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Abstract

The Richards equation is a mathematical model for the unsaturated flow through porous
media. This paper considers an extension of the Richards equation, where non-equilibrium
effects like hysteresis and dynamic capillarity are incorporated in the relationship that relates
the water pressure and the saturation. The focus is on travelling wave solutions, for which the
existence is investigated first for the model including hysteresis and subsequently for model
including dynamic capillarity effect. In particular, such solutions may have non monotonic
profiles, which are ruled out when considering standard, equilibrium type models, but have
been observed experimentally. The paper ends with numerical experiments confirming the
theoretical results. In this sense the original system of partial differential equations is solved
by means of an implicit scheme. This relies on an equivalent, mixed formulation of the
system. For solving the resulting nonlinear, time-discrete problems, a linear iterative scheme
is proposed.

1 Introduction

Unsaturated flow through porous media is encountered in many applications of societal and en-
gineering relevance. Examples in this sense are the groundwater flows, or the moisture dynamics
in building materials. A commonly used mathematical model for such kind of processes is the
Richards equation, which is obtained after inserting the Darcy law into the water mass balance
equation. The two main unknowns in this equation are the water saturation S (the percentage
of the pore space in a representative elementary volume that is occupied by water) and the water
pressure p. In standard porous media flow models, these two unknowns are related through the
strictly decreasing capillary pressure function Pc(·), namely p = −Pc(S), which is determined
experimentally. Different types of functions and parameterizations are discussed e.g. in [31],
the common assumption being that these dependencies are obtained under special, equilibrium
conditions. More precisely, the experiments are carried out either for imbibition or for draining
and not when these processes occur alternatively, and during an entire imbibition or drainage
cycle each measurement has been done only after water stops redistributing inside the pores of
the elementary volumes. Such models will therefore be called in what follows “equilibrium type
models”.
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In realistic applications, neither of these conditions are met. First, experiments reported e.g.
in [15, 29] have revealed the hysteretic nature of the pressure - saturation relationship. More
precisely, it was observed that the functions Pc determined during infiltration and drainage
are different. This motivated an extremely rich literature on mathematical models describing
hysteresis. The play-type hysteresis model assumes a switch between imbibition and drainage
capillary pressure-saturation curves whenever the saturation changes from increasing in time
to decreasing in time or vice-versa. A mathematical formulation of this is given in [3], and the
switch happens along vertical scanning curves. This poses nontrivial issues when analysing the
resulting models and their numerical discretisations, which can be resolved by approximating
the vertical scanning curves by monotone and non-vertical ones. In this sense, commonly used
is the Lenhard-Parker model [33], where the scanning curves are rescaled versions of some
predefined curves. A simplified version of it is proposed in [10], where the scanning curves are
oblique lines. Other hysteresis models build on concepts like percolating/nonpercolating phases
[20, 24], or interfacial area based models [30, 35]. An overview of hysteresis models can be
found in [50], whereas details on the numerical approximation of hysteresis in porous media
models are given in [32]. In the present paper we consider the play-type hysteresis model for
the pressure - saturation dependency but it is interesting to note that hysteresis can also be
present in the relative permeability curve [34]. However, in the latter case this effect is less
important in comparison to the former [15].

Second, when letting the water infiltrate in a homogeneous medium, experiments have re-
vealed profiles that are conflicting with the profiles of the solutions to the equilibrium type
models. For example, if the injection rates at the inflow are high enough, the obtained satu-
ration profiles are non-monotone as the values at some locations inside the column are higher
than at the inflow boundary (the so-called overshoot phenomenon, see [18]). In particular, the
experiments in [7] show that although the saturation at some certain location is decreasing in
time, the water pressure is non-monotone and exhibits a peak at moments when the saturation
changes rapidly. This pleads for the inclusion of dynamic effects in the pressure-saturation
relationship, as suggested in [22].

In mathematical terms, models like those mentioned above are evolution equations of pseudo-
parabolic type, or involve differential inclusions. Such models will be called below ”non-
equilibrium type models”. In this paper, we investigate how the solution profiles for unsaturated
flow through a long, homogeneous porous column are affected by such non-equilibrium effects.
The analysis is based on travelling waves (TW), allowing to reduce the model first to a non-
linear ordinary differential equation, and then to a dynamical system. This provides insight in
the structure and behaviour of the solutions, and in particular how the non-equilibrium regime
affects the profiles. The present analysis follows the ideas in [46], which studies the existence of
TW solutions for reactive flow and transport models in porous media. In [17] TW solutions are
analysed for nonlinear models that are similar to the Richards equation, but where higher order
effects are included inspired by the ones describing dynamic capillarity. The nonlinear functions
taken in [17] are of power-like type, in particular the flux function is convex. The existence of
TW solutions is analysed, and in particular it is shown that oscillations behind the infiltration
front may occur, depending on the magnitude of the dynamic effect. A similar analysis, but
for two-phase flow models implying convex-concave flux functions is carried out in [44, 47, 48].
Also related are the diffusive-dispersive equations appearing as models for the phase transition
dynamics, but in which the higher order terms are in terms of the spatial derivatives only [2, 16].
Though having a different motivation, the associated TW equation is similar to the one for the
dynamic capillarity models, in particular since both involve a non-convex nonlinearity in the
lower order terms. In this context, in [47] it is proved that the saturation profile may have over-
shoot in form of a plateau separated by two fronts (infiltration-drainage), similar to the ones
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obtained in [18]. The dependence of the saturation value at such plateaus on the magnitude of
the dynamic effect is proved rigorously in [47], and non-standard entropy conditions are defined
for the shock solutions of the limiting hyperbolic case when the capillary effects are neglected.
This analysis is extended to the case of degenerate models in [44, 48]. Due to the degeneracy in
the model, the saturation remains between the physically relevant values, but the TW solutions
may have discontinuous derivatives. The possibility of encountering non-monotonic TW profiles
for various extensions of the Richards equation, including dynamic capillarity models, is evi-
denced numerically in [19, 21]. Finally, we mention [51] for a numerical study of the saturation
and capillary pressure profiles for several of the hysteresis concepts discussed above, combined
with dynamic capillarity.

The present analysis consists of three parts. First the existence of TW solutions is anal-
ysed for the models involving hysteresis. The TW profiles are obtained by regularising the
multi-valued function involved in the hysteretic term. In particular, we analyse the orbits as-
sociated with the TW solution in the saturation-pressure plane. We prove that in the initial
and the final stages these orbits follow scanning curves that become vertical when the regu-
larisation parameter vanishes, and in between they follow the corresponding primary curves
(imbibition/drainage).

Next, the case where dynamic effects are present in the pressure - saturation relation-
ship is discussed. The existence of TW solutions is obtained and criteria ensuring their non-
monotonicity are provided. These include also situations where full-saturation is achieved. In
the last part we discuss a numerical scheme for approximating the solution of the non-linear,
pseudo-parabolic partial differential equations modelling the processes described above. The
scheme is implicit, so at each time step one has to solve a nonlinear problem. In this context
we propose an iterative method which is unconditionally convergent. Finally, numerical results
validating the theoretical findings are provided. As will be seen below, the numerical solutions
to the original model are reproducing nicely analytically predicted structures and properties of
the TW solutions.

2 Mathematical formulation

2.1 Basic equations

We consider the unsaturated water flow in a one-dimensional, homogeneous porous medium.
Let t and x denote the time and space variable respectively. Assuming that the medium is
vertical so that gravity effects are playing a role, a well accepted model for the flow is the
Richards equation [31],

φ
∂S

∂t
=

∂

∂x

[
κ
k(S)

µ
·
(
∂p

∂x
− ρg

)]
. (2.1)

The unknowns in the model are the water saturation S and the water pressure p. The relative
permeability k(·) is a given, positive and increasing function that characterizes the medium
and can be determined experimentally. The other quantities are parameters in the model and
are assumed positive and known: µ and ρ are the the water viscosity and density, g is the
gravitational acceleration, φ is the porosity of the medium, and κ its absolute permeability.

The model is completed by a an equation describing the dependency between p and S. For
standard models, this dependency is algebraic,

−p = Pc(S),
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where Pc(·) is a decreasing function. Its specific form is determined experimentally. As men-
tioned, the results available in the literature assume a local equilibrium and disregard the history
of the system.

Here we consider the non-equilibrium model proposed in [3], which combines dynamic effects
in the p-S relationship with a simple, play type hysteresis model. For a mathematical justifi-
cation of the play-type hysteresis, based on the pore scale analysis, we refer to [43]. Let pimb(·)
and pdrn(·) be the primary imbibition and drainage capillary pressure curves [29] respectively.
In the absence of the dynamic effects one has

Pc(S) =

{
pimb(S) for ∂tS > 0 (infiltration),

pdrn(S) for ∂tS < 0 (drainage).
(2.2)

Combining this with the vertical scanning curves the closure relationship can be written in the
compact mathematical form

− p = Pc

(
S,
∂S

∂t

)
∈ P+(S)− P−(S) · sign

(
∂S

∂t

)
, (2.3)

where sign(·) is the multi-valued function (the signum graph)

sign(u) =


1 for u > 0

[−1, 1] for u = 0

−1 for u < 0.

(2.4)

The functions P+, P− are defined as (also see Figure 1 for an example in the dimensionless
framework)

P+ =
1

2
(pdrn + pimb) , and P− =

1

2
(pdrn − pimb) . (2.5)

To include the dynamic effects we refer to [22]. With τ being a damping parameter and f(·)
a damping function (both non-negative), the model combining hysteretic and dynamic effects
in the pressure-saturation relationship reads

− p ∈ P+(S)− P−(S) · sign

(
∂S

∂t

)
− τf(S)

∂S

∂t
. (2.6)

In [22], a thermodynamic justification of such models has been given. Also, homogenisation
techniques are employed in [8] for justifying the dynamic terms. For experimental studies
concerning the value of τ and the shape of the function f we refer to [7].

2.2 Scaling and assumptions

In what follows we assume that water infiltrates in a porous column under both capillary and
gravity effects. The column is assumed isotropic and homogeneous, implying that φ and κ are
constants. We also assume that the column is insulated laterally, so the flow will be essentially
one-dimensional, in the direction of the gravity. Since we consider here TW solutions, the
column is assumed infinite.

With σ being the air-water surface tension coefficient, we consider the reference quantities

p∗ = σ

√
φ

κ
, L∗ =

p∗

ρg
, T ∗ =

µφL

ρgκ
, τ∗ =

µL2φ

κ
, (2.7)
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and apply the rescaling

x̃ =
x

L∗
, p̃ =

p

p∗
, t̃ =

t

T ∗
τ̃ =

τ

τ∗
. (2.8)

Observe that reference value for pressure is inspired by the J-Leverett relationship and the
reference value for the damping parameter τ∗ is consistent with [26]. Also, since the analysis
below will involve infinite domains, we have first specified a reference pressure and based on
it a reference length has been defined. Putting the scaled variables in (2.1) and (2.6) and
disregarding the˜to simplify the notation one obtains the dimensionless system

∂S

∂t
=

∂

∂x

[
k(S)

(
∂p

∂x
− 1

)]
, (2.9)

−p ∈ P+(S)− P−(S) · sign

(
∂S

∂t

)
− τf(S)

∂S

∂t
. (2.10)

Next we state the assumptions on the nonlinear functions involved in the model. The
assumptions are justified from physical point of view.

(A. 1) The relative permeability k ∈ C1([0, 1]) is a continuously differentiable, increasing, bounded
and convex function. There exists Mk > 0 s.t. for all S ∈ [0, 1] one has 0 ≤ k(S) ≤ 1, and
0 ≤ k′(S) ≤Mk;

(A. 2) The damping parameter is positive, τ ≥ 0. The damping function is continuous and
satisfies f(S) > 0 for all S ∈ (0, 1).

(A. 3) The scaled primary drainage and imbibition pressure functions pimp, pdrn : (0, 1]→ [0,∞)
are continuously differentiable, strictly decreasing and satisfy

pimb(1) = pdrn(1) = 0, and pimb(S) < pdrn(S) for all S ∈ (0, 1);

S
0 0.2 0.4 0.6 0.8 1

P
c

0

0.5

1

1.5 pimb

pdrn
P+

Figure 1: Dimensionless primary imbibition
(pimb) and drainage (pdrn) capillary pressure
curves and their average (P+) as a function of
saturation S. The curves are based on the van
Genuchten model [49] and the parameters are
taken from experiments [52, p. 91].

