
The primitivity of operators in the algebra of binary relations under
conjunctions of containments Link
Peer-reviewed author version

Made available by Hasselt University Library in Document Server@UHasselt

Reference (Published version):
Surinx, Dimitri; Van den Bussche, Jan & Van Gucht, Dirk(2017) The primitivity of operators
in the algebra of binary relations under conjunctions of containments. In: 32nd Annual ACM/
IEEE Symposium on Logic in Computer Science (LICS), 2017, IEEE,

DOI: 10.1109/LICS.2017.8005122
Handle: http://hdl.handle.net/1942/25325

https://www.uhasselt.be
http://hdl.handle.net/1942/25325
https://uhdspace.uhasselt.be

The primitivity of operators in the algebra of binary
relations under conjunctions of containments

Dimitri Surinx
Hasselt University

dimitri.surinx@uhasselt.be

Jan Van den Bussche
Hasselt University

jan.vandenbussche@uhasselt.be

Dirk Van Gucht
Indiana University

vgucht@cs.indiana.edu

Abstract—The algebra of binary relations provides union and
composition as basic operators, with the empty set as neutral
element for union and the identity relation as neutral element for
composition. The basic algebra can be enriched with additional
features. We consider the diversity relation, the full relation,
intersection, set difference, projection, coprojection, converse,
and transitive closure. It is customary to express boolean queries
on binary relational structures as finite conjunctions of contain-
ments. We investigate which features are primitive in this setting,
in the sense that omitting the feature would allow strictly less
boolean queries to be expressible. Our main result is that, modulo
a finite list of elementary interdependencies among the features,
every feature is indeed primitive.

I. INTRODUCTION

The algebra of binary relations (aka the calculus of rela-
tions) was created by De Morgan, Peirce, and Schröder, and
popularized and further developed by Tarski and his collabo-
rators [1]–[3]. These developments gave rise to the rich field
of relation algebras [4]–[6]. In the present paper, however, we
are focusing on the algebra of binary relations as a language
for expressing properties of binary relational structures. This
focus comes very naturally in the context of query languages
for graph data. Indeed, a binary relational structure really
is a directed graph, with the different binary relation names
playing the role of edge labels. Not surprisingly, the algebra of
binary relations lies at the basis of query languages for graph
databases [7]–[12].

But also more fundamentally, the algebra of binary relations
originated in the desire to have a principled language for
expressing properties (axiomatizing classes) of relational struc-
tures. (In this respect, the algebra of binary relations actually
predates first-order logic [13].) This paper is part of our ongo-
ing work [9], [14]–[17] to understand the expressive power, in
particular the primitivity or interdependencies, among different
operators considered in the realm of binary relational algebra.
Since we include projection, coprojection, transitive closure,
intersection, and converse, our investigation is also relevant to
propositional dynamic logic, multi-dimensional modal logic
[18] and to the relational interpretation of Kleene algebras
with tests, and of Kleene allegories [19], [20].

There are indeed many different operators that have been
considered. Our choice of operators is a natural one and
motivated by the applications to graph database query lan-
guages. We always start from union ∪ and composition ◦,

as the equivalents of addition and multiplication for binary
relations, together with the empty relation ∅ and the identity
relation id , as the neutral elements for union and composition.
These four features are always included. Then we consider
arbitrary language fragments built up by adding any subset
of the following features: the full relation all ; the diversity
relation di ; converse −1; transitive closure +; intersection ∩;
set difference −; projection π; and coprojection π. These
operators are self-explanatory, except perhaps projection and
coprojection which provide for testing and negative testing.

The task of understanding and comparing language frag-
ments that include some needed features, but omit unneeded
ones, makes sense. For example, in database query processing
we could use data structures or query optimization strategies
that work well for some operators but not for others. Moreover,
some automated reasoning tasks, such as satisfiability or
subsumption testing, will be decidable in some fragments but
not in the full language.

Expressions are built up from relation names, constants, and
operators. Given a graph G appropriate for an expression e,
we can evaluate e in G and obtain a binary relation e(G) over
the domain of G. Thus, expressions define what we call path
queries: functions that map graphs to relations. For example,
consider the expression (R ◦ R ◦ S) ∩ id applied to a graph
with R- and S-labeled edges. Thinking of R as bus rides and
of S as train rides, the expression returns all identical pairs
(x, x) of locations x from where you can take two consecutive
bus rides and get back home by a single train ride.

In logic, however, relational algebra expressions are also
often used in equations or containments (or implications). For
example, a binary relation R is a total order if and only if it sat-
isfies the four containments id ⊆ R; R◦R ⊆ R; R∩R−1 ⊆ id ;
and all ⊆ R∪R−1. The second chapter of Maddux’s book [4]
is full of such examples. Thus, conjunctions of containments
are used to express what we call boolean queries: functions
mapping graphs to true/false. Another example is the single
containment all ⊆ (R ∪ R−1)+ which expresses that the
graph is connected. Also in databases, containments are very
natural, for example, in the expression of referential integrity
constraints. For example, when we think of R as works-for
and of S as managed-by, then the containment π2(S) ⊆ π1(R)
expresses that every manager is also an employee. As a last
example, R is a function iff R−1 ◦R ⊆ id .

Our main goal in this paper is to investigate the primitivity978-1-5090-3018-7/17/$31.00 c©2017 IEEE

of the operators under conjunctions of containments. For
example, take a fragment F that does not include the converse
operator, and consider the fragment F ′ = F ∪ {−1} that adds
converse to F . Can we express strictly more boolean queries
(as conjunctions of containments) using F ′-expressions than
using only F -expressions? Note that for path queries, primi-
tivity is a rather easy exercise. For example, it is not difficult
to see that the path query R−1 cannot be expressed without
using converse. For boolean queries, however, this is often less
obvious. In previous work [14]–[16], we considered boolean
queries expressed by nonemptiness statements e 6= ∅. It turns
out, for example, that converse is not always primitive in that
setting. Specifically, for any fragment F lacking intersection
but including projection, all boolean queries expressed by the
nonemptiness of an F -expression are already expressible using
an F -expression that does not use converse [14]. For instance,
R3◦R−1◦R3 is nonempty if and only if R3◦π2(π1(R3)◦R) is
nonempty. Furthermore, transitive closure is not primitive for
nonemptiness queries over a single relation name in fragments
that only add di or π as extra features [16]. We thus see that
primitivity in general can depend on the vocabulary, as well
as on the fragment under consideration.

