 in the developed framework. Notice that, for the moment, the two

sides are not integrated. Process analysts can use each of them separately.

2. Find a neutral element which can replace the dash in the fitness matrix:

currently, when a case cannot be checked against one of the rules, a dash

is assigned to the corresponding cell. However, when measuring the fitness

degree at higher levels, these dashes affect the result. Assume that we

need to measure the fitness degree at the case level for two cases C_1 and

C_2 and that the process model contains 5 business rules. Lets assume

that C_1 could be checked against one of rules only and that this rule is

applied in that case. C_2 could be checked against the five rules, two of

them are applied and the remaining are not. That being the case, the fitness

degree of C_1 and C_2 would be 1 and 0.4 respectively. Notice that the

C_1 is considered completely compliant although it is applied in only one

rule, whereas, C_2 is partially compliant although it is applied in two rules.

We believe, as mentioned earlier, that it is important to distinguish checked

cases from others. However, it should be handled in a different way when

measuring the fitness degree using an averaging aggregation operator.

3. Enrich the BRCA language with the contrary-to-duty (CTD) feature. Due to

the dynamic nature of the business world, violations is normal to occur. How-

ever, a violation is not always an error. Thus, CTD is used to represent a

reparation chain. In this context, a reparation chain is the secondary obli-

gation which needs to be activated as a response to violating the primary

obligations.

148 CHAPTER 9. CONCLUSION AND FUTURE WORK

4. Define some thresholds between 0 and 1 to categorize the measured pro-

cesses accordingly. In this research we define the fitness degree to be a

value between 0 and 1. Defining some thresholds can help process analysts

categorizing their business processes, process instances and business rules

into predefined categories according to their fitness degree. For instance, we

can define the thresholds: 0.35, 0.75 to categorize cases of the procurement

process. Accordingly, cases with fitness degrees below 0.35 are categorized

as low compliant, cases with fitness degrees between 0.35 and 0.75 are cat-

egorized as moderate compliant and the remaining cases are categorized as

high compliant. Notice that each process should have its own thresholds to

keep on the flexibility feature of the work and that these thresholds should

be defined taking into consideration the process analyst point of view.

Appendix: The Syntax of

BRCA Language

1. Variables

1.1. Declaration

Variables are allocated on their first use and initialized with 0, there is

no need to declare them explicitly.

1.2. Identifier

Variable identifier should match the following regular expression:

[a-z]+[a-z0-9]1,63

2. Expressions

2.1. Arithmetic Expression

Any arithmetic expression should satisfy the following grammar:

Arithmetic_Expression Term Expression’

Arithmetic_Expression’ +Term Arithmetic_Expression’ |-Term Arithmetic_Ex-
pression’ |

Term Factor Term’

Term’ *Factor Term’ |/Factor Term’ |

Factor Identifier |Number |true |false |null |(Arithmetic_Expression) |(Con-
ditional_Expression)

Number 0 |[1-9] Number’

Number’ [0-9] Number’ |

true and false factors evaluate to 1 and 0 respectively in arithmetic ex-

pressions.

149

150 CHAPTER 9. CONCLUSION AND FUTURE WORK

2.2. Assignment Expression

Variables can be assigned an expression using the following grammar:

Assignment Expression Identifier = Expression

2.3. Conditional Expression

Conditional_Expression Condtional_Term Conditional_Expression’

Conditional_Expression’ or Condtional_Term Conditional_Expression’ |
Condtional_Term Factor Condtional_Term’

Condtional_Term’ and Factor Condtional_Term’ |(Conditional_Expres-
sion) |
Condtional_Term’’ |
Condtional_Term’’ not Factor |not (Condtional_Expression) |not (Arith-
metic_Expression) |
null and number 0 are treated as false in conditional expressions, whereas

any other number is treated as true.

3. Functions

3.1. Count Function

count(x in y):

x: an event type (?).

y: a trace

return: the number of occurrences of x in trace y.

3.2. Exist Function

exist(x in y):

x: an event type.

y: a trace.

return:

true: if there exists at least one event of type x in y.

false: otherwise.

3.3. First Function

first(x in y):

x: an event type.

y: a trace.

return: the first event of type x in trace y.

151

3.4. Follow Function

follow(x,y):

x: an event.

y: an event type.

return: the first event of type y that eventually follows the event x, or

null if no such event.

3.5. Last Function

last(x in y):

x: an event type.

y: a trace.

return: the last event of type x in trace y.

3.6. Length Function

length(x):

x: a trace.

return: the number of events in trace x.

3.7. Next Function

next(x):

x: an event.

return: the next event in the same trace of x, or null if x is the last

event.

3.8. Position Function

position(x):

x: an event.

return: the 1-based index of event x in the trace.

3.9. Prev Function

prev(x):

x: an event.

return: the previous event in the same trace of x, or null if x is the first

event.

Bibliography

[1] Guido Governatori and Antonino Rotolo. Norm compliance in business

process modeling. In Proceedings of the 2010 international conference on

Semantic web rules, RuleML’10, pages 194–209, Berlin, Heidelberg, 2010.

Springer-Verlag. ISBN 3-642-16288-6, 978-3-642-16288-6.

[2] Wil van der Aalst, Kees van Hee, Jan Martijn van der Werf, Akhil Kumar,

and Marc Verdonk. Conceptual model for online auditing. Decision Support

Systems, 50:636–647, February 2011. ISSN 0167-9236.

[3] Guido Governatori and Shazia Sadiq. The journey to business process

compliance. In Handbook of Research on BPM, pages 426–454. IGI Global,

2009.

[4] Jeremy Hope. Governance and control: Focus risk management on

multiple levers of control. Technical report, IBM Corp., Canada, April 2009.

[5] Tom Butler and Damien McGovern. Adopting it to manage cpmpliance and

risks: an institutional perspective. In Willie Golden, Tom Acton, Kieran

Conboy, Hans van der Heijden, and Virpi Kristiina Tuunainen, editors,

Proceedings of the 16th European Conference on Information Systems,

pages 1034–1045, Galway, Ireland, 2008.

[6] Patrícia Silveira, Carlos Rodríguez, Fabio Casati, Florian Daniel, Vincenzo

D’ Andrea, Claire Worledge, and Zouhair Taheri. On the design of

compliance governance dashboards for effective compliance and audit

management. In Proceedings of the 2009 International Conference on

Service-oriented computing, pages 208–217, Berlin, Heidelberg, 2009.

