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ABSTRACT

As the Virtual Reality (VR) market continues to grow, so does the
need for high-quality experiences. In order to unlock the wide pool
of existing web-based content, common and more specialized web
browsers allow users to visit existing web pages in VR. Additionally,
the latest version of the WebVR [24] standard facilitates the integra-
tion of custom 3D/VR content in a web page. Sadly, both options
consciously exclude the use of standard 2D web technology (such
as HTML and CSS) in other common use cases, such as creating a
highly interactive 2D UI for a 3D/VR game. Consequently, web
developers wanting to use WebVR are required to learn an entirely
new skill set to create VR experiences.

This work surveys and explores workaround options for ren-
dering 2D HTML/CSS/JavaScript-based content in WebVR. We
find that existing methods are often too slow to allow for a highly
interactive experience. We introduce DOM2AFrame, a new frame-
work that couples 2D page elements directly to their equivalent 3D
counterparts (using the A-Frame library [2]) to allow for smooth
updating, animation and user interaction at frame rates close to 60
FPS on modern hardware. Two case studies validate our approach
and show its potential for rendering 2D web content in VR.

Index Terms— Virtual Reality, WebVR, rasterization, DOM

1. INTRODUCTION

Virtual Reality (VR) is on the rise [11]! The need for premium VR-
enabled content has exploded in tandem with the availability to the
general public of VR-capable hardware (e.g., headsets, controllers
and personal computers). While this content is available in sufficient
measure in the form of stereographic video and interactive game-
related experiences, the rich ecosystem of (2D) web-based content
has not yet been fully explored in the VR medium. This is a pity, as
there are various interesting use cases (UCs) for using standard 2D
web-based technologies such as HTML, CSS and JavaScript (JS) in
VR. For example:
• UC0 : Rendering and interacting with a full web page as-is
• UC1 : Rendering a 2D User Interface (UI) or other 2D elements

in a 3D experience (e.g., complex menu in a game, text reader)
• UC2 : Rendering (parts of) a web page in a different way when

viewed in VR (e.g., integrating 3D objects as part of an e-shop,
auto-selecting stereographic video, horizontal instead of vertical
placement)

Some recent developments try to unlock this large body of existing
web content either in a special purpose VR browser (e.g., the Janus

VR browser embeds web pages as part of a larger 3D world),
or as separate VR rendering engine or view in an existing web
browser (e.g., Google Chrome and Samsung Internet). Sadly, these
browsers typically only allow the singular use case UC0 and do not
provide web developers with direct control over how their content
is rendered in VR nor how the user can interact with it. This is
problematic, as the browser’s typical approach (simply displaying
the site on a flat 3D surface (e.g., plane, cylinder)) is unlikely to
produce a satisfactory user experience [16].

To support UC1 and UC2, we might look towards the new
WebVR standard [24]. WebVR provides an abstraction on top of
the various VR hardware setups and enables developers to use the
existing WebGL [10] rendering capabilities of the HTML5 <can-
vas> element [21] to easily create stereographic 3D experiences.
Various VR input methods are made available through the JS-based
Gamepad API [24]. WebVR is currently supported in both Google
Chrome and Mozilla Firefox, with Apple’s Safari recently joining
the WebVR standardization effort [5].

In theory, web developers could thus use WebVR to render 2D
web content in VR and support all three use cases. In practice
however, modern browsers do not grant developers direct access
to their rendering pipeline and also do not provide an API to
render/rasterize typical web content onto a <canvas> element1.
The main argument for not providing such a coupling or API has
always been security and privacy related, as it could lead to abusers
taking and saving “screenshots” of sensitive user data (e.g., an
attacker could load an online banking page in an <iframe>,
render it to a texture and send it to their server; while this is certainly
a solvable problem, the possible solutions are not easy to implement
in the rendering pipeline [20]).

For better or worse, web developers who want to create VR con-
tent are currently limited to the functionality provided by the 2D and
3D rendering contexts of <canvas> and WebGL, which means
that most of the more powerful and established web technologies
such as HTML, CSS and large parts of JS (e.g., input event listeners)
are not directly usable in WebVR. This implies that web developers
cannot use their established skill set to start creating VR content,
instead requiring them to develop new skills (e.g., knowledge of 3D
primitives, shaders), which are typically taught to game developers.