In contrast, in this paper, we show that under conjunctions
of containments, the interdependencies among the operators
are exactly the same as for path queries. One might say that
the surprise is that there are no surprises! We already know
that the operator interdependencies for path queries can be
concisely summarized in the form of a finite list of explicit
definitions [9]. (This list contains definitions such as π1(e) =
(e◦e−1)∩id .) So, our result implies that this list of definitions
is complete also for determining the interdependencies under
conjunctions of containments.

In this work, our creativity went mainly in deliberating for
each operator and every fragment whether the operator might
be nonprimitive in the fragment. In the end, failing to find any
collapses, we needed to find suitable boolean queries that show
primitivity for each operator. We subsequently could find quite
elementary arguments that the query is indeed inexpressible
without using the operator.

II. DEFINITIONS AND RESULTS

Let us fix a nonempty relational vocabulary Λ, i.e., a
nonempty set of relation names. All results in this paper
hold for every choice of Λ. A graph is a structure G =
(V, (RG)R∈Λ) where V is a nonempty set (the domain of
G) and each RG is a binary relation on V . The domain V
is denoted by dom(G) and its elements are called the nodes
of G. Also, each pair in RG is called an edge with label
R. Graphs may be infinite, unless explicitly stated otherwise.
All inexpressibility results in this paper already hold when
restricting to finite graphs, however.

The most basic query language for graphs we consider is
the algebra N . The expressions of N are built recursively
from the relation names in Λ, the constant symbol ∅, and the
constant symbol id , using composition (e1 ◦ e2) and union
(e1 ∪ e2).

R(G) = RG

∅(G) = ∅
id(G) = {(m,m) | m ∈ dom(G)}

e1 ∪ e2(G) = e1(G) ∪ e2(G)

e1 ◦ e2(G) = {(m,n) | ∃p : (m, p) ∈ e1(G)

∧ (p, n) ∈ e2(G)}

Fig. 1. Semantics of N .

all(G) = {(m,n) | m,n ∈ dom(G)}
di(G) = {(m,n) ∈ all(G) | m 6= n}
e−1(G) = {(m,n) | (n,m) ∈ e(G)}
e+(G) = the transitive closure of e(G)

π1(e)(G) = {(m,m) | ∃n : (m,n) ∈ e(G)}
π2(e)(G) = {(m,m) | ∃n : (n,m) ∈ e(G)}
π1(e)(G) = id(G)− π1(e)(G)

π2(e)(G) = id(G)− π2(e)(G)

e1 ∩ e2(G) = e1(G) ∩ e2(G)

e1 − e2(G) = e1(G)− e2(G).

Fig. 2. Semantics of the nonbasic features.

Remark II.1. The assumption of a basic language is a point
of discussion. In principle there is no reason to use a basic
language at all: just consider each and every operation to be
optional. For our investigation, we have chosen for a basic
language for the following reasons. First, it lends structure to
the investigation. Without the framework provided by a basic
language, our task would include a large number of ad-hoc
cases to be settled. Furthermore, the field of relation algebras
identifies composition and union as the natural counterparts
for multiplication and addition of binary relations. Union is a
very mild operation that is computationally simple. Without
composition, you can hardly say you are investigating binary
relations. Adding the neutral elements (empty for union,
identity for composition) provides the mathematically natural
structure of a semiring.

Semantically, each expression e ∈ N defines a path query,
a function q from graphs to binary relations, mapping a graph
G to a binary relation on dom(G). See Figure 1.

We will use the abbreviation Rn for R ◦ · · · ◦ R (n times
R, with n > 0). Also, R0 is used as a synonym for id .

The basic algebra N can be extended by adding some of
the following operators: the constant symbols for diversity (di)
and for the full relation (all); the unary operators converse
(e−1), transitive closure (e+), projection (π1(e) and π2(e)),
and coprojection (π1(e) and π2(e)); and the binary operators
intersection (e1 ∩ e2) and set difference (e1 − e2).

We refer to the operators in the basic algebra N as basic
features; we refer to the extensions as nonbasic features. The

all ≡ di ∪ id

di ≡ all − id

e1 ∩ e2 ≡ e1 − (e1 − e2)

π1(e) ≡ (e ◦ e−1) ∩ id ≡ (e ◦ all) ∩ id ≡ π1(π1(e))

π2(e) ≡ (e−1 ◦ e) ∩ id ≡ (all ◦ e) ∩ id ≡ π2(π2(e))

π1(e) ≡ id − π1(e)

π2(e) ≡ id − π2(e)

Fig. 3. Interdependencies among the nonbasic features [9].

semantics of the latter are given in Figure 2. Note that the
complement ec can be expressed as all − e.

Two expressions e1 and e2 are equivalent, denoted by e1 ≡
e2, if they express the same path query, i.e., e1(G) = e2(G)
for every graph G.

A fragment is any set F of nonbasic features, where we
take either both projections or none of them, and the same
for coprojection. Formally, π1 ∈ F iff π2 ∈ F , and the same
for π1 and π2. We denote by N (F) the language obtained by
adding the features in F to N . For example, N (∩) denotes the
extension with intersection, andN (∩, π) denotes the extension
with intersection and both projections.

Various interdependencies exist between the nonbasic fea-
tures [9]. They are shown in Figure 3. For example, by the
third equivalence in the figure, when we add difference, we
get intersection for free.

Hence, a feature f may be present in the language N (F)
without belonging to F . To deal with this, we use the comple-
tion F of a set of nonbasic features F . Guided by Figure 3, we
define F as the smallest superset of F satisfying the following
rules:
• if di ∈ F , then all ∈ F ;
• if all ∈ F and − ∈ F , then di ∈ F ;
• if − ∈ F , then ∩ ∈ F ;
• if ∩ ∈ F and (−1 ∈ F or all ∈ F), then π ∈ F ;
• if π ∈ F , then π ∈ F ;
• if − ∈ F and π ∈ F , then π ∈ F .

For example,

{all ,−} = {di ,−} = {di , all ,∩,−, π, π}.

It is clear that the languagesN (F) andN (F) are equivalent
in that they can express precisely the same path queries.
For any two fragments F1 and F2, call N (F1) subsumed by
N (F2), denoted by F1 ≤ F2, if every path query expressible in
N (F1) is also expressible in N (F2). The above list of equiv-
alences is known to be complete for determining subsumption
for path queries. Specifically, we have F1 ≤ F2 if and only if
F1 ⊆ F2 [14].

In the fragment N (di ,−,−1), which is the largest fragment
(up to completion) without transitive closure, we can express
exactly the same path queries as the 3-variable fragment of
first-order logic [2], [18].