Springer-Verlag.

[7] Yurdaer Doganata and Francisco Curbera. Effect of using automated

auditing tools on detecting compliance failures in unmanaged processes.

153

154 BIBLIOGRAPHY

In Proceedings of the 7th International Conference on Business Process

Management, BPM ’09, pages 310–326, Berlin, Heidelberg, 2009.

Springer-Verlag. ISBN 978-3-642-03847-1.

[8] 2015 sarbanes-oxley compliance survey: Changes abound amid drive for

stability and long-term value. http://www.protiviti.com/en-US/Pages/

Sarbanes-Oxley-Compliance-Survey.aspx, . Accessed: 2016-03-02.

[9] Florian Daniel, Fabio Casati, Vincenzo D’ Andrea, Emmanuel Mulo, Uwe

Zdun, Schahram Dustdar, Steve Strauch, David Schumm, Frank Leymann,

Samir Sebahi, Fabien de Marchi, and Mohand-Said Hacid. Business

compliance governance in service-oriented architectures. In Proceedings

of the 2009 International Conference on Advanced Information Networking

and Applications, pages 113–120, Washington, DC, USA, 2009. IEEE

Computer Society. ISBN 978-0-7695-3638-5.

[10] Ahmed Awad. A Compliance Management Framework for Business Process

Models. PhD thesis, University of Potsdam, Potsdam, Germany, May 2010.

[11] Shazia Sadiq, Guido Governatori, and Kioumars Namiri. Modeling control

objectives for business process compliance. In Gustavo Alonso, Peter

Dadam, and Michael Rosemann, editors, Business Process Management,

volume 4714, pages 149–164. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2007. ISBN 978-3-540-75182-3. URL

http://espace.library.uq.edu.au/view/UQ:34544.

[12] Manuel Resinas, Antonio Ruiz-Cortes, and Cristina Cabanillas. Hints on

how to face business process compliance. III Taller de Procesos de

Negocio e Ingenieria de Servicios PNIS10 in JISBD10, 4(4):26–32, 2010.

[13] TILBURG UNIVERSITY. Compliance-driven models, languages, and

architectures for services compas: D2.1, July 2008. URL

http://www.compas-ict.eu/compas_results/deliverables/m06/D2.1_

State-of-the-art-for-compliance-languages.pdf.

[14] Michael Fellmann and Andrea Zasada. State-of-the-art of business process

compliance approaches. In 22st European Conference on Information

Systems, ECIS 2014, Tel Aviv, Israel, June 9-11, 2014, 2014. URL

http://aisel.aisnet.org/ecis2014/proceedings/track06/8.

http://www.protiviti.com/en-US/Pages/Sarbanes-Oxley-Compliance-Survey.aspx
http://www.protiviti.com/en-US/Pages/Sarbanes-Oxley-Compliance-Survey.aspx
http://espace.library.uq.edu.au/view/UQ:34544
http://www.compas-ict.eu/compas_results/deliverables/m06/D2.1_State-of-the-art-for-compliance-languages.pdf
http://www.compas-ict.eu/compas_results/deliverables/m06/D2.1_State-of-the-art-for-compliance-languages.pdf
http://aisel.aisnet.org/ecis2014/proceedings/track06/8

BIBLIOGRAPHY 155

[15] Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance

checking using bpmn-q and temporal logic. In Marlon Dumas, Manfred

Reichert, and Ming-Chien Shan, editors, Business Process Management,

6th International Conference, BPM 2008, Milan, Italy, September 2-4,

2008. Proceedings, volume 5240 of Lecture Notes in Computer Science,

pages 326–341. Springer, 2008. ISBN 978-3-540-85757-0. doi:

http://dx.doi.org/10.1007/978-3-540-85758-7_24.

[16] Alexander Forster, Gregor Engels, Tim Schattkowsky, and Ragnhild

Van Der Straeten. Verification of business process quality constraints

based on visual process patterns. In Theoretical Aspects of Software

Engineering, pages 197–208, 2007.

[17] Jan Mendling, Gustaf Neumann, and Markus Nüttgens. Yet another

event-driven process chain. In Business Process Management, volume

3649, pages 428–433, 2005.

[18] Johann Eder, Euthimios Panagos, and Michael Rabinovich. Time constraints

in workflow systems. In Proceedings of the 11th International Conference

on Advanced Information Systems Engineering, CAiSE ’99, pages

286–300, London, UK, 1999. Springer-Verlag.

[19] David Knuplesch, Linh Thao Ly, Stefanie Rinderle-Ma, Holger Pfeifer, and

Peter Dadam. On enabling data-aware compliance checking of business

process models. In ER’10, pages 332–346, 2010.

[20] Martijn Zoet, Richard Welke, Johan Versendaal, and Pascal Ravesteyn.

Aligning risk management and compliance considerations with business

process development. In Proceedings of the 10th International Conference

on E-Commerce and Web Technologies, EC-Web 2009, pages 157–168,

Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-03963-8. ACM

ID: 1611992.

[21] Cristina Cabanillas, Manuel Resinas, and A. Ruiz-Cortés. On the

identification of data-related compliance problems in business processes.

In VI JORNADAS CIENTÍFICO-TÉCNICAS EN SERVICIOS WEB Y SOA

(JSWEB’10), pages 89–102, 2010.

[22] Ly Linh Thao, Stefanie Rinderle-Ma, Göser Kevin, and Dadam Peter. On

enabling integrated process compliance with semantic constraints in

156 BIBLIOGRAPHY

process management systems. In Information Systems Frontiers.

Springer, 2009.

[23] Kioumars Namiri and Nenad Stojanovic. Using control patterns in business

processes compliance. In Mathias Weske, Mohand-Said Hacid, and Claude

Godart, editors, WISE Workshops, volume 4832 of Lecture Notes in

Computer Science, pages 178–190. Springer, 2007. ISBN

978-3-540-77009-1.

[24] Marwane El Kharbili, Sebastian Stein, Ivan Markovic, and Elke

Pulvermüller. Towards a framework for semantic business process

compliance management. In Shazia Sadiq, Marta Indulska, Michael zur

Muehlen, Xavier Franch, Ela Hunt, and Remi Coletta, editors, Proceedings

of the 1st International Workshop on Governance, Risk and Compliance:

Applications in Information Systems (GRCIS ’08), pages 1–15, June 2008.