In this work, we first look at existing options to bypass these
limitations and how to render full-featured 2D web content as part
of interactive 3D and VR experiences (Section 2). We discover that

1Note that Mozilla Firefox does provide a similar API [1], but that it is only
available from within browser extensions and plugins, not to normal web content.



developers have been using workarounds to render web content to
2D textures, then mapping them onto 3D primitives for use in VR.
We find that these methods are far too slow to support interactive
3D WebVR experiences and are inflexible in their handling of
user input. We contribute our own DOM2AFrame framework
(Section 3), which does not first render to a 2D texture but instead
couples each 2D web element to an equivalent 3D representation
directly. Our approach provides fully interactive frame rates and
more flexible input handling (with support for HTML forms), at the
expense of the resulting render not being a pixel-perfect replica of
the browser engine’s result. We validate our approach in Section
4 with two case studies that show our support for UC1 and UC2
and, in part, UC0. Note that we look primarily at the rendering and
input capturing aspects and consider techniques for interacting with
(Web)VR content out of scope for this work.

2. RELATED WORK

2.1. Adjusting the native rendering pipeline

Rendering a web page is an iterative process (see Figure 1a). The
browser engine starts from the raw HTML/CSS/JS strings and
builds an internal representation: the Document Object Model
(DOM2). This internal representation is then used in multiple steps,
mainly Layouting and Styling. Layouting deals with how elements
are positioned and sized (e.g., with CSS properties such as width,
height, margin) while Styling changes the visual appearance of the
elements (e.g., borders, color, font-weight). Once the Layout and
Style are calculated, the browser can use this information to draw
the rasterized representation of the web page via the GPU. When
something changes on the web page, the browser only updates
the relevant elements of its internal representation to prevent a full
page re-draw for every update. It is thus straightforward for the
browser to provide a VR-specific rendering viewport on top of this
internal representation, since it mainly needs to change how the
content is dispatched to the GPU and can reuse most of the existing
implementation.

It is no wonder then that much of the previous work has focused
on extending existing browser implementations to enable stereo-
scopic rendering and/or providing web developers with ways to
access a VR rendering setup. In their seminal paper [6], Barsoum
and Kuester use an external VR rendering engine and run an Inter-
net Explorer web browser process in the background. An ActiveX
plugin captures the web page’s contents and streams the resulting
bitmaps to the VR engine. Their results indicate low refresh rates
of only 4-7 FPS. Jankowski and Decker [16] use a custom web
browser to allow users to switch between a “normal” 2D HTML
view and a 3D view on top of which the HTML content is overlayed
in flat “windows”. More recently, Wang et al. [26] have extended
Webkit to allow for easy stereoscopic rendering of HTML content,
introducing multiple APIs such as HTML-S3D, CSS-S3D and JS-
S3D. Similarly, Lim et al. [17] propose several CSS extensions to
allow for stereographic rendering and 3D manipulation, which they

2In reality, what we are referring to as the DOM is actually a combination of
DOM, CSS Object Model (CSSOM) and executable JS code and couplings (e.g.
event handlers). We use the summarizing term DOM here for brevity and clarity.

validate with an emulated rendering-engine3.
Ultimately however, all these approaches require either a custom

browser implementation/plugin and/or propose an extension to
existing web standards, making them difficult to deploy in practice
and in combination with modern APIs such as WebVR/WebGL.
Additionally, most of the discussed methods focus primarily on
supporting UC0 and sometimes UC2 (highlighting that enabling
UC2 is traditionally difficult without built-in browser support), but
rarely UC1.