A. Boolean queries

A boolean query is a function that maps graphs to true/false.
Equivalently, a boolean query is a class of graphs. It is very
common in algebraic logic to express boolean queries as
finite conjunctions of containment statements. A containment
statement is of the form e1 ⊆ e2, for expressions e1 and e2. It
holds in a graph G if e1(G) ⊆ e2(G). For any fragment F , the
family of boolean queries expressible by finite conjunctions
of containment statements using expressions from N (F) is
denoted by F∧⊆.

Our main result is the following:

Theorem II.2. For any two fragments F1 and F2, we have
F∧⊆1 ⊆ F∧⊆2 if and only if F1 ⊆ F2.

So, subsumption among fragments under conjunctions of
containments behaves the same as subsumption for path
queries. This is not obvious. Indeed, as already indicated in
the Introduction, in earlier work we have shown that when we
express boolean queries as nonemptiness statements e 6= ∅,
subsumption behaves very differently [14]–[16].

We call a nonbasic feature f primitive (under conjunctions
of containments) if for any fragment F such that f /∈ F ,
we have {f}∧⊆ 6⊆ F∧⊆. In other words, just the feature,
combined with the basic features, is enough to express some
boolean query that is not expressible without using the feature.
We can then reformulate the above theorem as saying that
every nonbasic feature is primitive. We next devote one section
to every nonbasic feature.

III. PROJECTION

Up to completion, there are two maximal fragments lacking
projection: {di ,−1,+} and {−,+}. The latter fragment can be
quickly dealt with using previous work. Note that the query
in the following proposition is an emptiness query, which is a
special case of a containment query since e = ∅ iff e ⊆ ∅.

Proposition III.1. Let R be a relation name. The boolean
query π1(R2) ◦R ◦ π2(R2) = ∅ is not in {−,+}∧⊆.

Proof. Let e be the expression π1(R2) ◦ R ◦ π2(R2). In
previous work [14, Proposition 5.6(2)] we have shown that the
boolean query e 6= ∅ is not expressible as the nonemptiness
of an expression in N (−,+). Equivalently, the boolean query
e = ∅ is not expressible as the emptiness of an expression in
N (−,+). The result now follows from the following obvious
proposition.

Proposition III.2. Let F be a fragment with set difference.
Then every boolean query in F∧⊆ can be expressed as the
emptiness of an expression in N (F).

Proof. We can express, say, e1 ⊆ e2 ∧ e3 ⊆ e4 as (e1 − e2)∪
(e3 − e4) = ∅.

We now have our hands free to deal with the fragment
{di ,−1,+}. We will show:

Proposition III.3. The boolean query R ◦ π1(R) ⊆ id is not
in {di ,−1,+}∧⊆.

(K3)

1 2 3
(H)

(Z)
1 2 3

Fig. 4. Graphs used in the proof of Proposition III.3.

To prove this proposition it will suffice to reason on the
three finite graphs called K3, H and Z, shown in Figure 4.
The edges in these graphs are all understood to be labeled
by the same relation name R. Note that K3 is the complete
graph (with loops) on 3 nodes; in general we use Kn to denote
the complete graph on n nodes. On a complete graph, any
path query invariant under isomorphisms can return only ∅, id ,
di , or all . Given the connection with the 3-variable fragment
of first-order logic mentioned earlier, the following lemma is
obvious.

Lemma III.4. On the class of complete graphs with at least
3 nodes, every expression in N (di ,−1,−) is equivalent to ∅,
id , di or all .

For expressions in N (di ,−1) in particular, the outcome on
K3 may determine the complete behavior on all graphs, in the
sense of the following lemma.

In the proof, and also later in the proof of Proposition IV.1,
we appeal to monotonicity. For two graphs G1 and G2, we
write G1 ⊆ G2 if dom(G1) ⊆ dom(G2) and RG1 ⊆ RG2

for every R. A path query q is called monotone if G1 ⊆ G2

implies q(G1) ⊆ q(G2).

Lemma III.5. Let e be an expression in N (di ,−1).

1) If e(K3) = ∅ then e ≡ ∅.
2) If e(K3) = di(K3) then e ≡ di .
3) If e(K3) = id(K3) then e ≡ id .

Proof. 1) Let G be a graph and let n ≥ 3 such that
G ⊆ Kn. By Lemma III.4, we have e(Kn) = ∅. Hence,
because e is monotone, also e(G) = ∅.

2) We can write e = ∪ni=1ei as a union of union-free
expressions, since union distributes over composition
and converse. By Lemma III.4, there must exist i such
that ei(K3) is equal to di(K3). Furthermore, for any
j = 1, . . . , n, ei(K3) cannot equal id(K3) or all(K3).
If ej(K3) = ∅, then ej ≡ ∅ by the previous case.
So we may assume that ej(K3) = di(K3) for j =

1, . . . , n. Take such an ej . We know ej 6≡ id so ej
can be written as H1 ◦ . . .◦Hl with Hk ∈ {R,R−1, di}.
Indeed, this is possible since (R ◦S)−1 ≡ (S−1 ◦R−1).
If l ≥ 2, the first composition already yields all on K3.
Indeed, R−1(K3) = R(K3) = all(K3) and R2(K3) =
di ◦ R(K3) = R ◦ di(K3) = di2(K3) = all(K3).
Composing all(K3) with all(K3) or di(K3) is again
all(K3). Thus ej(K3) = all(K3) which is impossible.
Hence, l = 1. Here, H1 has to be di , because R(K3) =
R−1(K3) = all(K3).

3) Similar to the previous case.

Let us now look at the outcome of expressions on the graph
Z.

Lemma III.6. Let e 6≡ ∅ be a union-free expression in
N (di ,−1).

1) If di occurs in e, then di(Z) ∩ e(Z) 6= ∅.
2) If di does not occur in e, or it occurs at least twice,

then id(Z) ∩ e(Z) 6= ∅.

Proof. 1) Write e = q1 ◦ di ◦ q2 where q1 is di -free. Note
that q1 or q2 may be id . Since di -free expressions can be
evaluated in a loop, (1, 1) is in q1(Z), whence (1, 2) ∈
q1 ◦di(Z). Furthermore, if there is an odd number of di
occurrences in q2, (2, 3) ∈ q3(Z), and otherwise (2, 2)
in q2(Z). Indeed, every di -free sub expression can be
evaluated in a loop, and on every di application, one can
jump from 2 to 3 and vice versa. We may thus conclude
that (1, 2) or (1, 3) is in e(Z).