[25] Stijn Goedertier and Jan Vanthienen. Designing compliant business

processes with obligations and permissions. In Business Process

Management Workshops, pages 5–14, 2006.

[26] Zoran Milosevic, Shazia Wasim Sadiq, and Maria E. Orlowska. Towards a

methodology for deriving contract-compliant business processes. In

Business Process Management, pages 395–400, 2006. doi:

10.1007/11841760_29.

[27] Shazia Sadiq and Guido Governatori. A methodological framework for

aligning business processes and regulatory compliance. In Jan Brocke and

Michael Rosemann, editors, Handbook of business process management:

2. Strategic alignment, governance, people and culture, pages 159–176.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[28] Guido Governatori, Zoran Milosevic, and Shazia Sadiq. Compliance

checking between business processes and business contracts. In

Proceedings of the 10th IEEE Conference on Enterprise Distributed Object

Computing, pages 221–232, 2006.

[29] Ruopeng Lu, Shazia Sadiq, and Guido Governatori. Compliance aware

business process design. In Proceedings of the 2007 international

conference on Business process management, BPM’07, pages 120–131,

Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-78237-0,

978-3-540-78237-7. ACM ID: 1793730.

BIBLIOGRAPHY 157

[30] Y. Liu, S. Müller, and K. Xu. A static compliance-checking framework for

business process models. IBM Systems Journal, 46:335–361, April 2007.

ISSN 0018-8670.

[31] Jian Yu, Tan Phan Manh, Jun Han, Yan Jin, Yanbo Han, and Jianwu Wang.

Pattern based property specification and verification for service

composition. In Karl Aberer, Zhiyong Peng, Elke A. Rundensteiner, Yanchun

Zhang, and Xuhui Li, editors, WISE, volume 4255 of Lecture Notes in

Computer Science, pages 156–168. Springer, 2006. ISBN 3-540-48105-2.

URL

http://dblp.uni-trier.de/db/conf/wise/wise2006.html#YuMHJHW06.

[32] Aditya Ghose and George Koliadis. Auditing business process compliance.

In Proceedings of the 5th international conference on Service-Oriented

Computing, ICSOC ’07, pages 169–180, Berlin, Heidelberg, 2007.

Springer-Verlag. ISBN 978-3-540-74973-8.

[33] Ahmed Awad. Bpmn-q: A language to query business processes. In

Manfred Reichert, Stefan Strecker, and Klaus Turowski, editors, Enterprise

Modelling and Information Systems Architectures - Concepts and

Applications , Proceedings of the 2nd International Workshop on Enterprise

Modelling and Information Systems Architectures (EMISA 07), St. Goar,

Germany, October 8-9, 2007, volume P-119 of LNI, pages 115–128. GI,

2007. ISBN 978-3-88579-213-0.

[34] Ahmed Awad, Sergey Smirnov, and Mathias Weske. Towards resolving

compliance violations in business process models. In Proceedings of the

2nd International Workshop on Governance, Risk and Compliance -

Applications in Information Systems, Amsterdam, The Netherlands, June

2009.

[35] Rakesh Agrawal, Christopher Johnson, Jerry Kiernan, and Frank Leymann.

Taming compliance with sarbanes-oxley internal controls using database

technology. In Proceedings of the 22nd International Conference on Data

Engineering, ICDE ’06, pages 92–, Washington, DC, USA, 2006. IEEE

Computer Society. ISBN 0-7695-2570-9.

[36] Christopher Giblin, Alice Y. Liu, Samuel Müller, Birgit Pfitzmann, and Xin

Zhou. Regulations expressed as logical models (realm). In Proceeding of

the 2005 conference on Legal Knowledge and Information Systems: JURIX

http://dblp.uni-trier.de/db/conf/wise/wise2006.html#YuMHJHW06

158 BIBLIOGRAPHY

2005: The Eighteenth Annual Conference, pages 37–48, Amsterdam, The

Netherlands, The Netherlands, 2005. IOS Press. ISBN 1-58603-576-2.

[37] Christopher Giblin, Samuel Müller, and Birgit Pfitzmann. From regulatory

policies to event monitoring rules: Towards model-driven compliance

automation. Technical Report RZ 3662, IBM Research, 2006.

[38] Guido Governatori and Zoran Milosevic. Dealing with contract violations:

formalism and domain specific language. In EDOC, pages 46–57. IEEE

Computer Society, 2005. ISBN 0-7695-2441-9. URL http:

//dblp.uni-trier.de/db/conf/edoc/edoc2005.html#GovernatoriM05.

[39] Zoran Milosevic, Audun Jøsang, Theo Dimitrakos, and Mary A. Patton.

Discretionary enforcement of electronic contracts. In Sixth International

Enterprise Distributed Object Computing Conference, EDOC ’02, pages

39–50, Lausanne, Switzerland, 2002. IEEE.

[40] N Gehrke and Michael Werner. Process mining. Das Wirtschaftswachstum,

42 (7), pages 934–943, 2013.

[41] Jonathan E. Cook and Alexander L. Wolf. Software process validation:

Quantitatively measuring the correspondence of a process to a model.

ACM Trans. Softw. Eng. Methodol., 8(2):147–176, 1999.

[42] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative

workflows: Balancing between flexibility and support. Computer Science -

R&D, 23(2):99–113, 2009. doi: 10.1007/s00450-009-0057-9. URL

http://dx.doi.org/10.1007/s00450-009-0057-9.

[43] Alessandra Agostini and Giorgio De Michelis. Improving flexibility of

workflow management systems. In Business Process Management,

volume 1806 of Lecture Notes in Computer Science, pages 218–234.

Springer, 2000.

[44] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola

Mello, Marco Montali, and Paolo Torroni. Expressing and verifying business

contracts with abductive logic programming. International Journal of

Electronic Commerce, 12:9–38, July 2008. ISSN 1086-4415. ACM ID:

1481698.

http://dblp.uni-trier.de/db/conf/edoc/edoc2005.html#GovernatoriM05
http://dblp.uni-trier.de/db/conf/edoc/edoc2005.html#GovernatoriM05
http://dx.doi.org/10.1007/s00450-009-0057-9

BIBLIOGRAPHY 159

[45] W. M. P. van der Aalst and A. K. A. de Medeiros. Process mining and

security: Detecting anomalous process executions and checking process

conformance. Electronic Notes in Theoretical Computer Science (ENTCS),

121:3–21, February 2005. ISSN 1571-0661.