2.2. Rendering to a 2D texture

As discussed in the previous sections, rendering web content in
VR without changing browser source code is difficult because a
developer cannot directly access the browser’s internal rendering
pipeline through JS or any other means4. However, there are some
workarounds that obtain a very similar result by using the available
2D/3D rendering contexts of the <canvas> element. These
methods first render (large) groups of DOM elements to a 2D
image/texture, either by using the internal pipeline in a roundabout
way via SVG images (Section 2.2.1) or by re-implementing the
browser’s Styling logic (Section 2.2.2). This texture is then mapped
onto a WebGL 3D (quad) primitive for use in VR.

Two figures aptly summarize the next two Sections: Figure 1
shows the various pipeline details, while Figure 2 clarifies how each
method maps web elements onto multiple textures.

2.2.1. rasterizeHTML and html2three

Using the special <foreignObject> tag of the XML-based
Scalable Vector Graphics (SVG) image standard, HTML and CSS
content can be embedded in an SVG image element. The <can-
vas> 2D drawing API then allows to draw/rasterize the SVG
image, causing the browser to internally render the SVG in largely
the same way as it would with normal HTML and CSS content,
using the default browser rendering pipeline (see Figure 1b).

However, once again due to security and privacy considerations,
various web features are not directly supported. For example,
JS code execution/events are disabled inside the SVG and exter-
nal JS cannot access the resulting (sandboxed) SVG DOM copy.
This means that interaction with form elements (e.g., <input>,
<textarea>) is not supported. Additionally, most external re-
sources (e.g., images, CSS stylesheets, fonts) cannot be directly
included and must first be downloaded outside of the SVG and
then inlined as base64 encoded strings. There are many edge cases
involved in this process and browsers do not support all possible
HTML and CSS features (e.g,. hyperlinks, see Figure 3b 1 ).
Various open source implementations of this methodology have
arisen, for example rasterizeHTML [9].

The experimental html2three library [18] uses rasterizeHTML
internally to render a web page in a WebVR context. A limited
amount of top-level <div> containers are rendered as separate
quads (one texture/quad per container) (see Figure 2a and 2b, nr. 1
and 4 are individual parent containers). Each container element is

3A W3C proposal adding Stereographic 3D to CSS fizzled in 2012 [22].
4Note that while there are methods for overlaying DOM content on top of a 3D

<canvas>, these do not support stereographic views.



Fig. 1: Rendering pipeline: (a) native browser, (b) html2three (rasterizeHTML), (c) HTML GL (html2canvas) and (d) DOM2AFrame.

seen as a “sub page” and can be separately re-rendered. Interaction
is provided by capturing pointer event coordinates in the UV texture
coordinate space and then looking up the corresponding DOM ele-
ment through the standard document.elementFromPoint
API, which can find DOM elements through document space co-
ordinates. Any resulting changes to the original content are then
captured through the JS Mutation event system (see Section 3)
and can result in a full re-render of the triggering content’s par-
ent <div> container by creating a new <foreignObject>
SVG.

2.2.2. html2canvas and HTML GL

The core idea behind the html2canvas library [19] is to completely
re-implement the Styling and rendering/drawing logic in JS. To this
end, html2canvas uses the 2D drawing <canvas> APIs directly
to render custom versions of the DOM elements into larger 2D
textures, see Figure 1c. The native browser’s Layouting engine
is still used to determine relative element positioning and size,
enabling complex CSS positioning such as floating and flex grids
(see Section 3 for more details). While this approach is flexible,
it requires large amounts of custom drawing code in the Styling
step to obtain results that are visually similar to those of the native
browser. That being said, html2canvas appears to be fairly mature
and up-to-date, as its visual fidelity level was found to surpass that
of rasterizeHTML (compare Figures 3c and 3b).

The proof-of-concept HTML GL library [12] adds 3D/VR ca-
pabilities to html2canvas. Like html2three, HTML GL will render
groups of DOM elements into a limited amount of individual tex-
tures, but it uses a different heuristic to determine how to group the
DOM content. Where html2three partitions elements into several
larger parent containers, HTML GL instead tries to improve perfor-
mance by creating a separate 2D texture for a few select elements,
namely those which have a custom CSS 3D transform set (e.g.,
using CSS translation or rotation). If and when those transforms
change, HTML GL no longer has to update the larger texture; it can

instead directly apply the transform to the corresponding 3D quad
by constructing the correct 3D transformation matrix and skip the
texture generation. For example, in Figure 2c element X has a CSS
3D transform set and is rendered apart from the other elements as a
separate texture.