An immediate consequence is that the
functions P±(·) defined in (2.5) are in
C1((0, 1]), satisfying P±(1) = 0 and
P±(S) > 0 for all S ∈ (0, 1). Also, for
any δ > 0, a constant MP (δ) > 0 exists s.t.
−MP (δ) < (P+)′(S) < 0 for all S ∈ [δ, 1].
Figure 1 displays an example of primary
drainage and imbibition curves and their
average P+.
To analyse the effect of hysteresis, which is
modelled by means of a multivalued func-
tion, we consider a regularisation approach.
With ε > 0 being a small regularisation
parameter, one can approximate the sign
function by another function Hε : R → R
satisfying the following

(A. 4) For each ε > 0, Hε is smooth, odd and strictly increasing. It satisfies

Hε(−s) = −Hε(s) and 0 < H ′ε(s) ≤ H ′ε(0) =
1

ε
for all s ∈ R;
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(A. 5) Hε is monotone w.r.t. ε: if ε1 > ε2 > 0 then |Hε1(s)| < |Hε2(s)| < 1 for all s 6= 0. Also,
when ε↘ 0, the functions Hε are approaching the signum graph:

lim
ε→0

Hε(s) = −1, if s < 0, and lim
ε→0

Hε(s) = 1, if s > 0. (2.11)

Finally, Hε depends on ε in a continuously differentiable manner.

Observe that Hε(0) = 0 for all ε > 0, that Hε(s) decreases with ε for negative arguments s, and
that this monotonicity is reversed for positive arguments.

When sign is replaced by Hε in (2.10), the regularised model for the pressure-saturation
relationship becomes

− p = P+(S)− P−(S)Hε

(
∂S

∂t

)
− τf(S)

∂S

∂t
. (2.12)

Such regularisation has been used in [39, 42] for proving the existence of weak solutions to such
models, and for developing appropriate numerical schemes.

It is an intriguing question whether this approach is motivated physically, and in particular
how the parameter ε can be interpreted from physical point of view. In this sense one observes
that in the play type hysteresis models, a switch from drainage to imbibition leads to a vertical
jump between the corresponding primary curves in the pressure-saturation plane. In physical
terms, the switch between the primary curves is made along vertical scanning curves. When
considering regularised models, these scanning curves have a steep but finite gradient. This is
actually observed in scanning curves obtained from experiments in [29]. As will be seen below,
the same profiles are predicted by the TW analysis, and the scanning curves become steeper
when ε is decreased.

Another motivation for considering regularised models can be found in [50], where the play
type hysteresis is viewed as a ‘friction-controlled backslash’ process. This means that dissipative
forces, which are mostly continuous in porous media, are responsible for it. At the pore scale,
hysteresis occurs because of the difference in the advancing and receding contact angles of the
wetting phase, which is a continuous phenomenon and hence jump phenomena should not be
expected.

Based on the above, ε can be seen as a physical parameter, or at least can be used to fit
more realistic Pc-S scanning curves. Having this in mind, in the subsequent discussions we will
analyse first the case ε > 0 and then the limiting case of ε→ 0. Before doing so we mention that
(2.9), combined with the constitutive relationship (2.10) or its regularised counterpart (2.12),
becomes a nonlinear, pseudo-parabolic equation. In general, one cannot expect that solutions
exist in a classical sense. We refer to [5, 6, 12, 13, 14, 25, 28, 27, 41, 42, 43] for results concerning
the existence and uniqueness of weak solutions for hysteresis models, dynamic capillarity models,
or for models including both effects. In particular we refer to [41, 42, 13] where, as suggested
in [3, 4], (2.12) is used to express ∂tS as a function of S and p. We rely on the same idea for
the TW analysis below.

2.3 Travelling wave formulation

To simplify the analysis and to understand the profile of the solutions to the regularised math-
ematical model (2.9), (2.12) we look for TW solutions. We assume that the solutions have
profiles that do not change in time, but travel with a velocity c that will be determined later.
Specifically, we extend the domain (the porous medium) to the entire real axis R and assume
that the saturation and the pressure depend on the TW variable ζ = ct − x. Note that this
choice is the opposite of x−ct, which is commonly used in the TW analysis, but it is convenient
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for the analysis below. For the ease of presentation, we define the negative pressure u = −p,
and assume that S and p only depend on ζ,

S(x, t) = S(ζ) and p(x, t) = −u(ζ), with ζ = ct− x. (2.13)

The wave velocity c ∈ R will be determined below. With the travelling wave transformation
(2.9) and (2.12) become

cS′ = (k(S)(u′ + 1))′, (2.14)

u = P+(S)− P−(S)Hε(cS
′)− cτf(S)S′, (2.15)

defined for all ζ ∈ R. In the above equations ′ denotes the differentiation w.r.t. ζ.
Furthermore, we assume that the saturation and the pressure admit horizontal asymptotes

at ±∞,

lim
ζ→−∞

S(ζ) = SB, lim
ζ→∞

S(ζ) = ST , (2.16)

lim
ζ→−∞

u(ζ) = pB, lim
ζ→∞

u(ζ) = pT . (2.17)

for given saturations ST , SB satisfying ST > SB > 0 and ‘pressures’ pT and pB. Observe that
since u = −p, pT and pB are the additive inverses of the actual pressure.

After integrating (2.14), we use the behaviour of S and u at ±∞ to deduce that

lim
ζ→±∞

u′(ζ) = lim
ζ→±∞

S′(ζ) = 0.

Moreover, from (2.15) one obtains that

lim
ζ→−∞

u(ζ) = P+(SB) and lim
ζ→∞

u(ζ) = P+(ST ),

which provides a necessary condition for the existence of TW solutions. We have

Proposition 2.1 A necessary condition for the existence of TW solutions is that the compo-
nents in the left and right states are compatible, namely pα = P+(Sα) (α ∈ {T,B}).

In what follows, this compatibility condition is assumed unless stated otherwise.
Integrating (2.14) and using the boundary conditions to determine the wave speed and the

constant of integration gives

u′ = G(S;SB, ST ) and c =
k(ST )− k(SB)

ST − SB
. (2.18)

The function G : (0, 1]→ R depends on the parameters SB and ST satisfying 0 < SB < ST < 1,
and is defined as

G(S;SB, ST ) := 1− c(S − SB) + k(SB)

k(S)
= 1− c(S − ST ) + k(ST )

k(S)
. (2.19)

The last equality follows from the definition of the wave speed c.
In the subsequent analysis we investigate the TW solutions for hysteresis (τ = 0) and

dynamic capillarity cases (pimb(S) = pdrn(S) for 0 < S ≤ 1 implying P−(S) = 0) separately.
Recalling (2.16)-(2.17) and Proposition 2.1, the points Eα = (Sα, pα) with pα = P+(Sα)

(α ∈ {T,B}) and ST > SB are equilibria for the dynamical system (2.14)-(2.15). Therefore,
to find and analyse TW solutions of the non-equilibrium model (2.9), (2.12) we seek orbits
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connecting the points EB and ET in the S-u plane. Clearly, corresponding waves are unique up
to a translation in the ζ coordinate. To fix the orbit we also assume

S(0) =
1

2
(SB + ST ) and S(ζ) <

1

2
(SB + ST ) for all ζ < 0. (2.20)

We will see later, the inequality in (2.20) is needed as S will become non-monotonic if the
equilibrium point ET becomes a stable spiral sink. From now on while discussing travelling
waves or orbits we implicitly assume that (2.20) is satisfied.

3 Capillary hysteresis

We start the analysis by considering first only hysteretic effects in the absence of dynamic ones
(τ = 0) in the capillary pressure. Since Hε is invertible, one can define the function

Φε : (−1, 1)→ R, Φε(r) =
1

c
H−1
cε (r), (3.1)

where c is the wave speed in (2.18). The particular choice of H−1
cε instead of H−1

ε is made to
simplify the writing below. Recalling the Assumptions (A.4) and (A.5) one gets

Proposition 3.1 Φε is a smooth, odd and increasing function satisfying Φ′ε(0) = ε for all ε > 0.
Also, given two regularisation parameters ε1,2 s.t. ε2 > ε1 > 0 one has |Φε1(r)| < |Φε2(r)| for
all r ∈ (−1, 1). Finally, limε→0 Φε(r) = 0 for all r ∈ (−1, 1).

r

-1 0 1
-5

0

5

Φε1
, ε1 = 0.05

Φε2
, ε2 = 0.5

Φε

Figure 2: The graph of Φε. The plots are for Φε(r) =
εr√
1−r2

and two ε values are ε1 = 0.05 and ε2 = 0.5.

The proof is straightforward. Figure
2 shows the graph of Φ for different
values of ε.
Putting τ = 0 in (2.15) and rearrang-
ing the resultant equation we have the
following system

S′ = Φε

(
P+(S)− u
P−(S)

)
(3.2)

u′ = G(S;SB, ST ). (3.3)

For the TW analysis we consider the
cases ST = 1 and ST < 1 separately.

3.1 The case ST = 1

Below we will use the following inequality, which follows directly from Assumption (A.5) and
(2.15)

− 1 <
P+(S)− u
P−(S)

< 1 for all 0 < S < 1. (3.4)

The main result of this section is

Theorem 3.1 Let 0 < SB < ST = 1 and EB = (SB, P
+(SB)), ET = (1, 0).

(a) Let ε > 0 be fixed. The system (3.2)-(3.3) has a unique orbit (Sε, uε) connecting the
points EB and ET . This orbit is increasing in S and decreasing in u. Consequently, for
any S ∈ [SB, 1] there exists a unique ζε ∈ R s.t. Sε(ζε) = S, and similar result holds for
u ∈ [0, P+(SB)].
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(b) The orbits (Sε, uε) are well ordered with respect to ε and do not intersect except at the
equilibrium points EB and ET . Specifically, if ε2 > ε1 > 0 and Sε1(ζ1) = Sε2(ζ2) = S for
some S ∈ (SB, 1) and ζ1,2 ∈ R, then uε2(ζ1) > uε1(ζ2).

(c) Let S ∈ (SB, 1] be fixed. For arbitrary ε > 0, let ζε,S ∈ R be s.t. Sε(ζε,S) = S and
wε,S = uε(ζε,S). Then lim

ε→0
wε,S = pimb(S).

Observe that for any ε > 0 Theorem 3.1 provides the existence of TW solutions to the
regularised system (2.9), (2.12) that connect the states (SB, P

+(SB)) and (ST , P
+(ST )) = (1, 0).

Here uniqueness is stated under the assumption in (2.20). Thus once the orbit is known, one
can let ε↘ 0 to obtain the existence of TW solutions for the play-type hysteresis model.

Further, due to the monotonic behaviour of the orbits, the TW solutions are monotone in
both components and in particular no overshoot is possible in either pressure or saturation.
Finally, once the monotonicity is proved, for any fixed ε > 0, the functions Sε : R→ (SB, 1) and
uε : R→ (0, P+(SB)) are one to one. This is being used in the last point of Theorem 3.1 when,
for arbitrary S ∈ (SB, 1), a TW argument ζε,S and the pressure wε,S were defined. Moreover,
for any ζ < ζε,S one has Sε(ζ) < S and uε(ζ) > wε,S . Similarly for ζ > ζε,S one has Sε(ζ) > S
and uε(ζ) < wε,S . Recalling ST = 1 this justifies

Definition 3.1 Let ε > 0 and (Sε, uε) be the orbit of (3.2)-(3.3) connecting the equilibria EB
and ET . Let S ∈ (SB, 1) and ζε,S ∈ R be such that Sε(ζε,S) = S. The functions ηε, wε :
(SB, 1)→ R are defined as

ηε(S) = ζε,S , wε(S) = uε(ζε,S).

Note that the definition is given for S ∈ (SB, 1), but it can be extended to S = SB and S = 1,
with wε taking the values P+(SB), and 0 respectively, and ηε becoming ∓∞. Further, since the
definition makes sense whenever S is monotonic, if this does not hold globally, the functions ηε
and wε can still be defined but restricted to intervals where the saturation is monotone. Finally,
from (3.2) and (3.3) one obtains

w′ε(S) =
dwε
dS

(S) =
G(S;SB, 1)

Φε

(
P+(S)− wε
P−(S)

) . (3.5)

This will be used in the analysis below.
To prove Theorem 3.1 we need some intermediate results. We start with

Proposition 3.2 The region H− = {(S, u) : SB ≤ S ≤ 1 and pimb(S) ≤ u ≤ P+(S)} is
positive invariant for the dynamical system (3.2)-(3.3).