[46] Massimiliano de Leoni, Fabrizio Maria Maggi, and Wil M. P. van der Aalst.

Aligning event logs and declarative process models for conformance

checking. In Business Process Management - 10th International

Conference, BPM 2012, Tallinn, Estonia, September 3-6, 2012.

Proceedings, pages 82–97, 2012. doi: 10.1007/978-3-642-32885-5_6.

URL http://dx.doi.org/10.1007/978-3-642-32885-5_6.

[47] Massimiliano de Leoni, Fabrizio Maria Maggi, and Wil M. P. van der Aalst.

An alignment-based framework to check the conformance of declarative

process models and to preprocess event-log data. Inf. Syst., 47:258–277,

2015. doi: 10.1016/j.is.2013.12.005. URL

http://dx.doi.org/10.1016/j.is.2013.12.005.

[48] Jonathan E. Cook, Cha He, and Changjun Ma. Measuring behavioral

correspondence to a timed concurrent model. In ICSM, pages 332–341,

2001.

[49] Wil M. P. van der Aalst. Business alignment: Using process mining as a

tool for delta analysis. In CAiSE Workshops (2), pages 138–145, 2004.

[50] A J M M Weijters, W M P Van Der Aalst, and A K Alves De Medeiros.

Process mining with the heuristicsminer algorithm. Technology, 166:1–34,

2006. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.118.8288&rep=rep1&type=pdf.

[51] A. K. Alves De Medeiros and A. J. M. M. Weijters. Genetic process mining.

In Applications and Theory of Petri Nets 2005, volume 3536 of Lecture

Notes in Computer Science, pages 48–69. Springer-Verlag, 2005.

[52] W. M. P. van der Aalst. Business alignment: using process mining as a tool

for delta analysis and conformance testing. Requirements Engineering,

10:198–211, November 2005. ISSN 0947-3602.

[53] A. Rozinat and W. M. P van der Aalst. Conformance checking of processes

based on monitoring real behavior. Information Systems, 33:64–95, March

2008. ISSN 0306-4379. ACM ID: 1316257.

http://dx.doi.org/10.1007/978-3-642-32885-5_6
http://dx.doi.org/10.1016/j.is.2013.12.005
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.8288&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.8288&rep=rep1&type=pdf

160 BIBLIOGRAPHY

[54] Internal Controls Practitioner. Sarbanes-oxley section 404: A guide for

management. Technical report, The Institute of Internal Auditory, USA,

Jan 2008.

[55] Francisco Curbera, Yurdaer Doganata, Axel Martens, Nirmal K. Mukhi, and

Aleksander Slominski. Business provenance: A technology to increase

traceability of end-to-end operations. In Proceedings of the OTM 2008

Confederated International Conferences, CoopIS, DOA, GADA, IS, and

ODBASE 2008. Part I on On the Move to Meaningful Internet Systems:,

OTM ’08, pages 100–119, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN

978-3-540-88870-3.

[56] W.M.P. van der Aalst A. Adriansyah, B.F. van Dongen. Cost-based

conformance checking using the a* algorithm. Bpm-11-11, BPM Center,

2011.

[57] Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst.

Conformance checking using cost-based fitness analysis. In EDOC, pages

55–64. IEEE Computer Society, 2011. ISBN 978-1-4577-0362-1.

[58] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen.

Replaying history on process models for conformance checking and

performance analysis. Wiley Interdisc. Rew.: Data Mining and Knowledge

Discovery, 2(2):182–192, 2012. doi: 10.1002/widm.1045. URL

http://dx.doi.org/10.1002/widm.1045.

[59] Rina Dechter and Judea Pearl. Generalized best-first search strategies and

the optimality of a*. J. ACM, 32(3):505–536, July 1985. ISSN 0004-5411.

[60] Arya Adriansyah, Boudewijn F van Dongen, and Wil MP van der Aalst.

Memory-efficient alignment of observed and modeled behavior.

BPMcenter. org, Tech. Rep, 2013.

[61] Massimiliano de Leoni, Wil M. P. van der Aalst, and Boudewijn F. van

Dongen. Data- and resource-aware conformance checking of business

processes. In Business Information Systems - 15th International

Conference, BIS 2012, Vilnius, Lithuania, May 21-23, 2012. Proceedings,

pages 48–59, 2012. doi: 10.1007/978-3-642-30359-3_5. URL

http://dx.doi.org/10.1007/978-3-642-30359-3_5.

http://dx.doi.org/10.1002/widm.1045
http://dx.doi.org/10.1007/978-3-642-30359-3_5

BIBLIOGRAPHY 161

[62] Wil M. P. van der Aalst. Process Mining: Discovery, Conformance and

Enhancement of Business Processes. Springer Publishing Company,

Incorporated, 1st edition, 2011. ISBN 3642193447, 9783642193446.

[63] Massimiliano de Leoni and Wil M. P. van der Aalst. Aligning event logs and

process models for multi-perspective conformance checking: An approach

based on integer linear programming. In Business Process Management -

11th International Conference, BPM 2013, Beijing, China, August 26-30,

2013. Proceedings, pages 113–129, 2013. doi:

10.1007/978-3-642-40176-3_10. URL

http://dx.doi.org/10.1007/978-3-642-40176-3_10.

[64] Massimiliano de Leoni, Jorge Munoz-Gama, Josep Carmona, and Wil M. P.

van der Aalst. Decomposing alignment-based conformance checking of

data-aware process models. In On the Move to Meaningful Internet

Systems: OTM 2014 Conferences - Confederated International

Conferences: CoopIS, and ODBASE 2014, Amantea, Italy, October 27-31,

2014, Proceedings, pages 3–20, 2014. doi:

10.1007/978-3-662-45563-0_1. URL

http://dx.doi.org/10.1007/978-3-662-45563-0_1.