Like html2three, HTML GL handles pointer-based input through
document.elementFromPoint.

2.3. Discussion

Existing academic work proposes extensive and optimized methods
for rendering DOM content in VR, but often requires changes to
the web browser’s source code, making it difficult to use in prac-
tice. In contrast, rendering to a 2D texture is a directly applicable
workaround and can clearly lead to good overall visual replicas of
the browser’s behaviour (see the comparison in Figure 3), but it
also has severe downsides. Firstly, the method is inflexible in terms
of input capturing (e.g., input is no longer directly received on an
individual 2D element, form element support is limited). Secondly,
re-rendering a large 2D texture is often not fast enough to provide
interactive frame rates when there are many changes to the DOM
(see Section 5). A naive optimization would be to simply render a
separate 2D texture for each individual DOM element to improve
the update performance. In practice however, the JS API overhead
for creating and managing these textures quickly adds up and this
“optimization” turns out to hurt performance when applied in any-
thing but a very coarse way (i.e., more than about 5 - 10 individual
textures in our tests). This is why the discussed implementations
choose different middle roads (see Figure 2): html2three’s approach
(b) works well in cases with a few largely independent container
elements, while HTML GL (c) will perform best if there are multiple
moving parts spread around the page. This is possibly also one
of the reasons why neither of the two 3D libraries supports the
<video> tag, even though this can be done by texture-mapping
the internal video framebuffer.



Fig. 2: Mapping DOM to 3D: (a) individual source elements, (b) render to texture (two textures total), (c) render to texture with optimization
for X (two textures total), (d) full direct mapping (no textures, seven dynamic elements of which one (nr. 4) is not rendered)

(a) native (b) html2three (rasterizeHTML) (c) HTML GL (html2canvas) (d) DOM2AFrame

Fig. 3: Visual fidelity: (a) the browser’s 2D ground truth. (b), (c) and (d) same page rendered using methods from Sections 2 and 3.

3. DOM2AFrame

Our contribution, DOM2AFrame, aims to provide a web standards
compatible solution for rendering 2D DOM in 3D/VR, with high
update performance and flexible input support. While our approach
is conceptually similar to html2canvas in that it employs custom
Styling and rendering logic, it differs in that instead of using the 2D
<canvas> APIs, we use the 3D WebGL capabilities to remove
the intermediate step of rendering to a 2D texture (see Figure 1d
and Figure 2d). We create and maintain a direct mapping between
the DOM elements and their 3D counterparts, making it easy to
only amend the 3D representation for the DOM elements that have
changed after an update. As such, we achieve a dual performance
boost by a) getting rid of the 2D texture overhead and b) only
updating what is needed. We receive (pointer-based) user input
directly on the correct 3D element (via raycasting/“picking”) and
can pass it on to the original DOM element through our maintained
mapping. The main downside of our method is that it is difficult
to achieve a high degree of visual fidelity when compared to the
browser’s ground truth for complex Styling setups (see Section 3.3).

A proof-of-concept implementation of DOM2AFrame, along
with all discussed test pages, case studies and several movies are
available at https://webvr.edm.uhasselt.be

3.1. DOM to A-Frame mapping

In practice, most of DOM2AFrame’s features do not use the low-
level WebGL capabilities directly, but rather rely on Mozilla’s

higher-level A-Frame library [2, 23], which in turn uses the lower-
level Three.js library. A-Frame allows users to build up their 3D VR
scenes in HTML-alike markup, see for example the bottom part of
Listing 1. This markup is then parsed by JS at runtime and used
to create 3D elements, providing web developers with a familiar
way to declaratively compose VR scenes [8]. Note that most of
the technical challenges discussed in this work are inherent to our
overall approach and not due to the choice of A-Frame as a base
framework. Indeed, similar results can be achieved by using for
example Three.js, the ReactVR framework [4] or a variant on the
X3DOM approach [7].