Proof Since k(·) is a convex function it follows that G(S;SB, 1) ≤ 0 for any S ∈ [SB, 1]. Also
S′ε ≥ 0 whenever pimb(S) ≤ u ≤ P+(S). Therefore any orbit (Sε, uε) will be monotone in both
components as long as it remains in H−, and the function wε introduced above is well defined.
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u

S
0 ST = 1SB

H−

EB
pimb
pdrn
P+

Figure 3: The invariant set H− in the S-u plane.
The arrows indicate direction of orbits with ζ
increasing.

Referring to Figure 3, since S′ε = 0 and
u′ε < 0 along the graph of P+, the or-
bit cannot leave H− through the upper
boundary. The same holds for the vertical
boundary S = SB, since along it one has
S′ε > 0. Finally, as the orbit approaches
the primary imbibition curve pimb one has

S′ε → +∞ and therefore
dwε
dS
→ 0. Since

p′imb < 0, this implies that the orbit cannot
leave H− through the lower boundary as
well. Hence H− is invariant.

The next proposition is characterising the equilibrium point EB.

Proposition 3.3 EB is a saddle type equilibrium.

Proof Linearizing (3.2)-(3.3) around any equilibrium point Eα = (Sα, P
+(Sα)) (α ∈ {B, T})

yields the characteristic equation

λ2 − Φ′ε(0)
P+′(Sα)

P−(Sα)
λ+ Φ′ε(0)

(k′(Sα)− c)
k(Sα)P−(Sα)

= 0. (3.6)

Since k is convex one has k′(SB) < c < k′(1). For EB, by Proposition 3.1 and Assumption
(A.3), the last term on the right is negative, which proves the proposition.

Remark 3.1 Since Φ′ε(0) = ε, one can immediately determine the asymptotic behaviour of the
positive eigenvalue in (3.6) for the equilibrium point EB. Specifically, with C1,2 > 0 properly
chosen one has

λ+,B,ε =

√
C1

2ε2 + C2ε− C1ε = O(
√
ε), as ε→ 0.

Now we can prove Theorem 3.1.

Proof (a) With given ε > 0, we consider the unique orbit (Sε, uε) of the dynamical system
(3.2)-(3.3) that leaves the saddle EB along the unstable direction corresponding to λ+,B,ε in
Remark 3.1, and for increasing Sε. By direct calculation one obtains that the corresponding
eigenvector points into the region H−. By Proposition 3.2, the orbit (Sε, uε) remains in H− and
therefore it is monotone in both components. Furthermore, as ζ →∞, since the orbit does not
leave H− and its monotonicity prevents it from returning to EB or approaching a limit cycle,
the orbit approaches the second equilibrium ET = (1, 0). In other words, we have proved the
first point in Theorem 3.1.

(b) For the second point we observe that the monotone behaviour of the orbit (Sε, uε) allows
using the function wε introduced in Definition 3.1. Letting S → SB in (3.5) gives

w′ε(SB) =
P+′(SB)

2

(
1 +

√
1 +

4(c− k′(SB))P−(SB)

k(SB)Φ′ε(0)(P+′(SB))2

)
. (3.7)
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Let now ε2 > ε1 > 0. Since Φ′ε(0) = ε, from (3.7) one obtains w′ε2(SB) > w′ε1(SB). As
wε2(SB) = wε1(SB) = P+(SB), this implies that a δ > 0 exists s.t. wε2(S) > wε1(S) for
all S ∈ (SB, SB + δ). Assume that the two orbits intersect in the interior of H−, i.e. a
S∗ ∈ (SB, 1) exists s.t. wε2(S∗) = wε1(S∗) = u∗. Then, for the left limits of the derivatives one
has w′ε1(S∗ − 0) ≥ w′ε2(S∗ − 0). This gives a contradiction since at the point (S∗, u∗) ∈ H− it
holds that

w′ε2(S∗) =
G(S∗;SB, 1)

Φε2

(
P+(S∗)− u∗

P−(S∗)

) >
G(S∗;SB, 1)

Φε1

(
P+(S∗)− u∗

P−(S∗)

) = w′ε1(S∗).

(c) From the above we know that for any S ∈ (SB, 1), wε(S) decreases with ε and is bounded
from below by pimb(S). This implies that along any sequence ε → 0 the sequence wε(S) has a
limit. This allows defining the function

w̄ : [SB, 1]→ [0, P+(SB)], w̄(S) = lim
ε→0

wε(S).

Clearly, w̄(S) ≥ pimb(S) for all S, and w̄ is decreasing. Now suppose that a S0 ∈ (SB, 1) exists
s.t. w̄(S0) > pimb(S0). Then, with δ > 0 small enough, S0 − δ > SB and wε(S) > w̄(S) >
pimb(S0 − δ) for all S ∈ (S0 − δ, S0) and ε > 0. Observe that all orbits are passing through the
region (see Figure 4)

R = {(S, u) : S0 − δ/2 < S < S0 and pimb(S0 − δ) < u < P+(S)}. (3.8)

Observe that on [S0 − δ
2 , S0] the function G is bounded from below away from 0, |G| ≥ C for

some C > 0. Defining

m = sup
(S,u)∈R

(
P+(S)− u
P−(S)

)
,

we have 0 < m < 1 since R does not touch the curve pimb. From (3.5) and due to the
monotonicity of Φε, in R we have

−w′ε(S) ≥ C

Φε(m)
. (3.9)

Therefore by mean value theorem we get

P+(SB)− Pimb(S0) ≥ wε(S0 − δ)− wε(S0) ≥ Cδ

Φε(m)
.

While the left hand side is bounded, the right hand side goes to ∞ as ε → 0, leading to a
contradiction. Therefore lim

ε→0
wε(S) = pimb(S) and the convergence is uniform on any closed

interval [SB + µ, 1] with µ > 0.

11
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S
0 ST = 1

δ

SB S0

EB H−

R

pimb
pdrn
P+

(Sε, uε)

Figure 4: The saturation S0 and the region R
for ε > 0.

Passing ε → 0 gives TW solutions to the
play-type hysteresis model. These are the
limit of the orbits obtained in the regularised
case, satisfying (2.20). We have

Corollary 3.1 Let ζ∗ε ∈ R be s.t. uε(ζ) =
pimb(SB) and let S∗ε = Sε(ζ

∗
ε ). Then

lim
ε→0

S∗ε = SB and lim
ε→0

ζ∗ε = −∞.

Before giving the proof we observe that in
view of the convergence result in Theorem 3.1
(c), this corollary shows that for ε ↘ 0 the
orbits are becoming vertical when approach-
ing EB.

Proof Since the orbits (Sε, uε) are ordered, S∗ε decreases with ε. Moreover, S∗ε ≥ SB since
wε(SB) = P+(SB), so there exists S∗ = lim

ε→0
S∗ε along any sequence ε → 0. With this, the first

result is obtained by contradiction, repeating the proof for point (c) of Theorem 3.1.
To show that ζ∗ε → −∞ as ε → 0 we observe that the function ηε in Definition 3.1 is the

inverse of Sε. By (3.2), it satisfies

η′ε =
1

Φε

(
P+(S)− u
P−(S)

) . (3.10)

As S∗ε = S(ζ∗ε ) and Sε(0) = (SB + ST )/2, integrating (3.10) and using (3.5) gives

−ζ∗ε =

∫ Sε(0)

S∗ε

dS

Φε
=

∫ Sε(0)

S∗ε

w′ε(S)

G(S;SB, 1)
dS.

Since S∗ε → SB, for any δ > 0 there exists a µ̄ = µ̄(δ) s.t. SB < S∗ε < SB+δ for all 0 < ε < µ̄(δ).
As G ∈ C1([SB, 1]]), with m = max{|G′(S)|, S ∈ [SB,

1
2(ST + SB)]} it holds

− ζ∗ε ≥
1

m

∫ Sε(0)

S∗ε

−w′ε(S)

S − SB
dS ≥ 1

m

∫ 1
2

(ST+SB)

SB+δ

−w′ε(S)

S − SB
dS =:

1

m
hε. (3.11)

To evaluate hε, the last integral in the above, we use the uniform convergence of wε to pimb.
However, in hε the derivative w′ε appears, therefore we proceed as follows

hε =
wε(SB + δ)

δ
−

2wε(
1
2(ST + SB))

(ST − SB)
−
∫ 1

2
(ST+SB)

SB+δ

wε(S)

(S − SB)2
dS.

The uniform convergence of wε to pimb proved in Theorem 3.1 gives

lim
ε→0

hε = h0 =
pimb(SB + δ)

δ
−

2pimb(
1
2(ST + SB))

ST − SB
−
∫ 1

2
(ST+SB)

SB+δ

pimb(S)

(S − SB)2
dS

=

∫ 1
2

(ST+SB)

SB+δ

−p′imb
(S − SB)

dS,

as pimb ∈ C1. Therefore a µ∗(ν) ≤ µ̄ exists s.t. hε > h0 − ν for all ε ∈ (0, µ∗(ν)).
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Using this and (3.11), and observing that Assumption (A.3) guarantees the existence of a
mp > 0 s.t. −mp ≤ p′imb(S) for SB ≤ S ≤ 1, if 0 < ε < µ∗(ν) one has

−ζ∗ε ≥
1

m

∫ 1
2

(ST+SB)

SB+δ

−p′imb
(S − SB)

dS − ν

m
≥ mp

m
ln

(
ST − SB

2δ

)
− ν

m
. (3.12)

As δ was taken arbitrarily small, from this we can conclude that ζ∗ε → −∞ as ε→ 0.

3.2 The case ST < 1

We consider now the case when the top and bottom saturations satisfy 0 < SB < ST < 1. In
the analysis we use the region

H = {(S, u) : SB ≤ S ≤ 1, pimb(S) ≤ u ≤ pdrn(S)},

and its subregions (see Figure 5)

H1 = {(S, u) : SB ≤ S ≤ ST , Pimb(S) ≤ u ≤ P+(S)},
H2 = {(S, u) : ST ≤ S ≤ 1, Pimb(S) ≤ u ≤ P+(S)},
H3 = {(S, u) : ST ≤ S ≤ 1, P+(S) ≤ u ≤ Pdrn(S)},
H4 = {(S, u) : SB ≤ S ≤ ST , P+(S) ≤ u ≤ Pdrn(S)}.

We first analyse the case when ε > 0.

3.2.1 Properties for fixed ε > 0

The key properties of the orbits are stated in

Theorem 3.2 Let 0 < SB < ST < 1 and ε > 0. Then the following holds

(a) There exists a unique orbit (Sε, uε) satisfying (3.2),(3.3),(2.20) and connecting EB and
ET .

(b) There exists a εm > 0 s.t. ET is a stable spiral sink whenever 0 < ε < εm.

u

S
1SB S̄ST

EB

ET
H1 H2

H3

H4

pimb
pdrn
P+

u

S
0 1SB S̄ ST

EB

ET
H1

H2

H3

H4
pimb
pdrn
P+

Figure 5: The regions H1, H2, H3 and H4 for the cases ST < S̄ (left) and ST > S̄ (right) where
S̄ is defined as pdrn(S̄) = P+(SB). The arrows indicate direction of orbits with ζ increasing.
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Proof (a) We observe that, repeating the proof for the ST = 1 case, the equilibrium EB is a
saddle and all orbits leaving EB along the unstable direction and for increasing Sε enter the
region H− introduced in Proposition 3.2. Also, no orbit can leave the region H defined above
through the primary curves pimb(S) and pdrn(S). Now we let S̄ be s.t. pdrn(S̄) = P+(SB).
Then two cases can be identified, ST < S̄ and ST ≥ S̄.