[65] Natalia Sidorova, Christian Stahl, and Nikola Trcka. Soundness verification

for conceptual workflow nets with data: Early detection of errors with the

most precision possible. Inf. Syst., 36(7):1026–1043, 2011. doi:

10.1016/j.is.2011.04.004. URL

http://dx.doi.org/10.1016/j.is.2011.04.004.

[66] Xixi Lu, Dirk Fahland, and Wil M. P. van der Aalst. Conformance checking

based on partially ordered event data. In Business Process Management

Workshops - BPM 2014 International Workshops, Eindhoven, The

Netherlands, September 7-8, 2014, Revised Papers, pages 75–88, 2014.

doi: 10.1007/978-3-319-15895-2_7. URL

http://dx.doi.org/10.1007/978-3-319-15895-2_7.

[67] Elham Ramezani Taghiabadi, Dirk Fahland, Boudewijn F. van Dongen, and

Wil M. P. van der Aalst. Diagnostic information for compliance checking of

temporal compliance requirements. In Advanced Information Systems

Engineering - 25th International Conference, CAiSE 2013, Valencia, Spain,

June 17-21, 2013. Proceedings, pages 304–320, 2013. doi:

http://dx.doi.org/10.1007/978-3-642-40176-3_10
http://dx.doi.org/10.1007/978-3-662-45563-0_1
http://dx.doi.org/10.1016/j.is.2011.04.004
http://dx.doi.org/10.1007/978-3-319-15895-2_7

162 BIBLIOGRAPHY

10.1007/978-3-642-38709-8_20. URL

http://dx.doi.org/10.1007/978-3-642-38709-8_20.

[68] Elham Ramezani, Dirk Fahland, and Wil M. P. van der Aalst. Where did I

misbehave? diagnostic information in compliance checking. In Business

Process Management - 10th International Conference, BPM 2012, Tallinn,

Estonia, September 3-6, 2012. Proceedings, pages 262–278, 2012. doi:

10.1007/978-3-642-32885-5_21. URL

http://dx.doi.org/10.1007/978-3-642-32885-5_21.

[69] Elham Ramezani Taghiabadi, Vladimir Gromov, Dirk Fahland, and Wil M. P.

van der Aalst. Compliance checking of data-aware and resource-aware

compliance requirements. In On the Move to Meaningful Internet Systems:

OTM 2014 Conferences - Confederated International Conferences: CoopIS,

and ODBASE 2014, Amantea, Italy, October 27-31, 2014, Proceedings,

pages 237–257, 2014. doi: 10.1007/978-3-662-45563-0_14. URL

http://dx.doi.org/10.1007/978-3-662-45563-0_14.

[70] Vladimir Gromov. Diagnostics in compliance checking. Master’s thesis,

Eindhoven University for Technology, 2014.

[71] Massimiliano de Leoni and Wil M. P. van der Aalst. Data-aware process

mining: discovering decisions in processes using alignments. In Sung Y.

Shin and José Carlos Maldonado, editors, SAC, pages 1454–1461. ACM,

2013. ISBN 978-1-4503-1656-9. URL

http://dblp.uni-trier.de/db/conf/sac/sac2013.html#LeoniA13.

[72] Elham Ramezani Taghiabadi, Dirk Fahland, Boudewijn F. van Dongen, and

Wil M. P. van der Aalst. Diagnostic information for compliance checking of

temporal compliance requirements. In Advanced Information Systems

Engineering - 25th International Conference, CAiSE 2013, Valencia, Spain,

June 17-21, 2013. Proceedings, pages 304–320, 2013. doi:

10.1007/978-3-642-38709-8_20. URL

http://dx.doi.org/10.1007/978-3-642-38709-8_20.

[73] Massimiliano de Leoni, Wil M. P. van der Aalst, and Boudewijn F. van

Dongen. Data- and resource-aware conformance checking of business

processes. In Business Information Systems - 15th International

Conference, BIS 2012, Vilnius, Lithuania, May 21-23, 2012. Proceedings,

http://dx.doi.org/10.1007/978-3-642-38709-8_20
http://dx.doi.org/10.1007/978-3-642-32885-5_21
http://dx.doi.org/10.1007/978-3-662-45563-0_14
http://dblp.uni-trier.de/db/conf/sac/sac2013.html#LeoniA13
http://dx.doi.org/10.1007/978-3-642-38709-8_20

BIBLIOGRAPHY 163

pages 48–59, 2012. doi: 10.1007/978-3-642-30359-3_5. URL

http://dx.doi.org/10.1007/978-3-642-30359-3_5.

[74] Mahdi Alizadeh, Massimiliano de Leoni, and Nicola Zannone. History-based

construction of alignments for conformance checking: Formalization and

implementation. In Data-Driven Process Discovery and Analysis - 4th

International Symposium, SIMPDA 2014, Milan, Italy, November 19-21,

2014, Revised Selected Papers, pages 58–78, 2014. doi:

10.1007/978-3-319-27243-6_3. URL

http://dx.doi.org/10.1007/978-3-319-27243-6_3.

[75] Mahdi Alizadeh, Massimiliano de Leoni, and Nicola Zannone. History-based

construction of log-process alignments for conformance checking:

Discovering what really went wrong. In Proceedings of the 4th

International Symposium on Data-driven Process Discovery and Analysis

(SIMPDA 2014), Milan, Italy, November 19-21, 2014., pages 1–15, 2014.

URL http://ceur-ws.org/Vol-1293/preface.pdf.

[76] M. Hack. Petri net language. Technical report, Cambridge, MA, USA, 1976.

[77] Felix Mannhardt, Massimiliano Leoni, Hajo Reijers, and Wil van der Aalst.

Balanced multi-perspective checking of process conformance. Computing

(2016), 2016. ISSN 1436-5057.

[78] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, and Jan Mendling.

Process compliance measurement based on behavioural profiles. In

Barbara Pernici, editor, Advanced Information Systems Engineering,

volume 6051 of Lecture Notes in Computer Science, pages 499–514.

Springer Berlin Heidelberg, 2010. ISBN 978-3-642-13093-9. doi:

10.1007/978-3-642-13094-6_38. URL

http://dx.doi.org/10.1007/978-3-642-13094-6_38.