Listing 1: DOM2AFrame example (excluding positioning/sizing)
<img src="logo.png" />
<p style="background-color: red; color: blue;">

↪→ Lorem ipsum dolor</p>

Is transformed by DOM2AFrame into:

<a-asset id="abc123" type="img" src="logo.png" />
<a-image src="#abc123" />
<a-entity>

<a-plane color="#FF0000" />
<a-text color="#0000FF" value="Lorem ipsum

↪→ dolor" />
</a-entity>

However, despite A-Frame’s HTML-alike markup, it only supports
custom elements that usually have a direct 3D equivalent (e.g.,
<a-box>, <a-plane>) and not the standard HTML elements
(e.g., <div>, <p>), nor does it support direct CSS manipulation



of these custom elements. So, while A-Frame’s approach looks and
feels like HTML-based development, it is still not directly usable
for developers lacking previous 3D experience.

To overcome this issue, DOM2AFrame creates automated custom
mappings from a variety of HTML/CSS elements onto equivalent
A-Frame objects and WebGL shaders. It recursively loops through
the children of a chosen root element and creates a corresponding
A-Frame element for each. For example, Listing 1 shows how a
<p> and <img> element can be transformed into equivalent
A-Frame representations for rendering. For many HTML elements
that mainly serve as a container for other content (e.g., <div>,
<table>), a simple <a-plane> is a sufficient analogue. Ele-
ments that display text are composed out of both an <a-plane>
and an <a-text> element, as the latter doesn’t directly support
a background color or borders. Other, more specialized HTML ele-
ments (e.g., <select>) can require more complex setups but, in
general, all the HTML elements necessary for our case studies (see
Section 4) could be composed out of simple A-Frame components.

Once the mapping between DOM and 3D elements is built,
DOM2AFrame uses the browser’s native Layouting calculations
to position and size the elements in 3D, courtesy of the get-
BoundingClientRect method (available on all DOM ele-
ments). This method returns the coordinates and size of the DOM
element’s bounding box relative to the document’s top left corner,
after the browser has positioned all the elements based on their CSS
properties. This approach means DOM2AFrame supports any type
of complex CSS positioning out of the box (as do the other methods
discussed in Section 2, which use the same API), but also that the
original 2D page and its DOM must remain active (though it can be
hidden).

In contrast to the Layouting step however, the browser doesn’t
provide easy access to its native Styling/drawing engine and we need
to re-implement most of the Styling logic ourselves. The browser’s
internal CSS representation (the CSSOM) can be retrieved through
the window.getComputedStyle interface, which returns
the interpreted values for all CSS properties. Luckily, for many of
these properties, there are direct A-Frame analogues that can be used
(e.g., text and background color, background image, text alignment)
and that are often implemented directly in fragment shaders. Other
properties are less straightforward. For example, A-Frame elements
by default do not have the option to set a border, while CSS offers
many flexible possibilities in that regard. DOM2AFrame therefore
currently only supports borders for rectangular elements by creating
new thin triangle strips/lines on the edges of the <a-plane>.
Another example of a difficult CSS aspect is that of overflow
(i.e., hiding content where it is larger than its parent’s bounding
rectangle). html2canvas achieves this by using <canvas>’s 2D
clip method, which discards pixels outside of the clipping area
during rasterization. This feat is much harder to accomplish in 3D
however. Our current solution is to use four individual orthogonal
clipping planes (one per edge of the rectangular element) and
discard pixels outside these planes in the element’s fragment shader.
Additionally, DOM2AFrame also includes support for various non-
standard HTML attributes/elements and CSS properties. These
allow the developer to more easily manipulate the appearance of
their HTML content in 3D/VR or to create a web page that looks
and behaves differently depending on whether it is viewed in VR or

not (to maximize the re-use of source code).
Lastly, handling pointer-based input events (e.g., mouse, VR

controllers) is relatively easy. A-Frame has provisions for a plethora
of cursor-based interaction concepts, including “gaze clicking” and
uses raycasting to find the correct element. DOM2AFrame then
intercepts these A-Frame events and transforms them into equivalent
DOM events (e.g., click, hover, mouseout). It can then dispatch
the DOM event to the correct 2D element, which then triggers the
registered existing JS event handlers and keeps support for event
bubbling intact.