The case ST < S̄: As seen from the left picture in Figure 5, the orbit leaving EB, for increasing
Sε, enters first the region H1. Then there are four possibilities (see Figure 5)

1. The orbit goes through H2, H3, H4 and returns to EB.

2. The orbit goes throughH2, H3, H4 and leavesH4 through the segment (SB, pB), (SB, pdrn(SB)).

3. The orbit goes through H2, H3, H4 and then leaves H4 through the arc (S, P+(S)) between
EB and ET . This in turn gives rise to two possibilities:

A. The orbit moves around ET but does not approach it.

B. The orbit ends up in ET .

The case ST ≥ S̄: In this case, if the orbit enters from H3 to H4 at some ζ = ζ3-4, uε(ζ3-4) <
pdrn(ST ) < pdrn(S̄) = pB. But in H4, uε is decreasing, hence uε < pB for all arguments ζ > ζ3-4,
which rules out the first two possibilities (possibility 1 and 2) above.

To show that actually 3.B is the only possibility in both cases, we follow an argument from
[17], based on Gauß Divergence Theorem. We define the vector-valued function

F : H → R2, F(S, u) = (Φε(S, u),G(S)), (3.13)

and denote its components by FS and Fu respectively. A direct calculation gives

∇ · F =
Φ′ε

(P−)2
· (P+′P− − P+P−

′
+ uP−

′
),

where the arguments S and u are disregarded. Hence, for (S, u) ∈ H one has

∇ · F(S, u) <


Φ′ε

(P−)2
· (P+′P− − P+P−

′
+ P−

′
pimb) if P−

′
(S) < 0

Φ′ε
(P−)2

· (P+′P− − P+P−
′
+ P−

′
pdrn) if P−

′
(S) > 0

The last factor in the first inequality gives

1

4
(pdrn + pimb)

′(pdrn − pimb)−
1

4
(pdrn + pimb)(pdrn − pimb)′ +

pimb
2

(pdrn − pimb)′

=
1

4
(2pdrnp

′
imb − 2pimbp

′
imb) =

1

2
(pdrn − pimb)p′imb < 0

Similarly, in the second inequality one gets
1

2
(pdrn − pimb)p′drn < 0. Thus we have shown that

∇ · F(S, u) < 0 for all (S, u) ∈ H. (3.14)

We can now investigate the possibilities mentioned above. To rule out the first two possibilities
in the case ST < S̄ we define the domain Ω bounded by the closed orbit, or by the orbit and the
segment (SB, pB), (SB, pdrn(SB)) (see Figure 6). Let the orbit intersect the segment (SB, pB),
(SB, pdrn(SB)) at the point T . So for possibility 1, T is simply ET . By (3.14) one has

0 >

∫
Ω
∇ · F =

∫ T

EB

F · n̂+

∫ EB

T
F · n̂ = 0−

∫ EB

T
FS ,
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u

S
SB S̄ST

ΩEB
ET

H1 H2

H3

H4

pimb
pdrn
P+

(Sε, uε)

u

S
SB S̄ST

ΩEB
ET

T

H1 H2

H3

H4

pimb
pdrn
P+

(Sε, uε)

Figure 6: Possibility 1 (left) : orbit returning to EB after going through regions H1, H2, H3 and
H4. Possibility 2 (right) : orbit exiting region H4 through the segment (SB, pB), (SB, pdrn(SB)).

with the last integral on the right appearing only in the second possibility listed above. Since
FS ≤ 0 in the region H\H−, this gives a contradiction.

Finally, to eliminate 3.A we observe that by the Poincaré-Bendixson Theorem, if the orbit
does not end up in ET then it must approach a limit cycle around ET . However, one can
use again the argument above, to show that limit cycles do not exist. So, the only possible
behaviour of the orbits is as stated in possibility 3.B. This is displayed in the left plot of Figure
7.

(b) Having proved the existence of an orbit connecting EB and ET , showing that the orbit
forms a stable spiral around ET for small enough ε is a matter of calculation. Using the
properties of Φε, P

+ and the convexity of kT in (3.6) it is easy to show that for small values
of ε, the eigenvalues corresponding to equilibrium point ET will be complex with negative real
part. This completes the proof.

The left plot in Figure 7 shows the phase portrait in the S-u plane. In the right plot one has
orbit component S as function of −ζ, in the case when ET is a stable spiral. Note the usage of
−ζ = x− ct instead of ζ, which is because in the original problem (with x and t as independent
variables) the left state (x = −∞) corresponds to ST and right state (x = ∞) corresponds to
SB. This convention will be useful when comparing with numerical solutions to (2.9)-(2.12).

u

S

1SB ST

Lε Rε

EB

pimb
pdrn
P+

(Sε, uε)

−ζ

S

SB

ST

1
2(SB + ST )

Rε

0

Sε(−ζ)

Figure 7: (left) Orbit connecting the saddle point to the spiral sink ET , and (right) the profile
of S as a function of −ζ = x− ct.
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3.2.2 Properties for the limit case ε→ 0

Knowing now the structure of the orbits for fixed ε > 0, we study the limit behaviour ε → 0.
In certain aspects, the results obtained for ST = 1 and for ST < 1 are quite similar. The major
difference is in the fact that the orbits are not monotone anymore. In consequence, the function
wε introduced in Definition 3.1 can only be defined as long as Sε remains monotone. Clearly,
when starting from EB the monotonicity is lost for the first argument ζ where Sε(ζ) = ST . We
define ζTε as

ζTε = min{ζ ∈ R/Sε(ζ) = ST }. (3.15)

From now on we refer to the function wε as the one obtained for ζ ∈ (−∞, ζTε ]. With this one
has

Proposition 3.4 (a) For any S ∈ (SB, ST ), wε(S)→ pimb(S) as ε→ 0. The convergence of
wε to pimb is uniform on [SB + δ, ST ] for any δ > 0.

(b) As long as S ≤ ST the orbits (Sε, uε) are well ordered w.r.t ε > 0, and do not intersect.

The proof is absolutely similar to the one for Theorem 3.1 and is skipped here.
For the case ST = 1, Corollary 3.1 is stating the limit behaviour of the orbits when ε↘ 0.

The type of the equilibrium EB remains unchanged in the case ST < 1 and a similar result can
be proved in this case too. Specifically, if ζ∗ε ∈ R is s.t. uε(ζ) = pimb(SB), for S∗ε = Sε(ζ

∗
ε ) one

has
lim
ε→0

S∗ε = SB and lim
ε→0

ζ∗ε = −∞,

and the corresponding orbits become vertical when approaching EB.
The situation changes for ET since the orbits (Sε, uε) become stable spirals. To understand

this behaviour we let ζ̄ε = min{ζ ∈ R/Sε(ζ) = ST } and define

Rε = sup{Sε(ζ) : uε(ζ) = P+(Sε(ζ))} and Lε = inf{Sε(ζ) : uε(ζ) = P+(Sε(ζ)), ζ > ζ̄ε},

and prove the following

Proposition 3.5 For ζ̄ε, Lε and Rε introduced above, one has

lim
ε→0

ζ̄ε =∞, lim
ε→0

Lε = ST and lim
ε→0

Rε = ST .

Proof The proof for ζ̄ε is almost identical to the proof of Corollary 3.1. For the remaining part
we only consider Rε, the proof for Lε being similar.

Clearly, Rε ≥ ST . Assuming that a δ > 0 and a sequence εk → 0 exists such that Rεk >
ST + δ for all k ∈ N. Let

R =

{
(S, u) : ST +

δ

2
< S < ST + δ and pimb(ST ) ≤ u ≤ P+(S)

}
.

Clearly, all orbits pass through R. Letting

M = sup
(S,u)∈R

(
P+(S)− u
P−(S)

)
one has 0 ≤M < 1 and 0 ≤ Φε

(
P+(S)−u
P−(S)

)
< Φε(M) for all (S, u) ∈ R. From (3.5) and recalling

that k is convex, for any S ∈
(
ST + δ

2 , < ST + δ
)

one has

w′εk(S) >
G(S;SB, ST )

Φεk(M)
>

(k(S)− k(ST ))− c(S − ST )

k(ST + δ) · Φεk(M)
.
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Integrating the above over
(
ST + δ

2 , ST + δ
)

and using the properties of k, a constant C0 > 0
depending on δ but not on ε exists s.t.

wεk(ST + δ)− wεk
(
ST +

δ

2

)
>

C0

Φεk(M)
.

In the above, the difference on the left is bounded by P+(ST ) − pimb(ST + δ). However, by
Proposition 3.1, the ratio on the right goes to∞ when ε→ 0, which gives a contradiction. This
implies that Rε → ST for ε↘ 0.

u

S
SB ST

lim
ε→0

ζε(SB)

= −∞

lim
ε→0

ζε(ST )

=∞

EB

ET

pimb
pdrn
P+

lim
ε→0

(Sε, uε)

−ζ
SB

ST

pimb(ST )
pT

pimb(SB)
pB

0

S(−ζ)
u(−ζ)

Figure 8: Orbit for limiting case ε→ 0 in S-u plane (left); and saturation and pressure profiles
for the limiting orbit as a function of −ζ = x− ct (right).

Remark 3.2 Propositions 3.4 and 3.5 characterize the behaviour of the orbits in the limiting
case ε → 0. They are approaching vertical segments at S = SB and S = ST , and in between
the primary imbibition curve (see Figure 8). Possible oscillations can appear around ET when
ST < 1. As ε → 0, these oscillations are damped in the S component, but we are unable to
show similar behaviour for the pressure. Computational results shown in Figures ?? indicate that
pressure oscillations do not decay as ε decreases. However, these oscillations cannot be observed
in reality for ε → 0 as they are pushed towards infinity. Proceeding as in Corollary 3.1, one
can show that ζ∗ε → −∞ as ε → 0 and a similar result holds for the other side, determined by
ST . In another words, the oscillations move to ∞ and at any finite point the limiting waves are
monotone in both saturation and pressure and they lie on the primary imbibition curve.

4 Dynamic capillarity

Now we discuss the case without hysteresis, but include dynamic effects in the Pc-S relationship.
More precisely, we assume that the primary curves in (2.5) are the same, pimb = pdrn, giving
P−(S) = 0 and P+(S) = pimb(S) for all S. For the ease of presentation, as many results in this
case are similar to the ones for the hysteresis model, we still use the notations P±.

At the same time we now take τ > 0 and thus (2.10) and (2.12) become u = P+(S) −
τf(S)∂tS. With the TW velocity c given in (2.18), the dynamical system (2.14)-(2.15) associated
to the TW solutions become,

S′ =
P+(S)− u
cτf(S)

, (4.1)

u′ = G(S;SB, ST ). (4.2)

17



As before, we seek orbits that connect the equilibria EB = (SB, P
+(SB)) and ET = (ST , P

+(ST )),
where 0 < SB < ST ≤ 1. To fix the ideas we normalize the orbits by assuming that
S(0) = (SB + ST )/2. We mention that the analysis here completes the ones in [17, 44, 47, 48].

In the following analysis we distinguish the cases, f ∈ L1(SB, 1) and f /∈ L1(SB, 1). In the

former case one can define the primitive function F : [SB, 1] → [0,∞), F (S) =
∫ S
SB
f(%)d%.

By Assumption (A.3) F is one to one when its range is restricted to [0, F (1)]. With this, the
transformation

Y = F (S), impying S = F−1(Y ) (4.3)

is well defined and (4.1)-(4.2) becomes

Y ′ =
P+(S(Y ))− u

cτ
(4.4)

u′ = G(S(Y );SB, ST ). (4.5)

Observe that this system is similar to the one obtained for a constant damping function, f ≡ 1,
as the functions P+(S(·)) and G(S(·)) have the same general properties as P+(·) and G(·).
Hence we start analysing the existence of TW solutions and their properties by replacing (4.1)
with the simpler equation

S′ =
P+(S)− u

cτ
, (4.6)

as the analysis for the system (4.6), (4.2) can be immediately transferred to the general case
when f is L1. Moreover, the same applies for the case when f 6∈ L1, as this is different from
f ∈ L1 only if ST = 1. However, the case f 6∈ L1 gives a natural framework in which the
saturation remains within the physically relevant range, S ∈ [0, 1].

4.1 General behaviour of the orbits

As for the hysteresis case, in this part we analyse the existence of orbits of the system (4.6),
(4.2) connecting the equilibrium points EB and ET . Clearly, these orbits will depend on τ ,
motivating the notation (Sτ , uτ ). Below we use the regions

H1 = {(S, u) : SB ≤ S ≤ ST , u ≤ P+(S)}, H2 = {(S, u) : ST ≤ S ≤ 1, u ≤ P+(S)},
H3 = {(S, u) : ST ≤ S ≤ 1, P+(S) ≤ u}, H4 = {(S, u) : SB ≤ S ≤ ST , P+(S) ≤ u}.

u

S
10 SB ST

H1 H2

H4

H3

EB

ET

P+

Figure 9: The directions followed by the orbits
in the S-u plane for dynamic capillary case.