[79] Kerstin Gerke, Jorge Cardoso, and Alexander Claus. Measuring the

compliance of processes with reference models. In On the Move to

Meaningful Internet Systems: OTM 2009, Confederated International

Conferences, CoopIS, DOA, IS, and ODBASE 2009, Vilamoura, Portugal,

November 1-6, 2009, Proceedings, Part I, pages 76–93, 2009. doi:

10.1007/978-3-642-05148-7_8. URL

http://dx.doi.org/10.1007/978-3-642-05148-7_8.

http://dx.doi.org/10.1007/978-3-642-30359-3_5
http://dx.doi.org/10.1007/978-3-319-27243-6_3
http://ceur-ws.org/Vol-1293/preface.pdf
http://dx.doi.org/10.1007/978-3-642-13094-6_38
http://dx.doi.org/10.1007/978-3-642-05148-7_8

164 BIBLIOGRAPHY

[80] W. M. P. van der Aalst, H. T. Beer, and B. F. Dongen. Process mining and

verification of properties: An approach based on temporal logic. In Robert

Meersman and Zahir Tari, editors, On the Move to Meaningful Internet

Systems 2005: CoopIS, DOA, and ODBASE, volume 3760, pages

130–147. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN

978-3-540-29736-9.

[81] Federico Chesani, Paola Mello, Marco Montali, and Sergio Storari. Testing

careflow process execution conformance by translating a graphical

language to computational logic. In Proceedings of the 11th conference on

Artificial Intelligence in Medicine, AIME ’07, pages 479–488, Berlin,

Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-73598-4. ACM ID:

1420822.

[82] Diana Borrego and Irene Barba. Conformance checking and diagnosis for

declarative business process models in data-aware scenarios. Expert Syst.

Appl., 41(11):5340–5352, 2014. doi: 10.1016/j.eswa.2014.03.010. URL

http://dx.doi.org/10.1016/j.eswa.2014.03.010.

[83] A. Adriansyah, N. Sidorova, and B.F. van Dongen. Cost-based Fitness in

Conformance Checking. In Proceedings of the 11th International

Conference on Application of Concurrency to System Design (ACSD),

2011, June 2011. to appear.

[84] A K Alves De Medeiros, A J M M Weijters, and Wil M P Van Der Aalst. Using

genetic algorithms to mine process models: Representation, operators and

results. Event London, (i):1–38, 2004. URL http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.76.9095&rep=rep1&type=pdf.

[85] A K Alves De Medeiros. Genetic Process Mining. PhD thesis, TU Eindhoven,

Eindhoven, Nederland, 2006.

[86] A K Alves De Medeiros and A J M M Weijters. Genetic process mining: A

basic approach and its challenges. In In Busines Process Management

2005 Workshops, pages 203–215. Springer Verlag, 2006.

[87] Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens.

Robust process discovery with artificial negative events. Journal of

Machine Learning Research, 10:1305–1340, June 2009. ISSN 1532-4435.

http://dx.doi.org/10.1016/j.eswa.2014.03.010
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.9095&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.9095&rep=rep1&type=pdf

BIBLIOGRAPHY 165

[88] A. Adriansyah, B. F. Dongen, and W. M. P. Aalst. Towards robust

conformance checking. In Michael Muehlen and Jianwen Su, editors,

Business Process Management Workshops, volume 66, pages 122–133.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN

978-3-642-20510-1. URL

http://www.pubzone.org/dblp/conf/bpm/AdriansyahDA10.

[89] M. Pesic. Constraint-Based Workflow Management Systems: Shifting

Control to Users. PhD thesis, Eindhoven University of Technology, 2008.

[90] Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo A. Reijers, Barbara Weber,

Matthias Weidlich, and Stefan Zugal. Declarative versus imperative

process modeling languages: The issue of understandability. In Terry A.

Halpin, John Krogstie, Selmin Nurcan, Erik Proper, Rainer Schmidt, Pnina

Soffer, and Roland Ukor, editors, BMMDS/EMMSAD, volume 29 of Lecture

Notes in Business Information Processing, pages 353–366. Springer, 2009.

[91] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.

Electron. Notes Theor. Comput. Sci., 152:125–142, March 2006. ISSN

1571-0661. doi: 10.1016/j.entcs.2005.10.021. URL

http://dx.doi.org/10.1016/j.entcs.2005.10.021.

[92] Ivo Raedts, Marija Petković, Yaroslav S. Usenko, Jan Martijn Van Der Werf,

Jan Friso Groote, and Lou Somers. Transformation of bpmn models for

behaviour analysis, 2007.

[93] Lex Wedemeijer. Transformation of imperative workflows to declarative

business rules. In BMSD, volume 173 of Lecture Notes in Business

Information Processing, pages 106–127. Springer, 2013.

[94] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of

Computer Programming. MIT Press, Cambridge, MA, USA, 2004. ISBN

0262220695.

[95] Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan Mendling,

and Hajo A. Reijers. Imperative versus declarative process modeling

languages: An empirical investigation. In Florian Daniel, Kamel Barkaoui,

and Schahram Dustdar, editors, Business Process Management Workshops

(1), volume 99 of Lecture Notes in Business Information Processing, pages

383–394. Springer, 2011. ISBN 978-3-642-28107-5.

http://www.pubzone.org/dblp/conf/bpm/AdriansyahDA10
http://dx.doi.org/10.1016/j.entcs.2005.10.021

166 BIBLIOGRAPHY

[96] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets: Modelling and

Validation of Concurrent Systems. Springer Publishing Company,

Incorporated, 1st edition, 2009. ISBN 3642002838, 9783642002830.

[97] Dirk Fahland, Jan Mendling, Hajo A. Reijers, Barbara Weber, Matthias

Weidlich, and Stefan Zugal. Declarative versus imperative process

modeling languages: The issue of maintainability. In Business Process

Management Workshops, volume 43 of Lecture Notes in Business

Information Processing, pages 477–488. Springer, 2009.

[98] Guido Governatori and Zoran Milosevic. A formal analysis of a business

contract language. Int. J. Cooperative Inf. Syst., 15(4):659–685, 2006.

[99] Guido Governatori. Law, logic and business processes, page 1?10. IEEE,

2010.

[100] Guido Governatori and Antonino Rotolo. A conceptually rich model of

business process compliance. In Proceedings of the Seventh Asia-Pacific

Conference on Conceptual Modelling - Volume 110, APCCM ’10, pages

3–12, Darlinghurst, Australia, Australia, 2010. Australian Computer

Society, Inc.