3.2. Updates and animations

Given the A-Frame representation of the DOM and the mapping
between corresponding 2D and 3D elements, we can efficiently
reflect any DOM changes by updating the correct A-Frame attributes
or creating/deleting A-Frame elements. The challenge here lies in
how to actually detect those DOM changes via JavaScript.

The browser provides a standard MutationObserver API
[3], which can be used to observe a DOM element (and its chil-
dren) and which generates Mutation events when something
changes (e.g., CSS properties are changed, a new CSS classname
is assigned, a child element is created). While this setup cap-
tures most mutations, there are a number of important edge cases.
For example, CSS animations and transitions do not trigger the
MutationObserver and as such require separate event lis-
teners (e.g., on animationstart and animationend) and update loop
logic (via requestAnimationFrame). Additionally, if an
element changes size/position due to a CSS property change, this
will generate a Mutation event for that element exclusively;
other elements that might have been repositioned/resized due to this
change need to be checked independently. Lastly, if a CSS property
is not set directly on an object but rather by using a general CSS
selector (e.g., ∗{color:#FFF;}), this will also not trigger a
Mutation event. Currently, we know of no way to observe this
specific situation in all possible ways it can occur and instead ask
the developers to manually call an update method on all affected
elements.

3.3. Limitations

The main challenges of our approach lie in the trade-off between
satisfactory performance and reaching a visual fidelty that matches
the browser’s 2D rendering. Firstly, most of the core problems
originate from the fact that several CSS style properties do not
have a direct or simple counterpart in WebGL and its shading
language. For example, we would need to implement/generate
complex custom shaders/border meshes to support rounded corners
(see Figure 3d 2 ). Additionally, supporting content overflow
hiding through clipping planes in the fragment shader works, but
it does not scale well, as both the parent element and all of its
children need to perform the clipping in their shaders individually.
An interesting optimization could be to change the element’s base
mesh definition at creation time to match the clipping setup.

Secondly, font rendering is approached differently in 2D and
3D. Without direct access to the browser’s font rendering engine
(and thus also the .ttf, .woff and other web standard font format



Fig. 4: The Hologram case study

implementations), DOM2AFrame resorts to other methods for 3D
text. A-Frame supports bitmap-based fonts but also the more ad-
vanced (multi-channel) signed distance field (MSDF) font rendering
method [14]. In practice, the differences between the A-Frame
MSDF implementation and the CSS font conventions are so large, it
is difficult to find a consistent/robust mapping between the two. Our
implementation works well in some cases but shows large discrepan-
cies in others (see Figure 3d 3 ). It would require fine-tuning on a
per-font/per-case basis to get a pixel-perfect replica of the browser’s
text rendering behaviour in A-Frame.

Finally, working directly with the WebGL backend means that
DOM2AFrame’s performance is more likely to be GPU-bound (as
opposed to CPU-bound). Especially on lower-end/mobile hardware
this could mean our method becomes slower than more CPU sen-
sitive methods (see Section 2.2.1 and 2.2.2). Additionally, using
complex fragment shaders means being weary of fill rate limitations
(i.e., how many pixels can be drawn per frame). For example, in
Figure 2d, if element 1 is completely drawn and shaded before
elements 2 and 3, time is wasted on computing eventually invisible
pixels. Even though most GPUs and rendering logic already take
this into account (i.e., by depth-sorting elements first), not rendering
invisible DOM elements helped performance considerably in our
tests (e.g., elements such as nr. 4 in Figure 2d, which have no back-
ground color/border and serve only as positioning/sizing containers
for other contentful elements).

4. CASE STUDIES

In order to validate DOM2AFrame, we implement two custom
case studies. We take care to integrate HTML/CSS functionality
that is not/less supported by related work (e.g., form input, video,
animations) to highlight the benefits of our approach.