Figure 9 shows the directions followed by the
orbits of the system (4.6), (4.2). Note that if an
orbit goes through H1, there it is monotone in
both components, namely u′τ < 0 and S′τ > 0.
Hence an orbit can only exit H1 through the line
S = ST .
A straightforward calculation shows that the
eigenvalues for the linearization of (4.6), (4.2)
around Eα = (Sα, P

+(Sα)) (α ∈ {B, T}) are

λ±τ =
P ′+(Sα)

2cτ

(
1±

√
1− 4cτ(k′(Sα)− c)

k(Sα)(P+′(Sα))2

)
.

(4.7)
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Since k is convex, one has k′(ST ) > c > k′(SB), which shows that EB is a saddle point.
Further, the unstable orbit leaving EB to the right enters the region H1. To understand its
behaviour as ζ →∞ we begin with

Proposition 4.1 Given τ > 0, the orbit (Sτ , uτ ) leaving EB into H1 either approaches ET
from H1 as ζ →∞, or leaves H1 through vertical line S = ST .

Proof In view of the monotonicity inside H1, if (Sτ , uτ ) does not leave H1 through its right
boundary it will approach an equilibrium contained in H1 and at the right of EB. Since k is a
convex function, the only such point is ET .

As for the hysteresis model, all orbits (Sτ , uτ ) are monotone between (SB, ST ). So, similar
to Definition 3.1, with the stated normalization Sτ (0) = (SB +ST )/2 it is possible to define the
functions ητ , wτ : (SB, ST ) → R for the dynamic capillarity model as well. More precisely, for
any S ∈ (SB, ST ), a unique ζw exists s.t. Sτ (ζw) = S and Sτ (ζ) < S for all ζ < ζw. With this,
wτ (S) = uτ (ζw) and ητ (S) = ζw. Also one can extend wτ to the closed interval [SB, ST ].

We emphasize on the fact that the functions are defined as long as Sτ remains increasing. In
particular, this holds until the orbit leaves H1∪H2. Similar to (3.5), wτ satisfies the differential
equation

w′τ (S) =
τcG(S;SB, ST )

P+(S)− wτ
. (4.8)

The propositions below explain how the orbits (Sτ , uτ ) depend on τ , before they leave H1.

Proposition 4.2 For the family of functions wτ introduced above one has

(a) wτ → P+ uniformly in [SB, ST ] as τ → 0.

(b) For any S ∈ (SB, ST ], wτ (S)→ −∞ as τ →∞.

Proof We define the family of functions vτ : [SB, ST ]→ [0,∞), vτ (S) = P+(S)−wτ (S). Note
that since (Sτ , uτ ) ∈ H1, vτ is always positive. By (4.8) we get

1

2
(v2)′(S) = vv′(S) = −cτG(S;SB, ST ) + v(P+)′ ≤ −cτG(S;SB, ST ). (4.9)

Integration from S = SB to an arbitrary S ∈ (SB, ST ) gives

v2(S) ≤ −2cτ

∫ S

SB

G(%;SB, ST )d% ≤ −2cτ

∫ ST

SB

G(%;SB, ST )d% = 2τK̄,

with K̄ = −c
∫ ST
SB
G(%)d% ≥ 0. This implies

0 ≤ P+(S)− wτ (S) ≤
√

2τK̄. (4.10)

Observing that K̄ does not depend on S, the conclusion follows immediately.
For the second part, assume there exists L > 0 and S∗ ∈ (SB, ST ] s.t. wτk(S∗) > P+(S∗)−L

for a sequence {τk}k∈N going to infinity. Since wτk is strictly decreasing in [SB, ST ] we have
P+(S) − wτk(S) < P+(S) − P+(S∗) + L if SB < S < S∗. Since G(S;SB, ST ) < 0 in H1

integration of (4.8) gives

wτk(S∗) = wτk(SB) + cτk

∫ S∗

SB

G(%)

P+(%)− wτk(%)
d%

< P+(SB) + cτk

∫ S∗

SB

G(%;SB, ST )

P+(%)− P+(S∗) + L
d% = P+(SB)− cτkKs, (4.11)
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with Ks =
∫ S∗
SB

G(%;SB ,ST )
P+(%)−P+(S∗)+Ld%. Clearly, Ks > 0. Since limk→∞ τk =∞, this contradicts the

assumed boundedness of wτk and the proposition is proved.

The orbits depend continuously and monotonically on τ , as follows from

Proposition 4.3 For all S ∈ [SB, ST ], wτ (S) is continuously decreasing w.r.t τ .

Proof The proof for the monotonicity follows the arguments in the proof of Theorem 3.1, point
(b) and is omitted.

For the continuity we take S ∈ (SB, ST ] and 0 < τ1 < τ2, and use again the functions
vı = P+ − wτı , ı ∈ {1, 2}. From (4.9) and using the monotonicity of wτ w.r.t. τ one obtains

1

2
(v2

2 − v2
1)′(S) = −c(τ2 − τ1)G(S;SB, ST ) + (v2 − v1)(S)(P+)′(S) < −c(τ2 − τ1)G(S;SB, ST ).

With K̄ defined above, integration gives

0 < v2
2(S)− v2

1(S) < 2(τ2 − τ1)K̄,

which implies the continuity w.r.t. τ of v and consequently of wτ .

u

S
10

0
SB ST

H1 H2

H4

H3

0 < τ1 < τ2 < τ3

EB

ET

P+

(Sτ1 , uτ1)
(Sτ2 , uτ2)
(Sτ3 , uτ3)

Figure 10: The dependency of the orbits
(Sτ , uτ ) on τ for SB < S < ST .

From the discussion so far we conclude
that the orbits (Sτ , uτ ) are close to the
graph of P+ for small values of τ , but
move away from it as τ increases, and for
S ∈ (SB, ST ]. This situation is presented
in Figure 10. In the remaining part of this
subsection we focus on the behaviour of
the system beyond the point S = ST . The
main goal is to show that orbits connecting
EB and ET exist for all values of τ > 0.
In Theorem 4.1 we show this for small
values of τ and for larger τ values the
existence is shown in Theorems 4.2 and 4.3.

Theorem 4.1 Let {(Sτ , uτ )}τ>0 be the family of orbits of (4.6), (4.2), originating from EB and
entering H1. Then there exists a τ∗ > 0 s.t. wτ∗(ST ) = 0. For all τ ∈ (0, τ∗] the system (4.6),
(4.2) has a unique orbit (Sτ , uτ ) satisfying Sτ (0) = (SB + ST )/2 and connecting EB and ET .

Proof The existence of a τ∗ for which wτ∗(ST ) = 0 follows directly from Propositions 4.2 and
4.3. Also, wτ (ST ) < 0 for τ > τ∗ and wτ (ST ) > 0 for τ < τ∗.

u

S
10

0
SB ST

H1

H2

H4

H3

EB

ET

ζZ

ζR

ζP

ζT

P+

(Sτ , uτ )

Figure 11: Behaviour of the orbit (Sτ , uτ ) for
τ ≤ τ∗.

To understand the behaviour of (Sτ , uτ ) for
τ < τ∗ we recall Proposition 4.1, which states
that the orbit either approaches ET or enters
H2 through S = ST at a finite ζT . In the
latter case, which is displayed in Figure 11,
uτ becomes increasing for ζ > ζT . With τ <
τ∗, since P+(1) = 0 < uτ (ζT ) < P+(ST )
the orbit must intersect the graph of P+ at
some ζ = ζP and enter H3, where Sτ becomes
decreasing whereas uτ is still increasing. We
claim that the orbit either approaches ET , or
enters H4 for some ζ = ζ3.
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To see this, assume that a δ > 0 exists s.t. Sτ (ζ) ≥ ST + δ for all ζ > ζP . As Sτ is
bounded and decreasing, the limit limζ→∞ Sτ (ζ) exists and is finite. Denoting it by S̃τ we have
S̃τ ≥ ST + δ. Further, since uτ is only bounded from below, a similar reasoning shows that
either limζ→∞ uτ (ζ) = ũτ ∈ [P+(S̃τ ),∞) or uτ →∞.

Since Sτ is decreasing with ζ and bounded from below, limζ→∞ S
′
τ = 0. From (4.6) one gets

ũτ = P+(S̃τ ). Therefore uτ has a (finite) limit as ζ →∞ and from (4.2) we get limζ→∞ u
′
τ = 0.

In other words, (S̃τ , ũτ ) is an equilibrium point, which is not possible since k is a convex function
and therefore G has only two zeros. This rules out the possibility that Sτ is bounded away from
ST , so either limζ→∞ Sτ (ζ) = ST , or the orbit enters H4 at some finite argument ζR.

In the former case it follows as before that the orbit ends up in ET . In the latter case we
follow the arguments in Theorem 3.2 to prove that (Sτ , uτ ) cannot end up back in EB, or leave
H4 through the line S = SB. This means that it enters H1 again at some ζ = ζZ . However, in
this case the incoming part of the orbit is above the part emerging from EB, and therefore the
set bounded by {(Sτ (ζ), uτ (ζ))/ζ < ζZ} and the graph of P+ from EB to (Sτ (ζZ), uτ (ζZ)) is
positive invariant. With this, the proof continues as in Theorem 3.2.

Theorem 4.1 states that the orbits go to ET for all τ ∈ (0, τ∗] but it does not state how the
orbits behave close to ET . This is given in

Proposition 4.4 There exists a τm > 0 s.t. for τ ∈ (0, τm] any orbit going to ET goes either
directly or after a finite number of turns around ET , and for τ ∈ (τm, τ∗) the orbit is a stable
spiral around ET .

Proof To prove this part we use the eigenvalues of the linearization around ET , computed in

(4.7). Let τm = k(ST )(P+′ (ST ))2

4c(k′(ST )−c) . Note that ET is a stable sink for 0 < τ ≤ τm and a stable spiral
for τ > τm. This proves the statement of Proposition 4.4.

Having explained the behaviour of orbits close to ET we again turn to existence, this time
for τ > τ∗. As will be seen below, the orbits connecting EB and ET exist for τ > τ∗ too, but to
prove this we have to introduce

α(SB, ST ) =

∫ 1

SB

G(%;SB, ST )d%. (4.12)

S
1

0

1

k(S)

G(S)
∫ S

SB
G(̺)d̺

SB ST

Figure 12: The functions k, G, and the
primitive of G.

By the convexity of k, as stated in Assump-
tion (A.1), and the definition G(S;SB, SB) =

1 − k′(SB)(S−SB)+k(SB)
k(S) , for any fixed S ∈ (SB, 1]

the function G is decreasing w.r.t. ST ∈ (SB, 1].
Also, one has G(S;SB, ST ) < 0 if S ∈ (SB, ST )
and G(S;SB, ST ) > 0 if S ∈ (ST , 1]. Moreover,

α(SB, SB) > 0 > α(SB, 1), (4.13)

and α(SB, ·) is decreasing in [SB, ST ]. Observe
that α(SB, ST ) does not depend on τ . Fig-
ure 12 shows how the functions k(S), G(S) and
∫SSB G(%;SB, ST )d% vary with S .

With this we can now state the main result of this section,

Theorem 4.2 Let SB, ST ∈ (0, 1], SB < ST and α(SB, ST ) be defined as above. If α(SB, ST ) ≥
0 then for all τ > τ∗ the orbit (Sτ , uτ ) reaches ET as ζ →∞.
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Proof Since α(SB, ST ) ≥ 0, by the properties of G an Sα ∈ [ST , 1) exists s.t.∫ 1

Sα

G(S;SB, ST )dS = α(SB, ST ). (4.14)

Clearly, Sα < 1 and Sα = 1 if α(SB, ST ) = 0. We rewrite (4.8) as

d

dS

(
P+(S)wτ −

1

2
w2
τ

)
= cτG(S) + wτ

dP+

dS
. (4.15)

Since τ > τ∗, wτ (ST ) < 0. Let S1(τ) ∈ (SB, ST ) be s.t. wτ (S) > 0 for all S ∈ [SB, S1(τ)),
i.e. the first point where the orbit (Sτ , uτ ) enters the region u < 0. Observe that wτ is
increasing for S > ST . Further, let S2(τ) ∈ (ST , 1] be s.t. wτ (S2(τ)) = 0 and wτ (S) < 0 for all
S ∈ (S1(τ), S2(τ)) . We prove that S2(τ) < 1, thus the orbit returns in the upper half plane
(see also Figure 13). More precisely, since α(SB, ST ) ≥ 0, we prove in Proposition 4.6 that
S2(τ) < Sα for all τ > τ∗.