2) If e contains no di applications, then e = Rn on Z for
some positive n, since e is not equivalent to ∅ and Z is
symmetrical. Hence, e(Z) = R(Z) = id(Z).
If e contains at least two di applications, then we can
write e = q1 ◦ di ◦ q2 ◦ di ◦ q3 so that q1 and q3 are
di -free. Now (1, 1) is in q1(Z) and in q3(Z). Hence
(1, 2) ∈ q1 ◦ di(Z) and (3, 1) and (2, 1) in di ◦ q3(Z).
When di occurs an odd number of times in q2, then
(2, 3) ∈ q3(Z); when it occurs an even number of times,
(2, 2) ∈ q2(Z). We may thus conclude that (1, 1) ∈
e(Z).

We next look at the outcome of expressions on the graph
H .

Lemma III.7. Let e 6≡ ∅ be a union-free expression in
N (di ,−1).

1) If e 6≡ di and di occurs exactly once in e, then id(H)∩
e(H) 6= ∅.

2) If e 6≡ id and e is di -free, then di(H) ∩ e(H) 6= ∅.

Proof. 1) Write e = e1 ◦ di ◦ e2 where e1 and e2 are
di -free. One of e1 or e2 may be id , but not both,
since e 6≡ di . We will now consider all the possible
scenarios for e1 and e2. Note that on H , every nonempty
di -free expression q can be evaluated in a loop, i.e.,
(1, 1), (3, 3) ∈ q(H).

• If e1 = q1 ◦ R where q1 is di -free, then (1, 1) ◦
(1, 2) ◦ (2, 1) ◦ (1, 1) ∈ q1 ◦R ◦ di ◦ e2(H). Hence
(1, 1) ∈ e1 ◦ di ◦ e2(H).

• If e2 = R−1 ◦ q2 where q2 is di -free, then (1, 1) ◦
(1, 2)◦ (2, 1)◦ (1, 1) ∈ e1 ◦di ◦R−1 ◦q2(H). Hence
(1, 1) ∈ e1 ◦ di ◦ e2(H).

• If e1 = R−1 ◦ R−n and e2 = id where n may be
zero, then (2, 1)◦(1, 1)◦(1, 2) ∈ R−1◦R−n◦di(H).
Hence (2, 2) ∈ e1 ◦ di ◦ e2(H).

• If e1 = id and e2 = Rn ◦R where n may be zero,
then (2, 1) ◦ (1, 1) ◦ (1, 2) ∈ di ◦Rn ◦R(H). Hence
(2, 2) ∈ e1 ◦ di ◦ e2(H).

• If e1 = R−1 ◦ R−n and e2 = Rm ◦ R where n
and m may be zero, then (2, 1) ◦ (1, 1) ◦ (1, 3) ◦
(3, 3)◦(3, 2) ∈ R−1 ◦R−n ◦di ◦Rm ◦R(H). Hence
(2, 2) ∈ e1 ◦ di ◦ e2(H).

• If e1 = q1 ◦R ◦R−1 ◦R−n where n may be zero,
then (1, 1) ◦ (1, 2) ◦ (2, 3) ◦ (3, 3) ◦ (3, 1) ∈ q1 ◦R ◦
R−1 ◦R−n ◦di(H). Hence (1, 1) ∈ e1 ◦di ◦e2(H).

• If e2 = Rn ◦ R ◦ R−1 ◦ q2 where n may be zero,
then (3, 1)◦ (1, 1)◦ (1, 2)◦ (2, 3)◦ (3, 3) ∈ di ◦Rn ◦
R ◦R−1 ◦ q2(H). Hence (3, 3) ∈ e1 ◦ di ◦ e2(H).

2) There are three possibilities.
• If e can be written as q1◦R◦R−1◦q2, where q1 and
q2 may be id , then (1, 1) ◦ (1, 2) ◦ (2, 3) ◦ (3, 3) ∈
q1 ◦R ◦R−1 ◦ q2(H). Hence, (1, 3) ∈ e(H).

• If e = Rn ◦ R where n may be zero, then (1, 1) ◦
(1, 2) ∈ Rn ◦R(H). Hence (1, 2) ∈ e(H).

• If e can be written as R−1 ◦ q where q may be id ,
then (2, 1) ◦ (1, 1) ∈ R−1 ◦ q(H). Hence (2, 1) ∈
e(H).

We are now ready for the

Proof of Proposition III.3. Let us denote the boolean query
R ◦ π1(R) ⊆ id by Q. Suppose for the sake of contradiction
that the conjunction e1 ⊆ f1 ∧ · · · ∧ en ⊆ fn expresses Q. We
assume that no containment is trivial (a trivial containment is
always true). Notice that Q(K3) = false . Thus there exists
1 ≤ i ≤ n such that ei(K3) 6⊆ fi(K3). Hence fi(K3) 6=
all(K3). In the remainder of the proof we will only work on
the graphs K3, H and Z, whence we can replace + with unions
of compositions. We know that fi(K3) is either ∅, id(K3), or
fi(K3) = di(K3). We will now cover each of these scenarios
and obtain a contradiction.

If fi(K3) = ∅, then fi ≡ ∅ by Lemma III.5. Since Q(Z) =
true , it must be that ei(Z) ⊆ fi(Z). Thus ei(Z) = ∅, whence
ei ≡ ∅ by Lemma III.6. This, however, contradicts that ei ⊆ fi
is not trivial.

If fi(K3) = di(K3), then fi ≡ di by Lemma III.5. Write
ei = ∪mj=1gj with gj union-free. Since ei ⊆ fi is not trivial,
there has to exist 1 ≤ j ≤ m such that gj 6≡ di . If gj ≡
id , then certainly ei(Z) 6⊆ di(Z) = fi(Z). The only case
left to consider is that gj 6≡ di and gj 6≡ id . If gj contains
zero or more than two di applications, then ei(Z) ∩ id(Z) 6=

Fig. 5. Graph used in the proof of Proposition IV.1.

∅ by Lemma III.6, whence ei(Z) 6⊆ di(Z) = fi(Z). This,
however, contradicts that Q(Z) = true . On the other hand, if
gj contains exactly one di application, then ei(H)∩id(H) 6= ∅
by Lemma III.7, whence ei(H) 6⊆ di(H) = fi(H). This,
however, contradicts that Q(H) = true .

If fi(K3) = id(K3), then fi ≡ id by Lemma III.5. Again
write ei = ∪mj=1gj with gj union-free. Since ei ⊆ fi is not
trivial, there has to exist 1 ≤ j ≤ m such that gj 6≡ id . If gj
contains at least one di application, then gj(Z) ∩ di(Z) 6= ∅
by Lemma III.6, whence ei(Z) 6⊆ id(Z) = fi(Z). However,
this contradicts that Q(Z) = true . On the other hand, if gj is
di -free, then gj(H) ∩ di(H) 6= ∅ by Lemma III.7, whence
ei(H) 6⊆ id(H) = fi(H). However, this contradicts that
Q(H) = true .