[101] Moshe Y. Vardi. Branching vs. linear time: Final showdown. In Proceedings

of the 7th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS 2001, pages 1–22, London,

UK, 2001. Springer-Verlag. ISBN 3-540-41865-2.

[102] Grigoris Antoniou, David Billington, Guido Governatori, and Michael J.

Maher. Representation results for defeasible logic. ACM Trans. Comput.

Logic, 2(2):255–287, April 2001. ISSN 1529-3785.

[103] Grigoris Antoniou, David Billington, Guido Governatori, and Michael J.

Maher. Embedding defeasible logic into logic programming. Theory Pract.

Log. Program., 6(6):703–735, November 2006. ISSN 1471-0684.

[104] Guido Governatori and Antonino Rotolo. Logic of violations: A gentzen

system for reasoning with contrary-to-duty obligations. Australasian

Journal of Logic, 4:193–215, 2006. URL

http://www.philosophy.unimelb.edu.au/ajl/2006/2006_4.pdf.

http://www.philosophy.unimelb.edu.au/ajl/2006/2006_4.pdf

BIBLIOGRAPHY 167

[105] Grigoris Antoniou, David Billington, Guido Governatori, and Michael J.

Maher. A flexible framework for defeasible logics. CoRR, cs.AI/0003013,

2000.

[106] Guido Governatori. Representing business contracts in ruleml. Int. J.

Cooperative Inf. Syst., 14(2-3):181–216, 2005.

[107] Guido Governatori, Antonino Rotolo, and Giovanni Sartor. Temporalised

normative positions in defeasible logic. In The Tenth International

Conference on Artificial Intelligence and Law, Proceedings of the

Conference, June 6-11, 2005, Bologna, Italy, pages 25–34. ACM, 2005.

ISBN 1-59593-081-7.

[108] Guido Governatori, Jörg Hoffmann, Shazia Wasim Sadiq, and Ingo Weber.

Detecting regulatory compliance for business process models through

semantic annotations. In Danilo Ardagna, Massimo Mecella, and Jian Yang,

editors, Business Process Management Workshops, volume 17 of Lecture

Notes in Business Information Processing, pages 5–17. Springer, 2008.

ISBN 978-3-642-00327-1.

[109] Guido Governatori, Joris Hulstijn, Régis Riveret, and Antonino Rotolo.

Characterising deadlines in temporal modal defeasible logic. In Mehmet A.

Orgun and John Thornton, editors, AI 2007: Advances in Artificial

Intelligence, 20th Australian Joint Conference on Artificial Intelligence,

Gold Coast, Australia, December 2-6, 2007, Proceedings, volume 4830 of

Lecture Notes in Computer Science, pages 486–496. Springer, 2007. ISBN

978-3-540-76926-2.

[110] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and

Reasoning about Systems. Cambridge University Press, New York, NY,

USA, 2004. ISBN 052154310X.

[111] M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible

business processes management. In Proceedings of the 2006 International

Conference on Business Process Management Workshops, BPM’06, pages

169–180, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-38444-8,

978-3-540-38444-1. doi: 10.1007/11837862_18. URL

http://dx.doi.org/10.1007/11837862_18.

[112] Wil M. P. van der Aalst and Maja Pesic. Decserflow: Towards a truly

declarative service flow language. In The Role of Business Processes in

http://dx.doi.org/10.1007/11837862_18

168 BIBLIOGRAPHY

Service Oriented Architectures, volume 06291 of Dagstuhl Seminar

Proceedings. Internationales Begegnungs- und Forschungszentrum fuer

Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

[113] Nataliya Mulyar, Maja Pesic, Wil M. P. van der Aalst, and Mor Peleg.

Declarative and procedural approaches for modelling clinical guidelines:

Addressing flexibility issues. In Arthur H. M. ter Hofstede, Boualem

Benatallah, and Hye-Young Paik, editors, Business Process Management

Workshops, volume 4928 of Lecture Notes in Computer Science, pages

335–346. Springer, 2007. ISBN 978-3-540-78237-7. URL

http://dblp.uni-trier.de/db/conf/bpm/bpmw2007.html#MulyarPAP07.

[114] Gleb Beliakov, Ana Pradera, and Tomasa Calvo. Aggregation Functions: A

Guide for Practitioners, volume 221 of Studies in Fuzziness and Soft

Computing. Springer, 2007.

[115] Radko Mesiar, Anna Kolesárová, Tomasa Calvo, and Magda Komorníková. A

review of aggregation functions. In Fuzzy Sets and Their Extensions:

Representation, Aggregation and Models - Intelligent Systems from

Decision Making to Data Mining, Web Intelligence and Computer Vision,

pages 121–144. 2008.

[116] Marcin Detyniecki. Fundamentals on aggregation operators. Technical

report, University of California, Berkeley, 2001.

[117] 3tu.datacentrum website. https://data.3tu.nl/repository/uuid:

bd8fcc48-5bf3-480e-8775-d79d6c700e90. Accessed: 2016-03-02.

[118] W. van der Aalst, T. Weijters, and L. Maruster. Workflow mining:

discovering process models from event logs. IEEE Transactions on

Knowledge and Data Engineering, 16(9):1128–1142, September 2004.

ISSN 1041-4347.

[119] Prom framework. http://www.processmining.org/prom/start, .

Accessed: 2016-03-02.

[120] Thomas Stocker and Rafael Accorsi. Secsy: A security-oriented tool for

synthesizing process event logs. In Proceedings of the BPM Demo Sessions

2014 Co-located with the 12th International Conference on Business

Process Management (BPM 2014), Eindhoven, The Netherlands,

http://dblp.uni-trier.de/db/conf/bpm/bpmw2007.html#MulyarPAP07
https://data.3tu.nl/repository/uuid:bd8fcc48-5bf3-480e-8775-d79d6c700e90
https://data.3tu.nl/repository/uuid:bd8fcc48-5bf3-480e-8775-d79d6c700e90
http://www.processmining.org/prom/start

BIBLIOGRAPHY 169

September 10, 2014., page 71, 2014. URL

http://ceur-ws.org/Vol-1295/paper13.pdf.

[121] Mieke Jans. A Framework for Internal Fraud Risk Reduction: The IFR2

Framework. PhD thesis, Hasselt University, Diepenbeek, Belgium, 2009.