Assume that S2(τ) = 1 for some τ > τ∗, then the domain of definition of wτ can be extended
to [SB, 1]. Integrating (4.15) from S1(τ) to 1 gives

−1

2
w2
τ (1) = cτ

∫ 1

S1

G +

∫ 1

S1

wτ
dP+

dS
.

Moreover, for S ∈ (S1(τ), 1) one has wτ (S) < 0 and since G(S;SB, ST ) < 0 for S ∈ (SB, ST )
one has

α =

∫ 1

SB

G(S)dS =

∫ S1

SB

G +

∫ 1

S1

G

=

∫ S1

SB

G − 1

2cτ
w2
τ (1)− 1

cτ

∫ 1

S1

wτ
dP+

dS
< 0,

which contradicts the assumption α(SB, ST ) ≥ 0. Therefore, if τ > τ∗, a S2(τ) ≤ 1 exists such
that wτ (S2(τ)) = 0, meaning that the orbit (Sτ , uτ ) intersects the axis u = 0 for the second
time. Following the reasoning in the proof of Theorem 4.1 one obtains that (Sτ , uτ ) ends up in
ET .

S
1

0

P+

(Sτ , uτ )

S1SB

u

ST S2 Sα

α(SB , ST ) > 0
τ > τ∗

Figure 13: (Sτ , uτ ) orbits for τ > τ∗ and
α(SB, ST ) > 0. S1(τ), S2(τ) and Sα are shown
in the image for this particular ST value.

The proof of Theorem 4.2 introduces three
important values for the saturation, Sα given
by (4.14), and S1(τ), S2(τ), the abscissas
where the orbit intersects the axis u = 0. Be-
low we give some results on the boundedness
of wτ and of Sα and S2(τ). We start with

Proposition 4.5 Let τ > τ∗ be such that
S2(τ) ∈ (ST , 1] exists. Then

wτ (ST ) > −K
√
τ ,

where K2 = 2c
∫ 1
ST
G(S)dS

Proof Equation (4.8) gives (P+(S)−wτ )w′τ = cτG(S). As w′τ (S) > 0 for S ∈ (ST , S2(τ)], this
gives −w2′

τ (S) < 2cτG(S). The proof follows by intergating this inequality over (ST , S2(τ)].
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Observe that the estimate in Proposition 4.5 gives a lower bound for wτ since wτ (ST ) is a
minimum for wτ . Also, the result does not require that α(SB, ST ) ≥ 0.

The behaviour of Sα and S2(τ) is stated in

Proposition 4.6 Under the assumptions of Theorem 4.2, one has S2(τ) < Sα and lim
τ→∞

S2(τ) =

Sα.

Proof To estimate S2(τ) we integrate (4.15) from S1(τ) to S2(τ) and obtain

cτ

∫ S2(τ)

S1(τ)
G(S) +

∫ S2(τ)

S1(τ)
wτ
dP+

dS
= 0.

Using this, one can split the integrals in (4.12) to obtain∫ 1

S2(τ)
G = α−

∫ S1(τ)

SB

G +
1

cτ

∫ S2(τ)

S1(τ)
wτ
dP+

dS
. (4.16)

Denoting by I1(τ) and I2(τ) the two integrals on the right, since G < 0 for S ∈ (SB, ST ) and

wτ (S) < 0 for S ∈ (S1(τ), S2(τ)) one gets I1(τ) < 0 and I2(τ) > 0. This gives
∫ Sα
S2(τ) G > 0. As

S2(τ) > ST , G > 0 for S ∈ (S2(τ), 1) and therefore S2(τ) < Sα for all τ > τ∗.
To obtain the limit we start by proving that S1(τ)→ SB as τ →∞. Clearly S1(τ) decreases

with increasing τ and remains bounded from below by SB. Now suppose S1(τ) ≥ SB + δ for
some δ > 0 and for all τ > τ∗. Since wτ (S) > 0 and G(S) < 0 for S ∈ (SB, S1(τ)), integrating
(4.8) from SB to S1(τ) gives

P+(SB) = cτ

∫ S1

SB

−G(S)

P+(S)− wτ (S)
dS > − cτ

P+(SB)

∫ SB+δ

SB

G(S)dS.

This gives a contradiction for large τ as c and G do not depend on τ . Hence lim
τ→∞

I1(τ) = 0.

To estimate I2 we use Proposition 4.5 and the properties of wτ

0 < I2(τ) =
1

cτ

∫ S2

S1

uτ
dP+

dS
<

1

c
√
τ
P+(SB)K. (4.17)

Hence lim
τ→∞

∫ 1
S2
G(S)dS = α =

∫ 1
Sα
G(S)dS. This proves that S2 → Sα for τ →∞.

Having understood the behaviour of the orbits for the case α(SB, ST ) ≥ 0 we proceed by
analysing the case α(SB, ST ) < 0. We have

Lemma 4.1 Let SB, ST ∈ (0, 1], SB < ST and α(SB, ST ) introduced in (4.12). If α(SB, ST ) <
0 then a τ∗ > τ∗ exists s.t. for all τ > τ∗, the orbit (Sτ , uτ ) passes through a point (1, wτ (1))
with wτ (1) < 0.

Proof We use ideas that are similar to the ones in the proof of Theorem 4.2. Assume that
S2(τ) ≤ 1 for all τ > τ∗. Integrating (4.15) from S = SB to S = S2(τ) gives

−1

2
P+(SB)2 = cτ

∫ S2(τ)

SB

G(S) +

∫ S2(τ)

SB

wτ
dP+

dS
< cτα+ wτ (ST )(P+(S2)− P+(SB))

< cτα− wτ (ST )P+(SB) < cτα+ P+(SB)K
√
τ .

Since α < 0 this gives a contradiction for τ exceeding a τ∗ ≥ τ∗, where τ∗ is determined s.t.
the term on the right in the equation above becomes equal to −1

2P
+(SB)2. From this it follows

that for τ > τ∗ the orbit (Sτ , uτ ) has no second intersection point with the u-axis before passing
through the vertical line S = 1, therefore wτ (1) < 0.
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From Lemma 4.1 we see that, if α(SB, ST ) < 0 and τ is large enough, the orbit (Sτ , uτ )
exits the domain [0, 1]× R through the halfline {(1, u), u < 0}. Nevertheless, the functions P+

and k are only defined inside the physically relevant regime S ∈ [0, 1]. One possibility is to
extend the definition of P+ and G to [0,∞) e.g. by letting them become constant for S ≥ 1.
However, such values for S are not physical and need to be avoided. To this aim we consider
the multivalued extension

Pe(S) =

{
P+(S), for 0 < S < 1

(−∞, 0] for S = 1.
(4.18)

Observe that its inverse is the capacity function C : R→ (0, 1] (see e.g. [45]). Such an approach
is also being used for defining extended pressure conditions in the case of porous media with
block-type heterogeneities, and if models involving an entry pressure are adopted (see e.g.
[40, 9]). Further, for mathematical purpose k is extended in such a way that G(S) = G(1) > 0
for all S ≥ 1. However, we prove below that the choice of Pe guarantees that S does not exceed
1. To do so we let δ > 0 be a small regularisation parameter and define

P δe (S) =

P
+(S), for 0 < S < 1,

1

δ
(1− S) for S ≥ 1.

(4.19)

With this, let (Sδτ , u
δ
τ ) be the orbit originating from EB and satisfying (4.6), (4.2) with P+(S)

replaced by P δe (S). We are interested in the limit behaviour when δ ↘ 0, which is stated in

Theorem 4.3 With τ∗ from Lemma 4.1, for any τ > τ∗ and δ > 0 the orbits (Sδτ , u
δ
τ ) emerging

from EB end up in ET . Furthermore, for any ζ ∈ R, the limit lim
δ→0

(Sδτ (ζ), uδτ (ζ)) exists and it

satisfies lim
δ→0

Sδτ (ζ) ≤ 1.

Proof Let τ > τ∗ be fixed and ζ1 be s.t. Sτ (ζ) < 1 for ζ < ζ1 and Sτ (ζ1) = 1. Observe that,
for all δ > 0, the orbits (Sδτ , u

δ
τ ) exist and coincide with (Sτ , uτ ) if ζ ≤ ζ1. This gives trivially

the existence of limδ→0(Sδτ (ζ), uδτ (ζ)) for ζ ≤ ζ1, and that ζ1 does not depend on δ.
Now for δ > 0, since uδτ is increasing whenever Sδτ ≥ 1 ≥ ST whereas P δe is decreasing for

S ≥ 1, the orbit (Sδτ , u
δ
τ ) will intersect the curve u = P δe (S). Following now the ideas in the

proof of Theorem 4.1 one obtains that the orbit ends up in ET .
To analyse further the limit case we observe first that the orbits (Sδτ , u

δ
τ ) are well-ordered

w.r.t. δ for ζ > ζ1. To see this, as long as the saturation Sδτ remains increasing we define wδτ
similar to wτ and observe that for 0 < δ1 < δ2, (4.8) implies that 0 < wδ2τ (S) < wδ1τ (S) for all
S > 1 where both w functions are defined. Also, the two orbits cannot intersect. The behaviour
of the orbits is shown in Figure 14.
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Figure 14: Behaviour of the orbits (Sδτ , u
δ
τ )

for different δ values.

As discussed above, for any δ > 0 the orbit inter-
sects the graph of the regularised P δe function. Let
(Sδ∗ , P

δ
e (Sδ∗)) be this intersection point and ζδ∗ ∈ R

the corresponding argument. Since uδτ becomes
increasing for ζ > ζδ∗ , an argument ζ2 exists s.t.
uδτ (ζ2) = 0. Note that since all orbits are identical
until crossing the line S = 1 whereas G is constant
for S > 1, from (4.2) it follows that ζ2 is constant
w.r.t. δ. From the definition of P δe and (4.10) one
gets

P+(ST )−
√

2τK̄ < wτ (ST ) <
1

δ
(1− Sδ∗),

which implies that

1 < Sδ∗ < 1 + δ(
√

2τK̄ − P+(ST )).

This proves that limδ→0 S
δ
∗ exists and is equal to 1. Moreover, it also gives that limδ→0 S

δ
τ (ζ) =

1 for all ζ ∈ (ζ1, ζ2] since for such ζ one has 1 < Sδτ (ζ) ≤ Sδ∗ . Also, for ζ1 < ζ ≤ ζ2, one has
uδτ (ζ) = G(1)(ζ− ζ1) ∈ (wτ (1), 0], which is independent of δ. Hence limδ→0 u

δ
τ (ζ) also exists and

lies in the interval (wτ (1), 0].
Finally, since limδ→0 S

δ
τ (ζ) = 1 for all ζ ∈ (ζ1, ζ2] whereas uδτ (ζ) > P δe (Sδτ (ζ)) for ζ ∈ (ζδ∗ , ζ2],

the limit orbit will lie inside [0, 1]×R for ζ ≥ ζ2. In this case P δe (S) = P+(S). Hence the limit
δ → 0 will exist in this case too, which completes the proof.

Having understood the above we can now distinguish the following situations which are
shown in Figure 15. If α > 0 the orbits stay away from S = 1 and approach ET either directly
or after spiraling (see Figure 15a). The situation is similar if α < 0 and τ < τ∗. Whenever
α < 0 and τ > τ∗ then the orbit (Sτ , uτ ) can be defined as

(Sτ , uτ ) = lim
δ→0

(Sδτ , u
δ
τ )

for all ζ ∈ R. These orbits have a vertical section at S = 1. The orbits (Sτ , uτ ) for α < 0 are
shown in Figure 15b.

We conclude this part by observing that although the results are stated for f(S) = 1,
the coordinate transform in (4.3) allows extending these for the case of any positive function
f ∈ L1([SB, 1]).