4.1. The Hologram

This first case study primarily aims to show that DOM2AFrame
can be used to implement use case 1 (UC1): Rendering a 2D
User Interface (UI) or other 2D elements in a 3D experience. The
demo simulates a mainframe user console in a futuristic setting,

Fig. 5: The VodLib case study (All movie image copyrights belong
to their respective owners).

see Figure 4. It includes an “accordion” menu to the right (where
non-active menu items slide out with a CSS transition as the active
item takes up all available space, implemented using CSS overflow),
a video display that can toggle between flat video and overlayed
stereographic video in the middle and a form that can be used to
select animations on a 3D “hologram” (top). Console commands
can be executed at the bottom, causing them to be added to the
third accordion pane on the right. This demo is also fully functional
in the non-VR view: the 3D hologram model is rendered in a flat
<canvas> and only the non-stereoscopic flat video is played. In
this way, it is also a validation of UC2.

4.2. Video-on-Demand library

Our second case study aims to show that DOM2AFrame can be used
to implement use case 2 (UC2): Rendering parts of the web page
in a different way when viewed in VR. This demo (see Figure 5)
shows a “Video-on-Demand library” (VodLib), similar to such sites
as Netflix, where users have an overview of video content and they
can browse and choose an appropriate (stereographic/360◦) movie
to watch. The filter options on the right, which would typically be
checkboxes on a normal website, are instead automatically presented
as push buttons in VR for easier user interaction. Similarly, a
normally horizontal drop down menu is replaced with two adjacent
vertical lists (left). The two side menus are also rotated around
their vertical axis to achieve a better impression of presence in the
3D world. Note that this demo is complementary to that of Hugo
Hedelin [15], who also implements a VR-based VodLib, but focuses
on the user interaction aspects and implements the 2D UI directly
in A-Frame.

By way of a third demo, we attempted to use DOM2AFrame for
use case 0 (UC0): Render a full web page as-is. Our implementation
was able to correctly render large parts of a complex existing VodLib
web page, but was unable to deal with some complex CSS concepts,
such as “pseudo-elements/classes” (e.g., :hover, ::before)
and complex background image setups. Currently, it is often difficult
or impossible to manipulate or interpret these CSS rules from inside
JS. We expect this situation to change in the future with more
powerful CSS APIs [25].



Method
Non-VR Browser rasterizeHTML html2canvas A-Frame

Aspect (Google Chrome) (html2three) (html-gl) (DOM2AFrame)

(a) Allows UC1 & UC2 3 3 3
(b) Pixel perfect DOM equivalent full largely largely limited
(c) Input support native coordinate mapping coordinate mapping raycasting/picking
(d) Form support full very limited limited custom, extensive
(e) Video playback 3 3

(f) Single element frame duration (ms) 16.6 90 370 16.9
(g) Full testpage frame duration (ms) 16.9 275 380 18.1
(h) Interactive framerates (+ animations) 3 3

Table 1: Comparison of different methods of rendering DOM content to 3D/VR. For frame (ms) measurements, lower is better.

5. EVALUATION

In order to further evaluate the performance characteristics and
feature-completeness of the discussed methods, we used a custom
test page which includes a variety of different HTML elements (e.g,
<img>, <video>), CSS layouting (e.g., floating, overflow) and
styling (e.g., rounded borders, background color) directives, trigger-
able CSS/JS animations, DOM manipulations and input event
handlers. Part of this test page can be seen in Figure 3.

The reported results in Table 1 were obtained in Google Chrome
v59, on an Intel i7 7700k desktop computer with 16GB of RAM
running Windows 10, using an NVidia GTX 1070. Tests in Mozilla
Firefox v54 and on other (slower) desktop hardware found quan-
titatively similar results. We consciously decided to generate our
results on high-performance desktop hardware because we feel
most mobile hardware is not yet powerful enough to run full VR
experiences and that this might skew our results, as the hardware
rather than the software becomes the bottleneck. Consequently, the
reported “ground truth” results are for the native non-VR Google
Chrome browser, as the VR-specific viewport of Google Chrome is
currently only available on the Google Daydream headset (which
uses a mobile phone for its processing). We speculate that the native
desktop browser will also be able to reach this optimal performance
in a hypothetical VR view because it is able to reach optimal results
in the non-VR view.