IV. COPROJECTION

Up to completion, there are two maximal fragments lack-
ing coprojection: {di ,−1,∩,+} and {−,+}. For the latter
fragment, {π}∧⊆ 6⊆ {−,+}∧⊆ follows directly from Proposi-
tion III.1, since π ∈ {π}. For the former fragment, we show:

Proposition IV.1. Let R be a relation name. The boolean
query π1(R) ⊆ π1(R ◦ π1(R)) is not in {di ,−1,∩,+}∧⊆.

Proof. Let us denote the boolean query π1(R) ⊆ π1(R ◦
π1(R)) by Q. Let G be the graph in Figure 5. Observe that
Q is true on G but false on K3.

Suppose for the sake of contradiction that the conjunction
e1 ⊆ f1 ∧ · · · ∧ en ⊆ fn expresses Q. Since Q(K3) = false
there exists 1 ≤ i ≤ n such that ei(K3) 6⊆ fi(K3). Hence
fi(K3) 6= all(K3). In the remainder of the proof we will only
work on the graphs K3, K4 and G, whence we can replace +

with unions of compositions.
Since path queries in N (di ,−1,∩) are monotone, we have

fi(K3) ⊆ fi(G) ⊆ fi(K4). This will be used a number of
times.

Since fi(K3) 6= all(K3), the only possibilities for fi(K3)
are id(K3), di(K3), and ∅.

If fi(K3) = id(K3), then also fi(K4) = id(K4) by
Lemma III.4. Hence, fi(G) ∩ di(G) = ∅. Since Q(K3) =
false , we have ei(K3) 6⊆ fi(K3), so ei(K3) ∩ di(K3) 6= ∅
whence also ei(G) ∩ di(G) 6= ∅. Thus ei(G) 6⊆ fi(G) which
contradicts that Q(G) = true .

If fi(K3) = di(K3), this case is analogous to the previous
case.

1 2 3
(`2)

Fig. 6. Graph used in the proof of Proposition V.1.

Finally, if fi(K3) = ∅, then also fi(K4) = ∅ by
Lemma III.4, whence also fi(G) = ∅. Since Q(K3) = false ,
we have ei(K3) 6⊆ ∅. Hence also ei(G) 6⊆ ∅ which contradicts
that Q(G) = true .

V. INTERSECTION

Up to completion, the unique maximal fragment lacking
intersection is {di , π,−1,+}. We are going to show:

Proposition V.1. Let R be a relation name. The boolean query
R2 ∩R ⊆ id is not in {di , π,−1,+}∧⊆.

To prove this proposition it will suffice to reason on the
finite graphs K3 and Z from Figure 4, and the graph `2 shown
in Figure 6. We begin by showing that on these three graphs,
projection and coprojection can be eliminated.

Lemma V.2. Let e be an expression in N (di , π,−1). Then,
πi(e), for i = 1, 2, is equivalent to ∅ or id on the three graphs
K3, `2 and Z simultaneously.

Proof. In this proof, whenever we write “equivalent” we mean
equivalent on the three graphs K3, `2 and Z. We proceed by
induction on e. In the base case, πi(∅) = ∅ and πi(R) =
πi(R

−1) = πi(di) = id on all three graphs.
If e = πj(e1), then πi(πj(e1)) ≡ id−πj(e1). By induction

πj(e1) is equivalent to id or ∅, whence id − πj(e1) also.
If e = e1 ∪ e2, then πi(e1 ∪ e2) = πi(e1) ∪ πi(e2). By

induction πi(e1) and πi(e2) are equivalent to id or ∅. Clearly,
πi(e1)∪πi(e2) is equivalent to ∅ when both πi(e1) and πi(e2)
are equivalent to ∅. In all other cases, πi(e1) ∪ πi(e2) is
equivalent to id .

If e = e1 ◦ e2, there are two cases:
• π1(e1 ◦ e2) = π1(e1 ◦ π1(e2)). By induction, π1(e1 ◦
π1(e2)) equals π1(e1 ◦ id) = π1(e1) or π1(e1 ◦ ∅) = ∅.

• π2(e1◦e2) = π2(π2(e1)◦e2). By induction π2(π2(e1)◦e2)
equals π2(id ◦ e2) = π2(e2) or π2(∅ ◦ e2) = ∅.

Note that, since π(e) ≡ id − π(e), the above lemma also
holds for π(e).

We next look at the outcome of expressions on the graph
`2.

Lemma V.3. Let e be a union-free expression in N (di ,−1).
1) If e is di -free, e 6≡ id and e 6≡ ∅, then e(`2)∩di(`2) 6= ∅.
2) If di occurs exactly once in e and e 6≡ di , then e(`2) ∩

id(`2) 6= ∅.

Proof. 1) Since `2 is symmetrical, the converse operator
does nothing and we can write e = Rk, with k positive

since e 6≡ id . If k is odd, clearly (1, 2) ∈ Rk(`2). If k
is even, (1, 2) ∈ Rk−1(`2) so (1, 3) ∈ Rk(`2).

2) First, we describe some outcome results for Rn on `2:
• If n is odd, then (1, 2), (2, 1), (2, 3) and (3, 2) are

in Rn(`2);
• If n is even, then (1, 1) and (2, 2) are in Rn(`2);
• If n > 1 is even, then (1, 3) and (3, 1) are in Rn(`2).

Now write e as Rn ◦ di ◦Rm, where n and m may be
zero (but not both).
• If n and m are both odd, then (2, 1)◦(1, 3)◦(3, 2) ∈
Rn ◦ di ◦Rm(`2). Hence (2, 2) ∈ e(`2).

• If n is even and m is odd, then (1, 1)◦(1, 2)◦(2, 1) ∈
Rn ◦ di ◦Rm(`2), whence also (1, 1) ∈ e(`2).

• If n is odd and m is even, this case is symmetrical
to the previous case.

• If n is even and m is even, then n or m is strictly
greater than one. If n > 1, then (1, 3) ◦ (3, 1) ◦
(1, 1) ∈ Rn ◦ di ◦ Rm(`2), whence (1, 1) ∈ e(`2).
The case m > 1 is symmetrical.

We can now give the

Proof of Proposition V.1. Let us denote the boolean query
R2 ∩ R ⊆ id by Q. Observe that Q is false on K3 but true
on `2 and Z.