[122] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Process

diagnostics using trace alignment: Opportunities, issues, and challenges.

Inf. Syst., 37(2):117–141, 2012.

[123] Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and Domenico Sacca.

Discovering expressive process models by clustering log traces. IEEE

Transactions on Knowledge and Data Engineering, 18:1010–1027, August

2006. ISSN 1041-4347. doi: http://dx.doi.org/10.1109/TKDE.2006.123.

URL http://dx.doi.org/10.1109/TKDE.2006.123.

[124] Wei-bang Chen and Chengcui Zhang. A robust method for biological

sequence clustering. In Proceedings of the 2006 IEEE International

Conference on Information Reuse and Integration, IRI - 2006: Heuristic

Systems Engineering, September 16-18, 2006, Waikoloa, Hawaii, USA,

pages 286–291, 2006. doi: 10.1109/IRI.2006.252427. URL

http://dx.doi.org/10.1109/IRI.2006.252427.

[125] Diogo R. Ferreira. Applied sequence clustering techniques for process

mining. In Jorge Cardoso and Wil van der Aalst, editors, Handbook of

Research on Business Process Modeling, Information Science Reference,

pages 492–513. IGI Global, 2009.

[126] Diogo Ferreira, Marielba Zacarias, Miguel Malheiros, and Pedro Ferreira.

Approaching process mining with sequence clustering: Experiments and

findings. In Proceedings of the 5th International Conference on Business

Process Management, BPM’07, pages 360–374, Berlin, Heidelberg, 2007.

Springer-Verlag. ISBN 3-540-75182-3, 978-3-540-75182-3. URL

http://dl.acm.org/citation.cfm?id=1793114.1793147.

[127] Gabriel M. Veiga and Diogo R. Ferreira. Understanding spaghetti models

with sequence clustering for ProM. In Business Process Management

Workshops, BPM 2009 International Workshops, Ulm, Germany,

September 7, 2009. Revised Papers, volume 43 of Lecture Notes in

Business Information Processing, pages 92–103. Springer, 2010.

http://ceur-ws.org/Vol-1295/paper13.pdf
http://dx.doi.org/10.1109/TKDE.2006.123
http://dx.doi.org/10.1109/IRI.2006.252427
http://dl.acm.org/citation.cfm?id=1793114.1793147

170 BIBLIOGRAPHY

[128] Minseok Song, Christian W. Günther, and Wil M. P. van der Aalst. Trace

clustering in process mining. In Business Process Management

Workshops, volume 17 of Lecture Notes in Business Information

Processing, pages 109–120. Springer, 2008.

[129] R. P. Jagadeesh Chandra Bose and Wil M. P Van Der Aalst. Context aware

trace clustering: Towards improving process mining results. In SDM’09,

pages 401–412, 2009.

[130] Nour Damer, Mieke J. Jans, Benoît Depaire, and Koen Vanhoof. Making

compliance measures actionable: A new compliance analysis approach. In

Business Process Management Workshops - BPM 2011 International

Workshops, Clermont-Ferrand, France, August 29, 2011, Revised Selected

Papers, Part I, pages 159–164, 2011. doi:

10.1007/978-3-642-28108-2_16. URL

http://dx.doi.org/10.1007/978-3-642-28108-2_16.

http://dx.doi.org/10.1007/978-3-642-28108-2_16

	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Introduction
	Categories of compliance requirements
	Compliance checking approaches
	Compliance checking, conformance checking and compliance auditing
	Motivation
	Research question
	Scope of this research
	Main contributions
	Thesis structure

	Literature Review
	Compliance auditing
	Fitness measurement
	The Procurement Process
	Alignment-based techniques
	Replaying-based techniques
	Constraint-based techniques
	A comparison between existing fitness measure

	Process modeling languages
	Conclusion

	Business Process Modeling for Compliance Auditing
	Declarative process modeling languages
	Formal Contract Logic (FCL)
	Linear Temporal Logic (LTL)

	A comparison between FCL and LTL
	BRCA language
	Conclusion

	Flexible Compliance Auditing Framework
	The flexible compliance auditing framework
	Fitness measurement technique
	Aggregation functions
	Cell fitness metric
	Case fitness metric
	Rule fitness metric
	Process fitness metric

	Example
	Conclusion

	The Loan Approval Process: A Synthesized Data Set
	Generating the log file and defining the business rules
	Result analysis
	The process level fitness degree
	Rule level fitness degree
	Case level fitness degree
	Cell level fitness degree

	Conclusion

	The Procurement Process: A Real Life Data Set
	Process level fitness degree
	Rule level fitness degrees
	Case level fitness degree
	Cell level fitness degree
	Conclusion

	Clustering Based Compliance Checking Approach
	Clustering in process mining
	Clustering based compliance checking approach
	Clustering the log file
	Measuring compliance
	Profiling the clusters

	Results discussion
	Conclusion

	BRCA Tool
	Conclusion and Future Work
	Appendix: The Syntax of BRCA Language

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20130829143007
 680.3150
 Doctoraat 170mmx240mm
 Blank
 481.8898

 Tall
 1
 0
 No
 651
 328
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 190
 189
 190

 1

 HistoryItem_V1
 InsertBlanks

 Where: before first page
 Number of pages: 2
 Page size: 8.268 x 11.693 inches / 210.0 x 297.0 mm

 Blanks
 Always
 2
 1

 D:20140514102342
 841.8898
 a4
 Blank
 595.2756

 1
 Tall
 722
 252
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 PDDoc

 Custom
 AtStart

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after page 3
 Number of pages: 1
 Page size: 8.268 x 11.693 inches / 210.0 x 297.0 mm

 Blanks
 Always
 1
 1

 D:20140514102342
 841.8898
 a4
 Blank
 595.2756

 3
 Tall
 722
 252
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 PDDoc

 Custom
 AfterNum

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after last page
 Number of pages: 3
 Page size: 8.268 x 11.693 inches / 210.0 x 297.0 mm

 Blanks
 Always
 3
 1

 D:20140514102342
 841.8898
 a4
 Blank
 595.2756

 1
 Tall
 722
 252
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 PDDoc

 Custom
 AtEnd

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20131010110124
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 651
 328
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 196
 195
 196

 1

 HistoryList_V1
 qi2base