Items a - e of Table 1 highlight the feature-completeness of
the discussed approaches. While the native browser seems the
winner in all options, remember that it only allows for browsing full
web pages in VR (UC0), not for embedding interfaces (UC1) or
adjusting how parts of the page are displayed (UC2) (see Section
1). While especially the more mature html2canvas library outshines
our approach in terms of visual adherence to the browser’s ground
truth, DOM2AFrame is more flexible in terms of complex input
handling and dynamic aspects such as video playback.

The performance aspects of the evaluated methods are shown
in items f - h of Table 1. We define interactive frame rates as
being between 30 and 60 frames per second (FPS)5, correspond-
ing to 33.3ms - 16.6ms individual frame durations respectively.
We report the average frame durations, recorded over a period of
approximately 30s, in which a variety of automated, JS-triggered

animations and DOM manipulations take place. The measurements
were repeated 10 times for each test case and we report the lowest
measured average (optimal result). We can see that rasterizeHTML
and html2canvas are limited to 3.6 FPS and 2.6 FPS respectively
when animating the full test page (Table 1g). Even when constantly
re-rendering a page with only a single <p> element (Table 1f)
(considered as an “optimal” case), we see a maximum of 11.11 FPS
for rasterizeHTML, while html2canvas does not show significant
improvement, adding to our hypothesis that its low performance is
not due to drawing overhead but rather texture creation and manage-
ment (both pages generate only a single texture for html2canvas).
In contrast, DOM2AFrame achieves an average 55 FPS for the full
page and 59 FPS for a single element. As such, only our contri-
bution and the native browser are able to reach interactive frame
rates.

6. CONCLUSION

In this work, we have discussed the challenges in rendering standard
2D HTML/CSS web content in a (Web)VR environment for a
variety of use cases. We have found that existing, web-standards
compliant methods, which first render the web content to a 2D
texture before moving to 3D, are often too slow to support truly
interactive VR experiences. We contribute DOM2AFrame, a frame-
work which creates a direct mapping between DOM elements and
their equivalent 3D counterparts, enabling high update rates and
extended interactivity. While there remain unresolved issues in our
approach that are left for future work, we have validated our method
on two concrete case studies to show that DOM2AFrame can render
a large subset of web content in VR with high visual fidelity.

It is our hope that DOM2AFrame and similar approaches can help
web developers to more easily create WebVR-compatible content
by relying on their known and trusted web technologies. We also
hope that through this work we can encourage browser vendors to
reconsider providing direct access to the browser’s internal rendering
and rasterization layers, as with the advent of WebGL/WebVR, new
use cases have arisen that would benefit from native rasterization
APIs.

5Note that while 30 FPS is the minimum advised by the WebVR authors, various
other work recommends using 60 to 90 FPS or higher [13]. The browsers used in
our tests allowed a maximum frame rate of 60 FPS (vsync).



7. ACKNOWLEDGEMENTS

This work is part of the imec ICON PRO-FLOW project. Robin
Marx is a SB PhD fellow at FWO, Research Foundation - Flanders,
project number 1S02717N. Thanks to messrs Wijnants, Michiels
and our anonymous reviewers for their help.

8. REFERENCES

[1] drawWindow. https://developer.mozilla.org/en-US/docs/Web/
API/CanvasRenderingContext2D/drawWindow, 2017.

[2] Mozilla A-Frame. https://aframe.io, July 2017.
[3] MutationObserver. https://developer.mozilla.org/en/docs/Web/

API/MutationObserver, July 2017.
[4] React VR. https://facebook.github.io/react-vr/, July 2017.
[5] WebVR WG participants. https://www.w3.org/community/

webvr/participants, July 2017.
[6] Emad Barsoum and Falko Kuester. WebVR: an interactive

Web browser for virtual environments. In Electronic Imaging
2005, pages 540–547, 2005.

[7] Johannes Behr, Peter Eschler, Yvonne Jung, and Michael
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