Suppose for the sake of contradiction that the conjunction
e1 ⊆ f1 ∧ · · · ∧ en ⊆ fn expresses Q. We assume no
containment is trivial.

Since Q(K3) = false , there exists 1 ≤ i ≤ n such that
ei(K3) 6⊆ fi(K3). In particular, fi(K3) 6= all(K3). In the
remainder of the proof we will only work on the graphs K3, Z
and `2, whence we can replace + with unions of compositions.
Furthermore, by Lemma V.2, we can eliminate π and π. So we
may assume that ei and fi are in N (di ,−1). Since fi(K3) 6=
all(K3) the three possibilities for fi(K3) are ∅, id(K3) or
di(K3). We will now cover these three possibilities and obtain
a contradiction.

If fi(K3) = di(K3), then fi ≡ di by Lemma III.5. Write
ei = ∪mj=1gj with gj union-free. Since ei ⊆ fi is not trivial,
there has to exists 1 ≤ j ≤ m such that gj 6≡ di . If gj
contains exactly one di application, then ei(`2)∩id(`2) 6= ∅ by
Lemma V.3, whence ei(`2) 6⊆ di(`2) = fi(`2). This, however,
contradicts that Q(`2) = true . On the other hand, if gk is di -
free or has more than one di application, then ei(Z)∩id(Z) 6=
∅ by Lemma III.6, whence ei(Z) 6⊆ di(Z) = fi(Z). This,
however, contradicts that Q(Z) = true .

If fi(K3) = id(K3), then fi ≡ id by Lemma III.5. Again
write ei = ∪mj=1gj with gj union-free. Since ei ⊆ fi is not
trivial, there has to exist 1 ≤ j ≤ m such that gj 6≡ id
and gj 6≡ ∅. If gj is di -free, then gj(`2) ∩ di(`2) 6= ∅ by
Lemma V.3, whence ei(`2) 6⊆ id(`2) = fi(`2). This, however,
contradicts that Q(`2) = true . On the other hand, if gj
contains at least one di application, then gj(Z)∩di(Z) 6= ∅ by
Lemma III.6, whence ei(Z) 6⊆ id(Z) = fi(Z). This, however,
contradicts that Q(Z) = true .

(B)

Fig. 7. Graph used in the proof of Proposition VI.1.

Finally, if fi(K3) = ∅, then fi ≡ ∅. Since Q(Z) = true ,
we have ei(Z) ⊆ fi(Z) = ∅. Thus ei(Z) = ∅, whence ei ≡ ∅
by Lemma III.6 (we can again write ei as a union of union-
free expressions). This, however, contradicts that ei ⊆ fi is
not trivial.

VI. DIFFERENCE

Up to completion, the unique maximal fragment lacking
difference is {∩, π, di ,−1,+}, which we denote by NoDiff .
We are going to show:

Proposition VI.1. Let R be a relation name. The boolean
query id ⊆ R2 ◦ (R2 −R) ◦R2 is not in NoDiff∧⊆.

To prove this proposition it will suffice to reason on the
complete graph K3 and the bowtie graph B shown in Figure 7.

Lemma VI.2. Every expression in N (NoDiff) is equivalent
to ∅, id , di , R, R ∩ di or all on K3 and B simultaneously.

Proof. In this proof all equivalences are meant to hold on
K3 and B only. We proceed by structural induction on the
expression e. For e ∈ {∅, id , di , R} the result is trivial. Note
that we do not have to consider transitive closure, since on a
fixed finite number of graphs, one can replace the transitive
closure operator by a finite union of compositions.

Suppose e = e1 ∪ e2. The only nontrivial cases are e1 = id
and e2 = R ∩ di ; e1 = id and e2 = R; and e1 = di and
e2 = R. In the first case, id ∪ (R ∩ di)(K3) = R(K3) and
id ∪ (R∩ di)(B) = R(B). In the second case, id ∪R(K3) =
R(K3) and id∪R(B) = R(B). In the third case, di∪R(K3) =
all(K3) and di ∪R(B) = all(B).

Suppose e = πi(e1). If e1 ≡ ∅ then πi(e1)(K3) = id(K3)
and πi(e1)(B) = id(B). In any other case πi(e1)(K3) = ∅
and πi(e1)(B) = ∅, since for any g ∈ {id , di , R,R∩ di , all},
we have πi(g)(K3) = πi(g)(B) = ∅.

Suppose e = e1∩e2. Then the only nontrivial case is where
e1 ≡ R and e2 ≡ id . Here, R ∩ id(K3) = id(K3) and R ∩
id(B) = id(B) since K3 and B both contain all self-loops.

Suppose e = e1 ◦ e2. Since composing with ∅ results in
∅, and composing with id does nothing, we may focus on
e1, e2 ∈ {di , R,R ∩ di , all}. It is clear that R ∩ di(K3) ⊆
ei(K3) and R ∩ di(B) ⊆ ei(B). Hence (R ∩ di) ◦ (R ∩
di)(K3) ⊆ e1◦e2(K3) and (R∩di)◦(R∩di)(B) ⊆ e1◦e2(B).
Therefore, since (R ∩ di) ◦ (R ∩ di)(K3) = all(K3) and
(R ∩ di) ◦ (R ∩ di)(B) = all(B), we obtain e1 ◦ e2(K3) =
all(K3) and e1 ◦ e2(B) = all(B).

The case e = e−1
1 is trivial since all of the possible

intermediate results are symmetrical.

Proof of Proposition VI.1. Denote the boolean query id ⊆
R2 ◦ (R2 − R) ◦ R2 by Q. Observe that Q is false on K3

but true on B.
It suffices to show that a single containment e1 ⊆ e2 is

never false on K3 and true on B simultaneously. Indeed, this
behavior is then preserved under conjunction.

By Lemma VI.2 e1 and e2 are equivalent to ∅, id , di , R,
R ∩ di or all on K3 and B simultaneously. From now on,
equivalences are understood to be on K3 and B only. We
may assume that e1 6≡ ∅ and e2 6≡ all , since otherwise, the
query expressed by e1 ⊆ e2 is the trivial true query.

If e2 is ∅, id or di , then by Lemma VI.2 we have e1(K3) ⊆
e2(K3) iff e1(B) ⊆ e2(B). Hence the query e1 ⊆ e2 cannot
distinguish K3 and B.

If e2 ≡ R, then again by Lemma VI.2 we have e1(K3) ⊆
R(K3) iff e1(B) ⊆ R(B), except for the case where e1 ≡ di
or e1 ≡ all . However, in these cases, e1(K3) ⊆ e2(K3).