S
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, uτ1

)
(Sτ2

, uτ2
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τ1 < τm
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u

STSB

Case: α(SB , ST ) > 0

(a) Typical orbits for α(SB, ST ) > 0
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Case: α(SB , ST ) < 0

(b) Typical orbits for α(SB, ST ) < 0

Figure 15: Behaviour of the orbits (Sτ , uτ ) for τ > 0 and f(S) = 1.
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4.2 The case when f /∈ L1(SB, 1)

The TW analysis of the dynamic capillarity model up to now is restricted to the case when
f ∈ L1(SB, 1), namely

∫ 1
SB
f(S)dS < ∞. This might not always be true. Since f is assumed

continuous on (0, 1) and positive, f /∈ L1(SB, 1) implies that it may become unbounded at
S = 0 or S = 1. In this case, two major issues are encountered. First, the arguments where
f becomes unbounded will become lower or upper bounds for the saturation. As above, if
boundedness is violated at both S = 0 and S = 1, the orbits remain inside the physically
relevant regime 0 ≤ S ≤ 1 and extending the capillary pressure is not needed. Second, if f
becomes unbounded one can also incorporate the concept of residual saturation in the model.
In general, the residual saturation gives the amount of one phase that can not be driven out
by the infiltration of another phase (see e.g. [31]). The subsequent analysis will reveal how to
incorporate the residual saturation in the travelling wave formulation.

Let δ > 0 be arbitrarily small. Whenever S ≤ 1− δ, one can apply the transformation (4.3)
to reduce the model (4.1)–(4.2) to the case analysed in Subsection 4.1 and most of the results
there still remaind valid. In particular, the orbits remain monotone if S ∈ (SB, ST ). The main
difference appears close to S = 1, if this value is approached. We have

Theorem 4.4 Assume f /∈ L1(SB, 1) and let τ > 0, SB ∈ (0, 1), ST ∈ (SB, 1] be given. For
the orbits (Sτ , uτ ) leaving EB one has

(a) If ST < 1, then Sτ (ζ) < 1 for all ζ ∈ R.

(b) If ST = 1, then two cases can occur.

(b.1) If fG 6∈ L1(SB, 1) then as ζ →∞, Sτ → 1 and uτ → −∞.

(b.2) If fG ∈ L1(SB, 1) then there exists a u∗ ∈ (−∞, P+(1)] s.t. lim
ζ→∞

(Sτ , uτ )→ (1, u∗).

Proof (a) Assume first that ST < 1. Compared to the situation analysed in Theorem 4.1, the
differences appear whenever Sτ approaches 1. We therefore focus on part of the orbit satisfying
Sτ > ST . In this case, u′τ > 0 whereas S′τ > 0 as long as the orbit (Sτ , uτ ) stays below the P+

curve. Two situations are possible: the orbit either intersects the P+ curve for some argument
ζ3, or it reaches the line S = 1.

In the former situation, let S3,τ = Sτ (ζ3). We know that Sτ (ζ) ≤ S3(τ) for all ζ ∈ R, so if
S3,τ < 1 then the proof is completed. Assuming the contrary, namely that a τ0 > 0 exists such
that S3,τ0 = 1, one has uτ0(ζ3) ≤ P+(1) and (4.8) gives

dwτ
dS

(S) =
τcf(S)G(S)

P+(S)− wτ
. (4.20)

As P+′(S) < 0 and G(S) > 0 for S ∈ [ST , 1) one uses (4.10) to see that P+−wτ0 ≥ 0 decreases
for S ∈ [ST , 1]. Further, integration of (4.9) gives (with redefinition K̄ = −c ∫STSB f(%)G(%)d%)√

2τ0K̄ > P+(ST )− wτ0(ST ) > wτ0(1)− wτ0(ST )

=

∫ 1

ST

τ0cf(S)G(S)

P+(S)− wτ0(S)
dS ≥ τ0c

P+(ST )− wτ0(ST )

∫ 1

ST

f(S)G(S)dS

≥ τ0c

P+(ST )− wτ0(ST )

∫ 1

ST+1

2

f(S)G(S)dS ≥ cτ0mG
P+(ST )− wτ0(ST )

∫ 1

ST+1

2

f(S)dS,

with mG = min{G(S), 1
2(ST + Sβ) ≤ S ≤ 1}. Since mG > 0 and f /∈ L1(SB, 1), the integral on

the right is unbounded, which gives a contradiction.
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The second case, when the orbit reaches the line S = 1, can be ruled out by similar argu-
ments. We omit the details here.

(b) For ST = 1, observe that S
′
τ (ζ) > 0 for (Sτ , uτ ) ∈ H1 and Sτ is bounded above by

1 following the arguments used for proving Corollary 3.1. Consequently Sτ has a limit S∞
for ζ → ∞. Assume S∞ < 1. We know that u

′
τ (ζ) decreases monotonically for ζ ∈ R so

that there are two possibilities. If limζ→∞ uτ (ζ) = u∞ > −∞ then from (4.1) and (4.2)
it follows that S

′
τ and u

′
τ both have a limit as ζ → ∞. Moreover, since Sτ and uτ have

horizontal asymptotes, it means that limζ→∞ S
′
τ (ζ) = limζ→∞ u

′
τ (ζ) = 0. From (4.2) we then

get G(S∞) = 0, contradicting S∞ < 1. On the contrary, if limζ→∞ uτ (ζ) = −∞ then from (4.2)
we get

S
′
τ (ζ) =

P+(S)− uτ (ζ)

cτf(S)
≥ P+(S)

cτf(S)
≥ inf

S∈[SB ,S∞]

{
P+(S)

cτf(S)

}
> 0,

for all ζ > Mζ with some large enough Mζ . This means that Sτ cannot have a limit S∞ < 1.
Therefore the only possibility remaining is lim

ζ→∞
Sτ = S∞ = 1.

Now let us consider the case fG 6∈ L1(SB, 1). Observe that since G < 0 for S ∈ (SB, 1)
one has ∫1

SB
f(−G) = ∞. If wτ tends to u∗ > −∞ then integrating (4.20) from SB to 1 and

multiplying by −1 we get

P+(SB)− u∗ =

∫ 1

SB

−τcf(S)G(S)

P+(S)− wτ (S)
dS >

τc

P+(SB)− u∗

∫ 1

SB

f(S)(−G(S))dS,

which is a contradiction since the term on the left is bounded whereas the integral on the right
is not. Hence limS→1wτ = −∞.

Next, for fG ∈ L1(SB, 1) after redefining K̄ as K̄ = −c ∫1
SB
Gf , Proposition 4.2 gives

a lower bound for wτ (ST ) that is uniform for all SB < ST ≤ 1. Also observe that for a
fixed SB, wτ (S;SB, ST ) are well ordered w.r.t. ST meaning that for SB < ST,1 < ST,2 < 1,
wτ (S;SB, ST,1) > wτ (S;SB, ST,2) in their common domain of definition. To see why this holds
observe that for S ∈ (SB, ST,1) and u < P+(S),

τcf(S)G(S;SB, ST,1)

P+(S)− u
>
τcf(S)G(S;SB, ST,2)

P+(S)− u

with G(S;SB, ST,1) > G(S;SB, ST,2) following from the convexity of k. Using (4.20) and
proceeding as in the proof of Theorem 3.1 we conclude that the orbits are well-ordered in
S ∈ (SB, ST,1) w.r.t. ST . As wτ (S;SB, ST,1) > wτ (ST,1;SB, ST,1) for S > ST,1, the well
ordering holds throughout the common domain of definition. In view of the boundedness of
wτ (ST ) mentioned before, limST→1wτ (ST ;SB, ST ) = u∗ > −∞. Finally proceeding like proof
of Corollary 3.1 one proves that this value can be only attained as ζ →∞.
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Figure 16: Typical (Sτ , uτ ) orbit for the case∫ 1
SB
f(S)dS =∞, ST < 1.

From the proof above we see that in the
case ST < 1, for any τ > 0 the orbit
may turn around the equilibrium ET with-
out reaching the line S = 1. In particular, an
S3,τ ∈ (ST , 1) exists s.t. the orbit interescts
the graph of P+ for the first time after
EB in the point (S3,τ , P

+(S3,τ )), see Figure
16. Moreover, since f ∈ C(0, 1)\L1(SB, 1)
whereas G ∈ C[0, 1] with G(1) > 0, one has
limS↗1

∫ 1
SB
f(z)G(z)dz =∞. Since G < 0 on

(SB, ST ), a unique Sα ∈ (ST , 1) exists s.t.∫ Sα

SB

f(S)G(S)dS = 0.

Observe that this simply extends the definition of Sα in (4.12), given for the case f ≡ 1 to
f ∈ L1(SB, 1) and f 6∈ L1(SB, 1). Having introduced the above, as in the case f ≡ 1, it is
interesting to see what happens if τ becomes very large. We have:

Corollary 4.1 Let ST < 1 and Sα, S3,τ be as introduced above. Then lim
τ→∞

S3,τ = Sα.

Proof As in the proof of Proposition 4.3, the orbits are ordered w.r.t. τ . Therefore S3,τ

is increasing w.r.t. τ and bounded from above, S3,τ < 1. Hence there exists the limit
limτ→∞ S3,τ = S∗3 . As in Theorem 4.2, for τ > τ∗ and S > ST let S2,τ be abscissa where
the orbit intersects the axis u = 0. Following the argument in Theorem 4.2, one proves that
limτ→∞ S2,τ = Sα. Also as S3,τ > S2,τ it is easy to see that S∗3 ≥ Sα. Now integrating (4.20)
from S2,τ to S3,τ gives

P+(ST ) > wτ (S3,τ ) =

∫ S3,τ

S2,τ

τcf(S)G(S)

P+(S)− wτ (S)
dS ≥ τc

P+(ST )

∫ S3,τ

S2,τ

f(S)G(S)dS.

Observe that if S∗3 > Sα, since limτ→∞ S3,τ = S∗3 the integral on the right becomes positive for τ
large enough. On the other hand, since the term on the left is bounded, as τ →∞ this integral
must approach 0. For S∗3 > Sα this gives a contradiction, so the only possibility is S∗3 = Sα.

Remark 4.1 For ST < 1, Corollary 4.1 shows that for all τ > 0 the orbits remain at the left of
S = Sα < 1. This means that the travelling waves exist without needing to extend the capillary
pressure in the non-physical domain S > 1.

Remark 4.2 Observe that τ and f have different effects. Specifically, changing τ affects the
orbit for all values of ζ, whereas f plays a major role only in the vicinity of S = 1.

Remark 4.3 The analysis above remains unchanged if f has a singularity at some Sβ ∈ (0, 1)

s.t.
∫ Sβ

0 f(S)ds =∞. In this case the orbits will remain bounded at the right of the line S = Sβ
for all τ > 0. So Sβ can be interpreted as a maximal saturation of the wetting phase (water),
respectively 1− Sβ is the residual saturation for the non-wetting phase (air).
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5 Numerical Study

The numerical results presented in this section complement the theoretical findings in the pre-
vious sections. Specifically, after solving numerically the system (2.9), (2.12) we verify the
predictions made in previous sections for sufficiently large times. We start by presenting the
numerical scheme.

5.1 Numerical Scheme

Below ε > 0 and τ ≥ 0 are fixed. With SB < ST we consider the system given by (2.9),(2.12)
for t > 0 and x ∈ (−`, `). For the numerical solution we first discretize in time (2.9) and (2.12).
Let ∆t > 0 be the time step and let tn = n∆t for n ∈ N. The time discrete unknowns Sn,
un approximate the saturation and pressure at tn. We introduce the function F which gives

the discretization of ∂tS. One gets from (2.12) that F(S, u) = cΦε

(
P+(S)−u
P−(S)

)
for the hysteresis

case and F(S, u) = 1
cτ (P δe (S) − u) for the dynamic capillarity case. With the F-notation, the

explicit discretisation of (2.12) reads

Sn = Sn−1 + ∆tF(Sn−1, un−1). (5.1)

For stability we solve the time discrete version of (2.9) implicitly:

∂x (k(Sn)∂xun) = −F(Sn, un)− ∂xk(Sn). (5.2)

For (5.2) we use pressure boundary conditions at x = ±`:

un(−`) = pT , un(`) = pB. (5.3)

The initial condition is a smooth approximation of the Riemann data and it is consistent with
the boundary conditions. Specifically S0 : [−`, `]→ (0, 1) satisfies

S0(x) = ST , if x ≤ −`1, respectively S0(x) = SB if x ≥ `1. (5.4)

Here `1 << ` is a positive number, and ST and SB are compatible with the corresponding
pressure values, i.e. pα = P+(Sα) (α ∈ {B, T}).

For the dynamic capillary case, equation (5.2) is linear in un, but for the capillary hysteresis
case it becomes non-linear and requires more attention. Observe that in this case the situation
|F ′(S, u)| → ∞ arises in two different ways. Firstly, if u → pimb(S) or u → pdrn(S), then
F ′(S, u)→ ±∞. To resolve this we define Φε on R in a way such that Φ′ε(r) = 1

γε for |r| > 1 for
some constant γ > 0. Note that Φε is different from the function Φε given in Proposition 3.1, but
satisfies Assumption (A.4)-(A.5). This particular choice guarantees the numerical convergence
of the non-linear problem (5.2).

Secondly, |F ′(S, u)| → ∞ if S → 0 or S → 1. This problem is avoided by taking SB > 0 and
ST < 1. So when studying the case ST = 1, we actually show the result for the limit ST ↗ 1.
With these modifications, F becomes locally Lipschitz in both variables S and u.

Because Φ′ε becomes unbounded as ε → 0, iterative schemes like Newton’s method fail to
converge because of the requirement of having good initial guesses. Therefore to solve (5.2) we
use a linear iteration scheme inspired by the L-scheme discussed in [36, 38]. Specifically, for a
sufficiently large L that will be specified later and with i as the iteration index, we solve the
linear elliptic equation

Luin − ∂x
(
k(Sn)∂xu

i
n

)
= Lui−1

n + F(Sn, u
i−1
n ) + ∂xk(Sn). (5.5)
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Following the arguments from [36, 38] one can show the existence of a constant Lmin > 0 s.t. for
all L > Lmin the scheme becomes a contraction and converges irrespective of the initial guess.
In fact, Lmin is the Lipschitz constant of F with respect to the variable u. A natural choice for
the initial guess is u0

n = un−1.
Observe that, for the hysteresis case, L > 1

γε guarantees the convergence of the iterations.
However, with this choice the convergence is very slow, [36]. Observing that in most parts of
the interval (−`, `), S and u are s.t. Φ′ε = O(ε), one can improve this convergence by choosing
an x-dependent L. Specifically, taking L = L : (−`, `) → R depending on Φ′ε restricted to a
local sub-interval improves the local convergence of the iterations. In our computation we have
chosen L := L(x) = 2F ′(Sn−1(x), un−1(x)) in every control volume.

5.2 Numerical results

As the problem is 1-D we use finite differences to discretise (5.2) and (5.5) in space. We use
simple capillary pressure and permeability functions,

P+(S) =

(
1− S
S

)
, P−(S) = 2(1− S)2, k(S) = S2. (5.6)

With b = 3

√
ε
γ and a = (1− (ε2γ)

2
3 ), the Φε function used in the numerical scheme is

Φε(r) =


b+ 1

γε(r − 1) for r > 1

εr(1− ar2)−1/2 for r ∈ [−1, 1]

−b+ 1
γε(r + 1) for r < −1

.

The interval is taken large enough to allow the saturation and pressure to develop profiles
resembling the travelling wave ones and in all cases ` ≥ 50. We take a C1 initial condition
S0 : [`, `] → R that approximates the jump from ST to SB. Specifically, with `1 = 5, we take

S0(x) = (SB+ST )
2 + (ST−SB)

4`31
x(x2−3`21) for x ∈ [−`1, `1], S0(x) = ST for x < −`1, and S0(x) = SB

for x > `1. However it is to be noted that the choice of Φε and S0 do not have considerable
impact on the end results as long as necessary assumptions are satisfied.
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Figure 17: Convergence study for the hysteresis model. The parameters are SB = 0.2, ST = 0.6,
∆x = .1, ∆t = 10−3, ε = 10−3 unless specified otherwise.
(a) xf as a function of t, where xf is the x-location at which S(xf , t) = 1

2(SB +ST ). According

to (2.19) the TW speed should be c =
dxf
dt = 0.8. From the figure we get

dxf
dt = 0.7892.

(b) Error (log10(‖uin − ui−1
n ‖L2([−`,`]))) vs iterations for different ε and ∆x pairs.

(c) Grid-independence study: S vs x for ∆x = 1 and ∆x = .1 at t = 100.

We conducted a convergence test to ensure that the scheme proposed in Section 5.1 indeed
gives the correct results. Some of the findings of the study are shown in Figure 17. Firstly

30



we matched the speed of propagation of the profile with the Rankine-Hugoniot speed given in
(2.19). The profile speed is calculated from the rate of change of the point x = xf at which
S(xf , t) = 1

2(SB +ST ). By (2.20), ζ = 0 at this point, meaning that xf = ct. The result for the
hysteresis case is shown in Figure 17a, and the speeds matched very well for all the cases. This
proves that the traveling wave assumption in (2.13) is correct.

Next a convergence study was done for different ε and ∆x pairs where the L2([−`, `]) errors
of consecutive pressure iterates were plotted against inner iterations. Figure 17b shows that the
errors are decreasing in all the cases in a linearly convergent fashion. Finally Figure 17c shows
the grid independence of the results. With this we start discussing the capillary hysteresis case.

Capillary Hysteresis
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Figure 18: Sε and uε vs. −ζ (left); and uε vs. Sε (right) for the hysteresis model in the limit
ST ↑ 1. The figures are obtained for ST = .97, SB = 0.2, ∆x = .1, ∆t = 10−3.

The case ST = 1 was studied first. To avoid degeneracy ST is kept slightly less than 1. The
monotone profiles of S and u, shown in Figure 18, agrees with the theory for ST = 1.
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Figure 19: uε vs. Sε for SB = 0.2, ST = 0.6,
∆x = .1, ∆t = 10−3 and ε = 10−1.

Next we move on to the ST < 1 case. We fix
ST = 0.6 and SB = 0.2 and vary ε. Figure
19 shows the result for ε = 10−1. The orbit
is monotone and ET is a stable sink. However
from Theorem 3.2b we expect ET to become a
stable spiral sink as ε becomes small enough.
This is indeed the case, as seen from Figure
20. For ε = 10−2 we clearly see that there is a
stable spiral around ET . This implies that the
εm for Theorem 3.2b is in between .1 and .01.
Consequently uε and Sε profiles, as a function
of −ζ, are non-monotone.
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Figure 20: Sε and uε vs. −ζ (left); and uε vs. Sε (right) for ε = 10−2. The other parameters
are SB = 0.2, ST = 0.6, ∆x = .1, ∆t = 10−3.

Similar figures but for ε = 10−3 are shown in Figure 21. It is important to mention that
longer times are required for the travelling wave profile to develop for the ε = 10−3 case in
comparison to the ε = 10−2 case. This is because if pimb(S) < u < pdrn(S) then ∂tS =

Hε

(
P+(S)−u
P−(S)

)
≈ εH1

(
P+(S)−u
P−(S)

)
. So the time required for a profile to develop to a travelling

wave profile, scales with 1
ε . Also note that the part close to S = SB between the imbibition and

drainage curves is much steeper for ε = 10−3. This supports Corollary 3.1.

−ζ
-100 -50 0 50 100

0

1

2

3

4
Sε

uε

pB

ε = 10
−3

t = 100

SBST

pT

S
0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

P+

pimb

pdrn
(Sε, uε)

ST
SB

u
ε = 10−3

Figure 21: Results for ε = 10−3. The other parameters are as in Figure 20.

Another observation is that the period of oscillations in the S and u profiles are wider for
ε = 10−3. This is a direct consequence of Remark 3.1. The period of oscillation scales with
O(ε−1/2). Lastly it is seen that the overshoot for ε = 10−3 is less than ε = 10−2. This follows
from Proposition 3.5. In the S-u phase plane the S-range of the spiral shrinks with decrease
in ε. So the overshoot gets shallower. Consequently, the numerical results reproduce all our
predictions for hysteresis.

32



Dynamic Capillarity
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Figure 22: Sτ and uτ vs. −ζ (left); and uτ vs. Sτ (right) for different τ values. The τ values
used are τ1 = 1, τ2 = 10 and τ3 = 100. The other parameters are SB = 0.2, ST = 0.5, ∆x = .1,
∆t = 10−3. In this case α(SB, ST ) > 0.

The P+(S) and k(S) functions are as in (5.6). We first take f(S) = 1. Figure 22 depicts the
case α(SB, ST ) > 0 with SB = 0.2 and ST = 0.5. As expected from the theory, for τ < τm S
and u profiles are monotone but for τ > τm they become non-monotone as ET becomes a spiral
sink. τ3 is taken so that wτ3(ST ) ≈ 0 and hence τ3 ≈ τ∗. Also a case with τ ∼ τm is shown
which has no overshoot and the orbit goes directly to ET . These behaviours agree with the
results presented in Propositions 4.2,4.3 and 4.4.
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Figure 23: Sτ and uτ vs. −ζ (left); and uτ vs. Sτ (right) for α(SB, ST ) < 0 and τ = 100 > τ∗.
Here SB = 0.2, ST = 0.8. δ = .001 has been used in P δe (4.19).

Next we investigate the case when α(SB, ST ) < 0 with SB = 0.2 and ST = 0.8. Figure 23
shows the profiles and orbits for τ > τ∗. A value δ = .001 has been used for P δe (see (4.19)).
The orbit behaves exactly as predicted. The pressure remains continuously differentiable with
ζ but saturation has a plateau at S = 1. This means that, in the limit, the extension eliminates
the possibility of S > 1 which in turn eliminates unphysical solutions.

Finally, we investigate the effect of f 6∈ L1([SB, 1]). We take the most general case given by
Remark 4.3, and choose f(S) of the form f(S) = 1

Sβ−S with SB = 0.2, ST = 0.6 and Sβ = 0.8.

Figure 24 displays the results. The situation remains mostly unchanged except close to Sα
the orbits move in a restricted way. The saturation indeed stays lower than Sα but for high
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enough τ values it approaches Sα. This is in good agreement with our theoretical predictions
in Theorem 4.4 and Corollary 4.1.
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Figure 24: Sτ and uτ vs. −ζ (left); and uτ vs. Sτ (right) for the case f 6∈ L1([SB, 1]). Here
f(S) = 1

Sβ−S with SB = 0.2, ST = 0.6 and Sβ = 0.8. Here τ = 100 > τ∗.

6 Conclusion

In this paper we discussed the implications of including non-equilibrium effects in unsaturated
porous flow models. Specifically, the play-type hysteresis and dynamic capillarity effects are
considered in the saturation-pressure relationship. One focus was on analysing the occurrence
of non-monotone saturation or pressure profiles (overshoots) arising due to non-equilibrium
effects. To this end, the traveling wave analysis is considered to understand the flow in a long,
homogeneous vertical porous column.

The analysis is done first for hysteresis models. In this case, the existence of travelling wave
solutions was shown first for the regularized case and then for the limiting case, leading to a play-
type hysteresis model. It was proved that overshoots may appear in the regularised hysteresis
models, which correspond to non-vertical scanning curves. However, in the limit situation these
overshoots can disappear and the saturation-pressure orbits lie on the imbibition curve.

Next we have investigated the dynamic capillarity effects, for which the existence of TW
solutions is proved. Furthermore, the existence of a threshold value for the dynamic capillarity
parameter is shown so that for values less than this the travelling waves are monotone, but
become non-monotone for values above the threshold. Moreover, similar thresholds are found
for the dynamic capillary parameter that dictates whether the overshoot will have regions of
positive pressure or whether the overshoot will reach a maximum corresponding to the full
saturation. Also mechanisms to restrict saturation to physically relevant values and to include
residual saturation were analysed.

Finally, an implicit numerical scheme to solve the non-linear, pseudo parabolic equations
corresponding to the non-equilibrium model was proposed. For solving the emerging time
discrete, non-linear equations, an L-scheme was used, and the scheme converges irrespective of
initial guess. This scheme is used for solving the original partial differential equation in a large,
but finite domain. The numerical results converge to the travelling wave profiles, as predicted
by the theoretical analysis.
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