If e2 ≡ R∩ di , then again by Lemma VI.2 we clearly have
e1(K3) ⊆ R ∩ di(K3) iff e1(B) ⊆ R ∩ di(B) except maybe
for the case where e1 ≡ di . However, in that case, again,
e1(K3) ⊆ e2(K3).

VII. TRANSITIVE CLOSURE

It seems obvious that transitive closure must be primitive,
as it is the only operator that is not first-order definable.
However, we want to establish primitivity across all fragments
and all vocabularies. Thereto we would ideally like to find a
boolean query over a single relation name that is not first-
order expressible, but is expressible as a containment statement
e ⊆ f with e and f in N (+). Obvious candidates, such as
connectivity or cyclicity, seem not expressible in this manner,
however. In other contexts, transitive closure may even not
be primitive. For example, every boolean query over a single
relation name that is expressible as the nonemptyness of an
expression in N (di , π,+) is already expressible without using
transitive closure [16].

Nevertheless, we have found that the simple boolean query
“every node lies on a cycle” satisfies our needs:

Proposition VII.1. Let R be a relation name. The boolean
query id ⊆ R+ is not first-order expressible.

It follows that transitive closure is primitive. Proving this
proposition is an exercise in Hanf locality [21], which requires
finding the right graphs. We found the graphs G`

1 and G`
2

shown in Figure 8. In G`
1, every node lies on a cycle, but not

in G`
2. Yet, for every natural number k and every ` > k, the

graphs G`
1 and G`

2 have the same k-neighborhood types with
the same multiplicities, as summarized in Figure 9. Since first-
order logic is Hanf-local, this implies that the boolean query
id ⊆ R+ is not first-order expressible.

z

x`

x2

x1y`

y2

y1

m1 m2 m` n1 n2 n` q o1 o2 o` p1 p2 p`

z′

x′`

x′2

x′1y′`

y′2

y′1

m′1 m′2 m′` n′1 n′2 n′` q′ o′1 o′2 o′` p′1 p′2 p′`

Fig. 8. Graphs G`
1 (top) and G`

2 (bottom) used in the proof of Proposition VII.1.

k k

k − 1 − j j < k k

k k − 1 − jj < k

j < k k

k j < k

k k

Fig. 9. k-neighborhood types. The white node indicates the center of the
neighborhood. Except for the bottom type, each type occurs exactly once in
G`

1 and in G`
2 with ` > k (and letting j range from 0 to k− 1). The bottom

type occurs exactly 6`− 4k + 1 times in both graphs.

VIII. THE FULL RELATION

Up to completion, the unique maximal fragment lacking all
is {−1,−,+}, which we denote by NoAll. We are going to
show:

Proposition VIII.1. Let R be a relation name. The boolean
query all ⊆ R is not in NoAll∧⊆.

This proposition can be proven easily from the additivity of
path queries expressible in N (NoAll). A path query q is called
additive if for any two graphs G1 and G2 such that dom(G1)
and dom(G2) are disjoint, q(G1 ∪G2) = q(G1) ∪ q(G2).

Lemma VIII.2. Every path query expressible in N (NoAll)
is additive.

This lemma follows from the additivity of connected strat-
ified Datalog [22]. A direct proof is also possible.

Proof of Proposition VIII.1. Denote the boolean query all ⊆
R by Q. Let G1 and G2 be two disjoint graphs, each consisting
of just a single self-loop. Observe that Q is true on G1 and
G2 but false on G1 ∪G2.

Suppose for the sake of contradiction that the conjunction
e1 ⊆ f1 ∧ · · · ∧ en ⊆ fn expresses Q. Since Q(G1 ∪ G2) =

Fig. 10. Graphs used in the proof of Proposition X.1.

false , there exists 1 ≤ j ≤ n such that ej(G1∪G2) 6⊆ fj(G1∪
G2). By additivity, ej(G1) ∪ ej(G2) 6⊆ fj(G1) ∪ fj(G2).
Hence, ej(G1) 6⊆ fj(G1) or ej(G2) 6⊆ fj(G2), which
contradicts that Q is true on both G1 and G2.

IX. DIVERSITY

Up to completion, there are two maximal fragments lacking
diversity: {−1,−,+} and {−1, all , π,∩,+}. We will show that
in neither fragment, the boolean query di ⊆ ∅ (“there is only
one node”) is expressible as a conjunction of containments.

The fragment {−1,−,+} has set difference, so using Propo-
sition III.2, we can invoke our previous work on nonemptiness
queries. Indeed, it has already been shown [14, Proposi-
tion 5.4(1)] that the boolean query di = ∅ can not be expressed
as the emptiness of an expression in N (−1,−,+).

For the other fragment, there is a simple direct proof.

Proposition IX.1. The boolean query di ⊆ ∅ is not in
{−1, all , π,∩,+}∧⊆.

Proof. Let G be the graph consisting of a single self-loop. The
boolean query is true on G but false on K3. However, every
expression in N (−1, all , π,∩,+) is equivalent to id , all or ∅
on G and K3 simultaneously, which immediately implies the
proposition.

The above claim is readily verified by induction. Indeed,
the base case is trivial, and the induction step readily follows
since the set {all , id , ∅} is closed under all operators in the
fragment.

X. CONVERSE

Up to completion, the unique maximal fragment lacking
converse is {di ,−,+}. We show:

Proposition X.1. Let R be a relation name. The boolean query
R2 ◦R−1 ◦R ⊆ R ∪R2 is not in {di ,−,+}∧⊆.

To prove this proposition it will suffice to reason only on
the two graphs G1 (top) and G2 (bottom) shown in Figure 10.
We recall:

Lemma X.2 ([14, Proposition 6.6]). e(G1) 6= ∅ implies
e(G2) 6= ∅ for every expression e in N (di ,−).

With this lemma in hand we can give the

Proof of Proposition X.1. Let us denote the boolean query
R2 ◦ R−1 ◦ R ⊆ R ∪ R2 by Q. Observe that Q is true on
G1 but false on G2. Suppose for the sake of contradiction
that Q is in {di ,−,+}∧⊆. Then by Proposition III.2 Q is
also expressible as e = ∅ with e in N (di ,−,+). Reasoning
only on the two finite graphs G1 and G2, we may assume e
does not use transitive closures, as we can replace these by
unions of compositions. By assumption, e(G1) is empty but
e(G2) is not. Equivalently, e′(G1) 6= ∅ but e′(G2) = ∅, with
e′ the expression all−(all ◦e◦all). This, however, contradicts
Lemma X.2.

XI. CONCLUSION

There are several directions for further work. There are two
popular ways of expressing boolean queries: by nonemptiness
statements, and by conjunctions of containment statements.
Now that we understand the expressive power of these two
approaches, we can also start comparing them. We have
already largely completed this work, except for one technical
open question, which asks whether every boolean query ex-
pressible by the nonemptiness of an expression N (π) belongs
to {di,−1}∧⊆.

The reader may have noticed that all our primitivity results
have been proven using boolean queries expressible as a single
containment. Indeed, a natural question is whether conjunc-
tions actually add expressive power. For fragments with set dif-
ference the answer is of course negative by Proposition III.2.
For the fragments {di ,−1,+} and {∩,−1,+} we can show that
containment statements are not closed under conjunction. For
the former fragment, the conjunction R3 ⊆ id∧R2 ⊆ R is not
expressible as a single containment; for the latter fragment, this
holds for the conjunction R3 ⊆ ∅∧R2 ⊆ R. But this question
remains largely open.

The attractiveness of using containment statements is that it
allows to express nonmonotone boolean queries using a mono-
tone language. Indeed, just stating R ⊆ S, for relation names
R and S, is already a nonmonotone boolean query.1 Vice
versa, in comparing nonemptiness to containment statements,
it would be a powerful tool to have a full understanding of
monotone queries expressible as (conjunctions of) containment
statements. A first result we could prove in this direction is that
every monotone boolean query expressible as a containment of
N (all) expressions is in fact expressible as the nonemptiness
of an N (all) expression. This may be seen as a preservation
theorem, similar to, say, the theorem that the monotone
first-order boolean queries are those expressible by positive-
existential sentences (allowing nonequalities) [23].

1As already recalled before Lemma III.5, for two graphs G1 and G2, we
write G1 ⊆ G2 if dom(G1) ⊆ dom(G2) and RG1 ⊆ RG2 for every R.
A boolean query q is called monotone if whenever G1 ⊆ G2 and q is true
on G1, it is also true on G2.

Finally, a really useful and interesting operator which we
have not covered in this paper is the residual [3]. It expresses
a natural form of universal quantification and its expressive
power relative to other operators is largely unexplored. We
also do not know much about basic reasoning tasks, such
as deciding satisfiability or subsumption, in the basic algebra
extended with residual.

ACKNOWLEDGMENT

We thank the anonymous reviewers for careful reading and
useful comments.

REFERENCES

[1] A. Tarski, “On the calculus of relations,” Journal of Symbolic Logic,
vol. 6, pp. 73–89, 1941.

[2] A. Tarski and S. Givant, A Formalization of Set Theory Without Vari-
ables, ser. AMS Colloquium Publications. American Mathematical
Society, 1987, vol. 41.

[3] V. Pratt, “Origins of the calculus of binary relations,” in Proceedings
7th Annual IEEE Symposium on Logic in Computer Science, 1992, pp.
248–254.

[4] R. Maddux, Relation Algebras. Elsevier, 2006.
[5] K. Ng, “Relation algebras with transitive closure,” Ph.D. dissertation,

University of California, Berkeley, 1984.
[6] R. Hirsch and I. Hodkinson, Relation Algebras by Games. Elsevier,

2002.
[7] M. Marx and M. de Rijke, “Semantic characterizations of navigational

XPath,” SIGMOD Record, vol. 34, no. 2, pp. 41–46, 2005.
[8] B. ten Cate and M. Marx, “Navigational XPath: Calculus and algebra,”

SIGMOD Record, vol. 36, no. 2, pp. 19–26, 2007.
[9] G. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht,

S. Vansummeren, and Y. Wu, “Relative expressive power of navigational
querying on graphs,” in Proceedings 14th International Conference on
Database Theory, 2011.

[10] P. Wood, “Query languages for graph databases,” SIGMOD Record,
vol. 41, no. 1, pp. 50–60, Mar. 2012.

[11] L. Libkin, W. Martens, and D. Vrgoč, “Quering graph databases with
XPath,” in Proceedings 16th International Conference on Database
Theory. ACM, 2013.

[12] R. Angles, P. Barceló, and G. Rios, “A practical query language for graph
DBs,” in Proceedings 7th Alberto Mendelzon International Workshop on
Foundations of Data Management, ser. CEUR Workshop Proceedings,
L. Bravo and M. Lenzerini, Eds., vol. 1087, 2013.

[13] R. Maddux, “The origin of relation algebras in the development and
axiomatization of the calculus of relations,” Studia Logica, vol. 50, no.
3/4, pp. 421–455, 1991.

[14] G. Fletcher, M. Gyssens, D. Leinders, D. Surinx, J. Van den Bussche,
D. Van Gucht, S. Vansummeren, and Y. Wu, “Relative expressive power
of navigational querying on graphs,” Information Sciences, vol. 298, pp.
390–406, 2015.

[15] D. Surinx, G. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche,
D. Van Gucht, S. Vansummeren, and Y. Wu, “Relative expressive power
of navigational querying on graphs using transitive closure,” Logic
Journal of the IGPL, vol. 23, no. 5, pp. 759–788, 2015.

[16] G. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht,
S. Vansummeren, and Y. Wu, “The impact of transitive closure on the
expressiveness of navigational query languages on unlabeled graphs,”
Annals of Mathematics and Artificial Intelligence, vol. 73, no. 1–2, pp.
167–203, 2015.

[17] G. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht,
and S. Vansummeren, “Similarity and bisimilarity notions appropriate
for characterizing indistinguishability in fragments of the calculus of
relations,” Journal of Logic and Computation, vol. 25, no. 3, pp. 549–
580, 2015.

[18] M. Marx and Y. Venema, Multi-Dimensional Modal Logic. Springer,
1997.

[19] D. Kozen, “Kleene algebra with tests,” ACM Transactions on Program-
ming Languages and Systems, vol. 19, no. 3, pp. 427–443, 1997.

[20] P. Brunet and D. Pous, “Petri automata for Kleene allegories,” in
Proceedings 30th Annual ACM/IEEE Symposium on Logic in Computer
Science. IEEE Computer Society, 2015, pp. 68–79.

[21] L. Libkin, Elements of Finite Model Theory. Springer, 2004.
[22] T. Ameloot, B. Ketsman, F. Neven, and D. Zinn, “Weaker forms of

monotonicity for declarative networking: A more fine-grained answer
to the CALM-conjecture,” ACM Transactions on Database Systems,
vol. 40, no. 4, p. article 21, 2016.

[23] M. Benedikt, J. Leblay, B. ten Cate, and E. Tsamoura, Generating plans
from proofs: The interpolation-based approach to query reformulation.
Morgan&Claypool, 2016.

